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1 Introduction

The last few years have seen a growing interest in higher derivative theories, i.e. theo-

ries with second or higher derivatives in the action, mainly motivated by model building

for inflation and dark energy or modified gravity. Much of this work builds on the old

theorem of Ostrogradsky [1, 2]. This theorem implies that, in the absence of any degene-

racies,1 a higher derivative theory will have additional degrees of freedom that are ghost

like. Therefore, healthy higher derivative theories are necessarily degenerate, i.e. they are

constrained systems.

1The word “degenerate” is associated with the Hessian matrix of the Lagrangian with respect to the

velocities. A degenerate Hessian matrix implies that the system of momenta cannot be inverted and

therefore there are primary constraints. Further details can be found in appendices A and B as well as

e.g. [3, 4].
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In the simple example of a mechanical system with a single variable, it can be seen

that any degenerate higher derivative theory amounts to an ordinary and thus healthy

theory, with at most first derivatives in the action, up to an irrelevant total derivative.

Such higher derivative theories are therefore trivial. This invites question marks regarding

the usefulness of higher derivative theories. Interestingly, in more general contexts, there

can be degenerate yet nontrivial higher derivative theories.

The first step beyond trivial higher derivatives regards field theories. A prime ex-

ample is (generalized) Galileon theories, consisting of a single scalar field with Lorentz

invariant higher derivative interactions [5, 6]. A similar construction for the spin-2 tensor

leads to Lovelock gravity with specific Rn interactions [7]. Remarkably, these interactions

have been chosen such that they still lead to second order field equations, thus evading

the Ostrogradsky theorem.2 This can be understood by the observation that the higher

derivative interactions can be packaged into an ordinary Lagrangian plus a total derivative,

similar to the mechanics case; however, this ordinary Lagrangian cannot be written in a

manifestly Lorentz invariant form. This trade off between manifest first order Lagrangians

and manifestly Lorentz invariant Lagrangians (and the impossibility to have both) will be

a recurring theme in the present paper.

A second generalization, and equally relevant to the present work, concerns coupled

systems with multiple variables or fields. Similar to the case with a single variable, for

many years the community only trusted a very special subset of these theories, namely the

ones giving second order field equations while (erroneously) assuming that all the others are

plagued by instabilities. For instance, the most general scalar-tensor theories with second

order field equations are those of Horndeski [11], which coincide [12] with covariantized

generalized Galileons [13, 14]. Similarly, covariant vector Galileons describe such couplings

between a vector and tensor [10, 15, 16]. Very recently this was generalized to covariant

tensor Galileons for the couplings between different tensors [17].

Only very recently it has been realised that one can have healthy degenerate higher

derivative theories even in the presence of higher order field equations, with the proposal

of beyond Horndeski models [18–20]. These models have been further understood and gen-

eralised in [21–28] and now a complete classification for degenerate scalar-tensor theories

within a certain Ansatz exists [29]. Analogously, similar constructions for vector interac-

tions were introduced in [30] and a classification for degenerate vector-tensor theories (up

to quadratic order) was given in [31].

A central theme of these constructions is the coupling between a higher derivative

degree of freedom and a healthy first order one. In the above examples, these are a scalar

and a tensor or a vector and a tensor, respectively. This interplay between higher derivative

and healthy sectors was analyzed in full generality in the mechanics case in [32] and [33],

where respectively a Hamiltonian and Lagrangian constraint analysis have been performed,

leading to conditions that ensure the absence of Ostrogradsky ghosts. The aim of this paper

2Note that having second order field equations in a degenerate theory does not guarantee the absence

of additional ghosts; in general other conditions might be necessary. In fact, in some cases these additional

ghosts are actually interpretable as Ostrogradsky ghosts upon using a different field basis to describe the

theory, see e.g. massive gravity [8, 9] and vector Galileons [10].
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is to perform a similarly general analysis for the case of (Lorentz invariant) field theories,

and to classify which nontrivial theories this allows for.

Specifically, we consider field theories whose Lagrangians depend on M higher deriva-

tive fields φm and A ‘healthy’ fields qα:

L(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα) . (1.1)

We only include dependence up to second derivatives;3 we will comment on yet higher

derivative structures in the concluding section. Moreover, we make the following assump-

tions:

• The higher derivative fields are treated on an equal footing in the sense that we

assume all the constraints coming in sets of M . Since we are only interested in the

case where the Lagrangians truly depend on the second order time derivatives of the

higher derivative fields, we assume that4 Lφ̈m 6= 0 for all m. Also, we aim to remove

only the Ostrogradsky modes, so we do not consider the case of extra constraints

that further reduce the number of degrees of freedom (dof).

• The theories we consider posses no gauge symmetries. In the Lagrangian analysis this

means that we do not encounter any gauge identities, i.e. combinations of equations

of motion (eom) that vanish identically. In the Hamiltonian analysis this means that

no first class constraints are present, i.e. we assume all constraints to be second class.

• We are not interested in possible degeneracies in the healthy sector. We thus assume

that the healthy sector itself is non-degenerate, which is precisely the case when the

kinetic matrix Lq̇αq̇β is invertible.

No further assumptions are made about the functional dependence of the Lagrangian;

f.e. it does not need to be polynomial in the highest derivatives. Also, we do not assume

any global symmetry, space-time or internal. This means that we also consider Lorentz

violating theories, although we will also specifically address Lorentz invariant ones.

Let us conclude by giving a short overview of the structure of the paper. In section 2

we state (the complete analyses can be found in appendix A and B) and interpret our

results following from the Lagrangian and Hamiltonian analyses of the theories described

above. Specifically, we analyse the conditions to remove Ostrogradsky modes, in particular

in relation to the structure of the eom and the counting of dof. We first review the

results already obtained for mechanical systems and subsequently generalise them to the

field theory case. We conclude the section with a discussion of the special properties

of Lorentz invariant theories. In section 3 we propose a formal classification for healthy

3Note that we do not include dependence on mixed or pure spatial higher order derivatives, e.g. ∂iq̇α,

∂iφ̈m, ∂i∂jqα, etc. which would be allowed in non-Lorentz invariant field theories. Although including such

dependences would in principle modify the analysis and the resulting degeneracy conditions, we believe

the general structures will remain unchanged. Therefore, in order to not clutter up the formulae and the

discussion, we refrain from this more general analysis.
4Throughout the paper we use the notation Lψ ≡ ∂L/∂ψ, where ψ can be a field or space/time derivatives

of a field. Later we will also use the notation Eψ to denote the equations of motion respect to ψ.
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higher derivative theories and analyse their properties in more detail. In particular we

discuss how different classes can be related via field redefinitions and/or (extended) contact

transformations. Again we give special attention to Lorentz invariant theories. We draw a

number of conclusions in section 4.

2 Structure of degeneracy conditions

In this section we analyze and discuss the degeneracy conditions, and their implication

for the field equations, for three different systems: mechanics and (Lorentz invariant) field

theories. The field theory derivation closely follows that of mechanics, which has been

performed both in the Hamiltonian [32] and Lagrangian [33] framework, and therefore has

been placed in appendix A and B.

2.1 Mechanical systems

We will start with a short recap of the results of [32, 33]. Starting from a generic Lagrangian

L = L(φ̈m, φ̇m, φm, q̇α, qα) , (2.1)

that satisfies the assumptions in the Introduction, one can put the theory in a first order

form using auxiliary fields, and perform a Lagrangian and/or Hamiltonian analysis to

determine the number of propagating dof. For a generic theory, i.e. non-degenerate, it

follows that no constraints are present and the theory propagates 2M + A degrees of

freedom, M of which are Ostrogradsky ghosts. Healthy theories are therefore necessarily

degenerate (constrained) systems.

