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Abstract. The existence of a cosmic neutrino background can be probed indirectly by CMB ex-
periments, not only by measuring the background density of radiation in the universe, but also by
searching for the typical signatures of the fluctuations of free-streaming species in the temperature and
polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation
of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming
neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values
of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino
background. In this work, we investigate the robustness of this conclusion under various assump-
tions. We generalise the definition of an effective sound speed and viscosity speed to the case of
massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We
show that current bounds on these effective parameters do not vary significantly when considering an
arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino
number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is
possible to make a robust statement about the detection of the cosmic neutrino background by CMB
experiments.
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1 Introduction

Neutrinos are the only dark matter component that has been directly detected. Despite neutrinos
not being cold and not being the bulk of the dark matter in the Universe, they are a particularly
interesting component to study. Not only because of the synergy between astrophysical observations
and particle physics experiments, but also because they contribute a large fraction of the energy
density in the Universe during the radiation dominated stage. The first indirect confirmation of the
existence of a cosmological neutrino background has been obtained by assuming standard neutrino
properties, and adding only one extra parameter to the standard ΛCDM model: the effective number
of neutrino species, Neff , equal to 3.0461 [1] in the standard model. By using Cosmic Microwave
Background (CMB) observations, the WMAP collaboration showed to high statistical significance
that Neff > 0 [2, 3], yielding therefore a confirmation, albeit indirect, of the existence of the cosmic
neutrino background. With recent data from Planck, Neff = 0 is disfavoured at the level of about 10σ
[4].

But Neff does not only count the number of neutrino species. Even assuming standard neutrino
physics, departures from Neff could be caused by any ingredient contributing to the expansion rate of
the Universe in the same way as a radiation background. The possibilities for this extra ingredient are
many: extra relativistic particles (either decoupled, self-interacting, or interacting with a dark sector),
a background of gravitational waves, an oscillating scalar field with quartic potential, departures from
Einstein gravity, large extra dimensions or something else. Such a component is usually dubbed “dark
radiation” [e.g., 5–16]. In principle, we could even assume that the cosmic neutrino background does
not exist, while another dark radiation component explains the measured value of Neff .

It is well known that free streaming particles like decoupled neutrinos leave specific signatures
on the CMB, not only through their contribution to the background evolution, but also because
their density/pressure perturbations, bulk velocity and anisotropic stress are additional sources for
the gravitational potential via the Einstein equations (see for example [17–19] and references therein
for a detailed discussion). On that basis, several analyses have shown that the CMB can make a
more precise statement on the existence of a cosmic neutrino background in the Universe than by
just measuring Neff > 0 and showing that it is compatible with the standard value. The CMB seems

1The number of (active) neutrinos species is 3. As the neutrino decoupling epoch was immediately followed by e+e−

annihilation, the value of Neff for 3 neutrino species is slightly larger than 3.
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to prove that the perturbation of neutrinos – or more precisely, the perturbation of free-streaming
particles with the required abundance – are needed to explain the data.

The strategy of several recent papers [20–24] was to introduce2 two phenomenological parame-
ters, ceff and cvis. The effect of the parameter c2eff is to generalize the linear relation between isotropic
pressure perturbations and density perturbations, while c2vis directly modifies the anisotropic stress
equation for neutrinos. These parameters allow to distinguish the perturbations of relativistic free-
streaming species, corresponding to (c2eff , c2vis) = (1/3, 1/3), from those of a perfect relativistic fluid
with (c2eff , c2vis) = (1/3, 0), or a scalar field scaling like radiation with (c2eff , c2vis) = (1, 0), or a more
general case with arbitrary (c2eff , c2vis). Self-interacting neutrinos or other types of dark radiation can-
didates might not be exactly equivalent to these models with definite and constant value of (c2eff ,c2vis)
(see for instance [29, 30]), but this parametrisation is considered flexible enough for providing a good
approximation to several alternatives to the standard case of free-streaming particles. We will come
back to the motivations for this parametrisation in section 2.

Previous works found that the allowed window for c2eff is shrinking close to 1/3, and that the
data starts to be very sensitive also to c2vis, although this parameter has a smaller effect. For instance,
using Planck 2013 data, ref. [24] obtained (c2eff , c

2
vis) = (0.304±0.026, 0.60±0.36) at the 95% CL. The

next Planck data release is expected to bring even better sensitivity, thanks to better temperature
and new polarisation data.

However, recent results on (c2eff , c2vis) were derived in the context of the minimal ΛCDM model,
with negligible neutrino masses. The point of the present paper is to answer the two important
questions: Are these bounds stable when considering massive neutrinos, instead of the purely massless
limit? And could (c2eff , c2vis) be degenerate with other cosmological parameters, like e.g., Neff , a running
of the primordial spectrum index, or the equation of state of dynamical dark energy? These issues are
important to better assess the meaning of current bounds, and also to prepare the interpretation of
future results. Indeed, if future data bring stronger evidence for standard neutrino perturbations, we
will need to understand whether such conclusions are robust or model-dependent. On the other hand,
if a deviation from the standard behaviour is found in the context of the minimal ΛCDM model, we
will need to know whether extended cosmological models have the potential to reconcile observations
with standard values of (c2eff , c2vis). The rest of this paper is organised as follows: In section 2 we
present the set of equations describing a massless relativistic component with arbitrary (c2eff , c

2
vis),

and its generalisation to the case of species becoming non-relativistic at late times. In section 3 we
analyse the physical effect of the phenomenological parameters on the observables. In section 4 we
describe our methodology and introduce the data sets used. We present our results in section 5 and
we discuss and conclude in section 6.

