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Highlights 7 

A Typical Solar Radiation Year synthesis method reflecting fluctuation is proposed. 8 

Clear-sky ratio based parameters are used to present the solar radiation fluctuation. 9 

K-means clustering and discrete-time Markov chain are employed to synthesize. 10 

The distribution and transition rule of solar radiation fluctuation are analysed. 11 

 12 

Abstract 13 

 Daily solar radiation (DSR) fluctuation and transition rules affect the design of the energy 14 

storage system and online control strategy of solar energy utilisation systems. However, the 15 

current synthesis methods for the typical meteorological year do not emphasise such features 16 

of DSR. To overcome this shortcoming, this study presents an innovative synthesis method for 17 

a typical solar radiation year (TSRY) based on ݇-means clustering and discrete-time Markov 18 

chain (DTMC). The historical distributions of clear-sky ratio (CSR) in four representative 19 

regions were analysed, and a six-dimensional feature vector that represents the DSR 20 

fluctuations based on CSR was defined. Then, based on the feature vector, ݇-means clustering 21 

was used to cluster the historical DSR into four types. Subsequently, a DTMC-based model 22 

was built for transition rule estimation among the four types of solar radiation. Finally, the 23 

TSRY was established based on the clustering categories and transition rules among them. The 24 

innovative synthesis method was also verified in this study. Results for the four regions showed 25 

that the average error of the synthesised TSRY has maximum and minimum values of 10% and 26 

6% in all seasons, respectively, compared with historical data. The proposed method could 27 

represent DSR fluctuation and transition characteristics of certain regions and could also be 28 

extended to other regions. 29 
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 33 

Nomenclature 

CSR Clear-sky Ratio  

SEUS Solar energy utilization system  

PV Photovoltaic solar cells  

TSRY Typical Solar Radiation Year  

TMY Typical Meteorological Year  

DTMC Discrete-time Markov chain  

CSP Concentrated Solar Power  

SURFRAD Surface Radiation budget network  

UTC Universal Time Coordinated  

DSWR Downwelling short wave radiation  

CDSWR Clear-sky downwelling short wave radiation  

 34 

1 Introduction 35 

Solar radiation as a renewable energy has been extensively applied in recent years because 36 

of energy and environmental restrictions. Solar energy utilisation systems (SEUS) have 37 

different variations, such as photovoltaic (PV) solar cells and solar organic Rankine cycle 38 

power generation systems. The design of SEUS is highly dependent on the law of solar 39 

radiation, such as the capacity of capacitance for the PV system, the thermal energy storage 40 

size for the solar organic Rankine cycle power generation systems[1] or the solar field size for 41 

the solar hybrid power plant[2]. However, solar radiation as a non-stable energy is affected by 42 

multiple factors, including latitude, district, season and cloud distribution and so on [3]. Thus, 43 

DSR fluctuation and transition rules should be explored to guide the design of a high-efficiency 44 

SEUS [4]. Belkaid et al. proposed a new PV maximum power point tracking (MPPT) strategy 45 

for rapid solar radiation fluctuations to optimise the operation of the PV system. The test results 46 

showed that the new MPPT strategy, which considers the solar radiation fluctuations, can 47 

improve efficiency by approximately 5% [5]. Kaplani et al. presented a stochastic simulation 48 

model to determine the minimum installed peak power and storage capacity considering the 49 
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DSR fluctuation to optimise the PV system design [6]. 50 

At present, research specific to DSR can be conducted using three methods, including the 51 

empirical/statistical model of solar radiation, the solar radiation prediction model and the 52 

typical DSR database. 53 

The principle for the empirical/statistical model of solar radiation is based on the long term 54 

measured data analysis of a particular region. In other words, according to the statistical 55 

relationships among parameters, such as latitude, solar radiation, total solar radiation, direct 56 

radiation, scattered radiation and radiation peak, the corresponding statistical model could be 57 

established[7,8] or the parameters related to the typical empirical model such as a sine wave 58 

mode or a trigonometric model in conjunction with a sine and cosine wave could be 59 

optimised[9,10]. Fariba et al. from Yazd University in Iran summarised 78 typical empirical 60 

models of solar radiation [11]. In line with the inputs of these models, they classified these 61 

models into four classes. The first class covers 35 empirical models using solar radiation as 62 

their input; the second class consists of 6 empirical models utilising cloud distribution as their 63 

input; the third class includes 16 empirical models adopting temperature as their input; and the 64 

fourth class incorporates 21 empirical models that use meteorological parameters, such as 65 

precipitation, relative humidity, dew point temperature, soil temperature and vaporisation 66 

temperature as their inputs. Hassan et al. established, validated and compared their empirical 67 

model with 17 ambient-temperature-based models for estimating global solar radiation based 68 

on 20 years of historical solar radiation data [12]. Janjai et al. proposed a semi-empirical model 69 

for estimating clear sky global and direct normal irradiances, which express global and direct 70 

normal irradiances as empirical functions of aerosol parameters, precipitable water, total 71 

column ozone, air mass and solar zenith angle [13] . 72 

In contrast to the empirical model of solar radiation, the solar radiation prediction model is 73 

used to predict solar radiation within a short period. This model uses real-time environmental 74 

information as input and solar radiation as output, thereby highlighting the relationship between 75 

the two. Relevant environmental information includes sunrise and sunset times, temperature, 76 

relative humidity, wind speed, air pressure, longitude and latitude and clear-sky index (CSI) 77 
[14]. Given that these parameters have a typical non-linear relationship with solar radiation, a 78 

forecast model for such is often constructed based on methods using artificial intelligence [15]. 79 

