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We compute the power spectrum at one loop order in standard perturbation theory for the mat-
ter density field to which a standard Lagrangian Baryonic acoustic oscillation (BAO) reconstruction
technique is applied. The BAO reconstruction method corrects the bulk motion associated with the
gravitational evolution using the inverse Zel’dovich approximation (ZA) for the smoothed density
field. We find that the overall amplitude of one-loop contributions in the matter power spectrum
substantially decrease after reconstruction. The reconstructed power spectrum thereby approaches
the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smooth-
ing scale Rs

>

∼ 10h−1Mpc. On smaller Rs, however, the deviation from the linear spectrum becomes
significant on large scales (k <

∼ R−1
s ) due to the nonlinearity in the smoothed density field, and the

reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed
power spectrum at one loop order agrees with simulations better than the unreconstructed power
spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investi-
gate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the
bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum
agrees well with N-body results in the weakly nonlinear regime.

I. INTRODUCTION

Large-scale structure in our Universe has been widely
used for a variety of cosmological studies. The Baryonic
Acoustic Oscillation (BAO) signature imprinted in the
large-scale structure plays a role as a standard ruler to
probe the expansion history of the Universe or dark en-
ergy [e.g., 1]. BAOs have been detected in various galaxy
surveys and used for cosmological studies [e.g., 2–6]. The
broad shape of the power spectrum of evolved density
fluctuations provides a cosmological probe complemen-
tary to the Cosmic Microwave Background [3, 5, 7, 8]
and a probe of massive neutrinos [e.g., 9, 10]. Both the
power spectrum and the bispectrum are also sensitive to
the primordial non-Gaussianity [e.g., 11–14].
Nonlinear growth of cosmic large-scale structure and

the resulting bulk flow motion degrade the BAO signals
and also biases the measurements of BAO scales [15–
20]. The range of scales on which perturbation theory
works is limited to large scales, which makes it difficult
to precisely model the evolved matter density fields [e.g.,
21–23]. Recently there have been renewed interest in
extending the range of validity of Perturbation Theory

∗ chiaki.hikage@ipmu.jp

(PT), in the context of Effective field theory of Large
Scale Structure [24].

Eisenstein et al. [25] found that the BAO signal was
substantially better recovered by displacing galaxies back
to nearly initial Lagrangian positions. They measured
the displacement field using the inverse Zel’dovich ap-
proximation (ZA) applied to the smoothed density fields.
Ref. [26] showed that the reconstruction reduced the
mode-coupling effect and the BAO signature was much
better recovered with a perturbative approach. Ref. [27]
used N-body simulations to measure the cross correla-
tion between initial and final density field, known as a
propagator, and found that the reconstructed field re-
covered the initial field at higher k. The BAO recon-
struction technique has now been a standard technique
of BAO measurements applied to various galaxy surveys
[28–34]. There are a number of planned galaxy surveys
such as PFS[35], DESI [36], HETDEX[37], Euclid[38],
and WFIRST[39] in which the BAO reconstruction tech-
nique will be applied.

What about PT after reconstruction? Does the range
of scales on which PT works extend to smaller scale than
before reconstruction? To answer these issues, we de-
rive the exact perturbative formula of the reconstructed
matter power spectrum at one-loop order. Precise the-
oretical modeling based on PT is useful for cosmolog-
ical studies using reconstructed density field. We use
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the standard perturbation theory (SPT) which is a fun-
damental approach to understand the nonlinear growth
of the density field in weakly nonlinear regime [40–49].
We here see how the one-loop order perturbative terms,
which are the leading order of nonlinearity in the matter
power spectrum, behave after reconstruction by varying
the smoothing scale Rs for the smoothed density fields
in reconstruction. We also apply our formula to the for-
malism of regularized power spectra (RegPT) [23, 50].
Comparing with N-body simulations, we investigate the
valid range of scales on which SPT and RegPT work for
reconstructed matter density field.

We also study the non-Gaussianity in the recon-
structed field using the bispectrum. Since the recon-
struction effectively reverses the growth of the large-scale
structure, non-Gaussianity due to the nonlinear gravity
should decrease by reconstruction. We study this issue
by comparing the tree-level PT prediction for the recon-
structed bispectrum with numerical simulations.

Our study improves on previous works in several re-
spects compared with Padmanabhan et al. and Noh et
al. [26, 51]. We include several perturbative terms which
are necessary to describe the nonlinearity in the power
spectrum. One is the difference of the shift field between
the data and random. In the standard reconstruction
method developed by [25], the positions of data (e.g.,
galaxies) are shifted to cancel the effect of bulk flow and
thereby the density field for the data becomes zero at
linear order. To recover the linear-order density field,
uniformly-distributed particles, a so-called “random” set,
are also shifted using the same displacement field as used
for the data. Since the data are already displaced from
the initial positions, the shift field for the data should be
evaluated at Eulerian positions rather than Lagrangian
positions. On the other hand, the shifts for the ran-
dom points should be evaluated at Lagrangian positions.
Even though the same shift field is used for the data and
randoms, the difference of their positions generates addi-
tional nonlinearity at the leading order of PT and changes
the bispectrum as well as the power spectrum. Schmitt-
full et al. [52] properly took into account the effect and
derived the second-order Eulerian kernel. Another one
is the nonlinearity in the smoothed density field to be
used to obtain the shift field for reconstruction. In this
paper, we explicitly derive the third-order Eulerian ker-
nel for the reconstructed density field for the first time
and investigate the effect of the nonlinearity in smoothed
density field on the power spectrum. There has been also
no explicit comparison of the perturbative formula of the
reconstructed spectrum with numerical simulations. In
this paper, we study how the one-loop PT works after
reconstruction.

This paper is organized as follows: in Section II, per-
turbative formulae for the power spectrum and bispec-
trum after reconstruction are presented. We study how
the one-loop terms for the power spectrum are altered
by applying the reconstruction technique. In Section
III, we compare our perturbative formula with N-body

simulations and study the range of scales on which PT
works. Section IV is devoted to the summary and con-
clusions. Throughout the paper, we assume a flat Λ
CDM model with the random Gaussian initial condi-
tion and use the following cosmological parameters based
on WMAP7+BAO+H0 Mean [53]: Ωb = 0.046, Ωm =
0.273, ns = 0.963, h = 0.704, τ = 0.089, σ8 = 0.809.

