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A. Emir Gümrükçüoğlu,1 Kazuya Koyama,2 and Shinji Mukohyama3, 4

1Theoretical Physics Group, Blackett Laboratory, Imperial College London,
South Kensington Campus, London, SW7 2AZ, UK

2Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
3Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto, Japan

4Kavli Institute for the Physics and Mathematics of the Universe (WPI),
The University of Tokyo Institutes for Advanced Study,

The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

We present a novel cosmological solution in the framework of extended quasidilaton theory which
underwent scrutiny recently. We only consider terms that do not generate the Boulware-Deser degree
of freedom, hence the ghost-free quasidilaton theory, and show three new branches of cosmological
evolution therein. One of the solutions passes the perturbative stability tests. This new solution
exhibits a late time self-acceleration and all graviton polarizations acquire masses that converge to a
constant in the asymptotic future. Moreover, all modes propagate at the speed of light. We propose
that this solution can be used as a benchmark model for future phenomenological studies.

I. INTRODUCTION

The question of a Lorentz invariant finite range gravitational theory has been a long lasting problem of field
theory. The first linear proposal of Pauli and Fierz [1] has no continuous limit to General Relativity (GR) [2] unless
self-interactions of the graviton are included [3]. The nonlinear completion of Pauli-Fierz theory was only recently
introduced by de Rham, Gabadadze and Tolley (dRGT) [4] such that the dangerous sixth graviton degree of freedom,
dubbed the Boulware-Deser (BD) ghost [5], is removed at all orders [6].
The dRGT model forms the basis of contemporary study of Lorentz invariant massive gravity. In addition to the

physical metric gµν which couples directly to matter fields, the construction also needs a nondynamical fiducial metric

fµν = ηab∂µφ
a∂νφ

b , (1)

which is invariant under the Poincaré transformations in the internal space of the four Stückelberg fields φa. The

graviton mass is then introduced by tracing various powers of the building block tensor (
√

g−1f)µν , consisting of four
independent combinations obtained by requiring that the BD mode becomes an auxiliary field at all orders.
In addition to being a consistent and continuous massive extension of General Relativity, an attractive feature of

the theory is the prospect of a self accelerating late time cosmology that obviates the need for a cosmological constant.
However, despite the extensive activity in the field, sensible cosmological models within theoretically consistent massive
gravity theories pose various challenges for phenomenological studies, due to their complexity. Although the original
dRGT theory admits open Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology [7], it has infinite strongly
coupling at linear order [8] and exhibits a ghost instability nonlinearly [9]. The cosmological backgrounds that have
been shown to be perturbatively stable in dRGT theory and its extensions can be classified as follows: i) either
homogeneity [10] or isotropy [11] in the fiducial and/or physical metrics is broken; ii) severe fine tunings are necessary
[12]; iii) an evolution practically indistinguishable from standard cosmology [13] 1

The quasidilaton theory was introduced as a simple extension which exploits the stability of Minkowski space-time
in dRGT theory by coupling an additional scalar σ to the fiducial metric through a conformal transformation, thus
sourcing a cosmological expansion [16]. The new scalar field, the quasidilaton, has a restricted action that is invariant
under the global transformations

σ → σ + σ0 , φa → e−σ0/Mplφa , (2)

that keep the combination e2σ/Mplfµν invariant. The graviton mass term has the same structure as in dRGT with a

modified building block eσ/Mpl(
√

g−1f)µν , while the quasidilaton field acquires its dynamics from the finite number of
terms allowed by the symmetry (2). Although the cosmological solution in this theory suffers from a ghost instability

1 Yet another possibility is to break Lorentz invariance at cosmological scales to realize a nonlinear completion of self-accelerating dRGT
cosmology [14, 15]. However, we shall not consider this possibility in the present paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/96919593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1707.02004v1


2

[17, 18], the coupling between the Stückelberg fields and the quasidilaton can extend beyond a conformal factor [19],
via an extended fiducial metric

f̃µν ≡ ηab∂µφ
a∂νφ

b − ασ

m2
∂µ

(

e−σ/Mpl

)

∂ν

(

e−σ/Mpl

)