For instance, Landeras et al. attempted to use three temperature-based models to estimate the 80 

DSR, including gene expression programming, artificial neural network (ANN) and adaptive 81 

neuro-fuzzy inference system [16]. For these two models, Hussain et al. proposed a frequency 82 
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coherence and phase synchronization based method to evaluate their predictive performance[17]. 83 

As a branch of the stochastic method, the Markov model is also applied[18], Saurabh et al. 84 

combined the hidden Markov model and the generalised fuzzy model to estimate solar radiation 85 
[19]. Voyant et al. used Bayesian rules to select a hybrid stochastic model consisting of multi-86 

layer perceptron and auto-regressive and moving average to improve the prediction accuracy 87 

of short-term solar radiation[20]. Meanwhile, Deo et al. utilised the support vector machine to 88 

estimate DSR based on sunshine hours, evaporation, precipitation, wind speed and so on[21]. 89 

The solar radiation prediction model based on semi-empirical model and stochastic method, 90 

represented by Kaplani and Kaplanis, is another kind of common method. These models takes 91 

into account either 1[22], or 2, or 3[23] morning measurements to predict the hourly solar 92 

radiation profile for the remaining hours of the day[24]. These models can be utilised to predict 93 

solar radiation rules in the scale of days, hours or even minutes. 94 

The comparison of the methods described previously shows that the empirical model of 95 

solar radiation stresses in-depth abstraction of the historical data in a region, as it serves as a 96 

guide for industrial and agricultural productions. For example, Marcel et al. utilised a model 97 

called r.sun to estimate the solar radiation potential of PV systems in Central and Eastern 98 

Europe [25]. According to the empirical model, the average tendency of DSR is reflected by 99 

each region. Meanwhile, the solar radiation prediction model is adopted to express the 100 

relationship between solar radiation and easily measured meteorological data. As such, solar 101 

radiation in the scale of days, hours or even minutes could be forecasted by the current 102 

meteorological parameter. For instance, ANN is used to estimate hourly global irradiation for 103 

the online optimisation of the tilt angle of a solar collector [26] or to predict the generating 104 

capacity of PV in the following hours or days to optimise energy management of the 105 

corresponding PV system [6,27]. In summary, the two kinds of models describe solar radiation 106 

variations in two different time scale. 107 

In addition to the empirical and predictive models of solar radiation, the typical DSR 108 

database-based method is used to provide a reference solar radiation for SEUS design. For 109 

example, Lou et al. developed typical meteorological year in Hong Kong using machine 110 

learning and multivariable regression [28]. A representative solar radiation database for the 111 

duration of one year is known as the typical meteorological year (TMY). The TMY consists of 112 

months that are selected from individual historical years and concatenated to form a complete 113 

year [29]. In contrast to the two previous models, the application target of TMY is to provide a 114 

standard reference for SEUS design in accordance with a certain area. In addition, the TMY 115 
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data are derived from real typical segments of historical solar radiation, which make it more 116 

suitable for the design of SEUS compared with other models [30]. 117 

As the United States has a meteorological data collection network that covers its entire 118 

territory, it leads the world in conducting research on TMY. The first TMY data set for the U.S. 119 

was produced by Sandia National Laboratories in 1978 for 248 regions using long-term weather 120 

and solar data from the 1952–1975 SOLMET/ERSATZ database [31]. With the addition of new 121 

historical data sets and improvements on the algorithm, the National Renewable Energy 122 

Laboratory (NREL) successively released the second- and third-generation TMY. The third-123 

generation TMY was obtained through synthesis by Finkelstein–Schafer statistics [32]. The 124 

corresponding differences were observed in the operational details, such as the selection and 125 

weights of meteorological parameters, and the exclusion of candidate samples [33,34]. This 126 

method is also broadly applied to TMY synthesis in other districts of the world, such as Hong 127 

Kong [35], Cyprus [36] and Turkey [37]. Considering that meteorological parameters, such as 128 

humidity and wind speed, that have little effect on the design of SEUS, including concentrated 129 

solar power (CSP) and PV, were introduced by the NREL at the time of TMY synthesis, 130 

Cebecauer et al. designated only solar radiation and average dry-bulb temperature as composite 131 

characteristics, based on which a solar geographical information system synthesis approach 132 

focusing on the application of CSP and PV was presented [38]. 133 

Although these TMY synthesis methods have the capability to reflect the overall change 134 

trend of solar radiation for a given region, these methods ignore the DSR fluctuations and 135 

transition rules. In fact, these two features of DSR can provide important design guidance for 136 

the energy storage system and online control strategy for SEUS. Evidence shows that these 137 

features are important and could be modelled. Based on the historical data from 2004 to 2013, 138 

Hussain et al. determined that the transfer process of different mean DSR has a certain periodic 139 

variation rule by introducing time–frequency joint analysis [17]. Pearce et al. reported that rapid 140 

variations of solar energy largely affect the output of SEUS because of their short response 141 

time [39]. Therefore, in power distribution grids with high-density PV, fluctuations in the 142 

produced electrical power may occur, leading to unpredictable variations of node voltage and 143 

power in electrical networks. In small grids, such as those that exist on islands, these 144 

fluctuations can cause instabilities [40]. Meyer et al. observed that a 10-min solar radiation 145 

simulation step may result in an energy production error of 2% to 3% relative to a 1-min step 146 
[41]. 147 

