
 1

Quantum Inspired Evolutionary Algorithms

with Improved Rotation Gates for Real-

Coded Synthetic and Real World

Optimization Problems

Joe Wright, Ivan Jordanov*

School of Computing, University of Portsmouth, Lion Terrace, Portsmouth, PO1 3HE, UK; emails:

Jonathan.Wright@port.ac.uk; Ivan.Jordanov@port.ac.uk

Abstract. We investigate two modified Quantum Evolutionary methods for solving real value problems. The Quantum Inspired

Evolutionary Algorithms (QIEA) were originally used for solving binary encoded problems and their signature features follow

superposition of multiple states on a quantum bit and a rotation gate. In order to apply this paradigm to real value problems, we

propose two quantum methods Half Significant Bit (HSB) and Stepwise Real QEA (SRQEA), developed using binary and real

encoding respectively, while keeping close to the original quantum computing metaphor. We evaluate our approaches against

sets of multimodal mathematical test functions and real world problems, using five performance metrics and include comparisons

to published results. We report the issues encountered while implementing some of the published real QIEA techniques. Our

methods focus on introducing and implementing new rotation gate operators used for evolution, including a novel mechanism

for preventing premature convergence in the binary algorithm. The applied performance metrics show superior results for our

quantum methods on most of the test problems (especially for the more complex and challenging ones), demonstrating faster

convergence and accuracy.

Keywords: quantum evolutionary methods, estimation of distribution algorithms, performance metrics, global optimization,

multimodal functions, real value problems.

1. Introduction

A challenge for modern computer science is the

development of algorithms for increasingly complex

optimisation problems. These may include a variety

of practical real-world problems, such as structural

engineering [24,25], 3D mesh simplification [4],

antenna design [7], wireless network design [34],

electric power systems [1], resource allocation [27],

digital image watermarking [42], EEG classification

[21], benchmark problems [11], large data set analysis

[31], or mathematical functions designed to test or

challenge aspects of optimisation [22,50].

Approaches to solving these problems include typical

algorithms such as particle swarm optimisation (PSO)

[36,51], genetic algorithms (GA) [14,39], and

differential evolution [12,23,44], as well as other

nature inspired methods such as honey bee [28] and

cloud drops algorithms [9]. For a discussion of

modern state of the art techniques, including memetic

and landscape analysis techniques, see [6,40,56].

In 2002 a new optimization algorithm was

presented in [18], that took inspiration from quantum

computing to evolve a probability distribution, which

in turn was employed to search a solution space. The

method used a string of quantum bits (Qbit), each

storing sampling probability of a one or a zero.

Successive sampling of the string produced a series of

candidate binary solutions. If any of these were found

to be an improvement, the underlying Qbit

probabilities were adjusted to make the candidate

more likely to appear in successive samples. A

detailed explanation of the algorithm is presented in

section 2.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/96918984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Jonathan.Wright@port.ac.uk
mailto:Ivan.Jordanov@port.ac.uk

 2

Originally, this quantum-inspired evolutionary

algorithm (QIEA) was applied to the Knapsack

problem - a binary combinatorial optimisation

problem [18], and then modified versions were

applied by others to OneMax, Noisy-flat and NK-

landscapes [35], neural-network training [45], and

networking [49].

Although some attempts have been made to apply

binary QIEA (bQIEA) to real-value problems [19],

most applications to such tasks have used real-value

QIEA (rQIEA) [3,8,20,48,54]. These algorithms took,

at least superficially, the concepts of superposition and

quantum rotation gates that were introduced with the

binary QIEA, and adopted them for application to real-

value problems. However, when reviewing them we

encountered a number of problems. Many were

incompletely described and could therefore not be

reproduced, one was trivial to implement [54] but

performed extremely badly on a set of multimodal

mathematical test functions, and of greatest concern,

one paper [8], which claimed superior performance to

another optimization algorithm, but was later found to

not have performed as well as claimed [43]. A second

issue, more of a philosophical concern than a practical

problem, is that in making the adaptation to real-value

problems, the purity of the original quantum

inspiration (that are naturally applied to binary

problems) may be lost. We discuss these concerns in

sections 3 and 6. Various attempts at a real QIEA can

be found in the literature, including [3,20,48], and in

[53] a review is presented of both binary and real

QIEA. In this investigation we have chosen [55] to

build a real-coded QIEA upon, as it performed the best

in initial tests and contained features common to many

real QIEA.

The goals of the research presented here were to see

how the Classic version [18] of the binary QIEA, as

well as a representative real QIEA, would perform on

a number of recent benchmark test functions and

several real-world problems, and to investigate,

design, and develop modified binary and real QIEA,

proposed to improve the performance of these

approaches in terms of convergence and accuracy.

The bQIEA were shown to belong to a class of

methods called estimation of distribution algorithms

[35]. This work therefore extends the application of

this class.

In our previous work [47], we presented an initial

investigation of the binary QIEA. In the current paper

we extend the investigation with more in-depth

theoretical analysis and discussion of context, adding

updated version of the binary QIEA and proposing a

new real encoded algorithm. We also include a

substantial amount of new experiments and

simulations, considering higher dimension cases,

modern transformed variants of benchmark functions,

and several real-world problems. The methods

evaluation is based on a varied set of metrics and

extended comparative analysis, with discussion that

consider results from other authors.

In sections 2 and 3 we present the binary and the

real QIEA under investigation, including our

modifications. Section 4 outlines the methods used for

testing, and section 5 presents the obtained results.

The paper concludes with a discussion in section 6.

2. Binary QIEA (bQIEA)

This section presents the original binary quantum

inspired evolutionary algorithm (bQIEA) [18], along

with a preliminary investigation highlighting arising

problems when applying it to real-value tasks. We

then introduce a modified method designed to tackle

these issues.

2.1. Classic QIEA

The original QIEA [18], hereon in labelled Classic,

contains the core properties of QIEA: Qbit sampling;

and the rotation gate operator. Unlike a traditional

binary evolutionary algorithm, Classic stores a string

of probability values called Qbits. For each individual

i in a population of size p, Qbit value Qij(t) is used to

give the probability (Pij = sin2(Qij(t)) of sampling a

zero or one for bit j (from a string with length of N

bits) at iteration t. Through repeated iterations of

sampling, the same Qbit value can be used to sample

a sequence of random binary values. If a Qbit has a

value of π/4 (highest entropy), both one and zero have

an equal chance of being sampled. A Qbit value near

π/2 favours sampling 1s, and a value close to 0 favours

sampling 0s.

Even in the absence of evolution of the

chromosomes, Classic will continue to produce

different candidates for the fitness function, unlike a

traditional evolutionary algorithm. The combination

of probability and sampling is inspired by the quantum

computing principal of superposition. Superposition

is the ability of a Qbit to hold multiple states

simultaneously. The string Qi therefore provides a

probability distribution function for generating

candidate solutions Ci at each iteration.

While random sampling allows the solution space

to be searched, the Qbits need to be changed in order

 3

to localise and refine the search. By interpreting the

Qbit as an angle, a probability can be derived

according to Eq. (1). The angle is then updated using

a modifier called a rotation gate, which simply shifts

the angle, and therefore the probability, one way or the

other. By using the best solution found so far (called

the attractor Ai) for an individual, this gate can be

made to rotate towards a position that reinforces the

attractor probabilities, if it is still the best solution, or

away, if the candidate was better. The magnitude of

rotation |Δθ| is fixed to π/100 and the Qbit is restricted

within the range (0, π/2). The rotation gate is given in

Eq. (2).

Information is distributed around the population via

the attractors A. Every G-th iteration, a global

migration is performed, where the best attractor in the

population is copied to all individuals and every L-th

iteration, a local migration is conducted, where the

best attractor in a subset of the population is copied to

the whole subset. For the investigations presented

here, G=20, L=1 (meaning improvements to attractors

are copied to subsets at the end of each iteration), and

the number of subset groups is assumed to be 5. These

values are adopted from [18], where they were

established to be successful, and we do not investigate

them further. Subset allocation is done simply by

splitting the full population into equally sized groups

of individuals. Pseudo-code for Classic is presented

in Algorithm 1.

 2

,, , j
sin1 , 0 .

2
i ji j i

QP C Q

 (1)

i, j

i, j

i 1, j

min , 0

2

max , 0 0

,
,

,

Q
Q

Q

 (2)

where Δθ is the size and direction of rotation.

2.2. Application to real-value problems and

convergence issues

In our investigation, for the binary optimization

algorithms, real values are encoded using a simple

scheme. Binary strings of length 24 bits are used to

generate numbers in the [0, 224-1] range, which are

then linearly mapped onto the domain for the fitness

function being optimized. The length of 24 bits was

chosen to match the length of significand of the 32 bit

floats used in the real algorithms. It was later found

that the more demanding benchmark functions

produced results that highlighted differences in

exploration performance between algorithms, more

than fine numerical exploitation. For the work

presented here, we therefore do not regard the

precision as a limiting factor, although future work

may demand greater string lengths to increase

precision, and it is important to note that these

significantly affect computation time in the binary

algorithms.

An initial application of Classic to real-valued

problems highlighted a convergence issue. A plot of

a typical evolution is shown in Fig. 1a. The plot shows

that the least significant Qbits (LSBs) were saturating

before the most significant Qbits. Once a Qbit

saturates, it will no longer evolve because sampling

will continuously produce ones or zeros, depending on

which end of the scale the Qbit has saturated to. This

means that the LSBs had become randomly fixed

relatively early on in the optimization, thus preventing

fine scale exploitation.

For reasonably smooth search spaces, the early

stages of the search should focus on finding the

general locations of extrema, rather than refining

solutions to a precise position. During this phase, the

fitness function will be affected more by large

movements than by small ones. With a binary

representation, this will manifest in the most

significant bits (MSBs) dominating the search, as

changes to them are likely to find larger improvements

to the fitness than changes to the LSBs.

Algorithm 1: Pseudo-code for Classic and HSB

1: Initialise each Qi with each bit Qij=π/4

2: Initialise each Ai with random strings

3: while not termination condition do

4: for all i∈[1,p]

5: sample new Ci from Qi

6: evaluate fitness of Ci using a binary to real mapping

7: for each t∈[1,N]

8: if f(Ai) is better than f(Ci) then select a rotation

 direction that would reinforce Aij

9: else select a rotation direction that would move

 away from Aij

10: end if

11: update Qij with rotation gate

12: end for

13: if f(Ci) is better than f(Ai) then

14: Ai= Ci

15: end if

16: end for

17: every L iterations perform local migration

18: every G iterations perform global migration

19: end while

 4

Therefore, in the early stages, the LSBs provide

little selection pressure, and so random values for

these bits will be tolerated, while the MSBs are

optimised. We can model this by assuming that the

LSBs contribute nothing to the fitness evaluation, and

so the LSBs of the best candidate will always be

regarded as ‘better’ whether they sample a one or a

zero. As the rotation gates are applied to adjust the

Qbit probabilities to reinforce the sampled state, the

LSBs (in the absence of exerting evolutionary

pressure) will follow a simple, but non-symmetrical

random walk, where the probability of rotating the

Qbit probability towards an extremum (one or zero)

increases as it moves away from the centre. This

process is specified with Eq. (3) and ten example

simulations of the process are shown in Fig. 2,

demonstrating quick convergence to either the one or

zero limits.

A simulation of 100 such random walks found

saturation to either zero (53% of walks) or one (47%

of walks) within a maximum of 99 simulations. Mean

number of iterations until saturation was 36.82, with

std. dev of 16.10. In practice the behaviour of the

optimisation algorithm will only approximately

follow this random walk model for the LSBs, but that

could be enough to cause premature LSB convergence,

especially when a large number of iterations are

performed.