II. PERTURBATION THEORY

In this section, we derive the perturbative formula
based on the SPT to describe the nonlinearity in the real-
space matter power spectrum and bispectrum (see also
the details of our derivation in Appendix A). We com-
pare the one-loop order contributions from 〈δ(1)δ(3)〉 and
〈δ(2)δ(2)〉 before and after reconstruction. We also apply
the 2nd-order Lagrangian Perturbation Theory (2LPT)
instead of Zel’dovich approximation (ZA) in reconstruc-
tion to study the effect on the one-loop terms of the power
spectrum.

A. Standard Perturbation Theory Before

Reconstruction

The Eulerian position of a mass element x and the
Lagrangian position q are related through a displacement
field Ψ(q) as

x = q+Ψ(q). (1)

The mass overdensity and its Fourier transform are then
written as

δ(x) =

∫

dqδD(x− q−Ψ(q))− 1, (2)

δ̃k =

∫

dqe−ik·q(e−ik·Ψ(q) − 1), (3)

where δD is the 3D Dirac delta function. The displace-
ment field evolves according to the following equation

d2Ψ

dt2
+ 2H

dΨ

dt
= −∇xφ(q +Ψ(q)), (4)

where H = ȧ/a is the time-dependent Hubble parame-
ter, and ∇x is the spatial derivative with respect to the
Eulerian coordinate. The gravitational potential φ is de-
termined by the Poisson equation

∇x
2φ(x) = 4πGρ̄a2δ(x), (5)

where G is the gravitational constant, ρ̄ is the mean mat-
ter density, and a is the scale factor. The velocity field
is assumed to be irrotational throughout this paper.
In LPT, the displacement field is expanded perturba-

tively as

Ψ = Ψ(1) +Ψ(2) +Ψ(3) · ··, (6)
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where Ψ(n) has the order of (Ψ(1))n and each term in
Fourier space is given by

Ψ̃
(n)
k =

iDn(z)

n!

∫

dk1 · · · dkn

(2π)3n−3
δD





n
∑

j=1

kj − k





×L(n)(k1, ...,kn)δ̃
L
k1

· · · δ̃Lkn
, (7)

where D(z) is the linear growth rate at redshift z nor-
malized by D(z = 0) = 1 and δL is the linear density
field at z = 0. In the Einstein-de Sitter universe, the La-
grangian perturbative kernels are time-independent and
analytically given by [54] as

L(1)(k) =
k

k2
, (8)

L(2)(k1,k2) =
3

7

k

k2
(1− µ2

1,2), (9)

and

L(3)(k1,k2,k3) =
1

3

k

k2

[

5

7
(1− µ2

1,2)(1− µ2
12,3)

−
1

3
(1− 3µ2

1,2 + 2µ1,2µ2,3µ3,1) + (2 perm.)

]

+k×T(k1,k2,k3), (10)

where k = k1 + · · ·+ kn, µi,j = ki · kj/kikj , and µij,k =
(ki + kj) · kk/|ki + kj |kk. The transverse part k×T is
unnecessary in the following application [54]. In more
general cosmologies, the above expression is still a good
approximation [48], while the exact formula is given by
[41, 42, 45].
The perturbation series of the matter overdensity δ is

given as

δ̃
(1)
k = −ik · Ψ̃

(1)

k = D(z)δ̃Lk , (11)

δ̃
(n)
k = Dn(z)

∫

dk1 · · · dkn

(2π)3n−3
δD





n
∑

j=1

kj − k





×Fn(k1, · · ·,kn)δ̃
L
k1

· · · δ̃Lkn
, (12)

where Fn is the n-th order Eulerian perturbative kernel.
Following the previous literature [e.g., 42, 45], the sym-
metrization factor 1/n! is not included in the definition
of the Eulerian kernel, while it is included in that of the
Lagrangian kernel (eq.[7]). The second- and third-order
Eulerian kernels are given by [41, 42, 45]

F2(k1,k2) =
1

2
[k · L(2)(k1,k2) + (k · L(1)(k1))(k · L(1)(k2))],

=
5

7
+

2

7

(

k1 · k2

k1k2

)2

+
k1 · k2

2k1k2

(

k2
k1

+
k1
k2

)

, (13)

and

F3(k1,k2,k3) =
1

6

[

k · L(3)(k1,k2,k3)

+(k · L(1)(k1))(k · L(1)(k2))(k · L(1)(k3))

+
{

(k · L(1)(k1))(k · L(2)(k2,k3)) + (2 perms.)
}]

.

(14)

The matter power spectrum P (k) is defined as

〈δ̃kδ̃k′〉 ≡ (2π)3δD(k+ k′)P (k). (15)

The power spectrum up to one-loop order is given by

P (k, z) = D2(z)P11(k) +D4(z)[P22(k) + P13(k)], (16)

where Pnm is the contribution from 〈δ̃
(n)
k δ̃

(m)
k 〉. The lead-

ing order term is the linear power spectrum

P11(k) = PL(k), (17)

and the next-leading order terms are the following two
one-loop terms:

P22(k) = 2

∫

dp

(2π)3
PL(|k− p|)PL(p)[F2(k− p,p)]2,

=
1

98

k3

4π2

∫ ∞

0

drPL(kr)

∫ 1

−1

dxPL(k∗)

×
(3r + 7x− 10rx2)2

(1 + r2 − 2rx)2
, (18)

where k∗ ≡ k(1 + r2 − 2rx)1/2 and

P13(k) = 6PL(k)

∫

dp

(2π)3
PL(p)F3(k,p,−p),

=
1

252

k3

4π2
PL(k)

∫ ∞

0

drPL(kr)

[

12

r2
− 158 + 100r2

− 42r4 +
3

r3
(r2 − 1)3(7r2 + 2) ln

∣

∣

∣

∣

1 + r

1− r

∣

∣

∣

∣

]

. (19)

The bispectrum at the tree-level order is given by

B(k1, k2, k3) = 2F2(k1,k2)D
4(z)PL(k1)PL(k2)+(2 perms.).

