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aAPC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue
A. Domon & L. Duquet, Paris, France
bDepartment of Physics and Astronomy, University of Utah, 115 S 100 E, RM 201, Salt
Lake City, UT 84112, USA
cLawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
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de Janeiro, RJ - 20921-400, Brazil
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Abstract. We describe mock data-sets generated to simulate the high-redshift quasar
sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Sur-
vey (BOSS). The mock spectra contain Lyα forest correlations useful for studying the 3D
correlation function including Baryon Acoustic Oscillations (BAO). They also include astro-
physical effects such as quasar continuum diversity and high-density absorbers, instrumental
effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS
pipeline treatment of the raw data. The Lyα forest BAO analysis of the BOSS collaboration,
described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check
analysis procedures prior to performing the BAO analysis on real data, and for continued
systematic cross checks. Tests presented here show that the simulations reproduce sufficiently
well important characteristics of real spectra. These mock data-sets will be made available
together with the data at the time of the Data Release 11.

Keywords: large-scale structure: redshift surveys — large-scale structure: Lyman alpha
forest — cosmology: dark energy
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1 Introduction

The Baryon Oscillation Spectroscopic Survey (BOSS) [1], as part of the Sloan Digital Sky
Survey [2], has obtained accurate redshifts of over 1.5 million massive galaxies and spectra
of more than 150,000 quasars with Lyα forest coverage in order to study Baryon Acoustic
Oscillations (BAO). Measuring large-scale structure with these tracers provides percent-level
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accuracy in the position of the BAO peak [3], which translates into measurements of the
redshift dependent angular diameter distance, DA(z), and Hubble expansion rate, H(z).

BOSS Data Release 9 (DR9) was used to study BAO at high redshift for the first time in
the 3D Lyα forest flux distribution [4–7]. The latest Lyα forest clustering analysis, described
in [8], uses three times more data from Data Release 11 (DR111). This new analysis is an
improvement in several ways: new covariance matrix estimates, deeper study of systematic
effects and the use of 100 realizations of mock catalogs. It has yielded a new measurement
of the expansion rate, H(z = 2.34) = (222 ± 7)(147.4/rd) km s−1 Mpc−1, and the angular
distance DA(z) = (1662 ± 96)(rd/147.4) Mpc, where rd is the sound horizon at the drag
epoch as can be estimated by CMB data [9].

Mock catalogs were essential in these previous analyses for testing systematic effects
in the BAO measurements. We describe for the first time in this work the generation and
properties of mock spectra used in the DR11 Lyα analysis. The DR9 mock catalogs used
the same procedure described here, the only differences being the size of the quasar sample
(33% of DR11) and the number of available realizations (15 instead of 100 in DR11). The
larger number of realizations were important to increase the precision in the determination
of possible biases in the analysis, for instance in the estimate of the covariance matrix of our
measurements, the effect of the absorption by metals in the intergalactic medium, and the
effect of errors in the spectrophotometric reduction.

The clustering of the Lyα forest is encoded in the absorption field defined by

δq(λ) =
Fq(λ)

F̄ (λ)
− 1 Fq(λ) =

fq(λ)

Cq(λ)
(1.1)

where q indexes an individual quasar (or more precisely its angular position on the sky) and
λ is the observed-frame wavelength of the Lyα absorption. The flux transmission, Fq(λ), and
its mean F̄ (λ), is mostly due to neutral hydrogen at redshift z = λ/(121.6 nm) − 1. The
transmission is the ratio of the measured flux, fq(λ), to the quasar “continuum” Cq(λ), i.e.
the flux that would be measured in the absence of absorption. The δq(λ) can be used to
estimate the two-point correlation function

ξ̂A =

∑
(i,j)∈Awijδiδj∑

(i,j)∈Awij
(1.2)

where i and j refer to pixels defined by q and λ and the sum is over pixel pairs (i, j) such
that the separation between the two pixels lies in bin A (generally defined by a transverse
separation, r⊥ and radial separation r‖). The wij are weights that depend on the level of
instrumental noise in the pixels and on the intrinsic variance of fluctuations in the forest.

The creation of realistic mocks requires generating realistic quasar continua, mean ab-
sorptions and δq(λ) that have correlations due to large-scale structure and fluctuations due to
noise. This is done in two steps. First, we create a realization of the absorption field at every
forest pixel, assuming a certain cosmological model. Second, quasar spectra are generated
by multiplying the Fq(λ) by synthetic quasar continua, Cq(λ), and then adding instrumental
noise, metal lines, high column density absorbers, and other potential systematics.

Full hydrodynamical simulations [10–14] can give a precise description of the Lyα for-
est physics under certain assumptions, but they are computationally expensive and do not
have the required dynamic range to describe both BAO scales and the small-scale structure

1Publicly available in December 2014 along with our mock catalogs.
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responsible for the observed Lyα fluctuations. Furthermore, hundreds of realizations of the
survey are desired, which is impractical with these simulations. With the focus on BAO
scales, an alternative method to generate a correlated absorption field was presented in [15].
This method is fast enough to allow us to generate many realizations of the survey, while
at the same time capturing the correct 1-point and 2-point statistics of the absorption field.
This method has been used in previous analyses [4–6], and we also follow it here.

The second step, the main subject of this article, is the transformation of the flux
transmission into data-like spectra that have the essential characteristics of the real BOSS
spectra. Absorption lines arising from high column density systems and metal transitions
are first added to the Lyα absorption. The absorption field is then applied to random quasar
continua and instrumental noise is added. Pipeline imperfections in flux and noise estimation,
and sky subtraction are included.

Throughout this work, we use a fiducial flat ΛCDM cosmology with Ωm = 0.27, Ωbh
2 =

0.0227, h = 0.7, σ8 = 0.8, ns = 0.97, Ων = 0. This cosmology was also used in previous
papers on the Lyα BAO measurements of BOSS ([5], [6], [7],[16]). Note, however, that the
latest analysis presented in [8] uses a fiducial model with massive neutrinos (Ωνh

2 = 0.0006).
We start by summarizing the method to generate the Lyα absorption field in section 2.

In section 3 we describe the transformation this field, the so-called raw mock spectra, into
realistic quasar spectra, the so-called expanded mock spectra. In section 4 we compare some
basic statistics of the expanded spectra with those of real spectra. In section 5 we compare
the three-dimensional correlation function and its covariance matrix of the expanded mocks
with those of the data. We conclude in section 6. In appendix A we explain the access
and the usage of the mock catalogs. These can be found at the SDSS public webpage
http://www.sdss.org/dr12/algorithms/lyman-alpha-mocks.

2 Generation of the absorption field

The main desired properties of the absorption field are that (a) it possesses pre-defined 3D
correlations described by a power spectrum PF (k), (b) it has a realistic flux probability dis-
tribution function, with transmissions values between 0 and 1 and (c) it follows the geometry
of the BOSS Lyα survey, i.e., it contains quasars at the same position and redshift as the
real quasars, and has a wavelength resolution better than the BOSS spectrograph pixel size
(∼ 0.07 nm). We note that property (b) implies that the statistics of the absorption field
will be non-Gaussian.

We warn the user that these mocks are not suited for quasar-Lyα forest cross-correlation
measurements (e.g. [16]), since no correlations between quasar positions and the absorption
field are included.