1

1

0 max 0,
,

0 min 1,

1, 1
~ ,

1,

t t t t

t t t t

t

t

t

X y y X

X y y X

p y
X

p y

 (3)

where Xt is a random variable with a Bernoulli

distribution, with the probabilities for the two states

being dependent on the random walk position yt at

time t. The step size for the rotation gate is Δθ.

In reality, the LSBs will exhibit some evolutionary

pressure, varying according to the shape of the fitness

landscape, but as illustrated in Fig. 1a, the time line of

the Qbit evolution shows that the LSBs can be

observed to saturate early on in the process.

a)

b)

Fig. 1. Evolution of Qbit probabilities on Griewank function using
(a) Classic and (b) HSB algorithms. Bits for one real value are

shown with most significant bits to the left, red indicating a
probability of sampling close to 1, blue - close to 0, and white close

to even chance of 1 or 0. Time is displayed every 10 iteratopms.

Early in the evolution (t = 0 – 30), all squares are pale. Later on (t

= 190 – 220), for Classic, the LSBs (to the right) are all saturated,

while several of the MSBs are paler and still undergoing evolution.

For HSB however, limiting saturation of a Qbit to be no more than
the current value of the neighbour with half bit index (more
significant), prevents the LSBs from saturating before the MSBs.

2.3. Improved bQIEA convergence performance for

real value problems – HSB (Half Significant Bit).

One possible solution of these convergence

problems is presented in [19], where the rotation gate

operator has limits imposed that were slightly within

the zero to one range. This means that, even late in the

evolution, it is always possible to sample new bit

values as the Qbits never completely saturate.

 5

Fig. 2. Ten example simulations of LSB random walk process

when they exert relatively little pressure on the evolution. Each

colour represents a different simulation run, the vertical axis is
Qbit position, with each run starting in the central 0.5 position, and

the horizontal axis is the number of iterations. Runs’ quick

saturation to either one or zero is showing a tendency for the LSB
to prematurely converge if they do not exert significant pressure

on the evolution, using the standard QIEA rotation gate.

However, as we have analysed this premature

convergence to be a problem of LSB evolution relative

to MSB revolution, and inspired by early

experimentation that failed to find much benefit from

the constraint strategy, we present and test a method

that explicitly constrains LSB Qbit rotation, relative to

MSB Qbit rotation. When rotating a Qbit, we impose

a limit upon the range that it can move to, based on the

current value of a more significant bit, so that it cannot

move to a more extreme value. This has the effect of

delaying large movements in the LSBs until the MSBs

have saturated.

Using the more significant immediate neighbour bit

as a limiting condition made the convergence too slow,

but picking a bit index that was half the position value

of the Qbit being rotated (assuming bit index zero as

the most significant one), gave acceptable results.

This is a somewhat less aggressive limiting condition,

which gives a compromise between premature

convergence and overly slow convergence. Future

work will be needed to identify the optimum index

strategy. The adjusted formula for the rotation is given

in Eq. (4), with the general algorithm code staying the

same as for Classic. This modified algorithm is called

HSB (Half Significant Bit) in this paper, and

preliminary results of an evolution are shown in Fig.

1b. The global and local migration rates G=20 and

L=1, and the population subdivisions (5 subsets) are

assumed the same as in the Classic method [18].

i, j i, h

i, j i, h

i 1, j

min , 0

max , 0

where j 0, floor 2

4 4
,

4 4

.

,

,

Q Q

Q Q

h j

Q

 (4)

Eq. (4) applies the rotation but then compares the

result to a more significant bit. This bit, h, has a

position index equal to one half of the index of the bit

being modified, j, rounded down to the nearest integer.

The comparison is done to limit the range to be no

more extreme than the more significant bit. The

extremeness is determined by measuring the reference

bit’s deviation for the central position π/4. Bit index

zero is modified according to the original Eq. (2) as

there are no more significant bits relative to it.

3. Real QIEA (rQIEA)

In order to apply QIEA to real-value problems,

numerous attempts have been made to develop real

QIEA (rQIEA) [53], and we chose to include rQIEA in

this investigation. A simple attempt at this is shown

in [54] where the rotation angles from the Classic

bQIEA are re-interpreted as actual solutions. This

approach has the advantage of ease of implementation,

and maintains the binary sampling metaphor while

delivering real values. However, the sampling

produces one of two options per dimension, rather

than a range of values when a binary string is used. In

our initial testing we did not produce satisfactory

results using this algorithm on our test set. However,

we found one algorithm called RCQIEA, presented in

[55], to be well defined, to have good results on

standard benchmarks, and to retain a meaningful

proportion of the quantum metaphor. Therefore, we

decided to include it in our study, along with a

modification for improved performance.

3.1. The RCQIEA algorithm

Whereas Classic produces fresh solutions at each

generation, RCQIEA stores and updates a candidate

solution. Classic takes the inspiration of superposition

and uses it to evolve a probability density function

(pdf), as described by the probability angles for each

bit. By not doing this directly, RCQIEA begins to

move away from the original quantum metaphor.

However, as we will describe shortly, the generation

of new candidates through creep mutation, can be seen

as using the candidate as a string of mean values for

an evolving pdf.

At each iteration, a set of offspring Oj is generated

from each individual’s candidate Ci using creep

mutation with variances stored in a string Vi. The

values in Vi are stored as angles and transformed into

0

0.2

0.4

0.6

0.8

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Q
b

it
 P

o
si

ti
o

n

Iteration

 6

a pair αi and βi in the same way as for the Classic. The

offspring are generated in two subsets: one using αi for

the variances; and one using βi/5, to allow for both fine

and coarse searching. The offspring are tested for

fitness and if one is found to be better than the current

candidate, it replaces that candidate. Otherwise, a

rotation gate is applied to the variance angles in the

same way as in Classic, but with a rotation step given

in Eq. (5).

0

sgn exp ,

 (5)

where α and β are the angles as defined in (1), and θ0

and γ are constants.

A cross-over operator is also applied during the

evolution. For our investigation, we applied it four

times during the course of each run (G=N/4), adopting

the approach presented in [55]. The pseudo-code for

the rQIEA presented here, is given in Algorithm 2.

Fig. 3: An example of the Δθ values for the RCQIEA algorithm on
the Griewank test function. The maximum magnitude should be

π/2, but very large values can be also observed.

3.2. Problems with rotation gate

In [55], the constants for (5) were specified as

θ0=0.4π and γ=0.05. In the testing, the RCQIEA

performed well for many functions. However, we

detected values of large magnitudes for Δθ, which

suggested a problem with the behaviour of the rotation

gate. For example, if the angles are α=0.01 and

β=0.99995 (satisfying α2 + β2=1), then (5) produces a

magnitude for Δθ in excess of 5.0e8. As a rotation

angle in this context, such a magnitude for Δθ does not

make sense, as it represents many complete rotations

in one iteration. In effect this leads to somewhat

random updates of the angle variables, and in turn, the

variances for the creep mutation. A real example of

these problematic delta values can be seen in Fig. 3.

Algorithm 2: Pseudo-code for RCQIEA

3.3. Improving the rotation gate

To alleviate this problem, we developed a modified

version of the rotation gate, keeping the rest of the

RCQIEA algorithm (see Algorithm 2). We call this

modified algorithm Stepwise Real QEA (SRQEA).

The change rotates the angles by a constant magnitude

in the rotation gate, as shown in Eq. (6).

 sgn 250. (6)

This change was motivated by making the update

similar to the constant step size used in Classic, and in

doing so, automatically avoiding problematic step

sizes since they are now a fixed amount rather than a

function of the state variables. Whereas Classic’s

rotation gate affects the absolute probability of

sampling a zero or one, the rotations in RCQIEA adjust

the variance of repeated creep mutations. Since larger

values are possible in this regime, we hypothesised

that a smaller step size would be appropriate. Despite

testing a range of alternative step sizes, we failed to

identify a strong relationship between step size and

-6E+08

-4E+08

-2E+08

0E+00

2E+08

4E+08

6E+08

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

3
0

0
1

3
2

0
1

3
4

0
1

3
6

0
1

3
8

0
1

4
0

0
1

4
2

0
1

4
4

0
1

4
6

0
1

4
8

0
1

R
o

ta
ti

o
n

 a
n

gl
e
Δ
θ

Iteration

1. Initialise the population size p, the maximum

number of iterations N, and crossover

frequency G

2. Initialise each Ci, Vi with random values

3. Evaluate fitness f(Ci) for each individual

4. while not termination condition do

5. for all i∈[1, p]

6. construct two sets of offspring Oj from

Ci using creep mutation from a normal

distribution with variances Vi. One set

uses the αi angles and the other one the

βi angles, both scaled for coarse and

fine search respectively

7. for each offspring j

8. if f(Oj) is better than f(Ci) then

9. replace Ci with Cj

10. else apply rotation gate to Vi

11. end if

12. end for

13. end for

14. adjust coarse and fine search scale factors

over course of run to move towards finer

search at the end of the simulation

15. every G iterations perform crossover

mutation

16. end while

 7

algorithm performance, with π/250 providing

reasonable results. Future work is needed to quantify

the step size/performance relationship, including

testing a wider range of step sizes, more runs and more

fitness functions. Also, we kept G=N/4 from [55], but

other generation sizes could be investigated along with

step size variants in the future.

4. Numerical Simulation

Each algorithm was tested against several fitness

functions. In accordance with the procedures outlined

in [22], functions were tested with 10, 30 and 50

dimensions (except for the real-world problems which

had specific dimension requirements), and each

optimization run was performed 51 times, unless

otherwise stated. The termination criterion was set to

a number of function evaluations of 10000 x number

of dimensions, unless otherwise stated. Given that

more than one function evaluation per generation was

performed for the rQIEA, their generations per run

were adjusted accordingly.

The testing environment was a custom Windows

MFC C++ programme running on Windows 7, with an

Intel G2030 CPU, a Gigabyte Z68AP-D motherboard

and 8GB DDR3.

4.1. Test functions

Firstly, a set of traditional, basic functions, was

taken from the first 13 functions presented in [50].

Additionally, a non-transformed basic version of

Schwefel 7 [20] was used when comparing to data

published for three recent QIEA [16,20,29], and a

basic two dimensional problem from [46], when

comparing another QIEA. A second set of more

complicated functions was added from the first 20

functions defined in the CEC-2013 specification [22].

These are based on the traditional functions but are

highly modified and transformed, including

application of rotations. It should be noted that both

sets share one function in common – the Sphere

function. We duplicate the presentation of the results

for this function in order to be consistent when

comparing to other published results. Finally, real-

world problems from CEC-2011 [11] were added:

frequency modulated sound wave matching; atom

configuration; and radar waveform parameter

optimisation.

The frequency modulated sound wave matching

problem optimises the constants of Eq. (7), so that the

output of the wave, measured for integer t=[0,100],

where θ=2π/100, matches the output of Eq. (8).

1 1 2 2 3 3

sin sin siny t a t a t a t (7)

 1.0 sin 5.0 1.5 sin 4.8 2.0 sin 4.9 ,y t t t t (8)

where α and ω are the constants to be optimised.

The Lennard-Jones atom potential configuration

problem, aims to minimise the potential energy VN of

a set of N atoms with position , , z
i i i i

p x y

according to Eq. (9).

1

12 6

1 1

2

2 ,

.

