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Abstract We report progress towards developing a mathematical model that can

be used to optimise the design of a novel power take off unit for a wave energy

generator. We show that the power take off unit can be considered as a non-smooth,

dissipative dynamical system. We derive equations of motion using the Lagrangian

framework, incorporating a Rayleigh dissipation function and discuss a procedure

for generating approximate analytical solutions.

1 Introduction

Limerick Wave Ltd, are developing a new Power Take Off (PTO) system [1] which

they aim to optimise. The design takes alternative movement induced by water

waves and converts them into continuous movement via the use of a freewheel-

ing system. In order to give an estimation for the power output of the Wave Energy

Converter (WEC), one must derive the equation of motion for the angular velocity

of the flywheel for a given set of conditions. See Fig. 1.

Dr William Lee

MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ire-

land and Department of Mathematics, University of Portsmouth, Portsmouth, UK e-mail:

william.lee@port.ac.uk

Michael Castle

Department of Mathematics, University of Portsmouth, Portsmouth, UK e-mail:

castlemichael95@gmail.com

Patrick Walsh

Limerick Wave, Limerick, Ireland. e-mail: patrick.walsh@ul.ie

Patrick Kelly

Limerick Wave, Limerick, Ireland. e-mail: patrick.kelly@ul.ie

Cian Murtagh

Seapower, Unit 3, Pier Road, Enniscrone, Co. Sligo, Ireland. e-mail: cian.murtagh@seapower.ie

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/96918668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 William Lee, Michael Castle, Patrick Walsh, Patrick Kelly and Cian Murtagh

Fig. 1 Wave Energy Con-

verter (WEC) under develop-

ment by Limerick Wave.

Three modes of motion are to be taken into account: positive sticking, negative

sticking, and freewheeling. Positive (Negative) sticking occurs when the fly wheel

is being driven by the upward (downward) motion of arm induced by waves. These

occur under different conditions and each have their own constraints applied. Dis-

sipative and non-conservative forces act on the system, with non-smooth dynamics

due to sprags [4] as well as referred inertia [2].

Analytical solutions are required in order to optimise sizing. The Lagrangian

method was used, along with a dissipation function [3] in order to incorporate the

non-conserved forces into the model. Although starting with 7 coordinates, one for

each of the gears, applying constraints instead bring us to two, with a further reduc-

tion available for both positive and negative sticking. See Fig. 2.

Fig. 2 Epicyclic gearing

system used in the Power

Take Off (PTO). Sprags are

indicated by a ‘s’.
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After finding general solutions to the equations of motion for the different states,

we must then discover the transition times between the different modes in order to
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perform the correct power integral. The motion is periodic, and hence we need only

to describe the motion of the flywheel between 3 transition times.

2 Equations of Motion

A derivation of the equations of motion for all three states, including the conditions

for transitioning between them are given in this section.

To start, we evaluate the kinetic energies and potential for the conserved forces

giving us the Lagrangian
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where m is the mass of the float, Ii is the inertia of gear i, Ti is the number of teeth

of gear i, k is the spring constant of the float and L is the length of the arm. The

Lagrangian incorperates the constraints
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where θi is the angular displacement of gear i and y is the vertical displacement of

the float, which hold in all three phases.

In order to apply the Lagrangian operator successfully we need to make use of

Rayleigh’s Dissipation Function [3], R, below which allows us to include the non-

conservative forces acting on the system. R is given by

R =
1

2
kẏ2 + τθ̇7 +LF cos(ωt)ẏ. (3)

The equations of motion of the system are then given by

d

dt
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In the case of a freewheeling system this gives us two equations of motion.

I7θ̈7 = τ (5)

and

Aθ̈7 +CL2
θ̇7 +KL2

θ7 = LF cos(ωt) (6)

where A = mL2 + I1 +
I2T 2

1

T 2
2

+
I3T 2

1

T 2
3

+
I4T 2

1

T 2
4

+
I5T 2

1

T 2
2

+
I6T 2

1

T 2
4

. Note we need only θ7 in

order to determine the motion during this phase.
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Upon applying the additional constraint θ1 = T4T7
T1T6

θ7 we achieve the positive

sticking equation of motion
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Similarly using θ1 =−
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θ7 as the additional constraint, we get
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for our negative sticking equation of motion.

Transition times, as well as constants of integration must then be found. The

condition for which the flywheel leaves Positive or Negative sticking and instead

begins to freewheel is that when the kinetic energy it would have when freewheeling

is greater than it would be during a sticking phase. That is, when

θ̈
FW
7 > θ̈

PS
7 (9)

θ̈
FW
7 > θ̈

NS
7 (10)

where θ̇ FW is the angular velocity when freewheeling whilst θ̇ PS and θ̇ NS are the

angular velocities of positive and negative sticking respectively.

When calculating the transition points these should be interpreted as the values

of (̈θ)mode
7 if the system was constrained to be in mode(=FW, PS, NS)

The transition point is that at which equality holds. We must also have continuity

of velocity at all transition times. There is a total of four equations of the type

θ̇
FW
7 = θ̇

PS
7 (11)

θ̇
FW
7 = θ̇
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7 (12)

For the final equation, we must have continuity of displacement. Due to the peri-

odic nature, we must have that the path of the velocity ends where it begins, giving

us the final equation.

θ
FW
7,1 = θ

FW
7,2 (13)

where the subscripts signify the difference between the expressions.

Finally, by integrating the rate of work done against flywheel resistance over a

single period, T and averaging, we can calculate the average power generation, P̄,

P̄ =
1

T

∫ T

0
τθ̇7dt (14)

A procedure for developing analytic approximations to solutions of these equa-

tions has been developed. With the reduced model each of the equations of motion,

as well as the transition times can be solved analytically after making use of small
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angle approximations and application of Taylor’s expansion formula. The transient

restarts at each transition requiring us to only review a small section of the motion.

3 Results

Numerical solutions to the equations of motion are shown in Fig. 3. The figure

shows θ̇7 and θ̇1 corrected by a factor of the gearing ratio
T1T6
T4T7

= T1T5
T2T7

to allow direct

comparison between the angular velocities.
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Fig. 3 Angular velocities. Thick grey line: θ̇7 against time. Black line θ̇1 against time (corrected

by a gearing ratio to be comparable to θ̇7).

4 Conclusion

The Limerick Wave PTO is a complex dynamical system with dissipative, non-

smooth dynamics. We have shown that the equations of motion of this system can

be modelled using a Lagrangian and a dissipation function. Future work will focus

on optimising the power output as a function of design parameters.
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