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Abstract. We investigate two modified Quantum Evolutionary methods for solving real value problems. The Quantum Inspired 

Evolutionary Algorithms (QIEA) were originally used for solving binary encoded problems and their signature features follow 

superposition of multiple states on a quantum bit and a rotation gate. In order to apply this paradigm to real value problems, we 

propose two quantum methods Half Significant Bit (HSB) and Stepwise Real QEA (SRQEA), developed using binary and real 

encoding respectively, while keeping close to the original quantum computing metaphor. We evaluate our approaches against 

sets of multimodal mathematical test functions and real world problems, using five performance metrics and include comparisons 

to published results. We report the issues encountered while implementing some of the published real QIEA techniques. Our 

methods focus on introducing and implementing new rotation gate operators used for evolution, including a novel mechanism 

for preventing premature convergence in the binary algorithm.  The applied performance metrics show superior results for our 

quantum methods on most of the test problems (especially for the more complex and challenging ones), demonstrating faster 

convergence and accuracy.  

Keywords: quantum evolutionary methods, estimation of distribution algorithms, performance metrics, global optimization, 

multimodal functions, real value problems. 

1. Introduction 

A challenge for modern computer science is the 

development of algorithms for increasingly complex 

optimisation problems.  These may include a variety 

of  practical real-world problems, such as structural 

engineering [24,25], 3D mesh simplification [4], 

antenna design [7], wireless network design [34], 

electric power systems [1], resource allocation [27], 

digital image watermarking [42], EEG classification 

[21], benchmark problems [11], large data set analysis 

[31], or mathematical functions designed to test or 

challenge aspects of optimisation [22,50].  

Approaches to solving these problems include typical 

algorithms such as particle swarm optimisation (PSO) 

[36,51], genetic algorithms (GA) [14,39], and 

differential evolution [12,23,44], as well as other 

nature inspired methods such as honey bee [28] and 

cloud drops algorithms [9].  For a discussion of 

modern state of the art techniques, including memetic 

and landscape analysis techniques, see [6,40,56]. 

In 2002 a new optimization algorithm was 

presented in [18], that took inspiration from quantum 

computing to evolve a probability distribution, which 

in turn was employed to search a solution space.  The 

method used a string of quantum bits (Qbit), each 

storing sampling probability of a one or a zero.  

Successive sampling of the string produced a series of 

candidate binary solutions.  If any of these were found 

to be an improvement, the underlying Qbit 

probabilities were adjusted to make the candidate 

more likely to appear in successive samples.  A 

detailed explanation of the algorithm is presented in 

section 2. 
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Originally, this quantum-inspired evolutionary 

algorithm (QIEA) was applied to the Knapsack 

problem - a binary combinatorial optimisation 

problem [18], and then modified versions were 

applied by others to OneMax, Noisy-flat and NK-

landscapes [35], neural-network training [45], and 

networking [49]. 

Although some attempts have been made to apply 

binary QIEA (bQIEA) to real-value problems [19], 

most applications to such tasks have used real-value 

QIEA (rQIEA) [3,8,20,48,54].  These algorithms took, 

at least superficially, the concepts of superposition and 

quantum rotation gates that were introduced with the 

binary QIEA, and adopted them for application to real-

value problems.  However, when reviewing them we 

encountered a number of problems.  Many were 

incompletely described and could therefore not be 

reproduced, one was trivial to implement [54] but 

performed extremely badly on a set of multimodal 

mathematical test functions, and of greatest concern, 

one paper [8], which claimed superior performance to 

another optimization algorithm, but was later found to 

not have performed as well as claimed [43].  A second 

issue, more of a philosophical concern than a practical 

problem, is that in making the adaptation to real-value 

problems, the purity of the original quantum 

inspiration (that are naturally applied to binary 

problems) may be lost.  We discuss these concerns in 

sections 3 and 6.  Various attempts at a real QIEA can 

be found in the literature, including [3,20,48], and in 

[53] a review is presented of both binary and real 

QIEA.  In this investigation we have chosen [55] to 

build a real-coded QIEA upon, as it performed the best 

in initial tests and contained features common to many 

real QIEA. 

The goals of the research presented here were to see 

how the Classic version [18] of the binary QIEA, as 

well as a representative real QIEA, would perform on 

a number of recent benchmark test functions and 

several real-world problems, and  to investigate, 

design, and develop modified binary and real QIEA, 

proposed to improve the performance of these 

approaches in terms of convergence and accuracy.  

The bQIEA were shown to belong to a class of 

methods called estimation of distribution algorithms 

[35].  This work therefore extends the application of 

this class. 

In our previous work [47], we presented an initial 

investigation of the binary QIEA. In the current paper 

we extend the investigation with more in-depth 

theoretical analysis and discussion of context, adding 

updated version of the binary QIEA and proposing a 

new real encoded algorithm. We also include a 

substantial amount of new experiments and 

simulations, considering higher dimension cases, 

modern transformed variants of benchmark functions, 

and several real-world problems. The methods 

evaluation is based on a varied set of metrics and 

extended comparative analysis, with discussion that 

consider results from other authors. 

In sections 2 and 3 we present the binary and the 

real QIEA under investigation, including our 

modifications.  Section 4 outlines the methods used for 

testing, and section 5 presents the obtained results.  

The paper concludes with a discussion in section 6. 

2. Binary QIEA (bQIEA) 

This section presents the original binary quantum 

inspired evolutionary algorithm (bQIEA)  [18], along 

with a preliminary investigation highlighting arising 

problems when applying it to real-value tasks. We 

then introduce a modified method designed to tackle 

these issues. 

2.1. Classic QIEA 

The original QIEA [18], hereon in labelled Classic, 

contains the core properties of QIEA: Qbit sampling; 

and the rotation gate operator.  Unlike a traditional 

binary evolutionary algorithm, Classic stores a string 

of probability values called Qbits.  For each individual 

i in a population of size p, Qbit value Qij(t) is used to 

give the probability (Pij = sin2(Qij(t)) of sampling a 

zero or one for bit j (from a string with length of N 

bits) at iteration t.  Through repeated iterations of 

sampling, the same Qbit value can be used to sample 

a sequence of random binary values.  If a Qbit has a 

value of π/4 (highest entropy), both one and zero have 

an equal chance of being sampled.  A Qbit value near 

π/2 favours sampling 1s, and a value close to 0 favours 

sampling 0s. 

Even in the absence of evolution of the 

chromosomes, Classic will continue to produce 

different candidates for the fitness function, unlike a 

traditional evolutionary algorithm.  The combination 

of probability and sampling is inspired by the quantum 

computing principal of superposition.  Superposition 

is the ability of a Qbit to hold multiple states 

simultaneously.  The string Qi therefore provides a 

probability distribution function for generating 

candidate solutions Ci at each iteration. 

While random sampling allows the solution space 

to be searched, the Qbits need to be changed in order 
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to localise and refine the search.  By interpreting the 

Qbit as an angle, a probability can be derived 

according to Eq. (1).  The angle is then updated using 

a modifier called a rotation gate, which simply shifts 

the angle, and therefore the probability, one way or the 

other.  By using the best solution found so far (called 

the attractor Ai) for an individual, this gate can be 

made to rotate towards a position that reinforces the 

attractor probabilities, if it is still the best solution, or 

away, if the candidate was better.  The magnitude of 

rotation |Δθ| is fixed to π/100 and the Qbit is restricted 

within the range (0, π/2). The rotation gate is given in 

Eq. (2). 

Information is distributed around the population via 

the attractors A.  Every G-th iteration, a global 

migration is performed, where the best attractor in the 

population is copied to all individuals and every L-th 

iteration, a local migration is conducted, where the 

best attractor in a subset of the population is copied to 

the whole subset.  For the investigations presented 

here, G=20, L=1 (meaning improvements to attractors 

are copied to subsets at the end of each iteration), and 

the number of subset groups is assumed to be 5.  These 

values are adopted from [18], where they were 

established to be successful, and we do not investigate 

them further.  Subset allocation is done simply by 

splitting the full population into equally sized groups 

of individuals.  Pseudo-code for Classic is presented 

in Algorithm 1. 
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where Δθ is the size and direction of rotation. 

2.2. Application to real-value problems and 

convergence issues 

In our investigation, for the binary optimization 

algorithms, real values are encoded using a simple 

scheme.  Binary strings of length 24 bits are used to 

generate numbers in the [0, 224-1] range, which are 

then linearly mapped onto the domain for the fitness 

function being optimized.  The length of 24 bits was 

chosen to match the length of significand of the 32 bit 

floats used in the real algorithms.  It was later found 

that the more demanding benchmark functions 

produced results that highlighted differences in 

exploration performance between algorithms, more 

than fine numerical exploitation.  For the work 

presented here, we therefore do not regard the 

precision as a limiting factor, although future work 

may demand greater string lengths to increase 

precision, and it is important to note that these 

significantly affect computation time in the binary 

algorithms. 

An initial application of Classic to real-valued 

problems highlighted a convergence issue.  A plot of 

a typical evolution is shown in Fig. 1a.  The plot shows 

that the least significant Qbits (LSBs) were saturating 

before the most significant Qbits.  Once a Qbit 

saturates, it will no longer evolve because sampling 

will continuously produce ones or zeros, depending on 

which end of the scale the Qbit has saturated to.  This 

means that the LSBs had become randomly fixed 

relatively early on in the optimization, thus preventing 

fine scale exploitation. 

For reasonably smooth search spaces, the early 

stages of the search should focus on finding the 

general locations of extrema, rather than refining 

solutions to a precise position.  During this phase, the 

fitness function will be affected more by large 

movements than by small ones.  With a binary 

representation, this will manifest in the most 

significant bits (MSBs) dominating the search, as 

changes to them are likely to find larger improvements 

to the fitness than changes to the LSBs. 

