
ENGAGING STUDENTS FOR THE LEARNING AND ASSESSMENT OF THE

ADVANCED COMPUTER GRAPHICS MODULE USING THE LATEST

TECHNOLOGIES

Yonghuai Liu

1
, Longzhi Yang

2
, Jiwan Han

3
, Bin Lu

4
, Peter Yuen

5
, Yitian Zhao

6
,

& Ran Song
7

1Department of Computer Science, Aberystwyth University (UK)
2Department of Computer and Information Sciences, Northumbria University Newcastle (UK)

3Institue of Biological, Environmental and Rural Sciences, Aberystwyth University (UK)
4School of Computer Science and Technology, North China Electric Power University (China)

5Electro-Optics,Image & Signal Processing, Centre for Electronics Warfare, Cranfield University (UK)
6School of Optics and Electronics, Beijing Institute of Technology (China)

7School of Computing, Engineering and Mathematics, University of Brighton (UK)

Abstract

The advanced computer graphics has been one of the most basic and landmark modules in the field of
computer science. It usually covers such topics as core mathematics, lighting and shading, texture
mapping, colour and depth, and advanced modeling. All such topics involve mathematics for object
modeling and transformation, and programming for object visualization and interaction. While some
students are not as good in either mathematics or programming, it is usually a challenge to teach
computer graphics to these students effectively. This is because it is difficult for students to link
mathematics and programming with what they used to see in video games and the TV advertisements for
example and thus they can easily be put off. In this paper, we investigate how the latest technologies can
help alleviate the teaching and learning tasks. Instead of selecting the low level programming languages
for demonstration and assignment such as Java, Java 3D, C++, or OpenGL, we selected Three.js, which is
one of the latest and freely accessible 3D graphics libraries. It has a unique advantage that it provides a
seamless interface between the main stream web browsers and 2D/3D graphics. The developed code can
be run on a web browser such as Firefox, Chrome, or Safari for testing, debugging and visualization
without code changing. The unique design patterns and objectives of Three.js can be very attractive to
third party software houses to develop auxiliary functions, methods and tutorials and to make them freely
available for the public. Such a unique property of Three.js and its widely available supporting resources
are especially helpful to engage students, inspire their learning and facilitate teaching.
To evaluate the effectiveness for using Three.js in teaching computer graphics we have set up an
assignment for scene modeling in the last 4 years with focuses on the quality of the simulated scene
(50%) and the quality of the assignment report (50%). We have evaluated different assessment forms of
the module that we taught in the last four years: in 2013-2014 the module consisted of 20% assignment
and 80% exam based on Java 3D; in 2014-2015 the same proportion of assignment/exam but based on
WebGL, in 2015-2016 the module was 50-50% of assignment and exam but based on Three.js; and in this
year the module is 100% assignment based on Three.js. The effectiveness of the module delivery has
been evaluated both qualitatively and quantitatively from five aspects: a) average marks of students, b)
moderator report, c) module evaluation questionnaire, d) external examiner’s comments and e)
examination board recommendations. The results have shown that Three.js is indeed more successful in
engaging students for learning and the 100% assignment assessment enables students to focus more on
the design and development. This four year result is really encouraging to us as an educational institute to
embrace the latest technologies for the delivery of such challenging modules as computer graphics and
machine learning.

Keywords: Computer graphics module, Assessment, Assignment, Latest technologies, Student
engagement.

1. Introduction

Higher education has been considered as one of the most influential factors to the future of
youngsters. Regardless of the particular motives for individuals to take part in the university education,
one of the most common goals is to learn something from the university that may be useful for their later
life. However, to meet this basic requirement/goal is actually very challenging! This is because various

ISSN:2184-044X ISBN:978-989-99864-3-5 © 2017

238

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cranfield CERES

https://core.ac.uk/display/96898374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

factors, such as the students’ personal backgrounds and commitments, together with the changing and
abstract nature of the intended study, delivery, support and assessment by the course would give variable
results. From the university perspective it is important to ensure all means to help design and deliver the
module and facilitate the learning process as much as possible.