2.1 Input power spectrum

The target correlation function of the absorption field is defined by the power spectrum

PF (k, µ) = P 2
0 (1 + βµ2)2Plin(k)D(k, µ) (2.1)

where Plin(k) is the linear isotropic matter power spectrum as computed using CAMB2 code
[17] at z = 2.25 with cosmological parameters given in section 1. The amplitude P0 = −0.14
and redshift-distortion parameter β = 1.4 were chosen to be compatible with measurements

2http://camb.info/
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of [18] and [4]. The D(k, µ) term accounts for a small scale non-linear correction of the
power spectrum (defined by Eq. 21 and Table 1 of [13]), depending on the cosine of the angle
between the wavevector and the line of sight, µ = k‖/k.

The redshift evolution of the power spectrum amplitude P0(z) is set by the evolution
of the Lyα forest bias b(z) and the growth factor g(z), and we further assume that it evolves

according to b(z) g(z)
g(z=2.25) = −0.14[(1 + z)/3.25]γ/2, where γ = 3.8 (following results from

[18]). The redshift space distortions parameter β is assumed to be redshift-independent.

2.2 Absorption field properties

We use same assumption as in [15]. In order to create an absorption field with a realistic flux
probability density function, we build a Gaussian random field δG over pixels, and then we
apply the following non-linear transformation to compute the transmission Fq,

Fq(δG) = exp
[
−a(z)eb(z)δG

]
. (2.2)

The two functions, a(z) and b(z) are chosen so that the resulting mean transmission F̄ and
variance of δq = Fq/F̄ − 1 are

ln F̄ (z) = ln(0.8)

[
1 + z

3.25

]3.2

(2.3)

Var(δq) =
σ2
F

F̄ 2
(z) = 0.108

[
1 + z

3.25

]γ
(2.4)

where γ = 3.8 is set by the evolution of the power spectrum amplitude.
Given this transformation between Gaussian variables and transmission, we proceed

as follows: first, we generate a Gaussian field with correlations given by a Gaussian power
spectrum PG. Second, we compute transmissions using Eq. 2.2. By choosing the correct PG,
the final transmission field should have the correct correlations given by PF (Eq. 2.1). The
authors of [15] give a prescription for choosing the power spectrum of the Gaussian field and
the parameters of the non-linear transformation in order to match the desired correlation
properties of the final absorption field.

2.3 The mock-data sample

Our data sample is defined by the automatic object classification and redshift determination
performed by the BOSS reduction pipeline [19] and based on the BOSS Data Release 11
(DR11). We selected all objects classified as a quasar and with redshifts in the range 2.15 <
z < 3.5, which captures the selection done for the analysis of real data [8]. This sample
contains 149,751 line-of-sights and differs from the 137,562-quasar sample in [8], based on
the DR11 quasar value-added catalog, mainly due to the rejection of quasars with broad
absorption lines (BALs) applied to the latter sample and, to a lesser extent, to stars, galaxies
or low-redshift quasars mis-identified as high-redshift quasars by the pipeline. This is not a
problem since these extra spectra can be rejected at the analysis step. On the other hand,
6,808 quasars on the [8] data sample do not have a corresponding mock quasar.

Given the size of the BOSS Lyα forest survey of over 105 quasars, these conditions
imply generating over 107 correlated pixels. A straight-forward algorithm of generating
uncorrelated pixels and taking linear combinations of those pixels to give them the desired
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correlations would involve inverting matrices of dimensions 107 × 107, beyond the reach of
current computational capabilities.

Fortunately, these difficulties are overcome by a method developed in [15] that makes
use of the fact that within a small angular region, quasar lines-of-sight are nearly parallel. We
summarize this method here. The desired correlated Gaussian random field, δG(x‖,x⊥), is
defined as a function of a radial coordinate, x‖, and a transverse two-dimensional coordinate

vector, x⊥. This field is expressed in terms of its radial Fourier transform, δ̃G(k‖,x⊥). In

the approximation of parallel lines-of-sight, the δ̃G with differing k‖ are uncorrelated and the

statistical properties of δ̃G of a given k‖ are defined by the power spectrum

P×(k‖,x⊥) =
1

2π

∫ ∞
k‖

k⊥dk⊥
sin(k⊥r⊥)

k⊥r⊥
PG(k‖, k⊥) , (2.5)

where PG(k‖, k⊥) is the power spectrum of the Gaussian field (not to be confused with PF ,
the desired power for the final flux field).

Correlated values of δ̃G(k‖,x⊥) at the angular position of each quasar can thus be
generated for each k‖ by inverting a Nqso×Nqso matrix. This is still beyond our computational
capacity so we divided the BOSS survey into regions of nearly 8,500 quasars each. The
absorption field in each region is generated independently, as further detailed below. Once
the amplitudes and phases of the radial modes are fixed, the Gaussian field is reconstructed
by Fourier transforming the radial modes for each line of sight.

2.4 Implementation

To ease the implementation of the radial Fourier transforms, the absorption fields so produced
are sampled in fixed grid of 8192 bins of comoving width 0.5 h−1Mpc along each line of sight,
which covers a comoving distance of 4096 h−1Mpc. They are then trimmed between the limits
of the BOSS spectrograph (λ ∼ 360 nm corresponding to z ∼ 1.96) and the Lyα emission
peak of each quasar. We called this trimmed absorption field the “raw mock skewers”, which
is one of our products. In a later step they are resampled at the center of BOSS wavelength
pixels.

The redshift evolution of the absorption field is implemented by following this procedure
at four redshift snap-shots: 1.920, 2.409, 2.898, and 3.386 which cover the range of the BOSS
Lyα forests. In each snap-shot, the underlying density field is generated with the same seeds.
This ensures that the final absorption field will look like an evolved field from snap-shot
to snap-shot. We also shifted the positions of the lines-of-sight at each redshift accounting
for the fact that they are not parallel. The absorption field at any redshift is obtained by
interpolation.

A total of 100 independent realizations were generated using the computational facilities
of NERSC 3.

2.5 Effects of sky subdivisions

As discussed above, the computational constraints require that the data sample be split
into regions with lower numbers of quasars. The DR11 regions were selected by an iterative
optimization code designed to make physically compact regions with approximately the same
number of QSOs. These regions are shown in the left panel of figure 1.

3http://www.nersc.gov
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Figure 1. Left panel : Independent regions of sky used to generate the DR11 Lyα mocks. Right
panel: Fraction of QSO pairs that have their two members from different regions as a function of
transverse separation at redshift z=2.2.

Because the regions are treated independently, the procedure generates no correlations
between neighboring quasars that happen to fall in different regions. The right panel of
Fig. 1 shows the fraction of QSO pairs which come from different regions as a function of
the transverse separation of Lyα forest pixels at redshift z = 2.2. For the 3D correlation
function, this corresponds to an effective number of pixel pairs in the mocks that is lower
than in the data, and this fact needs to be taken into account when comparing mock with
data measurements.

3 Generation of expanded mock spectra

In the previous section we described the process of generating the “raw” mock spectra con-
sisting of the correlated transmitted flux fraction Fq(λ) along quasar lines-of-sight as defined
by eqn. 1.1. In this section we describe the production of so-called “expanded mock spectra”
which superimpose the raw spectra on quasar continua and then add astrophysical features
such aa high column density absorbers and metal absorption lines, as well as instrumental
features such as noise, spectro-photometric calibration errors and sky subtraction residuals.