 
Algorithm 1: Pseudo-code for Classic and HSB 

 

1: Initialise each Qi with each bit Qij=π/4  

2: Initialise each Ai with random strings 

3: while not termination condition do 

4:  for all i∈[1,p]  

5:   sample new Ci from Qi  

6:   evaluate fitness of Ci using a binary to real mapping 

7:   for each t∈[1,N]  

8:    if f(Ai) is better than f(Ci) then select a rotation  

     direction that would reinforce Aij  

9:    else select a rotation direction that would move  

     away  from Aij 

10:    end if 

11:    update Qij with rotation gate 

12:   end for 

13:   if f(Ci) is better than f(Ai) then 

14:    Ai= Ci 

15:   end if 

16:  end for 

17:  every L iterations perform local migration 

18:  every G iterations perform global migration 

19: end while 
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Therefore, in the early stages, the LSBs provide 

little selection pressure, and so random values for 

these bits will be tolerated, while the MSBs are 

optimised.  We can model this by assuming that the 

LSBs contribute nothing to the fitness evaluation, and 

so the LSBs of the best candidate will always be 

regarded as ‘better’ whether they sample a one or a 

zero.  As the rotation gates are applied to adjust the 

Qbit probabilities to reinforce the sampled state, the 

LSBs (in the absence of exerting evolutionary 

pressure) will follow a simple, but non-symmetrical 

random walk, where the probability of rotating the 

Qbit probability towards an extremum (one or zero) 

increases as it moves away from the centre.  This 

process is specified with Eq. (3) and ten example 

simulations of the process are shown in Fig. 2, 

demonstrating quick convergence to either the one or 

zero limits. 

A simulation of 100 such random walks found 

saturation to either zero (53% of walks) or one (47% 

of walks) within a maximum of 99 simulations.  Mean 

number of iterations until saturation was 36.82, with 

std. dev of 16.10.  In practice the behaviour of the 

optimisation algorithm will only approximately 

follow this random walk model for the LSBs, but that 

could be enough to cause premature LSB convergence, 

especially when a large number of iterations are 

performed. 
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where Xt is a random variable with a Bernoulli 

distribution, with the probabilities for the two states 

being dependent on the random walk position yt at 

time t. The step size for the rotation gate is Δθ. 

In reality, the LSBs will exhibit some evolutionary 

pressure, varying according to the shape of the fitness 

landscape, but as illustrated in Fig. 1a, the time line of 

the Qbit evolution shows that the LSBs can be 

observed to saturate early on in the process. 

 

 

a)  
 

b)  

 
Fig. 1. Evolution of Qbit probabilities on Griewank function using 
(a) Classic and (b) HSB algorithms.  Bits for one real value are 

shown with most significant bits to the left, red indicating a 
probability of sampling close to 1, blue - close to 0, and white close 

to even chance of 1 or 0.  Time is displayed every 10 iteratopms.  

Early in the evolution (t = 0 – 30), all squares are pale.  Later on (t 

= 190 – 220), for Classic, the LSBs (to the right) are all saturated, 

while several of the MSBs are paler and still undergoing evolution.  

For HSB however, limiting saturation of a Qbit to be no more than 
the current value of the neighbour with half bit index (more 
significant), prevents the LSBs from saturating before the MSBs. 

2.3. Improved bQIEA convergence performance for 

real value problems – HSB (Half Significant Bit). 

One possible solution of these convergence 

problems is presented in [19], where the rotation gate 

operator has limits imposed that were slightly within 

the zero to one range.  This means that, even late in the 

evolution, it is always possible to sample new bit 

values as the Qbits never completely saturate. 
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Fig. 2.  Ten example simulations of LSB random walk process 

when they exert relatively little pressure on the evolution.  Each 

colour represents a different simulation run, the vertical axis is 
Qbit position, with each run starting in the central 0.5 position, and 

the horizontal axis is the number of iterations.  Runs’ quick 

saturation to either one or zero is showing a tendency for the LSB 
to prematurely converge if they do not exert significant pressure 

on the evolution, using the standard QIEA rotation gate. 

However, as we have analysed this premature 

convergence to be a problem of LSB evolution relative 

to MSB revolution, and inspired by early 

experimentation that failed to find much benefit from 

the constraint strategy, we present and test a method 

that explicitly constrains LSB Qbit rotation, relative to 

MSB Qbit rotation.  When rotating a Qbit, we impose 

a limit upon the range that it can move to, based on the 

current value of a more significant bit, so that it cannot 

move to a more extreme value.  This has the effect of 

delaying large movements in the LSBs until the MSBs 

have saturated. 

Using the more significant immediate neighbour bit 

as a limiting condition made the convergence too slow, 

but picking a bit index that was half the position value 

of the Qbit being rotated (assuming bit index zero as 

the most significant one), gave acceptable results.  

This is a somewhat less aggressive limiting condition, 

which gives a compromise between premature 

convergence and overly slow convergence.  Future 

work will be needed to identify the optimum index 

strategy.  The adjusted formula for the rotation is given 

in Eq. (4), with the general algorithm code staying the 

same as for Classic.  This modified algorithm is called 

HSB (Half Significant Bit) in this paper, and 

preliminary results of an evolution are shown in Fig. 

1b.  The global and local migration rates G=20 and 

L=1, and the population subdivisions (5 subsets) are 

assumed the same as in the Classic method [18]. 
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Eq. (4) applies the rotation but then compares the 

result to a more significant bit.  This bit, h, has a 

position index equal to one half of the index of the bit 

being modified, j, rounded down to the nearest integer.  

The comparison is done to limit the range to be no 

more extreme than the more significant bit.  The 

extremeness is determined by measuring the reference 

bit’s deviation for the central position π/4.  Bit index 

zero is modified according to the original Eq. (2) as 

there are no more significant bits relative to it. 

3. Real QIEA (rQIEA) 

In order to apply QIEA to real-value problems, 

numerous attempts have been made to develop real 

QIEA (rQIEA) [53], and we chose to include rQIEA in 

this investigation.  A simple attempt at this is shown 

in [54] where the rotation angles from the Classic 

bQIEA are re-interpreted as actual solutions.  This 

approach has the advantage of ease of implementation, 

and maintains the binary sampling metaphor while 

delivering real values.  However, the sampling 

produces one of two options per dimension, rather 

than a range of values when a binary string is used.  In 

our initial testing we did not produce satisfactory 

results using this algorithm on our test set.  However, 

we found one algorithm called RCQIEA, presented in 

[55], to be well defined, to have good results on 

standard benchmarks,  and to retain a meaningful 

proportion of the quantum metaphor.  Therefore, we 

decided to include it in our study, along with a 

modification for improved performance. 

3.1. The RCQIEA algorithm 

Whereas Classic produces fresh solutions at each 

generation, RCQIEA stores and updates a candidate 

solution.  Classic takes the inspiration of superposition 

and uses it to evolve a probability density function 

(pdf), as described by the probability angles for each 

bit.  By not doing this directly, RCQIEA begins to 

move away from the original quantum metaphor.  

However, as we will describe shortly, the generation 

of new candidates through creep mutation, can be seen 

as using the candidate as a string of mean values for 

an evolving pdf. 

At each iteration, a set of offspring Oj is generated 

from each individual’s candidate Ci using creep 

mutation with variances stored in a string Vi.  The 

values in Vi are stored as angles and transformed into 
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a pair αi and βi in the same way as for the Classic.  The 

offspring are generated in two subsets: one using αi for 

the variances; and one using βi/5, to allow for both fine 

and coarse searching.  The offspring are tested for 

fitness and if one is found to be better than the current 

candidate, it replaces that candidate.  Otherwise, a 

rotation gate is applied to the variance angles in the 

same way as in Classic, but with a rotation step given 

in Eq. (5).   

 
0

sgn exp ,


  
 

 


 
 
 

 (5) 

where α and β are the angles as defined in (1), and θ0 

and γ are constants. 

A cross-over operator is also applied during the 

evolution.  For our investigation, we applied it four 

times during the course of each run (G=N/4), adopting 

the approach presented in [55].  The pseudo-code for 

the rQIEA presented here, is given in Algorithm 2. 

 

 
Fig. 3: An example of the Δθ values for the RCQIEA algorithm on 
the Griewank test function.  The maximum magnitude should be 

π/2, but very large values can be also observed. 

3.2. Problems with rotation gate 

In [55], the constants for (5) were specified as 

θ0=0.4π and γ=0.05.  In the testing, the RCQIEA 

performed well for many functions.  However, we 

detected values of large magnitudes for Δθ, which 

suggested a problem with the behaviour of the rotation 

gate.  For example, if the angles are α=0.01 and 

β=0.99995 (satisfying α2 + β2=1), then (5) produces a 

magnitude for Δθ in excess of 5.0e8.  As a rotation 

angle in this context, such a magnitude for Δθ does not 

make sense, as it represents many complete rotations 

in one iteration. In effect this leads to somewhat 

random updates of the angle variables, and in turn, the 

variances for the creep mutation.  A real example of 

these problematic delta values can be seen in Fig. 3. 

 

 

 

Algorithm 2: Pseudo-code for RCQIEA 

 

3.3. Improving the rotation gate 

To alleviate this problem, we developed a modified 

version of the rotation gate, keeping the rest of the 

RCQIEA algorithm (see Algorithm 2).  We call this 

modified algorithm Stepwise Real QEA (SRQEA).  

The change rotates the angles by a constant magnitude 

in the rotation gate, as shown in Eq. (6). 
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This change was motivated by making the update 

similar to the constant step size used in Classic, and in 

doing so, automatically avoiding problematic step 
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1. Initialise the population size p,  the maximum 

number of iterations N, and crossover 

frequency G 

2. Initialise each Ci, Vi with random values 

3. Evaluate fitness f(Ci) for each  individual 

4. while not termination condition do 

5. for all i∈[1, p]  

6. construct two sets of offspring Oj from 

Ci using creep mutation from a normal 

distribution with variances Vi.  One set 

uses the αi angles and the other one the 

βi angles, both scaled for coarse and 

fine search respectively 

7. for each offspring j 

8. if f(Oj) is better than f(Ci) then 

9. replace Ci with Cj 

10. else apply rotation gate to Vi 

11. end if 

12. end for 

13. end for 

14. adjust coarse and fine search scale factors 

over course of run to move towards finer 

search at the  end of the simulation 

15. every G iterations perform crossover 

mutation 

16. end while 



 7 

algorithm performance, with π/250 providing 

reasonable results.  Future work is needed to quantify 

the step size/performance relationship, including 

testing a wider range of step sizes, more runs and more 

fitness functions.  Also, we kept G=N/4 from [55], but 

other generation sizes could be investigated along with 

step size variants in the future. 