In this study, four sites located in diverse time zones in the U.S. are selected to analyse the 148 
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CSR distributions. Afterward, a six-dimensional feature vector (containing six independent 149 

characteristic parameters) that represents the DSR fluctuations in each area based on CSR is 150 

defined. Then, ݇-means clustering is used to conduct clustering analysis for dividing historical 151 

DSR data into four classes. Afterward, the discrete-time Markov chain (DTMC) is adopted to 152 

build a model illustrating the transition rules, which include the distribution and transition 153 

probabilities, among the four types of DSR. The typical solar radiation year (TSRY) can be 154 

ultimately obtained based on the clustering categories and transition rules. 155 

2 Data sources 156 

The data source used in this research is derived from the Surface Radiation Budget Network 157 

(SURFRAD) database. SURFRAD consists of data from seven sites, and for convenience of 158 

presentation, four model sites are selected as the research objects, as shown in Fig. 1. The sites 159 

are located in four different time zones from UTC −6:00 to −8:00, and their altitudes range 160 

from 230 m to 1,007 m. The figure shows that the average global horizontal radiations of the 161 

sites have unique characteristics of representativeness. Among them, the site situated at Desert 162 

Rock has the highest average horizontal radiation value, which reached 5.7 kWh/m2/day. By 163 

contrast, the site situated at Fort Peck only reached a minimum value of 3.76 kWh/m2/day. 164 

 165 

 166 

Fig. 1. Locations and information of selected four sites in SURFRAD database. 167 

Compared with the solar radiation data provided by the National Solar Radiation Data Base 168 

with a sampling interval of 0.5 h or 1 h, SURFRAD exhibits a higher data acquisition frequency. 169 

SURFRAD data had an interval of 3 min before January 2009, after which it was changed to 1 170 

min. The data collected with high sampling frequency provides the foundation for the research 171 
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on DSR fluctuation. 172 

3 Fluctuation patterns of solar radiation 173 

Many studies have defined standardised factors that characterise solar radiation fluctuations 174 

because they can exclude the effects of absolute radiation differences on the results due to 175 

geographical differences. These standardised factors are essentially the same, but have different 176 

definitions for different research purposes. One of the factors, called clearness index, is defined 177 

as the ratio of the global horizontal radiation to the corresponding radiation available outside 178 

the atmosphere and is calculated using an empirical formula [42]. Muselli et al. utilised the 179 

clearness index as the characteristic parameter of solar radiation to classify the typical 180 

meteorological days from global irradiation records [43]. Maffi et al. combined the clearness 181 

index and daily fractals to build a daily solar irradiance classification model [44]. Marty et al. 182 

separated clear- and cloudy-sky situations for climate research by using the clear-sky index, 183 

which is defined as real apparent emittance divided by clear-sky situation [45]. 184 

In this paper, a factor called clear-sky ratio (CSR) is proposed. The CSR is defined as the 185 

downwelling short wave radiation (DSWR) divided by the clear-sky downwelling short wave 186 

radiation (CDSWR) and is estimated based on sensor data [46,47]. Fig. 2 illustrates the 187 

transformation of DSWR into CSR. Fig. 2(A) presents the DSWR and CDSWR on 1 June 2015 188 

in BON region, and Fig. 2(B) shows the fluctuation of CSR corresponding to Fig. 2(A). CSR > 189 

1 will only occur when the direct sunlight is not blocked and the clouds around the direct light 190 

path appear with strong scattering. Given that this condition rarely occurs and the duration is 191 

short, this study defines CSR as 1 for DSWR/CDSWR > 1 to facilitate subsequent analysis. 192 

Moreover, the fluctuation amplitude of radiation can reach 265.3 W/m2/minute and that of the 193 

CSR can reach 0.315/minute. Drastic fluctuation on CSR can significantly influence the output 194 

and the operation of SEUS.  195 
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 196 

Fig. 2 An example of DSWR and CSR fluctuations. 197 

Fig. 3 displays the CSR distributions of the four sites. The resolution of each image is 180 198 

× 180, and the colour scale for each pixel is dimensionless. The colour scale denotes the 199 

probability of CSR at that pixel. The figure shows that the CSR in the DRA region is primarily 200 

distributed at approximately 1 at different timeframes, signifying that it is dominantly sunny. 201 

In comparison, the fluctuations of DSR in the other three sites are rather significant; the 202 

fluctuation in the FPK region is principally distributed around noon, whereas the fluctuations 203 

in the BON and PSU regions occur even during the daytime. The CSR of the FPK region 204 

fluctuates between 0.33 and 0.67, which is a smaller range than those of the BON and PSU 205 

regions. The comparison of the radiation rules of the BON and PSU regions showed that a CSR 206 

separation zone exists between 0.56 and 0.89 in PSU, which suggests that the weather in that 207 

area has two possibilities. One possibility is dominantly sunny and dusky, and rarely cloudy, 208 

and the other possibility is rapid cloud change rate. From the previously presented analysis, the 209 

radiation fluctuation of each of the four sites has their own unique features. 210 
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 211 