2 Modelling the properties of the (dark) radiation component

While the parameter Neff affects the expansion rate of the early universe, we want to introduce
some parameters describing the behaviour of perturbations. If we were comparing ordinary neutrinos
with a concrete physical model (e.g., neutrinos with a given collision or self-interaction term [31, 32],
oscillating scalar field with quartic potential, etc.), there would be no ambiguity in the set of equations
and parameters to compare with data. We are not in this situation: we want to define some effective
parameters, chosen to provide an exact or approximate description of a wide variety of non-standard
models for the radiation component in the universe. From now on, we follow the notations of Ma &
Bertschinger [33].

The logic followed by previous authors and leading to the definition of (c2eff , c2vis) is to postulate a
linear relation between isotropic pressure perturbations and density perturbations given by a squared
sound speed c2eff , assumed for simplicity to be independent of time. The approach is then extended
to anisotropic pressure by introducing another constant, the viscosity coefficient c2vis.

Technically, this amounts in writing the usual continuity and Euler equations, valid for any
decoupled species, and replacing the pressure perturbation δ̂p by c2eff δ̂ρ. The hats mean that we are

2Indeed we are referring here to the definition of (c2eff , c2vis) first introduced by these authors. This parametrisation
is however strongly inspired from earlier works, e.g., [17, 25–28].
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referring to the pressure and density defined in the frame (or in the gauge) comoving with the fluid we
are studying, i.e., in which the energy flux divergence θ vanishes. From the gauge transformations [33]
one can show that in an arbitrary gauge, the density perturbations δρ, the pressure perturbation δp
and the energy flux divergence θ are related to the comoving density/pressure perturbations by

δ̂ρ = δρ+ 3
ȧ

a
(1 + wdr)ρ̄

θ

k2
(2.1)

δ̂p = δp+ 3
ȧ

a
(1 + wdr)c

2
aρ̄

θ

k2
(2.2)

where a is the usual scale factor, the dot indicates derivative with respect to conformal time, wdr ≡ p̄/ρ̄
and c2a ≡ ˙̄p/ ˙̄ρ. The pressure perturbation appears as a source term in the continuity equation and the

Euler equation (see eq. (29, 30) of [33]). If we assume δ̂p = c2eff δ̂ρ, we should replace δp in these two
places by

δp = c2eff

(
δρ+ 3

ȧ

a
(1 + wdr)ρ̄

θ

k2

)
− 3

ȧ

a
(1 + wdr)c

2
aρ̄

θ

k2
. (2.3)

2.1 Massless neutrinos

In the relativistic limit, eq. (2.3) becomes

δp

ρ̄
= c2eff

(
δ + 4

ȧ

a

θ

k2

)
− 4

3

ȧ

a

θ

k2
. (2.4)

For decoupled massless neutrinos, the Boltzmann equation can be integrated over momentum, leading
to a Boltzmann hierarchy in which the first two equations are equivalent to the continuity and Euler
equation. Replacing the two occurrences of δp in these equations by the above expression gives:

δ̇ν =
(
1− 3c2eff

) ȧ
a

(
δν +

4

k2

ȧ

a
θν

)
− 4

3
(θν +Mcontinuity) , (2.5)

θ̇ν =
k2

4
(3c2eff)

(
δν +

4

k2

ȧ

a
θν

)
− ȧ

a
θν − k2σν +MEuler , (2.6)

where the subscript ν refers to the neutrino (or dark radiation) component. The above equations are
valid in any gauge provided that the two quantities (Mcontinuity, MEuler) refer to the right combination

of metric perturbations, e.g. (ḣ/2, 0) in the synchronous gauge and (−3φ̇, k2ψ) in the Newtonian gauge
(see [33] for the definition of h, φ and ψ). When c2eff is set to 1/3, the standard equations are recovered,
since for relativistic free-streaming species the sound speed squared is exactly 1/3.

While δp appears a source term for δ and θ, the anisotropic pressure σ is sourced in the next
equation of the Boltzmann hierarchy by θ + Mshear. Extending the previous logic to the level of
anisotropic pressure can be done by multiplying this source term by (3c2vis). Then, for c2vis = 1/3,
standard equations will be recovered by construction. This prescription leads to:

Ḟν2 = 2σ̇ν = (3c2vis)
8

15
(θν +Mshear)−

3

5
kFν3 , (2.7)

where Fν` are the Legendre multipoles of the momentum integrated neutrino distribution function as
defined in ref. [33]. Mshear is 0 in the Newtonian gauge and given by (ḣ + 6η̇)/2 in the synchronous
gauge.

The next equations in the hierarchy are left unmodified. A coefficient c2vis was first introduced
by Hu [26], as an approximate way to close the Boltzmann hierarchy at order l = 2. For that purpose,
the term Fν3 was eliminated from equation (2.7). The above parametrisation was introduced later in
ref. [20], keeping that term, in order to recover the standard equations in the limit c2vis = 1/3. The
limit c2vis = 0 describes a species with isotropic pressure (like, for instance, a perfect fluid), since in
that limit, σν and all multipoles Fν` with ` ≥ 3 remain zero at all times.
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2.2 Massive neutrinos

We will now present original results, showing how the previous parametrisation can be extended to
the case of light relics experiencing a non-relativistic transition such as massive neutrinos. In the
massive neutrino case, the Boltzmann equation cannot be integrated over momentum, and one must
solve one hierarchy per momentum bin. We wish to introduce the (c2eff , c2vis) factors in the same
way as for massless neutrinos, assuming for simplicity that they affect each momentum equally. The
strategy is again to identify the source terms corresponding to δ̂p in the continuity/Euler equation and
multiply them by (3c2eff), and similarly to identify the source term for σ in the quadrupole equation
and multiply it by (3c2vis).