4. Numerical Simulation 

Each algorithm was tested against several fitness 

functions.  In accordance with the procedures outlined 

in [22], functions were tested with 10, 30 and 50 

dimensions (except for the real-world problems which 

had specific dimension requirements), and each 

optimization run was performed 51 times, unless 

otherwise stated.  The termination criterion was set to 

a number of function evaluations of 10000 x number 

of dimensions, unless otherwise stated.  Given that 

more than one function evaluation per generation was 

performed for the rQIEA, their generations per run 

were adjusted accordingly. 

The testing environment was a custom Windows 

MFC C++ programme running on Windows 7, with an 

Intel G2030 CPU, a Gigabyte Z68AP-D motherboard 

and 8GB DDR3. 

4.1. Test functions 

Firstly, a set of traditional, basic functions, was 

taken from the first 13 functions presented in [50].  

Additionally, a non-transformed basic version of 

Schwefel 7 [20] was used when comparing to data 

published for three recent QIEA [16,20,29], and a 

basic two dimensional problem from [46], when 

comparing another QIEA. A second set of more 

complicated functions was added from the first 20 

functions defined in the CEC-2013 specification [22].  

These are based on the traditional functions but are 

highly modified and transformed, including 

application of rotations.  It should be noted that both 

sets share one function in common – the Sphere 

function.  We duplicate the presentation of the results 

for this function in order to be consistent when 

comparing to other published results.  Finally, real-

world problems from CEC-2011 [11] were added: 

frequency modulated sound wave matching; atom 

configuration; and radar waveform parameter 

optimisation. 

The frequency modulated sound wave matching 

problem optimises the constants of Eq. (7), so that the 

output of the wave, measured for integer t=[0,100], 

where θ=2π/100, matches the output of Eq. (8). 
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where α and ω are the constants to be optimised. 

The Lennard-Jones atom potential configuration 

problem, aims to minimise the potential energy VN of 

a set of N atoms with position  , , z
i i i i

p x y  

according to Eq. (9). 
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Finally, the radar polyphase pulse design problem 

seeks to minimise a function f(x) based upon set of n 

parameters x={x1,…, xn} according to Eq. (10). 
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  (10) 

4.2. Population size analysis 

Before conducting an extensive evaluation of the 

proposed methods, an investigation into choosing a 

suitable population size was conducted.  An initial run 

for 30 dimensions was performed for the optimisation 

algorithms on the non-real world functions, with a 

series of different population sizes being used.  The 

number of individuals ranged from 5 to 50, in 

increments of five, but the total number of functions 

evaluations was kept to 300000.  After running the 

simulations, the number of times an algorithm had a 

best performance (assessed just for that algorithm) 

was counted for each population size.  A best 

performance occurred when it was the best, or equal 

best, minimum value or mean value for the fitness 

function of that optimisation algorithm. 

The results according to the best minimum and 

mean values found are shown in Fig. 4.  Results for 
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the bQIEA Classic and HSB are shown in Fig. 4a and 

Fig. 4b respectively, and results for the rQIEA 

RCQIEA and SRQEA are shown in Fig. 4c and Fig. 4d 

respectively. 

 
 

 
 

 
 

 
Fig. 4: Population analysis for the QIEA: a) Classic; b) HSB; c) 
RCQIEA; d) SRQEA.  For each algorithm, a simulation run was 

performed on the first 13 non-real world problems presented in 

[50] with 30 dimensions, with population sizes from 5 to 50.  

Then, for each algorithm in isolation, a count of best minimum and 
best mean values were produced for each population size (best as 

determined across all population sizes).  The number of fitness 
evaluations was kept to 300000. 

Generally, the bQIEA performed better with higher 

population sizes, while the rQIEA were better with 

smaller population sizes.  For Classic (Fig. 4a), the 

best minimum values were found more often with a 

population size of 50, with an additional peak at 20/25, 

while HSB  (Fig. 4b) had a peak at 35/40 but 

reasonable performance from 25 to 50.  When looking 

at the mean performance, both bQIEA improved with 

increasing population size, with the best being 50 for 

both.  After combining these results, we chose to 

proceed with 50 individuals for both bQIEA 

algorithms in the later simulations and analysis.  These 

results suggest bQIEA are biased towards exploitation 

and therefore require a larger population size to 

achieve good exploration. 

For both rQIEA, the results (Fig. 4c and Fig. 4d) 

were very clear – a population size of five performed 

the best for both minimum and mean values.  RCQIEA 

had a sharp drop-off in performance above five, while 

SRQEA had a smoother decline with increasing 

population size.  Based upon these results, a 

population size of five was chosen for both rQIEA.  In 

contrast t o the results for the bQIEA, these results 

suggest the rQIEA have relatively good exploration, 

so benefit from a small population in order to improve 

exploitation by increasing the number of function 

evaluations per individual. 

4.3. Performance metrics 

4.3.1. Summary statistics 

To present a basic analysis and compare across 

publications, summary information is generated from 

error values (from the known minimum value) or 

absolute values if the global minimum is unknown.  

From the raw data, simple statistical measures such as 

minimum, mean and standard deviations are 

calculated and summarised, with lower values for each 

being preferred in the comparisons.  Using the 

procedures outlined in [17], average mean 

performance was ranked and tested with a Friedman 

test, and pairwise significance tests were conducted 

with Shaffer’s static procedure.  Additionally, for the 

majority of functions, pairwise comparisons between 

algorithms were performed on SPSS using the Mann-

Whitney U test, with Bonferroni-Holm adjustment for 

multiple comparisons, to compare the distribution of 

error values found on each run when analysing one 

pair in isolation.  However, this should be seen in the 

context of the pairwise tests as these single pairwise 

run comparisons do not take into account error 

propagation through multiple pairwise comparisons. 
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4.3.2. Success Rates 

Using metrics introduced in [10], a success rate and 

measure of time taken by the run to succeed 

(converging to a minimum) are calculated.  Success 

Rate (SR) is calculated as the number of successful 

runs divided by the total number of runs.  A run is 

regarded as successful if it finds an error below a 

predefined threshold. 

4.3.3. Success Performance 

To measure the speed at which an algorithm obtains 

good results, a metric called Success Performance 

(SP) is calculated [10].  This is defined as SP = 

(SNFEs)*(number of total runs)/(number of 

successful runs), where SNFEs is the average number 

of function evaluations required by each successful 

run to reach the tolerance.  A lower value of SP is 

preferred because it indicates a better combination of 

speed and consistency for the algorithm. 

4.3.4. Timeline plots 

In order to analyse the behaviour of the algorithms, 

graphical representations of their evolution are 

produced for every test function.  Across all runs, for 

each iteration the mean error is calculated and plotted.  

So that the behaviour, with respect to the number of 

function evaluations, can be compared directly 

between the algorithms, and the time is normalised in 

the [0, 1] range. 

4.3.5. Empirical cumulative probability distribution 

Performance across all functions is summarised 

using the empirical cumulative probability distribution 

function (ECDF) method presented in [15].  An ECDF 

is constructed by firstly determining the performance 

of each algorithm on each test function, by comparing 

its mean error ME with the mean error achieved by the 

best algorithm, and formulating a normalized mean 

error NME (Eq. (11)).  Then, the distribution is formed 

by counting, for each value x  in the domain of the 

distribution, how many normalized means (across all 

test functions) were obtained below x  (Eq. (12)).  

Normalizing and plotting these values produces a 

graph where superior algorithms reach the top of the 

chart faster than less well performing algorithms.  In 

this analysis, all the test functions were included, as 

well as additional graphs for subsets (traditional, 

CEC-2013 and real-world). 

 

,

,f

,

,
1

A f

A

best f

ME
NME

ME



   (11) 

   
,

1 1

1 fA
nn

i j

i j
A f

ECDF x I NME x
n n  

 


  (12) 

where A and f are the optimisation algorithm and the 

test function index respectively, nA and nf are the 

number of algorithms and test functions respectively. 

5. Results and Discussion 

Examples of methods used to optimise CEC-2013 

problems include Particle Swarm Optimization [51], 

Adaptive Differential Evolution [41,44,52], Mean 

Variance Mapping [37] and GA [14].  The methods for 

optimisation of the traditional test functions, covered 

in this work, include Evolutionary Programming [50], 

Particle Swarm Optimization [30], GA [26], and 

Hybrid Bee Colony/QEA [13].  This section presents 

the bQIEA and rQIEA results that we produced. 

5.1. Pairwise statistical comparison of the QIEA 

In Table 1 a Friedman test on average means for 50 

dimensions rank Classic as the worst performer across 

the traditional and CEC-2013 functions, followed by 

HSB, RCQIEA, and lastly SRQEA as the best 

performer, with a statistical significant difference 

across the group (p<0.001).  A Shaffer’s pairwise test 

is presented in Table 2.  All comparisons showed 

significantly differences apart from between RCQIEA 

and SRQEA (adjusted p=0.384).  Furthermore the 

Table 1: Friedman test of average ranking of mean performance.  
Higher ranking is better. 

Algorithm Ranking 

Classic 1.50 

HSB 2.25 

RCQIEA 2.98 

SRQEA 3.27 

p<0.001 

 

Table 2: Pairwise comparisons between Classic, HSB, RCQIEA 

and SRQEA, for average mean performance on 50 dimensions for 

functions 1 to 33.  A Friedman test of average ranks gave p<0.001.  
Pairwise comparisons between the algorithms were then 

conducted using Shaffer’s static procedure and are listed below.  