(20)

B. Standard Perturbation Theory After

Reconstruction

Next we move to the reconstructed field. To recon-
struct the density field, we shift the observed particle
positions to correct the bulk flow motion following the
procedure of [25]. When the shift field s is computed
from the negative ZA [55] of the smoothed density field,
it is obtained by

s̃k = −iW (k)L(1)(k)δ̃k, (21)

where W (k) is the smoothing kernel. We adopt a Gaus-
sian kernel W (k) = exp(−k2R2

s/2), varying the smooth-
ing scale of Rs throughout the paper. Since the shift
field is computed from the negative ZA of the smoothed
density field (eq.21), the perturbative series of the shift
field is given by that of the smoothed density field as

s̃
(n)
k = −iW (k)L(1)(k)δ̃

(n)
k . (22)
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This can be rewritten in a similar form to the Lagrangian
kernel (eq. 7) as

s̃
(n)
k =

iDn(z)

n!

∫

dk1 · · · dkn

(2π)3n−3
δD





n
∑

j=1

kj − k





×S(n)(k1, ...,kn)δ̃
L
k1

· · · δ̃Lkn
, (23)

where the kernel of the shift field S(n) is given by

S(n)(k1, ...,kn) = −n!W (k)L(1)(k)Fn(k1, ...,kn). (24)

At linear order, S(1) becomes−W (k)L(1) and thereby the
displacement due to gravitational evolution is canceled
out by reconstruction on large scales (W (k) ≃ 1), i.e.,

Ψ̃
(1)
k + s̃

(1)
k ≃ 0. At higher order, however, they are not

completely canceled out with each other even on large
scales.
The displaced density field is written as

δ̃
(d)
k =

∫

dqe−ik·q(e−ik·[Ψ(q)+s(x)] − 1), (25)

where the shift field of the evolved mass particles is eval-
uated at the Eulerian positions s(x) rather than at the
Lagrangian position s(q), as discussed in [52]. The dif-
ference of the shift field between the Eulerian positions
x and Lagrangian positions q is perturbatively expanded
in terms of Ψ as

s(x) =

∫

dk

(2π)3
s̃k eik·(q+Ψ(q)), (26)

=

∞
∑

n=0

∫

dk

(2π)3
s̃k eik·q

[

1

n!
(ik ·Ψ(q))n

]

,

= s(q) + (Ψ(q) · ∇)s(q) +
1

2
(Ψ(q) · ∇)

2
s(q) · · · .

(27)

The shifted density field of a spatially uniform grid or
random is given by

δ̃
(s)
k =

∫

dqe−ik·q(e−ik·s(q) − 1), (28)

where the shift field of the (unevolved) uniform grid is
evaluated at the Lagrangian position. The reconstructed
density field is given as

δ̃
(rec)
k ≡ δ̃

(d)
k − δ̃

(s)
k

=

∫

dqe−ik·qe−ik·s(q)(e−ik·[Ψ(q)+s(x)−s(q)] − 1).

(29)

At linear order, the reconstructed density field is un-
altered as

δ
(rec)(1)
k = δ

(1)
k . (30)

There is a difference in higher-order terms of δ(rec)

δ̃
(rec)(n)
k = Dn(z)

∫

dk1 · · · dkn

(2π)3n−3
δD





n
∑

j=1

kj − k





×F (rec)
n (k1, ...,kn)δ̃

L
k1

· · · δ̃Lkn
, (31)

where F
(rec)
n is the Eulerian kernel for the reconstructed

matter density field. In this paper, we derive F
(rec)
n up

to third order by expanding the reconstructed density
fields (eq. 29) perturbatively. The detail of derivations is
summarized in Appendix A. The second-order Eulerian

kernel for the reconstructed field F
(rec)
2 becomes

F
(rec)
2 (k1 ,k2) = F2(k1,k2)

+
1

2

[

(k · S(1)(k1)) + (k · S(1)(k2))
]

,

=
5

7
−

W1 +W2

2
+

2

7

(

k1 · k2

k1k2

)2

+

(

k1 · k2

2k1k2

)[

k2
k1

(1−W1) +
k1
k2

(1−W2)

]

,

(32)

where Fn without upperscript of (rec) denotes the n-th
order Eulerian kernel without reconstruction (eq. 13)
and Wi ≡ W (ki). The third-order kernel becomes

F
(rec)
3 (k1,k2,k3) = F3(k1,k2,k3)

+
1

6

[

2(k · S(1)(k1))F2(k2,k3)

+(k · S(1)(k1))(k · S(1)(k2))

+(k · S(2)(k1,k2)) + (2 perms.)
]

, (33)

where kij ≡ ki + kj and Wij ≡ W (|kij |). The last term

including the S(2) kernel comes from the second-order
nonlinearity of the shift field s(x).

At linear order, the power spectrum is unchanged by
reconstruction as shown in the equation (30). The one-
loop terms for the matter power spectrum are altered
as

P
(rec)
22 (k)= 2

∫

dp

(2π)3
PL(|k− p|)PL(p)[F

(rec)
2 (k− p,p)]2,

=
1

98

k3

4π2

∫ ∞

0

drPL(kr)

∫ 1

−1

dxPL(k∗)

×

[

3r + 7x− 10rx2 − 7Wk∗
r(1 − rx)

1 + r2 − 2rx
− 7Wkrx

]2

,

(34)
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where k∗ = k(1 + r2 − 2rx)1/2 and

P
(rec)
13 (k)= 6PL(k)

∫

dp

(2π)3
PL(p)F

(rec)
3 (k,p,−p),

= P13(k) +
k3

4π2
PL(k)

∫ ∞

0

drPL(kr)

×

[

2

3
(2Wkr −W 2

kr + 2r2Wkr)

−

∫ 1

−1

dx
2r(1 − rx)(10r + 4rx2 − 7r2x− 7x)

7(1 + r2 − 2rx)
Wk∗

]

.

