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ABSTRACT
We analyse the power spectrum of the Baryon Oscillation Spectroscopic Survey (BOSS) Data
Release 12 to constrain the relative velocity effect, which represents a potential systematic for
measurements of the baryon acoustic oscillation (BAO) scale. The relative velocity effect is
sourced by the different evolution of baryon and cold dark matter perturbations before decou-
pling. Our power spectrum model includes all one-loop redshift-space terms corresponding to
vbc parametrized by the bias parameter b2

v . We also include the linear terms proportional to the
relative density, δbc, and relative velocity dispersion, θbc, which we parametrize with the bias
parameters bbc

δ and bbc
θ . Our data does not support a detection of the relative velocity effect in

any of these parameters. Combining the low- and high-redshift bins of BOSS, we find limits of
b2

v = 0.012 ± 0.015 (±0.031), bbc
δ = −1.0 ± 2.5 (±6.2) and bbc

θ = −114 ± 55 (±175) with
68 per cent (95 per cent) confidence levels. These constraints restrict the potential systematic
shift in DA(z), H(z) and fσ 8, due to the relative velocity, to 1 per cent, 0.8 per cent and 2 per cent,
respectively. Given the current uncertainties on the BAO measurements of BOSS, these shifts
correspond to 0.53σ , 0.5σ and 0.22σ for DA(z), H(z) and fσ 8, respectively.

Key words: gravitation – surveys – cosmological parameters – dark energy – large-scale struc-

ture of Universe – cosmology: observations.

1 IN T RO D U C T I O N

Measurements of the baryon acoustic scale in the distribution of
galaxies have established themselves as one of the most powerful
tools for precision cosmology (Eisenstein, Hu & Tegmark 1998;
Percival et al. 2001; Blake & Glazebrook 2003; Hu & Haiman 2003;
Linder 2003; Seo & Eisenstein 2003; Cole et al. 2005; Eisenstein
et al. 2005; Beutler et al. 2011; Blake et al. 2011; Alam et al.
2016). With the most recent measurements of the BAO scale in the
Baryon Oscillation Spectroscopic Survey (BOSS) survey, we have
now reached 1 per cent precision in two redshift bins (Alam et al.
2016; Beutler et al. 2016a; Ross et al. 2016).

Given the fact that the baryon acoustic oscillation (BAO) signal
is located on very large scales, the impact of any late-time non-
linear evolution is small for these measurements, and fairly simple
perturbation theory based models can be used to extract the BAO
scale (Crocce & Scoccimarro 2008; Padmanabhan, White & Cohn
2009). In the light of the next generation of galaxy redshift surveys
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like DESI (Schlegel et al. 2009) and Euclid (Laureijs et al. 2011),
which will reduce the uncertainties on these measurements by an-
other order of magnitude, even small effects to the BAO scale can
bias our cosmological constraints.

In this paper, we investigate the relative velocity effect and its
impact on anisotropic BAO and Redshift-space distortions (RSD)
measurements. The relative velocity effect is sourced by the photon
pressure, which prevents baryon perturbations from growing before
decoupling. This introduces a relative density δbc and velocity di-
vergence θbc as well as a relative velocity vbc between cold dark
matter (CDM) and baryonic matter. This relative velocity can shift
the BAO scale and hence represents a possible systematic for future
BAO measurements (Dalal, Pen & Seljak 2010; Yoo & Seljak 2013).
The relative velocity effect can impact the BAO scale because it is
sourced by the same physical effects that imprinted the BAO scale
itself, and hence, this effect acts on the same scale.

The relative velocity vbc is about 30 km s−1 at redshift 1000 and
decays with 1/a, reducing it to 0.03 km s−1 at redshift zero. There-
fore, this effect is negligible at low redshift compared to the far
larger virial velocities in galaxy groups and clusters. However, the
relative velocity can prevent the condensation of baryons within the
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gravitational potential of the CDM haloes and therefore impact early
galaxy formation (Dalal, Pen & Seljak 2010; Tseliakhovich & Hi-
rata 2010; Tseliakhovich, Barkana & Hirata 2011; Naoz, Yoshida &
Gnedin 2012; Fialkov et al. 2013). Yoo & Seljak (2013) argue that
the modulation of early, low-mass haloes by the relative velocity
will effect the subsequent formation of high-mass haloes observed
today. Since these processes are not known in detail, the ampli-
tude of the relative velocity effect cannot be predicted and must be
constrained by the data.

In this paper, we use the latest BOSS Data Release (DR12) data to
constrain the relative velocity effect. While such studies have been
done before, there are several novel aspects to our analysis: (1) For
the first time, we include the advection term (Blazek, McEwen &
Hirata 2015); (2) besides b2

v , we also set constraints on biasing by the
density, δbc, and velocity divergence, θbc (Barkana & Loeb 2011;
Schmidt 2016); (3) we include all relative velocity contributions
up to one-loop order including the redshift-space terms; and (4)
we quantify the potential shifts due to all three relative velocity
contributions for the anisotropic BAO and RSD parameters.

This paper is organized as follows: We start with the introduction
of the BOSS DR12 data set in Section 2. In Section 3, we present
the power spectrum measurements, which we use for our analysis.
In Section 4, we discuss the power spectrum model, which is based
on perturbation theory and includes the relative velocity terms.
In Section 5, we introduce the mock catalogues that we use to
test our model. In Section 6, we fit the BOSS measurements and
constrain the relative velocity parameters. In Section 7, we quantify
the potential systematic uncertainty on the BAO scale, given our
constraints on the relative velocity parameters. We further discuss
our results in Section 8 before concluding in Section 9.

The fiducial cosmological parameters, which are used to convert
the observed angles and redshifts into comoving coordinates and
to generate linear power spectrum models as input for the power
spectrum templates, follow a flat �CDM model with �m = 0.31,
�bh2 = 0.022, h = 0.676, σ 8 = 0.824, ns = 0.96,

∑
mν = 0.06 eV

and rfid
s = 147.78 Mpc. These parameters are the fiducial cosmo-

logical parameters used for the BOSS DR12 data analysis and are
close to the Planck 2015 cosmological constraints within �CDM.