All null hypotheses were rejected at the 10% level at least apart 
from RCQIEA vs SRQEA. 

hypothesis unadjusted p Shaffer's p 

Classic vs SRQEA <0.001 <0.001 

Classic vs RCQIEA <0.001 <0.001 

HSB vs SRQEA 0.002 0.005 

Classic vs HSB 0.020 0.060 

HSB vs RCQIEA 0.023 0.060 

RCQIEA vs SRQEA 0.384 0.384 
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comparison between HSB and Classic, and HSB and 

RCQIEA were weakly significant (adjusted p both 

0.06).  The other comparisons were highly significant 

(adjusted p<0.005).  More work is needed to 

demonstrate a difference between SRQEA and 

RCQIEA by this measure, although other tests 

presented below are suggestive of better performance 

by SRQEA in addition to the better average mean 

ranking. 

5.2. Statistical comparison of the QIEA on 

traditional test functions 

In order to be useful optimization algorithms, the 

QIEA must find solutions close to the optimum, as 

represented by small error values.  We start by looking 

at the performance on the traditional test functions, 

with minimum, mean and standard deviation data 

presented in Table 3 (functions 1-13) for 50 

dimensions. 

These functions are reasonably smooth, at least 

locally, and therefore obtaining a good error score will 

require good exploitation abilities of the algorithm.  In 

section 2 we highlighted the difficulties for Classic in 

optimising the LSBs, and we would expect this to be 

reflected in poor minimum values as the exploitation 

would be hampered.  For both bQIEA, most solutions 

had errors of magnitude above 1e-01, although some 

of the fitness functions had large constant factors (e.g., 

Rosenbrock has a constant factor of 100) so absolute 

values require a degree of interpretation.  Even so, 

with four minima of magnitude over 1e06 at 50 

dimensions for Classic and four above 1e05 for HSB, 

and similar means performance, the bQIEA do not 

have particularly impressive results for the traditional 

batch. 

For the traditional test functions, HSB had equal or 

better minimum values than Classic at 50 dimensions, 

although the magnitudes were generally similar, 

except for 50 dimension Penalised-1 where HSB had 

a much better value than Classic.  HSB With a 

statistically significant, although weak (adjusted 

p=0.06) difference in average mean performance 

(Table 2) this completes a picture of consistently 

better performance for HSB versus Classic, suggesting 

both that the LSB problems of Classic hampered its 

performance, and that our tested solution of limiting 

the LSB probability saturation was successful.  

Testing the bQIEA at 10 and 30 dimensions produced 

very similar results. 

Despite apparent functional performance by the 

bQIEA, the two rQIEA were substantially better - most 

minima had magnitudes of less than 1e-01.  In the 

Shaffer pairwise comparison of average mean 

performance (Table 1 and Table 2), Classic was 

outperformed significantly by both rQIEA (adjusted 

p<0.001), and HSB was outperformed strongly by 

SRQEA (adjusted p=0.005) and weakly by rQIEA 

(adjusted p=0.06).  RCQIEA found smaller than 1e-08 

solutions (clamped to 0.00 in the results) for Step, 

Quartic, Penalised-1 and Penalised-2 in all tested 

dimensions.  Despite RCQIEA performing well on 

these test functions, it was eclipsed by SRQEA.  With 

the exception of Schwefel-2.21 and Rosenbrock, 

SRQEA obtained clamped 0.00 minima results for all 

of the functions, in all dimensions.  Furthermore, in a 

statistical test of run distributions (Mann-Whitney U 

with Bonferroni-Holm adjusted), SRQEA was better 

than RCQIEA for 8 of the traditional functions, with 

no significant results the other way round.  The 

superior performance of the real algorithms over their 

binary counterparts is unsurprising, given the 

application to real-value problems, but the superior 

performance of SRQEA justifies our modification of 

the rotation gate for these functions. 

5.3. Statistical comparison of the QIEA on CEC-

2013 test functions 

As CEC-2013 is a set of real-value problems, some 

being modified versions of the functions from the 

traditional set tested here, we predicted that a similar 

pattern of results would be generated, with the rQIEA 

dominating the bQIEA.  Although HSB outperformed 

Classic, and SRQEA outperformed RCQIEA, the 

performance of the bQIEA compared to the rQIEA 

was very different from its previous performance (see 

Table 3 functions 15-33). 

For several of the test functions - Rotated Discus, 

Rotated Schaffers-F7, Rotated Weierstrass, Rotated 

Rastrigin, Non-continuous Rotated Rastrigin, Rotated 

Schwefel 7, Rotated Katsuura, Rotated Expanded 

Grienwank-Rosenbrock and Rotated Expanded 

Schaffers-F6, one of the bQIEA had the best 

performance for one or more dimensions tested.  

Although the relative difference between minima was 

lower when the bQIEA performed best, compared to 

when the rQIEA were best, there were 6 functions at 

50 dimensions for which HSB had significantly better 

run result distributions than SRQEA (by Mann-

Whitney U/Bonferroni-Holm).  The positive results of 

the bQIEA are significant and surprising, given that 

they can outperform the rQIEA on some real-value 

benchmark functions. 
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The CEC-2013 functions are highly manipulated 

versions of traditional basic functions (many based on 

the traditional test functions used in this paper). The 

manipulations include rotations, scalings and non-

linear transforms.  We hypothesise that it is these 

transformations that allow the bQIEA to perform well 

and suggest that this could happen in one of two 

possible ways.  Firstly, the transformations may 

increase the nonlinear interactions between 

dimensions, producing a fitness landscape that is very 

rough, and therefore more resembling a discrete space 

at scales above the very small.  These search spaces 

may be suited to the binary methods presented here, 

possibly possessing similarities to the combinatorial 

problems that bQIEA have been successful with (e.g., 

Knapsack [18]).  Alternatively, the search pattern may 

be the key.  In the rQIEA, the search space is traversed 

using creep mutations with distances drawn from a 

normal distribution, while the movement in the bQIEA 

is performed using multi-scaled jumps as the bits flip 

between zero and one and move the search to an 

adjacent binary partition at the scale of the 

significance of the bit.  This binary space partitioning 

Fig. 5: Heat map of best values found, normalised for each 

function, by the QIEA on the CEC-2013 test functions.  For each 

test function, the relative performance for each algorithm is 
plotted, with a green (zero) rectangle indicating best performance, 

and a light-green (one) rectangle indicating worst performance. 

Table 3: Summary statistics for the 13 traditional and 19 CEC-2013 test functions (duplicated 14 Sphere removed) with 50 dimensions and 
500000 function evaluations.  For each of the four optimization algorithms, the minimum, mean and standard deviation of the error values are 

presented after 51 runs.  Best values are highlighted in bold type. 

Traditional and CEC-2013 

functions 50 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

01 Sphere 1.35E+03 3.35E+03 1.07E+03 1.81E+02 1.63E+03 7.16E+02 3.01E-04 5.81E-04 1.79E-04 0.00E+00 0.00E+00 0.00E+00 

02 Schwefel-2.22 9.12E+01 1.67E+02 3.90E+01 4.92E+01 1.23E+02 3.17E+01 7.98E-02 1.08E-01 1.30E-02 0.00E+00 0.00E+00 0.00E+00 

03 Schwefel-1.2 5.44E+05 2.20E+06 1.01E+06 1.48E+05 7.98E+05 4.56E+05 2.03E-01 4.26E-01 2.13E-01 0.00E+00 0.00E+00 0.00E+00 

04 Schwefel-2.21 2.16E+01 3.63E+01 6.13E+00 1.83E+01 2.44E+01 4.01E+00 1.81E-01 3.05E-01 4.89E-02 2.00E-02 3.29E-02 7.54E-03 

05 Rosenbrock 9.29E+06 2.81E+08 1.78E+08 7.79E+06 9.17E+07 7.77E+07 9.37E+00 1.27E+02 5.77E+01 4.49E-02 4.34E+01 3.09E+01 

06 Step 1.22E+03 3.29E+03 1.41E+03 6.51E+02 1.72E+03 6.53E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

07 Quartic 3.76E+06 6.42E+07 6.02E+07 6.57E+05 1.51E+07 1.33E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

08 Schwefel-2.26 1.22E+02 3.21E+02 1.30E+02 4.15E+01 1.88E+02 8.73E+01 3.17E-05 6.60E-05 2.20E-05 0.00E+00 0.00E+00 0.00E+00 

09 Basic Rastrigin 7.14E+01 1.04E+02 1.44E+01 3.06E+01 6.18E+01 1.06E+01 1.56E-04 2.89E-04 8.13E-05 0.00E+00 0.00E+00 0.00E+00 

10 Basic Ackley 1.59E+01 1.93E+01 6.07E-01 1.42E+01 1.72E+01 1.12E+00 1.02E-02 1.66E-02 3.10E-03 0.00E+00 5.63E-07 3.26E-06 

11 Basic Griewank 1.07E+01 2.92E+01 1.22E+01 3.64E+00 1.53E+01 5.86E+00 4.01E-04 8.45E-03 9.66E-03 0.00E+00 1.48E-02 2.59E-02 

12 Penalised-1 1.04E+06 4.77E+07 3.66E+07 8.72E+01 1.09E+07 1.74E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

13 Penalised-2 1.43E+07 1.38E+08 9.05E+07 5.21E+05 2.95E+07 3.73E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 5.30E+07 1.17E+08 4.11E+07 4.55E+07 1.02E+08 3.28E+07 5.84E+06 1.15E+07 3.01E+06 1.55E+06 2.96E+06 6.43E+05 

16 Rotated bent cigar 1.38E+10 3.21E+10 8.83E+09 4.85E+09 1.90E+10 1.04E+10 1.18E+03 6.45E+06 2.26E+07 4.98E-02 1.58E+05 1.08E+06 

17 Rotated discus 5.44E+04 8.77E+04 1.68E+04 1.02E+04 2.40E+04 7.45E+03 1.38E+05 1.92E+05 2.88E+04 1.14E+05 1.75E+05 2.47E+04 

18 Different powers 5.98E+02 4.90E+03 3.35E+03 9.52E+01 1.14E+03 1.46E+03 1.57E-03 4.14E-03 1.94E-03 0.00E+00 0.00E+00 0.00E+00 

19 Rotated Rosenbrock 1.12E+02 3.10E+02 1.01E+02 1.04E+02 2.72E+02 9.86E+01 2.98E+01 4.51E+01 3.43E+00 2.38E+01 4.19E+01 7.54E+00 