One can define several statistical momenta of the background phase-space distribution f0(q),
including the usual background density ρ̄ and pressure p̄, and also a quantity called the pseudo-
pressure in [34]:

p̃ =
4π

3
a−4

∫ ∞
0

dq
q6

ε3
f0(q) , (2.8)

where ε is the comoving energy of the particle. Throughout this paper, we use the Boltzmann
code class3 [35, 36] to compute observable spectra. It happens that the pseudo-pressure is always
computed by class, because it enters into the expression of the fluid approximation switched on
deep inside the Hubble radius [37]. Pseudo-pressure is also useful in the present context, since the

comoving pressure perturbation δ̂p of eq. (2.2) can also be expressed as

δ̂p = δp+
ȧ

a
(5p̄− p̃) θ

k2
. (2.9)

One can write down the continuity and Euler equation, decomposing each perturbation as an in-
tegral over momentum, involving the Legendre momenta of the perturbed phase-space distribution
Ψl(k, τ, q). Then, like for massless neutrinos, we identify the two terms involving δ̂p and replace them
by

δp = c2eff

(
δρ+ 3

ȧ

a
(ρ̄+ p̄)

θ

k2

)
− ȧ

a
(5p̄− p̃) θ

k2
. (2.10)

Finally, assuming that c2eff is a momentum-independent coefficient4, we can remove the integral over
q and obtain a modified Boltzmann hierarchy for each momentum q:

Ψ̇0 =
ȧ

a

(
1− 3c2eff

) q2

ε2

[
Ψ0 + 3

ȧ

a

5p− p̃
ρ+ p

ε

kq
Ψ1

]
− qk

ε
Ψ1 +

1

3
Mcontinuity

d ln f0

d ln q
, (2.11)

Ψ̇1 = c2eff

qk

ε

[
Ψ0 + 3

ȧ

a

5p− p̃
ρ+ p

ε

qk
Ψ1

]
− ȧ

a

5p− p̃
ρ+ p

Ψ1 −
2

3

qk

ε
Ψ2 −

ε

3qk
Meuler

d ln f0

d ln q
. (2.12)

Finally, in the l = 2 equation, we multiply again the source term of the shear by (3c2vis) and obtain:

Ψ̇2 =
qk

5ε

(
6c2visΨ1 − 3Ψ3

)
− 3c2vis

2

15
Mshear

d ln f0

d ln q
. (2.13)

Higher momenta in the Boltzmann hierarchy are left unchanged. Again, when (c2eff , c
2
vis) = (1/3, 1/3),

we recover exactly standard equations.

3 Impact of (c2
eff , c

2
vis) on observables

We implemented the previous equations of motion into class in order to study the impact of (c2eff , c
2
vis)

on observable quantities. There is no need to modify initial conditions, because on super-Hubble scales
perturbations are insensitive to pressure gradients, and hence to c2eff . The perturbations also have
negligible anisotropic pressure in the super-Hubble limit, so c2vis is not playing a role either. Unless
otherwise stated, for all parameters that take fixed values, we adopt the same settings as in the “base
model” of the Planck 2013 parameter paper [4].

3Code available at http://class-code.net and https://github.com/lesgourg/class_public.
4We shall discuss this assumption a posteriori in the Conclusions
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3.1 Effect on neutrino perturbations

In figure 1 we plot the time evolution of the neutrino density perturbations (δν) and the ratio of the
metric fluctuations5 (η ≡ Φ/Ψ) at a fixed scale k = 0.03 Mpc−1. We show the case of (three) massless
neutrinos (top panels) and the case of (three degenerate) massive neutrinos with m = 0.02 eV per
species (middle panels) and 0.1 eV per species (bottom panels). We have chosen five models in these
plots, one reference model in which c2eff = c2vis = 1/3, two models in which we set c2eff to 0.30 and 0.36,
and two models that correspond to c2vis set to 0.30 and 0.36. Note that on these plots δν is always
negative: this is because we choose a mode normalised arbitrarily to positive curvature perturbation
(i.e., positive gravitational potential) at initial time.

In general, after entering the Hubble radius, the perturbations of a given component grow as a
power law of the scale factor (δ ∝ a1+3w) above the sound-horizon (hereafter SH), and start oscillating
with a decaying amplitude below the SH. The effective SH of a particular species is defined as

seff =

∫
ceffdτ = ceffτ ,

where τ is conformal time, and the last equality holds for constant sound speeds. Therefore, it is clear
that increasing the squared sound speed c2eff , the time at which perturbations stop growing by entering
the SH decreases. We expect then a bigger amplitude of the density perturbations |δν | for models with
lower values of c2eff . Inside the SH, fluctuations are damped, with an oscillatory pattern ∼ cos(kceffτ)
depending on the SH and hence on the effective sound speed. But they are not completely erased: they
reach an equilibrium value depending precisely on the pressure to density perturbation ratio. Models
with a smaller c2eff have less pressure perturbations, and hence keep a higher residual density contrast
|δν | at equilibrium. The decrease of the density contrast observed at late times for massless neutrinos
(upper panels) is due to cosmological constant domination (Λ suppresses density perturbations by
diluting them with the accelerated expansion). Finally, when neutrinos become non-relativistic, their
pressure perturbation becomes negligible and they start to collapse gravitationally. A smaller value
of c2eff implies that the pressure perturbation becomes negligible a bit earlier, so the density contrast
|δν | grows earlier, and moreover starting from a larger equilibrium value. In summary, a smaller c2eff

implies a larger density contrast |δν | at all times between the approach of SH crossing and today, and
this is what we observe on the left panels of figure 1.