Fig. 3 Distributions of CSR for the four selected sites 212 

 213 

4 Methods 214 

As presented in Fig. 4, a typical solar radiation model that comprehensively reflects the 215 

fluctuation patterns of DSR is constructed in line with the following process. First, the CSR is 216 

derived from the measured value provided by SURFRAD and the clear-sky radiation value 217 

estimated by Long et al [47]. Second, a six-dimensional feature vector (containing six 218 

independent characteristic parameters) is extracted to present the solar fluctuation rules. Then, 219 

based on the feature vector and ݇-means algorithm, clustering is conducted during individual 220 

days specific to the CSR. Afterward, DTMC is used to model the transition rules among the 221 

individual classes of clustering results. By selecting samples for every clustering class centre 222 

combined with the transition sequences generated by DTMC, a typical CSR sequence can be 223 

obtained. Finally, in combination with the CDSWR, the TSRY can be synthesised. Among them, 224 

the number of clustering classes and the length of radiation can be designated as needed. In this 225 

study, the radiation fluctuations of the selected regions are divided into four classes. Meanwhile, 226 

solar radiation is divided on a quarterly basis (three months) for analysis and discussion. 227 
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 228 

Fig. 4 The construction processes of Typical Solar Radiation Year 229 

The differences between TSRY and TMY in the construction method are as follows: 230 

1. Inputs are different: TSRY only takes the solar radiation features as inputs. In addition 231 

to the solar radiation, TMY takes some other meteorological parameters, such as humidity 232 

and wind speed as well. This allows TMY to more fully reflect the meteorological 233 

characteristics of a region, but considering these parameters have little effects on the design 234 

of SEUS, including solar power (CSP) and PV, the introduction of these inputs may be 235 

negative for typical DSR selection influences[38]. 236 

2. Selection criteria are different: TMY is usually synthesized using Finkelstein-Schafer 237 

(FS) statistics method. This method is an empirical methodology for selecting individual 238 

months from different years over the available period based on the comparison between 239 

the long-term cumulative frequency distribution Function (CDF) of each month and the 240 

CDF for each individual year of the month. The problem with CDF based method is that 241 

it can only reflect the distribution of radiation and does not reflect the time-dependent 242 

features of DSR such as the rate of change of radiation. TSRY introduced a 243 

multidimensional feature classification method (݇-means) to solve this problem. 244 

3. Time scales are different: The TMY synthesis scale is one month, which means that 245 

all days of the selected month are treated as typical DSRs into the final meteorological 246 

year. And it is difficult to guarantee for a region with less historical data. TSRY selects 247 

typical DSRs on a daily scale and models the sample sequence with the DTMC. So, TSRY 248 

could be used to build a typical solar radiation year even at a location with less historical 249 

data. 250 

4.1 Definition of fluctuation features 251 

A six-dimensional feature vector is defined to represent the variation of CSR. As shown in 252 

Historical data of solar 
radiation

Step1: Convert to 
clear-sky ratio

Step2: Features 
extraction

Step3: K-means clustering

Class#1 Class#2 Class#N...

Step4:Discrete-time Markov chain model

Step5: Solar radiation 
cycles construction
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Fig. 5, the weather is classified into sunny, dusky and cloudy days based on the CSR. The 253 

extraction of the feature vector is shown in the following pseudo-code: 254 

If CSR >0.95 and duration > 30min 255 

The fragment is sunny 256 

Else if CSR <0.3 and duration >30min 257 

The fragment is dusky 258 

Else 259 

The fragment is cloudy 260 

End 261 

F1 = Dusky duration/sunshine time 262 

F2 = Cloudy duration/sunshine time 263 

F3 = Average CSR under cloudy 264 

F4 = Standard deviation of CSR under cloudy  265 

F5 = Maximum change rate of CSR under cloudy 266 

F6 = Average change rate of CSR under cloudy 267 

Feature vector = [F1,F2,F3,F4,F5,F6] 268 

 269 

Fig. 5 Features definition of clear-sky index 270 

The correlation analysis results, which were verified by the significance test (p = 0.001), 271 

between the six features showed that the correlation between F1 and F3 is relatively high. It 272 

can reach -0.77, -0.76, -0.88, -0.87 for DRA, FPK, BON and PSU respectively. It indicates that 273 

the removal of F1 or F3 does not have a significant effect on the clustering results theoretically. 274 

However, it needs to be noticed that the final synthesis accuracy in the three of all the four 275 

regions has been reduced after removing the F3 from the feature vector. The average error is 276 

increased from 6% to 13% for DRA region, from 7% to 9% for FPK region, from 9% to 13% 277 

for BON region, only the average error in PSU region is decreased slightly from 10% to 9 %. 278 
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Considering that the algorithm in this study is not very sensitive to the computational load, six 279 

features are all adopted in the clustering model of DSR. 280 

As discussed previously, based on the six-dimensional feature vector and historical data set, 281 

the DSR can be classified and a typical representation of each class can be obtained using ݇-282 

means clustering. 283 

4.2 k-means for clustering 284 

The ݇ -means clustering algorithm is used to conduct clustering analysis for DSR. The 285 

algorithm could be used to divide samples into ݇  disjoint clusters based on their feature 286 

vectors [48]. Objects that are classified into the same cluster have similar feature values. ݇ is a 287 

positive integer number specifying the number of clusters and has to be provided in advance. 288 