2 TH E B O S S D R 1 2 DATA SE T

BOSS, as part of SDSS-III (Eisenstein et al. 2011; Dawson et al.
2012), measured spectroscopic redshifts of 1198 006 galaxies mak-
ing use of the SDSS multifibre spectrographs (Bolton et al. 2012;
Smee et al. 2013). The galaxies are selected from multicolour SDSS
imaging (Fukugita et al. 1996; Gunn et al. 1998; Smith et al. 2002;
Gunn et al. 2006; Doi et al. 2010) over 10 252 deg2 divided in two
patches on the sky and cover a redshift range of z = 0.2–0.75. The
final BOSS DR12 analysis splits this redshift range in three over-
lapping redshift bins defined by 0.2 < z < 0.5, 0.4 < z < 0.6 and
0.5 < z < 0.75 with the effective redshifts zeff = 0.38, 0.51 and
0.61. In this analysis, we will ignore the middle redshift bin, since
it is highly correlated with the other two redshift bins and does not
add much additional information.

We include three different incompleteness weights to account for
shortcomings of the BOSS data set (see Ross et al. 2012; Anderson
et al. 2014 for details): a redshift failure weight, wrf, a fibre collision
weight, wfc, and a systematics weight, wsys, which is a combination
of a stellar density weight and a seeing condition weight. Each
galaxy is thus counted as

wc = (wrf + wfc − 1)wsys. (1)

More details about these weights and their effect on the DR12
sample can be found in Ross et al. (2016).

3 B O S S M E A S U R E M E N T S A N D
U N C E RTA I N T I E S

The power spectrum measurements used in this paper make use of
the FFT-based estimator (Bianchi et al. 2015; Scoccimarro 2015)
and are discussed in more detail in Beutler et al. (2016a,b). Here,
we will summarize these measurements but refer to the above men-
tioned references for more details.

The first three non-zero power spectrum multipoles can be cal-
culated as (Feldman, Kaiser & Peacock 1994)

P0(k) = 1

2A
[F0(k)F ∗

0 (k) − S], (2)

P2(k) = 5

4A
F0(k)[3F ∗

2 (k) − F ∗
0 (k)], (3)

P4(k) = 9

16A
F0(k)

[
35F ∗

4 (k) − 30F ∗
2 (k) + F ∗

0 (k)
]
, (4)

where the shot noise and the normalization are given by

S = (1 + α)
∫

d3xng(x)w2
FKP(x), (5)

A = ∫
d3xng(x)wFKP(x), (6)

with α being the ratio between the number of galaxies and randoms.
The Fourier-space density moments are given by

F0(k) = A0(k), (7)

F2(k) = 1

k2

[
k2

xBxx + k2
yByy + k2

zBzz

+ 2(kxkyBxy + kxkzBxz + kykzByz)
]
, (8)

F4(k) = 1

k4

[
k4

xCxxx + k4
yCyyy + k4

zCzzz

+ 4
(
k3

xkyCxxy + k3
xkzCxxz + k3

ykxCyyx

+ k3
ykzCyyz + k3

z kxCzzx + k3
z kyCzzy

)
+ 6

(
k2

xk
2
yCxyy + k2

xk
2
zCxzz + k2

yk
2
zCyzz

)
+ 12kxkykz(kxCxyz + kyCyxz + kzCzxy) ]. (9)

Following Bianchi et al. (2015) and Scoccimarro (2015), we can
write

A0(k) =
∫

drD(r)eik·r , (10)

Bxy(k) =
∫

dr
rxry

|r|2 D(r)eik·r , (11)

Cxyz(k) =
∫

dr
r2
x ryrz

|r|4 D(r)eik·r , (12)

where D(r) is the galaxy overdensity field. The three equation above
can be calculated using FFTs.
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3.1 Covariance matrix

To derive a covariance matrix for the power spectrum mul-
tipoles, we use 20481 MultiDark-Patchy mock catalogues
(Kitaura et al. 2016). These mock catalogues have been cali-
brated to an N-body-based reference sample using approximate
gravity solvers and analytical–statistical biasing models. The refer-
ence catalogue is extracted from one of the BigMultiDark sim-
ulations (Klypin et al. 2014), which used 38403 particles on a
volume of (2.5 h−1 Gpc)3 assuming a �CDM cosmology with
�M = 0.307 115, �b = 0.048 206, σ 8 = 0.8288, ns = 0.9611,
and a Hubble constant of H0 = 67.77 km s−1 Mpc−1.

3.2 Window function

Before comparing any model to the power spectrum measurement,
we convolve it with the survey window function using the technique
discussed in section 4 of Beutler et al. (2016b), which is based on
Wilson et al. (2015). The technique applies the following steps to
turn a power spectrum model without any window function effect
into the required convolved power spectrum including the survey
window function:

(i) Calculate the model power spectrum multipoles and Fourier-
transform them to obtain the correlation function multipoles
ξmodel
L (s).

(ii) Calculate the ‘convolved’ correlation function multipoles
ξ̂model
� (s) by multiplying the correlation function with the window

function multipoles.
(iii) Conduct 1D FFTs to transform the convolved correlation

function multipoles back into Fourier space to obtain the convolved
power spectrum multipoles, P̂ model

� (k). This result becomes our
model to be compared with the observed power spectrum multi-
poles.

For more details about the implementation, we refer to Beutler et al.
(2016b).

4 POW ER SPECTRUM MODEL

The power spectrum model we employ in this paper is an extension
of the model used in Beutler et al. (2014, 2016b) and builds upon
the work of Taruya, Nishimichi & Saito (2010a), McDonald & Roy
(2009a) and Saito et al. (2014a). Here, we extend this model by
including the relative velocity terms following the approach of Yoo,
Dalal & Seljak (2011) and Blazek et al. (2015) with the addition of
redshift-space distortion terms, which describe the couplings of the
density field with the velocity divergence field. We also include the
linear terms Pδ|δbc (k) and Pδ|θbc (k) as discussed in Schmidt (2016).

We define the galaxy density field as

δs
g(x) = b1δm(x) + 1

2
b2

[
δ2

m(x) − 〈δ2
m〉] + 1

2
bs

[
s2(x) − 〈s2〉] + . . .