The mock data are intended to mimic BOSS coadded spectra, which result from the
addition of several successive 20-minute individual exposures of the same object, in a given
plate and a single night4. Most of our discussion below refers to coadded spectra except for
the section on noise properties where a distinction between the noise in each exposure and
the noise in the coadds is necessary.

For a given quasar, the generated flux f(λ) is (dropping the quasar index q for clarity)

f(λ) =
{

[F (λ) · C(λ)] ∗ W̃ (λ,Rp, Rw) +N(λ)
}
·M(λ) + δfsky(λ) . (3.1)

The parameters on the right-hand side are as follows: F (λ) is the transmission fraction as
defined by eqn. 1.1 except that it is set to 1 outside the Lyα forest; C(λ) is the PCA-
generated quasar continuum; W̃ (λ,Rp, RW ) is the Fourier transform of the BOSS resolution

4Under normal observing conditions, the number of exposures for a field is increased until the signal-to-noise
of the coadded image reaches a target value.
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and pixelization kernel (eq. 3.2) which is convolved with the product F (λ)C(λ); N(λ) is the
noise computed from our model (eq. 3.4); M(λ) is a linear function of log(λ/1 nm) (eq. 3.3)
used to ensure that each mock spectrum has the same mean flux and spectral index as the
corresponding real spectrum; and δfsky(λ) is the added sky subtraction residuals (fig. 4).

The procedure for generating the correlated Lyα transmission field yields a mean ab-
sorption and variance given by equations 2.3 and 2.4. That transmission field models regions
of optically thin neutral hydrogen absorption, ignoring high-density systems and non-Lyα ab-
sorbers. In the following two subsections, we describe how we add to F (λ) these additional
absorbers. In the subsequant subsections we describe how we generate the other factors in
(3.1) necessary to produce the expanded mock spectra.

3.1 High column density (HCD) systems

Dense systems with high neutral hydrogen column density produce wavelength intervals of
complete absorption surrounded by damped wings. These structures affect the measured Lyα
transmission correlations in two ways. First, they affect the size of the Lyα forest fluctuations
directly impacting the variance in the resulting long-range 3D correlations. Second, since
these systems are themselves biased differently than the optically thin regions, they will also
affect these correlations themselves.

Damped Lyα systems (DLAs) have strong damped wings that allow for their easy
identification, but Lyman-limit systems (LLS) of lower column density can also affect the
correlations even if their damped wings are weak and individually not detectable.

We insert both LLS and DLAs with neutral hydrogen column densitiesNHI > 1017.2 cm−2,
which we collectively designate as high column density (HCD) systems, following the pro-
cedure that is described in [20]. In brief, HCD systems are distributed only in pixels where
the transmission F is lower than a certain threshold F0, defined such that the probability to
have an optical depth τ larger than τ0 = − ln(F0) is 1%. The column density of the HCD
systems are randomly drawn from an analytical model [21] calibrated to match observations
[22] from SDSSII-DR7. Voigt profiles [23] are included in these regions assuming a constant
Doppler parameter bD = 70 km s−1.

The effect of HCD systems on the Lyα forest correlation function and the measurement
errors was studied previously in [20]. In section 4 this effect is measured in our mock catalogs
taking into account BOSS spectroscopic characteristics.

3.2 Metals

In addition to absorption from hydrogen, metals in the intergalactic medium can also absorb
quasar light at discrete wavelengths inside the Lyα forest. Metal absorption lines are indi-
vidually indistinguishable from Lyα forest absorption (at BOSS resolution and noise levels).
These metals add “unwanted” correlations to our Lyα forest data in two ways. First, ab-
sorption correlations are imprinted in individual spectra by gas at a given reshift absorbing
at more than one wavelength. For example, a gas system with Lyα absorption at wavelength
λ will have correlated metal absortption at wavelength λλMet/121.6nm, where λMet is the
wavelength of any other transition. While this type of correlation is most important within
individual spectra, 3D correlations are also generated because neighboring lines of sight sam-
ple redshift-correlated gas structures. The second type of correlation results from the fact
that all metal species are themselves tracers of large-scale structure [24]. This leads directly
to a weak 3D metal autocorrelation superimposed on the dominant Lyα autocorrelation. We
focus here on the former effect and will explore the latter in a future publication.
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We added metal absorption with a procedure that assumes that all significant metal
absorption is associated with strong Lyα absorption. For each mock spectrum, we considered
pixels for which the Lyα transmission F (λ) was below 0.4. For these cases, we decrease the
flux by δFMet of their corresponding flux bin at wavelength λλMet/121.6nm for each metal
line.

Application of this method requires a list of significant metal transitions and appropriate
values for the absorption flux decrement, δFMet. This was done following the procedure
of [4] where quasar spectra were stacked after scaling the wavelength of each spectrum so
that selected strong absorption is centered at the restframe Lyα transition. The stacked
spectra then have, necessarily, strong absorption at the 121.6nm, but also absorption lines
at wavelengths separated from this feature by (λi/λ0)121.6nm, where λ0 is the wavelength
of absorption by the species responsible for the strong absorption and λi is the wavelength of
absorption of any other absorber. With these stacks, we identified 21 correlated absorption
features, 9 of them corresponding to Lyα -metal correlations and the others to metal-metal
correlations (arising from the strong absorber being due to a metal line rather than to Lyα).
We designate these metal-metal correlations as “shadows” hereafter [25]. We allowed these
flux decrements to vary by performing this procedure for 7 selected bins in simulated Lyα
forest flux. Measurements of these metal transition flux decrementsare available as part of
the MockExpander package (see Appendix A).

Using the line catalog and the deduced flux decrements, we added metal lines (including
shadow lines) to the mock spectra. We did this by reducing the flux at 21 separate wave-
lengths for every strongly absorbed Lyα forest pixel. The introduction of shadow lines in
this way is unphysical but this method is employed in order to reproduce the full set of 1D
absorption correlations in the mock spectra as tested by stacking both mock and observed
spectra (see section 4.4). Our algorithm for the addition of metal absorption assumes that
all metal absorption can be characterized by its association with Lyα forest absorption. The
need for these shadow lines indicates that this is not always the case; some strong metal lines
occur where little or no Lyman alpha absorption is apparent.

The ascribed metal absorption is fully determined by the mean metal absorption above
and so no scatter is added to these flux decrements. This will be refined in a future publica-
tion.

3.3 Quasar continua Cλ

The quasar continuum Cλ for each line-of-sight is constructed using eight higher ranked
eigenspectra of the Principal Component Analysis (PCA) of low redshift quasar spectra5

[26]. The final continuum is a sum of a mean shape and a linear combination of these
eigenspectra for which amplitudes were randomly sampled following a centered Gaussian
distribution with the corresponding standard deviation. These eigenspectra cover restframe
wavelengths 102–160 nm spanning from the Lyman-β peak through C IV λ1549. Wavelengths
above and below this range are discarded in the mock spectra. Figure 2 shows 5 examples
of mock continua with variations in line shapes and the shape of the continuum within the
Lyα forest. The random sampling of the PCA eigenvalue amplitudes occasionally leads to
negative continua at some wavelength bins (this happens on 0.5% of the continua), and in
this case the continuum is discarded and a new set of random amplitudes is drawn.

5Low redshift quasars have less absorption in the forest, simplifying the continuum estimation.
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Figure 2. Example continua from 5 random mocks showing variations in line shapes and the contin-
uum shape within the Lyα forest.