N N

N ij ij

i j i

ij j i

V p r r

r p p

 (9)

Finally, the radar polyphase pulse design problem

seeks to minimise a function f(x) based upon set of n

parameters x={x1,…, xn} according to Eq. (10).

2 1

2

1

2 1 1

2 1

2

1

cos , 1, ...,

0.5 cos , 1, ..., 1,

2 1.

max , ...,

,

,

i

i k

j

k i j

jn

k i j

m

n

k
j i

j i

x x i n

x x i n

m n

f x x x

 (10)

4.2. Population size analysis

Before conducting an extensive evaluation of the

proposed methods, an investigation into choosing a

suitable population size was conducted. An initial run

for 30 dimensions was performed for the optimisation

algorithms on the non-real world functions, with a

series of different population sizes being used. The

number of individuals ranged from 5 to 50, in

increments of five, but the total number of functions

evaluations was kept to 300000. After running the

simulations, the number of times an algorithm had a

best performance (assessed just for that algorithm)

was counted for each population size. A best

performance occurred when it was the best, or equal

best, minimum value or mean value for the fitness

function of that optimisation algorithm.

The results according to the best minimum and

mean values found are shown in Fig. 4. Results for

 8

the bQIEA Classic and HSB are shown in Fig. 4a and

Fig. 4b respectively, and results for the rQIEA

RCQIEA and SRQEA are shown in Fig. 4c and Fig. 4d

respectively.

Fig. 4: Population analysis for the QIEA: a) Classic; b) HSB; c)
RCQIEA; d) SRQEA. For each algorithm, a simulation run was

performed on the first 13 non-real world problems presented in

[50] with 30 dimensions, with population sizes from 5 to 50.

Then, for each algorithm in isolation, a count of best minimum and
best mean values were produced for each population size (best as

determined across all population sizes). The number of fitness
evaluations was kept to 300000.

Generally, the bQIEA performed better with higher

population sizes, while the rQIEA were better with

smaller population sizes. For Classic (Fig. 4a), the

best minimum values were found more often with a

population size of 50, with an additional peak at 20/25,

while HSB (Fig. 4b) had a peak at 35/40 but

reasonable performance from 25 to 50. When looking

at the mean performance, both bQIEA improved with

increasing population size, with the best being 50 for

both. After combining these results, we chose to

proceed with 50 individuals for both bQIEA

algorithms in the later simulations and analysis. These

results suggest bQIEA are biased towards exploitation

and therefore require a larger population size to

achieve good exploration.

For both rQIEA, the results (Fig. 4c and Fig. 4d)

were very clear – a population size of five performed

the best for both minimum and mean values. RCQIEA

had a sharp drop-off in performance above five, while

SRQEA had a smoother decline with increasing

population size. Based upon these results, a

population size of five was chosen for both rQIEA. In

contrast t o the results for the bQIEA, these results

suggest the rQIEA have relatively good exploration,

so benefit from a small population in order to improve

exploitation by increasing the number of function

evaluations per individual.

4.3. Performance metrics

4.3.1. Summary statistics

To present a basic analysis and compare across

publications, summary information is generated from

error values (from the known minimum value) or

absolute values if the global minimum is unknown.

From the raw data, simple statistical measures such as

minimum, mean and standard deviations are

calculated and summarised, with lower values for each

being preferred in the comparisons. Using the

procedures outlined in [17], average mean

performance was ranked and tested with a Friedman

test, and pairwise significance tests were conducted

with Shaffer’s static procedure. Additionally, for the

majority of functions, pairwise comparisons between

algorithms were performed on SPSS using the Mann-

Whitney U test, with Bonferroni-Holm adjustment for

multiple comparisons, to compare the distribution of

error values found on each run when analysing one

pair in isolation. However, this should be seen in the

context of the pairwise tests as these single pairwise

run comparisons do not take into account error

propagation through multiple pairwise comparisons.

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

C
o

u
n

t
o

f
b

e
st

 r
e

su
lt

s

Population size

Classic min

Classic mean

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

C
o

u
n

t
o

f
b

e
st

 r
e

su
lt

s

Population size

HSB min

HSB mean

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50

C
o

u
n

t
o

f
b

e
st

 r
e

su
lt

s

Population size

RCQIEA min

RCQIEA mean

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50

C
o

u
n

t
o

f
b

e
st

 r
e

su
lt

s

Population size

SRQEA min

SRQEA mean

a)

d)

b)

c)

 9

4.3.2. Success Rates

Using metrics introduced in [10], a success rate and

measure of time taken by the run to succeed

(converging to a minimum) are calculated. Success

Rate (SR) is calculated as the number of successful

runs divided by the total number of runs. A run is

regarded as successful if it finds an error below a

predefined threshold.

4.3.3. Success Performance

To measure the speed at which an algorithm obtains

good results, a metric called Success Performance

(SP) is calculated [10]. This is defined as SP =

(SNFEs)*(number of total runs)/(number of

successful runs), where SNFEs is the average number

of function evaluations required by each successful

run to reach the tolerance. A lower value of SP is

preferred because it indicates a better combination of

speed and consistency for the algorithm.

4.3.4. Timeline plots

In order to analyse the behaviour of the algorithms,

graphical representations of their evolution are

produced for every test function. Across all runs, for

each iteration the mean error is calculated and plotted.

So that the behaviour, with respect to the number of

function evaluations, can be compared directly

between the algorithms, and the time is normalised in

the [0, 1] range.

4.3.5. Empirical cumulative probability distribution

Performance across all functions is summarised

using the empirical cumulative probability distribution

function (ECDF) method presented in [15]. An ECDF

is constructed by firstly determining the performance

of each algorithm on each test function, by comparing

its mean error ME with the mean error achieved by the

best algorithm, and formulating a normalized mean

error NME (Eq. (11)). Then, the distribution is formed

by counting, for each value x in the domain of the

distribution, how many normalized means (across all

test functions) were obtained below x (Eq. (12)).

Normalizing and plotting these values produces a

graph where superior algorithms reach the top of the

chart faster than less well performing algorithms. In

this analysis, all the test functions were included, as

well as additional graphs for subsets (traditional,

CEC-2013 and real-world).

,

,f

,

,
1

A f

A

best f

ME
NME

ME

 (11)

,

1 1

1 fA
nn

i j

i j
A f

ECDF x I NME x
n n

 (12)

where A and f are the optimisation algorithm and the

test function index respectively, nA and nf are the

number of algorithms and test functions respectively.

5. Results and Discussion

Examples of methods used to optimise CEC-2013

problems include Particle Swarm Optimization [51],

Adaptive Differential Evolution [41,44,52], Mean

Variance Mapping [37] and GA [14]. The methods for

optimisation of the traditional test functions, covered

in this work, include Evolutionary Programming [50],

Particle Swarm Optimization [30], GA [26], and

Hybrid Bee Colony/QEA [13]. This section presents

the bQIEA and rQIEA results that we produced.

5.1. Pairwise statistical comparison of the QIEA

In Table 1 a Friedman test on average means for 50

dimensions rank Classic as the worst performer across

the traditional and CEC-2013 functions, followed by

HSB, RCQIEA, and lastly SRQEA as the best

performer, with a statistical significant difference

across the group (p<0.001). A Shaffer’s pairwise test

is presented in Table 2. All comparisons showed

significantly differences apart from between RCQIEA

and SRQEA (adjusted p=0.384). Furthermore the

Table 1: Friedman test of average ranking of mean performance.
Higher ranking is better.

Algorithm Ranking

Classic 1.50

HSB 2.25

RCQIEA 2.98

SRQEA 3.27

p<0.001

Table 2: Pairwise comparisons between Classic, HSB, RCQIEA

and SRQEA, for average mean performance on 50 dimensions for

functions 1 to 33. A Friedman test of average ranks gave p<0.001.
Pairwise comparisons between the algorithms were then

conducted using Shaffer’s static procedure and are listed below.

All null hypotheses were rejected at the 10% level at least apart
from RCQIEA vs SRQEA.

hypothesis unadjusted p Shaffer's p

Classic vs SRQEA <0.001 <0.001

Classic vs RCQIEA <0.001 <0.001

HSB vs SRQEA 0.002 0.005

Classic vs HSB 0.020 0.060

HSB vs RCQIEA 0.023 0.060

RCQIEA vs SRQEA 0.384 0.384

 10

comparison between HSB and Classic, and HSB and

RCQIEA were weakly significant (adjusted p both

0.06). The other comparisons were highly significant

(adjusted p<0.005). More work is needed to

demonstrate a difference between SRQEA and

RCQIEA by this measure, although other tests

presented below are suggestive of better performance

by SRQEA in addition to the better average mean

ranking.

5.2. Statistical comparison of the QIEA on

traditional test functions

In order to be useful optimization algorithms, the

QIEA must find solutions close to the optimum, as

represented by small error values. We start by looking

at the performance on the traditional test functions,

with minimum, mean and standard deviation data

presented in Table 3 (functions 1-13) for 50

dimensions.

These functions are reasonably smooth, at least

locally, and therefore obtaining a good error score will

require good exploitation abilities of the algorithm. In

section 2 we highlighted the difficulties for Classic in

optimising the LSBs, and we would expect this to be

reflected in poor minimum values as the exploitation

would be hampered. For both bQIEA, most solutions

had errors of magnitude above 1e-01, although some

of the fitness functions had large constant factors (e.g.,

Rosenbrock has a constant factor of 100) so absolute

values require a degree of interpretation. Even so,

with four minima of magnitude over 1e06 at 50

dimensions for Classic and four above 1e05 for HSB,

and similar means performance, the bQIEA do not

have particularly impressive results for the traditional

batch.

For the traditional test functions, HSB had equal or

better minimum values than Classic at 50 dimensions,

although the magnitudes were generally similar,

except for 50 dimension Penalised-1 where HSB had

a much better value than Classic. HSB With a

statistically significant, although weak (adjusted

p=0.06) difference in average mean performance

(Table 2) this completes a picture of consistently

better performance for HSB versus Classic, suggesting

both that the LSB problems of Classic hampered its

performance, and that our tested solution of limiting

the LSB probability saturation was successful.

Testing the bQIEA at 10 and 30 dimensions produced

very similar results.

Despite apparent functional performance by the

bQIEA, the two rQIEA were substantially better - most

minima had magnitudes of less than 1e-01. In the

Shaffer pairwise comparison of average mean

performance (Table 1 and Table 2), Classic was

outperformed significantly by both rQIEA (adjusted

p<0.001), and HSB was outperformed strongly by

SRQEA (adjusted p=0.005) and weakly by rQIEA

(adjusted p=0.06). RCQIEA found smaller than 1e-08

solutions (clamped to 0.00 in the results) for Step,

Quartic, Penalised-1 and Penalised-2 in all tested

dimensions. Despite RCQIEA performing well on

these test functions, it was eclipsed by SRQEA. With

the exception of Schwefel-2.21 and Rosenbrock,

SRQEA obtained clamped 0.00 minima results for all

of the functions, in all dimensions. Furthermore, in a

statistical test of run distributions (Mann-Whitney U

with Bonferroni-Holm adjusted), SRQEA was better

than RCQIEA for 8 of the traditional functions, with

no significant results the other way round. The

superior performance of the real algorithms over their

binary counterparts is unsurprising, given the

application to real-value problems, but the superior

performance of SRQEA justifies our modification of

the rotation gate for these functions.

5.3. Statistical comparison of the QIEA on CEC-

2013 test functions

As CEC-2013 is a set of real-value problems, some

being modified versions of the functions from the

traditional set tested here, we predicted that a similar

pattern of results would be generated, with the rQIEA

dominating the bQIEA. Although HSB outperformed

Classic, and SRQEA outperformed RCQIEA, the

performance of the bQIEA compared to the rQIEA

was very different from its previous performance (see

Table 3 functions 15-33).