The viscosity parameter cvis mimics the effect of increasing or decreasing the mean free path of
particles in an imperfect fluid with interactions. The limit cvis = 0 corresponds to a negligible mean
free path, i.e., to the strongly interacting regime where the pressure remains isotropic. A small decrease
of c2vis below 1/3 implies that it takes more time for neutrinos to transfer power from a monopole
and dipole pattern (i.e., density and velocity perturbations) to a quadrupole pattern (i.e., anisotropic
pressure/stress σν), like in a weakly interacting fluid with less viscosity. Once the quadrupole is
excited, power is transferred to even higher multiples and density fluctuations are damped. Hence
the main effect of cvis is to change slightly the evolution of δν near the SH crossing time, which is
precisely the time at which the anisotropic stress is excited. Models with a smaller c2vis keep a larger
density contrast for a slightly longer time. Then the density reaches the damped oscillation regime in
slightly more or less time, so the phase of the oscillations is slightly affected by c2vis.

In the lower part of each plot, we can see that at early times the evolution of the ratio of the two
gravitational potentials Φ and Ψ is weakly model dependent. In particular, by varying the viscosity
parameter, we change the offset between the two metric fluctuations, controlled by the traceless
transverse Einstein equation

k2(Φ−Ψ) = 12πGa2(ρ+ p)σ . (3.1)

The total anisotropic stress on the right-hand side receives contribution from photon perturbations
after photon decoupling, and also from neutrino perturbations until their power is transferred to
higher multipoles after SH crossing. In models with a lower c2vis, the neutrino anisotropic stress grows
more slowly before SH crossing, leading to a reduced difference between the two potentials.

5Φ and Ψ are two gauge-independent combinations of scalar metric fluctuations, equivalent to the Bardeen potentials
up to minus signs, and coinciding in the Newtonian gauge with the metric fluctuations φ and ψ such that ds2 =
−(1 + 2ψ)dt2 + a2(1 − 2φ)d~x2.
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Figure 1. Neutrino density perturbations as a function of scale factor for a ΛCDM model with massless
neutrinos (top panels), three degenerate neutrinos with mν = 0.02 eV each (middle panels), and mν = 0.10 eV
(bottom panels). All panels show the evolution of the perturbations for a fixed scale of 0.03 Mpc−1. Solid
black lines show a reference model with c2eff = c2vis = 1/3. In the left panels, solid red lines and dashed red
lines correspond to c2eff = 0.36 and 0.30 respectively, whereas in the right panels solid blue lines and dashed
blue lines correspond to c2vis = 0.36 and 0.30 respectively. For reference, the evolution of the ratios of the
gravitational potentials are shown for every case.
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Figure 2. CMB power spectrum multipoles for the temperature (left column) and E-mode polarisation
(right column) for a ΛCDM model with massless neutrinos (top panels), and three degenerate neutrinos with
mν = 0.10 eV (bottom panels). All models are normalised to a reference model with c2eff = c2vis = 1/3.
Solid red lines and dashed red lines correspond to a c2eff of 0.36 and 0.30 respectively, whereas solid blue lines
and dashed blue lines correspond to a c2vis of 0.36 and 0.30 respectively. Top and bottom panels are almost
identical, showing that the relative effect of (c2eff , c2vis) is independent of neutrino masses.

3.2 CMB temperature and polarisation

In figure 2 we show the CMB power spectra of our four models with non-standard values of c2eff and
c2vis, normalised to the reference model with standard neutrino properties. The left column shows
the ratio of the temperature power spectra, whereas the right column shows the ratio of the E-mode
power spectra.

The CMB is sensitive to neutrino perturbations through gravitational interactions [17–19]. The
amplitude of photon oscillations (i.e., acoustic waves) is usually boosted near the time of SH crossing
by the decay of metric fluctuations. In the presence of a smooth free-streaming component like
standard neutrinos, metric fluctuations get extra damping and the boosting is enhanced. After that
time, photon perturbations oscillate with a higher amplitude on sub-SH scales. The enhanced boosting
also implies that the phase of oscillations in the photon-baryon fluid is slightly shifted towards earlier
times in presence of neutrinos. In the observable temperature and polarisation spectra, this induces
a small displacement of CMB peaks towards larger angular scales. This “neutrino drag” effect is very
characteristic of the presence of relativistic particles in the universe before photon decoupling [17].6

6Instead of probing the existence of the cosmic neutrino background by varying the effective parameters c2eff and
c2vis , one could directly introduce a parametrization of the CMB phase and investigate observational constraints on
this phase, see[38].
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In the temperature power spectrum, the most prominent effect of c2eff and c2vis is a change in
the amplitude of the spectrum, caused by different amounts of gravitational boosting. A lower c2eff

leads to more density contrast in the neutrino species, so the metric fluctuations decay more slowly
near SH crossing. The boosting of photon perturbations is reduced and the amplitude of the CMB
fluctuations is lower. The effect of c2vis is less straightforward, since it impacts the evolution of Ψ and
Φ in a different way around the time of SH crossing for neutrino perturbations, i.e., near the time at
which the neutrino anisotropic stress grows more or less fast, reaches a maximum and decays. For
a smaller c2vis, the neutrino anisotropic stress is smaller at the time when the gravitational boosting
of photon fluctuations is relevant, and this results in larger fluctuations. The change of amplitude
observed in figure 2 is qualitatively different in the case of c2eff and c2vis, and is also different from
a change in the primordial amplitude As, since it does not affect scales that are above the SH at
decoupling: it reaches a constant amplitude only for multipoles with roughly ` > 300, thus affecting
the first and the second peak of the CMB in different ways and thereby changing the shape of the
spectrum.