A key concept in the discussion of the degeneracy conditions are the vectors

vAm = (δnm, V
α
m) with V α

m ≡ −Lφ̈mq̇βL
−1
q̇β q̇α

, (2.2)

where the index A spans over the set (n, α). The primary conditions amount to the

requirement that these are null eigenvectors5 of the Hessian matrix of the Lagrangian with

respect to the velocities ψ̇A of the collection ψA ≡ (φ̇m, qα):

0 = P(mn) ≡ vAmLψ̇Aψ̇Bv
B
n

= Lφ̈mφ̈n + Lφ̈mq̇αV
α
n . (2.3)

Additionally, one must satisfy the secondary conditions:

0 = S[mn] ≡ 2 vAmLψ̇[AψB]
vBn

= 2
(
Lφ̈[mφ̇n] + V α

[mLq̇αφ̇n] + Lφ̈[mqβV
β
n] + V α

mLq̇[αqβ]V
β
n

)
. (2.4)

Satisfying the primary conditions ensures the existence of M primary constraints. The

secondary conditions in turn guarantee the existence of M secondary constraints. There-

fore, if one satisfies both, a total number of 2M constraints are present and we end up

5Due to the normalization used in (2.2), in the following we will often refer to the components V αm as

the null eigenvectors themselves.

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
1
2
4

with a total of 2M + A − 1
2(2M) = M + A dof. All the Ostrogradsky degrees of freedom

are absent.

The role of the primary and secondary conditions can be made clear at the level of the

original equations of motion. First observe that one can always, whether the conditions

are satisfied or not, get rid of the third and second order time derivatives of qα in Eφm by

considering the combination:

Eφm +
d

dt
(V α
mEqα) + UαmEqα = P(mn)φ

(4)
n +

(...
φ, q̇, . . .

)
, (2.5)

where Uαm is defined in (A.21). If the primary and secondary conditions are not satisfied,

this is the best one can do. One can in principle solve for φm if one specifies 4M + 2A

initial conditions, (
...
φm, φ̈m, φ̇m, φm)0 and (q̇α, qα)0. Since Eqα depends on at most

...
φ and

q̈, one can subsequently solve for q̈α without having to specify additional initial conditions.

Hence 1
2(4M + 2A) = 2M +A dof propagate.

On the other hand, if the primary conditions are satisfied, the φ
(4)
m terms and also the

terms nonlinear in
...
φm are absent and one finds

Eφm +
d

dt
(V α
mEqα) + UαmEqα = S[mn]

...
φn +

(
φ̈, q̇, . . .

)
. (2.6)

If also the secondary conditions hold, the terms linear in
...
φm drop out and one ends up

with equations that contain at most φ̈m and q̇α. These particular combinations thus tell

us that one can express the initial values (
...
φm, φ̈m)0 in terms of (φ̇m, φm)0 and (q̇α, qα)0.

Therefore, to solve the full set of equations of motion, one only needs to specify 2M + 2A

initial conditions, implying that M +A degrees of freedom propagate.

Let us conclude the discussion observing that P(mn) and S[mn] are generically inde-

pendent; indeed, there exist theories where the primary conditions are satisfied but the

secondary are not. Let us see what this structure implies for the number of degrees of free-

dom of such theories. First assume that we have an even number of primary constraints.

Generically no secondary constraints are present and one finds an integer number of de-

grees of freedom. Now assume that there are an odd number of primary constraints. In this

case there is automatically also 1 secondary constraint: since S[mn] is antisymmetric and

odd-dimensional, it has one null eigenvalue, leading therefore to a secondary constraint.

Thus also in the case of an odd number of primary constraints, one generically has an

even number of total constraints and so an integer number of degrees of freedom. Let us

note however that these partially degenerate theories are still haunted by Ostrogradsky

ghosts unless the secondary constraint is complemented by additional (tertiary, quartic,

etc.) ones [34]. Note that the antisymmetry of the secondary conditions implies that if

only one higher derivative variable is present, the primary condition actually implies the

secondary condition.

2.2 Field theories

Now, let us look at the analysis for the field theory case. Starting from

L(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα) , (2.7)

– 5 –
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again one can put the Lagrangian in a first order form via the introduction of auxiliary

fields and perform a Lagrangian and Hamiltonian constraint analysis. We have performed

both the analyses whose details are given in appendix A and B.

In particular we find that in order to eliminate the Ostrogradsky modes one must

now satisfy three sets of conditions, namely one set of primary conditions and two sets of

secondary conditions:

0 = P(mn) ≡ vAmLψ̇Aψ̇Bv
B
n

= Lφ̈mφ̈n + Lφ̈mq̇αV
α
n , (2.8)

0 = (Si)(mn) ≡ 2 vAmLψ̇(A∂iψB)
vBn

= 2Lφ̈(m∂iφ̇n) + 2V α
(m

(
Lq̇α∂iφ̇n) + L∂iqαφ̈n)

)
+ 2V α

mLq̇(α∂iqβ)V
β
n , (2.9)

0 = S[mn] ≡ 2 vAmLψ̇[AψB]
vBn + 2 vA[mLψ̇A∂iψB∂iv

B
n] − ∂i

(
vAmLψ̇[A∂iψB]

vBn

)
= 2

(
Lφ̈[mφ̇n] + V α

[mLq̇αφ̇n] + Lφ̈[mqβV
β
n] + V α

mLq̇[αqβ]V
β
n

)
+ ∂iL∂iφ̇[mφ̈n] + V α

[m∂iL∂iqαφ̈n] + ∂iL∂iφ̇[mq̇βV
β
n] + V α

m∂iL∂iq[αq̇β]V
β
n

+ ∂iV
β

[n

(
L∂iφ̇m]q̇β

+ Lφ̈m]∂iqβ
+ 2V α

m]Lq̇(α∂iqβ)

)
. (2.10)

Similarly to the mechanics case, satisfying the primary conditions enforces the existence

of M primary constraints. In order to have also M secondary constraints, one must now

satisfy both the secondary conditions.

Again the role of the conditions becomes clear when looking at the equations of motion.

Regardless of whether one satisfies any of the constraints, one can always get rid of
...
q α,

∂iq̈α and q̈α in Eφm , by considering the following combination of equations

Eφm +
d

dt
(V α
mEqα) + ∂i(α

iα
mEqα) + UαmEqα = P(mn)φ

(4)
n +

(
∂i

...
φ,

...
φ, q̇ . . .

)
, (2.11)

where αiαm is defined in (A.22). If one satisfies the primary conditions, one can get rid of

the φ
(4)
m terms and find

Eφm +
d

dt
(V α
mEqα) + ∂i(α

iα
mEqα) + UαmEqα = (Si)(mn)∂i

...
φn +

(...
φ, q̇ . . .

)
. (2.12)

Hence, if the symmetric secondary conditions are satisfied, the mixed higher order terms

∂i
...
φm also drop out leading to

Eφm +
d

dt
(V α
mEqα) + ∂i(α

iα
mEqα) + UαmEqα = S[mn]

...
φn +

(
φ̈, q̇, . . .

)
, (2.13)

such that, if one satisfies the antisymmetric secondary conditions, one can lastly get rid of

the
...
φm terms, getting equations containing at most φ̈m and q̇α (and up to second order

spatial derivatives thereof). Therefore it is again clear that one does not need to specify

the naive amount of 4M+2A initial conditions to solve the equations of motion, but rather

only 2M +A, thus leading to M +A propagating degrees of freedom.

– 6 –
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Let us see how the presence of the additional, independent, symmetric secondary con-

ditions modifies the dof counting (compared to the mechanics case) for partially degenerate

theories where only the primary conditions are satisfied. If we have an even number of pri-

mary constraints there is no difference: there is an integer number of degrees of freedom.

However, if we have an odd number of primary constraints, one generically has a non-

integer number of degrees of freedom. This is due to the presence of the set of symmetric

secondary conditions which, unlike the antisymmetric conditions, is not guaranteed to have

a null eigenvalue. Therefore, generically no secondary constraints are present and a “half”

degree of freedom propagates. This pathology is known to be present in some Lorentz

breaking modifications of GR, such as Horava-Lifschitz [35] or Lorentz breaking massive

gravity [36].

2.3 Lorentz invariant theories

So far we have made no assumptions concerning possible global symmetries the theories

might have. In this section we consider the case of Lorentz invariant theories. We restrict

ourselves to the case where all the fields are scalars under Lorentz transformations. Indeed,

if one wants theories that solely propagate healthy spin 1 or 2 degrees of freedom, one is

automatically led to additional degeneracies, already in the healthy sector. For example,

describing a massless spin 1 degree of freedom via a vector field, necessarily implies the ex-

istence of a U(1) gauge symmetry, which goes beyond our ansatz. Similarly a massless spin

2 degree of freedom implies diffeomorphism invariance, again going beyond our assump-

tions. Also the massive spin 1 / spin 2 degrees of freedom imply additional degeneracies

in the healthy sector (although they are not of the gauge type). Therefore to stay in our

setup, we restrict ourselves to Lorentz invariant scalar field theories.