(35)

The tree-level bispectrum for the reconstructed matter

density field is also obtained by replacing F2 with F
(rec)
2

as

B(k1, k2, k3) = 2F
(rec)
2 (k1,k2)D

4(z)PL(k1)PL(k2)

+(2 perms.). (36)

C. Power Spectrum Before and After

reconstruction

Let’s see how the one-loop contributions of the power
spectrum change after reconstruction. Figure 1 shows
the comparison of the one-loop components P22(k) and
P13(k) before and after reconstruction with different Rs.
After reconstruction, the amplitude of the P22 term sub-
stantially decreases even at high k and the decrement is
more significant at smaller Rs. This indicates that the re-
construction significantly reduces the mode-coupling ef-
fect due to nonlinear gravity. One can understand how
P22 decreases from the equation for the F2 kernel (eq.
32). On very large scales (W (k) → 1), the final term in
the right-hand side cancels out by reconstruction. This
term corresponds to the nonlinearity due to the shift term
Ψ(1) ·∆δ(1), which encodes the motion of the density per-
turbations due to the gravitational potential [52, 56].
The other one-loop term P13(k), which has in-phase

BAO oscillations but with negative amplitude, con-
tributes to suppress the intrinsic BAO signature. The
magnitude of the reconstructed P13(k) also decreases
when the smoothed density field is close to linear, which
corresponds to Rs

>
∼ 10h−1Mpc. Since the amplitude of

P13 decreases, the BAO signature is substantially recov-
ered. When the value of Rs is smaller than 10h−1Mpc,
however, the negative amplitude of P13(k) increases on
scales k < R−1

s , which again causes degradation of the
BAO signal. The effect increases as Rs reduces. This
indicates that the behaviour comes from the nonlinearity
in the smoothed density field s given by the S(2) term in
equation (33). In the next subsection, we work on this
issue by applying the 2nd-order Lagrangian Perturbation
Theory (2LPT) reconstruction instead of ZA.
The upper-right panel in Figure 1 shows the net con-

tributions of one-loop terms. Since the one-loop com-
ponents are largely canceled out by each other, the net

contribution is much smaller than the amplitude of the
individual one-loop terms. When reconstructing with
Rs ∼ 10h−1Mpc, the net contribution is also smaller than
the unreconstructed case. For Rs

<
∼ 10h−1Mpc, however,

the net contribution becomes negative on k < R−1
s be-

cause the negative amplitude of P13 increases. The lower-
right panel in Figure 1 shows the power spectrum includ-
ing the one-loop components normalized by a no-wiggle
spectrum Pnw(k), calculated from the no-wiggle formula
of the linear spectrum in [57]. Since the one-loop com-
ponents become smaller after reconstruction, one can see
that the reconstructed spectrum approaches the linear
one compared with the unreconstructed spectrum. When
Rs is less than 10h−1Mpc, the reconstructed power spec-
trum is below the linear power spectrum on large scale
(k < R−1

s ) but again surpasses the linear one as k in-
creases.

D. Reconstruction using 2LPT

In the previous subsection, we find that the negative
amplitude of P13 increases and the deviation from the lin-
ear spectrum increases when the scaleRs of the smoothed
density field to be used for reconstruction is smaller. We
confirm that this behaviour comes from the nonlinearity
in the smoothing density field by comparing the 2LPT
reconstruction with the ZA reconstruction.
When the shift field is computed based on 2LPT [27,

58], it is given in terms of the gravitational potential φ
as

s = −∇φ(1) +
3

7
∇φ(2). (37)

The first term in the right-hand side represents the ZA
approximation and then the potential φ(1) is computed
from the smoothed density field δ(smoothed) using the fol-
lowing relation:

∇2φ(1) = δ(smoothed). (38)

The second term in the equation (37) corresponds to the
2LPT correction term and then the potential φ(2) is com-
puted from φ(1) as

∇2φ(2) =
1

2

∑

i6=j

{

φ
(1)
,ii φ

(1)
,jj − [φ

(1)
,ij ]

2
}

, (39)

where i, j denote x, y and z. Note that the smoothed den-
sity field δ(smoothed) is not completely linear and thereby
the ZA potential φ(1) includes the nonlinearity. In order
to remove the 2nd-order nonlinearity, we use a positive
sign of the 2nd-order correction.
In Fourier space, the shift field (eq. 21) is then modi-

fied to be

s̃k = −iW (k)L(1)(k)δ̃k +
i

2

∫

dk1dk2

(2π)3
δD (k1+k2−k)

×W1W2L
(2)(k1,k2)δ̃k1 δ̃k2 , (40)
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FIG. 1. Comparison of the one-loop components P22(k) (upper left), P13(k) (lower left), their sum (upper right), and the
matter power spectrum including the one-loop components normalized with the no-wiggle components Pnw (lower right).
The solid line denotes the result before reconstruction while other lines show the results after reconstruction with different
Rs = 20h−1Mpc (dotted lines), 10h−1Mpc (short-dashed lines), 8h−1Mpc (long-dashed lines) and 5h−1Mpc (dot-dashed lines).
The displacement field in reconstruction is computed with the inverse ZA of the smoothed density field with a Gaussian filter
at different smoothing scales Rs (eq. 21).

The second-order kernel for the shift field in the 2LPT
reconstruction is altered to

S(2)(k1,k2) → S(2)(k1,k2) +W1W2L
(2)(k1,k2). (41)

On large scales where W1 and W2 are close to unity, the
L(2) term included in S(2) is completely canceled out and
thereby the nonlinearity decreases. One of the one-loop
terms, P22, remains the same; however, the other term

P13 changes to

P
(rec,2LPT)
13 (k)= P

(rec)
13 (k) +

k3

4π2
PL(k)

∫ ∞

0

drPL(kr)

×

∫ 1

−1

dx
6r2(1− rx)(1 − x2)

7(1 + r2 − 2rx)
WkWkr . (42)

Figure 2 shows the results of P13(k) and the 1-loop SPT
power spectrum by reconstruction with 2LPT. When re-
constructing with 2LPT, the negative amplitude that ap-
peared at small k becomes smaller in magnitude and as a
result the power spectrum is closer to the linear spectrum
than when reconstructing using ZA. The difference from
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FIG. 2. Same as the lower two panels in Fig. 1 but for the 2LPT reconstruction.

the reconstruction in ZA comes from the second-order
kernel for the shift field S(2) in the equation (41). Our
result indicates that the nonlinearity in the smoothed
density field S(2) causes the negative amplitude of P13(k)
on small k.

III. COMPARISON OF PERTURBATION

THEORY WITH N-BODY SIMULATIONS

We run N-body simulations to generate the recon-
structed matter density field. We compare the perturba-
tive formula of matter power spectrum and bispectrum
derived in the previous section with the numerical results
to study the range of scales in which PT works.