, (3)

which under (2), transforms as

f̃µν → e−2 σ0/Mpl f̃µν . (4)

The graviton mass term in the extended quasidilaton theory can then be constructed using the new building block

tensor eσ/Mpl(
√

g−1f̃)µν , with additional interactions that are allowed by (2) and that lead to second order equations
of motion [20].
However, recent work demonstrated that the absence of BD ghost is not guaranteed away from the self-accelerating

attractor [21, 22]. This result is compatible with the findings of Ref. [23] and was recently confirmed as a no-go result
[24]. Both analyses indicate that the primary constraint that removes the BD ghost at all orders can be obtained
either if ασ = 0 or if the canonical kinetic term for the quasidilaton field vanishes. Since the former case is simply the
original quasidilaton proposal that does not allow for a stable self-accelerating FLRW solution, we will focus on the
unexplored latter option. In fact, the absence of explicit kinetic terms for the quasidilaton field does not change its
dynamical nature. Instead, the extended fiducial metric readily introduces the dynamical terms for the scalar field.
The goal of the present study is to focus only on the healthy subset of extended quasidilaton theory in a vacuum
configuration. We shall present a new branch of perturbatively stable cosmological evolution, which exhibits a late
time self-acceleration with perturbations propagating at the speed of light.
The paper is organized as follows. In Sec. II, we review the healthy subset of the theory and describe different

branches of background evolution. We then follow with Sec. III where we perform a detailed analysis of cosmological
perturbations around each of these background solutions, and present stability conditions imposed on the parameters.
We conclude with Sec. IV where we discuss our results.

II. GHOST-FREE QUASIDILATON THEORY AND BACKGROUND DYNAMICS

We now consider the action without the canonical kinetic term of quasidilaton, which was shown to be ghost free
in Refs. [23, 24]. The ghost-free quasidilaton action is thus

S =
Mpl

2

2

∫

d4x
√
−g
[

R+ 2m2(α2L2 + α3L3 + α4L4)
]

. (5)

The mass terms are given by 2

L2 =
1

2!

(

[K]2 − [K2]
)

,

L3 =
1

3!

(

[K]3 − 3 [K][K2] + 2[K3]
)

,

L4 =
1

4!

(

[K]4 − 6 [K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]
)

, (6)

where

Kµ
ν ≡ δµν − eσ/Mpl (

√

g−1f̃)µν , (7)

and f̃µν is defined in Eq. (3). In the present work, our goal is to show the vacuum stability of cosmological solutions
with self-acceleration, thus we leave the effect of matter fields for a future work.

2 One can also add a cosmological constant term for the metric e2σ/Mpl f̃µν which preserves the primary constraint that removes the BD
ghost [24]. As we show in Appendix.A, this corresponds to simply shifting the parameters of the theory and does not change our results
qualitatively.
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We now study the cosmological background in this theory. The Stückelberg field background is chosen in order to
keep time reparametrisation freedom as

φa = a0δ
a
i x

i + δa0 f(t) , (8)

and we also have

σ = σ(t) . (9)

These condensates lead to the extended fiducial metric

ds2
f̃
= −n(t)2 dt2 + a20δijdx

idxj , (10)

with an effective lapse function given by

n(t)2 ≡ ḟ2 +
ασ

Mpl
2m2

e−2σ/Mpl σ̇2 . (11)

Here, an overdot represents derivative w.r.t. the proper time t. Finally, we consider a physical metric in flat FLRW
form

ds2 = −N(t)2dt2 + a(t)2 δijdx
idxj . (12)

The resulting minisuperspace action is thus

S

V
=Mpl

2

∫

dt a3N
[(

−3H2
)

+m2Mpl
2(r X Q− ρm)

]

, (13)

where we defined

H ≡ ȧ

aN
, X ≡ a0e

σ/Mpl

a
, r ≡ n/a0

N/a
. (14)

In the above, H is the Hubble rate for the physical metric, X is the ratio of scale factors of the metrics e2 σ/Mpl f̃µν
and gµν , while r corresponds to the ratio of the speeds of light on these two metrics. For later convenience, we also
defined the following useful combinations to replace α2, α3 and α4