+ b2
v

[
v2

bc(x) − 〈v2
bc〉

]
+ bbc

δ [δb(x) − δc(x)] + bbc
θ [θb(x) − θc(x)] + . . . ,

(13)

where δm(x) is the matter density field, vbc(x) is the relative veloc-
ity field, s(x) is the tidal tensor field, δbc(x) is the relative density
field between baryons and CDM, and θbc(x) is the relative velocity

1 To be precise, we have 2048 mocks for the SGC and 2045 mocks for the
NGC.

divergence field. The power spectrum for the density field above
is

Pg(k, μ) = Pg,NL(k, μ) + b2
v

[
b1Pδ|v2 (k) + b2Pδ2|v2 (k)

+ bsPs2|v2 (k) + b2
vPv2|v2 (k)

]
+ b1b

2
vPadv|δ(k) + 2b1b

bc
δ Pδ|δbc + 2b1b

bc
θ Pδ|θbc

− 2f μ2
[
b2

v

(
b1Pδ|v2v‖ (k) + Padv|v‖ (k)

)

− bbc
θ Pδ|θbc + bbc

δ Pδ|δbc + b2
v

(
Pv2|v‖ (k) + Pv2|δv‖ (k)

)]
+ f 2μ4b2

vPv‖|v2v‖ (k) − f 2μ2b2
v

[
I1(k) + μ2I2(k)

]
,

(14)

where we ignored the bbc,2
θ and bbc,2

δ terms, which, in our case,
are expected to be about one order of magnitude smaller compared
to the linear terms (Schmidt 2016). All the different terms in the
equation above are defined in Appendix A. The first term, Pg,NL,
describes the linear and non-linear terms connecting the real-space
matter density field with the redshift-space galaxy density field, and
is given by

Pg,NL(k, μ) = exp
{−(f kμσv)2

} [
Pg,δδ(k) + 2f μ2Pg,δθ (k)

+ f 2μ4Pθθ (k)

+ b3
1A(k, μ, β) + b4

1B(k, μ, β)
]
, (15)

with

Pg,δδ(k) = b2
1Pδδ(k) + b2b1Pb2,δ(k) + bs2b1Pbs2,δ(k)

+ 2b3nlb1σ
2
3 (k)P lin

m (k) + b2
2Pb22(k)

+ b2bs2Pb2s2(k) + b2
s2Pbs22(k) + N, (16)

Pg,δθ (k) = b1Pδθ (k) + b2Pb2,θ (k) + bs2Pbs2,θ (k)

+ b3nlσ
2
3 (k)P lin

m (k). (17)

The terms A and B in equation (15) account for coupling between
the density field and the velocity field (Taruya, Nishimichi & Saito
2010b), σ v is a free parameter describing the velocity dispersion
on quasi-linear scales and N is another free parameter used to
marginalize over any constant non-Poisson shot noise. This is the
base redshift-space model of McDonald & Roy (2009b), Taruya
et al. (2010b) and Saito et al. (2014b), which has been tested ex-
tensively in Beutler et al. (2014, 2016b). In this paper, we focus on
the relative velocity extensions to this model. The dominant terms
in equation (14), with respect to the relative velocity effects, are

Padv|δ(k) = 4

3
Tv(k)kPlin(k)

∫
k dk

2π2
Tv(k)Plin(k), (18)

Pδ|v2 (k) = 4
∫

d3q
(2π)3

P lin
m (q)P lin

m (k − q) (19)

× F2(q, k − q)Gu(q, k − q)
q · (k − q)

q(k − q)
, (20)

Pδ|δbc (k) = Tbc(k)Plin(k), (21)

Pδ|θbc (k) = σvbc

H0
Tv(k)kPlin(k), (22)

MNRAS 470, 2723–2735 (2017)



2726 F. Beutler, U. Seljak and Z. Vlah

Figure 1. Comparison of the different perturbative terms used in our power spectrum model (see equation 14 and Appendix A). Left-hand panel: comparison
of the density and velocity terms; middle panel: comparison of the correlations between the density field and the relative velocity field; right-hand panel:
correlation between the relative velocity field and the velocities. The fitting results presented in this paper make use of the scales between the two dashed lines.

Figure 2. This plot shows the effect of the b2
v parameter to the power spectrum monopole (top panel) and quadrupole (bottom panel). P NR

� (k) is the power
spectrum multipole with all relative velocity parameters set to zero. All other parameters are fixed. The plot on the right-hand side excludes the terms Pv2v2 ,
Pδ2v2 and Ps2v2 , in which case b2

v does not have any effect on the amplitude but purely changes the oscillation pattern.

with the kernels

F2(k1, k2) = 5

7
+ k1 · k2

2

(
1

k2
1

+ 1

k2
2

)
+ 2

7

(
k1 · k2

k1k2

)2

, (23)

Gu(k1, k2) = −Tv(k1)Tv(k2) (24)

and the velocity transfer function

Tv(k) ∝ Tvb (k) − Tv,cdm(k)

Tm(k)
, (25)

where Tvb and Tv,cdm are the velocity transfer functions of baryons
and CDM, respectively. The matter transfer function equivalent is
defined as

Tbc(k) = Tb(k) − Tcdm(k)

Tm(k)
. (26)

The normalization for the velocity transfer function is given by the
square root of

σ 2
vbc =

∫
k2 dk

2π2
T 2

v (k)Plin(k), (27)

which is dimensionless, since Tv defined in equation (25) is di-
mensionless. Note that the advection term and the relative velocity
divergence term are related by Padv|δ(k) = APδ|θbc (k), with

A = 4H0

3σvbc

∫
kdk

2π2
Tv(k)P (k), (28)

where we use H−1
0 = 2997 Mpc and σ vbc = 1.64 × 10−6, resulting

in A = 1820 at z = 0.38 and A = 2044 at z = 0.61. While Pδ|δbc (k)
constrains the bias parameter bbc

δ and Pδ|θbc (k) constrains bbc
θ , the

relative velocity bias b2
v is constrained by the sum of Padv|δ(k) and

Pδ|v2 (k).
We follow the nomenclature of Blazek et al. (2015), meaning

that our velocity bias b2
v is a factor of 3 times smaller compared to

Yoo & Seljak (2013). A list of all terms in equation (14) is given
in Appendix A and included in Fig. 1. The figure clearly highlights
the oscillations present in some of the relative velocity terms. These
oscillations are the main reason for our study, since these oscillations
are out of phase with the BAOs and therefore represent a potential
bias when measuring the BAO scale.

In our fits, we do not vary bs and b3nl freely, but fix them to

bs = −4

7
(b1 − 1), (29)

b3nl = 32

315
(b1 − 1), (30)

which is in good agreement with what is observed in simulations
(Saito et al. 2014a) and can be motivated from theory (Baldauf,
Seljak & Desjacques 2012; Chan, Scoccimarro & Sheth 2012; Saito
et al. 2014b). See also Desjacques, Jeong & Schmidt 2016 for a
recent review on large-scale galaxy bias.

MNRAS 470, 2723–2735 (2017)



Constraining the relative velocity effect 2727

Figure 3. This plot compares the BAO signature in the transfer function
Tv, which is underlying the advection term Pδ|θbc , and Tbc, which underlies
the term Pδ|δbc . We also include the P/Pnw term, which describes the linear
BAO. The P/Pnw(k) and Tbc terms are scaled to put all functions on the
same scale. The different phases of these oscillations are the reason why the
relative velocity effect is a potential systematic for BAO measurements.