For several of the test functions - Rotated Discus,

Rotated Schaffers-F7, Rotated Weierstrass, Rotated

Rastrigin, Non-continuous Rotated Rastrigin, Rotated

Schwefel 7, Rotated Katsuura, Rotated Expanded

Grienwank-Rosenbrock and Rotated Expanded

Schaffers-F6, one of the bQIEA had the best

performance for one or more dimensions tested.

Although the relative difference between minima was

lower when the bQIEA performed best, compared to

when the rQIEA were best, there were 6 functions at

50 dimensions for which HSB had significantly better

run result distributions than SRQEA (by Mann-

Whitney U/Bonferroni-Holm). The positive results of

the bQIEA are significant and surprising, given that

they can outperform the rQIEA on some real-value

benchmark functions.

 11

The CEC-2013 functions are highly manipulated

versions of traditional basic functions (many based on

the traditional test functions used in this paper). The

manipulations include rotations, scalings and non-

linear transforms. We hypothesise that it is these

transformations that allow the bQIEA to perform well

and suggest that this could happen in one of two

possible ways. Firstly, the transformations may

increase the nonlinear interactions between

dimensions, producing a fitness landscape that is very

rough, and therefore more resembling a discrete space

at scales above the very small. These search spaces

may be suited to the binary methods presented here,

possibly possessing similarities to the combinatorial

problems that bQIEA have been successful with (e.g.,

Knapsack [18]). Alternatively, the search pattern may

be the key. In the rQIEA, the search space is traversed

using creep mutations with distances drawn from a

normal distribution, while the movement in the bQIEA

is performed using multi-scaled jumps as the bits flip

between zero and one and move the search to an

adjacent binary partition at the scale of the

significance of the bit. This binary space partitioning

Fig. 5: Heat map of best values found, normalised for each

function, by the QIEA on the CEC-2013 test functions. For each

test function, the relative performance for each algorithm is
plotted, with a green (zero) rectangle indicating best performance,

and a light-green (one) rectangle indicating worst performance.

Table 3: Summary statistics for the 13 traditional and 19 CEC-2013 test functions (duplicated 14 Sphere removed) with 50 dimensions and
500000 function evaluations. For each of the four optimization algorithms, the minimum, mean and standard deviation of the error values are

presented after 51 runs. Best values are highlighted in bold type.

Traditional and CEC-2013

functions 50 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

01 Sphere 1.35E+03 3.35E+03 1.07E+03 1.81E+02 1.63E+03 7.16E+02 3.01E-04 5.81E-04 1.79E-04 0.00E+00 0.00E+00 0.00E+00

02 Schwefel-2.22 9.12E+01 1.67E+02 3.90E+01 4.92E+01 1.23E+02 3.17E+01 7.98E-02 1.08E-01 1.30E-02 0.00E+00 0.00E+00 0.00E+00

03 Schwefel-1.2 5.44E+05 2.20E+06 1.01E+06 1.48E+05 7.98E+05 4.56E+05 2.03E-01 4.26E-01 2.13E-01 0.00E+00 0.00E+00 0.00E+00

04 Schwefel-2.21 2.16E+01 3.63E+01 6.13E+00 1.83E+01 2.44E+01 4.01E+00 1.81E-01 3.05E-01 4.89E-02 2.00E-02 3.29E-02 7.54E-03

05 Rosenbrock 9.29E+06 2.81E+08 1.78E+08 7.79E+06 9.17E+07 7.77E+07 9.37E+00 1.27E+02 5.77E+01 4.49E-02 4.34E+01 3.09E+01

06 Step 1.22E+03 3.29E+03 1.41E+03 6.51E+02 1.72E+03 6.53E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

07 Quartic 3.76E+06 6.42E+07 6.02E+07 6.57E+05 1.51E+07 1.33E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

08 Schwefel-2.26 1.22E+02 3.21E+02 1.30E+02 4.15E+01 1.88E+02 8.73E+01 3.17E-05 6.60E-05 2.20E-05 0.00E+00 0.00E+00 0.00E+00

09 Basic Rastrigin 7.14E+01 1.04E+02 1.44E+01 3.06E+01 6.18E+01 1.06E+01 1.56E-04 2.89E-04 8.13E-05 0.00E+00 0.00E+00 0.00E+00

10 Basic Ackley 1.59E+01 1.93E+01 6.07E-01 1.42E+01 1.72E+01 1.12E+00 1.02E-02 1.66E-02 3.10E-03 0.00E+00 5.63E-07 3.26E-06

11 Basic Griewank 1.07E+01 2.92E+01 1.22E+01 3.64E+00 1.53E+01 5.86E+00 4.01E-04 8.45E-03 9.66E-03 0.00E+00 1.48E-02 2.59E-02

12 Penalised-1 1.04E+06 4.77E+07 3.66E+07 8.72E+01 1.09E+07 1.74E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

13 Penalised-2 1.43E+07 1.38E+08 9.05E+07 5.21E+05 2.95E+07 3.73E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 5.30E+07 1.17E+08 4.11E+07 4.55E+07 1.02E+08 3.28E+07 5.84E+06 1.15E+07 3.01E+06 1.55E+06 2.96E+06 6.43E+05

16 Rotated bent cigar 1.38E+10 3.21E+10 8.83E+09 4.85E+09 1.90E+10 1.04E+10 1.18E+03 6.45E+06 2.26E+07 4.98E-02 1.58E+05 1.08E+06

17 Rotated discus 5.44E+04 8.77E+04 1.68E+04 1.02E+04 2.40E+04 7.45E+03 1.38E+05 1.92E+05 2.88E+04 1.14E+05 1.75E+05 2.47E+04

18 Different powers 5.98E+02 4.90E+03 3.35E+03 9.52E+01 1.14E+03 1.46E+03 1.57E-03 4.14E-03 1.94E-03 0.00E+00 0.00E+00 0.00E+00

19 Rotated Rosenbrock 1.12E+02 3.10E+02 1.01E+02 1.04E+02 2.72E+02 9.86E+01 2.98E+01 4.51E+01 3.43E+00 2.38E+01 4.19E+01 7.54E+00

20 Rotated Schaffers-F7 1.44E+02 1.83E+02 2.18E+01 1.21E+02 1.78E+02 2.47E+01 1.79E+02 2.54E+02 1.22E+02 1.47E+02 2.46E+02 9.28E+01

21 Rotated Ackley 2.11E+01 2.12E+01 4.08E-02 2.10E+01 2.12E+01 3.58E-02 2.10E+01 2.11E+01 3.74E-02 2.10E+01 2.11E+01 4.68E-02

22 Rotated Weierstrass 4.46E+01 5.27E+01 4.77E+00 4.07E+01 5.27E+01 4.47E+00 5.71E+01 6.34E+01 3.36E+00 6.16E+01 6.74E+01 3.76E+00

23 Rotated Griewank 5.36E+02 1.05E+03 2.68E+02 4.03E+02 8.27E+02 2.22E+02 1.54E+00 2.25E+00 3.02E-01 2.71E-02 1.31E-01 4.96E-02

24 Rastrigin 7.36E+01 1.33E+02 2.56E+01 5.48E+01 7.99E+01 1.82E+01 5.83E-04 1.10E-03 3.38E-04 0.00E+00 0.00E+00 0.00E+00

25 Rotated Rastrigin 2.41E+02 3.69E+02 7.14E+01 2.33E+02 3.86E+02 8.38E+01 3.58E+02 6.08E+02 1.25E+02 4.60E+02 6.85E+02 1.38E+02

26 NC rotated Rastrigin 3.95E+02 5.23E+02 7.68E+01 3.51E+02 5.60E+02 1.15E+02 4.71E+02 6.30E+02 9.74E+01 5.01E+02 6.89E+02 1.01E+02

27 Schwefel-7 3.85E+02 1.17E+03 3.62E+02 1.43E+02 5.36E+02 2.46E+02 2.96E-02 8.57E-02 2.41E-02 9.99E-02 6.71E-01 2.94E-01

28 Rotated Schwefel-7 5.68E+03 7.73E+03 9.96E+02 5.12E+03 7.33E+03 9.92E+02 4.37E+03 6.25E+03 7.15E+02 4.69E+03 6.22E+03 6.23E+02

29 Rotated Katsuura 8.49E-01 2.02E+00 5.86E-01 1.26E+00 1.91E+00 4.11E-01 8.74E-01 1.64E+00 3.49E-01 8.93E-01 1.83E+00 4.41E-01

30 Lunacek bi-Rastrigin 1.31E+02 2.68E+02 6.63E+01 9.44E+01 1.65E+02 4.14E+01 3.82E-02 9.98E-02 3.51E-02 0.00E+00 1.96E-04 1.40E-03

31 R Lunacek bi-Rastrigin 3.41E+02 6.49E+02 1.27E+02 4.52E+02 6.51E+02 1.08E+02 3.05E+02 4.80E+02 7.87E+01 4.53E+02 6.12E+02 9.30E+01

32 RE Griewank Rosen. 9.91E+01 5.90E+02 7.94E+02 7.21E+01 4.55E+02 5.85E+02 5.73E+01 1.45E+02 4.66E+01 1.46E+02 2.91E+02 6.26E+01

33 RE Schaffers-F6 1.51E+01 1.93E+01 2.47E+00 1.51E+01 1.84E+01 1.95E+00 2.05E+01 2.43E+01 5.97E-01 1.90E+01 2.44E+01 7.68E-01

 12

could reflect, to some degree, the underlying structure

of the search spaces.

For the CEC-2013 set of test functions, the bQIEA

achieved several minimum scores with a magnitude of

1e02 or less and, given that the test functions often

contain large constants (1e06), it could be argued that

they performed better on the more difficult test

functions than on the traditional set of functions. It

would be interesting to see if this scales, so that the

bQIEA have increasingly better relative performance

as the fitness landscape becomes more complex. HSB

appears to scale better than Classic, achieving 6 best

minima performances across all four QIEA for 50

dimensions, compared to one for Classic.

Furthermore, when comparing HSB to SRQEA for run

distributions (by Mann-Whitney U/Bonferroni-Holm),

SRQEA had more statistically significant advantages,

but HSB achieved superior results for six test functions

at 50 dimensions.

Although SRQEA performed the greatest, in terms

of number of best minimum values found and the

ability to find threshold zero error values for some

CEC-2013 functions (which none of the other

algorithms managed to do), when looking at the

general performance across all of the functions and

algorithms, the picture was somewhat more mixed. A

heat map of best minimum values, scaled relatively

from the best performing algorithm to the worst on

each test function, is presented in Fig. 5. In this plot,

judging by the number of darker rectangles, RCQIEA

performs well, arguably outperforming SRQEA. From

the raw data in Table 3, it can be seen that when the

performances of the rQIEA are close, SRQEA

produces better results than RCQIEA, but this is not

generally noticeable in the heat map, where the larger

degrees of magnitude produced by the bQIEA obscure

the rQIEA differences. Summarising the raw data and

the heat map, it can be said that RCQIEA had a slightly

better minima performance across the test functions,

on average, but SRQEA was able to produce much

better individual scores for some functions.

Furthermore, SRQEA had superior run distributions

than RCQIEA (by Mann-Whitney U/Bonferroni-

Holm), giving better average performance from run to

run, although caution should be noted as in the group

test of pairwise comparisons, the results between the

two rQIEA was not significant (Table 2). The more

random nature of the rotation gate of RCQIEA may

produce desirable search characteristics for the CEC-

2013 test functions, at the expense of more

exploitation.