A. N-body simulations

We use the publicly available cosmological N-body sim-
ulation code Gadget-2 [16]. The mass particles are ini-
tially distributed using the 2LPT code [59] with Gaus-
sian initial conditions at the initial redshift of 49. The
simulation is performed in a periodic cubic box with
side length 1h−1Gpc, with 8003 particles each of mass
1.3× 1011h−1M⊙.

The simulated mass density field δ is evaluated on an
8003 cubic lattice, using Clouds-in-Cell (CIC) assign-
ment. We compute the shift field s(xi) at each grid
point xi as follows: Fourier transforming δ(xi) using
the Fast Fourier transform (FFT) method, multiplying
δ(k) by −ik/k2W (kRs), and transforming back to real
space. Each mass particle position x is shifted to x+ s(x)

where s(x) is linearly interpolated from the shift vec-
tors at the neighboring pixels, and we recompute the
shifted density field δ(d). The shifted random (uniform
grid) field δ(s) is obtained by shifting each grid posi-
tion by s(xi). Matter power spectra are computed in
Fourier space by linearly binning with ∆k = 0.01h/Mpc.
The calculation of bispectra is also performed in Fourier
space focused on some specific triangle configurations:
(k1, k2) = (0.05, 0.1), (0.1, 0.2), (0.15, 0.3) and (0.2, 0.4)
in unit of h−1Mpc where the binning width of k1 and k2
0.01h−1Mpc and their opening angle θ varies from 0 to
π with a binning width of π/15. We run 10 realizations
to evaluate the errors of the power spectrum and bispec-
trum. When comparing PT with the numerical results,
the CIC pixel window function is added to the Gaussian
smoothing W (k) in the calculation of PT.

B. Power Spectrum

Figure 3 shows the comparison of the one-loop SPT
with the N-body results averaged over 10 realizations at
z = 0.3 (left) and z = 1 (right). The top panels are the
results before reconstruction and the other panels show
the results after reconstruction with different Rs. Be-
fore reconstruction, the one-loop SPT is in good agree-
ment with the N-body results in the weakly nonlinear
regime (k <

∼ 0.1h−1Mpc) with errors around one percent,
while the SPT overestimates the matter power at higher
k. This behaviour is consistent with the previous works
[e.g., 22, 49]. After reconstruction, the simulated mat-
ter power spectrum approaches the linear spectrum for
Rs

>
∼ 10h−1Mpc. We find that one-loop SPT agrees with

the N-body results after reconstruction in the weakly



8

FIG. 3. Matter power spectrum computed from N-body simulations (filled circles) before reconstruction (top) and after
reconstruction with different Rs = 20, 10, 8 and 5h−1Mpc (from second-top to bottom). The output redshift is z = 0.3 (left)
and z = 1 (right). The matter power spectra are normalized with the no-wiggle spectra at the corresponding redshift. The
error-bars represent the 1σ dispersion of our simulation results. Lines represent the linear power spectrum (dotted lines) and
1-loop SPT (solid lines).

nonlinear regime, while PT still overestimates in non-
linear regime. The agreement of the one-loop PT with
the N-body results is better up to larger k than the prere-
construction case when Rs is chosen to be 8−10h−1Mpc.
This indicates that the nonlinear gravity effect becomes
smaller by reconstruction and thereby the range of scales
on which PT holds extends to larger k. As Rs is larger,
the reconstruction becomes ineffective because the recon-
stuction only corrects the bulk motion at scales larger
than around Rs. The limit that Rs goes infinity corre-
sponds to no reconstruction.

When Rs is smaller than 10h−1Mpc, the deviation
from the linear spectrum increases at small k. This be-
haviour is consistent with the predictions from PT that
the net ampltitude of the one-loop terms increase on large
scale. When Rs = 5h−1Mpc, there is a deviation be-
tween PT and the numerical results on relatively large
scale (k ∼ 0.1h−1Mpc). This comes from that the nonlin-
earity in the smoothed density field becomes significant
for small Rs and thereby PT breaks down even for large
scale modes, as discussed in the previous section. Never-
theless, the deviation becomes smaller at higher redshift
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FIG. 4. Same as Fig. 3 but for the comparison of the one-loop RegPT predictions.

and then the agreement between PT and the numerical
results holds up to much larger k than before reconstruc-
tion.

We also apply the regularized power spectrum
(RegPT) to describe the power spectrum for the re-
constructed field. RegPT is an improved PT in which
the SPT is reorganized with the multi-point propagators
[21, 23, 60]. Analytical expression up to one-loop order
is given by [23] as

P (k; η) = [Γ(1)
reg(k; η)]

2P0(k)

+ 2

∫

dq

(2π)3
[Γ(2)

reg(q,k − q; η)]2P0(q)P0(|k− q|),

(43)

where η ≡ lnD(t) and the multi-point propagators Γ
(n)
reg

are

Γ(1)
reg(k; η) = eη

[

1 +
k2σ2

de
2η

2
+ e2ηΓ̄

(1)
1−loop(k)

]

× exp

{

−
k2σ2

de
2η

2

}

, (44)

Γ(2)
reg(q,k− q; η) = e2ηF2(q,k − q) exp

{

−
k2σ2

de
2η

2

}

,

(45)

and

Γ̄
(1)
1−loop(k) = 3

∫

dq

(2π)3
F3(q,−q,k)P0(q). (46)
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FIG. 5. Deviation of the one-loop PT of matter power spectrum (SPT with filled circles and RegPT with open triangles) from
N-body results before reconstruction (top) and after reconstruction with different Rs from 20, 10, 8 and 5h−1Mpc (second top
to bottom). The redshift is z = 0.3 (left) and z = 1 (right). The shaded area indicates ±1% range of the deviation.

We obtain the RegPT formula for the reconstructed spec-

trum by replacing the Eulerian kernels Fn with F
(rec)
n (eq.

32 for n = 2 and eq. 33 for n = 3). The σd represents
the dispersion of the displacement field

σ2
d(k) =

∫ kΛ(k)

0

dq

6π2
PL(q), (47)

where the running UV cutoff kΛ(k) is set to be k/2 by
[23]. Since the Lagrangian displacement becomes effec-
tively smaller by reconstruction [26], the value of σ2

d(k)
should be smaller after reconstruction. We then set
(σ2

d(k))
recon = bσ2

d(k) with b treated as a free parame-

ter to fit the simulated spectrum.