4.1 Discussion of the power spectrum model

The relative velocity density field δbc describes the variation in the
CDM-to-baryon ratio, given the fact that baryons and CDM start
off with different initial conditions after decoupling. The relative
velocity divergence θbc captures the same effect in the velocity field.
The term Pδ|δbc (k) corresponds to correlations between variations
of the baryon-to-CDM ratio and the overall matter density field,
and Pδ|θbc (k) corresponds to correlations of the relative velocity
divergence fields with the overall matter density field. While the
first term is expected to be of the order of 1, the second term is
expected to be of the order of ≈6.8[(1 + z)H0]−1(b1 − 1) (Schmidt
2016). All terms that are proportional to b2

v decay with redshift
(∝1/a).

Our power spectrum model uses the CLASS (Lesgourgues 2011)
transfer function output to calculate the velocity transfer function in
equation (25). At high redshift, the relative velocity transfer function
evolves with the scalefactor, which does not enter our calculation,
since this scaling is removed by our normalization in equation (27).
Since we assume that all imprints of the relative velocity effects
come from z > 15, we use the z = 15 transfer function and ignore
any low-redshift effects.

5 T E S T O N MO C K C ATA L O G U E S

We first test our power spectrum model on N-body simulations
before using the BOSS Mutidark-Patchy mock catalogues.

5.1 Test on N-body simulations

To test our fitting technique, we use two different sets of N-body sim-
ulations, designated as runA and runPB. The runA simulations are
20 halo catalogues of size [1500 h−1 Mpc]3 with 15003 particles us-
ing the fiducial cosmology of �m = 0.274, �� = 0.726, ns = 0.95,
�b = 0.0457, H0 = 70 km s−1 Mpc−1 fσ 8(z = 0.55) = 0.455
and rs(zd) = 104.503 h−1 Mpc. The runPB simulations are 10
galaxy catalogues of size [1380 h−1 Mpc]3 with �m = 0.292,
�� = 0.708, ns = 0.965, �b = 0.0462, H0 = 69 km s−1 Mpc−1,
fσ 8(z = 0.55) = 0.472 and rs(zd) = 102.3477 h−1 Mpc. The runPB
simulations make use of a CMASS-like halo occupation distribu-

tion model to populate dark matter haloes with galaxies (see Reid
et al. 2014 for details). The fundamental modes for these simu-
lations are 2π/[1500 Mpc h−1] = 0.0042 h Mpc−1 for runA and
2π/[1380 Mpc h−1] = 0.0046 h Mpc−1 for runPB, which is below
the kmin = 0.01 h Mpc−1 used in our fits.

We measure the power spectrum monopole, quadrupole and hex-
adecapole, and fit these measurements with the model discussed in
the last section. Given that we are working with periodic boxes, we
can ignore window function effects for now. The results are summa-
rized in Tables B1 and B2. For these tests, we fix the cosmological
parameters (α‖, α⊥ and fσ 8) to their fiducial values.

5.2 Fits to runA simulations

A table summarizing the fitting results for the runA simulations is
included in the appendices (Table B1). When varying the individual
relative velocity parameters, we see significant biases (at the level
of 3σ ) in all three relative velocity parameters, while there are no
biases if b2

v and bδ are varied simultaneously. However, degeneracies
between the parameters increase the uncertainties by factors of 3
and 1.3 for b2

v and bbc
δ , respectively, compared to the fits where each

relative velocity parameter is varied individually.
In Fig. 4, we compare the best-fitting models with and without b2

v
and bbc

δ . While the bias in both parameters is only on the 3σ level,
it seems to be driven by small scales.

5.3 Fits to runPB simulations

A table summarizing the fitting results for the runPB simulations
is included in the appnedices (Table B2). The fits to runPB are
consistent with what we saw for the runA simulations, even though
the significance of the detected bias in the relative velocity terms is
now <2σ due to the larger uncertainties in the runPB mocks.

5.4 Tests on the Multidark-Patchy mock catalogues

In Tables B3 and B4, we included the results when fitting the mean of
the Multidark-Patchy power spectra for the high- and low-redshift
bins. These fits now include the window function treatment de-
scribed in Section 3.2. The results are consistent with the runA
and runPB simulations, meaning that we detect a shift in all three
relative velocity parameters.

5.5 Summary: model tests with simulations

We summarized the results for the three different bias parameters
from the three mock catalogues in Table 1.

Given that none of our mock catalogues includes the relative
velocity effect, we expect all relative velocity parameters to be
consistent with zero. However, we detected shifts in the relative
velocity parameters, which are consistent in all three sets of mock
catalogues. We investigated these biases further by (1) only using
the monopole, (2) replacing the Multidark-Patchy covariance matrix
with a linear Gaussian covariance matrix, (3) using the real-space
power spectrum instead of the one in redshift space, (4) varying bs2

and b3nl freely instead of fixing them by the relations in equation
(30), and (5) introducing the leading scale-dependent bias term
2b1R2k2Plin(k) to equation 16 (Okumura et al. 2015). None of these
changes to the model was able to explain the biases we measure.
We therefore conclude that these biases represent a shortcoming of
our model.

MNRAS 470, 2723–2735 (2017)
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Figure 4. These plots compare the best fitting model for the runA simulations setting all relative velocity parameters to zero (black line) with the fit including
b2

v (left-hand panel, red dashed line) and bbc
δ (right-hand panel, red dashed line). PNR(k) refers to the power spectrum model with all relative velocity parameters

set to zero. The solid points show the mean monopole measurements for the 20 runA simulations and the open points show the equivalent for the quadrupole.
The χ2 between the solid black line and the red dashed line is 20.9 − 16.2 = 4.7 for b2

v and 20.9 − 15.9 = 5.0 for bbc
δ . This means that we have a moderate

2.2σ significance for a non-zero value for these bias parameters, even though these values are expected to be zero, given that the simulations do not include a
relative velocity effect.

Table 1. This table shows the fitting results to the runA, runPB and the Multidark-Patchy mock catalogues including the relative velocity parameters b2
v , bbc

δ

and bbc
θ . For these tests we fix the parameters α⊥, α‖ and fσ 8 to their fiducial values. Note that these tests have been done for each parameter separately.

meaning that the constraints on b2
v assume bbc

δ = bbc
θ = 0, etc. The errors refer to the 1σ and 2σ (in parentheses) uncertainties. All simulations show consistent

results for the three bias parameters, including a systematic shift, which we take into account when fitting the data (see Section 6).