ρm ≡ (X − 1)
[

3(2−X)α2 + (X − 1)(X − 4)α3 + (X − 1)2α4

]

,

J ≡ (3− 2X)α2 + (X − 3)(X − 1)α3 + (X − 1)2α4 ,

Q ≡ (X − 1)
[

3α2 − 3 (X − 1)α3 + (X − 1)2α4

]

. (15)

By varying the minisuperspace action (13) with respect to N , a, f and σ, we obtain the following set of background
equations of motion 3

3H2 = m2ρm , (16)

2 Ḣ

N
= m2(r − 1)J X , (17)

d

dt

[

m2Mpl
2a4QX ḟ

n

]

= 0 , (18)

ασ

N X a4
d

dt

(

a4Q σ̇

rN Mpl

)

= m2X [3 J(r − 1) + 4Qr] , (19)

where one of the last three equations is redundant thanks to the contracted Bianchi identities. Although the form of
the Stückelberg equation of motion (18) is similar to the well studied ones in e.g. Ref.[20–22, 25], the above system

3 We remark that Eqs.(16)–(19) coincide with the ones in [25] after the replacement U ′(X) → −4Q and Ω → 0.
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of equations reveals a very useful constraint arising from the absence of a canonical kinetic term for σ. Combining
the time derivative of (16) with (17), we obtain the simple relation

m2J X

(

H r − σ̇

MplN

)

= 0 , (20)

where we used that ρ̇m = 3 J Ẋ and Ẋ/(N X) = σ̇/(N Mpl)−H .
Eq. (20) is the key difference with respect to the evolution studied in Ref. [20], and allows us to determine two

branches of evolution without resorting to the integral of Eq. (18). These branches are:

σ̇

N Mpl
= H r , Branch I ,

J = 0 , Branch II . (21)

We now consider each branch separately.

A. Branch I

In this branch, the derivative of the quasidilaton background is solved by

σ̇

N Mpl
= H r . (22)

Using this equation to replace σ̇ and σ̈ in Eq. (19), then eliminating Ḣ using Eq. (17), we find

2
(

ασH
2 −m2X2

)

[4Q+ 3(r − 1)(J +Q)] +m2QX(r − 1)(ασJ − 2X) = 0 , (23)

which can be used to express r in terms of X . 4 Thus with the help of Eq.(16), all cosmological quantities can now be
written in terms of X . By further manipulating the equations, one can also determine the evolution equation for X ,

ȧ

a
= −3

8

[

2 (J +Q)

QX
+

ασJ − 2X

ασρm − 3X2

]

Ẋ . (24)

This equation can be integrated to give the following relation:

Q2
(

ασρm − 3X2
)

=
λ

a8
, (25)

where λ is an integration constant.
We now discuss the late time asymptotics a → ∞. In this regime, we expect the left hand side of Eq. (25) to

approach zero. The two possibilities are

H → mX√
ασ

, Branch IA ,

Q→ 0 , Branch IB . (26)

By comparing with (19) and using the definitions in (11) and (14), we see that for Branch–IA, one has ḟ → 0, while
Branch-IB is the Q→ 0 branch discussed in [20].5 In Branch-IB, we also find an important condition on background
variables in the late asymptotics, namely,

ḟ2

N2
→ e−2σ/Mpl

(

X2 − ασH
2

m2

)

> 0 , Branch IB , (27)

4 More precisely, we assume here that the coefficient of r is nonzero. However, the special cases where r cannot be determined from
Eq.(23) all lead to a constant X, therefore to r = 1. As a result, all of these cases belong to one of the late time evolutions given in
Eq.(26).

5 It should be noted that the general study in Ref. [20] cannot be directly used to obtain the results of Branch–IB of the present paper by
simply sending the coefficient of the quasidilaton kinetic term to zero. Firstly, these studies use the background equations by assuming
that the kinetic term is nonzero. Also due to our late time behaviour of r → 1, the perturbative stability conditions occasionally depend
on factors of 0/0, thus we repeat the analysis for Branch–IB without referring to previous work in more general backgrounds.