Let us start looking at what Lorentz invariance implies in this case. By definition

we get

L̄(φ, ∂µφ, ∂µ∂νφ) ≡ L(φ, (Λ−1) ρ
µ ∂ρφ, (Λ

−1) ρ
µ (Λ−1) σ

ν ∂ρ∂σφ)

= L(φ, ∂µφ, ∂µ∂νφ) + ∂µ(Jµ(φ, ∂µφ)) , (2.14)

where in the first line the fields are evaluated at x′ = Λx, and in the second line at

x. However, in the following the dependence on space-time of the various fields will be

understood. Using an infinitesimal form (Λ−1) ν
µ = δνµ − ω ν

µ and subsequently expanding

the left and right hand side to first order, we find

L̄ = L+ δL = L+ ∂µδJ
µ , (2.15)

where

δL = Lφmδφm + L∂µφmδ∂µφm + L∂µ∂νφmδ∂µ∂νφm + Lqαδqα + L∂µqαδ∂µqα , (2.16)

and

δφm = δqα = 0, δ∂µφm = −ω ρ
µ ∂ρφm ,

δ∂µqα = −ω ρ
µ ∂ρqα, δ∂µ∂νφm = −ω ρ

µ ∂ρ∂νφm − ω ρ
ν ∂µ∂ρφm . (2.17)

– 7 –
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Now, since the theory is Lorentz invariant, a Lorentz transformation does not change the

degeneracy structure and

P̄(mn) = P(mn) + δP(mn) = 0 , (2.18)

where

δP(mn) = vAm(δL)ψ̇Aψ̇Bv
B
n

= (δL)φ̈mφ̈n + (δL)φ̈mq̇αV
α
n + V β

m(δL)φ̈nq̇β + V α
m(δL)q̇αq̇βV

β
n . (2.19)

Therefore, if the primary conditions are satisfied, also δP(mn) vanishes. Considering the

boost transformation in the i-direction, and denoting the corresponding variation by δi, it

follows that

0 = δiP(mn) = (P(mn))Ψ̇j
∂iΨj + (P(mn))∂iΨj Ψ̇j + (Si)(mn) , (2.20)

where we introduced the notation Ψ ≡ {φm, ∂µφm, ∂µφm, qα}. Hence if the primary condi-

tions are satisfied, automatically the symmetric secondary conditions are satisfied as well.

Therefore, in Lorentz invariant theories, only the primary and antisymmetric secondary

conditions remain, much resembling the mechanics case.

At the level of the equations of motion, this means that if one can get rid of the fourth

order time derivative terms φ
(4)
m in Eφm , then one can automatically also get rid of the

mixed terms ∂i
...
φm. Let us note however that, in general, this cannot be done in a Lorentz

covariant manner. This is because the combinations

Eφm +
d

dt
(V α
mEqα) + ∂i(α

iα
mEqα) + UαmEqα , (2.21)

are Lorentz invariant only if Wµα
m ≡ (V α

m, α
iα
m ) is a Lorentz vector and Uαm is a Lorentz

scalar, which, in general, is not the case. An example of such a theory is given in the next

section (see eq. (3.16)). Therefore, there is generically a tradeoff between manifest Lorentz

invariance (LI) and manifestly lower order equations of motion: either the equations are

manifestly Lorentz invariant and higher order, or the equations are not manifestly Lorentz

invariant but lower order. Of course, there are also theories for which it can be done in

a Lorentz covariant manner. This different behavior divides the set of healthy LI higher

derivative theories in two subclasses. We will come back to this point in the next section.

Let us conclude by highlighting an important property of the number of degrees of

freedom for partially degenerate Lorentz invariant theories. As noted, the structure of the

constraint conditions for Lorentz invariant theories much resembles the one of mechanical

systems. Since the symmetric secondary conditions are automatically satisfied if the pri-

mary conditions are, the counting of dof goes in the same way as for the mechanics case:

one always has an integer number of degrees of freedom. We have thus explicitly shown

how Lorentz invariance protects from the propagation of “half” dof. This is relevant for

many theories of interest where there is a single (second class) primary constraint. In these

theories, one does not need to check the existence of a companion secondary constraint in

order to completely remove the ghost, as its presence is assured as a consequence of Lorentz

invariance. We expect that this property still holds for more general cases that go beyond

the present analysis of scalar theories; examples of this kind are dRGT massive gravity [8]

and degenerate scalar-tensor theories [29].

– 8 –
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3 Analysis of degeneracy classes

Having derived the conditions needed to ensure the absence of ghosts in higher derivative

theories, we will provide a formal classification according to generic structures one finds

within the class of healthy higher derivative theories.6 In particular we will argue that one

should distinguish the following dependences of the nullvectors (2.2):

• Class I: V α
m = 0.

• Class II: V α
m = V α

m(φn, ∂µφn, qβ).

• Class III: V α
m = V α

m(φn, ∂µφn, qβ , ∂µ∂νφn, ∂µqβ).

Note that we defined the classes to be disjoint. For each class we will focus on the structure

of the constraints and address the question under what conditions field redefinitions and/or

(extended) contact transformations7 can put the theories in standard or simpler forms.

Again we will consider mechanical systems, generic Lorentz violating field theories and

Lorentz invariant field theories.

3.1 Trivial constraints (class I)

If V α
m vanishes, there is no coupling between φ̈m and q̇α, and hence the degeneracy is fully

contained in the higher derivative sector and not due to the coupling to a healthy sector. In

the Hamiltonian picture, the constraints are simply given by the conjugate momenta of the

higher order fields. Since the primary conditions reduce to Lφ̈mφ̈n = 0, these theories are

necessarily linear in second order time derivatives. In fact, from the simplified secondary

conditions, one can see that the equations of motion are automatically free of problematic

terms, i.e. they contain at most second order time derivatives of the fields (although they

can contain mixed higher order terms like ∂iφ̈m, etc.).

In the case of mechanical systems this class is particularly simple. The primary con-

ditions imply linearity in φ̈m,

LI(φ̈m, φ̇m, φm, q̇α, qα) = φ̈nf
n(φ̇m, φm, qα) + g(φ̇m, φm, q̇α, qα) , (3.1)

whereas the secondary conditions, fm
φ̇n

= fn
φ̇m

, ensure the existence of a function,

F (φ̇m, φm, qα), such that Fφ̇m = fm. As a result the terms linear in φ̈m can be absorbed

in a total derivative and one concludes that Class I is actually equal to the class of first

order Lagrangians modulo total derivatives:

LI(φ̈m, φ̇m, φm, q̇α, qα) = L(φ̇m, φm, q̇α, qα) +
d

dt
F (φ̇m, φm, qα) , (3.2)

and as such no truly higher derivatives are present in this class.

6Due to the very complicated nature of the conditions (they constitute a set of highly nonlinear coupled

partial differential equations), they cannot be solved in full generality. One could restrict oneself to theories

polynomial in φ̈m and q̇α, and do an order by order analysis in the number of fields and the power of the

derivative terms. However, this quickly becomes intractable due to the large amount of functional freedom

in the general and LI case, again leading to many conditions on these functions given as sets of coupled

differential equations that cannot be easily solved. We therefore refrain from such an analysis.
7An extended discussion about our terminology and the possible redefinitions can be found in appendix C.
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Turning to field theories, the primary conditions again imply linearity

LI(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα) = φ̈nf
n(∂i∂µφm, ∂µφm, φm, ∂iqα, qα) (3.3)

+ g(∂i∂µφm, ∂µφm, φm, ∂µqα, qα) , (3.4)

and fm now has to satisfy the two secondary conditions

0 =
∂fm

∂(∂iφ̇n)
+

∂fn

∂(∂iφ̇m)
, (3.5)

0 =
∂fm

∂φ̇n
− ∂fn

∂φ̇m
− 1

2
∂i

(
∂fm

∂(∂iφ̇n)
− ∂fn

∂(∂iφ̇m)

)
. (3.6)

It is not clear whether one can always find a total derivative that removes the φ̈m terms, as

in the case of mechanical systems. Indeed a suitable total derivative should be of the form

d

dt
F (∂i∂µφm, ∂µφm, φm) = Fφ̇m φ̈m + F∂iφ̇m∂iφ̈m + . . . (3.7)

≈
(
Fφ̇m − ∂iF∂iφ̇m

)
φ̈m + . . . (3.8)

and hence one must require that
(
Fφ̇m − ∂iF∂iφ̇m

)
= fm. We do not know whether for

any fm satisfying the secondary conditions (3.5) and (3.6), such a function F exists.