5.4. Statistical comparison of the QIEA on real world

test functions

For the CEC-2011 real-world problems, converging

to the minima was best for the rQIEA (Table 4), with

SRQEA having the best scores for three of the

functions. However, for the Radar Polly Phase

problem HSB had the best result, and shared the

number of best means equally with SRQEA. The

nested functions of the Frequency Modulation and

Radar Polly Phase problems suggest a highly

nonlinear search space, so these results are consistent

with our findings and interpretations of the

performance of the bQIEA on the CEC-2013 functions.

Finally, we present a summary of algorithms’ mean

performance across multiple test functions in

Fig. 6. The plots show a cumulative normalised

count of how many functions possess a normalised

mean performance for that algorithm, below a given

value. The sooner the plot reaches 1.0 in the vertical

axis, the better the algorithm performs (as this

indicates a high probability of achieving low mean

error values).

The best performance on the traditional test

functions (not shown) is dominated by the two rQIEA

methods, which can also be seen for all of the test

functions taken together (not shown), with Classic

performing poorly for both of those cases. However,

for the CEC-2013 functions HSB is much closer (

Fig. 6a), catching up sooner with the rQIEA in the

plot, although it starts with poorer results, indicating a

low probability of producing very low mean scores

across the function set. The performance of RCQIEA

compared to SRQEA for CEC-2013 is in line with the

Table 4: Summary statistics for CEC-2011 real world problems. For each of the four optimization algorithms, the minimum, mean and

standard deviation of the error values are presented after 51 runs. Best values are highlighted in bold type. Function evaluations were limited
to 150000.

Func

tion

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

FM 4.42E-02 1.34E+01 6.11E+00 3.01E-03 1.07E+01 6.99E+00 2.71E-04 1.57E+01 5.78E+00 0.00E+00 1.70E+01 4.68E+00

L-J5 -1.21E+01 -9.62E+00 1.49E+00 -1.22E+01 -1.03E+01 1.55E+00 -1.27E+01 -1.18E+01 1.03E+00 -1.27E+01 -1.21E+01 1.02E+00

L-J10 -2.72E+01 -1.80E+01 4.03E+00 -2.67E+01 -1.95E+01 3.79E+00 -3.08E+01 -2.26E+01 3.87E+00 -3.18E+01 -2.41E+01 4.23E+00

Radar 1.58E+00 2.00E+00 1.97E-01 1.40E+00 1.91E+00 2.02E-01 1.50E+00 2.00E+00 2.31E-01 1.59E+00 2.11E+00 2.10E-01

 13

results presented in the heat map (Fig. 5). SRQEA

outperforms RCQIEA for low mean values, but takes

a slight lead for normalised means between 0.2 and 0.4.

For the real-world test functions (

Fig. 6b), the situation is completely reversed, with

Classic performing the best, followed by HSB.

Fig. 6: Empirical cumulative probability distribution function of

mean errors across a) CEC-2013, and b) real-world all test

functions, comparing the four QIEA. The horizontal axis shows
normalised mean score, and the vertical axis shows cumulative

probability. The faster the approach to 1 in the vertical direction,

the better the performance.

Summarising the ECDF and the results given in

Table 1, Table 2, Table 3 and Table 4, we can conclude

that, although the rQIEA have superior best

performance (minimum values found), the bQIEA

algorithms do have good mean performance, often

superior to their real-value counterparts. Again, it is

with the more complicated CEC-2013 and real-world

CEC-2011 functions that the bQIEA perform at their

best, often outperforming the rQIEA.

5.5. Evolution properties of the QIEA

Mean error values per generation (averaged across

the 51 runs) are shown for two functions in Fig. 7. For

most functions, Classic outperformed HSB early on

the evolution, but tends to stall earlier and is generally

overtaken by HSB at around the 30% (of the total

number of generations) time point (for example, see

the Rotated Griewank function timeline in Fig. 7a).

This gives additional support to our argument that

Classic was prematurely converging when applied to

real-value problems, and justifies our approach when

formulating the HSB adaptation. However, it should

also be noted that HSB also usually approaches an

approximately zero gradient relatively early on (50%

of time or less), implying there is further need to

improve premature convergence.

Fig. 7: Timeline evolution of mean error values. The mean error

for each generation was calculated across each of the 51 runs, for

every test function, and plotted for 51 dimensions on a) Rotated
Griewank, and b) Schwefel-2.21. Each graph plots time

normalized evolutions, comparing the relative performance of the

optimization algorithms.

For the majority of cases where SRQEA

outperformed RCQIEA, their early performances were

very similar, but SRQEA would establish a lead from

typically the 10-30% time mark (see Rotated

Griewank in Fig. 7a). We interpret this as indicating

that our corrected rotation formula allowed a more

refined search in later stages. Both rQIEA

demonstrated a clear non-zero gradient at the end of

the timeline in several of the plots (such as Fig. 7b).

This suggests they are capable of finding significantly

better results if the algorithm is run for longer. As the

plots display the fitness to the 10th root, this is relevant

for fine convergence to the optimal value, indicating

room for improvement of precision.

In order to compare the speed of evolution for the

QIEA on functions for which zero minima were

obtained, success rates (SR) and success performances

(SP) were calculated for RCQIEA and SRQEA for

those test functions, using four threshold values: 1e-

02, 1e-04, 1e-06 and 1e-08. The data are presented in

Table 7. In almost all cases, SRQEA outperformed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.20 0.40 0.60 0.80 1.00

P
ro

b
ab

ili
ty

Normalised mean

Classic

HSB

RCQIEA

SRQEA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.20 0.40 0.60 0.80 1.00

P
ro

b
ab

ili
ty

Normalised mean

Classic

HSB

RCQIEA

SRQEA

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

Fi
tn

e
ss

 (
e

rr
o

r)

Time (%)

Classic

HSB

RCQIEA

SRQEA

310

210

110

0

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

Fi
tn

e
ss

 (
e

rr
o

r)

Time (%)

Classic

HSB

RCQIEA

SRQEA

310

210

110

0

a)

b) b)

a)

 14

RCQIEA, with the only exception being the success

rate for the basic Griewank function at the 1e-02

threshold. The SP metric gives the mean number of

function evaluations per success, adjusted in order to

Table 5: Comparison between SRQEA, Fast Evolutionary Programming (FEP) [50], and MADE [33] on the traditional test functions. The
SRQEA performed better than FEP, but was inferior to MADE for four of the functions. Best values are highlighted in bold type.

30 Dimensions SRQEA FEP MADE

Function Evals Min Mean Std dev Evals Mean Std dev Evals Mean Std dev

1 Sphere 300000 0.00E+00 0.00E+00 0.00E+00 150000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00

2 Schwefel-2.22 300000 0.00E+00 0.00E+00 0.00E+00 200000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00

3 Schwefel-1.2 300000 0.00E+00 0.00E+00 0.00E+00 500000 1.60E-02 1.40E-02 200000 0.00E+00 0.00E+00

4 Schwefel-2.21 300000 3.51E-03 6.16E-03 1.56E-03 500000 3.00E-01 5.00E-01 500000 0.00E+00 0.00E+00

5 Rosenbrock 300000 1.04E-02 8.86E+01 1.80E+02 2000000 5.06E+00 5.87E+00 500000 3.97E-01 1.63E+00

6 Step 300000 0.00E+00 0.00E+00 0.00E+00 150000 0.00E+00 0.00E+00 500000 0.00E+00 0.00E+00

7 Quartic 300000 0.00E+00 0.00E+00 0.00E+00 300000 7.60E-03 2.60E-03 300000 1.24E-03 3.78E-04

8 Schwefel-2.26 300000 0.00E+00 0.00E+00 0.00E+00 900000 1.50E+01 5.26E+01 200000 0.00E+00 0.00E+00

9 Basic Rastrigin 300000 0.00E+00 0.00E+00 0.00E+00 500000 4.60E-02 1.20E-02 300000 0.00E+00 0.00E+00

10 Basic Ackley 300000 0.00E+00 9.20E-01 4.01E+00 150000 1.80E-02 2.10E-03 150000 0.00E+00 0.00E+00

11 Basic Griewank 300000 0.00E+00 2.06E-02 2.25E-02 200000 1.60E-02 2.20E-02 200000 0.00E+00 0.00E+00

12 Penalised-1 300000 0.00E+00 0.00E+00 0.00E+00 150000 9.20E-06 3.60E-06 300000 0.00E+00 0.00E+00

13 Penalised-2 300000 0.00E+00 0.00E+00 0.00E+00 150000 1.60E-04 7.30E-05 300000 0.00E+00 0.00E+00

Table 6: Comparison of success rates (SR) and speed of convergence (SP), between RCQIEA, SRQEA and 4 differential evolution algorithms,

for the 13 traditional test functions with 30 dimensions. The threshold (1E-08, except of 1E-02 for Quartic) determines the point at which a
run is a success. Best values are highlighted in bold type. Function evaluations are kept to 300000.

Function

RCQIEA SRQEA jDE SDE JADE MADE

SP SR SP SR SP SR SP SR SP SR SP SR

1 Sphere — 0 2.48E+05 1 5.93E+04 1 3.91E+04 1 3.04E+04 1 2.29E+04 1

2 Schwefel-2.22 — 0 7.19E+05 1 8.16E+04 1 5.31E+04 1 5.61E+04 1 3.64E+04 1

3 Schwefel-1.2 — 0 3.56E+05 1 3.37E+05 1 — 0 7.17E+04 1 1.34E+05 1

4 Schwefel-2.21 — 0 — 0 2.99E+05 1 4.72E+05 0.44 — 0 1.27E+05 1

5 Rosenbrock — 0 — 0 5.89E+06 0.08 — 0 1.22E+05 0.92 1.97E+05 0.92

6 Step 7.77E+04 1 4.27E+04 1 2.27E+04 1 1.44E+04 1 1.16E+04 1 7.89E+03 1

7 Quartic 1.37E+05 1 4.35E+04 1 1.12E+05 1 8.34E+04 1 2.97E+04 1 2.83E+04 1

8 Schwefel-2.26 — 0 2.12E+05 1 7.85E+04 1 5.50E+04 1 1.00E+05 1 6.00E+04 1

9 Basic Rastrigin — 0 2.53E+05 1 1.17E+05 1 6.14E+05 0.36 1.31E+05 1 1.14E+05 1

10 Basic Ackley — 0 1.54E+06 0.63 9.02E+04 1 5.95E+04 1 4.75E+04 1 3.55E+04 1

11 Basic Griewank — 0 8.50E+05 0.31 6.21E+04 1 4.07E+04 1 3.30E+04 1 2.41E+04 1

12 Penalised-1 5.61E+04 1 3.85E+04 1 5.40E+04 1 3.66E+04 1 2.95E+04 1 2.03E+04 1

13 Penalised-2 3.85E+04 1 3.30E+04 1 5.76E+04 1 3.77E+04 1 2.95E+04 1 2.19E+04 1

Table 7: Success rates (SR) and success performance (SP) for the test functions at 30 dimensions, which reached a threshold of 1e-8 by one of

the quantum algorithms, for different success thresholds: 1e-2; 1e-4; 1e-6; and 1e-8. SR ranges from 0 (no successes) to 1 (all runs where
successful) and SP gives a measure of average number of iterations needed to achieve the threshold, adjusted in order to penalise algorithms
with low success rates. SRQEA outperformed RCQIEA for all functions and for all thresholds. Function evaluations were kept to 300000.