5

since the background values of the Stückelberg fields are real by definition. We will see that this condition plays a
very crucial role in the stability of scalar perturbations in this branch.
To collect, the various limits in the two sub-branches are

X →
√
ασH

m
, Ḣ → 0 , Ẋ → 0 , r → 1 , σ̇ →MplN H , Branch IA

Q→ 0 , Ḣ → 0 , Ẋ → 0 , r → 1 , σ̇ →MplN H , Branch IB. (28)

The main difference between the two sub-branches is that the fixed point value of X is determined by the equation
(ασρm − 3X2) = 0 for IA, whereas for IB it is simply Q = 0 (3 solutions in both cases).

The Branch–IA corresponds to the ḟ → 0 attractor first introduced in Ref. [25], and later studied in detail in
Ref. [21] in the context of extended quasidilaton. Due to the absence of a canonical kinetic term for the quasidilaton,

the ḟ → 0 case actually corresponds to two distinct branches of the evolution in the present study, the other being
the Branch–II which we consider next.

B. Branch II

Since the quasidilaton kinetic term does not contribute to the metric equations, using J = 0 in Eq. (17) reveals
that this branch of evolution is purely de Sitter. The constancy of X results in σ̇ = MplH N , while the quasidilaton
equation of motion yields a first order equation for r, which for Q 6= 0, reads

ṙ

N
− 4H r +

4m2 r3X2

ασH
= 0 . (29)

The solution to this equation yields the evolution of r

r =
a4H

√
ασ√

C1 + a8m2X2
. (30)

We thus see that in the late time asymptotics, r → H
√
ασ/(mX). To recap, the late time behaviour for this branch

is given by

J → 0 , Ḣ → 0 , Ẋ → 0 , r →
√
ασH

mX
, σ̇ →MplN H , Branch II. (31)

This branch, along with Branch–IA, corresponds to the ḟ → 0 branch introduced in Ref. [25]. However, as we will
show when we discuss cosmological perturbations, the kinetic terms of three graviton polarizations are proportional
to J and thus the absence of the quasidilaton kinetic term has a dramatic impact on the validity of the perturbative
expansion. Notice that in the vacuum case, J = 0 is not an asymptotic behaviour, but enforced by the equations of
motion at all times.

III. COSMOLOGICAL PERTURBATIONS

We now introduce perturbations to the metric and the five scalar fields. We decompose the metric perturbations as

δg00 = −2N2Φ ,

δg0i = N a (∂iB +Bi) ,

δgij = a2
[

2 δijψ +

(

∂i∂j −
δij
3
∂2
)

E + ∂(iEj) + γij

]

, (32)

while the perturbations to the quasidilaton field is introduced as Mplδσ, and the Stückelberg field perturbations are

δφ0 = Π0 , δφi = Πi + ∂iΠL . (33)

In these decompositions, all 3–vectors are divergence-free and the 3–tensor γij is both divergence and trace-free with
respect to δij . We choose a gauge that is relevant for our background evolution, namely, Ei = E = δσ = 0, which
fixes the freedom completely even in the case ḟ → 0 as shown in Appendix B.
In the following, we consider each sector independently.
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A. Tensor Sector

After expanding the fields in terms of plane waves, adding appropriate boundary terms and using background
equations of motion, we obtain the following action for tensor perturbations

S
(2)
T =

Mpl
2

8

∫

d3k dt a3N

(

γ̇⋆ij
N

γ̇ij

N
− ω2

Tγ
⋆
ijγ

ij

)

, (34)

where the kinetic term is manifestly positive and the dispersion relation is given by

ω2
T =

k2

a2
+M2

T , (35)

with an effective mass

M2
T =

m2X

X − 1

[

J [r − 2 + (2 r − 1)X ] +
(r − 1)[Q−X2ρm]

(X − 1)2

]

. (36)

Up to this point, we have not yet specified any branch of evolution. For the three branches discussed in Section II,
the tensor mass converges to the following constant values asymptotically

M2
T,IA → m2J X , (37)

M2
T,IB → m2J X , (38)

M2
T,II → m(

√
ασH −mX)

(X − 1)3
[

Q− ρmX
2
]

. (39)

In order to avoid tachyonic instability, we need to have M2
T > 0. This is the condition for the IR stability and thus

can in principle be violated without fatal consequences as far as the tensor sector is concerned. However, we shall see
below that this condition is required by the UV stability of the vector sector for the Branches IA and IB. We shall
also see that the branch II is strongly coupled in the vector and scalar sectors. Therefore, the tensor sector is free
from instabilities both in the UV and in the IR whenever the vector and scalar sectors are weakly coupled and stable
in the UV.