We note that if fm does not depend on ∂iφ̇n (which is always the case when only

one higher derivative field is present), condition (3.5) disappears and (3.6) reduces to that

of mechanics. As a consequence a total derivative, that puts the theory in a manifestly

healthy form, can always be found.

Lastly, let us consider field theories that are manifestly Lorentz invariant. Since the

equations of motion are also manifestly Lorentz invariant, they do not contain any higher

order mixed terms, and are thus purely second order.8 Therefore, this class corresponds

to the most general set of Lorentz invariant scalar field theories that yield second order

equations of motion, and thus contains multi-Galileons [37–39] and their known general-

izations [40, 41]. At the present time it is unknown what the most general form of such

theories is, however as shown in [42], they are polynomial in second derivatives and have

a particular antisymmetric structure. This antisymmetric structure implies that fm never

depends on ∂iφ̇m and thus Lorentz invariant theories can always be rewritten in a mani-

festly healthy form via a total derivative. Of course, this total derivative does not need to

respect manifest Lorentz invariance.

3.2 Linear constraints (class II)

In this class, in contrast to the former one, there is a nontrivial coupling between the

healthy and higher derivative sector. This nontrivial coupling is responsible for the higher

order terms in the equations of motion, although, as we have seen in the previous section,

one can always get rid of these terms. In the Hamiltonian picture the constraints are given

8This implies that not only V αm = 0 but also αiαm = 0, since if V αm vanishes then Eqα = −αiβmLq̇β q̇α∂iφ̈m+

(. . . ).
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by linear combinations of the conjugate momenta. Naively one would expect that Class

II truly goes beyond Class I, however it turns out that one can always perform a field

redefinition to put a theory in Class II in a form belonging to Class I: one can always

disentangle the higher derivative sector from the healthy one.

To be precise, we will show that V α
m = V α

m(qβ , φn, ∂µφn) if and only if there exists an

invertible field redefinition of the form

q̄α = q̄α(qβ , φn, ∂µφn) , (3.9)

such that

LII(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα) = L̄I(∂µ∂νφm, ∂µφm, φm, ∂µq̄α, q̄α) . (3.10)

Necessity is easily established by starting from a theory in Class I, performing such a

field redefinition and observing that V α
m = − ∂q̄β

∂φ̇m
(
∂q̄β
∂qα

)−1, and thus V α
m = V α

m(qβ , φn, ∂µφn).

Sufficiency requires a bit more work. Consider the following system of partial differ-

ential equations
∂u

∂φ̇m
+ V β

m(qα, φn, ∂µφn)
∂u

∂qβ
= 0 . (3.11)

Applying Frobenius’ theorem one finds that it has A independent solutions, call them q̄α,

if and only if the following integrability conditions are satisfied

0 =
∂V β

n

∂φ̇m
− ∂V β

m

∂φ̇n
+ V α

m

∂V β
n

∂qα
− V α

n

∂V β
m

∂qα
≡ Fβmn . (3.12)

Explicitly calculating these conditions, using the specific dependence of V α
m and the fact

that LII satisfies the primary conditions, we obtain

Fβmn = L−1
q̇β q̇α

∂

∂q̇α
S[mn] . (3.13)

Therefore it vanishes by virtue of the antisymmetric secondary conditions. By subse-

quently using the nondegeneracy of the healthy sector and the fact that q̄α are inde-

pendent, one can conclude that ∂q̄α
∂qβ

is invertible. Thus there always exists an invert-

ible field redefinition q̄α that satisfies (3.11). Now let L̄(∂µ∂νφm, ∂µφm, φm, ∂µq̄α, q̄α) ≡
LII(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα), then their null vectors are related as

V̄ α
m =

∂q̄α

∂φ̇m
+ V β

m

∂q̄α
∂qβ

. (3.14)

Thus, since q̄α satisfies (3.11), we observe that V̄ α
m = 0 and the Lagrangian L̄ belongs to

Class I, concluding our proof.

Turning to manifestly Lorentz invariant theories we note that, although they can be

mapped to Class I via the above field redefinition, this transformation does not need to be

compatible with manifest Lorentz invariance. That is, the transformed Lagrangian might

not be manifestly Lorentz invariant. As we show in appendix C.2, a Lorentz invariant field

redefinition exists if and only if Wµα
m ≡ (V α

m, α
iα
m ) is a Lorentz vector and

∂Wµβ
n

∂∂νφm
− ∂W νβ

m

∂∂µφn
+W να

m

∂Wµβ
n

∂qα
−Wµα

n

∂W νβ
m

∂qα
= 0 . (3.15)
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Therefore, any theory for which this is the case, is related to the most general, generalized

multi-Galileon theory via a Lorentz invariant field redefinition, and thus does not truly go

beyond the second order equations of motion ansatz. In the opposite case instead, they

really go beyond these theories. To see that this set is non-empty, consider for example

the following bi-scalar theory

LII = (q�φ+ 2∂µq∂
µφ)2 , (3.16)

for which one can easily check that it is healthy and Wµ is not a Lorentz vector. Analo-

gous theories in the context of degenerate scalar-tensor theories are those that cannot be

mapped to Horndeski Lagrangians through generalized conformal and disformal transfor-

mations [25, 26, 29].

3.3 Nonlinear constraints (class III)

The dependence of the nullvectors on q̇ and φ̈, implies that the constraints in the Hamil-

tonian picture are nonlinear, in contrast to the linear ones of Class II. This has several

implications regarding the structure of these theories.

To examine things further let us focus on mechanical systems, and in particular those

systems with only one higher derivative variable but A healthy variables. In this case the

primary conditions reduce to the homogeneous Monge-Ampere equation in A dimensions

and a general solution (for which Vα depends on φ̈ and q̇) can be given in parametric

form [43, 44]. The secondary conditions are then automatically satisfied as explained in

section 2.2. This parametric form is given by

L = φ̈L+ E +
∂L
∂Vα
Qα . (3.17)

Here L and E are arbitrary functions of the nullvector Vα and also φ, φ̇ and q, and

Qα = −
(

∂2L
∂Vα∂Vβ

)−1
∂E
∂Vβ

; (3.18)

in turn Vα has to satisfy the following relation

φ̈ Vα +Qα(Vβ) = q̇α . (3.19)

To obtain explicit solutions, one first chooses the functions L and E and subsequently

solves (3.19) for Vα(φ̈, q̇β , φ̇, φ, qβ). Then plugging it into (3.17), one obtains an explicit

Lagrangian in terms of the variables φ and qα.

Given this general solution, we will now examine whether one can put it into manifestly

healthy forms via known transformations. Because it is easy to generate explicit examples

we will focus on the A = 1 case. Let us first observe that, in contrast to Class II, Class III

cannot be rewritten into a simpler class via the field redefinitions considered for Class II.

This can be seen by noting that the nullvectors of two theories (in any class) related via

such transformations, q̄ = q̄(q, φ, φ̇), are related by

V =

(
V̄ − ∂q̄

∂φ̇

)(
∂q̄

∂q

)−1

. (3.20)
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Hence, starting from a theory in Class I/II, one always ends up in another theory in

Class I/II. Therefore, starting from Class III, one always remains in Class III with these

redefinitions.