20 Rotated Schaffers-F7 1.44E+02 1.83E+02 2.18E+01 1.21E+02 1.78E+02 2.47E+01 1.79E+02 2.54E+02 1.22E+02 1.47E+02 2.46E+02 9.28E+01 

21 Rotated Ackley 2.11E+01 2.12E+01 4.08E-02 2.10E+01 2.12E+01 3.58E-02 2.10E+01 2.11E+01 3.74E-02 2.10E+01 2.11E+01 4.68E-02 

22 Rotated Weierstrass 4.46E+01 5.27E+01 4.77E+00 4.07E+01 5.27E+01 4.47E+00 5.71E+01 6.34E+01 3.36E+00 6.16E+01 6.74E+01 3.76E+00 

23 Rotated Griewank 5.36E+02 1.05E+03 2.68E+02 4.03E+02 8.27E+02 2.22E+02 1.54E+00 2.25E+00 3.02E-01 2.71E-02 1.31E-01 4.96E-02 

24 Rastrigin 7.36E+01 1.33E+02 2.56E+01 5.48E+01 7.99E+01 1.82E+01 5.83E-04 1.10E-03 3.38E-04 0.00E+00 0.00E+00 0.00E+00 

25 Rotated Rastrigin 2.41E+02 3.69E+02 7.14E+01 2.33E+02 3.86E+02 8.38E+01 3.58E+02 6.08E+02 1.25E+02 4.60E+02 6.85E+02 1.38E+02 

26 NC rotated Rastrigin 3.95E+02 5.23E+02 7.68E+01 3.51E+02 5.60E+02 1.15E+02 4.71E+02 6.30E+02 9.74E+01 5.01E+02 6.89E+02 1.01E+02 

27 Schwefel-7 3.85E+02 1.17E+03 3.62E+02 1.43E+02 5.36E+02 2.46E+02 2.96E-02 8.57E-02 2.41E-02 9.99E-02 6.71E-01 2.94E-01 

28 Rotated Schwefel-7 5.68E+03 7.73E+03 9.96E+02 5.12E+03 7.33E+03 9.92E+02 4.37E+03 6.25E+03 7.15E+02 4.69E+03 6.22E+03 6.23E+02 

29 Rotated Katsuura 8.49E-01 2.02E+00 5.86E-01 1.26E+00 1.91E+00 4.11E-01 8.74E-01 1.64E+00 3.49E-01 8.93E-01 1.83E+00 4.41E-01 

30 Lunacek bi-Rastrigin 1.31E+02 2.68E+02 6.63E+01 9.44E+01 1.65E+02 4.14E+01 3.82E-02 9.98E-02 3.51E-02 0.00E+00 1.96E-04 1.40E-03 

31 R Lunacek bi-Rastrigin 3.41E+02 6.49E+02 1.27E+02 4.52E+02 6.51E+02 1.08E+02 3.05E+02 4.80E+02 7.87E+01 4.53E+02 6.12E+02 9.30E+01 

32 RE Griewank Rosen. 9.91E+01 5.90E+02 7.94E+02 7.21E+01 4.55E+02 5.85E+02 5.73E+01 1.45E+02 4.66E+01 1.46E+02 2.91E+02 6.26E+01 

33 RE Schaffers-F6 1.51E+01 1.93E+01 2.47E+00 1.51E+01 1.84E+01 1.95E+00 2.05E+01 2.43E+01 5.97E-01 1.90E+01 2.44E+01 7.68E-01 
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could reflect, to some degree, the underlying structure 

of the search spaces. 

For the CEC-2013 set of test functions, the bQIEA 

achieved several minimum scores with a magnitude of 

1e02 or less and, given that the test functions often 

contain large constants (1e06), it could be argued that 

they performed better on the more difficult test 

functions than on the traditional set of functions.  It 

would be interesting to see if this scales, so that the 

bQIEA have increasingly better relative performance 

as the fitness landscape becomes more complex.  HSB 

appears to scale better than Classic, achieving 6 best 

minima performances across all four QIEA for 50 

dimensions, compared to one for Classic.  

Furthermore, when comparing HSB to SRQEA for run 

distributions (by Mann-Whitney U/Bonferroni-Holm), 

SRQEA had more statistically significant advantages, 

but HSB achieved superior results for six test functions 

at 50 dimensions. 

Although SRQEA performed the greatest, in terms 

of number of best minimum values found and the 

ability to find threshold zero error values for some 

CEC-2013 functions (which none of the other 

algorithms managed to do), when looking at the 

general performance across all of the functions and 

algorithms, the picture was somewhat more mixed.  A 

heat map of best minimum values, scaled relatively 

from the best performing algorithm to the worst on 

each test function, is presented in Fig. 5.  In this plot, 

judging by the number of darker rectangles, RCQIEA 

performs well, arguably outperforming SRQEA.  From 

the raw data in Table 3, it can be seen that when the 

performances of the rQIEA are close, SRQEA 

produces better results than RCQIEA, but this is not 

generally noticeable in the heat map, where the larger 

degrees of magnitude produced by the bQIEA obscure 

the rQIEA differences.  Summarising the raw data and 

the heat map, it can be said that RCQIEA had a slightly 

better minima performance across the test functions, 

on average, but SRQEA was able to produce much 

better individual scores for some functions.  

Furthermore, SRQEA had superior run distributions 

than RCQIEA (by Mann-Whitney U/Bonferroni-

Holm), giving better average performance from run to 

run, although caution should be noted as in the group 

test of pairwise comparisons, the results between the 

two rQIEA was not significant (Table 2).  The more 

random nature of the rotation gate of RCQIEA may 

produce desirable search characteristics for the CEC-

2013 test functions, at the expense of more 

exploitation. 

5.4. Statistical comparison of the QIEA on real world 

test functions 

For the CEC-2011 real-world problems, converging 

to the minima was best for the rQIEA (Table 4), with 

SRQEA having the best scores for three of the 

functions.  However, for the Radar Polly Phase 

problem HSB had the best result, and shared the 

number of best means equally with SRQEA.  The 

nested functions of the Frequency Modulation and 

Radar Polly Phase problems suggest a highly 

nonlinear search space, so these results are consistent 

with our findings and interpretations of the 

performance of the bQIEA on the CEC-2013 functions. 

Finally, we present a summary of algorithms’ mean 

performance across multiple test functions in  

Fig. 6.  The plots show a cumulative normalised 

count of how many functions possess a normalised 

mean performance for that algorithm, below a given 

value.  The sooner the plot reaches 1.0 in the vertical 

axis, the better the algorithm performs (as this 

indicates a high probability of achieving low mean 

error values). 

The best performance on the traditional test 

functions (not shown) is dominated by the two rQIEA 

methods, which can also be seen for all of the test 

functions taken together (not shown), with Classic 

performing poorly for both of those cases.  However, 

for the CEC-2013 functions HSB is much closer ( 

Fig. 6a), catching up sooner with the rQIEA in the 

plot, although it starts with poorer results, indicating a 

low probability of producing  very low mean scores 

across the function set.  The performance of RCQIEA 

compared to SRQEA for CEC-2013 is in line with the 

Table 4: Summary statistics for CEC-2011 real world problems.  For each of the four optimization algorithms, the minimum, mean and 

standard deviation of the error values are presented after 51 runs.  Best values are highlighted in bold type.  Function evaluations were limited 
to 150000. 

Func 

tion 
 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

FM 4.42E-02 1.34E+01 6.11E+00 3.01E-03 1.07E+01 6.99E+00 2.71E-04 1.57E+01 5.78E+00 0.00E+00 1.70E+01 4.68E+00 

L-J5 -1.21E+01 -9.62E+00 1.49E+00 -1.22E+01 -1.03E+01 1.55E+00 -1.27E+01 -1.18E+01 1.03E+00 -1.27E+01 -1.21E+01 1.02E+00 

L-J10 -2.72E+01 -1.80E+01 4.03E+00 -2.67E+01 -1.95E+01 3.79E+00 -3.08E+01 -2.26E+01 3.87E+00 -3.18E+01 -2.41E+01 4.23E+00 

Radar 1.58E+00 2.00E+00 1.97E-01 1.40E+00 1.91E+00 2.02E-01 1.50E+00 2.00E+00 2.31E-01 1.59E+00 2.11E+00 2.10E-01 
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results presented in the heat map (Fig. 5).  SRQEA 

outperforms RCQIEA for low mean values, but takes 

a slight lead for normalised means between 0.2 and 0.4.  

For the real-world test functions ( 

Fig. 6b), the situation is completely reversed, with 

Classic performing the best, followed by HSB. 

 

 

 

Fig. 6: Empirical cumulative probability distribution function of 

mean errors across a) CEC-2013, and b) real-world all test 

functions, comparing the four QIEA.  The horizontal axis shows 
normalised mean score, and the vertical axis shows cumulative 

probability.  The faster the approach to 1 in the vertical direction, 

the better the performance.  

Summarising the ECDF and the results given in 

Table 1, Table 2, Table 3 and Table 4, we can conclude 

that, although the rQIEA have superior best 

performance (minimum values found), the bQIEA 

algorithms do have good mean performance, often 

superior to their real-value counterparts.  Again, it is 

with the more complicated CEC-2013 and real-world 

CEC-2011 functions that the bQIEA perform at their 

best, often outperforming the rQIEA. 

5.5. Evolution properties of the QIEA 

Mean error values per generation (averaged across 

the 51 runs) are shown for two functions in Fig. 7. For 

most functions, Classic outperformed HSB early on 

the evolution, but tends to stall earlier and is generally 

overtaken by HSB at around the 30% (of the total 

number of generations) time point (for example, see 

the Rotated Griewank function timeline in Fig. 7a).  

This gives additional support to our argument that 

Classic was prematurely converging when applied to 

real-value problems, and justifies our approach when 

formulating the HSB adaptation.  However, it should 

also be noted that HSB also usually approaches an 

approximately zero gradient relatively early on (50% 

of time or less), implying there is further need to 

improve premature convergence. 