For a given set of observations { ଵܺ, ܺଶ, … , ܺ௡ሽ, where each observation ܺ is a d-dimensional 289 

feature vector ሾܨଵ, ,ଶܨ … , ௗሿ, ݇-means clustering aims to partition the n objects into ݇ (൑ܨ ݊) 290 

sets ܵ ൌ ሼ ଵܵ, ܵଶ, … , ܵ௞ሽ to minimise the within-cluster sum of squares (sum of the distance 291 

functions of each point in the cluster to the ݇  centroid). The mathematical description is 292 

shown in Equation (1), where ௜ܷ is the centroid of ௜ܵ, which denote a typical feature vector 293 

of ௜ܵ. A distance function is required to compute the distance (i.e., similarity) between two 294 

objects. Many distance function, such as Euclidean and cosine distances, are commonly used 295 
[49]. DSR clustering considers the differences in the overall trend of all features rather than the 296 

absolute value of each feature. For this reason, as shown in Equation (2), cosine distance is 297 

chosen as the distance function, where ܺ௦, ܺ௧ refer to two feature vectors, whereas ݀௦௧ refers 298 

to the distance between the two feature vectors. The steps of the ݇-means clustering algorithm 299 

are shown in Table 1 [50]. 300 
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 304 

Table 1 k-means algorithm for DSR clustering 305 

Index Actions Remarks 

Step 1 Define the number of clusters ݇. DSRs were divided into four classes (݇ ൌ 4) in this study. 

Step 2 Initialise the ݇  cluster centroids by arbitrarily dividing all In this study, the ݇  initial cluster centres are initialised by random 
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objects into ݇  clusters, computing their centroids and 

verifying that all centroids are different from each other. 

instances from the solar historical data set, which are composed of the 

feature vector of the CSR. 

Step 3 

Iterate over all objects and compute the distances to the 

centroids of all clusters. Assign each object to the cluster with 

the nearest centroid. 

Each instance of DSR is assigned to its closest cluster centre based on 

the cosine distance. 

Step 4 Recalculate the centroids of the modified clusters. Each cluster centre is updated to be the mean of its constituent instances. 

Step 5 Repeat Step 3 until the centroids do not change any more. 

The final centroids are the typical DSR instances for each class. Each 

typical instance could represent the average level of the corresponding 

class. 

4.3 Discrete-time Markov chain for transition rule estimation 306 

DTMC could be used to further process the clustering results obtained by the ݇-means 307 

algorithm. DTMC is a random process that undergoes transition from one state to another state 308 

on a state space, and it must possess a property that is usually characterised as 309 

“memorylessness”: the probability distribution of the subsequent state depends only on the 310 

current state, and not on the sequence of events that preceded it. This specific kind of 311 

“memorylessness” is called the Markov property. A Markov chain is specified by the following 312 

components: ܳ ൌ ሼݍଵ, ,ଶݍ … ,  313 ܣ ேሽ denotes a set of N states, as shown in Equation (3), andݍ

is a transition probability matrix between N states where each ܽ௜௝ represents the probability 314 

of moving from states ݅ to ݆ [51]. Therefore, in a first-order Markov chain, the probability of 315 

a particular state depends only on the previous state. This assumption is shown in Equation (4). 316 

Notably, given that each ܽ௜௝ expresses the probability ܲ൫ݍ௝|ݍ௜൯, as shown in Equation (5), 317 

the laws of probability require that the output values of a given state must have a sum of 1. In 318 

this study, the number of daily solar types is 4, such that ܣ is a 4-by-4 transition probability 319 

matrix. For example, ܽଵଶ represents the probability that the next day’s weather belongs to 320 

class 2 if the current weather belongs to class 1. 321 
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The daily weather is assumed to be independent of each other. Thus, the DTMC can 325 

estimate the transition probability of this random process. DTMC processing starts by 326 

calculating the probability distribution of each DSR class without considering the order 327 

between them and then estimating the transition probabilities according to the transfer order 328 

between each class. As such, the DTMC can model the transition rules of DSR. 329 
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5 Results and discussion 330 

As discussed previously, the two important steps in the synthesis process are ݇-means-331 

based clustering and DTMC-based transition rule estimation. Given the space constraints, a 332 

typical synthesis process of DSR for the four regions only in spring was described in detail. All 333 

the data of the other seasons are given in Tables 2 to 4. 334 

5.1 Analysis of the clustering results 335 

The ݇-means clustering results of the four regions in spring are given in Fig. 6. The six-336 

dimensional fluctuation feature vector [ܨଵ, … ,  ଺ ] that comprise each class is described in 337ܨ

Section 4.1. The four coloured blocks denote the feature distributions of four classes, namely, 338 

Class 1 (ܥଵ), Class 2 (ܥଶ), Class 3 (ܥଷ) and Class 4 (ܥସ). 339 

From Fig. 6, information can be analysed from the difference between different cluster 340 

classes in four regions, as follows: 341 

 ૚ : Sunny days are dominant in this class. The DSR in this class has a similar 342࡯ [1]

distribution, with a lower proportion of dusky (ܨଵ) and cloudy (ܨଶ) and a higher mean 343 

value of CSR for cloudy (ܨଷ) among the four sites. 344 

 ૛: Dusky days has the largest proportion in this class. The DSR in this class has a 345࡯ [2]

similar distribution, with a higher proportion of dusky (ܨଵ ), a lower proportion of 346 

cloudy (ܨଶ) and a lower mean value of CSR for cloudy (ܨଷ) among the four sites. 347 

 ૜ : Cloudy has the principal percentage in this class. The DSR in this class has a 348࡯ [3]

similar distribution, with a lower proportion of dusky (ܨଵ) and a higher proportion of 349 

cloudy (ܨଶ) among the four sites. 350 

 is mainly 351 (ସܥ) ૝: Mixed weather dominates the majority of this class. Mixed weather࡯ [4]

constituted by sunny and cloudy in the DRA and FPK regions, but is composed of 352 

dusky and cloudy in the BON and PSU regions. 353 

The results showed that the six-dimensional fluctuation feature vector defined in this study 354 

and the adopted clustering algorithm can be used to obtain four classes of typical DSR. Based 355 

on the clustering results, the transfer rules between different classes based on DTMC are 356 

analysed in the subsequent section. 357 
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 358 