As shown in appendix C, there is a much larger set of transformations one can consider,

namely (extended) contact transformations of the form

t̄ = at+ f(φ, φ̇, q), (3.21)

φ̄ = g(φ, φ̇, q), φ̄′ = G(φ, φ̇, q), φ̄′′ = G(φ, φ̇, φ̈, q, q̇), (3.22)

q̄ = h(φ, φ̇, q), q̄′ = H(φ, φ̇, φ̈, q, q̇), (3.23)

where f and g must satisfy a set of differential equations given in equation (C.17) and G, G
and H follow from f , g and h. Starting from a theory in Class I, L̄I , and performing such

a transformation (with hq, fφ̇ 6= 0), one obtains a theory in Class III, LIII . In particular

one finds

LIII(φ̈, φ̇, φ, q̇, q) =
dt̄

dt
L̄I(φ̄

′′, φ̄′, φ̄, q̄′, q̄) , (3.24)

whose nullvector is given by

V = −∂q̄
′

∂φ̈

(
∂q̄′

∂q̇

)−1

=
C + q̇

D + φ̈
, (3.25)

where

C =
(fφ̇hφ − hφ̇fφ)φ̇− hφ̇a

fφ̇hq − hφ̇fq
, D =

(hqfφ − fqhφ)φ̇+ hqa

fφ̇hq − hφ̇fq
. (3.26)

Generic choices for the function Q in (3.19) however, yield nullvectors whose dependence

on φ̈ and q̇ is not of this form, and thus not every theory in Class III can be reached from

Class I. Interestingly, the simplest option, namely to select L and E such that Q is linear

in V , i.e. Q = B V −A, yields

V =
A(φ, φ̇, q) + q̇

B(φ, φ̇, q) + φ̈
. (3.27)

However, it is not clear to us whether one can, for any A and B, find a redefinition such

that C = A and D = B. Regardless, one concludes that at most a very small subset of

Class III can be mapped to Class I via these transformations.

We expect that also for the general case of M higher derivative variables and A healthy

variables, one cannot reduce all Class III theories to Class I. In fact, the effectiveness

of contact transformations actually seems to be reduced in the case where more higher

derivative fields are present, since no nontrivial contact transformations (i.e. those not

following from point transformations) exist involving more than one dependent variable

(i.e. multiple φm). Although we have not analysed them in detail, we expect that the

above results also apply to field theories, since they are generically more complicated. This

also includes the specific subset of Lorentz invariant field theories, since they behave very

much like mechanical systems.

To summarise, most of the theories in Class III are intrinsically higher order and cannot

be brought to a standard, first order form, via known transformations. This is due to the

non-linear nature of their constraints.
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4 Conclusions

We have performed a constraints analysis of field theories with coupled degrees of freedom.

Restricting to theories without gauge symmetries, we have derived the conditions in order

to evade the Ostrogradsky ghosts. They amount to a set of symmetric primary condi-

tions and two sets of secondary conditions, one symmetric and the other antisymmetric.

Remarkably, the symmetric secondary conditions are automatically enforced by Lorentz in-

variance, explaining how it explicitly protects from the propagation of pathological “half”

degrees of freedom.

Secondly, we have outlined a number of classes of degenerate theories, depending on

the properties of the null vector, and proved a number of equivalence relations between

these classes. This classification is illustrated in figure 1 and its most salient features are:

• All Lorentz invariant field theories in Class I can be written in a manifestly healthy,

first-order form, modulo a total derivative; however, one generically sacrifices manifest

Lorentz invariance in doing so.

• All field theories in Class II can be brought to Class I by means of a field redefinition;

again, this does not necessarily preserve manifest Lorentz invariance.

• Only a very small subset of theories in Class III can be brought to Class I by means

of (extended) contact transformations.

We have thus illustrated the transformations that relate higher order theories to first

order ones, and discussed their relation with manifest Lorentz invariance. Also we have

shown which sub-classes of theories are instead intrinsically higher order and cannot be

recast into a manifestly first order form by performing redefinitions and/or adding total

derivatives. In particular this includes the majority of Class III.

For Lorentz invariant theories with a single higher derivative mode, we have shown

how the required secondary constraint needed to completely remove the ghost, is always

present when a primary constraint is present. This applies in principle to beyond Horndesky

theories, as well as dRGT massive gravity, saving one from a complicated analysis to confirm

its existence.

Amongst the topics we have not touched there is the inclusion of degeneracies in

the healthy sector, e.g. arising from gauge symmetries or the absence of specific kinetic

terms. This option would be necessary in order to go beyond scalar fields and discuss

other (bosonic) Lorentz representations. We expect the implications of Lorentz invariance

regarding the structure of the constraints to be similar in such cases. Similarly, we have

only included up to second order derivatives, whereas there are also healthy third or higher

order theories. It is clear however, that the corresponding constraint analysis is significantly

more involved than the one presently performed, and we leave this study for future work.
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Figure 1. Schematic representation of the three different classes of theories and their connections.

Class II theories can always be put in Class I form via field redefinitions. Only a very small subset

of theories in Class III can be brought to Class I with extended contact transformations. Finally,

Lorentz invariant theories in Class I can be reduced to standard, first order form by adding a

total derivative.

A Lagrangian analysis

In this appendix we perform the Lagrangian constraint analysis [3, 4] for the general La-

grangian (1.1):

L(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα) , (A.1)

and derive the conditions that, within our assumptions, are necessary and sufficient for the

existence of the right amount of primary and secondary Lagrangian constraints to ensure

that the Ostrogradsky degrees of freedom are eliminated. The analysis closely follows that

of [33], where it has been done for mechanical systems. Let us give a short summary of the

algorithm in the case of mechanical systems:

• First one puts the theory in a manifestly first order form by introducing suitable

auxiliary fields. Then one calculates the equations of motion. These contain terms

with second order time derivatives. One then determines whether combinations of

the equations that do not contain second order time derivatives exist. These are

the constraint equations. After having identified them, one evolves these constraint

equations in time and adjoins these time derivatives with the original set of equations

of motion, obtaining the ‘equations of motion’ which form the starting point of the

next step in the algorithm.

• Next one repeats the analysis only for the larger set of ‘equations of motion’: one

identifies possible additional constraint equations and subsequently evolves them in

time to obtain the set of ‘equations of motion for the next step.
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• This process is repeated until no further constraints are found. At this point the

algorithm terminates and one has uncovered all constraints present in the theory.

Now, if one is considering field theories the algorithm is in essence the same, but one

has to take into account the following points:

• During any given step of the algorithm, spatial derivatives (of any order) of the

‘equations of motion’ of that given step are also allowed in forming possible new

constraint equations.

• At any step of the algorithm the ‘equations of motion’ might contain, in addition to

purely second order time derivatives, problematic terms involving spatial derivatives

of second order time derivatives. Any constraint equation must of course be free

of both types of problematic terms. As we will see the spatial derivatives of the

‘equations of motion’ play a key role in being able to achieve this.

The degrees of freedom in the theory can be determined [45–48] via # d.o.f. = N− 1
2 l ,

where N is the total number of fields (in a first order formulation) and l is the total number

of constraint equations. Here one is assuming that no gauge symmetries are present in

the theory.

A.1 Non-degenerate Lagrangians

First we put the theory in a first order form. This can be done in several equivalent ways,

and we opt for the following:

L(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα) ≈ L(Ȧm, ∂iAm, Am, ∂i∂jφm, ∂iφm, φm, q̇α, ∂iqα)

+ λm(φ̇m −Am) . (A.2)

Now we can proceed with the constraint algorithm, starting off with determining the equa-

tions of motion

EAm ≡ LȦmȦnÄn + LȦmq̇β q̈β + LȦmψψ̇ + L∂iAmχ∂iχ− LAm + λm , (A.3)

Eqα ≡ Lq̇αȦnÄn + Lq̇αq̇β q̈β + Lq̇αψψ̇ + L∂iqαχ∂iχ− Lqα , (A.4)

Eφm ≡ −∂i∂jL∂i∂jφm + ∂iL∂iφm − Lφm + λ̇m , (A.5)

Eλm ≡ −(φ̇m −Am) . (A.6)

Here we introduced the short hand notation: χ ≡ {Ȧm, ∂iAm, Am, ∂i∂jφm, ∂iφm, φm q̇α,
∂iqα} and ψ ≡ χ\{Ȧm, q̇α}. If the Lagrangian is non-degenerate the only constraint equa-

tions are

Cφm ≡ Eφm , (A.7)

Cλm ≡ Eλm . (A.8)

Time evolving them yields

d

dt
Cφm = λ̈m + (Cφm)ȦmÄm + (Cφm)q̇α q̈α + . . . , (A.9)

d

dt
Cλm = −φ̈m + . . . . (A.10)
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Here we only included the terms that contain purely second order time derivatives, because

it is already clear from these (specifically the λ̈m term) that no secondary constraint equa-

tions can be formed. Therefore the algorithm terminates and one concludes that in total

2M constraints are present, which are purely due to the redundant first order description.

