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Abstract—This paper addresses the issue of grounding spatial 
relations in natural language for human-robot interaction and 
robot control. The problem is approached by identifying two set 
of spatial relations, the image space-based and object-centered, 
and expressing them as fuzzy sets to capture the ambiguity 
inherent to the linguistic expressions for the relations. The sizes 
and shades of the scene objects have also been modeled as fuzzy 
sets for conditioning the spatial relations. To verify the validity of 
our approach and test its feasibility in a natural language-based 
interface, we have considered the typical scenarios of using the 
spatial relations in simple declarative and imperative sentences 
and designed simple grammars for parsing such sentences. Our 
experiment has shown that fuzzy spatial relation analysis 
provides a useful way for modeling the ambiguity or imprecision 
of the natural language in describing spatial relations and that it 
is possible to use the spatial relation models to support robot 
control and human-robot interaction in a natural language-based 
interface. 

Keywords—spatial relations; fuzzy set; human-robot 
interaction; artificial intelligence. 

I.  INTRODUCTION 
Given the advances in computer science and artificial 

intelligence in the past few decades, it is still a huge challenge 
for robots or autonomous devices to survive unknown tasks in 
unknown environments. The problem is due to the inability of 
current robots in perceiving and understanding their 
environments and in identifying and organising their tasks. The 
situation is unlikely to improve greatly in the foreseeable 
future. For this reason, human operators are still indispensable 
in the control loops of critical robotic applications such as in 
space explorations, underwater servicing, landmine disposal, or 
household activities. In such missions, human operators, 
partially or completely, take over from the robots the 
responsibility of environment assessment and task planning, 
and the robots act passively on receiving the instructions from 
the operators. For this to happen seamlessly, effective human-
robot interaction is a pivotal issue.  

In the study of human-robot interaction, using natural 
language as an interface for human-robot interaction has 
gained a lot of momentum in recent years. Compared with 
programming languages or other specialised robot control 
interfaces, natural language enables people to plan and then 

communicate complex tasks in an intuitive and flexible way. 
To achieve this, the robots must be able to interpret the natural 
language sentences and act upon them. Such an interface 
would normally consist of at least two functional modules: a 
natural language parsing module that parses the commands in 
natural language into linguistic symbols and a grounding 
module that maps the linguistic symbols to the percepts that a 
robot perceives or senses in its environment or workspace, 
such as objects, places, relations or actions. These problems 
have attracted a lot of attentions in recent years and different 
approaches have investigated. 

Within the context of robot control and human-robot 
interaction, the aim of natural language parsing has been to 
derive a formal representation from natural language 
utterances or commands. The representation could be obtained 
through observation [1], by parsing the sentences into spatial 
description clauses (SDCs) [2, 3], or through learning [4]. In 
comparison with the natural language parsing problem, the 
options for the solution of the natural language grounding 
problem are rather limited. The reason is because correct 
grounding depends very much on the correct perception and 
modeling of the work environments by the robots, which is 
still a very challenging problem. 

In this paper, we focus on the issue of grounding spatial 
relations in natural language for human-robot interaction and 
commanding. The paper extends our work on fuzzy spatial 
relation representation [5] by introducing the group-related 
spatial relations and more powerful fuzzy qualifiers to better 
model the spatial relations used in natural language for object 
and spatial location description. We derive the formal 
representation of the simple natural language sentences that are 
normally used for describing the spatial relations in typical 2D 
workspaces or application scenarios. In using the relations to 
describe the objects in the workspace of a robot, we assume no 
prior knowledge about the workspace and the objects in it. The 
knowledge about the workspace, such as landmarks and object 
identities, can be obtained and accumulated through interactive 
instruction during task execution [6]. 



II. RELATED WORK

Spatial reasoning is considered as the domain of spatial 
knowledge representation, in particular spatial relations 
between spatial entities, and of reasoning on these entities and 
relations [7]. Humans effortlessly use such knowledge in 
everyday life. Spatial reasoning can be used to solve 
sophisticated space-related problems and plays a very 
important role in many areas of science and engineering, for 
example, in image understanding and content-base retrieval 
[8] and robot navigation [9].  