Only b2
v (runA) Only b2

v (runPB) Only b2
v (patchy z1) Only b2

v (patchy z3)

max. like. mean max. like. mean max. like. mean max. like. mean
α⊥ 1 1 1 1 1 1 1 1
α‖ 1 1 1 1 1 1 1 1
fσ 8 0.455 0.455 0.472 0.472 0.484 0.484 0.478 0.478
b2

v[10−3] 21.9 22.2 ± 6.8(±14) 19 20 ± 11(±21) 29.1 29.8 ± 5.0(±9.6) 27.6 27.0+6.2
−7.9(+19

−22)
bbc

δ −3.6 −3.5 ± 1.1(±2.1) −2.2 −2.3 ± 1.5(±3.0) −4.96 −4.78 ± 0.78(±1.6) −3.44 −3.47 ± 0.66(±1.3)
bbc

θ 142 147 ± 51(+170
−98 ) 82 77 ± 63(±120) 187.2 187.0 ± 6.8(±9.6) 191.9 192.5 ± 6.5(±9.4)

The detected shifts are of the order of 1σ when compared to
the measurement uncertainties on these parameters we report in
Section 6. Therefore, they are not negligible and need to be taken
into account when analysing the BOSS power spectrum.

Using the fitting results of Table 1, we can quantify the systematic
shifts in the parameters of interest. The uncertainty-weighted mean
for all three simulations is b2

v = 0.0265 ± 0.0033, bbc
δ = −3.79 ±

0.44 and bbc
θ = 187.2 ± 4.7.

For the case where we have b2
v and bbc

δ as free parameters, we also
have to account for their correlation. We found mean shifts from the
truth of 0.036 in b2

v and 1.5 in bbc
δ . The correlation between these

two values is 77 per cent and the covariance matrix is

C =
(

0.033 3.629
3.629 676.6

)
× 10−3, (31)

where the top left-hand corner corresponds to the b2
v autocorrelation

and the bottom right-hand corner corresponds to the bbc
δ autocorre-

lation. When fitting the data, we correct the best-fitting values by
these systematic shifts and include the error on these values in the
error budget.

6 BOSS DR12 A NA LY SIS

We are now fitting the power spectrum multipoles using the model
of Section 4 including the relative velocity terms. Schmidt (2016)

suggests that the dominant relative velocity contribution is given
by bbc

δ followed by b2
v, while the contribution by bbc

θ should be
quite small. We fit each relative velocity parameter in turn but
also consider the two parameter extension with the two dominant
terms bbc

δ and b2
v. Our fits include the monopole and quadrupole

in the range 0.01 < k < 0.15 h−1 Mpc and the hexadecapole with
0.01 < k < 0.10 h−1 Mpc. The systematic uncertainties on the
relative velocity parameters have been quantified in Section 5 and
we will correct our best-fitting values by the observed systematic
shift. We also include the error on the systematic shift in our error
budget. We note that the systematic shifts we found in our tests on
mock catalogues are <2σ of the BOSS measurement uncertainties
and the error on the systematic shift is not contributing significantly
to our error budget.

As discussed in Beutler et al. (2016b), we use separate nui-
sance parameters for the NGC and SGC, given small differences
in their selection, which affect the bias parameters. We ignored
the middle redshift bin of BOSS DR12, which has been used in
other studies of this data set, since it is strongly correlated with
the other two redshift bins and does not provide much additional
information.

We summarize our fitting results for the two redshift bins
and the three relative velocity parameters in Tables 2 and 3.
The BOSS DR12 data does not support a detection of any
of the three relative velocity parameters. The reduced χ2 for
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Table 2. Fits to the BOSS DR12 combined sample power spectrum multipoles in the low-redshift bin 0.2 < z < 0.5. The fit includes the monopole
and quadrupole in the range 0.01 < k < 0.15 h−1 Mpc and the hexadecapole in the range 0.01 < k < 0.10 h−1 Mpc. All errors in this table are the
marginalized 68 per cent confidence levels, except for the error on the relative velocity parameters b2

v, bbc
δ and bbc

θ , where we show both the 68 per cent and
95 per cent confidence levels. We show fits including each relative velocity parameter in turn, meaning that columns 2 and 3 show the fits with b2

v as a free
parameter, assuming bbc

δ = bbc
θ = 0, etc. The relative velocity parameters are corrected by the bias we detected in the mock catalogues (b2

v = 0.0265 ± 0.0033,
bbc

δ = −3.79 ± 0.44 and bbc
θ = 187.2 ± 4.7, [b2

v, b
bc
δ ] = [0.036, 1.5]), where the last term in the square brackets includes the correlation between b2

v and bbc
δ

used for the combined fits in columns 8 and 9. These fits show no evidence for a significant detection of any of the relative velocity parameters.

Fit to the data
+ b2

v + bbc
δ + bbc

θ + bv2 + bbc
δ

max. like. mean max. like. mean max. like. mean max. like. mean
α⊥ 1.000 1.002 ± 0.032 1.008 1.009 ± 0.029 1.007 1.012 ± 0.029 1.004 1.007 ± 0.030
α‖ 0.999 1.004 ± 0.043 1.004 1.007 ± 0.040 1.003 1.007 ± 0.043 1.004 1.007 ± 0.039
fσ 8 0.480 0.481 ± 0.060 0.480 0.485 ± 0.062 0.476 0.477 ± 0.061 0.465 0.466 ± 0.063
b2

v[10−3] 14 19 ± 21(±44) 0 0 0 0 24 24+18
−14(+54

−34)

bδ 0 0 1.4 1.4 ± 4.3(+9.0
−12.0) 0 0 6.2 6.4 ± 6.3(±13.0)

bθ 0 0 0 0 −71 −67 ± 81(±270) 0 0
bNGC

1 σ8 1.324 1.316 ± 0.047 1.346 1.348 ± 0.052 1.33 1.335 ± 0.052 1.358 1.351 ± 0.049

bSGC
1 σ8 1.325 1.322 ± 0.058 1.340 1.340 ± 0.060 1.330 1.333 ± 0.060 1.371 1.362 ± 0.054

bNGC
2 σ8 1.33 1.31 ± 0.76 1.20 1.32 ± 0.71 0.56 0.77 ± 0.76 1.58 1.28 ± 0.83

bSGC
2 σ8 0.7 0.9 ± 1.0 0.52 0.67 ± 0.89 0.3 0.6 ± 1.0 1.24 1.22 ± 0.95

NNGC −1000 −300 ± 1700 −2600 −2700+1500
−1200 −1100 −1600+2300

−1600 −200 300+1500
−1200

NSGC −1000 −600 ± 2000 −1700 −2100+2700
−1900 −900 −1700+3500

−2300 −900.0 −400 ± 1600

σNGC
v 5.85 5.79 ± 0.64 5.80 5.80 ± 0.66 5.63 5.63 ± 0.70 5.93 5.88 ± 0.69

σ SGC
v 6.52 6.56 ± 0.85 6.44 6.50 ± 0.81 6.35 6.36 ± 0.81 6.70 6.66 ± 0.80

χ2

dof
79.4

74−12 = 1.28 (p = 0.067) 80.5
74−12 = 1.30 (p = 0.057) 80.8

74−12 = 1.30 (p = 0.055) 78.3
74−13 = 1.28 (p = 0.067)