The theory thus propagates 3M +A− 1
2(2M) = 2M +A degrees of freedom (of which M

are ghosts) as a non-degenerate higher derivative theory should.

A.2 Degenerate Lagrangians

Turning to the degenerate case, we see that in order to have M additional primary con-

straints we must demand that

LȦmȦn − LȦmq̇αL
−1
q̇αq̇β

Lq̇βȦn = 0 , (A.11)

which is equivalent to the existence of M null vectors, vAm = (δnm, V
α
m), of the Hessian of L

w.r.t. Ȧm and q̇α. Specifically we have

V α
m = −LȦmq̇βL

−1
q̇β q̇α

. (A.12)

In terms of the original variables only, i.e. using the identification Am = φ̇m, (A.11) reduces

to the primary conditions (2.8). The M additional primary constraints are then given by:

Cm ≡ EAm + V α
mEqα

= (LȦmψ + V α
mLq̇αψ)ψ̇ + (∂iL∂iAm + V α

m∂iL∂iqα)− (LAm + V α
mLqα) . (A.13)

Time evolving them yields

dCm
dt

= (Cm)ȦnÄn + (Cm)∂iȦn∂iÄn + (Cm)q̇β q̈β + (Cm)∂iq̇β∂iq̈β

+ (Cm)φ̇n φ̈n + (Cm)∂iφ̇n∂iφ̈n + (Cm)∂i∂j φ̇n∂i∂jφ̈n + . . . . (A.14)

Next we must demand that M secondary constraints exist in order to fully remove the

ghost degrees of freedom. The most general such constraints will have the following form:

Dm =
d

dt
Cm + UαmEqα + αiαm∂iEqα

+ (Cm)φ̇n
d

dt
Cλn + (Cm)∂iφ̇n∂i

d

dt
Cλn + (Cm)∂i∂j φ̇n∂i∂j

d

dt
Cλn . (A.15)

One can see this by first noting that no terms involving EAm or its spatial derivatives are

present since, by virtue of the primary conditions, their relevant higher order derivative

terms are not independent of those of Eqα and its spatial derivatives. In addition, no

higher order spatial derivatives of the equations of motion are present, as these will actually

introduce even higher order problematic terms.

Now, depicting the relevant higher order terms in these combinations yields:

Dm = {(Cm)Ȧn + UαmLq̇αȦn + αiαm∂iLq̇αȦn}Än + {(Cm)q̇β + UαmLq̇αq̇β + αiαm∂iLq̇αq̇β}q̈β
+ {(Cm)∂iȦn + αiαmLq̇αȦn}∂iÄm + {(Cm)∂iq̇β + αiαmLq̇αq̇β}∂iq̈α + . . . . (A.16)

– 17 –



J
H
E
P
0
6
(
2
0
1
7
)
1
2
4

From this one can see that Uαm and αiαm exist such that all these terms vanish, if and only

if the following conditions are met

(Cm)Ȧn + (Cm)q̇αV
α
n − (Cm)∂iq̇βL

−1
q̇β q̇α

(∂iLq̇αȦn + ∂iLq̇αq̇ρV
ρ
n ) = 0 , (A.17)

(Cm)∂iȦn + (Cm)∂iq̇βV
β
n = 0 . (A.18)

Using explicit expressions we obtain

0 = (∂iL∂iAmȦn + V α
m∂iL∂iqαȦn + ∂iL∂iAmq̇βV

β
n + V α

m∂iL∂iqαq̇βV
β
n )

+ ∂iV
β
n (L∂iAmq̇β + LȦm∂iqβ + 2V α

mLq̇(α∂iqβ))

+ (LȦmAn − LAmȦn) + V α
m(Lq̇αAn − LqαȦn)

+ (LȦmqβ − LAmq̇β )V β
n + V α

m(Lq̇αqβ − Lqαq̇β )V β
n , (A.19)

0 = 2LȦ(m∂iAn)
+ 2V α

(m(Lq̇α∂iAn) + L∂iqαȦn)) + 2V α
mLq̇(α∂iqβ)V

β
n , (A.20)

and

Uαm = ((Cm)q̇β − α
iρ
m∂iLq̇ρq̇β )L−1

q̇β q̇α
, (A.21)

αiαm = −(L∂iAmq̇β + LȦm∂iqβ + 2V ρ
mLq̇(ρ∂iqβ))L

−1
q̇β q̇α

. (A.22)

Therefore we conclude that if and only if the primary conditions (A.11) hold, M additional

(3M in total) primary constraint equations are present. Moreover, if and only if in addition

the secondary conditions (A.19) and (A.20) are satisfied, M secondary constraint equations

exist. Assuming that no further conditions are imposed, no tertiary constraint equations

will be present and the theory then propagates 3M + A − 1
2(3M + M) = M + A degrees

of freedom and the M Ostrogradsky ghosts are not present.

Note that the symmetric part of (A.19) is in fact the spatial derivative of (A.20).

Hence one ends up with one symmetric and one antisymmetric set of conditions, which,

when written in terms of the original variables, precisely yield the symmetric (2.9) and

antisymmetric (2.10) secondary conditions.

B Hamiltonian analysis

B.1 Non-degenerate Lagrangians

In this appendix we perform the canonical analysis, using the Dirac method for constrained

systems [49], of the general Lagrangian (1.1)

L(φm, ∂µφm, ∂µ∂νφm, qα, ∂µqα) ≈ L(φm, A
m
µ , ∂νA

m
µ , qα, ∂µqα) + λµm(∂µφm −Amµ ) . (B.1)

Using the relations imposed by the Lagrangian multipliers λµm, we have that ∂µA
m
ν = ∂νA

m
µ

and we can replace Ȧmi = ∂iA
m
0 . To be precise, these relations hold only on-shell, i.e. on

the phase space of constraints, however since they are second class constraints, they can

be consistently imposed during the analysis.
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Separating the space and time components, the Lagrangian (B.1) becomes

L = L(φm, A
m
0 , A

m
i , Ȧ

m
0 , ∂iA

m
0 , ∂iA

m
j , qα, q̇α, ∂iqα)+λ0

m(φ̇m−Am0 )+λim(∂iφm−Ami ) . (B.2)

The momenta conjugated to the fields and the primary constraints associated to the La-

grangian (B.2) are

• πm ≡ ∂L
∂φ̇m

= λ0
m ⇒ (πm − λ0

m) ≈ 0 M primary constraints

• Λ0
m ≡ ∂L

∂λ̇0m
= 0 ⇒ Λ0

m ≈ 0 M primary constraints

• Λim ≡ ∂L
∂λ̇im

= 0 ⇒ Λim ≈ 0 M · i primary constraints

• Pmi ≡ ∂L
∂Ȧmi

= 0 ⇒ Pmi ≈ 0 M · i primary constraints

• Pm0 ≡ ∂L
∂Ȧm0

⇒ Ȧm0 = fm(Pn0 , φn, A
n
0 , A

n
i , ∂iA

n
0 , ∂iA

n
j , qα, ∂iqα, pα)

• pα ≡ ∂L
∂q̇α

⇒ q̇α = gα(Pn0 , φn, A
n
0 , A

n
i , ∂iA

n
0 , ∂iA

n
j , qβ , ∂iqβ , pβ)

where i refers to the number of spatial dimensions. In the last two lines we have not

assumed any extra degeneracy for the moment. The total Hamiltonian is the sum of the

canonical Hamiltonian plus the primary constraints enforced through multipliers

HT = HC +

∫
d3x

[
am(πm − λ0

m) + bm0 Λ0
m + bmi Λim + cmi P

m
i

]
, (B.3)

where HC =
∫
d3xHC and

HC = Pm0 fm+pαgα−L(φn, A
n
0 , A

n
i , ∂iA

n
0 , ∂iA

n
j , qβ , ∂iqβ , f

n, gβ)+λ0
mA

m
0 −λim(∂iφm−Ami ) .