  

Fig. 7: Timeline evolution of mean error values.  The mean error 

for each generation was calculated across each of the 51 runs, for 

every test function, and plotted for 51 dimensions on a) Rotated 
Griewank, and b) Schwefel-2.21.  Each graph plots time 

normalized evolutions, comparing the relative performance of the 

optimization algorithms. 

For the majority of cases where SRQEA 

outperformed RCQIEA, their early performances were 

very similar, but SRQEA would establish a lead from 

typically the 10-30% time mark (see Rotated 

Griewank in Fig. 7a).  We interpret this as indicating 

that our corrected rotation formula allowed a more 

refined search in later stages.  Both rQIEA 

demonstrated a clear non-zero gradient at the end of 

the timeline in several of the plots (such as Fig. 7b).  

This suggests they are capable of finding significantly 

better results if the algorithm is run for longer.  As the 

plots display the fitness to the 10th root, this is relevant 

for fine convergence to the optimal value, indicating 

room for improvement of precision. 

In order to compare the speed of evolution for the 

QIEA on functions for which zero minima were 

obtained, success rates (SR) and success performances 

(SP) were calculated for RCQIEA and SRQEA for 

those test functions, using four threshold values: 1e-

02, 1e-04, 1e-06 and 1e-08.  The data are presented in 

Table 7.  In almost all cases, SRQEA outperformed 
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RCQIEA, with the only exception being the success 

rate for the basic Griewank function at the 1e-02 

threshold.  The SP metric gives the mean number of 

function evaluations per success, adjusted in order to 

Table 5: Comparison between SRQEA, Fast Evolutionary Programming (FEP) [50], and MADE [33] on the traditional test functions. The 
SRQEA performed better than FEP, but was inferior to MADE for four of the functions.  Best values are highlighted in bold type. 

30 Dimensions SRQEA FEP MADE 

Function Evals Min Mean Std dev Evals Mean Std dev Evals Mean Std dev 

1 Sphere 300000 0.00E+00 0.00E+00 0.00E+00 150000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00 

2 Schwefel-2.22 300000 0.00E+00 0.00E+00 0.00E+00 200000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00 

3 Schwefel-1.2 300000 0.00E+00 0.00E+00 0.00E+00 500000 1.60E-02 1.40E-02 200000 0.00E+00 0.00E+00 

4 Schwefel-2.21 300000 3.51E-03 6.16E-03 1.56E-03 500000 3.00E-01 5.00E-01 500000 0.00E+00 0.00E+00 

5 Rosenbrock 300000 1.04E-02 8.86E+01 1.80E+02 2000000 5.06E+00 5.87E+00 500000 3.97E-01 1.63E+00 

6 Step 300000 0.00E+00 0.00E+00 0.00E+00 150000 0.00E+00 0.00E+00 500000 0.00E+00 0.00E+00 

7 Quartic 300000 0.00E+00 0.00E+00 0.00E+00 300000 7.60E-03 2.60E-03 300000 1.24E-03 3.78E-04 

8 Schwefel-2.26 300000 0.00E+00 0.00E+00 0.00E+00 900000 1.50E+01 5.26E+01 200000 0.00E+00 0.00E+00 

9 Basic Rastrigin 300000 0.00E+00 0.00E+00 0.00E+00 500000 4.60E-02 1.20E-02 300000 0.00E+00 0.00E+00 

10 Basic Ackley 300000 0.00E+00 9.20E-01 4.01E+00 150000 1.80E-02 2.10E-03 150000 0.00E+00 0.00E+00 

11 Basic Griewank 300000 0.00E+00 2.06E-02 2.25E-02 200000 1.60E-02 2.20E-02 200000 0.00E+00 0.00E+00 

12 Penalised-1 300000 0.00E+00 0.00E+00 0.00E+00 150000 9.20E-06 3.60E-06 300000 0.00E+00 0.00E+00 

13 Penalised-2 300000 0.00E+00 0.00E+00 0.00E+00 150000 1.60E-04 7.30E-05 300000 0.00E+00 0.00E+00 

 
Table 6: Comparison of success rates (SR) and speed of convergence (SP), between RCQIEA, SRQEA and 4 differential evolution algorithms, 

for the 13 traditional test functions with 30 dimensions.  The threshold (1E-08, except of 1E-02 for Quartic) determines the point at which a 
run is a success. Best values are highlighted in bold type.  Function evaluations are kept to 300000. 

Function 
 

RCQIEA SRQEA jDE SDE JADE MADE 

SP SR SP SR SP SR SP SR SP SR SP SR 

1 Sphere — 0 2.48E+05 1 5.93E+04 1 3.91E+04 1 3.04E+04 1 2.29E+04 1 

2 Schwefel-2.22 — 0 7.19E+05 1 8.16E+04 1 5.31E+04 1 5.61E+04 1 3.64E+04 1 

3 Schwefel-1.2 — 0 3.56E+05 1 3.37E+05 1 — 0 7.17E+04 1 1.34E+05 1 

4 Schwefel-2.21 — 0 — 0 2.99E+05 1 4.72E+05 0.44 — 0 1.27E+05 1 

5 Rosenbrock — 0 — 0 5.89E+06 0.08 — 0 1.22E+05 0.92 1.97E+05 0.92 

6 Step 7.77E+04 1 4.27E+04 1 2.27E+04 1 1.44E+04 1 1.16E+04 1 7.89E+03 1 

7 Quartic 1.37E+05 1 4.35E+04 1 1.12E+05 1 8.34E+04 1 2.97E+04 1 2.83E+04 1 

8 Schwefel-2.26 — 0 2.12E+05 1 7.85E+04 1 5.50E+04 1 1.00E+05 1 6.00E+04 1 

9 Basic Rastrigin — 0 2.53E+05 1 1.17E+05 1 6.14E+05 0.36 1.31E+05 1 1.14E+05 1 

10 Basic Ackley — 0 1.54E+06 0.63 9.02E+04 1 5.95E+04 1 4.75E+04 1 3.55E+04 1 

11 Basic Griewank — 0 8.50E+05 0.31 6.21E+04 1 4.07E+04 1 3.30E+04 1 2.41E+04 1 

12 Penalised-1 5.61E+04 1 3.85E+04 1 5.40E+04 1 3.66E+04 1 2.95E+04 1 2.03E+04 1 

13 Penalised-2 3.85E+04 1 3.30E+04 1 5.76E+04 1 3.77E+04 1 2.95E+04 1 2.19E+04 1 

 

Table 7: Success rates (SR) and success performance (SP) for the test functions at 30 dimensions, which reached a threshold of 1e-8 by one of 

the quantum algorithms, for different success thresholds: 1e-2; 1e-4; 1e-6; and 1e-8.  SR ranges from 0 (no successes) to 1 (all runs where 
successful) and SP gives a measure of average number of iterations needed to achieve the threshold, adjusted in order to penalise algorithms 
with low success rates.  SRQEA outperformed RCQIEA for all functions and for all thresholds.  Function evaluations were kept to 300000. 

30 dimensions RCQIEA SRQEA 

1.00E-02 1.00E-04 1.00E-06 1.00E-08 1.00E-02 1.00E-04 1.00E-06 1.00E-08 

Function name SR SP SR SP SR SP SR SP SR SP SR SP SR SP SR SP 

Sphere 1.00 3.52E+05 0.02 5.91E+07 0.00 - 0.00 - 1.00 5.65E+04 1.00 1.04E+05 1.00 1.65E+05 1.00 2.48E+05 

Schwefel 222 0.00 - 0.00 - 0.00 - 0.00 - 1.00 1.27E+05 1.00 2.82E+05 1.00 4.79E+05 1.00 7.19E+05 

Schwefel 12 0.00 - 0.00 - 0.00 - 0.00 - 1.00 1.12E+05 1.00 1.75E+05 1.00 2.60E+05 1.00 3.56E+05 

Step 1.00 7.77E+04 1.00 7.77E+04 1.00 7.77E+04 1.00 7.77E+04 1.00 4.27E+04 1.00 4.27E+04 1.00 4.27E+04 1.00 4.27E+04 

Quartic 1.00 1.37E+05 1.00 1.37E+05 1.00 1.37E+05 1.00 1.37E+05 1.00 4.34E+04 1.00 4.35E+04 1.00 4.35E+04 1.00 4.35E+04 

Schwefel 226 1.00 1.78E+05 1.00 8.54E+05 0.00 - 0.00 - 1.00 4.28E+04 1.00 7.94E+04 1.00 1.36E+05 1.00 2.12E+05 

Basic Rastrigin 1.00 2.83E+05 0.18 6.57E+06 0.00 - 0.00 - 1.00 1.05E+05 1.00 1.28E+05 1.00 1.78E+05 1.00 2.53E+05 

Basic Ackley 0.06 1.95E+07 0.00 - 0.00 - 0.00 - 0.94 5.66E+05 0.92 7.12E+05 0.88 9.39E+05 0.63 1.54E+06 

Basic Griewank 0.53 1.07E+06 0.00 - 0.00 - 0.00 - 0.43 1.83E+05 0.31 3.83E+05 0.31 5.82E+05 0.31 8.50E+05 

Penalised 1 1.00 5.61E+04 1.00 5.61E+04 1.00 5.61E+04 1.00 5.61E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 

Penalised 2 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.30E+04 1.00 3.30E+04 1.00 3.30E+04 1.00 3.30E+04 

Diff. powers 0.98 5.25E+05 0.00 - 0.00 - 0.00 - 1.00 6.47E+04 1.00 1.37E+05 1.00 2.52E+05 1.00 3.80E+05 

Rastrigin 1.00 4.41E+05 0.00 - 0.00 - 0.00 - 1.00 1.66E+05 1.00 1.87E+05 1.00 2.33E+05 1.00 3.01E+05 

Lun. bi-Rastrigin 0.00 - 0.00 - 0.00 - 0.00 - 0.96 4.48E+05 0.94 5.17E+05 0.94 5.54E+05 0.94 6.09E+05 
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penalise low success rates.  In conclusion, the data 

show that SRQEA provides superior success rates, and 

quicker convergence than RCQIEA. 