Fig. 6 Features distribution during spring for individual class at four different regions 359 
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 361 

Table 2 Features distribution for individual class at four different regions 362 

   DRA FPK BON PSU 

   C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S
pr

in
g 

F1 0.00  0.77  0.07  0.01  0.00  0.81  0.08  0.01  0.00  0.95  0.51  0.05  0.01  0.95  0.57  0.07  

F2 0.09  0.39  0.73  0.42  0.17  0.36  0.80  0.57  0.22  0.15  0.66  0.74  0.24  0.13  0.61  0.77  

F3 0.99  0.33  0.62  0.88  0.97  0.30  0.54  0.79  0.95  0.19  0.44  0.62  0.94  0.19  0.43  0.58  

F4 0.04  0.20  0.19  0.16  0.07  0.14  0.16  0.17  0.08  0.11  0.24  0.17  0.10  0.09  0.25  0.19  

F5 0.02  0.04  0.04  0.04  0.03  0.03  0.03  0.04  0.03  0.03  0.04  0.04  0.03  0.02  0.04  0.04  

F6 0.00  0.01  0.01  0.01  0.00  0.00  0.01  0.01  0.00  0.00  0.01  0.01  0.00  0.00  0.01  0.01  

S
um

m
er

 

F1 0.00  0.01  0.04  0.45  0.01  0.79  0.12  0.03  0.87  0.00  0.38  0.03  0.88  0.01  0.35  0.04  

F2 0.07  0.37  0.68  0.55  0.17  0.36  0.74  0.52  0.29  0.29  0.69  0.72  0.28  0.27  0.72  0.72  

F3 0.99  0.90  0.68  0.55  0.97  0.32  0.59  0.82  0.27  0.93  0.51  0.65  0.26  0.94  0.50  0.65  

F4 0.03  0.15  0.21  0.34  0.09  0.20  0.23  0.19  0.18  0.10  0.30  0.17  0.16  0.10  0.28  0.18  

F5 0.02  0.05  0.05  0.05  0.04  0.04  0.05  0.05  0.04  0.04  0.05  0.04  0.04  0.04  0.05  0.04  

F6 0.00  0.00  0.01  0.01  0.00  0.01  0.01  0.01  0.01  0.00  0.01  0.01  0.01  0.00  0.01  0.01  

A
ut

um
n 

F1 0.00  0.02  0.06  0.61  0.00  0.80  0.12  0.02  0.00  0.93  0.47  0.04  0.00  0.94  0.48  0.04  

F2 0.06  0.37  0.72  0.48  0.13  0.35  0.76  0.51  0.19  0.18  0.65  0.72  0.23  0.17  0.67  0.74  

F3 0.99  0.90  0.64  0.44  0.98  0.31  0.56  0.83  0.96  0.21  0.47  0.65  0.95  0.21  0.45  0.62  

F4 0.03  0.17  0.21  0.28  0.06  0.18  0.20  0.18  0.07  0.12  0.28  0.17  0.10  0.11  0.27  0.18  

F5 0.01  0.05  0.05  0.05  0.03  0.03  0.04  0.05  0.03  0.03  0.05  0.04  0.03  0.03  0.05  0.04  

F6 0.00  0.01  0.01  0.01  0.00  0.01  0.01  0.01  0.00  0.00  0.01  0.01  0.00  0.00  0.01  0.01  

W
in

te
r 

F1 0.00  0.86  0.06  0.01  0.00  0.83  0.05  0.01  0.01  0.96  0.53  0.04  0.00  0.95  0.58  0.06  

F2 0.07  0.28  0.77  0.45  0.11  0.33  0.82  0.53  0.21  0.10  0.66  0.78  0.24  0.13  0.62  0.80  

F3 0.99  0.27  0.59  0.86  0.98  0.30  0.52  0.81  0.95  0.18  0.43  0.58  0.94  0.19  0.42  0.55  

F4 0.04  0.16  0.18  0.16  0.06  0.11  0.13  0.17  0.08  0.08  0.21  0.15  0.10  0.09  0.22  0.17  

F5 0.02  0.03  0.04  0.04  0.02  0.02  0.03  0.04  0.03  0.02  0.04  0.03  0.04  0.02  0.04  0.04  

F6 0.00  0.00  0.01  0.01  0.00  0.00  0.01  0.01  0.00  0.00  0.01  0.01  0.00  0.00  0.01  0.01  

 363 

5.2 Analysis of the transition rules 364 

Based on the clustering results, DTMC is utilised to calculate the transition rules, which 365 

include the distribution proportion and the transition probability of individual classes of DSR. 366 

These two parameters are used to determine the sequence of DSR that comprises TSRY. 367 

5.2.1 Distribution proportion 368 

As shown in Fig. 7, the distribution proportions of the four classes in the four regions in 369 

spring have the following rules: 370 

 In the DRA region, sunny days are dominant and dusky days account for only a small 371 

percentage. The proportion of sunny days (ܥଵ) is 0.44, whereas that of dusky days (ܥଶ) is 372 
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only 0.04. This means that the potential of solar energy in the DRA region is high and 373 