Spatial relation analysis and grounding is one of the 
important issues in the research of using natural language to 
control and interact with robots. Spatial relations are used to 
create a semantic map of the environment, which enables 
robots to acquire grounded representation of natural language. 
The representation is attractive because it allows unknown 
environment being gradually learnt and modeled without 
recourse to explicit 3D geometric data of the environment.  

A command in natural language can be decomposed into a 
hierarchy of spatial description clauses. Each of the clauses 
consists of a subject, a verb for the action to take, a spatial 
relation that describes the relation between the subject and the 
reference object, and a landmark that is referenced by the 
relation [2]. The groundings of the linguistic constituents can 
be inferred from a grounding graph – a probabilistic graph that 
was trained on a corpus of natural language commands paired 
with groundings for each part of the command [3]. 
Guadarrama and et. al., [10] use a trained multi-class logistic 
regression model for the grounding of spatial relations. The 
model was trained with the spatial features computed between 
the bounding boxes of the landmarks and target objects.  

Our approach differs from these approaches in that, instead 
of treating the grounding problem as purely a learning 
problem, we use membership functions to define the spatial 
relations. We do not rely on any prior knowledge or an 
explicit model of the environment to initialize the spatial 
relations among the objects. We represent the key attributes of 
an object, for example its identity and its spatial relations with 
other objects, in a knowledge base in an approach similar to 
[11, 12], although we have not fully investigated the 
knowledge acquisition and representation issue. 

In our work, we assume no prior knowledge about the work 
environment. The knowledge about the environment such as 
the landmarks and their identities are learnt from the natural 
language control and operation commands. The spatial 
relations between objects are used as constraints to condition 
the learning problem. Our approach is similar to [6], where 
grounded language is learnt from interactive instructions. The 
knowledge about the workspace is transferred from a human 
instructor to a robot in the form of demonstrative sentences 
initiated by the human instructor or by the robot querying the 
instructor when it lacks the knowledge to comprehend an 
utterance or execute an action. 

In modeling the spatial relations, we use the framework of 
fuzzy spatial reasoning. As an efficient tool for modeling the 

ambiguity in the linguistic definitions of regions and relations, 
the fuzzy set theory has been well studied [5, 13, 14, 15]. It is 
evident that the fuzzy representation of spatial regions and 
relations has provided an adequate framework for spatial 
knowledge representation and reasoning: it captures the 
imprecision inherent to the linguistic expressions of spatial 
regions and relations; it reduces the semantic gap between 
symbolic concepts and numerical information [16]. 

III. GROUNDING SPATIAL RELATIONS

The aim of spatial relation analysis is to derive the spatial 
relations among a collection of objects and to establish an 
inference system in which the location of a single object can 
be uniquely defined and deduced, and subsequently the 
deduced location is used to ground the linguistic terms in 
natural language commands. In essence, by exploring the 
spatial relations we wish to establish a coordinate system 
equivalent to the Cartesian one but without recourse to the 
coordinates of real numbers (as far as specifying a location is 
concerned). The differences between the two are in that, one 
defines only a finite number of locations or regions by 
linguistic coordinates and a certain amount of imprecision is 
allowed, and the other defines an infinite number of locations 
by real numbers without any ambiguity. 

As the system is regarded as a type of coordinate systems, 
we first need to consider the space it will address and the 
reference or “origin” with respect to which spatial relations 
can be defined. We consider using a robot-centered vision 
system to sense the workspace. At any one time, the 
workspace, or part of it, is represented by an image of the 
workspace. In the following discussion, we assume that the 
human operators share the same views of the workspace with 
the vision system of the robot, and for easy formulation we 
have ignored the effect of perspective foreshortening. 

The workspace of the robot is considered as 2D scenes 
populated with objects. Two sets of spatial relations, image 
space-based relations and object space-based or object-
centered relations, will be defined. It will become evident that 
the image space-based relations are necessary for ensuring 
any single location in the field of vision is accessible and that 
the object space-based relations, while not possessing the 
same attribute, can greatly improve the practicality of the 
reasoning system. As the spatial relations will be used for 
grounding natural language commands, the spatial relations 
must be so defined such that they are consistent with human’s 
conceptions of these relations and can tolerate the imprecision 
of the descriptions of these relations in natural language.  