Figure 4 shows the comparison of the one-loop RegPT
power spectrum with the simulated results at z = 0.3
(left) and z = 1 (right). Similar to Figure 3, the top pan-
els show the results before reconstruction and the other
panels are the results after reconstruction with different
Rs. RegPT describes the matter power spectrum bet-
ter than the SPT at one-loop level. On nonlinear scales,
RegPT underestimates the matter power spectrum due
to the exponential damping for the dispersion of the dis-
placement (eq. 47). After reconstruction, we find that
the smaller value of b is better fitted to the N-body re-
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sults at smallerRs: b = 1 for Rs = 20h−1Mpc, b = 0.7 for
Rs = 10h−1Mpc, b = 0.5 for Rs = 8h−1Mpc, and b = 0.3
for Rs = 5h−1Mpc. When Rs is around 8h−1Mpc, the
agreement between one-loop RegPT and the N-body re-
sults reaches up to the third BAO peak (k ∼ 0.18h/Mpc)
at z = 0.3 and the fourth BAO peak (k ∼ 0.24h/Mpc)
at z = 1.
Figure 5 shows the deviation of the power spectrum be-

tween PT and N-body simulations normalized with the
no-wiggle components [(PPT(k)−Psim(k))/Pnw(k)]. The
gray shaded area represents the 1 percent range of the de-
viation. Before reconstruction, the agreement of the one-
loop RegPT with the simulations is good up to around
0.1h−1Mpc within 1% error. After reconstruction, their
agreement extends up to 0.2−0.25 hMpc−1 when Rs cho-
sen to be 8 − 10h−1Mpc. Our results indicate that the
higher-order mode-coupling beyond the one-loop order
becomes smaller by reconstruction and then the agree-
ment of PT better holds to higher k.

C. Bispectrum

We also compare the perturbative formula of the mat-
ter bispectrum at tree-level order (eqs. [20] and [36])
with the N-body results. Figure 6 shows the comparison
of the reduced bispectrum Q between PT and N-body
simulations at z=0.3 and 1:

Q(k1, k2, k3) ≡
B(k1, k2, k3)

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
.

(48)
We focus on the triangle configuration of k2/k1 = 2
varying the opening angle θ ≡ arccos(k1 · k2/k1/k2)
with different values of k1 [h/Mpc] ={0.05, 0.1, 0.15, 0.2}.
The overall amplitude of the reconstructed bispectrum
decreases by reconstruction as Rs decreases. This is
because the mode-coupling effect appeared in F2 ker-
nel is significantly reduced by reconstruction as shown
in Figure 1. The reconstructed matter density field is
thereby closer to be Gaussian. We find that the agree-
ment between the tree-level PT and the N-body re-
sults is better after reconstruction as Rs is smaller upto
Rs = 8 − 10h−1Mpc. At smaller Rs, however, the non-
linearity in the smoothed density fields again cause the
deviation of the bispectrum on small k as well as that of
the power spectrum. The deviation should be improved
by taking into account the one-loop components in the
bispectrum [e.g., 13], however, we leave this work for the
future.

D. Reconstruction using 2LPT

In this subsection, we show the reconstructed power
spectrum using 2LPT instead of ZA. As shown in Fig-
ure 2, the negative amplitude due to the nonlinearity in
the smoothing density field is alleviated by including the

2LPT correction term and the reconstructed spectrum
is closer to the linear spectrum on small k. In order to
confirm this, we use the N-body simulations to compute
the reconstructed spectrum using 2LPT. We numerically
compute the 2LPT correction term (eq. 39) by follow-
ing the prescription written in Appendix D2 of [58]. In

Fourier space, we compute the φ
(1)
,ij (i, j=1,2,3) terms

by multiplying δ̃(k) by −(kikj/k
2)W (kRs), transform-

ing back to real space and computing the 2LPT source
term in the right-hand side of eq. 39.
Figure 7 shows the comparison of PT with the N-body

results when the matter density field is reconstructed us-
ing 2LPT. We confirm that the N-body results approach
the linear spectrum for small k. This indicates that the
nonlinearity in the smoothed density field can be par-
tially canceled by using 2LPT. However, we find that the
agreement with PT is not improved significantly by using
2LPT.

IV. SUMMARY AND CONCLUSIONS

We derive the one-loop order perturbative formula of
the real-space matter power spectrum applied with the
standard Lagrangian BAO reconstruction technique, in
which the objects are displaced by the inverse ZA of the
density field smoothed at Rs. We find that both of the
next-leading one-loop terms P22 and P13 decrease in mag-
nitude by reconstruction and thereby the reconstructed
spectrum approaches the linear spectrum as long as the
smoothed density field is close to linear, i.e, the smooth-
ing scale Rs

>
∼ 10h−1Mpc. Compared with N-body sim-

ulations, we find that our PT formula works also after
reconstruction when the field is weakly non-Gaussian.
When the smoothing scale Rs for the displacement field
is smaller than ∼ 10h−1Mpc, however, we find deviations
from the linear power spectrum on large scales (small k).
By using the 2LPT approximation in reconstruction in-
stead of inverse ZA, we find that this comes from the non-
linearity in the smoothed density field. Compared with
the numerical simulations, we confirm that the numeri-
cal results show the behavior consistent with PT predic-
tions in a wide range of Rs. We find that the agreement
between PT and numerical simulations is better after re-
construction with Rs ∼ 8−10h−1Mpc. We also apply the
RegPT to describe the nonlinearity in the reconstructed
density field with the damping factor treated as a free
parameter. We find that after reconstruction RegPT de-
scribes the matter power spectrum up to the third BAO
peak (k ∼ 0.18h/Mpc) at z = 0.3 and the fourth BAO
peak (k ∼ 0.24h/Mpc) at z = 1 even at one-loop order.
We also investigate the bispectrum for the recon-

structed field in a perturbative manner. The amplitude
of the bispectrum is found to decrease significantly after
reconstruction. This is consistent with the fact that the
nonlinear mode-coupling effect weakens by reconstruc-
tion and thereby the non-Gaussianity becomes smaller
after reconstruction. We find that the tree-level PT
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FIG. 6. Reduced bispectrum Q (eq. 48) for real-space dark matter field before and after ZA reconstruction with different
smoothing scale Rs = 20, 10, 8 and 5h−1Mpc from left to right. The redshift is 0.3 (Upper) and 1 (Lower). The configuration
of the triangle is fixed to be k2/k1 = 2 with k1 = 0.05, 0.1, 0.15, 0.2h/Mpc (from top to bottom) and the opening angle
θ ≡ arccos(k1 · k2/k1k2) is varied. Lines represent the tree-level PT (eqs. [20] and [36]) and the symbols are N-body results.
The error-bars represent the 1σ dispersion of the N-body results with 1(h−1Gpc)3 volume.
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FIG. 7. Same as Fig. 3 but for the reconstructed power spectrum using 2LPT instead of ZA.