Table 3. Fits to the BOSS DR12 combined sample power spectrum multipoles in the high-redshift bin 0.5 < z < 0.75. The fit includes the monopole and
quadrupole in the range 0.01 < k < 0.15 h−1 Mpc and the hexadecapole in the range 0.01 < k < 0.10 h−1 Mpc. All errors in this table are the marginalised
68 per cent confidence levels, except of the error on the relative velocity parameters b2

v, bbc
δ and bbc

θ , where we show both, the 68 per cent and 95 per cent
confidence levels. We show fits including each relative velocity parameter in turn, meaning that columns 2 and 3 show the fits with b2

v as a free parameter assuming
bbc

δ = bbc
θ = 0, etc. The relative velocity parameters are corrected by the bias we detected in the mock catalogues (b2

v = 0.0265 ± 0.0033, bbc
δ = −3.79 ± 0.44

and bbc
θ = 187.2 ± 4.7, [b2

v, b
bc
δ ] = [0.036, 1.5]), where the last term in the square brackets includes the correlation between b2

v and bbc
δ used for the combined

fits in columns 8 and 9. These fits show no evidence for a significant detection of any of the relative velocity parameters.

Fit to the data
+ b2

v + bbc
δ + bbc

θ + bv2 + bbc
δ

max. like. mean max. like. mean max. like. mean max. like. mean
α⊥ 0.973 0.979 ± 0.028 0.971 0.975 ± 0.030 0.983 0.987 ± 0.026 0.972 0.976 ± 0.032
α‖ 0.975 0.984 ± 0.043 0.980 0.987 ± 0.042 0.978 0.984 ± 0.043 0.980 0.985 ± 0.047
fσ 8 0.419 0.413 ± 0.047 0.416 0.409 ± 0.054 0.425 0.421 ± 0.048 0.420 0.417 ± 0.056
b2

v[10−3] 1 4 ± 21(±43) 0 0 0 0 −56 −52 ± 30(±58)

bδ 0 0 −2.3 −2.3 ± 3.1(±7.7) 0 0 −10.4 −10.8 ± 3.6(±8.9)
bθ 0 0 0 0 −152 −155 ± 76(±230) 0 0
bNGC

1 σ8 1.219 1.232 ± 0.045 1.231 1.238 ± 0.046 1.163 1.162 ± 0.057 1.230 1.230 ± 0.060
bSGC

1 σ8 1.239 1.243 ± 0.047 1.227 1.232 ± 0.050 1.262 1.261 ± 0.049 1.222 1.219 ± 0.055
bNGC

2 σ8 2.94 2.83+0.49
−0.61 0.72 1.18+0.94

−1.20 −1.26 −1.39+0.68
−0.55 0.66 0.77 ± 1.20

bSGC
2 σ8 0.81 0.94 ± 0.79 0.74 0.85 ± 0.88 0.93 0.90 ± 0.93 0.68 0.68 ± 0.70

NNGC 0 0 ± 1800 −1000 −1600+2400
−1100 4700 5200 ± 2400 −1000 −1100 ± 2700

NSGC −500 −300 ± 1400 −1000 −1200+1700
−1200 −1500 −1400+2000

−1400 −1000 −700 ± 1600

σNGC
v 5.33 5.31 ± 0.75 5.11 5.10 ± 0.80 4.36 4.3 ± 1.0 5.06 5.02 ± 0.83

σ SGC
v 4.94 4.94 ± 0.88 4.79 4.70 ± 0.91 4.99 4.86 ± 0.90 4.74 4.66 ± 0.97

χ2

dof
51.7

74−12 = 0.83 (p = 0.821) 55.3
74−12 = 0.89 (p = 0.714) 52.0

74−12 = 0.84 (p = 0.813) 55.2
74−13 = 0.90 (p = 0.685)

the high-redshift bin is slightly below 1, while for the high-
redshift bin, this quantity is slightly above 1, consistent with
the findings of Beutler et al. (2016b). The p-values provided
in brackets indicate that these deviations from unity are not
significant.

Combining the high- and low-redshift bins, we find the
following limits on the three relative velocity parameters:

b2
v = 0.012 ± 0.015(±0.031), bbc

δ = −1.0 ± 2.5(±6.2) and bbc
θ =

−114 ± 55(±175) with 68 per cent (95 per cent) confidence levels.
If we treat the relative velocity effect as a pure suppression of

star formation in regions where the relative velocity exceeds the
virial velocity of haloes, we can apply a prior of b2

v < 0 (Dalal
et al. 2010). This improves our constraints on b2

v to |b2
v| < 0.007(<

0.018) (68 per cent and 95 per cent confidence levels).
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Figure 5. Here, we show the dependence of the shift parameters α⊥ and α‖ as well as the growth of structure parameter fσ 8 on the three relative velocity
parameters (left-hand panel) and the change in the power spectrum model (right-hand panel). The solid lines in the plots on the left-hand side show the ‘full
shape’ (FS) fits using the analysis pipeline of Beutler et al. (2016b), while the dashed lines use the BAO-only analysis pipeline of Beutler et al. (2016a). The
vertical black dashed lines show the 95 per cent confidence levels for the three relative velocity parameters obtained in this paper (see Section 6).

7 QUA N T I F Y I N G T H E POT E N T I A L
S Y S T E M AT I C U N C E RTA I N T I E S FO R BAO A N D
RSD

Here, we want to quantify the potential bias for the anisotropic
BAO parameters as well as the RSD parameter, depending on the
amplitude of the three relative velocity parameters. To do this, we
generate power spectrum models as shown in Section 4, and fit

these models with the BAO-only fitting pipeline of Beutler et al.
(2016a) and the ‘full shape’ pipeline of Beutler et al. (2016b). The
results are shown in Fig. 5. The vertical black dashed lines show
the 95 per cent confidence levels from our analysis.

