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Abstract: Relaxor [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 (x = 0, 0.03, 0.06, 0.09) 

ceramics (La-doped BNT-6BT hereafter) with composition close to the morphotropic 

phase boundary (MPB) were successfully prepared by using the conventional solid 

state reaction method. All samples present almost a pure perovskite phase with 

coexistence of tetragonal and rhombohedral. With the increase of La doping content, 

the degree of the dielectric relaxor dispersion around the dielectric peak which is 

close to the room temperature increases, and also the transition temperature of 

ferroelectric-to-relaxor (TF-R) shifts 120K towards a lower temperature at x=0.09. The 

maximum value of the temperature change (ΔT) of the electrocaloric (EC) effect 

decreases sharply from 1.1 K at x = 0 to 0.064 K at x = 0.09. A large positive EC 

effect (maximum ΔT ~ 0.44 K) in a broad temperature range (~ 90 K) close to room 

temperature is achieved at x = 0.03, indicating that it is a promising lead-free material 

for application in solid state cooling system. Moreover, it is found that the Maxwell 

relationship can be well used to assess the EC effects of the La-doped BNT-6BT 
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ceramics when the operating temperature is higher than that of the TF-R, indicating that 

these relaxor ceramics would perform as an ergodic.  

Keywords: Relaxor ferroelectric, MPB, Lead-free, Broad temperature range 

1. Introduction 

The EC effect has been of much interest in cooling systems. It can be designed to 

substitute conventional mechanical vapor compression cycle cooling devices such as 

refrigerators and air conditioners which release a large number of greenhouse gases 

during their operation [1]. In the past, the bottleneck for the development of EC 

cooling technologies was that only small temperature (ΔT) and entropy changes (ΔS) 

could be induced in bulk materials by virtue of the low breakdown electric field [2]. 

Fortunately, a giant EC effect in a PbZr0.95Ti0.05O3 (PZT) thin film with a large ΔT of 

12 K was first reported by Mischenko et al. in 2006, which revived great interest in 

this field [3]. Further research activities lead to even larger ΔT and ΔS in 

Pb0.8Ba0.2ZrO3 (PBT) [1], Pb(Sc0.5Ta0.5)O3 (PST) [4], Pb(Mg1/3Nb2/3)0.65Ti0.35O3 

(PMN-PT) [5] and (Pb0.88La0.08)(Zr0.65Ti0.35)O3 (PLZT) [6], etc.Similar ΔT values 

were also reported in  copolymers (P(VDF-TrFE)) [7, 8] and terpolymers 

(P(VDF-TrFE-CFE)) [9, 10] . However, when the electrocaloric coefficient (T/E) is 

taken into consideration, it becomes clear that inorganic oxides are much better EC 

materials [11] compared to polymers. In recent years, in order to respond to the 

European "RoHS/WEEE" environmental and health protection directive, lead-free 

ferroelectric materials have been extensively researched and rapidly developed in EC 



effect, energy storage and piezoelectricity, etc. 

Lead-free solid solutions based on the perovskites, such as BaTiO3 (BT), 

Bi0.5Na0.5TiO3 (BNT), K0.5Na0.5NbO3 (KNN) and Bi0.5K0.5TiO3 (BKT) are promising 

environmentally friendly ferroelectrics that have been intensively researched [12-15]. 

Among them, 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 (BNT-BT) ceramics have been widely 

studied to replace the lead-based ceramics. Numerous researchers have focused on 

compositional modifications to improve the performance of the BNT-BT system [16, 

17]. It was found that the materials with the composition near the MPB coexisting 

with rhombohedral and tetragonal phase structures can result in good performance on 

EC effects and typical relaxation properties. For example, 

0.935Bi0.5Na0.5TiO3-0.065BaTiO3-SrTiO3 (BNBST) [18], 

Ba0.5Na0.5TiO3-xBaTiO3 (BNT-xBT) [19] and (Na0.5Bi0.5)1-xBaxTiO3 (BNBT) [20, 21], 

etc. 