30 dimensions RCQIEA SRQEA

1.00E-02 1.00E-04 1.00E-06 1.00E-08 1.00E-02 1.00E-04 1.00E-06 1.00E-08

Function name SR SP SR SP SR SP SR SP SR SP SR SP SR SP SR SP

Sphere 1.00 3.52E+05 0.02 5.91E+07 0.00 - 0.00 - 1.00 5.65E+04 1.00 1.04E+05 1.00 1.65E+05 1.00 2.48E+05

Schwefel 222 0.00 - 0.00 - 0.00 - 0.00 - 1.00 1.27E+05 1.00 2.82E+05 1.00 4.79E+05 1.00 7.19E+05

Schwefel 12 0.00 - 0.00 - 0.00 - 0.00 - 1.00 1.12E+05 1.00 1.75E+05 1.00 2.60E+05 1.00 3.56E+05

Step 1.00 7.77E+04 1.00 7.77E+04 1.00 7.77E+04 1.00 7.77E+04 1.00 4.27E+04 1.00 4.27E+04 1.00 4.27E+04 1.00 4.27E+04

Quartic 1.00 1.37E+05 1.00 1.37E+05 1.00 1.37E+05 1.00 1.37E+05 1.00 4.34E+04 1.00 4.35E+04 1.00 4.35E+04 1.00 4.35E+04

Schwefel 226 1.00 1.78E+05 1.00 8.54E+05 0.00 - 0.00 - 1.00 4.28E+04 1.00 7.94E+04 1.00 1.36E+05 1.00 2.12E+05

Basic Rastrigin 1.00 2.83E+05 0.18 6.57E+06 0.00 - 0.00 - 1.00 1.05E+05 1.00 1.28E+05 1.00 1.78E+05 1.00 2.53E+05

Basic Ackley 0.06 1.95E+07 0.00 - 0.00 - 0.00 - 0.94 5.66E+05 0.92 7.12E+05 0.88 9.39E+05 0.63 1.54E+06

Basic Griewank 0.53 1.07E+06 0.00 - 0.00 - 0.00 - 0.43 1.83E+05 0.31 3.83E+05 0.31 5.82E+05 0.31 8.50E+05

Penalised 1 1.00 5.61E+04 1.00 5.61E+04 1.00 5.61E+04 1.00 5.61E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04

Penalised 2 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.85E+04 1.00 3.30E+04 1.00 3.30E+04 1.00 3.30E+04 1.00 3.30E+04

Diff. powers 0.98 5.25E+05 0.00 - 0.00 - 0.00 - 1.00 6.47E+04 1.00 1.37E+05 1.00 2.52E+05 1.00 3.80E+05

Rastrigin 1.00 4.41E+05 0.00 - 0.00 - 0.00 - 1.00 1.66E+05 1.00 1.87E+05 1.00 2.33E+05 1.00 3.01E+05

Lun. bi-Rastrigin 0.00 - 0.00 - 0.00 - 0.00 - 0.96 4.48E+05 0.94 5.17E+05 0.94 5.54E+05 0.94 6.09E+05

 15

penalise low success rates. In conclusion, the data

show that SRQEA provides superior success rates, and

quicker convergence than RCQIEA.

5.6. Comparison of QIEA with published results

As the best performing QIEA on the traditional test

functions, we compare SRQEA to two other

algorithms – FEP [50] and MADE [10] (Table 5).

Comparison is made difficult by varying numbers of

function evaluations across the published methods, but

in general, SRQEA outperformed FEP except for the

Rosenbrock, Ackley and Griewank functions where

FEP had a superior mean and standard deviation.

MADE was better than SRQEA for Schwefel-2.21,

Rosenbrock, Ackley and Griewank, but SRQEA beat

MADE for Quartic and matched it for all of the other

functions. Unfortunately, best minimum values found

were not published for either algorithm, but since

MADE produced several zero means, it is clear those

results would have been good as well.

The exploitation abilities of RCQIEA and SRQEA

were compared to data published on a set of

differential algorithms (DE) [10]. The results are

presented in Table 6, using the success rate (SR) and

success performance (SP) metrics. In general, the DE

algorithms achieved success more often, and quicker

than the rQIEA. The SRQEA is superior to RCQIEA

for these metrics, achieving better success rates, and

reaching the threshold more quickly (better SP).

These results (Table 6) represent the weakest

performance for the QIEA in this paper, and indicate

room for improvement in their search and exploitation

abilities for the traditional test functions. However, it

should be noted that success rates were based on very

low thresholds (usually 1e-08) and therefore may not

be important in practical cases. Unfortunately, when

comparing to MADE we did not have data on its

application to the CEC-2013 functions, so we cannot

argue if these conclusions hold for the more

complicated test functions. However, the reader

should note that a modified version of MADE – Super-

fit MADE (SMADE) has now been produced and

applied to the CEC-2013 benchmarks [5].

A comparison of SRQEA with five different QIEAs

is given in Table 8: a hybrid quantum PSO algorithm

HRCQEA [20], a region based QIEA RQEA [29], a

hybrid quantum PSO with neighbourhood search

NQPSO [16], and two hybrid quantum GAs QGAXM

[33] and CQGA [46]. The five fitness functions used

in [20] where available in [29] and [16], so were

chosen for comparison. When comparing to QGAXM

and CQGA, the evaluated fitness functions were

matched in their entirety, including a two-dimensional

problem from [46].

The number of runs and the maximum function

evaluations were matched, except for HRCQEA,

where our algorithms performed only 300000

evaluations. It can be concluded that SRQEA is as

good as, or better than these algorithms for finding the

functions’ minimum values, with the exception when

against QGAXM, where SRQEA was better for the

multi-modal problems, but worse for Sphere and

Rosenbrock. Mean performance was less impressive,

and suggests a weakness in exploitation capabilities of

SRQEA for the basic functions, especially when using

the low number of function evaluations when

compared to QGAXM. In the next section though,

evidence of a very good exploration for the more

complicated CEC-2013 functions will be presented.

The CQGA algorithm used binary encoding, but with

only 20 bits, and was beaten not just by SRQEA, but

by HSB as well. Otherwise, HSB only achieved

superior performance for Rastrigin against QGAXM

and SRQEA.

Table 9 shows the performance of SRQEA against

two algorithms that were applied to the CEC-2013

fitness functions [22]. The two algorithms compared

are a particle swarm optimization algorithm SPSO-

2011 [51] and a genetic algorithm GA [14]. SRQEA

was chosen for comparison as, overall, it was the best

performing QIEA tested here, in terms of minimum

values found.

Looking at all dimensions, all three algorithms

achieved some best performances. However, SPSO-

2011 performed least well, having fewer best

minimum results, and most of those being joint equal

with one or both of the other algorithms. The main

competition for SRQEA came from the GA. For 10

dimensions it achieved 16 best performances, with

SRQEA only achieving seven. For 30 dimensions GA

scored 12 best performances, while the SRQEA

 16

reached 8, but for 50 dimensions, SRQEA took the lead

Table 8: Comparison of HSB and SRQEA with five QIEA: HRCQEA; RQEA; NQPSO; QGAXM; and CQGA. Comparisons to HRCQEA,

RQEA and NQPSO were standardised to the five functions used for HRCQEA [25], whereas for QGAXM and CQGA comparisons were made
for all fitness functions presented. Values less than 1e-08 have been clamped to zero. Minimum scores for the compared algorithms are listed

where available or where they can be deduced from zero means. Number of runs and function evaluations (FE) have been matched, except for

HRCQEA (*) where only 300000 evaluations were performed per run. Best minimums are highlighted in bold except for the CQGA
comparison which was a maximisation problem.

Method

Compared algorithm HSB SRQEA

Func Dim Min Mean Min Mean Min Mean

HRCQEA

50 runs
*2400000 FE

Sphere 30 0.00E+00 0.00E+00 1.40E+01 6.37E+02 0.00E+00 0.00E+00

Rastrigin 30 0.00E+00 0.00E+00 1.62E+01 4.15E+01 0.00E+00 0.00E+00

Ackley 30 1.70E-07 1.70E-07 1.02E+01 1.66E+01 0.00E+00 9.20E-01

Schwefel 7 30 3.90E-04 3.90E-04 2.91E+02 7.10E+02 0.00E+00 2.60E+02

Griewank 30 0.00E+00 0.00E+00 1.83E+00 7.69E+00 0.00E+00 2.06E-02

RQEA

25 runs

500000 FE

Sphere 50 0.00E+00 0.00E+00 3.80E+02 1.65E+03 0.00E+00 0.00E+00

Rastrigin 50 - 5.32E-07 4.61E+01 6.36E+01 0.00E+00 0.00E+00

Ackley 50 0.00E+00 0.00E+00 1.09E+01 1.72E+01 0.00E+00 8.36E-08

Schwefel 7 50 - 5.80E-03 5.84E+02 1.64E+03 0.00E+00 6.40E+02

Griewank 50 0.00E+00 0.00E+00 4.78E+00 1.77E+01 0.00E+00 2.36E-02

NQPSO
30 runs

200000 FE

Sphere 30 0.00E+00 0.00E+00 9.37E+01 5.79E+02 0.00E+00 0.00E+00

Rastrigin 30 0.00E+00 0.00E+00 2.07E+01 3.54E+01 0.00E+00 0.00E+00

Ackley 30 0.00E+00 0.00E+00 1.57E+01 1.94E+01 1.64E-08 1.49E+00

Schwefel 7 30 - 3.80E+03 4.46E+02 8.17E+02 0.00E+00 2.89E+02

Griewank 30 0.00E+00 0.00E+00 2.13E+00 6.90E+00 0.00E+00 2.54E-02

QGAXM

30 runs
10000 FE

Sphere 50 1.90E-01 4.20E-01 7.80E+04 9.43E+04 1.40E+01 8.43E+01

Rastrigin 50 1.67E+04 1.35E+05 6.41E+02 6.92E+02 1.67E+05 2.09E+06

Rosenbrock 50 3.20E+02 4.61E+02 2.19E+10 4.50E+10 1.87E+01 2.86E+01

Griewank 50 1.44E+00 2.22E+00 6.66E+02 8.56E+02 1.12E+00 1.58E+00

CQGA, 10 runs, 8000

FE
Complex binary 2 -17.3503 - -17.4503 -17.4486 -17.4503 -17.4503

Table 9: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 50 dimensions and 500000 FEs. The SRQEA
matched or outperformed the other two algorithms on best value found (Min) for 11 test functions. Best values are highlighted in bold type.