All three relative velocity parameters are able to shift the BAO
scale. The biases are quite different for the two BAO scaling param-
eters, α⊥ and α‖. The largest shift in α⊥ is due to b2

v and reaches
0.8 per cent at b2

v = 0.031 (which is the 95 per cent confidence limit
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we found). The angular BAO scale α‖ shows 1 per cent shifts due
to bbc

θ .
We also include the shift in the RSD parameter fσ 8. Given that

bbc
δ and bbc

θ mainly change the monopole to quadrupole ratio, we
can see large effects on the RSD parameter of up to 2 per cent in
both bbc

δ and bbc
θ . Note that the latest measurement from the BOSS

survey reported constraints of 1.5 per cent on DA(z), 2 per cent on
H(z) and 9 per cent on fσ 8.2

8 D ISCUSSION

In Alam et al. (2016), the potential impact of the relative velocity
effect on the BOSS-DR12 BAO measurement has been investigated
using a configuration-space model following Blazek et al. (2015).
The potential shift in the isotropic BAO scale (α) has been limited
to 0.3σ , which is consistent with our results for bv2 . The potential
shifts by bbc

δ and bbc
θ have not been investigated.

Using the three-point correlation function, Slepian et al. (2016)
constrain the relative velocity parameter bv2 to bv2 < 0.0097
(68 per cent confidence level). When using the 68 per cent confi-
dence levels, we find bv2 = 0.012 ± 0.015 when combining the
low- and high-redshift bins. When including the bv2 < 0 prior, we
get tighter constraints of |bv2 | < 0.007(<0.018) (68 per cent and
95 per cent confidence levels). Slepian et al. (2016) do not investi-
gate the linear bias parameters bbc

δ and bbc
θ .

Yoo & Seljak (2013) used the power spectrum monopole to set
the constraint bv2 < 0.033 (95 per cent confidence level). However,
there is a factor of 3 difference in the parametrization, which means
that their constraint translates to bv2 < 0.1 when using our nomen-
clature. This constraint is weaker by over one order of magnitude
compared to our result. Part of the reason for our much tighter con-
straint is the increase in survey area between BOSS DR9 (used in
Yoo & Seljak 2013) and BOSS DR12 (used in this work). Another
reason for the improved constraints is the advection term, which is
significantly contributing to our parameter constraint and which has
not been included in the analysis of Yoo & Seljak (2013). Note that
our results are not depending significantly on the inclusion of the
quadrupole.

Yoo & Seljak (2013) also pointed out that the relative velocity
effect might have an enhanced signature in the cross-correlation of
two different galaxy samples. The idea is that one sample contains
old galaxies, which formed early and retained the relative velocity
effect, while the second sample contains young galaxies that will
have a smaller (or no) relative velocity effect. Such an analysis was
performed in Beutler et al. (2015) using the BOSS and WiggleZ
galaxies. The BOSS sample contains mainly old LRG galaxies,
which should carry a stronger relative velocity effect, compared
to the ELG galaxies observed in WiggleZ. However, no relative
velocity effect was detected and the best obtained constraint was
−0.086 < bv2 < 0.062 (68 per cent confidence level). These con-
straints use the same nomenclature as Yoo & Seljak (2013) and
hence have to be multiplied by a factor of 3 before being compared
to our constraints. Given that BOSS and WiggleZ overlap only in
about 8 per cent of the total BOSS sky coverage, the cosmic volume
available for this study was significantly smaller than BOSS alone.
This analysis also did not include the advection term.

Finally, we note that our measurement of b1 ≈ 2 is in good
agreement with other studies on the BOSS power spectrum (e.g.

2 Here, we quote the combined constraints from the two independent redshift
bins.

Gil-Marı́n et al. 2016), while Slepian et al. (2016) found a smaller
value of b1 = 1.776 ± 0.020. The tension likely comes from the
fact that the model of Slepian et al. (2016) did not include the tidal
tensor bias, which can increase b1 to 2.069 (Slepian et al. 2016),
which is consistent with our measurement.

9 C O N C L U S I O N

We analysed the BOSS DR12 power spectrum multipoles using
a power spectrum model for the relative velocity effect. We de-
rive all redshift-space one-loop terms for the relative velocity, ex-
tending models used in previous analysis (see Appendix A). For
the first time, we include the advection terms as suggested in
Blazek et al. (2015). An analysis without the advection term is
presented in Yoo & Seljak (2013). Besides the relative velocity
parameter bv2 , we also include the linear density and velocity di-
vergence terms bbc

δ and bbc
θ . Our main results can be summarized

as follows:

(i) We extend the redshift-space clustering model of Beutler et al.
(2014, 2016b) to include all relative velocity terms up to second
order in bv2 and linear order in bbc

δ and bbc
θ .

(ii) Using two sets of N-body simulations and the BOSS DR12
Multidark-Patchy mock catalogues, we detect biases in the three
relative velocity parameters of up to 2σ in bbc

θ and ∼1σ in bv2

and bbc
δ , indicating shortcomings of our power spectrum model. We

correct the measurements by these biases but note that our model
for the power spectrum does require further improvement. These
biases should be kept in mind when using our constraints.

(iii) Our data does not support a detection of the relative ve-
locity effect in any of the three relative velocity parameters.
Combining the low- and high-redshift bins, we found limits of
bv2 = 0.012 ± 0.015(±0.031), bbc

δ = −1.0 ± 2.5(±6.2) and bbc
θ =

−114 ± 55(±175) with 68 per cent (95 per cent) confidence levels.
Including a prior of bv2 < 0 motivated by treating the relative veloc-
ity effect as a pure suppression effect, our constraint on bv2 tightens
to |bv2 | < 0.018 (95 per cent confidence levels).

(iv) Using the BOSS DR12 Fourier-space pipelines for BAO and
RSD analysis, we quantify the potential systematic uncertainties in
the BAO scale and RSD parameter due to the three relative velocity
contributions. Our constraints limit the potential systematic shift in
DA(z), H(z) and fσ 8, due to the relative velocity effect to 1 per cent,
0.8 per cent and 2 per cent, respectively. Given the current uncertain-
ties on the BAO measurements of BOSS, these shifts correspond to
0.53σ , 0.50σ and 0.22σ for DA(z), H(z) and fσ 8, respectively.