Besides the oscillation amplitude, the parameters (c2eff , c2vis) also change the phase of the acoustic
oscillations, as one can see from the oscillatory patterns in figure 2. Indeed we have seen in the previous
section that the oscillation period of δν depends slightly on (c2eff , c2vis). This shift is propagated to
the photon-baryon fluid through the neutrino drag effect. In the polarisation power spectrum we find
effects similar to those present in the temperature power spectrum. However, although the change in
amplitude is similar to the one in the temperature power spectrum, the shift in the position of the
peaks is even more clear, because for polarisation there is no contribution from Doppler effects.This
explains the strong oscillations in the ratios shown in the right column of figure 2.

By comparing the top and bottom panel of figure 2, we see that the relative effect of (c2eff , c2vis) does
not seem to depend on mass, even though the underlying power spectra do depend on mass. This is not
unexpected. When neutrinos have a small mass and become non-relativistic after photon decoupling,
they affect the CMB through small effects: shift in the diameter angular distance, early integrated
Sachs-Wolfe effect, and weak lensing. The first effect is totally independent of perturbations, and
hence of (c2eff , c2vis). The second and third effects can in principle be affected by (c2eff , c2vis), but since
this is a modulation of a small effect by another small effect, the impact of the effective speeds and
of neutrino masses are independent of each other to a very good approximation. Hence the effect of
neutrino masses cancels out in the Cl ratios shown in figure 2, at least in the neutrino mass range
explored here.

3.3 Matter power spectrum

We complete the previous analysis of the effects on the CMB power spectra of the effective parameters
(c2eff , c2vis) with an analysis of potential signatures on the large scale structure of the universe, focusing
on the shape of the matter power spectrum at redshift z = 0.

In figure 3, as in the previous subsection, we plot the ratios of our four non-standard models
with respect to the reference model with standard neutrinos. On large scales (k . 10−2Mpc−1) the
effects of these non-standard values of c2eff and c2vis are below 1%. However, on smaller scales the
effects become more important, especially for c2eff .

The effect of c2eff on the matter power spectrum is easy to understand. Once the neutrino or dark
radiation particles are non-relativistic, they fall into the gravitational potential wells of Cold Dark
Matter. The growth rate of δν is larger than the one of δcdm until the neutrino overdensities matches
the CDM overdensities. We have seen in section 3.1. that for a smaller c2eff , the density contrast |δν |
starts growing a bit earlier and from a slightly larger equilibrium value. Hence, the ratio δν/δCDM at
a given scale and given time is larger for smaller c2eff .

The growth rate of CDM and baryon fluctuations is slightly reduced when neutrino perturbations
are negligible. With a smaller c2eff , there is a larger density contrast |δν | in the neutrinos, hence CDM
and baryon collapse at a slightly faster rate and the small-scale matter power spectrum is enhanced.

At scales between 0.01 and 0.2 Mpc−1 increasing (decreasing) any of the two sound speed pa-
rameters cause a decrease (increase) in the power spectrum. This amplitude modulation is still below
1% when we change c2vis within the limits explored here, but c2eff can introduce modulations of up to
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Figure 3. Matter power spectrum for a ΛCDM model with massless neutrinos (left panel) and three degen-
erate neutrinos with mν = 0.10 eV each (right panel). All models are normalised to a reference model with
c2eff = c2vis = 1/3. Solid red lines and dashed red lines correspond to c2eff = 0.36 and 0.30 respectively, whereas
solid blue lines and dashed blue lines correspond to c2vis = 0.36 and 0.30 respectively. These two plots are
almost identical, showing that the relative effect of (c2eff , c2vis) is independent of neutrino masses.

5% within the range 0.30-0.36. Interestingly, at k = 0.2 Mpc−1 the modulation due to c2vis changes
its sign and an increase in its value produces a decrease of the power spectrum, however the effect
remains below 1% even at k = 1 Mpc−1 for the range considered here. As in the CMB power spec-
trum, we also detect no relative effects of the neutrino mass on these ratios. These considerations
indicate that the effect of a modest change in c2eff is relatively large in the shape of the matter power
spectrum: large volume, forthcoming large-scale structure surveys should have the statistical power
to measure sub-percent effects on these scales. For these reasons, it would be interesting to compare
our results with those of [39, 40], where the authors use Lyman-α forest data to get constraints on
massive neutrinos. Moreover the different behaviour of the two parameters on scales k & 0.1 Mpc−1

means that any degeneracy between the two parameters can be lifted.

4 Models and data set

We consider six different models. All models share the six parameters of the flat ΛCDM model, with
the additional c2vis and c2eff:

{ωb, ωcdm, h, As, ns, τreio, c
2
vis, c

2
eff}.

The first six cosmological parameters denote the baryon and cold dark matter physical densities, the
reduced Hubble parameter, the amplitude and tilt of the initial curvature power spectrum at the pivot
scale k∗ = 0.05/Mpc, and the optical depth to reionisation. The effective parameters c2vis and c2eff

have been described in section 2.

4.1 Model descriptions

Since this 8-parameter model is our “minimal” model, we refer to it as “M”. We further explore
possible degeneracies between (c2vis, c

2
eff) and the total neutrino mass Mν ≡

∑
mν and/or the effective

number of relativistic species Neff. These 3 additional models are referred to as M+mν , M+Neff and
M+mν+Neff and have 9, 9 and 10 parameters respectively.