Apart from the perovskites above mentioned, the EC effect of other perovskite 

materials, such as Pb(Sc0.5Ta0.5)O3 (PST) [22], BaTiO3 (BT) [23] and 

(1-x)(Na0.5Bi0.5)TiO3-xKNbO3 [24], etc., have also been considered. Along with large 

ΔT and ΔS, a broad operable temperature range is required in practical cooling 

application as well. La has been used to modify several archetypal perovskites, such 

as Pb(Zr,Ti)O3 and Ba1/2Na1/2TiO3 [25-27]. Its isovalent and aliovalent doping has 

shown to be a reliable strategy to tailor the dielectric, pyroelectric and relaxor 

properties of the BNT based ceramics. For instance, (Bi0.94-xLaxNa0.94)0.5Ba0.06TiO3 

[25-xxx], La-doped Bi1/2(Na0.82K0.18)1/2TiO3 [28] and La-doped 



Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 [29], etc. 

In this study, an A-site La doped [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 (x = 0, 0.03, 0.06, 

0.09) system is designed to obtain a wider operating temperature range. It can be 

concluded that La doping makes the dielectric relaxor dispersion around the dielectric 

peak near room temperature more diffuse and reduces the TF-R by nearly 120 K at x = 

0.09. The maximum value of ΔT decreases sharply from 1.1 K at x = 0 to 0.064 K at x 

= 0.09. The La-doped BNT-6BT ceramics at x = 0.03 presents a large positive EC 

effect (maximum ΔT ~ 0.44 K) in a broad temperature range (~ 90 K) at near room 

temperature, which makes it more practical for solid state EC effect in the future 

applications. Moreover, it is found that the Maxwell relationship could be well 

applied to assess the EC effects of the La-doped BNT-BT ceramics when the value of 

the operating temperature is higher than that of the TF-R where relaxor ceramics 

perform at the almost ergodic state. 

2. Experimental process 

La-doped BNT-6BT ceramics were prepared by conventional solid state reaction 

method. The starting materials were BaCO3 (purity ≥ 99%), La2O3 (purity ≥ 99.5%), 

Na2CO3 (purity ≥ 99.8%), Bi2O3 (purity ≥ 99%) and TiO2 (purity ≥ 99%). The raw 

materials were weighed at a stoichiometric ratio and then ball milled in a nylon tank 

with the zirconia balls as media in ethanol for 4 hours. The dried slurries were 

calcined at 900 °C for 6 hours and ball milled again for 12 hours to dissociate the 

agglomerates. After further drying, the ceramic powders were pressed in a steel mold 



with 300 MPa for 60 s into green disks with10 mm in diameter and 1 mm in thickness 

All the pellets were then sintered at 1150 ºC for 6 hours with a heating rate of 3 

ºC/min, and then cooled to room temperature naturally. 

The density of the samples was measured by the Archimedean drainage method. The 

phase structure of ceramics was analyzed by an X-ray diffractometer (XRD, X'Pert 

PRO MPD, Philips, Eindhoven, Netherlands). The microstructure of the ceramics was 

observed by a field emission scanning electron microscopy (JEOL-6700F, Japan 

Electron Co, Tokyo, Japan). The dielectric response was measured using a precision 

impedance analyzer (4294A, Agilent, CA, USA). The temperature control was 

performed using a temperature controller (TP94, Linkam, Surrey, UK) with an 

excitation voltage of 500 mV/mm, with the frequency and temperature acquisition 

ranging from 100 Hz to 1 MHz and 213 K to 720 K with a ramp rate of 3 K/min 

respectively. The hysteresis loops (P-E) were tested using a ferroelectric analyzer 

(TF-2000, AixACCT, Aachen, Germany) at a frequency of 1 Hz. 

3. Results and analysis 

3.1 Structure and morphology 

Figure 1 a) shows the XRD patterns of sintered La-doped BNT-6BT ceramics. From 

the XRD patterns, it can be seen that after 6 hours sintering at 1150°C all the 

components were pure phase perovskite structure without pyrochlore phase coexisting. 

(001) and (002) diffraction peaks of La doped BNT-6BT ceramics gradually shifted to 

the low-angle direction with the increase of La content which indicates the increase of 



its pseudocubic lattice parameter a. The structure of BNT system is rhombohedral and 

that of BT is tetragonal at room temperature [30]. A rhombohedral-tetragonal MPB 

exists in their solid solutions near the BNT-6BT composition [31]. From Figure 1 b), 

it can be seen that both reflections at about 40.2° and 46.6° exhibit the feature of 

peaks splitting, which could be assigned to the (003) and (021) reflections of the 

rhombohedral phase and (002) and (200) reflections of the tetragonal phase, 

respectively. This result reveals that the La-doped BNT-6BT ceramics remain in the 

coexistence of the rhombohedral-tetragonal phases as in BNT-6BT ceramics.  