50 Dimensions SRQEA SPSO-2011 [11] GA [13]

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 1.55E+06 2.96E+06 6.43E+05 3.79E+05 6.80E+05 1.87E+05 1.74E+05 4.28E+05 4.76E+05 2.14E+05

16 Rotated bent cigar 4.98E-02 1.58E+05 1.08E+06 2.00E+07 4.37E+08 9.47E+08 2.55E+06 3.44E+07 1.06E+08 1.49E+08

17 Rotated discus 1.14E+05 1.75E+05 2.47E+04 3.22E+04 5.10E+04 8.72E+03 4.90E-01 2.25E+00 3.33E+00 4.88E+00

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.41E-05 0.00E+00 0.00E+00 4.77E+04 1.70E+05

19 Rotated Rosenbrock 2.38E+01 4.19E+01 7.54E+00 1.84E+01 4.35E+01 2.41E+01 3.66E+01 4.36E+01 4.72E+01 1.40E+01

20 Rotated Schaffers-F7 1.47E+02 2.46E+02 9.28E+01 5.61E+01 8.64E+01 1.53E+01 1.51E+01 3.97E+01 4.17E+01 1.83E+01

21 Rotated Ackley 2.10E+01 2.11E+01 4.68E-02 2.10E+01 2.11E+01 4.25E-02 2.11E+01 2.12E+01 2.12E+01 3.98E-02

22 Rotated Weierstrass 6.16E+01 6.74E+01 3.76E+00 4.52E+01 5.40E+01 6.74E+00 5.21E+01 7.53E+01 7.43E+01 3.97E+00

23 Rotated Griewank 2.71E-02 1.31E-01 4.96E-02 1.00E-01 4.00E-01 2.38E-01 2.71E-02 9.36E-02 1.05E-01 7.09E-02

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 1.50E+02 2.30E+02 4.18E+01 1.49E+01 5.37E+01 5.57E+01 2.23E+01

25 Rotated Rastrigin 4.60E+02 6.85E+02 1.38E+02 1.62E+02 2.35E+02 4.87E+01 5.07E+01 9.75E+01 9.83E+01 2.45E+01

26 NC rotated Rastrigin 5.01E+02 6.89E+02 1.01E+02 3.20E+02 4.28E+02 6.22E+01 1.04E+02 1.86E+02 1.93E+02 5.30E+01

27 Schwefel-7 9.99E-02 6.71E-01 2.94E-01 5.51E+03 7.26E+03 8.53E+02 1.06E+03 2.30E+03 2.55E+03 1.14E+03

28 Rotated Schwefel-7 4.69E+03 6.22E+03 6.23E+02 5.68E+03 7.92E+03 1.14E+03 6.20E+03 8.24E+03 9.84E+03 3.19E+03

29 Rotated Katsuura 8.93E-01 1.83E+00 4.41E-01 1.40E+00 2.00E+00 3.87E-01 2.23E+00 3.76E+00 3.68E+00 3.88E-01

30 Lunacek bi-Rastrigin 0.00E+00 1.96E-04 1.40E-03 2.08E+02 3.11E+02 6.62E+01 8.25E+01 1.13E+02 1.15E+02 2.00E+01

31 R Lunacek bi-Rastrigin 4.53E+02 6.12E+02 9.30E+01 1.70E+02 2.91E+02 6.24E+01 8.83E+01 1.32E+02 1.68E+02 1.02E+02

32 RE Griewank Rosenb. 1.46E+02 2.91E+02 6.26E+01 1.70E+01 3.72E+01 1.20E+01 3.60E+00 9.02E+00 8.92E+00 3.17E+00

33 RE Schaffers-F6 1.90E+01 2.44E+01 7.68E-01 1.99E+01 2.27E+01 1.19E+00 1.99E+01 2.36E+01 2.35E+01 8.02E-01

Table 10: Comparison of performance on real-world problems between SRQEA and three alternative algorithms – MADE-WS [33], EA-DE-

Memetic [37] and an adaptive differential evolutionary algorithm [38]. The starred value has been clamped to zero as it was below the
threshold of 1E-08 (used in our simulations). Best values are highlighted in bold type. Function evaluations are kept to 150000.

Func

tion

SRQEA MADE-WS EA-DE-Memetic Adaptive DE

Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

FM 0.00E+00 1.70E+01 4.68E+00 - 8.81E-01 2.47E+00 0.00E+00* 3.81E+00 5.21E+00 0.00E+00 4.85E+00 6.69E+00

L-J 5 -1.27E+01 -1.21E+01 1.02E+00 - -9.09E+00 8.83E-02 - - - - - -

L-J 10 -3.18E+01 -2.41E+01 4.23E+00 - -2.66E+01 8.64E-01 -2.84E+01 -2.59E+01 2.24E+00 -2.80E+01 -2.68E+01 2.11E+00

Radar 1.59E+00 2.10E+00 2.09E-01 - - - 2.20E+02 2.20E+02 0.00E+00 2.20E+02 2.20E+02 0.00E+00

 17

with 11 compared to 9 best results for the GA. This

demonstrates better scaling with increased number of

dimensions for SRQEA than for the GA. Mean

performance was similarly distributed across all

dimensions but SRQEA showed improved standard

deviation performance again for 50 dimensions,

outperforming the other algorithms substantially. This

shows a more consistent relative performance at

higher dimensions for SRQEA as well as better

minima and means.

The poorer performance of SPSO-2011 (Table 9)

and the better performance of the GA may suggest that

the recombinatorial properties of the cross-over

operator may aid the search pattern for the CEC-2013

functions. This may be consistent with either of our

hypotheses for why the bQIEA performed relatively

well against the rQIEA – either treating the rougher

space as more discrete and looking for recombination,

or navigating through hops (swapping genes in the

case of GA, and flipping bits in the case of the bQIEA).

Although overall SRQEA was better, it would be

interesting to see how bQIEA perform against rQIEA

and other algorithms on even more complex search

spaces.

A comparison between SRQEA and two alternative

algorithms, when applied to the real-world problems

is shown in Table 10. For the frequency modulation

wave matching problem, MADE-WS [10] had the best

mean and standard deviation. Unfortunately, the

authors did not report a minimum value. SRQEA

outperformed the hybrid algorithm [38] and the DE

algorithm [2], in terms of mean and standard deviation,

while equalling the best minimum performance. The

mean and standard deviation were worse but

comparable with the MADE-WS results.

For the Lennard-Jones problems, SRQEA again

established the best minimum values, but MADE-WS

did not have a comparable values published. SRQEA

did have the best mean value for Lennard-Jones5 but

only outperformed the hybrid algorithm for Lennard-

Jones10.

For the radar waveform parameter specification

problem, SRQEA was the clear winner. The published

results [38] and [2] both gave a suspiciously poor

value though, and it may be worth considering

whether there were issues in using shared code for the

function evaluations. The problem was directly

tackled in [32] where a variable neighbourhood

search algorithm gave a minimum value of 8.58e-01

which was better than that achieved by the SRQEA.

6. Conclusion

When applied to real-value optimization tasks, all

of the QIEA tested and validated in this investigation

were successful, in that they were able to produce

acceptable to excellent error values (with respect to the

complexity of the test functions). Binary QIEA are a

direct implementation of the quantum computing

metaphor, which is built around repeated sampling of

binary strings, analogous to superposition of states on

a set of quantum bits. The Qbit probabilities define a

probability distribution that elegantly specifies both

the region of the best solution found so far, and the

variance of the search radius. As the probabilities

saturate, the mean position of the search becomes

clearly defined, and the variance of the search narrows.

Although the original Classic algorithm performed

relatively poorly on the optimization tasks examined

here, our modification (HSB) did substantially

improve the results. In many instances it

outperformed RCQIEA, especially for the more

difficult CEC-2013 test functions. The timeline plots

highlighted the premature convergence of Classic (a),

giving further justification for our choice of

modification, which was developed in response to our

analysis of individual bit evolution. By explicitly

limiting the saturation of less significant bits to the

magnitude of saturation of more significant bits, HSB

avoids the problems that Classic encountered for real-

value problems, although zero gradients in the latter

half of some timeline plots suggest there is still room

for improvement. The population size results (Fig. 4a

and Fig. 4b) also suggest exploration issues, as the

bQIEA benefit from a larger population size for a fixed

number of function evaluations.

Our modification to the rotation gate produced

superior results, particularly with regards to the final

ability to exploit the search space (Table 1, Table 2,

Table 3 and Table 4) and the speed of exploitation

(Table 7), although from the heatmap of Fig. 5 it

would appear the average performance across the

functions is slightly compromised. This suggests the

superior exploitation may come at the expense of

some exploration capability. As well as being

beneficial in this specific implementation, it would be

interesting for future work to explore the possibility of

using the modified rotation in other algorithms, as a

way of adjusting search variance.

When compared to other published results, our

modified algorithms were predominantly competitive

for the more complex CEC-2013 functions (Table 9).

For the traditional test functions, SRQEA was superior

 18

than recently published QIEA in terms of best

minimum reached (Table 8), although mean

performance was mixed, and our algorithms were

generally outperformed by other published results (in

particular, the DE algorithms [10], Table 5 and Table

6). However, timeline plots (Fig. 7) suggest the rQIEA

may continue to improve if left for longer. It would

therefore be interesting to see if these algorithms are

suitable for increasingly complicated test functions,

where longer processing times are to be expected.

Both HSB and SRQEA outperformed a bQIEA applied

to a real value problem (Table 8).

Surprisingly, the bQIEA appeared to perform better

for the more complex CEC-2013 and the real-world

test functions (Table 1, Table 2, Table 3 and Table 4).

We have speculated that this may be because either the

transferred search space begins to resemble the binary

space portioning that the bQIEA generate, or that the

search hops at different scales (depending on bit

significance) may result in more suitable search

patterns when compared to rQIEA or other algorithms.

The ability of bQIEA to combine different scales,

through bit manipulation, may explain their improved

performance on these more sophisticated tasks. As

more complex fitness functions are published in the

future, it would be worth including bQIEA (and

perhaps other binary optimisation algorithms) in

attempting to optimise them. It should be noted

however, that the bQIEA require more computation

per iteration due to longer strings being processed.

The importance of this will depend on the demands of

the fitness evaluation, with fast fitness functions being

more negatively affected by the bQIEA overhead.

QIEA, and rQIEA in particular, provide a good

starting point for optimization. Deficiencies, when

compared to competing algorithms, were largely down

to fine exploitation, with results being of a similar

degree of magnitude in error (Table 5). Future work

would be beneficial on improving exploration for

SRQEA, or further reducing the premature

convergence for HSB. This may be achieved through

an analysis of the effect of changing algorithm

parameters (as discussed below), or by including the

QIEA in hybrid algorithms with a two-stage

exploration and exploitation process. Using the

configuration of step size and other parameters

presented here, the two rQIEA are more orientated

towards exploration than exploitation. This is

demonstrated by the populations analysis (Fig. 4),

which showed they both benefitted from a small

population size for a given number of function

evaluations (thereby increasing the number of

iterations per individual). The bQIEA in contrast

performed best with a larger population size and so

appear to be balanced more towards exploitation than

exploration.

One final advantage of QIEA is the low number of

parameters they require for the main part of their

implementation. Generally, only the number of

individuals and step size for the rotation gate are

needed. The rQIEA presented here also include a

parameter for the number of children produced in each

generation. For all of the investigated algorithms, the

number of individuals and rotation gate step

magnitude need specifying. The bQIEA also have

parameters for local and global update rates, while

rQIEA have crossover rates. How these affect the

overall performance was not evaluated. The rQIEA

also add a parameter for the number of offspring

spawned at each iteration. Again, changing this was

not analysed and further investigation into the

optimisation of these parameters would be worth

conducting.

References

[1] AlRashidi MR, El-Hawary ME. A Survey of

Particle Swarm Optimization Applications in

Electric Power Systems. IEEE Trans. Evol.

Comput. 2009 Aug;13(4):913–918.

[2] Asafuddoula M, Ray T, Sarker R. An adaptive

differential evolution algorithm and its

performance on real world optimization

problems. In: IEEE Congress on Evolutionary

Computation (CEC). 2011. p. 1057–1062.

[3] Babu GS, Das DB, Patvardhan C. Real-

parameter quantum evolutionary algorithm for

economic load dispatch. Gener. Transm.

Distrib. IET. 2008;2:22–31.

[4] Campomanes-Álvarez BR, Cordón O, Damas

S. Evolutionary Multi-objective Optimization

for Mesh Simplification of 3D Open Models.