In our analysis, we did not make use of density field reconstruc-
tion, which can significantly improve the BAO signal. Right now,
we do not have a good model for the broad-band shape of the power
spectrum post-reconstruction due to the complicated impact of the
reconstruction procedure. We therefore leave such investigations
for future work.
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A P P E N D I X A : PE RT U R BAT I V E T E R M S F O R
T H E POW E R S P E C T RU M M O D E L

Our power spectrum model is given by

Pg(k, μ) = exp
{−(f kμσv)2

} [
Pg,NL(k, μ) + 2b1b

bc
δ Pδδbc

+ 2b1b
bc
θ Pδθbc + b1bv2

[
Pδ|v2 (k) + Padv|δ(k)

]
+ b2bv2Pδ2|v2 (k) + bsbv2Ps2|v2 (k) + b2

v2Pv2|v2 (k)

− 2f μ2[b1bv2Pδ|v2v‖ (k) + bv2 (Pv2|v‖ (k) + Padv|v‖ (k))

+ b1bv2Pv2|δv‖ (k)]

+ f 2μ2bv2

[
μ2Pv‖|v2v‖ (k) − I1(k) − μ2I2(k)

]]
. (A1)

The non-linear power spectrum model, PNL(k, μ), is given by

Pg,NL(k, μ) = Pg,δ|δ(k) + 2f μ2Pg,δ|θ (k) + f 2μ4Pθ |θ (k)

+ b3
1A(k, μ, β) + b4

1B(k, μ, β), (A2)

where

Pg,δ|δ(k) = b2
1Pδ|δ(k) + b2b1Pδ|δ2 (k) + bsb1Pδ|s2 (k)

+ 2b3nlb1σ
2
3 (k)P lin

m (k) + b2
2Pδ2|δ2 (k) + b2bsPδ2|s2 (k)

+ b2
s Ps2|s2 (k) + N, (A3)

Pg,δ|θ (k) = b1Pδ|θ (k) + b2Pθ |δ2 (k) + bsPθ |s2 (k)

+ b3nlσ
2
3 (k)P lin

m (k). (A4)

The standard density and velocity terms are given by

Pδ|δ2 (k) = 2
∫

d3q

(2π)3
P lin

m (q)P lin
m (k − q)F2(q, k − q), (A5)

Pθ |δ2 (k) =
∫

d3q

(2π)3
P lin

m (q)P lin
m (k − q)G2(q, k − q), (A6)

Pδ|s2 (k) = 2
∫

d3q

(2π)3
P lin

m (q)P lin
m (k − q)F2(q, k − q)S2(q, k − q),

(A7)

Pθ |s2 (k) =
∫

d3q

(2π)3
P lin

m (q)P lin
m (k − q)G2(q, k − q)S2(q, k − q),

(A8)

Pδ2|δ2 (k) = 1

2

∫
d3q

(2π)3
P lin

m (q)
[
P lin

m (k − q) − P lin
m (q)

]
, (A9)

Pδ2|s2 (k) = −
∫

d3q

(2π)3
P lin

m (q)

[
2

3
P lin

m (q) − P lin
m (k − q)S2

× (q, k − q)

]
, (A10)
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Ps2|s2 (k) = −1

2

∫
d3q

(2π)3
P lin

m (q)

[
4

9
P lin

m (q) − P lin
m (k − q)S2

× (q, k − q)2

]
, (A11)

σ 2
3 (k) = 105

16

∫
d3q

(2π)3
P lin

m (q)

[
D2(−q, k)S2(q, k − q) + 8

63

]
.

(A12)

The additional relative velocity terms without redshift-space distor-
tions are

Padv|δ(k) = 4

3
Tv(k)kP lin

m (k)Ls, (A13)

Pδ|v2 (k) = 4
∫

d3q
(2π)3

P lin
m (q)P lin

m (k − q)F2(q, k − q)Gu

× (q, k − q)μ(q, k − q), (A14)

Pδ2|v2 (k) = 2
∫

d3q
(2π)3

P lin
m (q)

[
P lin

m (k − q)μ(q, k − q)

× Gu(q, k − q) + P lin
m (q)Gu(q, q)

]
, (A15)

Ps2|v2 (k) = 2
∫

d3q
(2π)3

P lin
m (q)

[
P lin

m (k − q)S2(q, k − q)

× μ(q, k − q)Gu(q, k − q) + 2

3
P lin

m (q)Gu(q, q)

]
,

(A16)

Pv2|v2 (k) = 2
∫

d3q
(2π)3

P lin
m (q)

[
P lin

m (k − q)μ2(q, k − q)

× G2
u(q, k − q) − P lin

m (q)G2
u(q, q)

]
, (A17)

with μ(k1, k2) = k1·k2
k1k2

and

Ls =
∫

k dk

2π2
Tv(k)Plin(k). (A18)

The relative velocity redshift-space distortion terms are

Pδ|v2v‖ (k) = 2

3
Tv(k)kPlin(k)Ls = 1

2
Padv|δ(k), (A19)

Pv2|v‖ (k) = 2
∫

d3q
(2π)3

kμ − q√
k2 − 2kqμ + q2

Plin(q)Plin(k − q)

×G2(q, k − q)Gu(q, k − q), (A20)

Padv|v‖ (k) = −2

3
Tv(k)kPlin(k)Ls = −1

2
Padv|δ(k) = −Pδ|v2v‖ (k),

(A21)

Pv2|δv‖ (k) = 2
∫

d3q
(2π)3

kμ(kμ − q)

q
√

k2 − 2kqμ + q2

× Plin(q)Plin(k − q)Gu(q, k − q), (A22)

Pv‖|v2v‖ (k) = −4

3
Tv(k)kPlin(k)Ls = −Padv|δ(k), (A23)

Pv2|v2
‖
(k) = I1(k) + μ2I2(k), (A24)

with

I1(k) = k2
∫

d3q
(2π)3

k2(1 − μ2)(q − kμ)[
k2 − 2kqμ + q2

]3/2

× Gu(q, k − q)Plin(q)Plin(k − q), (A25)

I2(k) = k2
∫

d3q
(2π)3

k2(2k2μ2 − k(3μ3 + μ)q + (3μ2 − 1)q2)

q
[
k2 − 2kqμ + q2

]3/2

× Gu(q, k − q)Plin(q)Plin(k − q). (A26)

The symmetrized second-order PT kernels F2, G2, S2 and Gu are
given by

F2(k1, k2) = 5

7
+ 2

7

(
k1 · k2

k1k2

)2

+ k1 · k2

2

(
1

k2
1

+ 1

k2
2

)
, (A27)

G2(k1, k2) = 3

7
+ k1 · k2

2

(
1

k2
1

+ 1

k2
2

)
+ 4

7

(
k1 · k2

k1k2

)2

, (A28)

S2(k1, k2) =
(

k1 · k2

k1k2

)2

− 1

3
, (A29)

D2(k1, k2) = 2

7

[
S2(k1, k2) − 2

3

]
, (A30)

Gu(k1, k2) = −Tv(k1)Tv(k2). (A31)
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