(B.4)

Here, am, b
m
0 , b

m
i , c

m
i are the multipliers used to enforce the primary constraints.

Evolving the primary constraints we get

•
{

Λim, HT

}
= ∂iφm −Ami ≈ 0 M · i secondary constraints

•
{
P im, HT

}
= ∂L

∂Ami
− Pn0

∂fn

∂Ami
− λim ≈ 0 M · i secondary constraints

•
{

Λ0
m, HT

}
= am −Am0 ≈ 0 ⇒ am = Am0

•
{
πm − λ0

m, HT

}
≈ 0 ⇒ bm0 = ∂L

∂φm
− Pn0

∂fn

∂φm
− ∂iλim

The evolution of Λim and P im gives 2M · i secondary constraints, instead from the evolution

of Λ0
m and (πm − λ0

m) we can solve for two (out of four) set of multipliers, namely am
and bm0 .

Finally we need to evolve the secondary constraints

• {∂iφm −Ami , HT } ≈ 0 ⇒ cmi = {∂iφm, HT }

•
{

∂L
∂Ami

− Pn0
∂fn

∂Ami
− λim, HT

}
≈ 0 ⇒ bmi =

{
∂L
∂Ami

− Pn0
∂fn

∂Ami
, HT

}
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All the multipliers are now completely determined and the procedure stops. It is easy to

verify that all these constraints are second class, indeed they are simply associated with

the redundancy of description we have used to reduce the order of the Lagrangian. We

started with 2(3M +2M · i+A) canonical variables and we found 2(M +M · i) constraints,

therefore we are left with 2(2M + A) canonical dof, or 2M + A physical dof. As it is well

known, M of these dof are due to the higher derivative terms in the Lagrangian (B.1) and

usually are associated with instabilities.

The safest of the solutions is to require that none of them actually propagate, demand-

ing the existence of M extra primary constraints in the (Am0 , P
m
0 ) sector. Since we are not

considering here gauge invariant theories, we will also need to demand that these primary

constraints generate M secondary ones.

B.2 Degenerate Lagrangians

As we have seen, the fields Ami and λim don’t play any significant rule so can be ignored

in the rest of the analysis. Also, to simplify the notation, from now on we drop the suffix

“zero” from A0 and P0.

Requiring the existence of extra M primary constraints means that the system of

momenta Pm = ∂L/∂Ȧm cannot be inverted anymore and solved in terms of the velocities

Ȧm. The constraints therefore take the form

χm ≡ Pm − Fm(An, ∂iA
n, qα, ∂iqα, pα) ≈ 0 , (B.5)

and need to be added to the total Hamiltonian as

HT = HC +

∫
d3x ξmχ

m , (B.6)

where ξm are the usual multipliers and we have omitted the other primary constraints

already analysed in the former section as they do not interact with the new ones.

It can be shown [32] that the existence of the constraints (B.5) is in one-to-one cor-

respondence with the degeneracy of the Hessian matrix of the Lagrangian with respect to

the velocities Ȧm and q̇α, i.e. conditions (A.11). Therefore, in order to have the primary

constraints (B.5), our Lagrangian has to satisfy the conditions (A.11).

The evolution of the constraints (B.5) gives

{χm(x), HT } = {χm(x), HC}+

{
χm(x),

∫
d3y ξn(y)χn(y)

}
, (B.7)

and the last term is composed by the following parts{
Pm(x),

∫
d3y ξn(y)Fn(y)

}
=

(
− ∂F

n

∂Am
+ ∂i

∂Fn

∂(∂iAm)

)
ξn +

∂Fn

∂(∂iAm)
∂iξn , (B.8)

{
Fm(x),

∫
d3y ξn(y)Pn(y)

}
=
∂Fm

∂An
ξn +

∂Fm

∂(∂iAn)
∂iξn , (B.9)
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{
Fm(x),

∫
d3y ξn(y)Fn(y)

}
=

(
∂Fm

∂qα

∂Fn

∂pα
− ∂Fm

∂pα

∂Fn

∂qα

+
∂Fm

∂(∂iqα)
∂i
∂Fn

∂pα
+
∂Fm

∂pα
∂i

∂Fn

∂(∂iqα)

)
ξn

+

(
∂Fm

∂(∂iqα)

∂Fn

∂pα
+
∂Fm

∂pα

∂Fn

∂(∂iqα)

)
∂iξn . (B.10)

The Poisson brackets (B.7) have therefore the form

{χm(x), HT } = {χm(x), HC}+ Smnξn + (Si)
mn∂iξn , (B.11)

and in order to give secondary constraints we need to remove their dependency from ξn.

This gives the new conditions Smn = (Si)
mn = 0, whose specific form is easily obtainable

from equations (B.8)–(B.10).

Using the primary constraints (B.5), it is possible to relate the derivatives of Fm to

those of the Lagrangian, namely

∂Fm

∂pα
= −V m

α ,

∂Fm

∂qα
= LȦmqα + Lq̇βqαV

m
β ,

∂Fm

∂(∂iqα)
= LȦm∂iqα + Lq̇β∂iqαV

m
β ,

∂Fm

∂An
= LȦmAn + Lq̇αAnV

m
α ,

∂Fm

∂(∂iAn)
= LȦm∂iAn + Lq̇α∂iAnV

m
α . (B.12)

Finally, substituting these relations in the above conditions, we get exactly equations (A.19)

and (A.20).

C Redefinitions

In this appendix we discuss the possible redefinitions (of fields as well as coordinates) that

can relate seemingly different theories.

Let us consider a Lagrangian, L̄(φ̄, ∂̄µφ̄, ∂̄µ∂̄ν φ̄, q̄, ∂̄µq̄), where the fields are functions of

barred space-time coordinates x̄µ. Now assume that the Lagrangian belongs to any of the

three degeneracy classes as discussed in section 3. We would like to know whether theories

belonging to one of the degeneracy classes can be mapped to standard and/or simpler

forms, again belonging to one of the classes, via general local and invertible redefinitions

of both the fields as well as the space-time coordinates. Such a general transformation is

of the form

x̄µ = x̄µ[xν , φn, qβ ] ,

φ̄m(x̄µ) = φ̄[xν , φn, qβ ] ,

q̄α(x̄µ) = q̄α[xν , φn, qβ ] , (C.1)
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where the brackets indicate functional dependence (so dependence on the derivatives of the

fields is implicit). Performing such a redefinition, the Lagrangian transforms as

L[xµ, φm, qα] = |det
∂x̄µ

∂xν
|L̄(φ̄, ∂̄µφ̄, ∂̄µ∂̄ν φ̄, q̄, ∂̄µq̄) . (C.2)

In order for this transformed Lagrangian, L, to fall within the scope of our analysis, we

must demand

L[xµ, φm, qα] = L(φm, ∂µφm, ∂µ∂νφm, qα, ∂µqα) , (C.3)

and degeneracy of the Lagrangian then automatically follows from the invertibility of the

performed transformation. Now, in order for this to be the case in general, i.e. modulo

accidental cancellations, we must restrict ourselves to those transformations (C.1) for which

|det∂x̄
µ

∂xν |, φ̄m, ∂̄µφ̄m, ∂̄µ∂̄ν φ̄m, q̄α, ∂̄µq̄α are all functions of (φn, ∂µφn, ∂µ∂νφn, qβ , ∂µqβ).

We do not know what the most general such transformation is, but let us note some

notable types of transformations that fall within this class. The first are of course the

well known field redefinitions, i.e. transformations that only mix the fields (and possibly

their derivatives) amongst themselves, but do not allow for mixing with the space-time

coordinates. As seen in section 3.2, these transformations are sufficient to analyse Class II.

A less frequently considered type of transformations are the contact transformations.