Technology has been a widely used tool to enhance the teaching and learning of science in
various disciplines. For example, videos have been used in (Alkhalaileh, Hasan, Al-Rawajfah, 2017) for
instructing the skills of the Cardio-Pulmonary resuscitation to medical students. It is found that the
method is as effective as traditional class form lecture format of teaching. A mobile system has been
developed (Mohamed, Chebbi, Behera, 2016) to help students to learn at any time and locations at their
own paces. The study reported by (Chowdhry, Sieler, Alwis, 2014) has shown that it is necessary to
continuously improve the method for technology-enhanced teaching and also the learning skills of staff in
order to enhance the student learning efficiency.

In this paper, we investigate the main issues in the delivery and assessment of the advanced
computer graphics module enhanced by the latest open source library Three.js. While such module finds
numerous applications in the real world such as computer games, data analysis and visualization, and
specialized effects in the films and TV advertisements, the topics are usually abstract for students to link
the course to the real world. With the technological development in programming and the availability of
high computational power, various new programming languages such as Java3D and WebGL and open
source libraries such as Three.js have been developed. Interestingly enough, various routines in the
creation of a computer graphics system can be encapsulated without being changed from one application
to another, so that the end user can just focus on the core tasks such as object modeling.

Three.js is an open source 3D graphics library, whose code can be run seamlessly on the
mainstream web browsers such as Chrome, Mozilla Firefox, and Safari. It provides an intuitive
application programming interface (API) between the 3D graphics, web browsers, and hardware. In this
case, we use it for topics explanations, demonstrations, practicals, and assignment. With each main topic
covered in the class such as core mathematics (e.g. trigonometry, matrix and vector algebra), lighting and
shading, texture mapping, buffers, colour and depth, advanced modeling and ray tracing, (i) various
demonstration programs have been developed in Three.js to show the effects generated, (ii) a practical of
up to two hours is designed after each topic so that students can see the basic implementation of a relative
system and then modify, implement and complete the required tasks, (iii) an assignment is setup based on
the topics covered and the practical experimentations. One session has also been designed for answering
questions two weeks before the deadline for the assignment submission.

To evaluate the effectiveness of the Three.js for learning and teaching, a comparative study is
carried out in the last four years based on Java3D and WebGL assessed with different weights between
assignments and examinations. The evaluation is carried out from different aspects: the average marks of
the class, feedback from the middle term module evaluation questionnaire (MEQ), and comments from
the external examiner, the module moderator, and the examination board.

2. Content design and delivery

 In this section the design and delivery of the contents in the module is outlined. While the course

normally covers topics such as lighting, shading and texture mapping; it is crucial to create a virtual world

for the visualization, demonstration and interaction of the objects of interest.

2.1. A general framework of a computer graphics system
A general framework for the creation of a computer graphics system can be built below using

Three.js (Yadav, 2015; Liu, Liu, Zhao, Song, 2016) as:
 <html>
 <head>
 <title>My first Three.js app</title>
 <style>
 body { margin: 0; }
 canvas { width: 100%; height: 100% }
 </style>
 <script src="js/three.min.js"></script>
 </head>
 <body>
 <script>
 // Our Javascript will go here.
 </script>
 </body>
 </html>

Education and New Developments 2017

239

This framework can be stored as a file called my3d.html in the current directory, c:\graphics,
which can then be run on the commonly used web browsers such as Chrome and Mozilla Firefox:
file:///c:/graphics/my3d.html. It is a modified version of the standard html document file (HTML, 2016),
starting with a tag of <html> and ending with a tag of </html>. It includes two parts, head and body. The
head element is a container of metadata and typically defines the document title, styles, links, scripts, and
other metadata. It has a start tag of <head> and an end tag of </head>. The body element defines the
document body, and has a start tag of <body> and an end tag of </body>. The line “<script
src="js/three.min.js"></script>” tells the browser that the minimized version of Three.js has been stored
in the subdirectory js and will be called in and used for interpreting the subsequent code. Then the 3D
contents will be created and inserted into the body of the document for visualization and interaction.