5.6. Comparison of QIEA with published results 

As the best performing QIEA on the traditional test 

functions, we compare SRQEA to two other 

algorithms – FEP [50] and MADE [10] (Table 5).  

Comparison is made difficult by varying numbers of 

function evaluations across the published methods, but 

in general, SRQEA outperformed FEP except for the 

Rosenbrock, Ackley and Griewank functions where 

FEP had a superior mean and standard deviation.  

MADE was better than SRQEA for Schwefel-2.21, 

Rosenbrock, Ackley and Griewank, but SRQEA beat 

MADE for Quartic and matched it for all of the other 

functions.  Unfortunately, best minimum values found 

were not published for either algorithm, but since 

MADE produced several zero means, it is clear those 

results would have been good as well. 

The exploitation abilities of RCQIEA and SRQEA 

were compared to data published on a set of 

differential algorithms (DE) [10]. The results are 

presented in Table 6, using the success rate (SR) and 

success performance (SP) metrics.  In general, the DE 

algorithms achieved success more often, and quicker 

than the rQIEA. The SRQEA is superior to RCQIEA 

for these metrics, achieving better success rates, and 

reaching the threshold more quickly (better SP).  

These results (Table 6) represent the weakest 

performance for the QIEA in this paper, and indicate 

room for improvement in their search and exploitation 

abilities for the traditional test functions.  However, it 

should be noted that success rates were based on very 

low thresholds (usually 1e-08) and therefore may not 

be important in practical cases.  Unfortunately, when 

comparing to MADE we did not have data on its 

application to the CEC-2013 functions, so we cannot 

argue if these conclusions hold for the more 

complicated test functions.  However, the reader 

should note that a modified version of MADE – Super-

fit MADE (SMADE) has now been produced and 

applied to the CEC-2013 benchmarks [5]. 

A comparison of SRQEA with five different QIEAs 

is given in Table 8: a hybrid quantum PSO algorithm 

HRCQEA [20], a region based QIEA RQEA [29], a 

hybrid quantum PSO with neighbourhood search 

NQPSO [16], and two hybrid quantum GAs QGAXM 

[33] and CQGA [46].  The five fitness functions used 

in [20] where available in [29] and [16], so were 

chosen for comparison.  When comparing to QGAXM 

and CQGA, the evaluated fitness functions were 

matched in their entirety, including a two-dimensional 

problem from [46].   

 

The number of runs and the maximum function 

evaluations were matched, except for HRCQEA, 

where our algorithms performed only 300000 

evaluations.  It can be concluded that SRQEA is as 

good as, or better than these algorithms for finding the 

functions’ minimum values, with the exception when 

against QGAXM, where SRQEA was better for the 

multi-modal problems, but worse for Sphere and 

Rosenbrock.  Mean performance was less impressive, 

and suggests a weakness in exploitation capabilities of 

SRQEA for the basic functions, especially when using 

the low number of function evaluations when 

compared to QGAXM.  In the next section though, 

evidence of a very good exploration for the more 

complicated CEC-2013 functions will be presented.  

The CQGA algorithm used binary encoding, but with 

only 20 bits, and was beaten not just by SRQEA, but 

by HSB as well.  Otherwise, HSB only achieved 

superior performance for Rastrigin against QGAXM 

and SRQEA.  

Table 9 shows the performance of SRQEA against 

two algorithms that were applied to the CEC-2013 

fitness functions [22].  The two algorithms compared 

are a particle swarm optimization algorithm SPSO-

2011 [51] and a genetic algorithm GA [14].  SRQEA 

was chosen for comparison as, overall, it was the best 

performing QIEA tested here, in terms of minimum 

values found. 

Looking at all dimensions, all three algorithms 

achieved some best performances.  However, SPSO-

2011 performed least well, having fewer best 

minimum results, and most of those being joint equal 

with one or both of the other algorithms.  The main 

competition for SRQEA came from the GA.  For 10 

dimensions it achieved 16 best performances, with 

SRQEA only achieving seven.  For 30 dimensions GA 

scored 12 best performances, while the SRQEA 
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reached 8, but for 50 dimensions, SRQEA took the lead 

Table 8: Comparison of HSB and SRQEA with five QIEA: HRCQEA; RQEA; NQPSO; QGAXM; and CQGA.  Comparisons to HRCQEA, 

RQEA and NQPSO were standardised to the five functions used for HRCQEA [25], whereas for QGAXM and CQGA comparisons were made 
for all fitness functions presented.  Values less than 1e-08 have been clamped to zero.  Minimum scores for the compared algorithms are listed 

where available or where they can be deduced from zero means.  Number of runs and function evaluations (FE) have been matched, except for 

HRCQEA (*) where only 300000 evaluations were performed per run.  Best minimums are highlighted in bold except for the CQGA 
comparison which was a maximisation problem. 

Method 

Compared algorithm HSB SRQEA 

Func Dim Min Mean Min Mean Min Mean 

HRCQEA 

50 runs 
*2400000 FE 

Sphere 30 0.00E+00 0.00E+00 1.40E+01 6.37E+02 0.00E+00 0.00E+00 

Rastrigin 30 0.00E+00 0.00E+00 1.62E+01 4.15E+01 0.00E+00 0.00E+00 

Ackley 30 1.70E-07 1.70E-07 1.02E+01 1.66E+01 0.00E+00 9.20E-01 

Schwefel 7 30 3.90E-04 3.90E-04 2.91E+02 7.10E+02 0.00E+00 2.60E+02 

Griewank 30 0.00E+00 0.00E+00 1.83E+00 7.69E+00 0.00E+00 2.06E-02 

RQEA 

25 runs 

500000 FE 

Sphere 50 0.00E+00 0.00E+00 3.80E+02 1.65E+03 0.00E+00 0.00E+00 

Rastrigin 50 - 5.32E-07 4.61E+01 6.36E+01 0.00E+00 0.00E+00 

Ackley 50 0.00E+00 0.00E+00 1.09E+01 1.72E+01 0.00E+00 8.36E-08 

Schwefel 7 50 - 5.80E-03 5.84E+02 1.64E+03 0.00E+00 6.40E+02 

Griewank 50 0.00E+00 0.00E+00 4.78E+00 1.77E+01 0.00E+00 2.36E-02 

NQPSO 
30 runs 

200000 FE 

Sphere 30 0.00E+00 0.00E+00 9.37E+01 5.79E+02 0.00E+00 0.00E+00 

Rastrigin 30 0.00E+00 0.00E+00 2.07E+01 3.54E+01 0.00E+00 0.00E+00 

Ackley 30 0.00E+00 0.00E+00 1.57E+01 1.94E+01 1.64E-08 1.49E+00 

Schwefel 7 30 - 3.80E+03 4.46E+02 8.17E+02 0.00E+00 2.89E+02 

Griewank 30 0.00E+00 0.00E+00 2.13E+00 6.90E+00 0.00E+00 2.54E-02 

QGAXM  

30 runs 
10000 FE 

Sphere 50 1.90E-01 4.20E-01 7.80E+04 9.43E+04 1.40E+01 8.43E+01 

Rastrigin 50 1.67E+04 1.35E+05 6.41E+02 6.92E+02 1.67E+05 2.09E+06 

Rosenbrock 50 3.20E+02 4.61E+02 2.19E+10 4.50E+10 1.87E+01 2.86E+01 

Griewank 50 1.44E+00 2.22E+00 6.66E+02 8.56E+02 1.12E+00 1.58E+00 

CQGA, 10 runs, 8000 

FE 
Complex binary 2 -17.3503 - -17.4503 -17.4486 -17.4503 -17.4503 

 
Table 9: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 50 dimensions and 500000 FEs. The SRQEA 
matched or outperformed the other two algorithms on best value found (Min) for 11 test functions.  Best values are highlighted in bold type. 

50 Dimensions SRQEA SPSO-2011 [11] GA [13] 

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev 

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 1.55E+06 2.96E+06 6.43E+05 3.79E+05 6.80E+05 1.87E+05 1.74E+05 4.28E+05 4.76E+05 2.14E+05 

16 Rotated bent cigar 4.98E-02 1.58E+05 1.08E+06 2.00E+07 4.37E+08 9.47E+08 2.55E+06 3.44E+07 1.06E+08 1.49E+08 

17 Rotated discus 1.14E+05 1.75E+05 2.47E+04 3.22E+04 5.10E+04 8.72E+03 4.90E-01 2.25E+00 3.33E+00 4.88E+00 

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.41E-05 0.00E+00 0.00E+00 4.77E+04 1.70E+05 

19 Rotated Rosenbrock 2.38E+01 4.19E+01 7.54E+00 1.84E+01 4.35E+01 2.41E+01 3.66E+01 4.36E+01 4.72E+01 1.40E+01 

20 Rotated Schaffers-F7 1.47E+02 2.46E+02 9.28E+01 5.61E+01 8.64E+01 1.53E+01 1.51E+01 3.97E+01 4.17E+01 1.83E+01 

21 Rotated Ackley 2.10E+01 2.11E+01 4.68E-02 2.10E+01 2.11E+01 4.25E-02 2.11E+01 2.12E+01 2.12E+01 3.98E-02 

22 Rotated Weierstrass 6.16E+01 6.74E+01 3.76E+00 4.52E+01 5.40E+01 6.74E+00 5.21E+01 7.53E+01 7.43E+01 3.97E+00 

23 Rotated Griewank 2.71E-02 1.31E-01 4.96E-02 1.00E-01 4.00E-01 2.38E-01 2.71E-02 9.36E-02 1.05E-01 7.09E-02 

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 1.50E+02 2.30E+02 4.18E+01 1.49E+01 5.37E+01 5.57E+01 2.23E+01 