3.4 The BOSS kernel

BOSS spectrographs cover the wavelength range 361 nm - 1014 nm with a resolving power
λ/∆λ varying from 1300 in the blue end to 2600 in the red end. Each data spectrum has its
own estimate of the wavelength dispersion per pixel. In BOSS coadded data, the pixels are
logarithmic in wavelength with steps of ∆ log10(λ/1 nm) = 10−4 corresponding to 69 km s−1.

As described in section 2, the raw absorption fields were produced over the lines-of-sight
using a grid in comoving space with bins of 0.5 h−1Mpc. To match BOSS spectra binning
and resolution, we first compute the mean wavelength dispersion (PSF) Rw and mean pixel
width Rp over the Lyα forest region of the corresponding data spectrum. Each raw field was
then convolved using the following kernel (in Fourier space):

W (k,Rp, Rw) = exp

(
−k

2R2
w

2

)[
sin (kRp/2)

kRp/2

]
. (3.2)

We then match the binning by taking, for each data pixel, the absorption value of the
closest pixel of the smoothed raw field.

3.5 Flux normalization Mλ

We wish to ensure that each mock quasar has a mean forest flux and spectral index equal to
those of the corresponding real quasar. Specifically, we normalize the noise-free mock quasar
flux fmock to the data flux fdata by fitting for M0 and M1 in

fdata(λ) = fmock(λ)(M0 +M1 log10(λ/1 nm)), (3.3)

over the rest-frame wavelength ranges 104.1 < λ < 118.5 nm (inside the Lyα forest) and
127.0 < λ < 150.0 nm (between the Lyα and CIV emission peaks). Then, fmock is multiplied
by the factor Mλ = M0 + M1 log10(λ/1 nm). These fits are done using the inverse variance
given by the pipeline as fit weights and ignoring all masked pixels. For DR9 mock data-sets,
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the fit was performed without weighting leading a slightly larger number of bad fits, about
1% of the full sample.

The parameter M1 effectively corrects for quasar spectral distortions introduced by the
SDSS optics that are currently not corrected by the pipeline. The Sloan 2.5-m telescope
has a chromatic focal plane and lacks an atmospheric dispersion corrector. As a result, the
optimal position for a spectrograph fiber is a wavelength and airmass dependent quantity.
Galaxy targets and calibration stars are optimized for 540 nm, while quasar targets are offset
both along and across the focal plane to optimize the signal-to-noise at 400 nm for Lyα
forest studies. This offset means that the flux calibration vectors derived from the standard
stars are not correct for the quasars and result in a flux mis-calibration which depends upon
wavelength, airmass, seeing, guiding, and the location on the focal plane [1].

3.6 The noise, Nλ

The noise, Nλ, added to the fluxes of a given mock quasar is a random number taken from
a Gaussian distribution of mean zero and with a variance determined by the noise model for
the corresponding real quasar. The noise models are most naturally expressed using the total
number of photo-electrons ptot in a given pixel (object plus sky), since in an ideal system
the variance would be equal to ptot (pure Poisson noise). In practice, our model gives the
variance σ2

phot as a linear function of ptot:

σ2
phot = N0 +N1ptot (3.4)

The coefficient N0 reflects the CCD readout noise and other systematic effects that are
independent of the photon flux. The coefficient N1 would be unity for pure Poisson photon
noise in the absence of systematics, but in practice N1 ≥ 1 owing to sky subtraction and flux
calibration errors.

For each mock quasar, the parameters N0 and N1 are found by fitting ptot as a function
of σ2

phot for the corresponding real quasar. This requires the use of a effective calibration
vector c(λ) to transform observed fluxes into photo-electrons:

ptot(λ) = [fQSO(λ) + fsky(λ)] /c(λ) (3.5)

σ2
phot(λ) = σ2(λ)/c(λ)2 (3.6)

where σ2(λ) is the estimated flux variance of the data. We fit the linear noise model (Eq. 3.4)
for each spectrum, using pixels from the blue side of the spectrograph. Fig. 3 shows an
example of a fit for N0 and N1 for one quasar spectrum in DR11.

In addition to σ(λ), we also need the effective calibration vector c(λ) in Eqs. 3.5 and 3.6.
The BOSS data individual exposures include the calibration vector ci(λ) that converts be-
tween observed photo-electrons pi(λ) and calibrated flux fi(λ). The coadd is performed as
a weighted simultaneous spline fit to the individual exposures and the resulting effective
calibration vector is not calculated. We re-derive the effective calibration vector using the
approximation that the coadded photo-electrons are the unweighted sum of the individual
exposure photo-electrons: p =

∑
i pi(λ) = r(λ)

∑
i fi(λ)/ci(λ), where r(λ) corrects for the

wavelength dependent difference in bin-size between individual exposures and the coadded
spectra.

Since the coadded flux is normalized to the same units as the individual exposures
(ergs/s/cm2/Å), we may factor out f(λ) ' fi(λ) such that p(λ) = f(λ)r(λ)

∑
i c
−1
i (λ). Thus
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Figure 3. Example of a noise model fitting for spectrum 5493-56009-504 (plate-MJD-fiber). The
red line shows the result of the linear fit of the photon variance (Eq. 3.4) in the over data points
(N0 = 68.7 and N1 = 1.16).

the effective calibration vector to convert between coadded photo-electrons and coadded flux
is:

c(λ) =

(
r(λ)

∑
i

c−1
i (λ)

)−1

(3.7)

For this calculation we use only the blue exposures, therefore limiting the wavelength range
of mock spectra from 360 to 633 nm.

With the parameters N0 and N1 for each quasar, it is simple to add realistic noise to
the mock spectra. We compute the mock quasar flux from the product of the transmission
F and the generated PCA quasar continuum C, and add the same sky flux fsky that is used
in the data. We then compute the mock photons p and noise σp at each pixel,

p = (F · C + fsky)/c (3.8)

σ2
p = N0 +N1p (3.9)

We add noise using a Gaussian distribution with mean 0 and sigma σp:

p̃ = p+N (0, σp) (3.10)

We convert back into quasar flux f̃QSO :

f̃QSO = p̃c− fsky (3.11)

σf̃ = cσp (3.12)

The next step consists in mis-reporting the value of the true variances σ2(λ), as we
observe in real data. Biased estimates of pixel variances on real data were reported by
different studies [27, 28]. They find that for individual exposures, the pipeline noise estimates
are accurate at the 1–2% level. Coadded spectra have a larger and wavelength dependent error
in the estimated noise. For λ < 600 nm (blue spectrographs), the biases are approximately
proportional to the square root of the ratio of the coadd to individual spectrum spectral
bin sizes. Below (above) ∼475.0 nm, where the coadded bins are smaller (larger) than the
original exposures, the pipeline underestimates (overestimates) the noise by 0–10% (0–15%).

– 11 –



400 450 500 550
Wavelength [nm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ed

ia
n

re
si

d
u

al
sk

y
flu

x
[e

rg
/s

/c
m

2
/Å
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Figure 4. Median residual from BOSS sky-subtracted sky fibers (left panel), and the distribution of
the ratio of that residual to simulated Lyα forest flux (right panel).

A flux-dependent bias of the pixel variances was also reported in [28]. We use the observed
wavelength dependent errors in the pixel variances to purposefully mis-report the noise in
mock spectra.