A. Image-Space Spatial Relations 
Given an image of a workspace, in order to specify a spatial 

relation in the absence of any landmark it is necessary to 
partition the image and label the resulted partitions. When 
partitioning the workspace, we have paid attention to the 
following points. Firstly, the partitions must be conceptually 
consistent with human conceptions of the spatial regions and 
relations. This will make the language-grounding task easier. 



Secondly, the partition scheme should allow partitioning be 
recursively applicable to the sub-regions. This is to ensure that 
every single location in the space is accessible. Finally, the 
partitioning must be geometrically complete, by which we 
mean that no holes or gaps are left by the partitioning. These 
considerations naturally lead to us to partition the entire image 
into nine regions: a centre, a right, a left, a top, a bottom and 
four corners, as shown in Fig. 1 (a). We name them purely for 
convenience of discussion.  

With respect to the region centre, we define four primitive 
spatial relations: top, bottom, left, and right. We use them to 
describe the spatial relation of a location with respect to the 
reference region, centre. Therefore, by relation right we 
actually mean a point is to the right of the centre region. We 
avoid using the term “right of”, because we reserve it for 
naming its object-space counterpart. The relations have a 
second meaning: we use them to represent the set of all points 
on them a particular spatial relation holds. Therefore, there is a 
significant difference between the region right and the relation 
right. As we will see shortly, the relation right represents the 
whole region of the right hand side of the image. In the 
following discussions, when a relation is mentioned it normally 
refers to its second meaning. 

Now, we consider the geometric meaning of these relations. 
In natural language, the meanings of these relations are rather 
vague. For example, a point anywhere within the shaded area 
of Fig. 1(a) could be considered more or less to have a right 
relation with the centre region. This relation is certainly valid 
for all the points within the area with darker shade – the region 
we have named as right. However, for the points within the 
two corners the degree of validity of the relation varies. If a 
point is very close to the top or bottom edges of the region 
right, the relation is almost certain. If a point is very close to 
the right edges of the top or bottom regions, the relation 
almost fails. Obviously, the distance between the point and the 
corresponding corner point of the centre region has no 
influence over the validity of the relation.  

This variation in the degree of validity of the relation can be 
modeled as a simple linear function in θ, the angle between 
vertical line and the line joining the point P and the corner 
point of the centre region, as shown in Fig. 1(a). Being such 
modeled, the relation right refers to the set of points that 
maintain a right relation with the region centre – the entire 
shaded region in Fig. 1(a). The points within this region can be 
adequately represented by a fuzzy set, with each point being 
assigned a fuzzy membership to reflect the degree of validity 
of the relation at that point. Fig. 1(b) shows the fuzzy 
membership of each point of the region. The same argument 
applies to the relations top, bottom and left, and their 
membership can be similarly assigned [5].  

We now consider the region centre. Being used as the 
reference to define the primitive spatial relations, the region 
centre itself is not a relation. However, the space described as 
centre in natural language tends to be very small and is 
accompanied by imprecision.  Within this region,  the degree of  

Fig. 1. (a) An image is divided into nine regions: a centre, a right, a left, a 
top, a bottom and four corners; (b) The fuzzy membership of the relation 
right, where the total darkness represents 1.0 and white represents 0.0. 

a point being considered to belong to centre varies according to 
its distance from the centroid of the region. This characteristic 
of the region also calls for a fuzzy representation. In fact, we 
can view centre as a region consisting of the set of points that 
hold a geometric relation to the centroid of the region. 

The fuzzy definition of this relation is straightforward. It 
consists of the set of points each of which has its distance to 
the centroid of the region centre as its membership:  
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with 22 wxxw c ≤−≤−  and 22 hyyh c ≤−≤− , where (xc, 
yc) is the geometric centre, and w and h are the width and 
height of the region. This definition takes into account the 
aspect ratio of the region.  

In addition to the above relations, another set of relations 
that are frequently used in natural language for describing 
spatial locations are left-most, right-most, topmost and 
bottommost. This set of relations are crisp and can be 
evaluated by the left most, right most, topmost and 
bottommost edges of the bounding boxes of the objects in the 
scene, which will be discussed in Section III. B.   