25 Rotated Rastrigin 4.60E+02 6.85E+02 1.38E+02 1.62E+02 2.35E+02 4.87E+01 5.07E+01 9.75E+01 9.83E+01 2.45E+01 

26 NC rotated Rastrigin 5.01E+02 6.89E+02 1.01E+02 3.20E+02 4.28E+02 6.22E+01 1.04E+02 1.86E+02 1.93E+02 5.30E+01 

27 Schwefel-7 9.99E-02 6.71E-01 2.94E-01 5.51E+03 7.26E+03 8.53E+02 1.06E+03 2.30E+03 2.55E+03 1.14E+03 

28 Rotated Schwefel-7 4.69E+03 6.22E+03 6.23E+02 5.68E+03 7.92E+03 1.14E+03 6.20E+03 8.24E+03 9.84E+03 3.19E+03 

29 Rotated Katsuura 8.93E-01 1.83E+00 4.41E-01 1.40E+00 2.00E+00 3.87E-01 2.23E+00 3.76E+00 3.68E+00 3.88E-01 

30 Lunacek bi-Rastrigin 0.00E+00 1.96E-04 1.40E-03 2.08E+02 3.11E+02 6.62E+01 8.25E+01 1.13E+02 1.15E+02 2.00E+01 

31 R Lunacek bi-Rastrigin 4.53E+02 6.12E+02 9.30E+01 1.70E+02 2.91E+02 6.24E+01 8.83E+01 1.32E+02 1.68E+02 1.02E+02 

32 RE Griewank Rosenb. 1.46E+02 2.91E+02 6.26E+01 1.70E+01 3.72E+01 1.20E+01 3.60E+00 9.02E+00 8.92E+00 3.17E+00 

33 RE Schaffers-F6 1.90E+01 2.44E+01 7.68E-01 1.99E+01 2.27E+01 1.19E+00 1.99E+01 2.36E+01 2.35E+01 8.02E-01 

 
Table 10: Comparison of performance on real-world problems between SRQEA and three alternative algorithms – MADE-WS [33], EA-DE-

Memetic [37] and an adaptive differential evolutionary algorithm [38].  The starred value has been clamped to zero as it was below the 
threshold of 1E-08 (used in our simulations).  Best values are highlighted in bold type.  Function evaluations are kept to 150000. 

Func 

tion 

SRQEA MADE-WS EA-DE-Memetic Adaptive DE 

Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

FM 0.00E+00 1.70E+01 4.68E+00 - 8.81E-01 2.47E+00 0.00E+00* 3.81E+00 5.21E+00 0.00E+00 4.85E+00 6.69E+00 

L-J 5 -1.27E+01 -1.21E+01 1.02E+00 - -9.09E+00 8.83E-02 - - - - - - 

L-J 10 -3.18E+01 -2.41E+01 4.23E+00 - -2.66E+01 8.64E-01 -2.84E+01 -2.59E+01 2.24E+00 -2.80E+01 -2.68E+01 2.11E+00 

Radar 1.59E+00 2.10E+00 2.09E-01 - - - 2.20E+02 2.20E+02 0.00E+00 2.20E+02 2.20E+02 0.00E+00 
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with 11 compared to 9 best results for the GA.  This 

demonstrates better scaling with increased number of 

dimensions for SRQEA than for the GA.  Mean 

performance was similarly distributed across all 

dimensions but SRQEA showed improved standard 

deviation performance again for 50 dimensions, 

outperforming the other algorithms substantially.  This 

shows a more consistent relative performance at 

higher dimensions for SRQEA as well as better 

minima and means. 

The poorer performance of SPSO-2011 (Table 9) 

and the better performance of the GA may suggest that 

the recombinatorial properties of the cross-over 

operator may aid the search pattern for the CEC-2013 

functions.  This may be consistent with either of our 

hypotheses for why the bQIEA performed relatively 

well against the rQIEA – either treating the rougher 

space as more discrete and looking for recombination, 

or navigating through hops (swapping genes in the 

case of GA, and flipping bits in the case of the bQIEA).  

Although overall SRQEA was better, it would be 

interesting to see how bQIEA perform against rQIEA 

and other algorithms on even more complex search 

spaces. 

A comparison between SRQEA and two alternative 

algorithms, when applied to the real-world problems 

is shown in Table 10.  For the frequency modulation 

wave matching problem, MADE-WS [10] had the best 

mean and standard deviation.  Unfortunately, the 

authors did not report a minimum value.  SRQEA 

outperformed the hybrid algorithm [38] and the DE 

algorithm [2], in terms of mean and standard deviation, 

while equalling the best minimum performance.  The 

mean and standard deviation were worse but 

comparable with the MADE-WS results. 

For the Lennard-Jones problems, SRQEA again 

established the best minimum values, but MADE-WS 

did not have a comparable values published.  SRQEA 

did have the best mean value for Lennard-Jones5 but 

only outperformed the hybrid algorithm for Lennard-

Jones10. 

For the radar waveform parameter specification 

problem, SRQEA was the clear winner.  The published 

results [38] and [2] both gave a suspiciously poor 

value though, and it may be worth considering 

whether there were issues in using shared code for the 

function evaluations.  The problem was directly 

tackled in [32] where a variable neighbourhood 

search algorithm gave  a minimum value of 8.58e-01 

which was better than that achieved by the SRQEA. 

6. Conclusion 

When applied to real-value optimization tasks, all 

of the QIEA tested and validated in this investigation 

were successful, in that they were able to produce 

acceptable to excellent error values (with respect to the 

complexity of the test functions).  Binary QIEA are a 

direct implementation of the quantum computing 

metaphor, which is built around repeated sampling of 

binary strings, analogous to superposition of states on 

a set of quantum bits.  The Qbit probabilities define a 

probability distribution that elegantly specifies both 

the region of the best solution found so far, and the 

variance of the search radius.  As the probabilities 

saturate, the mean position of the search becomes 

clearly defined, and the variance of the search narrows. 

Although the original Classic algorithm performed 

relatively poorly on the optimization tasks examined 

here, our modification (HSB) did substantially 

improve the results.  In many instances it 

outperformed RCQIEA, especially for the more 

difficult CEC-2013 test functions.  The timeline plots 

highlighted the premature convergence of Classic (a), 

giving further justification for our choice of 

modification, which was developed in response to our 

analysis of individual bit evolution.  By explicitly 

limiting the saturation of less significant bits to the 

magnitude of saturation of more significant bits, HSB 

avoids the problems that Classic encountered for real-

value problems, although zero gradients in the latter 

half of some timeline plots suggest there is still room 

for improvement.  The population size results (Fig. 4a 

and Fig. 4b) also suggest exploration issues, as the 

bQIEA benefit from a larger population size for a fixed 

number of function evaluations. 

Our modification to the rotation gate produced 

superior results, particularly with regards to the final 

ability to exploit the search space (Table 1, Table 2, 

Table 3 and Table 4) and the speed of exploitation 

(Table 7), although from the heatmap of Fig. 5 it 

would appear the average performance across the 

functions is slightly compromised.  This suggests the 

superior exploitation may come at the expense of 

some exploration capability.  As well as being 

beneficial in this specific implementation, it would be 

interesting for future work to explore the possibility of 

using the modified rotation in other algorithms, as a 

way of adjusting search variance. 

When compared to other published results, our 

modified algorithms were predominantly competitive 

for the more complex CEC-2013 functions (Table 9).  

For the traditional test functions, SRQEA was superior 
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than recently published QIEA in terms of best 

minimum reached (Table 8), although mean 

performance was mixed, and our algorithms were 

generally outperformed by other published results (in 

particular, the DE algorithms [10], Table 5 and Table 

6).  However, timeline plots (Fig. 7) suggest the rQIEA 

may continue to improve if left for longer.  It would 

therefore be interesting to see if these algorithms are 

suitable for increasingly complicated test functions, 

where longer processing times are to be expected.  

Both HSB and SRQEA outperformed a bQIEA applied 

to a real value problem (Table 8). 

Surprisingly, the bQIEA appeared to perform better 

for the more complex CEC-2013 and the real-world 

test functions (Table 1, Table 2, Table 3 and Table 4).  

We have speculated that this may be because either the 

transferred search space begins to resemble the binary 

space portioning that the bQIEA generate, or that the 

search hops at different scales (depending on bit 

significance) may result in more suitable search 

patterns when compared to rQIEA or other algorithms.  

The ability of bQIEA to combine different scales, 

through bit manipulation, may explain their improved 

performance on these more sophisticated tasks.  As 

more complex fitness functions are published in the 

future, it would be worth including bQIEA (and 

perhaps other binary optimisation algorithms) in 

attempting to optimise them.  It should be noted 

however, that the bQIEA require more computation 

per iteration due to longer strings being processed.  

The importance of this will depend on the demands of 

the fitness evaluation, with fast fitness functions being 

more negatively affected by the bQIEA overhead. 

QIEA, and rQIEA in particular, provide a good 

starting point for optimization.  Deficiencies, when 

compared to competing algorithms, were largely down 

to fine exploitation, with results being of a similar 

degree of magnitude in error (Table 5).  Future work 

would be beneficial on improving exploration for 

SRQEA, or further reducing the premature 

convergence for HSB.  This may be achieved through 

an analysis of the effect of changing algorithm 

parameters (as discussed below), or by including the 

QIEA in hybrid algorithms with a two-stage 

exploration and exploitation process.  Using the 

configuration of step size and other parameters 

presented here, the two rQIEA are more orientated 

towards exploration than exploitation.  This is 

demonstrated by the populations analysis (Fig. 4), 

which showed they both benefitted from a small 

population size for a given number of function 

evaluations (thereby increasing the number of 

iterations per individual). The bQIEA in contrast 

performed best with a larger population size and so 

appear to be balanced more towards exploitation than 

exploration. 

One final advantage of QIEA is the low number of 

parameters they require for the main part of their 

implementation.  Generally, only the number of 

individuals and step size for the rotation gate are 

needed.  The rQIEA presented here also include a 

parameter for the number of children produced in each 

generation.  For all of the investigated algorithms, the 

number of individuals and rotation gate step 

magnitude need specifying. The bQIEA also have 

parameters for local and global update rates, while 

rQIEA have crossover rates.  How these affect the 

overall performance was not evaluated.  The rQIEA 

also add a parameter for the number of offspring 

spawned at each iteration.  Again, changing this was 

not analysed and further investigation into the 

optimisation of these parameters would be worth 

conducting. 
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