An n-th order contact transformation is an invertible redefinition that maps a set of space-

time coordinates, fields and derivatives (xµ, ψi, ∂ψi, . . . , ∂
nψi) to another set of new coor-

dinates, fields and derivatives (x̄µ, ψ̄i, ∂̄ψ̄i, . . . , ∂̄
nψi). Here in principle any of the barred

quantities, both the coordinates as well as the fields and derivatives, can depend on any

of the unbarred quantities. The simplest such transformations are the 0-th order contact

transformations, i.e. the point transformations, that only truly mix the space-time coor-

dinates and the fields. Now, it turns out that in fact only very little nontrivial higher

order contact transformations exist. It has been proven that all contact transformations

involving more than one field, are prolongations of point transformations. In the case of a

single field nontrivial 1st-order contact transformations do exist,9 but all higher order ones

are prolongations of 0th/1st-order transformations. As we show in section 3.3, extensions

of these contact transformations play a role in the analysis of Class III.

C.1 Extended contact transformations in the (φ(t), q(t)) case

Here we determine the most general transformation in the case of mechanical systems

with a single higher derivative variable and a single healthy variable. Let us consider a

Lagrangian, L̄(φ̄, φ̄′, φ̄′′, q̄, q̄′), belonging to any of the three degeneracy classes as discussed

in section 3. Performing a general, invertible, redefinition

t̄ = t̄[t, φ, q] = t̄(t, φ, φ̇, . . . , φ(n), q, q̇, . . . , q(m)) ,

φ̄(t̄) = φ̄[t, φ, q] = φ̄(t, φ, φ̇, . . . , φ(p), q, q̇, . . . , q(q)) ,

q̄(t̄) = q̄[t, φ, q] = q̄(t, φ, φ̇, . . . , φ(r), q, q̇, . . . , q(s)) , (C.4)

9A notable example of such a contact transformation is Galileon duality [50, 51], which allows one to

relate different Galileon theories to each other.
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the Lagrangian transforms as

L[t, φ, q] =
dt̄

dt
L̄ . (C.5)

As noted we should only consider redefinitions for which

L[t, φ, q] = L(φ, φ̇, φ̈, q, q̇) . (C.6)

In order for this to be the case in general, i.e. modulo accidental cancellations, we must

demand that the same holds for dt̄
dt , φ̄, φ̄′, φ̄′′, q̄ and q̄′.

Thus, first requiring that dt̄
dt = dt̄

dt(φ, φ̇, φ̈, q, q̇), yields

t̄ = at+ f(φ, φ̇, q) , (C.7)

where f is arbitrary, and a 6= 0 is a constant. Next starting from

φ̄ = φ̄(φ, φ̇, φ̈, q, q̇) , (C.8)

q̄ = q̄(φ, φ̇, φ̈, q, q̇) , (C.9)

and demanding the same dependence for their first derivatives

φ̄′ =
dφ̄

dt̄
=

(
dt̄

dt

)−1 (
φ̄φ̈

...
φ + φ̄q̇ q̈ + . . .

)
, (C.10)

q̄′ =
dq̄

dt̄
=

(
dt̄

dt

)−1 (
q̄φ̈

...
φ + q̄q̇ q̈ + . . .

)
, (C.11)

yields φ̄φ̈ = φ̄q̇ = q̄φ̈ = q̄q̇ = 0. Thus in fact we find

φ̄ = φ̄(φ, φ̇, q) , (C.12)

q̄ = q̄(φ, φ̇, q) . (C.13)

Subsequently calculating the second derivative of φ̄ yields

φ̄′′ =
d2φ̄

dt̄2
=

(
dt̄

dt

)−1 (
φ̄′
φ̈

...
φ + φ̄′q̇ q̈ + . . .

)
, (C.14)

from which we conclude that

0 = φ̄′
φ̈

⇒ 0 = (a+ t̄φφ̇+ t̄φ̇φ̈+ t̄q q̇)φ̄φ̇ − (φ̄φφ̇+ φ̄φ̇φ̈+ φ̄q q̇)t̄φ̇ , (C.15)

0 = φ̄′q̇ ⇒ 0 = (a+ t̄φφ̇+ t̄φ̇φ̈+ t̄q q̇)φ̄q − (φ̄φφ̇+ φ̄φ̇φ̈+ φ̄q q̇)t̄q , (C.16)

which can be rewritten as:

0 = t̄qφ̄φ̇ − φ̄q t̄φ̇ ,

0 = (a+ t̄φφ̇)φ̄φ̇ − φ̄φφ̇t̄φ̇ ,

0 = (a+ t̄φφ̇)φ̄q − φ̄φφ̇t̄q . (C.17)
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Thus we conclude that the only redefinitions that satisfy our demands are of the form

t̄ = at+ f(φ, φ̇, q) ,

φ̄ = g(φ, φ̇, q), φ̄′ = G(φ, φ̇, q), φ̄′′ = G(φ, φ̇, φ̈, q, q̇) ,

q̄ = h(φ, φ̇, q), q̄′ = H(φ, φ̇, φ̈, q, q̇) , (C.18)

where f and g have to satisfy the differential equations (C.17) and G, G and H follow from

f , g and h. Of course one must also require invertibility of the transformation, which is

precisely the case if one can solve φ̄, φ̄′ and q̄ for φ, φ̇ and q. Note that these transformations

generally go beyond contact transformations since they do not map any set of n-th (and

lower) order derivatives to a new set of n-th (and lower) order derivatives.

C.2 Lorentz invariant field redefinitions

In this appendix we prove the following statement: a manifestly Lorentz invariant the-

ory LII(∂µ∂νφm, ∂µφm, φm, ∂µqα, qα), belonging to Class II, can be put in a manifestly

Lorentz invariant form L̄I(∂ν∂νφm, ∂µφm, φm, ∂µq̄α, q̄α) (with q̄α = q̄α(q, φ, ∂φ) being

Lorentz scalars), if and only if Wµα
m ≡ (V α

m, α
iα
m ) is a Lorentz vector and

∂Wµβ
n

∂∂νφm
− ∂W νβ

m

∂∂µφn
+W να

m

∂Wµβ
n

∂qα
−Wµα

n

∂W νβ
m

∂qα
= 0 . (C.19)

Let us start with necessity. Assume that both LII and L̄I are manifestly Lorentz

invariant and related via a field redefinition of the specified form. Since L̄I is Lorentz

invariant, not only V̄ α
m = 0 but also ᾱiαm = 0 (as noted in section 3.1). Then, by calculating

Wµα
m one finds

∂q̄α
∂∂µφm

+Wµβ
m

∂q̄α
∂qβ

= 0 . (C.20)

Therefore, since q̄α is Lorentz invariant, we conclude that Wµα
m = −

(
∂q̄β

∂∂µφm

)(
∂q̄β
∂qα

)−1
is a

Lorentz vector. Lastly, one notes that the consistency conditions corresponding to (C.20)

are precisely (C.19), which are thus automatically satisfied.

Now, for sufficiency we first note that since Wµβ
m is a Lorentz vector and V β

m =

V β
m(qα, φn, ∂µφn), the most general form is given by

Wµβ
m (qα, φp, ∂µφp) = Anβm ∂µφn, Anβm = Anβm (qα, φp, Xp,q), Xp,q ≡

1

2
∂µφp∂

µφq .

(C.21)

Plugging this specific expression into (C.19) it follows that

(
Amβn −Anβm

)
ηµν +

(
∂Apβn
∂Xmq

− ∂Aqβm
∂Xnp

+Apαm
∂Aqβn
∂qα

−Aqαn
∂Apβm
∂qα

)
∂µφp∂

νφq = 0 . (C.22)

Since both terms in parenthesis are Lorentz invariant, one sees that Amβn = Anβm . Next we

observe that because the consistency conditions (C.19) are satisfied, one can always find
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independent q̄α that satisfy (C.20). Picking precisely such a redefinition and calculating

its variation under Lorentz transformations yields

δq̄α =
∂q̄α

∂∂µφm
δ∂µφm

= −Wµβ
m (δ∂µφm)

∂q̄β
∂qα

=
(
Anβm ∂µφnωµν∂

νφm

) ∂q̄β
∂qα

= 0 , (C.23)

where we used the symmetry of Amβn . Thus, we conclude that q̄α is a Lorentz scalar and

hence a manifestly Lorentz invariant field redefinition (and so is its inverse). Starting

from a manifestly Lorentz invariant theory and performing this redefinition one obtains a

Lagrangian belonging to Class I (since (C.20) implies that W̄µα
m = 0) that is also manifestly

Lorentz invariant.
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