The image-space relations discussed in this section 
normally serve as the starting point of spatial relation learning 
and reasoning when a suitable landmark or prior knowledge 
about the workspace is not available. The robot can use these 
relations to initiate queries about the environment. For 
example, the robot may ask: "what is object at the centre?" 
Such queries could be answered by a human instructor by 
saying "It's a cup." The human instructor can also teach the 
robot by initiating a demonstrative statement:  "a cup is at the 
centre." In both cases, the knowledge about the environment, 
i.e., the object name and spatial relations, and may be more, is
passed on to the robot. 

B. Object-Space Spatial Relations 
The object-centered primitive spatial relations such as left 

of, right of, above, below and a few more have been identified 
and widely used for describing 2D spatial relations [17]. In our 
work, because the image is a perspective projection of a 2D 
working space, we have defined the following primitive 
relations: left of, right of, behind, and in front of.  

(a) (b) 



In defining these relations, one of the most important 
factors is to find an appropriate representation for objects of 
all possible shapes. A good representation should lead to 
unambiguous spatial relations and efficient evaluation of the 
fuzzy membership functions.  

Bounding boxes and actual geometric shapes are two types 
of widely used representations in spatial relation analysis. 
Using the actual geometric shapes of the objects as a 
representation has been reported by some researchers, for 
example, in representing anatomic structures [16] and ground 
structures [8]. The main limitation of the representation is due 
to its computation demand in evaluating the spatial relations. 
The bounding box representation facilitates simple 
computation algorithms and therefore is more efficient. For 
this reason, it has mainly been used in applications where real-
time performance is critical. The main concern about the 
bounding box representation is its representation accuracy.  

For comparison purpose, we have investigated both 
representations. It has been shown that the actual shape 
representation gains no advantage over the bounding box 
representation when it comes to the evaluation of the primitive 
relations such as left of, right of, behind, and in front of. It 
results in the same spatial relations between two objects at 
varying distances as the bounding box representation does, but 
at much higher computation costs. In addition, the accuracy of 
image segmentation can seriously undermine the exact nature 
of the representation.  

In our work, the bounding box representation is adopted. 
The centroids of the objects are used in evaluating the fuzzy 
membership functions of the primitive relations. Being such 
defined, the object-space primitive relations can be viewed as 
an extension of the image-space relations with the region 
centre being replaced by the bounding boxes of the objects. As 
an example, Fig. 2(a) shows the membership of right of. 

From these primitive relations, we further define four 
derived object-centered spatial relations by using the logic 
conjunctions of the primitive relation and the distances to the 
reference object. They are top left, top right, bottom left and 
bottom right. Our observation and experience show that when 
dealing with a cluttered workspace these derived spatial 
relations are more frequently used than the primitive relations 
by the human operators in describing the objects with respect 
to a known landmark.  

Fig. 2. (a) The bounding box representation and the membership of the 
relation right of; (b) a scenario where the bounding box representation fails 
and the relation next to applies. 

C. Distance-Related Spatial Relations 
Our investigation has shown that the most useful distance-

related relations are next to and nearest to when a single 
landmark is used, between when two landmarks are involved, 
and within when a group of more than two landmarks are 
referenced. The grounding of the linguistic elements 
associated with these relations necessarily involves evaluating 
the distances between the objects in question and the 
landmarks involved. 

Distance computation can be efficiently done if two objects 
are sufficiently separated. As they are sufficiently separated, 
the influence of their actual shapes over the distance 
computation becomes less influential; therefore the distance 
between them can be better represented by their centroids. Of 
course, the computed distance between the centroids must be 
scaled afterwards to take into account the influence of the 
actual shapes of the objects or their bounding boxes. To save 
the computing costs, we choose to scale the distance by the 
bounding boxes of the objects. It can be shown, in most cases, 
this choice is harmless. 

The relation next to describes the relations between the 
objects that are very close in space and the relations among 
them cannot be described by the object-space spatial relations 
left of, right of, behind, or in front of. The relation has a very 
limited scope; its uses are restricted to the close adjacency of a 
landmark. As illustrated in Fig. 2(b), with the bounding box 
representation, the triangular object would be considered as 
closer to object A than it is to object B. Obviously, the 
implementation of the relation next to calls for an actual 
shape-based distance computation.  