2.2. Example content generation
To actually display an object in the above framework, we need to define three basic objects:

camera, renderer, and scene. The scene describes the objects and their living world. The camera defines
how the scene will be visualized. The renderer projects the scene onto the image plane of the camera. All
such objects include varying numbers of variables for their specification and manipulation.

For example, we define two variables for the size of the canvas onto which the scene will be
drawn as: var width=window.innerWidth/2; var height=window.innerHeight/2 as half of the width and
height of the current viewing window. The renderer is defined as a variable: var renderer = new
THREE.WebGLRenderer({antialias: true}); as a new instance of the class THREE.WebGLRenderer with
the variable antialias taking the value of “true” so that the boundaries of the rendered objects will be
smoothed. The size of the renderer is set as: renderer.setSize(width, height); using the variables width
and height just defined above. The rendered objects need to be inserted into the body of the html file for
visualization as document.body.appendChild(renderer.domElement); The scene is defined as an instance
of the class THREE.Scene: var scene = new THREE.Scene(); The camera is defined as a variable: var
camera = new THREE.PerspectiveCamera(75, width / height, 0.1, 1000); as an instance of the class of
THREE.PerspectiveCamera taking four parameters: 75 is the angle for the vertical field of view,
width/height defines the aspect ratio of the camera frustum, 0.1 and 1000 define the closest and farthest
planes between which the objects will be rendered and displayed. All other objects, either too close or too
far away from the camera, will not be rendered and displayed. Then the camera is moved away from the
origin of (0, 0, 0) along the z axis by 20 units as: camera.position.set(0, 0, 20); Finally, the defined
camera is inserted into the scene as: scene.add(camera); So far the virtual world has been created and a
computer graphics system has been set up.

Figure 1. The visualization of the cylinder(left) and house(right) designed.

Suppose that a cylinder will be created and displayed in the virtual environment defined above.
An object has to be defined from two aspects as an instance of the class THREE.Mesh in Three.js:
geometry and material. The geometry defines the geometrical description of the object of interest, while
the material defines how the object will look like. A primitive THREE.CylinderGeometry has been
defined in Three.js. In this case, we can directly call it our application as: var geometry = new
THREE.CylinderGeometry(5, 5, 10, 16); taking four parameters: specifying the radius of the top and
bottom, height and the number of segments in the top and bottom of the cylinder. The material is defined
as a variable: var material = new THREE.MeshBasicMaterial({ color: 0xff0000, wireframe: true }); as a
new instance of the class THREE.MeshBasicMaterial with a color of red represented as 0xff0000 in the
hexadecimal format and rendered as wireframe. Then the cylinder is defined as var cylinder = new
THREE.Mesh(geometry, material); In order to see the top of the cylinder, we rotate it along the x axis by
30 degrees as: cylinder.rotation.x = Math.PI * 30 / 180; where the rotation angle has to be represented in
radians. The cylinder is added into the scene for display: scene.add(cylinder); Finally, the method

ISSN:2184-044X ISBN:978-989-99864-3-5 © 2017

240

renderer.render(scene, camera) is called to project the cylinder onto the canvas by the renderer for
visualization as illustrated in Figure 1.

From the above discussion, it can be seen that it is relatively easy to define with intuitive
commands the environment, camera, and rendering process, and add objects into the scene for
visualization. All such operations have been encapsulated so that the particular applications do not require
much time on such routine works but focus on the core tasks such as cylinder modeling instead.