We also check for degeneracies with the dark energy equation of state parameter w (and this
model is referred to as M+w), and the running of the primordial spectrum tilt αs ≡ dns/d log k
(model called M+α).

Unless otherwise stated, when parameters take a fixed value we adopt the same settings as in
the “base model” of the Planck 2013 parameter paper [4]. In particular, when the neutrino mass is
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not a free parameter, we assume two massless neutrino species, and one species with a small mass
mν = 0.06 eV, motivated by the minimal values in the normal hierarchy scenario. In that case, we
assign the same (c2vis, c

2
eff) to the massless and massive species. We checked explicitly that the bounds

on (c2vis, c
2
eff) obtained in that way are indistinguishable from what we would get by assuming three

massless families. Indeed, a neutrino mass mν = 0.06 eV is too small to change the evolution of
perturbations at CMB times, independently of the value of (c2vis, c

2
eff). Such a small mass affects the

CMB only through a modification of the angular diameter distance to decoupling. Hence, like in the
standard case with (c2vis, c

2
eff)=(1/3, 1/3), the only impact of this fixed mass is a small shifting of the

best-fit value of H0 by roughly −0.6 km s−1 Mpc−1 [4].
When the neutrino mass is considered as a free parameter, we consider for simplicity three

degenerate neutrinos with equal mass and (c2vis, c
2
eff) parameters, and the bounds we report are always

on the total neutrino mass Mν . It is well-known that for a fixed total mass, current observations are
not sensitive to the mass splitting between the three families of active neutrinos.

When Neff is left free, we assume one massive species with mν = 0.06 eV and Nur = Neff − 1
massless species, all with the same (c2vis, c

2
eff) (here ‘ur’ stands for ultra-relativistic). Finally, when

varying Neff and mν at the same time, we take one massive species with mass mν , and Nur = Neff −1
massless ones, all with the same (c2vis, c

2
eff). Of course, the decision to assign the same (c2vis, c

2
eff) to all

species in all cases is somewhat arbitrary. For instance, it could be the case that only one species of
neutrinos has significant interactions with a dark sector. This choice is dictated by simplicity. Also,
as long as everything keeps being consistent with standard neutrino perturbations, this choice will
probably be sufficient in order to establish whether more complicated models are worth investigating.

4.2 Data sets and parameter extraction

The parameter extraction is done with the public code Monte Python [41], using the Metropolis
Hastings algorithm, and a Cholesky decomposition in order to better handle the large number of
nuisance parameters [42]. We adopt flat priors on all cosmological parameters. We also use importance
sampling for exploring small deviations to the posterior coming from additional datasets. We compare
our six different models to 3 sets of experiments.

The CMB set includes the Planck [43] temperature power spectrum [44], the low-` information
from WMAP polarisation [45], as well as high-` ACT [46] and SPT [47] data [4]. The adopted
Planck likelihood functions are the low-` Commander likelihood and the high-` CAMspec [44]. The
CMB+lensing set contains in addition the Planck lensing reconstruction [48]. The recent expansion
history of the Universe as measured via the Baryon Acoustic Oscillations (BAO) technique is also
considered as an additional data set and we use the determinations of refs. [49–52].

5 Results

ΛCDM+c2eff+c2vis ≡ M: Results for the minimal model ΛCDM+c2eff+c2vis (M) are reported in ta-
bles 1, 2, 3 for the three different datasets, and illustrated by the left panel of figure 5. The standard
values (c2eff , c2vis) are always well within the 95% confidence intervals, so the data gives no indication
of exotic physics in the dark radiation sector. These findings can be seen as further evidence in
favour of the detection of the cosmic neutrino background. Our results in this case reproduce those
of ref. [24] and confirm that current data are sensitive to c2vis and especially to c2eff . The effect of the
neutrino anisotropic stress is detected albeit at small statistical significance: c2vis = 0 is disfavoured
at the 2.5σ level for CMB and CMB +lensing but (slightly) above 3σ when BAO data are included.
For all dataset combinations, we observe (figure 5) a small anti-correlation between the two effective
parameters. Indeed we have seen in section 3 that they affect the amplitude of CMB oscillations in
different directions. Apart from the overall amplitude, their effects are clearly distinct as shown by
figure 2 which explains the weakness of the correlation.

The bounds on the parameters of the ΛCDM model are significantly broader than in the base
ΛCDM case. In fact, the effect of c2eff+c2vis discussed in section 3 turn out to be degenerate with
subtle combinations of ωb, ωcdm, ns and As (see figure 4). In particular, a high c2vis requires low ωb,
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ωcdm, and high ns and As. Better CMB data could help break these degeneracies, and bring stronger
constraints on (c2eff , c2vis).
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Figure 4. Degeneracies between the parameters (c2vis, c
2
eff) and the parameters ωb, ωcdm, As and ns. A

combination of CMB+lensing data is used for this plot, in which a ΛCDM+c2vis+c
2
eff model is assumed.

Dashed lines correspond to the standard values (c2eff , c
2
vis) = (1/3, 1/3).

This also indicates that the significance of the deviation from a scale invariant power spectrum
relies on assuming standard neutrino properties. If this assumption is relaxed our knowledge of the
shape of the primordial power spectrum is also degraded.