Semantically, the relation next to is very similar to the 
relation close to, as reported by other authors [16, 17], but 
with next to having a much narrower scope and demanding for 
the actual object shapes being used in the evaluation of its 
membership functions. In contrast, the relation close to can be 
more efficiently implemented with the bounding box 
representation, as will be discussed in the next section.  

The relation nearest differs from the relation next to in that 
the former has a wider scope. An object may have a nearest 
relation but not a next to relation with a landmark. The 
evaluation of the relations nearest and farthest requires the 
evaluation and ranking of the distances of objects to a 
reference landmark. Both nearest and farthest are crisp 
relations.  

The spatial relations between and within in natural language 
have rather vague meanings. To implement them 
computationally, we have to bestow them more precise 
meanings. We define the relation within with respect to the 
centre of the convex of the centroids of the reference objects. 
The convex hull defines both the scope and the reference point 
of the within relation. Any object whose centroid falls within 
the convex hull will be accounted for in the evaluation of the 
within relation, and its distance to the centre of the convex hull 
is calculated as the measure of the “withinness” when multiple 
objects are involved.  

(a) (b) 



Fig. 3. The relation between is the fuzzy conjunction of the object centered 
relation right of and left of. 

The relation between is defined as the conjunction of the 
two object-space relations left of and right of. These two 
relations are evaluated with respect to the line that connects 
the centroids of the two landmarks, as shown in Fig. 3.   

IV. NATURAL LANGUAGE QUALIFIERS

If we use the spatial relations to describe or retrieve an 
object in the workspace of a robot, the results can hardly be 
unique, unless the scene is sparsely populated. With a 
cluttered scene, it is more likely that a collection of objects 
will fit the same description. As each object will have a 
different membership with respect to different relations, one 
might attempt to use the numeric memberships as a type of 
coordinates to differentiate the objects within the collection. 
However, doing so would defeat our purpose of devising the 
spatial relations in the first place. To address this problem, we 
are going to introduce a few qualifiers.  

Humans use language to describe the features of an object 
to single it out when its spatial relations with other objects are 
ambiguous. Among the most frequently used features are the 
shapes, textures, colors and sizes of objects. Shapes are perhaps 
the most powerful and the most used feature in human object 
recognition. Unfortunately, a general solution for mapping 2D 
shapes to linguistic symbols that represent 3D objects is 
technically very difficult if possible at all. Therefore, in this 
section, we will discuss some linguistic qualifiers that can be 
readily detected. They are size and shade qualifiers. 

A. Size Qualifiers 
The frequently used qualifiers for size comparison are: 

largest, large, medium, small and smallest. We could have 
added two more qualifiers to the set, for example, very large 
and very small, but it has proved to be difficult for humans to 
perceive and differentiate the differences between large and 
very large. In this set of qualifiers, we want the qualifiers 
largest and smallest to be crisp ones because given a set of 
objects, the meanings of largest and smallest are normally 
unambiguous. 

The areas of objects have been chosen as the measure for 
object sizes. The triangular functions are chosen as 
membership functions for the size qualifiers, as shown in 
Fig.4. 

Fig. 4. The membership functions for the distance qualifiers. 

B. Shade Qualifiers 
Different from the size, the shade of an object refers to the 

fixed intensity values, for example, a shade of gray refers to an 
intensity value around 128. So the membership functions must 
be defined over the range of image intensity [0, 255] or its 
normalized equivalence [0.0, 1.0]. We noticed the fact that the 
visual perception of a shade is susceptible to the spatial 
configurations and the shades of surrounding objects [18]. 
However, without a quantitative analysis of the effect, it is 
difficult to account for it in this work. As a result, five 
qualifiers are defined over the range of the intensity: black, 
dark, gray, light and white. We also use the triangular 
functions to represent the qualifiers, as shown in Fig. 5.    

In this section, we have defined two sets of qualifiers, both 
crisp and fuzzy. Combined with the spatial relations, they 
form a set of tools for describing and querying a particular 
object in images. 