B. Vector Sector

The action quadratic in vector modes does not contain any dynamical term for the Bi mode, whose equation of
motion can be solved by

Bi =
2m2a2J eσ/Mpl

N [k2(r + 1) + 2m2a2J X ]
Π̇i . (40)

Integrating it out and adding boundary terms, the quadratic action for vector perturbations reduces to

S
(2)
V =

Mpl
2

4

∫

d3k dt a3N
k2

a20

(

KV
Π̇⋆

i

N

Π̇i

N
−M2

TΠ
⋆
iΠ

i

)

, (41)

where the kinetic term is

KV ≡
(

k2(r + 1)

2m2a2JX
+ 1

)−1

. (42)

For the three branches of evolution discussed in Sec.II, it reduces to

K2
V,IA = K2

V,IB =

(

1 +
k2

m2a2J X

)−1

, (43)

K2
V,II = 0 . (44)



7

We immediately see that in Branch-II, the vacuum evolution strictly requires J = 0, thus the vector modes become
infinitely strongly coupled.
However, for both the Branch-I evolutions, the UV behaviour of the kinetic term imposes the stability condition

J > 0 , Branch I , (45)

which also coincides with the condition obtained from the IR stability of tensor modes in the previous subsection. By
rescaling the field to acquire canonical normalisation, we obtain the following action for Branch–I, in the late time
limit

S
(2)
V,I =

Mpl
2

2

∫

d3k dt a3N

(

Π̇⋆
c,i

N

Π̇i
c

N
− ω2

V,IΠ
⋆
c,iΠ

i
c

)

, (46)

where Πi
c is the rescaled field and the corresponding dispersion relation is

ω2
V,I =

k2

a2
+m2J X − k2H2(4 k2 +m2a2J X)

(k2 +m2a2J X)2
, Branches IA/B, late time . (47)

The first term dominates in the UV, while the second term dominates in the IR. Thus we see that the sound-speed
is 1 and the mass is m2J X .

C. Scalar Sector

Finally, we consider the scalar sector. The two nondynamical fields are solved as

Φ =
1

N
∂t

(

ψ

H

)

+
k2m2J

H N [2 k2(r + 1) + 3m2a2J X ]

[

X(2 k2MplN r2 + 3m2a2J X σ̇)

2MplH2k2
ψ + a eσ/MplΠ̇L − e2 σ/Mpl ḟ

X
Π0

−m
2eσ/Mpla J X (MplH N(r − 1)− σ̇)

2MplH2
ΠL

]

,

B = − ψ

aH
+

m2J

H N [2 k2(r + 1) + 3m2a2J X ]

[

3 aX [MplH N r2 − (r + 1)σ̇]

MplH
ψ + 3 a2H eσ/MplΠ̇L − 3 aH e2 σ/Mpl ḟ

X
Π0

−N eσ/Mplk2(r + 1)ΠL
]

, (48)

After using these solutions, the action quadratic in scalar perturbations consists of three modes, ψ, Π0 and ΠL.
Without any field redefinition, the perturbation ψ has no kinetic term, thus this is identified as the Boulware-Deser
degree. After integrating it out, the two field action can be brought to the form

S
(2)
S =

Mpl
2

2

∫

d3kdt a3N

(

Ψ̇†

N
K

Ψ̇

N
+

Ψ̇†

N
MΨ−Ψ†M

Ψ̇

N
−Ψ†Ω2Ψ

)

, (49)

where Ψ ≡ (Π0, ΠL) and the 2× 2 matrices obey K = KT , M = −MT , Ω2 = (Ω2)T .
The conditions for having positive kinetic terms for the eigenmodes can be obtained by studying κ1 ≡ K22 and

κ2 ≡ detK/K22 in the UV limit.
In the following, instead of presenting the rather bulky expressions for the exact matrix components, we will only

present them when they are informative.