We also add Gaussian random fluctuations to this noise estimates with standard devi-
ation proportional to the photon variance itself. The final mock photon noise estimate σ̃f̃ is

given by σf̃ (λ)r(λ) +N (0,
√

2σf ).
The model presented here assumes that the noise in different pixels of the same spectrum

is uncorrelated. This is likely not realistic because covariance among neighboring pixels is
introduced by rebinning. However, other sources of small scale correlations in these mock
catalogs are not correctly modeled by the input power spectrum, since the log-normal model
was built to fit large-scale correlations. Therefore we ignore any noise correlation between
neighboring bins.

An alternative noise model [29] uses four per-object parameters (instead of two in our
model). This method solves simultaneously for both the noise parameters and the optimal
co-added flux. However, this modeling is inappropriate for our current purposes since our
goal is to add noise to the mock co-added flux, which follows the pipeline and is not optimal.

3.7 Sky mis-subtraction

Figure 4 (left) shows the median residual of BOSS sky spectra after the sky model has been
subtracted. While this is only a 1–2% bias in the sky subtraction, it can be large compared
to the Lyα forest flux, which is typically faint compared to the sky. Fig. 4 (right) shows the
relative flux between noise-free simulated Lyα forest flux and the residual sky. The median
is 5.6%, the mean is 9.9%, and there is a tail reaching up to 1.0. Note that this is an additive
component to mock spectra, unlike other mis-calibrations that are multiplicative.

Mock spectra add this median sky subtraction residual times a random constant scatter
with mean 1.0 and RMS 0.1 so that each spectrum receives a slightly different sky subtraction
residual bias.

4 Comparisons of mock and real spectra

In this section we compare several properties of the mock spectra to those of real spectra:
continuum characteristics, noise levels, flux transmission correlations within individual spec-

– 12 –



110 120 130 140 150 160
Wavelength [nm]

0

1

2

3

4

5

C
om

p
os

it
e

S
p

ec
tr

u
m

Data

Mock

Figure 5. Composite of 10,000 quasar spectra using data (thin red lines) and mocks (thick blue
lines). The solid lines show the mean normalized flux values and dashed lines shows the ±1-σ region.
Stacked spectra are normalized to the mean flux observed in the rest frame wavelength range 126 and
138 nm.

tra, and absorption by metals. Unless otherwise stated, the standard set of mocks used
for the comparisons in this section does not contain metals or high column density systems
(HCDs), but includes all instrumental systematics. The effect of metals and HCDs is studied
in the end of section 5.1.

4.1 Mean continuum, variance and diversity

As a first test, we compare the mean spectra of the data and mocks. This simple test verifies
that the product of mean continuum and forest transmission is reasonable. The mean spectra
were calculated by first shifting each spectrum to its rest frame and normalizing it such that
the average flux in the wavelength interval from 126 nm to 138 nm is unity. We stacked the
set of normalized spectra to obtain the mean product of continuum and transmission and its
variance as a function of rest-frame wavelength.

The solid lines in figure 5 shows the resulting mean spectra, red for the data and blue
for the mocks. The dashed lines show the flux at one standard deviation higher and lower
than the mean. The largest differences are in the height of the Lyα emission peak and to a
lesser extent in the height of the iron lines in the Lyα forest. Whether these differences are
an issue or not depends on the application. For instance, the methods in [4–6, 8] only use
the Lyα forest for the purposes of measuring the 3D correlation function, and the composite
spectrum is computed self-consistently (which would automatically account for the shape
differences when analyzing mocks or data).

We have also performed a second test of spectral diversity in the region of the forest.
For this test, we applied the continuum fitting C2 of [8] and and then fit the observed flux
between the upper and lower limits of the forest, λ0 and λ1:

f(λ) =

(
C0

λ1 − λ
λ1 − λ0

+ C1
λ− λ0

λ1 − λ0

)
f̄(λrest) (4.1)
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Figure 6. Distribution of amplitudes P0 (left panel) and tilt P1 (right panel) in mocks (solid blue)
and data (dashed red).

where f(λ) is the flux, f̄(λ) is the quasar-averaged flux, C0 and C1 are free positive parameters
(to ensure a positive continuum). The upper limit is λ1 = 120(1 + zqso) nm and λ0 is the
larger of 360 nm and 104(1 + zqso) nm.

For each forest we define a normalization parameter P0 = (C0 + C1)/2 and a tilt pa-
rameter P1 = (C1−C0)/C0. The distributions of these two parameters are given in figure 6.
There is an excellent agreement in the distributions of P0 and P1 in mocks and data. The
average value of the tilt is slightly smaller on mocks due to a combination of fac-
tors affecting the continuum fitting estimates: differences in the sky residuals,
mean transmission and underlying transmission PDF. These factors are hard to
estimate accurately from the data and to model in the mocks. The distribution of
amplitudes and tilts have similar spreads in mocks and data, demonstrating that our mocks
capture the diversity of real data in the region of the Lyα forest, at least regarding the
spectral index variability.

The continuum fitting method C2 of [8] provides an estimate of the unabsorbed con-
tinuum, Cλ. Stacking spectra in observed wavelength then gives the mean transmission as
a function of redshift or, equivalently, of observed wavelength. Figure 7 shows this quantity
for the data and mocks. Data reduction features are visible in the data stack (dashed red),
such as the galactic calcium absorption (393.4 and 396.8 nm) or the Balmer residuals (near
398 nm, 410 nm and 435 nm). Some of those features are also present in the stack of mocks
(solid blue) as a result of the addition of the sky residuals from figure 4 but are not otherwise
explicitly included.

4.2 Noise

The importance of accurately simulating noise is due to the fact that noise accounts for
about one half of the variance of individual measurements of the flux transmission, the other
half coming from the intrinsic variations due to large-scale structure. In turn, the variance
of individual measurements accounts for about one half of the variance of the measured
three-dimensional correlation function with the other half due to correlations between mea-
surements of neighboring pixels on individual spectra.

Figure 8 compares the distribution of signal-to-noise ratio for individual pixels in the
forest in mocks and data. The signal-to-noise is defined, for each individual pixel, as the
ratio between the flux and the square-root of the pipeline estimate of the variance (before
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Figure 8. Distribution of Lyα forest pixel signal-to-noise ratio in mocks (solid blue) and data (dashed
red).

applying the corrections discussed in section 3.6). Given that in most studies the spectra
are normalized to an unabsorbed continuum estimate, this ratio is the relevant quantity to
compare. We find a very good agreement between mocks and data.

Figure 9 shows the variance of the individual measurement of the transmission, δi, as
a function of redshift. It has contributions from noise and large-scale-structure fluctuations.
The latter contribution can be computed using noiseless mocks, as is shown by the dotted
magenta line. It represents roughly 50% of the total variance. The agreement between mock
and data variances is good (few percent level) below λ = 440 nm, which corresponds to a
redshift of 2.6, including a considerable fraction of analysis pixels [8]. It is degraded by up
to 10-15% up above 480 nm (z ∼ 2.95), beyond which there are very few Lyα forest pixels
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Figure 9. Variance of the flux transmission as a function of redshift for data (red dashed lines),
expanded (blue solid line) and raw mock spectra (magenta dotted line).

in the BOSS sample.