V. WORKSPACE MODEL 
For a robot to acquire and retain the knowledge about its 

workspace or environment, it is crucial to have a model of 
some kind for its world. The model plays the role of a memory 
and provides a resting place for the past and a starting point 
for predicting the future of its environment. A full model that 
accommodates the dynamic aspect of the workspace is beyond 
the scope of this paper. For simplicity reason, we consider a 
static scene to test our relation models. We assume that the 
relations between the objects are stable and the influence of 
the small variations in the viewpoint of the vision system is 
negligible. Under these conditions, we model the workspace 
as a knowledge base of which each entry corresponds to an 
object in the workspace. The robot will populate the 
knowledge base with the information elicited from the natural 
language commands about the scene objects.  

The knowledge about an object can be very comprehensive. 
A full taxonomy, if possible, may contain information about 
its recognition, identification, manipulation, functional utility, 
interaction with and relations to other objects, and so on. As 
far  as  the  work  of  this  paper  is  concerned,  the knowledge 

Fig. 5. The membership functions of the shade qualifiers 



about an object is minimal: its name and any synonyms and/or 
taxonomical information that allows words in natural language 
being mapped to the correct object. For example, both words 
fruit and apple should be grounded to an object named apple. 
The name and the taxonomical information can be hard-coded 
beforehand [12] or leant via interactive instruction at runtime 
[6]. 

Also included in the knowledge are the relations of an 
object with other objects. The use of such knowledge helps to 
avoid the unnecessary re-evaluation of the spatial relations. 
Ideally, certain ontological information should also be included 
in the knowledge base to facilitate automated decision making 
by the robot, but we did not explore this aspect of the 
workspace. In principle, the spatial relations between the 
objects become available once the image of the workspace is 
loaded. But we defer their evaluation to the command 
processing time. This is to avoid the problem of evaluating all 
the possible relations within a workspace at once, which is 
beneficial for reducing the overhead for processing the 
workspaces that consist of a large number of objects. 

VI. NATURAL LANGUAGE COMMANDS

Our motivation for modeling the spatial relations has been to 
ground the linguistic symbols in robot control commands to 
the percepts of robots so that we can interact with the robots 
via natural language. In real world applications, to describe an 
operation task, very complex sentences may have to be used. 
Inferring the meanings of unconstrained natural language 
commands would require the deployment of a full-fledged 
natural language processing system, which is beyond the 
scope of this paper. However, to verify the validity and the 
feasibility of our approach, we have attempted to parse simple 
sentences that involve using the spatial relations for directing 
or instructing a robot. We have defined the simple declarative 
and imperative sentences, as shown by the grammar in Table 
I. In designing the grammar, we wish to be able to capture the 
natural language sentences that are likely to be used in our 
experimental scenario, but we assume in no way that the 
grammar will capture all the possible sentence patterns or in 
all possible situations.  

The syntax for <statement> in Table I defines the 
declarative sentences used by the human operator to state a 
fact about the workspace. The fact is passed to the robot by 
issuing a command in the form of a demonstrative statement 
or by answering the robot-initiated queries. For example, “an 
apple is at the centre” and “apple is at the right of the box”. 
The syntax also includes the rules for sentences that give 
taxonomical information such as “an apple is a fruit”.  

The imperative sentence, <direction-cmd>, defines the 
command that positions the robot or its end-effector. For 
example “Move to the left of the box”.  The other imperative 
sentence, <action-cmd>, models the sentences that instruct the 
robot to carry out the task operations specified by the non-
terminal <action-verb>. The actual operations contained in 
<action-verb> depend on the nature of the operation tasks.  

We consider two typical operations: “pick up” and “put 
down”. The non-terminal <noun> contains a string “object”, 
which is the placeholder for the un-named objects, and <object 
name>, the names of the objects whose identities are known. 
The names of objects in the workspace could be pre-
programmed if they are known, or learnt from the 
demonstrative statements or the operation instructions at 
runtime. For example, in the sentence “pick up the spoon next 
to the cup”, if the “cup” is known, then the object referred to 
by the name “spoon” is evident. At parsing time, any noun 
will be allowed in a sentence, and it will be checked against 
the set <noun>. The syntax allows an object be referred to by 
its name if it is known, e.g., “put down the knife”, or by its 
location if its name is not known yet, e.g., “pick up the object 
at the centre”. In the latter case, a generic name “object” is 
used as a placeholder. It also allows more than one actions 
being specified in a single sentence, e.g., “pick up the knife 
and put it down on the left of the cup”.  