Integr Comput-Aided Eng. 2013

Oct;20(4):375–390.

[5] Caraffini F, Neri F, Cheng J, Zhang G, Picinali

L, Iacca G, et al. Super-fit Multicriteria

Adaptive Differential Evolution. In: 2013

IEEE Congress on Evolutionary Computation.

2013. p. 1678–1685.

[6] Caraffini F, Neri F, Picinali L. An analysis on

separability for Memetic Computing

automatic design. Inf. Sci. 2014 May 1;265:1–

22.

 19

[7] Chabuk T, Reggia J, Lohn J, Linden D.

Causally-guided evolutionary optimization

and its application to antenna array design.

Integr. Comput.-Aided Eng. 2012 Jan

1;19(2):111–124.

[8] Chaoyong Q, Yongjuan L, Jianguo Z. A real-

coded quantum-inspired evolutionary

algorithm for global numerical optimization.

2008. p. 1160–1164.

[9] Chen J-F, Wu T-J. A Computational

Intelligence Optimization Algorithm: Cloud

Drops Algorithm. Integr Comput-Aided Eng.

2014 Apr;21(2):177–188.

[10] Cheng J, Zhang G, Caraffini F, Neri F.

Multicriteria adaptive differential evolution

for global numerical optimization. Integr.

Comput.-Aided Eng. 2015 Apr;22(2):103–

107.

[11] Das S, Suganthan P. Problem definitions and

evaluation criteria for CEC 2011 competition

on testing evolutionary algorithms on real

world optimization problems. Jadavpur Univ.

Nanyang Technol. Univ. Kolkata. 2010;

[12] Das S, Suganthan PN. Differential Evolution:

A Survey of the State-of-the-Art. IEEE Trans.

Evol. Comput. 2011 Feb;15(1):4–31.

[13] Duan H-B, Xu C-F, Xing Z-H. A hybrid

artificial bee colony optimization and

quantum evolutionary algorithm for

continuous optimization problems. Int. J.

Neural Syst. 2010 Feb 1;20(01):39–50.

[14] Elsayed SM, Sarker RA, Essam DL. A genetic

algorithm for solving the CEC’2013

competition problems on real-parameter

optimization. In: IEEE Congress on

Evolutionary Computation (CEC). 2013. p.

356–360.

[15] Epitropakis MG, Tasoulis DK, Pavlidis NG,

Plagianakos VP, Vrahatis MN. Enhancing

Differential Evolution Utilizing Proximity-

Based Mutation Operators. IEEE Trans. Evol.

Comput. 2011 Feb;15(1):99–119.

[16] Fu X, Liu W, Zhang B, Deng H. Quantum

Behaved Particle Swarm Optimization with

Neighborhood Search for Numerical

Optimization. Math. Probl. Eng. 2013 Oct

24;2013, 2013:e469723.

[17] García S, Herrera F. An Extension on

``Statistical Comparisons of Classifiers over

Multiple Data Sets’’ for all Pairwise

Comparisons. J. Mach. Learn. Res.

2008;9(Dec):2677–2694.

[18] Han K-H, Kim J-H. Quantum-inspired

evolutionary algorithm for a class of

combinatorial optimization. Evol. Comput.

IEEE Trans. On. 2002;6:580–593.

[19] Han K-H, Kim J-H. Quantum-inspired

evolutionary algorithms with a new

termination criterion, Hε gate, and two-phase

scheme. IEEE Trans. Evol. Comput. 2004

Apr;8(2):156–169.

[20] Hossain MA, Hossain MK, Hashem MMA. A

Generalized Hybrid Real-Coded Quantum

Evolutionary Algorithm Based on Particle

Swarm Theory with Arithmetic Crossover. Int.

J. Comput. Sci. Inf. Technol. 2010 Aug

20;2(4):172–187.

[21] Hsu W-Y. Application of quantum-behaved

particle swarm optimization to motor imagery

EEG classification. Int. J. Neural Syst. 2013

Jul 3;23(06):1350026.

[22] J. J.Liang BYQ. Problem Definitions and

Evaluation Criteria for the CEC 2013 Special

Session on Real-Parameter Optimization.

Tech. Rep. 201212 Comput. Intell. Lab.

Zhengzhou Univ. Zhengzhou China. 2013;

[23] Joly MM, Verstraete T, Paniagua G.

Integrated Multifidelity, Multidisciplinary

Evolutionary Design Optimization of

Counterrotating Compressors. Integr Comput-

Aided Eng. 2014 Jul;21(3):249–261.

[24] Kociecki M, Adeli H. Two-phase genetic

algorithm for size optimization of free-form

steel space-frame roof structures. J. Constr.

Steel Res. 2013 Nov;90:283–296.

[25] Kociecki M, Adeli H. Two-phase genetic

algorithm for topology optimization of free-

form steel space-frame roof structures with

complex curvatures. Eng. Appl. Artif. Intell.

2014 Jun;32:218–227.

[26] Koumousis VK, Katsaras CP. A saw-tooth

genetic algorithm combining the effects of

variable population size and reinitialization to

enhance performance. IEEE Trans. Evol.

Comput. 2006 Feb;10(1):19–28.

[27] Kyriklidis C, Dounias G. Evolutionary

computation for resource leveling

optimization in project management. Integr.

Comput.-Aided Eng. 2015;(Preprint):1–12.

[28] Li XX, Li WD, Cai XT, He FZ. A hybrid

optimization approach for sustainable process

planning and scheduling. Integr. Comput.-

Aided Eng. 2015 Aug 27;22(4):311–326.

[29] Lu T-C, Juang J-C. A region-based quantum

evolutionary algorithm (RQEA) for global

 20

numerical optimization. J. Comput. Appl.

Math. 2013 Feb 1;239:1–11.

[30] Martínez JLF, Gonzalo EG. The Generalized

PSO: A New Door to PSO Evolution. J Artif

Evol App. 2008 Jan;2008:5:1–5:15.

[31] Martínez-Ballesteros M, Bacardit J, Troncoso

A, Riquelme JC. Enhancing the Scalability of

a Genetic Algorithm to Discover Quantitative

Association Rules in Large-scale Datasets.

Integr Comput-Aided Eng. 2015

Jan;22(1):21–39.

[32] Mladenović N, Petrović J, Kovačević-Vujčić

V, Čangalović M. Solving spread spectrum

radar polyphase code design problem by tabu

search and variable neighbourhood search.

Eur. J. Oper. Res. 2003 Dec 1;151(2):389–399.

[33] Mohammed AM, Elhefnawy NA, El-Sherbiny

MM, Hadhoud MM. Quantum inspired

evolutionary algorithms with parametric

analysis. In: Science and Information

Conference (SAI). 2014. p. 280–290.

[34] Molina-García M, Calle-Sánchez J, González-

Merino C, Fernández-Durán A, Alonso JI.

Design of In-building Wireless Networks

Deployments Using Evolutionary Algorithms.

Integr Comput-Aided Eng. 2014

Oct;21(4):367–385.

[35] Platel MD, Schliebs S, Kasabov N. Quantum-

inspired evolutionary algorithm: a multimodel

EDA. Evol. Comput. IEEE Trans. On.

2009;13:1218–1232.

[36] Reyes-Sierra M, Coello CC. Multi-objective

particle swarm optimizers: A survey of the

state-of-the-art. Int. J. Comput. Intell. Res.

2006;2(3):287–308.

[37] Rueda JL, Erlich I. Hybrid Mean-Variance

Mapping Optimization for solving the IEEE-

CEC 2013 competition problems. In: IEEE

Congress on Evolutionary Computation

(CEC). 2013. p. 1664–1671.

[38] Singh HK, Ray T. Performance of a hybrid

EA-DE-memetic algorithm on CEC 2011 real

world optimization problems. In: IEEE

Congress on Evolutionary Computation

(CEC). 2011. p. 1322–1326.

[39] Srinivas M, Patnaik LM. Genetic algorithms:

a survey. Computer. 1994 Jun;27(6):17–26.

[40] Sun Y, Kirley M, Halgamuge SK. Quantifying

Variable Interactions in Continuous

Optimization Problems. IEEE Trans. Evol.

Comput. 2017 Apr;21(2):249–264.

[41] Tanabe R, Fukunaga A. Evaluating the

performance of SHADE on CEC 2013

benchmark problems. In: IEEE Congress on

Evolutionary Computation (CEC). 2013. p.

1952–1959.

[42] Tao H, Zain JM, Ahmed MM, Abdalla AN,

Jing W. A wavelet-based particle swarm

optimization algorithm for digital image

watermarking. Integr. Comput.-Aided Eng.

2012 Jan 1;19(1):81–91.

[43] Tu Z, Lu Y. Corrections to ‘A Robust

Stochastic Genetic Algorithm (StGA) for

Global Numerical Optimization’. Evol.

Comput. IEEE Trans. On. 2008;12:781–781.

[44] Tvrdik J, Polakova R. Competitive differential

evolution applied to CEC 2013 problems. In:

IEEE Congress on Evolutionary Computation

(CEC). 2013. p. 1651–1657.

[45] Venayagamoorthy GK, Singhal G. Quantum-

Inspired Evolutionary Algorithms and Binary

Particle Swarm Optimization for Training

MLP and SRN Neural Networks. J. Comput.

Theor. Nanosci. 2005 Dec 1;2(4):561–568.

[46] Wang H, Liu J, Zhi J, Fu C. The Improvement

of Quantum Genetic Algorithm and Its

Application on Function Optimization. Math.

Probl. Eng. 2013 May 8;2013:e730749.

[47] Wright J, Jordanov I. Quantum Evolutionary

Methods for Real Value Problems. In: Hybrid

Artificial Intelligent Systems. 2015. p. 282–

293.

[48] Xiao J, Xu J, Chen Z, Zhang K, Pan L. A

hybrid quantum chaotic swarm evolutionary

algorithm for DNA encoding. Comput. Math.

Appl. 2009 Jun;57(11–12):1949–1958.

[49] Xing H, Ji Y, Bai L, Liu X, Qu Z, Wang X. An

adaptive-evolution-based quantum-inspired

evolutionary algorithm for QoS multicasting

in IP/DWDM networks. Comput. Commun.

2009 Apr 27;32(6):1086–1094.

[50] Yao X, Liu Y, Lin G. Evolutionary

programming made faster. IEEE Trans. Evol.

Comput. 1999 Jul;3(2):82–102.

[51] Zambrano-Bigiarini M, Clerc M, Rojas R.

Standard Particle Swarm Optimisation 2011 at

CEC-2013: A baseline for future PSO

improvements. In: IEEE Congress on

Evolutionary Computation (CEC). 2013. p.

2337–2344.

[52] Zamuda A, Brest J, Mezura-Montes E.

Structured Population Size Reduction

Differential Evolution with Multiple Mutation

Strategies on CEC 2013 real parameter

optimization. In: IEEE Congress on

 21

Evolutionary Computation (CEC). 2013. p.

1925–1931.

[53] Zhang G. Quantum-inspired evolutionary

algorithms: a survey and empirical study. J.

Heuristics. 2011;17:303–351.

[54] Zhang G, Rong H. Real-Observation

Quantum-Inspired Evolutionary Algorithm

for a Class of Numerical Optimization

Problems. In: Computational Science – ICCS.

2007. p. 989–996.

[55] Zhang R, Gao H. Real-coded Quantum

Evolutionary Algorithm for Complex

Functions with High-dimension. In:

International Conference on Mechatronics and

Automation, ICMA. 2007. p. 2974–2979.

[56] Handbook of Memetic Algorithms, Ferrante

Neri, Springer, 2012