Figure 2 shows the SEM images of La-doped BNT-6BT ceramics after the thermal 

etching (1100 ºC insulation for 6 h). The SEM images show that the La-doped 

BNT-6BT ceramics have a dense microstructure with nearly uniform grain size. With 

the increase of La content, the plate-like grains first increase and then decrease, and 

the the largest plate-like number appeared at  x = 0.06. The average size of plate-like 

grains of La-doped BNT-6BT ceramic samples remained roughly the same with an 

average size of 3 microns, indicating that the grain size might not play an important 

role so that it could affect the electrocaloric properties of La-doped BNT-6BT 

ceramics.  

3.2 Dielectric properties 

Figures 3 depicts the temperature dependence of the dielectric constant (ε(T)) and the 

dielectric loss (tan δ(T)) of the La-doped BNT-6BT ceramics at different frequencies. 

The ε(T) curves of all the samples show a strong frequency dispersion in the 



low-temperature region and a weak frequency dispersion in the high-temperature 

region. The study results of Wook et al. [20] show that there may be two independent 

relaxation processes in the different temperature ranges. The dielectric anomaly at the 

temperature near the dielectric permittivity maximum (Tm) corresponding to 

high-temperature dielectric constant peak is related to a relaxation of tetragonal polar 

nanoregions (PNRs) emerged from rhombohedral PNRs and the other dielectric 

anomaly at lower temperatures is due to thermal evolutions of discrete PNRs. Recent 

studies demonstrated that the dielectric anomaly at lower temperatures should be 

referred to as ferroelectric-to-relaxor transition temperature (TF-R) rather than 

depolarization temperature (Td) [32, 33]. The two dielectric anomalies on the 

dielectric ε(T) curves are always observed in the BNT-based ceramics. Three 

consecutive events are expected to happen during heating. The initially existing 

mixture of polar R3c rhombohedral clusters and a weakly polar or ferrielectric P4bm 

tetragonal matrix undergo a thermal evolution resulting in the first broad dielectric 

maximum, followed by a transition of R3c to P4bm PNRs, and finally all the P4bm 

symmetries undergo a thermal evolution giving rise to the second 

frequency-dispersive dielectric maximum [20]. The nanodomains in the P4bm phase 

are actually uncompensated antiferroelectric, or weakly polar ferrielectric domains 

[34]. As a result, the dielectric behavior of the P4bm relaxor antiferroelectric phase is 

similar to that of a relaxor ferroelectric in many aspects. Ma and Tan have proposed a 

“relaxor antiferroelectric” term to describe the dielectric behavior of the P4bm phase 

for its strong frequency dispersion in their previous works [35, 36]. 



With the increase of La content, the dielectric diffusion peak of TF-R shifts to the low 

temperature direction, while the peak of Tm shifts to the high temperature direction. 

Broad dielectric constant peak could be well observed and indicates a diffused phase 

transition behavior. This might be originated from compositionally induced 

ferroelectric to diffused phase transition, and multiple complexes in the A-site of 

perovskite compounds is another reason [37, 38]. At the temperature higher than Tm, 

the dielectric loss of La-doped BNT-6BT increases abnormally with the temperature 

increasing, which could be attributed to high conduction property in the high 

temperature region [30]. 

In Lorentz function εA/ε=1+(T-TA)
2
/2(δA)

2 
[39, 40], ε(T) curves could be decomposed 

into two parts due to the contributions of high and low temperatures respectively. Dot 

lines in Figure 3 show the Lorentz decomposition of the ε(T) curves at 100 Hz and 

Table 1 shows the fitting of the Lorentz parameter for ε(T) curves. As can be seen 

from the Table 1, the δA of La-doped BNT-6BT ceramics gradually increases from 80 

of the composition x = 0 to 118 of the composition x = 0.09, indicating that the 

addition of La improves the relaxation dispersion of the system on the other hand. 