1. Branch IA

Let us first consider the Branch–I before taking the late time limit, so that we can use it in Branch–IB. The two
kinetic eigenvalues in the subhorizon limit are

κ1,I =
3 e2σ/Mplm2a2J(m2J X − 2H2)

2X

(

1 +
8Q(ασH

2 −m2X2)

2ασH2(3 J −Q) +m2J X(ασQ− 6X)

)

+O(k−2) ,

κ2,I =
e2 σ/MplH2

X3

(

ασQ− 2 (3 J + 4Q)(ασH
2 −m2X2)

(2H2 −m2J X)

)

. (50)
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However, once the late time limits (28) for Branch–IA are used, the two scalar modes decouple and the (now
diagonal) matrices in the action (49) reduce to

K11 = a2m2QX
a2
0

, K22 =
6m4a4J X3

a20ασD

(

ασJ

X
− 2

)

,

Ω2
11 = k2m2QX

a2
0

, Ω2
22 =

2Xm2J k4

3 a20

{

1− 1

D

[

4 +
3 a2H2

k2

(

ασJ

X
− 2

)(

1− 48 a2H2

k2D

)]}

, (51)

where

D ≡
[

4 +
3 a4H4

k4

(

ασJ

X
− 2

)(

4 k2

a2H2
+

3ασJ

X

)]

. (52)

The positivity of the kinetic terms imposes the following conditions:

J

(

J − 2X

ασ

)

> 0 , Q > 0 , Branch IA . (53)

Assuming that these conditions are satisfied, we can rescale the fields and rewrite the action as

S
(2)
S,IA =

Mpl
2

2

∫

d3kdt a3N

(

Ψ̇†
c

N

Ψ̇c

N
−Ψ†

cω
2
SΨc

)

, (54)

where Ψc are the fields in this normalisation and the dispersion relation ω2
S is a diagonal matrix with components

ω2
S,1 =

k2

a2
− 4H2 ,

ω2
S,2 =

k2

a2
+m2J X − 12H2

D

[

2 +
a2H2

k2

(

ασJ

X
− 2

)(

1− 72 a2H2

k2D2

)]

, Branch IA. (55)

We see that the first mode propagates at the speed of light and has a negative squared-mass. Although this may
indicate some tachyonic instability, contributions which are factors of H2 depends on the normalisation of the field.
However, regardless of what the right normalisation is, the time scale of the corresponding tachyonic instability is of
the same order as the age of the universe. Therefore, even if it is present, it is a mild instability.
For the second mode, the last term is subdominant both on sub- and super-horizon scales, so we see that the mode

propagates with the sound speed c2s = 1 and has a mass m2J X , just like the vector and tensor perturbations.

2. Branch IB

For this branch, the subhorizon limit expressions for the kinetic terms in (50) are still valid and applying the
asymptotic Q→ 0 limit, we find

κ1,IB → 3 e2σ/Mplm2a2J (m2J X − 2H2)

2X
, κ2,IB → − 6 e2σ/Mplm2H2J

X3(m2J X − 2H2)

(

X2 − H2 ασ

m2

)

. (56)

Using (27), we see that the product of these two eigenvalues is a negative total square, hence we conclude that this
branch always contains a scalar ghost.

3. Branch II

In this branch, J = 0 is enforced by the (vacuum) equations of motion, and for this value, κ2 vanishes. Since the
vanishing of J in this branch is not an asymptotic behaviour but rather a dynamical requirement throughout the
evolution, the mode is infinitely strongly coupled. Since the vector modes in this branch are also strongly coupled,
this is reminiscent of the self-accelerating branch in dRGT massive gravity.
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IV. DISCUSSION