CMB

Parameter ΛCDM+c2eff+c2vis + mν

100 ωb 2.132+0.044
−0.054 2.107+0.046

−0.056

ωcdm 0.1164± 0.0040 0.1166+0.0039
−0.0041

H0 68.0± 1.3 65.0+3.4
−1.8

10+9As 2.37± 0.14 2.40+0.14
−0.13

ns 0.991+0.021
−0.019 0.992+0.022

−0.017

τreio 0.090+0.013
−0.014 0.090+0.013

−0.014

c2eff 0.307+0.013
−0.014 0.304+0.013

−0.014

c2vis 0.56+0.15
−0.25 0.61+0.17

−0.24

Mν [eV] – < 0.88

Table 1. Constraints from CMB data on the values of the cosmological parameters for the ΛCDM+c2eff+c2vis

and the ΛCDM+c2eff+c2vis +mν models. We report the 95% C.L. upper limit for the total neutrino mass Mν ,
the mean values and 1σ ranges for all the other parameters.

M+mν : The effect of adding mν can be seen in tables 1, 2, and in the right panel of figure 5.
There is no degeneracy between c2eff+c2vis and the neutrino mass. This is an important new result,
helping to establish the robustness of constraints on neutrino/dark radiation perturbations. Adding
mν slightly decreases the mean value for c2eff and increases the mean value for c2vis, but not by a
statistically significant amount.
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2
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CMB + lensing

Parameter ΛCDM+c2eff+c2vis +Neff +mν +w + αs + Neff +mν

100 ωb 2.162+0.047
−0.052 2.174+0.057

−0.055 2.124+0.048
−0.056 2.179+0.052

−0.056 2.180+0.050
−0.056 2.136+0.060

−0.068

ωcdm 0.1163+0.0037
−0.0034 0.1181+0.0054

−0.0051 0.1186+0.0037
−0.0036 0.1164+0.0037

−0.0035 0.1163± 0.0035 0.1184± 0.0055
H0 68.3± 1.1 69.6± 2.9 63.7+4.1

−2.6 85.5+14.0
−4.5 68.3+1.1

−1.2 65.4+4.0
−4.2

10+9As 2.31+0.12
−0.15 2.34+0.12

−0.16 2.36± 0.13 2.27+0.12
−0.15 2.35+0.13

−0.15 2.39± 0.14
ns 0.984+0.021

−0.020 0.991+0.024
−0.025 0.981+0.020

−0.018 0.979+0.022
−0.021 0.980+0.022

−0.019 0.987+0.025
−0.022

τreio 0.090+0.012
−0.014 0.093+0.013

−0.015 0.093+0.013
−0.014 0.088+0.012

−0.014 0.095+0.013
−0.016 0.094+0.013

−0.016

c2eff 0.314± 0.013 0.314± 0.013 0.309+0.013
−0.014 0.318+0.013

−0.014 0.320+0.014
−0.016 0.312+0.014

−0.013

c2vis 0.49+0.12
−0.22 0.49+0.11

−0.21 0.51+0.14
−0.19 0.46+0.11

−0.23 0.50+0.13
−0.22 0.56+0.14

−0.24

Neff – 3.22+0.32
−0.37 – – – 3.17+0.34

−0.37

Mν [eV] – – < 1.03 – – < 1.05
w – – – −1.49+0.18

−0.38 – –
αs – – – – −0.010± 0.010 –

Table 2. Constraints from CMB+lensing data on the values of the cosmological parameters for the
ΛCDM+c2eff+c2vis, ΛCDM+c2eff+c2vis+Neff , ΛCDM+c2eff+c2vis+mν , ΛCDM+c2eff+c2vis+w, ΛCDM+c2eff+c2vis+αs
and ΛCDM+c2eff+c2vis+Neff+mν models. We report the 95% C.L. upper limit for the total neutrino mass Mν ,
the mean values and 1σ ranges for all the other parameters.

Extended cosmologies: We considered extended cosmologies for the CMB+lensing dataset.
Parameter constraints are reported in table 2. Selected two-dimensional posterior distributions in-
volving (c2eff , c2vis) and the extra cosmological parameters are shown in figures 6 and 7. The (c2eff ,
c2vis) constraints are robust to the addition of extra cosmological parameters. There is no significant
degeneracy between (c2eff , c2vis and Neff) or w. There is a small anti-correlation between c2eff and αs
which however does not change the conclusion that c2eff is compatible with the standard value of 1/3
and αs is consistent with 0.
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CMB + lensing + BAO

Parameter ΛCDM+c2eff+c2vis +mν

100 ωb 2.167+0.048
−0.054 2.145+0.042

−0.058

ωcdm 0.1167+0.0020
−0.0023 0.1150+0.0023

−0.0025

H0 68.25+0.63
−0.65 67.60+0.98

−0.93

10+9As 2.30+0.10
−0.12 2.37± 0.13

ns 0.982+0.017
−0.014 0.992+0.018

−0.014

τreio 0.090± 0.012 0.094+0.013
−0.014

c2eff 0.314+0.011
−0.013 0.309± 0.013

c2vis 0.47+0.12
−0.19 0.54+0.17

−0.18

Mν [eV] – < 0.33

Table 3. Constraints from CMB+lensing+BAO data on the values of the cosmological parameters for the
ΛCDM+c2eff+c2vis and ΛCDM+c2eff+c2vis + mν models. We report the 95% C.L. upper limit for the total
neutrino mass Mν , the mean values and 1σ ranges for all the other parameters.
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Figure 6. Left. Two-dimensional posterior distributions for (c2vis, c
2
eff) and Neff for CMB+lensing data

set in the ΛCDM+c2eff+c2vis+Neff model, where we considered one massive (mν=0.06 eV) and two massless
neutrinos. Right. Constraints on (c2vis, c

2
eff) and the running spectral index αs for CMB+lensing data in the

ΛCDM+c2eff+c2vis+αs model. Dashed lines correspond to the standard values (c2eff , c
2
vis) = (1/3, 1/3).