3.3 Electrocaloric Effect 

In order to study the electrocaloric effect of La-doped BNT-6BT, the hysteresis loops 

(P-E) during temperature rising at the interval of 30 K were measured as shown in 

Figures 4 a)-d). At x = 0, there is an evident double-like hysteresis loops above 330 K 

accompanying phase transformation from ferroelectric R3c phase to antiferroelectric 

P4bm phase. One abnormal behavior is that the values of maximum polarization (Pmax) 



increase with temperature, and then decrease, as depicted in Figure 4 a). This 

abnormal behavior is also observed by Bai et al.[23], which is caused by the phase 

transition induced by the external field from ferroelectric (FE) to antiferroelectric 

(AFE). At x = 0.03, 0.06 and 0.09, the P-E loops become much slimmer compared to 

the unmodified BNT-6BT, indicating that the La substitution causes the lattice 

distortion and disrupts the dominant ferroelectric long-range-order leading to a 

decrease in the remnant polarization and maximum polarization [41]. However, the 

ergodic phase dominates at higher La contents (x = 0.06, 0.09) as confirmed by the 

drastic reduction in the maximum polarization, resulting in the delay transformation 

of relaxor to ferroelectric phase [42, 43]. 

Under the condition of reversible adiabatic approximation, the Maxwell relational 

expression (∂P/∂T)E = (∂S/∂E)T is assumed to be valid. The EC effect of La doped 

BNT-6BT ceramics can be obtained from equations (1) and (2) [3, 7]. 
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In equations (1) and (2), T is the operating temperature, P the maximum polarization 

at the applied electric field E, and E1 and E2 the initial and final applied electric field 

respectively. The density of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics are: 5.1638 

g/cm
3 

(x = 0), 5.589 g/cm
3 

(x = 0.03), 5.574 g/cm
3 

(x = 0.06), 5.1736 g/cm
3 
(x = 0.09). 

For simplicity, the heat capacity is assumed to be 0.45 J/(K·kg). The pyroelectric 

coefficient ((P/T)E) could be obtained from the temperature dependence of 



polarization (P(T)) , which are extracted from the upper branches of the P-E loops in 

E > 0. Figure 5 a) - d) are given for temperature dependence of pyroelectric 

coefficient ((P/T)E(T)) curves of La-doped BNT-6BT ceramics at selected electric 

field. The illustrations correspond to P(T) curves under selected electric fields, where 

the solid curves are the 6th order polynomial fitting of the P(T) curves. It shows that 

the absolute value of (P/T)E decreases with the increase of La content. Overall, the 

(P/T)E value of the composition at x = 0.03 is not deviated far from that of 

unmodified BNT-6BT, but the values of (P/T)E reduce significantly for the 

composition at x = 0.06, 0.09, anticipating a larger ECE for composition at x = 0.03 

compared to other modified BNT-6BT ceramics. Besides, it can be found that the 

electric field has little influence on the (P/T)E(T) curves, which promises a larger 

 when it comes to the La-doped BNT-6BT thin film. 

Figure 6 a) - d) show the temperature dependence of (T) of La-doped BNT-6BT 

ceramics under different electric fields. It can be found that the  curves with 

different electric fields are intertwined for all components in the lower temperature 

region, indicating a strong or middle interaction between the domains respectively. 

While in the higher temperature region, the curves increase regularly with the 

electric field and show a good application of Maxwell relationship, implying a state 

similar to the ergodic state with weak interaction between domains. Moreover, seen 

from Figure 6 and Figure 3, an interesting phenomenon is found that the La-doped 

BNT-6BT ceramics would transform to an ergodic state with weak interaction 

between domains at the temperature close to TF-R. For the composition at x = 0 in the 



vicinity of the morphotropic phase boundary, its  appears negative value when the 

temperature is below 355 K. The negative EC effect has been found in other materials, 

it is attributed to the non-collinearity of the applied electric field and the polarization 

direction after the phase transition occurs from the rhombohedral to the tetragonal 