agrees with the simulation results in the weakly nonlinear
regime, and the deviation between PT predictions and
simulation results becomes smaller after reconstruction.

We confirm that the mode-coupling effect due to the
nonlinear gravity becomes smaller by reconstruction in
a perturbative approach. This may be practically use-
ful to extract cosmological information from higher k
modes than the previous work without reconstruction
[e.g., 61, 62]. Two important caveats should be borne in
mind: in order to apply our perturbative formula for the
actual galaxy surveys, we have to take into account the
other nonlinear effects such as redshift-space distortion
and also galaxy bias. These nonlinear effects can also be
incorporated in a perturbative manner [e.g., 11, 63–65].

Although there is evidence that galaxies are unbiased on
large scales at low redshift [66], this is not true at high
redshift (e.g. [67]), and it depends on the sample. We
will present the application of our work to redshift-space
clustering and also to the halo density fields in the next
paper.

It is also interesting to study how the information
of primordial density field is extracted from the recon-
structed density field. Since the reconstructed field ef-
fectively approaches the initial density field, the recon-
structed field is better suited to constrain the primordial
information such as primordial non-Gaussianity [11, 13].
This is true unless the signature of the primordial infor-
mation is not canceled by reconstruction.



14

ACKNOWLEDGMENTS

We thank Florian Beutler for useful comments. CH is
supported by MEXT/JSPS KAKENHI Grant Numbers
16K17684. KK is supported by the UK Science and Tech-
nologies Facilities Council grants ST/N000668/1 and
the European Research Council through grant 646702
(CosTesGrav).

Appendix A: Derivation of the Eulerian kernel for

the reconstructed field

In this Appendix, we derive a perturbative formula of
the reconstructed matter density field in real space. We
expand the equation [29]) up to third order to derive the

second- and third-order Eulerian kernels F
(rec)
n (n = 2, 3).

We take into account the higher-order terms of the shift
field s(x) and the difference of Eulerian and Lagrangian
positions in the shift field, s(x)− s(q).

1. F
(rec)
2 in ZA

As shown in equation (27), the leading order of the
difference of the shift field evaluated at Eulerian and La-
grangian positions ∆s = s(x) − s(q) starts at second
order:

∆s(2) = (Ψ(1)·∇)s(1), (A1)

∆s(3) = (Ψ(2)·∇)s(1) + (Ψ(1)·∇)s(2)

+
1

2
(Ψ

(1)
i Ψ

(1)
j ∇i∇j)s

(1). (A2)

The reconstructed density field given by equation (29) is
rewritten as

δ̃
(rec)
k =

∫

dqe−ik·qe−ik·s(q)(e−ik·[Ψ(q)+∆s(q)] − 1).

(A3)

The second order of δ̃
(rec)
k is given by

δ̃
(rec)(2)
k =

∫

dqe−ik·q

[

(−ik ·Ψ(2)) +
1

2
(−ik ·Ψ(1))2

+(−ik · s(1))(−ik ·Ψ(1)) + (−ik ·∆s(2))
]

.

(A4)

The first two terms are included in the unreconstructed
density field and their symmetrized kernels are respec-
tively given as

FΨ(2)

2 =
1

2
k · L(2)(k1,k2), (A5)

FΨ(1),Ψ(1)

2 =
1

2
(k · L(1)(k1))(k · L(1)(k2)). (A6)

The last two terms come from the product of Ψ and s,
and the leading order of ∆s as

FΨ(1),s(1)

2 =
1

2
[(k · S(1)(k1))(k · L(1)(k2)) + (1 perm.)],

(A7)

F∆s(2)

2 = −
1

2
[(k · S(1)(k1))(k1·L

(1)(k2)) + (1 perm.)],

(A8)

where S(n) is defined as the n-th kernel of the shift field
s (eq. 24). The sum of the above two terms simplifies to

FΨ(1),s(1)

2 +F∆s(2)

2 =
1

2
[(k · S(1)(k1))+(1 perm.)]. (A9)

The F
(rec)
2 then is given by summing over all of the above

components as

F
(rec)
2 (k1 ,k2) =

1

2

[

k · L(2)(k1,k2)

+(k · L(1)(k1)(k · L(1)(k2))

+ (k · S(1)(k1)) + (k · S(1)(k2))
]

(A10)

=
5

7
−

W1 +W2

2
+

2

7

(

k1·k2

k1k2

)2

+

(

k1·k2

2k1k2

)[

k2
k1

(1 −W1) +
k1
k2

(1−W2)

]

.

(A11)

2. F
(rec)
3 in ZA

The third order of the reconstructed density fluctua-

tion δ̃
(rec)
k is given by

δ̃
(rec)(3)
k =

∫

dqe−ik·q
[

(−ik ·Ψ(3)) + (−ik ·Ψ(1))(−ik ·Ψ(2))

+
1

6
(−ik ·Ψ(1))3 + (−ik ·Ψ(1))(−ik·∆s(2))

+(−ik·∆s(3)) + (−ik · s(1))

×

{

(−ik ·Ψ(2)) +
1

2
(−ik ·Ψ(1))2 + (−ik·∆s(2))

}

+(−ik · s(2))(−ik ·Ψ(1))

+
1

2
(−ik · s(1))2(−ik ·Ψ(1))

]

, (A12)

In the following, we derive the third-order kernel cor-
responding to each term including the factor associated
with the perturbative expansion. All of the kernels are
symmetrized among three wavevectors.