We have presented a new cosmological vacuum solution in the context of ghost-free quasidilaton theory. This is a
restricted version of the extended quasidilaton theory where all terms that generate a Boulware-Deser ghost are turned
off. We have shown that there exists a branch of the cosmological evolution (Branch–IA), which has a self-accelerating
solution where all five degrees of freedom have equal masses ∝ m and propagate at the speed of light. The additional
degree of freedom, identified as the quasidilaton perturbation, has a mass ∝ H , which may or may not lead to a mild
tachyonic instability in the IR, depending on the normalisation imposed by observables.
This solution is, to our knowledge, the simplest model in Lorentz invariant massive gravity that passes the pertur-

bative stability tests while exhibiting self-acceleration. It is thus a promising candidate to be used as a benchmark for
phenomenological studies, after its interactions with matter fields is understood in detail. This point will be addressed
in a future publication.
Fixing the value of α2m

2 by using the present day Hubble rate, our model can be reduced to contain three
independent parameters α3, α4 and ασ. The parameter ασ should be strictly positive in order to realise the stable
branch of evolution. This is also the parameter that allows the theory to depart from the standard quasidilaton of
Ref.[16].
In our cosmological solution, the background value of the temporal Stückelberg field flows to a constant at late

times. The background evolution does not actually require the time derivative to be strictly zero; instead the VEV of
φ̇0 smoothly approaches to zero as a−5 without becoming zero in finite time. In other words, the whole cosmological
history in our solution covers only a half of the moduli space. This is similar to the self-accelerating open FLRW
solution in dRGT theory, where only a quarter of the moduli space (a Milne wedge of the Minkowski moduli space)
is covered by the whole cosmological history [7]. In both cases, the fiducial metric is locally Minkowski and the
theory respects the Poincare symmetry in the moduli space. One might still worry that the transformation that takes
Minkowski to the fiducial metric in our solution would be singular and one would no longer have a fixed reference
metric [22]. Actually, we find that this is not a problem. As is clear from the fact that the part (either a half or a
quarter) of the moduli space covers the whole cosmological history, one never reaches the boundary at finite time and
therefore the transformation to the explicitly Minkowski form of the fiducial metric remains regular.
As a result of the behaviour φ̇0 → 0, the unitary gauge δφ0 = 0 cannot be fixed in the asymptotic future, and we

resort to another gauge choice. Taking the theory in the covariant formulation, φ̇0 → 0 is an allowed background

which prefers a certain gauge over the unitary one. Despite the smallness of φ̇0, the perturbative expansion is not
affected by potentially vanishing coefficients. In the late time limit of Branch–IA, the tensor g−1f̃ can be expanded
as

gµαf̃αν
=
a20
a2
δµν + a0

(

δµj ∂νδφ
j + δiνηaig

µα∂αδφ
a
)

+ gµαηab∂αδφ
a∂νδφ

b , (57)

where we only kept the Stückelberg perturbations δφa, (a = 0, 1, 2, 3) for the present discussion. Thus, even for

φ̇0 = ḟ = 0, all the four eigenvalues of g−1f̃ have nonzero VEV’s and the time derivatives of the Stückelberg
perturbations have finite coefficients. This allows the square-root of the tensor to be Taylor expanded up to any order
in perturbations without any ambiguity and we do not observe any signs of a strong coupling in this limit.
In addition to the healthy branch, we found two more late time solutions which do not pass the stability tests:

Branch–IB contains a scalar ghost, while in Branch–II two vector and one scalar degree of freedom is infinitely strongly
coupled throughout the evolution.
Although the well-being of the theory relies on the absence of canonical kinetic terms for the quasidilaton, there may

be other terms that do not excite the Boulware-Deser mode. The setup we considered is reminiscent of DBI scalars
coupled to massive gravity [26–28]. For the ghost-free quasidilaton, the 3-brane with metric f̃µν can be interpreted
as probing a bulk with two time directions. This interpretation indicates the existence of further ghost-free terms
involving the quasidilaton, corresponding to curvature invariants and Gibbons-Hawking-York boundary terms from
5D Lovelock terms [29] (see e.g. [30] for the cosmology of such a model with a different bulk metric signature).
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Appendix A: The effect of cosmological constant for the extended fiducial metric

The quasidilaton symmetries (2) allow a cosmological constant term for the extended fiducial metric, in the form

∆S =Mpl
2m2ξ

∫

d4x e4σ/Mpl

√

−f̃ . (A1)

We can express this action purely in terms of dRGT mass terms. We first add a term