4.3 Correlations within individual forests

Here we compare the correlations of δ within individual forests, described by the correlation
function:

ξ1D(λ,∆λ) = 〈δq(λ)δq(λ+ ∆λ)〉 (4.2)

for which we have used the same estimator (Eq. 1.2) and weighting scheme as in [8] but
changed the binning to work in wavelength instead of comoving separation. For this com-
parison, we used mocks including metal absorption. As shown in figure 10, ξ1D is a rapidly
decreasing function of wavelength separation except near log10(λ1/λ2) ∼ 30× 10−4 where it
has a peak due to SiIII absorption correlated with Lyα absorption.

We first discuss ξ1D for small separations. Figure 11 compares ξ1D for mocks and data for
the first two non-zero separation bins: log10(λ1/λ2) = 3·10−4 (left) and log10(λ1/λ2) = 6·10−4

(right). In these cases, the blue line (standard mocks) and the magenta line (noiseless mocks)
closely follow one another. This is because our model assumes that the noise in different
mock pixels is uncorrelated (this is not true for real data). The disagreement between mocks
and data is at the 15-20% level and could be due either to an inaccurate input correlation
function on small scales, or to inaccurate modeling of the instrument. On the clustering
side, the small scales of these mocks are not supposed to be accurately modeled (due to
resolution limitations), since the main goal is the large scales and BAO measurement. On
the instrumental side, we do not simulate the coaddition process of individual exposures,
that introduces correlations among nearest neighboring pixels in real data.

The correlations for larger pixels separations are shown in figure 10 for three redshift
bins. Outside the SiIII bump at log10(λ1/λ2) ≈ 32 × 10−4, the mocks clearly have less
correlation than the data. On the bump, the mocks appear to have a much stronger redshift
dependence of the absorption.

The disagreement between the data and mock ξ1D means that the covariance matrices of
the two will be slightly different (section 5.2). Given the uncertainties in BAO measurements
are dominated by pixel variance and the covariance of neighboring pixels, we will leave these
issues to future work.
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Figure 11. Correlation ξ1D between a pixel and its nearest neighbor (log10(λ1/λ2) = 10−4, left)
and next-to-nearest neighbor (log10(λ1/λ2) = 2× 10−4,right). The data are the red dashed lines, the
expanded mocks blue solid line, and raw (noiseless) mocks the magenta dotted line.

An alternative way to study correlations within individual spectra is the Fourier trans-
form of ξ1D, the one-dimensional power spectrum, P1D, a very powerful probe to constraint
cosmological models [18, 27]. However, we do not expect that the mocks spectra presented
here will give a realistic spectrum for all k, especially at small scales where our treatment
is rather crude (see section 2). We have also assumed a constant resolution over the whole
mock forests.

We computed the 1D power spectrum following the same procedure as in [27] for a sub-
sample of 16,000 mock spectra having signal-to-noise ratio greater than 2 and mean resolution
below 85 km s−1 (same cuts as for real data). The flux fluctuations δF were obtained by
dividing out the mean stacked flux over forests. We used a Fast Fourier Transform to convert
the fluctuations to k-space to estimate the power spectrum. The noise contribution to the
power was subtracted, assuming it is constant over k. The resolution and pixelization kernel
(Eq. 3.2) was also divided out. This measurement was done in four redshift bins equally
divided between 2.1 < z < 2.9. We analyzed mock spectra with no noise added (only the
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Figure 12. Line-of-sight power spectrum computed on 16,000 mock spectra (filled circles) compared
to the measurement on DR9 forests (open circles) on 4 redshift ranges.

continuum multiplied by the absorption field) in order to see effects of binning and resolution
on the power.

The analysis on full expanded spectra needs an estimator for the noise mis-estimates.
In [27], this estimate was performed using two different procedures, the first uses individual
exposures of each spectra, the second uses flat spectral regions redwards of the Lyα emission
peak. None of these procedures can be applied on mock spectra since individual exposures
are not produced, and no quasar with z < 2.15 is created meaning that no region of mock
spectrum redwards of Lyα falls into the blue end of the spectrograph, which would allows
us to estimate the true noise. Therefore, the 1D power spectrum measurement on expanded
spectra was performed using the true pixel noise, which is constant in k-space.

Fig. 12 shows the estimated 1D power spectrum of mock spectra, compared with the
measurement performed on DR9 data [27]. The overall shape of power spectra is in good
agreement with data. The power spectrum on the lowest redshift bin, z = 2.2, shows the best
agreement with data while the higher redshift measurements have up to 20% more power than
data on large scales (k < 0.015 s km−1). This increase in power at high redshift is related to
the increase in pixel variance observed in Fig. 9. On small scales (k > 0.015 s km−1), data
and mocks show an agreement within 1σ for most points, but this is due mainly to the large
errors on data points. As we saw in the ξ1D, the clustering on small scales is not correctly
modeled in our mocks.

We remind that covariance matrix measurements for BAO in data are not derived
from mocks, but from the data itself. Therefore, discrepancies seen here in the small scale
clustering does not have an important role in the final measurement.

4.4 Metals

Metal absorption correlated with Lyα absorption was included in mock forests following
prescription described in section 3.2. In order to test our method of introducing metal
absorption, we stacked Lyα absorption in our mock forests following a modified method from
[30]. In Fig. 13 the resulting stack for Lyα transmission values in the range 0.05 < F < 0.15
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Figure 13. Stack of Lyα absorption lines in their rest-frame showing the metal absorption for a
mock realization (blue) and for data (red). The 1σ bootstrap errors are represented by the color
shaded regions (same as lines). Dashed thick green lines show the position of the implemented metals
correlated with Lyα absorption, while thin doted green lines are “shadows” (metal-metal correlations).

is shown as a function of rest-frame wavelength, in comparison with the stack using real
data. Errors were computed by bootstrap. The agreement for most of the lines is at the
sub-percent level, in particular for the stronger ones. Similar agreement is also observed
in stacks of absorbers with different transmission values (F < 0.05 and 0.15 < F < 0.4).
This validates our implementation, constructed with the purpose of investigating systematic
effects of metals on the BAO measurement. The effect of these metals on the correlation
function is discussed in section 5.1.

5 Three-dimensional statistical properties of the mock and real spectra

In this section we compare the 3D correlation function of the mock and real spectra and their
covariances. We do this first for the mock spectra without high-column-density and metallic
absorbers. We then study the effects of of these two absorbers on the measured correlation
function.

5.1 Three dimensional correlation function

The correlation function is measured using eqn. 1.2 as a function of the transverse separation
(r⊥) and the parallel separation (r‖) between pixels. We organize these data in bins or

r ≡
√
r2
⊥ + r2

‖ and µ ≡ r‖/r = cos θ (where θ is the angle between the pixel-separation vector

and the line of sight). We finally consider three “wedges” in µ: 0 < µ < 0.5, 0.5 < µ < 0.8
and 0.8 < µ < 1 and compute the average of the correlation function in each wedge as a
function of r to obtain ξ⊥, ξint and ξ‖ respectively. The three panels in figure 14 show the
results. The gray lines correspond to individual mock realizations and illustrate the spread.
The blue lines show the mean (solid) and the 1σ limits (dashed) for the sample of mocks.
The red points with error bars are the results from the data [8].