SEUS has no harsh requirements for the capacity of the energy storage equipment, such as 374 

thermal energy storage or capacitors, used to suppress output fluctuations. 375 

 In the FPK region, cloudy days and mixed weather are predominant. The proportion of 376 

cloudy days (ܥଷ) is 0.42, whereas that of mixed weather (ܥସ) is 0.29. The proportion of 377 

dusky days is low at 0.07. This indicates that the solar-only power generation system in 378 

the area needs to have a large enough energy storage equipment or the solar field size in a 379 

hybrid power generation system needs to be well designed to suppress the impact of DSR 380 

fluctuations on the output. 381 

 In the BON and PSU regions, mixed weather is predominant. The proportion of mixed 382 

weather (ܥସ) is 0.46 and 0.45 at these two sites.  383 

5.2.2 Transition probability   384 

The transition probability among individual classes of the four regions in spring is also 385 

shown in Fig. 7. The figure shows the following transfer laws among different classes: 386 

 In the DRA region, sunny weather likely occurs for many continuous days because the 387 

transition from sunny (ܥଵ) to sunny (ܥଵ) has the highest probability (0.68). Moreover, sunny 388 

 in the DRA region has a high proportion based on the distribution analysis. 389 (ଵܥ)

 In the FPK region, each type of DSR is rarely presented consecutively because the self-390 

transfer probability of these four types of solar radiation is low (the maximum is not more 391 

than 0.39). 392 

 In the BON and PSU regions, continuously mixed weather has a high probability. As the 393 

probability of mixed weather (ܥସ) to transfer to itself is high (up to 0.45 and 0.50 for BON 394 

and PSU, respectively). When the weather type falls into dusky (ܥଶ) and cloudy (ܥଷ), the 395 

probability of shifting to mixed weather (ܥସ) during the next day is high. 396 

The relatively stable solar radiation characteristics indicate that the DRA area is suitable 397 

for deploying multiple types of SEUS, such as organic Rankine cycle-based combined heat 398 

and power systems or PV systems. In contrast, the FPK area is dominated by cloudy weather 399 

and day-to-day variation is significant, indicating that the area is not suitable for deployments 400 

the SEUS that require long start or stabilize time. BON and PSU regions are dominated by 401 

mixed weather and the day-to-day variation is small, so multiple types of SEUS can be 402 

deployed with sufficient energy storage system.403 
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 404 

Fig. 7 Distribution proportion and transition probability of the four daily solar classes 405 

 406 

Table 3 Distribution proportion for individual classes in four seasons 407 

  DRA FPK BON PSU 

  C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Spring 0.44  0.04  0.27  0.25  0.21  0.07  0.42  0.29  0.25  0.15  0.15  0.46  0.09  0.17  0.22  0.52  

Summer 0.60  0.20  0.18  0.03  0.23  0.08  0.36  0.32  0.07  0.24  0.18  0.51  0.23  0.11  0.16  0.50  

Autumn 0.60  0.23  0.15  0.03  0.30  0.08  0.33  0.29  0.34  0.07  0.13  0.46  0.12  0.18  0.16  0.16  

Winter 0.44  0.04  0.27  0.25  0.20  0.06  0.50  0.24  0.27  0.20  0.14  0.38  0.19  0.20  0.15  0.46  

 408 

 409 

 410 
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Table 4 Transition probabilities for individual classes in four seasons 411 

    DRA FPK BON PSU 

    S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 

S
pr

in
g 

E1 0.58  0.16  0.28  0.41  0.31  0.11  0.16  0.25  0.07  0.29  0.17  0.14  0.11  0.27  0.24  0.12  

E2 0.02  0.16  0.06  0.02  0.04  0.18  0.08  0.06  0.33  0.16  0.16  0.25  0.34  0.17  0.20  0.22  

E3 0.24  0.19  0.28  0.26  0.32  0.22  0.28  0.30  0.12  0.15  0.17  0.16  0.12  0.18  0.16  0.16  

E4 0.16  0.49  0.37  0.31  0.33  0.49  0.48  0.39  0.48  0.39  0.50  0.45  0.42  0.37  0.41  0.50  

S
um

m
er

 E1 0.74  0.48  0.29  0.30  0.41  0.09  0.14  0.25  0.14  0.43  0.18  0.19  0.04  0.32  0.12  0.16  

E2 0.16  0.25  0.27  0.30  0.03  0.22  0.11  0.06  0.18  0.04  0.11  0.05  0.21  0.05  0.12  0.07  

E3 0.01  0.03  0.09  0.09  0.31  0.22  0.31  0.36  0.29  0.11  0.22  0.17  0.40  0.12  0.28  0.20  

E4 0.09  0.24  0.36  0.32  0.25  0.48  0.44  0.33  0.38  0.42  0.49  0.58  0.35  0.51  0.49  0.57  

A
ut

um
n 

E1 0.74  0.45  0.33  0.26  0.45  0.13  0.23  0.27  0.04  0.30  0.07  0.06  0.03  0.33  0.14  0.09  

E2 0.18  0.31  0.30  0.30  0.03  0.23  0.12  0.06  0.50  0.18  0.22  0.28  0.41  0.08  0.17  0.21  

E3 0.01  0.03  0.09  0.15  0.27  0.19  0.29  0.34  0.09  0.17  0.21  0.13  0.10  0.23  0.19  0.15  

E4 0.08  0.22  0.28  0.28  0.25  0.45  0.36  0.34  0.37  0.35  0.49  0.54  0.47  0.35  0.50  0.55  

W
in

te
r 

E1 0.58  0.14  0.27  0.45  0.30  0.09  0.17  0.20  0.09  0.36  0.27  0.18  0.12  0.32  0.25  0.17  

E2 0.01  0.21  0.07  0.04  0.02  0.21  0.05  0.05  0.41  0.15  0.23  0.25  0.29  0.11  0.16  0.20  

E3 0.25  0.19  0.30  0.20  0.30  0.12  0.22  0.26  0.11  0.17  0.16  0.14  0.14  0.22  0.12  0.13  

E4 0.16  0.46  0.36  0.32  0.38  0.57  0.56  0.48  0.39  0.32  0.34  0.43  0.45  0.36  0.47  0.50  

 412 

5.3 Verification of TSRY 413 

TSRY is finally synthesised based on the results presented in Sections 5.1 and 5.2. The final 414 

synthesis results of TSRY and traditional TMY are compared to evaluate this method. 415 