M+Nrel+mν : Finally even in the 10 parameters model where all parameters describing neutrino
and dark radiation properties are left to vary we find no significant degeneracies with the c2eff , c2vis

parameters. The effective number of species is still compatible with the standard value and its error-
bar (±0.34) has not degraded compared to the ΛCDM+Neff case (±0.33) in [4]. The 95% limit on the
total neutrino mass is Mν < 1.05 eV, which is only slightly degraded compared with the ΛCDM+mν

case Mν < 0.85 eV.

6 Conclusions

In this paper we have elucidated the physical effects of the c2eff and c2vis parameters on the CMB
temperature and polarisation power spectra and the matter power spectrum. We find that the main
signatures in the temperature and polarisation spectra are a shift of acoustic peaks, and a scale-
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due to the strong degeneracy of this parameter with w. Remarkably, a prior on H0 from direct measurements
of the Hubble constant would break this degeneracy without changing our constraints on (c2vis, c

2
eff). Right.

Constraints on the interesting parameters for CMB+lensing data in the ΛCDM+c2eff+c2vis+Neff+mν model.
We report the constraints on the total neutrino mass Mν in eV. Dashed lines correspond to the standard
values (c2eff , c

2
vis) = (1/3, 1/3).

dependent amplitude modulation for multipoles ` < 300 i.e., including the first peak, whereas the
amplitude change is roughly constant beyond that scale and up to multipole ` = 5000. Interestingly,
an increase in the c2eff parameter causes an increase in the amplitude, whereas an increase in the c2vis

parameter causes the opposite effect. A similar amplitude change is found in the polarisation power
spectrum. The matter power spectrum on the other hand, is mainly unaffected by these parameters
at large scales, but it shows some dependence on these parameters at scales below matter-radiation
equality. While c2vis effects are within 1%, we find that c2eff can cause changes of several percent
already at k = 0.2 Mpc−1 for the values we have studied. Forthcoming large-scale structure surveys
covering volumes of several Gpc3 have in principle the statistical power to measure sub-percent effects
on these scales. In practice, however, the accurate determination of the shape of the matter power
spectrum and its interpretation in terms of the linear power spectrum on these scales is affected
by other astrophysical processes and it remains to be seen whether a sub-percent accuracy can be
achieved realistically.

We have also investigated the existence of degeneracies between these dark energy perturba-
tion effective parameters and cosmological parameters, such as the total neutrino mass Mν , effective
number of relativistic species Neff , equation of state of dark energy w, and running of the spectral
index αs. We note that our constraints on (ωb, ωcdm, As, ns) are significantly broader than in the
standard case, but in this paper we concentrate on results for c2eff and c2vis and on their degeneracies
with extended cosmology parameters. We find that the c2eff and c2vis parameters are anti-correlated,
that αs is slightly anti-correlated with c2eff , but also that there are no major correlations between
(c2eff , c2vis) and Neff , and for the first time, we show that there is no significant correlation with the
total neutrino mass Mν either.

One can argue that our choice of constant c2eff and c2vis is arbitrary and may not be sufficient to
describe massive neutrinos from low momenta to high momenta. We have to bear in mind that these
are effective parameters: in the absence of any significant deviations from their standard, constant,
values they should be interpreted in the light of a null test hypothesis. We can however go beyond
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this interpretation by assuming that c2eff depends on the momentum q and expand this dependence to
linear order: c2eff(q) = c2eff(0) + c2eff(1) (q − qavg)+ . . ., where qavg (' 3.15) is the average momentum for

neutrinos. From this expansion, it follows that being sensitive to c2eff(1) is equivalent to being sensitive

to some c2eff for a relativistic momentum bin versus a non-relativistic momentum bin. On the other
hand, a modification of the neutrinos mass produces a similar effect, since it regulates the time scale
at which massive neutrinos become non-relativistic. In our analysis we found that, by fixing the values
of (c2eff , c

2
vis), the dependence on the mass is negligible. This finding indicates therefore that our choice

of constant (c2eff , c
2
vis) is a good approximation even for a q-dependent c2eff .

Already with state-of the art CMB data available (i.e., Planck 2013 data release and WMAP low
` polarisation data) alone or in combination with other data sets (e.g., BAO), we can conclude that
these parameters are not significantly degenerate with any other, and hence that the detection of the
anisotropies of the cosmic neutrino background is robust. We find no evidence for deviations from
the standard neutrino model, i.e., 3 neutrino families with effective parameters (c2eff , c2vis)=(1/3, 1/3)
when we consider CMB data only (including CMB lensing).

However the inclusion of (c2eff , c2vis) parameters degrades the constraints on some of the ΛCDM
model parameters, such as the physical matter density and the slope of the primordial power spectrum.
In particular, high values of ns, including a scale invariant power spectrum (ns = 1), become allowed.
This indicates that the significance of the deviation from a scale invariant power spectrum, with all
its consequences for inflationary models, relies on assuming standard neutrino properties. It also
means that future data sets providing independent measurements of these parameters, such as the
matter power spectrum from galaxy surveys or smaller scale CMB polarization, could help to remove
degeneracies and greatly improve the sensitivity to (c2eff , c2vis). This is expected to be the case for
the full Planck data on temperature and polarisation anisotropies. Measurements of the shape of
the matter power spectrum, even on linear scales, should also greatly help to lift the {ns, c2eff , c2vis}
degeneracies.
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