The agreement between the mocks and data is good. The most noticeable difference
is a mismatch in the position of the BAO peak in ξ‖. This difference is characterized in [8]
as a ≈ 1.5σ discrepancy between the predicted position of the BAO peak by the fiducial
cosmology of the mocks and that measured from data.
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Figure 14. Measured Lyα forest 3D correlation functions represented by averages over µ = r‖/r
ranges, useful to see the effect of redshift-space distortions (top left: 0 < µ < 0.5, top right: 0.5 < µ <
0.8, bottom: 0.8 < µ < 1.0). Red points and their error bars show the data measurement whereas
gray lines show the same for the 100 realizations of DR11. The blue solid lines show the mock average
and blue dashed lines their ±1σ standard deviation around the mean.

5.2 Covariance.

The covariance matrix of the 3D correlation function bins can be estimated directly from the
data using the subsampling technique developed in [8]. This internally estimated covariance
for a given mock can be compared with the variability among the 100 mock realizations
characterized by its variance:

V ar [ξA] =
1

Nmocks − 1

Nmocks∑
i=1

(ξA − ξ̄A)2 (5.1)

where Nmocks is the number of mocks (100) ξA is the 3D correlation function measured at
a separation bin A and ξ̄A is the average correlation function in the mocks sample. Since
non-diagonal correlations are too small to estimate with only 100 mocks, we only compare
the variances.

Figure 15 shows a histogram of the ratio of variances estimated using equation 5.1
and that obtained using the subsampling method from [8]. The agreement between both
calculations of the variance is excellent. This validates our methods to compute the covariance
matrix, showing the importance of this set of mock catalogs for the measurement on real data.

Next we compare the variances in mocks and data. Since the number of quasars in the
mocks is not exactly the same as in real data, we compare the product of the variance and
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Figure 15. Histogram of the ratio of the variance of ξA calculated from the fluctuations in the 100
mock and using the sub-sampling method. Each histogram entry corresponds to a bin in separation.

the number of pairs for each bin in separation. Figure 16 shows the product of the variance
and the number of pairs as a function of transverse separation for data (in red) and mocks (in
blue). This figure shows that the mocks have 30% less variance than the data. This difference
may come from the differences in the one-dimensional correlation function (see figure 9).

We also compared non-diagonal terms of the covariance matrix. Following [8], we assume
that this matrix is a function of ∆r‖ = r‖ − r′‖ and ∆r⊥ = r⊥ − r′⊥, and thus compute of

the average of all correlation coefficients (covariance normalized by the geometric mean of
variances) with same ∆r‖ and ∆r⊥. In figure 17, we plot these averaged correlations as a
function of ∆r‖ for the three first transverse bins, ∆r⊥ = 0, 4 and 8 h−1Mpc. In the first
transverse bin, where the covariance matrix is determined by the line-of-sight correlation
function, we clearly see a peak at r‖ ∼ 25 h−1Mpc corresponding to Lyα-SiIII correlations.
This peak is, as expected, absent from the covariance matrix of metal-less mocks. As before,
data shows slightly more correlation on small scales. The covariance falls quickly to zero as
∆r⊥ increases. For these bins, data and mock non-diagonal terms of the covariance matrix
generally agree in shape but data shows smaller correlation coefficients likely due to the
differences in the one-dimensional correlation function.

5.2.1 Effect of Lyman-limit systems.

Thus far, the comparison has been performed using mock catalogs with no high-column
density absorbers even though they are present in data. In this section we see the effect
of adding Lyman-limit systems (LLS) to the spectra. Since DLAs can be identified in the
data and treated separately, we excluded from our analyses all forests containing DLAs
(NHI > 1020.3 cm2), while conserving forests with LLS (1017 < NHI < 1020.3 cm2). In Fig. 18
the stacked 3D correlation function of mocks containing LLS is compared with the stack of
realizations without them. As already observed by [20], the inclusion of high column density
systems increases the bias of the correlation function. This is now shown also taking into
account the BOSS spectrograph properties and using the standard BAO Lyα analysis. This
effect comes from the increased absorption from LLS that reduces the mean transmission F̄
and also increases the intrinsic variance σ2

LSS of the absorption field. The increase in bias of
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Figure 16. Variance σ2 = V ar[ξ(r‖, r⊥)] of the 3D correlation function times the number of pairs N
as a function of parallel separation r||. Red empty circles show data, blue filled circles (resp. green
squares) show a single mock realization measurement without (resp. with) Lyman Limit Systems.
Remark that the error bars of mock containing LLS correspond to a more biased correlation function
(Fig. 18).

the correlation function depends on two factors. First it depends on the number density of
these systems and the dependence of this number with redshift. Second, it depends on how
these systems are related to the underlying density field. On real data, the distribution of
Lyman limit systems is not known to high precision [31], therefore the used input mock LLS
distribution might not be accurate. Furthermore, due to our method of including LLS on
forests (see section 3.1), the redshift distortion parameter for LLS, βLLS, is the same as for
the Lyα forest, β = 1.4, which is also an approximation (we expect that βLSS < β). Therefore
quantitative results of their effects on the correlation function are not reliable, even though
their qualitative effect is correct. It is important to remark in Fig. 18 that these systems do
not change the position of the BAO peak or its width. However, measuring bias or redshift
space distortions need to carefully take into account the additional clustering coming from
Lyman limit systems.

5.2.2 Effect of metals.

In addition to Lyman limit systems, real forests also contain metal absorption that cannot be
identified due to the low signal-to-noise of spectra or confusion between source transitions.
We included metal absorption in mock spectra (see section 3.2) and we found that their effect
on the correlation function and its errors is smaller than the effect of LLS. The main effect of
metal absorption is seen on correlations of pixels with separations nearly aligned to the line-
of-sight (µ ∼ 1.0), on bins with small transverse separation (r⊥ ∼ 0). Figure 19 shows the
difference between correlations of metal and metal-less mocks (blue points) compared with
mean correlation function (red points), computed using 10 mock realizations. In addition to
the Lyα-SiIII line (see Fig. 13), the effect of the SiII-SiIII shadow line is also visible on the
3D correlation for r⊥ ∼ 0 and r‖ ∼ 175 h−1Mpc. Since bins for which r⊥ ∼ 0 contain small
number of pairs compared to bins at larger transverse separations, the presence of metal
correlations on large scales do not bias BAO fitting procedures (Fig. 12 of [8]).
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Figure 17. Correlation coefficient C(r⊥, r
′
⊥, r‖, r

′
‖)/
√
V ar(r⊥, r‖)V ar(r

′
⊥, r

′
‖) of the 3D correlation

function as a function of parallel separation difference ∆r‖ = r‖ − r′‖. The values shown are the

average of all correlation matrix elements with the same ∆r‖ and ∆r⊥, for ∆r⊥ = 0 (top left and top
right), 4 h−1Mpc (bottom left) and 8 h−1Mpc (bottom right panel). Data is shown in red dashed
lines, mock measurements in blue, with (solid) and without metals (dotted).

6 Discussion & Conclusions

In this paper, we have presented the mock Lyα forest catalogs for the Data-Release 11 of the
SDSS-III. These mock spectra have been a fundamental tool for validating methods of the
main BOSS Lyα BAO measurements [5–8].

The analysis of the mocks presented in Section 5 shows that they reproduce well the
observed correlation function of the transmission fluctuations as measured in [8]. The mea-
sured covariance matrix of the mock correlation function is comparable to that of the real
data but does show systematic deviations for both the variance and the off-diagonal elements.
As long as the errors are used in a consistent manner, these differences do not prevent the
mock spectra from being useful to verify that the analysis returns reasonable values for the
statistical errors and to show that there are no obvious biases in the measured position of
the BAO peak.