[44]. The temperature where the negative EC effect vanished corresponds well with 

the pinching temperature of the P-E loops shown in Figures 4 a), which could be 

attributed to the thermal evolution from polar R3c rhombohedral clusters to 

antiferroelectric P4bm tetragonal phase. The original ferroelectric system with strong 

interaction between domains is disrupted by the increase of antiferroelectric P4bm 

phase, resulting in the reduction of the interaction between domains and the 

appearance of positive EC effect. For the La doping components, it can be seen that 

there are two  peaks in the temperature dependent curves, which are related to an 

increase in relaxation dispersion [22, 45-48]. La doping could make the transition 

happen easily in the low temperature and induce a decrease of TF-R for about 120 K at 

x = 0.09, which promises a large EC effect near room temperature. The maximum 

value of the temperature change (ΔT) of the EC effect decreases sharply from 1.1 K at 

x = 0 to 0.064 K at x = 0.09. On the whole, the La-doped ceramic with the 

composition at x = 0.03 is ideal, and La doping has reduced the TF-R of the ceramics 

from 456.9 K to 382.2 K for nearly 80 K, and a large positive EC effect (maximum 

ΔT ~ 0.44 K) in a broad temperature range from 334.26 K to 427.59 K at the electric 

field of 51.97 KV/cm. Its broader temperature range near room temperature and larger 

 make it more likely to meet the actual needs. Figure 7 a) - d) show the 



temperature dependence of entropy variation (S(T)) of La-doped BNT-6BT ceramics 

under different electric fields. It can be found that the variation of S is basically the 

same as that of , so only the change relation diagrams were given here.  

4. Conclusion 

A broad operable temperature range near room temperature and large  have been 

achieved in relaxor [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 (x = 0.03) ceramics prepared 

using the conventional solid state reaction method. The composition of the material 

was near the morphotropic phase boundary with the rhombohedral and tetragonal 

phase coexisting. It can be concluded that the La doping could make the dielectric 

relaxation dispersion around the dielectric peak near the room temperature more 

diffuse and decrease the TF-R for nearly 120 K at x = 0.09, resulting in a broader 

operational temperature range near room temperature. A large positive EC effect 

(maximum ΔT ~ 0.44 K) in a broad temperature range (~ 90 K) close to room 

temperature is achieved at x = 0.03. The good EC performance of the 

[(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 (x = 0.03) relaxor ferroelectric ceramic may make 

it a promising lead free material for future applications in the cooling system. 

Moreover, it is found that the Maxwell relationship can be well used to assess the EC 

effects of the La-doped BNT-6BT ceramics when the value of the operating 

temperature is higher than that of the TF-R, indicating that these relaxor ceramics 

would perform as an ergodic.  
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Figures and Caption 

Figure 1. a) XRD patterns of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3  (x = 0, 0.03, 0.06, 

0.09) ceramics, b) Enlarged (111) and (002) profiles of  

[(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3  (x = 0, 0.03, 0.06, 0.09). 

Figure 2. The surface SEM images of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics 

after thermal etched. a) x = 0, b) x = 0.03, c) x = 0.06 and d) x = 0.09. 

Figure 3. The ε(T) and tan δ(T) of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics under 

different frequencies and the Lorentz fitting of the ε(T) at 100 Hz (dot line). a) x = 0, b) 

x = 0.03, c) x = 0.06 and d) x = 0.09. 

Figure 4. P-E curves of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics at selected 

temperatures. a) x = 0, b) x = 0.03, c) x = 0.06 and d) x = 0.09.   

Figure 5. The (∂P/∂T)E(T) curves and P(T) curves (inset) of 

[(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics at selected electric fields. a) x = 0, b) x = 

0.03, c) x = 0.06 and d) x = 0.09.  

Figure 6. The ΔT(T) of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics at selected 

electric fields. a) x = 0, b) x = 0.03, c) x = 0.06 and d) x = 0.09. 

Figure 7. The S(T) of [(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 ceramics at selected 

electric fields. a) x = 0, b) x = 0.03, c) x = 0.06 and d) x = 0.09. 
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Table 1. Lorentz fitting results of the temperature dependence of the ε(T) of 

[(Bi1/2Na1/2)0.94Ba0.06](1-1.5x)LaxTiO3 (x = 0, 0.03, 0.06, 0.09) ceramics at 100 Hz.  

Sample TA(K) εA δA(K) Tm(K) εm 

0.0 461 6.38 80 570 6.95 

0.03 370 1.74 82 574 2.27 

0.06 356 1.34 101 580 1.56 

0.09 330 1.27 118 585 1.41 



 