VII. EXPERIMENT RESULTS AND OBSERVATIONS

To experiment with our approach, a system that implements 
all the relations, qualifiers and other necessary components 
has been developed. However, in the absence of a real robot 
manipulator, we can only simulate the response of the system. 
The architecture of system is as shown in Fig. 6.  

The input image, as shown in Fig. 7, is processed by the 
object detection module.  The  processing  segments the image  

TABLE I  GRAMMAR OF SIMPLE SENTENCES INVOLVING SPATIAL 
RELATIONS 

<statement> ::= <qualified-noun><is ><noun> 
    |<noun> “consists of” <noun>  
    |<noun> “is at” <ri>  
  |<noun>“is at”<ro><qualified-noun>  

<direction-cmd> ::= <direction-verb> <location>    
<action-cmd> ::= <action-verb><qualified-noun > 

    |<action-verb><qualified-noun ><location> 
       |< action -cmd> “and” < action-cmd>   

<location> ::= <ri>|<rg> 
  |<ro><qualified-noun> 

        |<ro><qualified-noun>< rs>      
<qualified-noun> ::= <noun>|<q><noun>  
<noun-group> ::= <noun-group> 

  |<qualified-noun>“and” <qualified-noun> 
  |<qualified-noun>“,”         

<q> ::= “ ”|<qs>|<qc>|<qs><qc>         
<ro> ::= “left of”| “right of”| “behind”|“in front of”  

  |“top left”| “top right”| “bottom left” 
        |“bottom right” |“next to” |“nearest to”  

<ri> ::= “centre”| “left”| “right”| “top”| “bottom” 
| “left most” | “right most”  
| “top most” | “bottom most”   

<ri>::= “between”<noun-group> 
     |“within”< noun-group>    

<qs> ::= “largest”|“large”|“medium” 
|“small”|“smallest”    

<qc> ::= “black”|“dark”|“gray” 
|“light”|“white”         

<action-verb> ::= “pick up”|“put down”       
<direction-verb> ::= “move to”         
<noun> :: = “object” | “it” | <object name>    



Fig. 6. The system diagram 

into regions that correspond to the objects in the workspace 
and computes their properties, which include the bounding 
boxes, centroids, convex hulls and pixel statistics of the 
regions. The regions and their properties constitute the 
complete knowledge of the robot about the workspace yet. At 
this stage, no spatial relation has been evaluated. 

When a command is received from the operator, it is 
processed by the language-processing module, where the 
natural language sentences are parsed and assembled into 
concatenated function calls that evaluate the relevant relations 
and/or qualifiers within the spatial relation evaluation module.  

When the system is initialized with an image, its knowledge 
about the workspace is no more than the segmented and 
indexed image regions that represent the scene objects. For 
convenience of discussion, we label the objects as shown in 
Fig. 8. Obviously, if the robot is working in a known or 
partially known environment, the basic information about 
certain objects such as their names and other properties can be 
pre-programmed into the system, or ideally, be obtained 
automatically by using vision or other sensing modalities. 

In our experiment, we assume no prior knowledge 
whatsoever about the workspace. The system starts working 
by first being taught by the human operator (keyboard input) 
the landmarks which the robot can use as the references to 
derive spatial relations from. For example, we could start by 
issuing the sentence “the largest object on the top left is a salt 
box.” The sentence causes the evaluation of two image space 
relations, left, followed by top, and then followed by a 
qualifier largest. The evaluation of the two spatial relations 
retrieves all the objects that fall within the designated region. 
The application of the qualifier largest on the retrieved objects 
allows the box being selected.  

Fig. 7. The image of workspace 

After locating the object and checking the knowledge base 
against the name salt box, the name is assigned to Object 2 
and the object salt box can be used as a landmark thereafter. 
Of course, one may say “Object 2 is a salt box”, but for the 
purpose of verifying the use of spatial relations, we have 
avoided referencing an object by its index. The usefulness of 
this simple learning mechanism might not be significant in this 
experimental scenario, but it would be useful for any robot 
that has been equipped with less than an ideal cognitive ability 
however has to work in an unknown environment. 