Afterward, the characteristic parameters of TSRY and historical data are also compared. 416 

5.3.1 Comparisons between TSRY and TMY 417 

The comparison results shown in Fig. 8 indicate that the overall trend of the output of 418 

TSRY and TMY is the same. This finding shows that TSRY can also reflect the annual variation 419 

of solar radiation as TMY. However, as shown in the enlarged subgraph, the DSR features have 420 

several differences. The solar radiation feature of TMY and TSRY is basically the same for the 421 

DRA region, with less fluctuation. In the other regions, where solar radiation exhibits more 422 

fluctuation, significant differences between TMY and TSRY are observed. TMY uses a 1-hour 423 

sampling interval, which leads to the loss of most of the fluctuating features of solar radiation, 424 

whereas TSRY uses a 3-min sampling interval, which preserves the fluctuating features of solar 425 

radiation. In the subsequent section, the ability of TSRY to express the fluctuating patterns of 426 

solar radiation is further validated by comparing with historical data. 427 
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 428 

Fig. 8  Comparisons between TSRY and TMY 429 
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5.3.2 Comparisons between TSRY and historical data 430 

 431 

Fig. 9 Features distribution comparisons between synthesis results and historical data 432 

 433 

Fig. 9 shows that TSRY can reflect the outstanding characteristics of the four regions and 434 

four seasons. The six characteristic parameters of TSRY have distributions similar to that of 435 

historical data. The average deviation is 6% for the DRA region, 7% for the FPK region, 9% 436 

for the BON region and 10% for the PSU region. This finding indicates that TSRY synthesis 437 

based on the method proposed in this study has the capability to represent the characteristics 438 

of DSR for a given region. 439 

Fig. 9 also shows that the deviations in spring and autumn are higher than that in summer 440 

or winter because DSR is more prone to change during spring and autumn. For the same reason, 441 

the final synthesis result deviation is highest in the PSU region where solar radiation 442 

fluctuations are stronger than in the other regions. Increasing the solar clustering classes or 443 

reducing the length of clustering segments can be used to improve the TSRY synthesis 444 

precision with frequent fluctuation. However, these two improved methods would need more 445 

samples for modelling. 446 
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6 Conclusions 447 

An innovative TSRY synthesis method is proposed to address the inability of the existing 448 

TMY synthesis approach in efficiently representing the DSR fluctuation and transition rules.  449 

DSR data from four selected regions are selected as research basis, and the CSR distribution 450 

of these regions is analysed. The results showed that sunny weather is predominant in the DRA 451 

region, although solar radiation showed different fluctuation patterns. Fluctuation in the FPK 452 

region usually occurs around noon, resulting in greater changes in solar radiation values 453 

compared with morning or evening. In the BON and PSU regions, the fluctuation is evenly 454 

distributed throughout the entire daytime. 455 

Based on the analysis, a six-dimensional feature vector is proposed to represent the solar 456 

radiation fluctuations. Then, ݇-means clustering is used to cluster the DSR into four classes. 457 

The clustering results of all cases show that ܥଵ–  ସ represent sunny, dusky and cloudy days 458ܥ

and mixed weather, although individual regions have its own unique characteristics. 459 

Based on the clustering results, DTMC was used to model the transition rules, which 460 

include the distribution and transition probabilities, of the four classes based on ݇ -means 461 

clustering. Distribution analysis shows that sunny and cloudy days dominate the DRA and FPK 462 

regions, respectively, whereas mixed weather dominates the BON and PSU regions. Transition 463 

probability analysis shows that the DRA region has the highest probability of continuous sunny 464 

days. However, in the FPK region, each type of DSR is rarely presented consecutively. 465 

Meanwhile, in the BON and PSU regions, continuous mixed weather has a high probability. 466 

The comparison results of TSRY and TMY show that TSRY can also accurately reflect the 467 

annual variation of solar radiation as TMY. In addition, the six-dimensional vectors of TSRY 468 

and historical DSR data are compared. The results of the comparison for the four regions show 469 

that the average error of synthesised TSRY has the maximum and minimum values of 10% and 470 

6%, respectively, indicating that the synthesised TSRY adopted in this study can successfully 471 

represent the fluctuation and transition patterns of DSR in a certain region. 472 

Subsequently, relevant studies from two perspectives will be conducted. First, the diverse 473 

characteristic parameter combinations of DSR for constructing the TSRY that are targeted in 474 

different applications, including the weighting aspect of the parameters, the average dry-bulb 475 

temperature and the radiation duration, will be investigated. Second, the influence of historical 476 

data sample sizes on the precision of the final synthesis outcomes will be explored to determine 477 

the minimum sample size of historical meteorological data that can satisfy the synthesis 478 

requirements. 479 
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