L1 ≡ [K] , (A2)

to the dRGT mass terms given in (6). Including the identity, L1, L2, L3 and L4 form the characteristic polynomials
for the matrix K. We can thus perform the expansion

det(I4 − K) = 1− L1 + L2 − L3 + L4 , (A3)

where I4 is the four dimensional identity matrix. As the left hand side is simply det(eσ/Mpl

√

g−1f), we obtain

∆S =Mpl
2m2ξ

∫

d4x
√
−g [1− L1 + L2 − L3 + L4] . (A4)

In other words, the additional term (A1) can be written as a combination of the dRGT mass terms, and corresponds
to a shift in the coupling constants. On the other hand, adding the ξ term would correspond to including the tadpole
term L1 and a bare cosmological constant, which were not considered in the main text. The effect of ξ can be
accommodated by changing the definition of Q in Eq. (15) to

Q ≡ (X − 1)
[

3α2 − 3 (X − 1)α3 + (X − 1)2α4

]

+ ξ X3 , (A5)

then shifting Q→ Q− ξX3 in Eqs. (36) and (39). All other occurrences of Q in the text should then be understood
to correspond to the definition in Eq. (A5).

Appendix B: The gauge choice

As we described in the main text, two out of the three branches of late time evolution require f ′(t) → 0, namely
the background value of the temporal Stückelberg field approaches a constant. As a result, its perturbations become
effectively gauge invariant, hence the gauge freedom that allows us to set it to zero (i.e. the unitary gauge) is no
longer allowed. In order to find a suitable gauge that is valid for all three branches of the evolution considered in the
main text, we study the behaviour of the perturbations under linear gauge transformations.
For a coordinate transformation xµ → xµ + ξµ, with the decomposition ξµ = (ξ0, ξi + ∂iξL), the perturbations

(32)-(33) transform via

Φ → Φ− 1

N
∂t(N ξ0) ,

B → B +
N

a
ξ0 − a

N
ξ̇L ,

Bi → Bi −
a

N
ξ̇i ,

ψ → ψ − ȧ

a
ξ0 − 1

3
∂i∂iξL ,

E → E − 2 ξL ,

Ei → Ei − 2ξi ,

δσ → δσ − σ̇

Mpl
ξ0

Π0 → Π0 − ḟ ξ0 ,

ΠL → ΠL − a0ξL ,

Πi → Πi − a0ξ
i , (B1)
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and the tensor modes γij are invariant at linear order. Out of the total of 7 scalar degrees of freedom, one can
construct 5 independent gauge-invariant scalar degrees, while the 3 transverse vectors can be reduced to 2 gauge
invariant divergence-free vector fields. This choice however is not unique and the specific choice of gauge invariant
variables may be equivalent to a a particular gauge choice. For instance, the choice of the gauge invariant variable
δσ− σ̇Π0/(ḟMpl) implicitly implies the gauge Π0 = 0. On the other hand, if ḟ = 0 is allowed by the evolution (which
is the case for the model studied in the main text), this choice is no longer well defined, nor gauge invariant, and Π0

itself becomes gauge invariant on its own. Therefore, we need to construct the set of variables carefully.
For the transverse vectors, we define the following combinations:

Bi
GI ≡ Bi − a

2N
Ėi ,

Πi
GI ≡ Πi − a0

2
Ei , (B2)

and for the scalars, we choose

ΦGI = Φ− 1

N
∂t

[

1

H

(

ψ +
k2

6
E

)]

,

BGI = B +
1

aH

(

ψ +
k2

6
E

)

− a

2N
Ė ,

ψGI = ψ +
k2

6
E − H N Mpl

σ̇
δσ ,

Π0
GI = Π0 − Mpl ḟ

σ̇
δσ ,

ΠL
GI = ΠL − a0

2
E . (B3)

We see that these definitions are not affected by the evolution, provided that σ̇ 6= 0. Upon integration of the
nondynamical modes Φ and B (or equivalently, ΦGI and BGI) this choice of variables actually corresponds to the
gauge choice Ei = E = δσ = 0, which completely fixes the freedom if σ̇ 6= 0.
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