Another example for knowledge transfer from human 
operator to robot is given by a statement like “the fruit behind 
the apple is a persimmon”. Suppose that object apple is known 
to be Object 8. Evaluating relation behind against object apple 
leads to object 7, therefore name persimmon is assign to it. In 
addition, the statement also allows the equivalence relation 
between the names fruit and persimmon being deduced and 
recorded, although the taxonomical relation between them is 
still to be clarified.  

As the knowledge about and the number of landmarks of 
the workspace accumulating, the spatial relations among the 
objects become clearer and the ways of describing an object 
become more flexible and diversified. For example, in a 
command that involves the pick up operation, Object 5 can be 
described as “the apple on the left”, “the apple on the right of 
the salt box”, “the apple next to/closest to the nut” and so on.  

We have experimented the system with many such 
commands. It has been shown that all the objects in the test 
image can be correctly located or referenced by describing 
their spatial relations. This capability of mapping the linguistic 
symbols to the entities in the workspace provides a way of 
solving the natural language grounding problem and a means 
of compensation for the limited cognitive capability of a robot.  

We noticed that given a workspace consisting of objects 
that lack distinctive characteristics in their sizes, shades or 
locations, it is not a straightforward process to select the “seed” 
object to start creating the referencing network of spatial 
relations. Some objects are hard to describe in natural language 
without referencing to any landmarks, for example, the Object 
3, 8 and 9 in Fig. 8.  However, to our best knowledge, there is 
not a benchmark for us to use to assess the capability and 
efficiency of our system. 

Fig. 8. The detected scene objects. 



We also noticed that different user tends to use different 
spatial relations to describe the same object if the spatial 
relations of the object with the other objects are nontrivial. One 
of the implications of this observation is that given a 
workspace scenario, we may not be able to exhaust all the 
possible ways that an object could be described in natural 
language.  As a result, given an arbitrary workspace 
configuration, it is not clear whether or not every object can be 
described by the sentences defined by the grammar in Table I.  

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problems of modeling and 
grounding the spatial relations needed for commanding and 
interacting with robots via natural language. Using fuzzy sets, 
we have modeled the imprecise nature of the spatial relations 
and some language qualifiers in natural language. The fuzzy 
models of the spatial relations allow spatial relations being 
automatically extracted from the image of workspace. 
Performing fuzzy reasoning on the derived spatial relations 
enable us to ground the objects defined by complex spatial 
relations in natural language commands to the correct items in 
the workspace. We have assessed our approach by 
experimenting the implemented system with various natural 
language commands. It has been shown that grounding the 
spatial relations within a fuzzy framework provides a feasible 
and efficient way for facilitating a natural language-based 
interface for human-robot interaction. It has also demonstrated 
that correctly grounded spatial relations in natural language 
commands provide a mechanism for human operators to use 
natural language to teach robots to understand, and to guide 
them to operate in, unknown environments. This potential 
could be exploited as a way of compensating for the 
weaknesses of current robot systems in coping with unknown 
environments or tasks.   

The work could be improved in several aspects. We have 
not considered or not fully considered the use of some 
important attributes of objects in conditioning the natural 
language commands. In describing objects, the shapes of 
objects provide a powerful descriptor. However, the lack of a 
pool of reliable detectors for shapes has discouraged us from 
using it, although it is practically possible for us to experiment 
with the qualifiers such as round or elongated and so on. Color 
is another important and frequently used attribute for defining 
objects. The qualifiers for colors such as dark red, red, tint red 
and so on would be very useful if they are well modeled. 
Another useful extension to this work would be to investigate 
the spatial relations in 3D space where the added extra 
dimension will drastically change the way we model the spatial 
relations. In this work, we have assumed that the human 
operators and the robots share the same static view of the 

workspace so that the same spatial relations hold valid for both 
the human operators and the robots over time. Therefore, a 
useful extension to the current work would be to model the 
spatial relations in a shared environment where human 
operators and robots cooperate and both perceive the same 
workspace but from different viewpoints.  
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