The deviations between mock and data covariances matrices reflect the statistical prop-
erties of individual mock spectra which, as shown in Section 4, differ from the real spectra.
The differences are due to the necessarily approximate treatment of the input power spec-
trum at small scales. We have not simulated all the imperfections in the BOSS pipeline, in
particular the presence of Balmer artifacts. We can anticipate, however, that these artifacts
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Figure 18. Effect of Lyman Limit Systems (LLS) on the 3D correlation function represented by three
wedges 0 < µ < 0.5 (left), 0.5 < µ < 0.8 (center) and 0.8 < µ < 1.0 (right panel). These are averages
over 100 (resp. 10) realizations containing (resp. without) LLS. Colored shaded regions show the 1σ
scatter around the mean.
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Figure 19. The effect of metals on the stacked measurement correlation function of 10 mock sets.
The difference between metal and metal-less mock correlation function averaged over 0.8 < µ < 1.0
(blue points) compared with the measurement itself (red points). The light red and blue lines show
the results for individual mock sets. Error bars are the standard deviation of the 10 estimates.

will be removed with future improvements in the pipeline.
Of more fundamental concern is the uncertain nature of the correct way of introducing

high column density systems and metallic absorbers. Improvements in these aspects of the

– 24 –



simulations will require further study.
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[20] A. Font-Ribera and J. Miralda-Escudé, The effect of high column density systems on the
measurement of the Lyman-α forest correlation function, JCAP 7 (July, 2012) 28,
[arXiv:1205.2018].
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A Access and usage of mocks

The DR11 Lyα forest mock catalogs are available at the SDSS public website http://www.

sdss.org/dr12/algorithms/lyman-alpha-mocks/. We describe in this section the mock
data-sets format and their usage. Instead of providing the full set of realizations contain-
ing spectra ready to use, i.e., realizations with continua, noise and instrumental effects,
only the raw absorption fields are provided. The “expansion” process is performed locally
by the LyAMockExpander package, available in http://www.sdss3.org/svn/repo/boss/

LyAMockExpander/. This procedure reduces the amount of data that needs to be trans-
ferred, and gives the user the possibility of including or not some systematic effects.

A.1 Raw mock data format

The first step consists in downloading raw mock fiels, containing absorption fields and
high column density system information. A given raw file for a given spectrum is named:
mockrawShort-PLATE-MJD-FIBER.fits. It contains a certain number of realizations of the
same line of sight.

This file is organized as follows:

• HDU 0: header propagated form the real spectrum file, with additional information
concerning the mock production (cosmological model and Lyα forest clustering param-
eters). Mock related keywords are:
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M Z Mock redshift
M RA Mock RA [degrees]
M DEC Mock dec [degrees]
M OMEGAM Mock Matter fraction Ωm

M OMEGAK Mock Curvature parameter Ωk

M W Mock Dark-energy equation of state w = p/ρ
M H Mock Hubble constant h = H0/(100 km s−1 Mpc−1)
M NS Mock Primordial scalar spectral index ns
M BIAS Mock Lyα forest bias w.r.t. linear dark-matter power-spectrum
M BETA Mock Lyα forest redshift distortion parameter β
M ALPHA Mock Lyα forest redshift evolution parameter α
M NEVOL Mock number of redshift evolution steps
M DV Mock grid spacing in km/s at zfid = 2.6
NMOCKS Number of mock realizations in this file

• HDU 1 to NMOCKS: binary tables containing the absorption field for each realiza-
tion.

f the transmittance F of the Lyα forest
fdla the same as above but containing HCD profiles

• HDU NMOCKS+1 to 2*NMOCKS: binary tables containing information about
HCDs of the realizations.

x dla the comoving position of the system
z dla the corresponding redshift of the system
col dla the column density of the absorber, in cm−2.

For DR11, the 100 realizations of a given forest are divided in 10 different files, containing
10 realizations each.

A.2 MockExpander

This package transforms raw absorption fields into quasar spectra including astrophysical
and instrumental effects characterized in BOSS data.

The MockExpander was developed and compiled in JAVA language, and it is a stand
alone, open-source version. The user chooses expansion options in the Run.sh script. We
summarize these options here:

• Raw Mock Directory: the folder containing the raw format files

• Data Directory: the folder containing the data spectra, containing individual expo-
sures, in spec6 format.

• Output Directory: the folder were the MockExpander will write the output mock
files.

• Package Seed: sets the random number generator seed based on which set of realiza-
tions.

6http://data.sdss3.org/datamodel/files/BOSS_SPECTRO_REDUX/RUN2D/spectra/PLATE4/spec.html
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• Initial(Final) Realization : the user might want to expand a sub-set of the available
realizations, these keywords allow the user to choose them, using their position in the
file (1 to NMOCKS).

• ACTION: This option allows the user to choose between start the expansion again
(“Rewrite”) overwriting previous files, or continue (“Continue”) from the last mock
produced.

• COOKING: Set if the expansion will include high column density systems and/or
metal absorption.

• COLS: the user can choose the output columns of the expanded mock data-sets. They
are fully described in Table 1.

Once options are chosen, the user executes the Run.sh script to start the expansion.

A.3 Expanded mocks data format

The final output is a per-object FITS file in the same format as real BOSS data. The guiding
principle is that if an analysis code can use the real data, it should also be able to use the
mock data without requiring any changes other than the input file names.

Mock files also contain additional information used in their construction. Table 1 de-
scribes the content of HDU1. HDUs 0 (observing headers) and 2 (metadata) are simply
copies of the corresponding HDUs from the real data files. Mock files do not receive HDU
3 from real data (emission line fits and individual exposures). Instead, HDU 3 contains the
location of the high column density systems (it is a copy of corresponding raw format HDU).

The MockExpander will automatically organize output files in a per-realization and a
per-plate folder scheme as for real data.
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Column Comment Symbol

In both mocks and real data:
flux coadded calibrated flux [10−17 ergs/s/cm2/Å] f
loglam log10(wavelength [Å]) log10 λ
ivar inverse variance of flux σ̃f̃
and mask mask -
or mask mask -
wdisp wavelength dispersion in dloglam units Rp, Rw
sky subtracted sky flux [10−17 ergs/s/cm2/Å] fsky

model pipeline best model fit used for classification -
and redshift

Only in the mocks:
mock F transmitted flux fraction [0–1] F
mock Fdla transmitted flux fraction with Damped Lyα systems F
mock Fmet transmitted flux fraction with metal absorption F
mock Fdlamet transmitted flux fraction with Damped Lyα systems F

and metal absorption
mock meanF Mean transmitted flux fraction F̄
mock ivar True inverse variance used to add noise σf̃
mock contpca the PCA-based continuum model C
noise miscalib amount by which reported noise is wrong. r

< 1 means noise is underestimated.
mock miscalib amount by which the flux is purposefully miscalibrated M
mock missky amount of extra sky added to simulated sky mis-subtraction δfsky

Table 1. Available columns for the HDU 1 of the mock spectra files. The MockExpander allows
the user to choose which columns the output mock files will contain, by the COLS keyword in the
Run.sh script. We describe how we compute each of these columns in § 3.
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