The first three terms are included in the unrecon-
structed density field and then each term is written as
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follows:

FΨ(3)

3 =
1

6
k · L(3)(k1,k2,k3), (A13)

FΨ(1),Ψ(2)

3 =
1

6
[(k · L(1)(k1))(k · L(2)(k2,k3))

+(2 perms)], (A14)

FΨ(1),Ψ(1),Ψ(1)

3 =
1

6
(k · L(1)(k1))(k · L(1)(k2))(k · L(1)(k3)).

(A15)

The fourth term comes from the product of Ψ and ∆s

FΨ(1),∆s(2)

3 = −
1

6

[

(k · S(1)(k1))(k · L(1)(k2))

×(k1·L
(1)(k3)) + (5 perms)

]

. (A16)

The fifth term comes from ∆s(3) which has the three
components given in equation (A2) and then the kernel
corresponding to each component is given as follows:

FΨ(2)·∇s(1)

3 = −
1

6
[(k · S(1)(k1))(k1·L

(2)(k2,k3))

+(2 perms)], (A17)

F
(Ψ(1)·∇)s(2)

3 = −
1

6
[(k · S(2)(k1,k2))(k12·L

(1)(k3))

+(2 perms)], (A18)

F
(Ψ

(1)
i

Ψ
(1)
j

∇i∇j)s
(1)

3 =
1

6
[(k · S(1)(k1))(k1·L

(1)(k2))

×(k1·L
(1)(k3)) + (2 perms)]. (A19)

The sixth and seventh terms come from the products of
the first-order terms of s and the second-order terms of
Ψ:

F s(1),Ψ(2)

3 =
1

6
[(k · S(1)(k1))(k · L(2)(k2,k3))

+(2 perms)], (A20)

F s(1),Ψ(1),Ψ(1)

3 =
1

6
[(k · S(1)(k1))(k · L(1)(k2))

×(k · L(1)(k3)) + (2 perms)]. (A21)

The eighth term is a combination of s and ∆s:

F s(1),∆s(2)

3 = −
1

6
[(k · S(1)(k1))(k · S(1)(k2))

×(k12·L
(1)(k3)) + (2 perms)]. (A22)

The last two terms are the product of the second order
of s: and Ψ(1)

FΨ(1),s(2)

3 =
1

6
[(k · S(2)((k1,k2))

×(k · L(1)(k3)) + (2 perms)], (A23)

FΨ(1),s(1),s(1)

3 =
1

6
[(k · S(1)(k1))(k · S(1)(k2))

×(k · L(1)(k3)) + (2 perms)]. (A24)

Combinations of the above terms lead to some simplifi-
cations as follows:

FΨ(2)·∇s(1)

3 + F s(1),Ψ(2)

3 =
1

6
[(k · S(1)(k1))

×(k23·L
(2)(k23)) + (2 perms)],(A25)

F
(Ψ(1)·∇)s(2)

3 + FΨ(1),s(2)

3 =
1

6
[k · S(2)(k1,k2)

+(2 perms)], (A26)

F s(1),∆s(2)

3 + FΨ(1),s(1),s(1)

3 =
1

6
[(k · S(1)(k1))

×(k · S(1)(k2)) + (2 perms)], (A27)

F s(1),Ψ(1),Ψ(1)

3 + FΨ(1),∆s(2)

3 + F
(Ψ

(1)
i

Ψ
(1)
j

∇i∇j)s
(1)

3

=
1

6
[(k · S(1)(k1))(k23·L

(1)(k2))

×(k23·L
(1)(k3)) + (2 perms)]. (A28)

The third-order kernel for the reconstructed density fields
after reconstruction are then summarized as

F
(rec)
3 (k1,k2,k3) = F3(k1,k2,k3)

+
1

6

[

2(k · S(1)(k1))F2(k2,k3)

+(k · S(1)(k1))(k · S(1)(k2))

+(k · S(2)(k1,k2)) + (2 perms.)
]

, (A29)

where F3 is the third-order kernel before reconstruction.
The first term including the second-order Eulerian kernel
comes from the sum of the equations (A25) and (A28).

When (k1,k2,k3)=(k,p,−p), each component of the
third-order kernel becomes

FΨ(2)·∇s(1)

3 + F s(1),Ψ(2)

3 = 0, (A30)

F
(Ψ(1)·∇)s(2)

3 + FΨ(1),s(2)

3 = −
W (k∗)

3

(

1− rµ

1 + r2 − 2rµ

)

×

(

10r + 4rµ2 − 7r2µ− 7µ

7r

)

, (A31)

F s(1),∆s(2)

3 + FΨ(1),s(1),s(1)

3 = −
W 2(kr)

6

µ2

r2
, (A32)

F s(1),Ψ(1),Ψ(1)

3 + FΨ(1),∆s(2)

3 + F
(Ψ

(1)
i

Ψ
(1)
j

∇i∇j)s
(1)

3

=
W (kr)

3
µ2

(

1 +
1

r2

)

, (A33)

where r = p/k, µ = k · p/(kp) and k∗ ≡ k(1 + r2 −
2rx)1/2.

3. F
(rec)
3 in 2LPT reconstruction

When reconstructing using 2LPT approximation in-
stead of ZA, the second-order of the shift density field is
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altered as

s̃
(2)
k = −iW (k)L(1)(k)δ̃

(2)
k +

iD2(z)

2

∫

dk1dk2

(2π)3

×δD (k1 + k2 − k)W1W2L
(2)(k1,k2)δ̃

(1)
k1

δ̃
(1)
k2

,

(A34)

This corresponds to that the second-order kernel for the
shift field in the 2LPT reconstruction as

S(2)(k1,k2) → S(2)(k1,k2) +W1W2L
(2)(k1,k2). (A35)

When (k1,k2,k3)=(k,p,−p), the equation (A31) be-
comes

F
(Ψ(1)·∇)s(2)

3 + FΨ(1),s(2)

3 = −
W (k∗)

3

(

1− rµ

1 + r2 − 2rµ

)

×

(

10r + 4rµ2 − 7r2µ− 7µ

7r

)

+W (k)W (kr)
(1 − rµ)(1 − µ2)

7(1 + r2 − 2rµ)
. (A36)
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