2.3. Advanced content generation
In this section, we demonstrate how Three.js can be applied to implement a complicated object, a

house in wireframe, in this case, in which various classes, methods, transformations, configurations, and
representation will be involved in an easy to understand and follow manner. First, we have to define a
variable: var house= new THREE.Object3D(); as an instance of the class of THREE.Object3D to hold its
components: front wall, right wall, left wall, rear wall, right roof, left roof, front window and right
window and add it into the scene as scene.add(house); Each of these components is represented as a
rectangle. The corners of these rectangles have to be designed carefully, considering their desired sizes
and locations as: var vertices = [new THREE.Vector3(-4, -3, 0), new THREE.Vector3(4, -3, 0), new
THREE.Vector3(4, -3, 3), new THREE.Vector3(-2, -3, 5), new THREE.Vector3(-4, -3, 3), new
THREE.Vector3(-4, 3, 3), new THREE.Vector3(-2, 3, 5), new THREE.Vector3(4, 3, 3), new
THREE.Vector3(4, 3, 0), new THREE.Vector3(-4, 3, 0), new THREE.Vector3(-3, -3, 0), new
THREE.Vector3(-2, -3, 0), new THREE.Vector3(-2, -3, 2), new THREE.Vector3(-3, -3, 2), new
THREE.Vector3(4, -2, 1), new THREE.Vector3(4, 2, 1), new THREE.Vector3(4, 2, 2), new
THREE.Vector3(4, -2, 2)]; Then these vertices have to be associated with a particular component.

Firstly, we define geometry and material variables for the representation of all these components
as new instances of the classes THREE.Geometry and THREE.LineBaiscMaterial respectively. For the
front wall, they are defined as: var lineGeom1=new THREE.Geometry(); var lineMat1=new
THREE.LineBasicMaterial({color: 0x0000ff }), leading the front wall to be defined as: var face1=new
THREE.Line(lineGeom1, lineMat1) as a wireframe in blue; then we add it into the house as:
house.add(face1); To instantiate lineGeom1, we have to provide the vertex information as:
lineGeom1.vertices.push(vertices[0]); lineGeom1.vertices.push(vertices[1]);
lineGeom1.vertices.push(vertices[2]); lineGeom1.vertices.push(vertices[4]);
lineGeom1.vertices.push(vertices[0]); which essentially define a closed rectangle with the first, second,
third, and fifth vertex already defined above; All the walls, roofs and windows can be defined similarly
but with different sets of vertices (1, 8, 7, 2), (0, 4, 5, 9), (5, 7, 8, 9), (2, 7, 6, 3), (3, 6, 5, 4), (10, 11, 12,
13), and (14, 15, 16, 17). Note that some vertices are shared by different walls and roofs. Thus, they must
be specified correctly. Suppose that the roof is represented in black, the front window is in red, and the
right window is in green, then their materials are defined as: var lineMat5=new
THREE.LineBasicMaterial({color: 0x000000}); var lineMat7=new THREE.LineBasicMaterial({color:
0xff0000}); and var lineMat8=new THREE.LineBasicMaterial({color: 0x00ff00}); respectively.

In order to see the top of the house, it is first moved away from the original (0, 0, 0) by -2 units
along the y axis as: house.position.y = -2; then it is rotated by -70 degrees along the x axis as:
house.rotation.x = -Math.PI*70/180; The built house is illustrated in Figure 1. From the above discussion,
it can be seen that: (i) all the details of the object of interest must be designed clearly and described
explicitly, (ii) the designed models can be translated into the language of Three.js relatively
straightforward for visualization.

3. Assessment and evaluation

In this year the module was assessed purely based on the assignment: scene modeling and

navigation. The students submitted both the source code and a report describing the contents of the scene
and explaining how the objectives were achieved. Each element is worth 50% assessment of the module.
The quality of the scene was marked from three aspects: complexity (20%), functionality (20%) and
creativity (10%), while the report was marked from three aspects as well: description (15%), discussion
(30%), and presentation (5%) of the report.

The performances of the classes in different years are presented in Table 1: clearly, the number
of students registered onto the module increases over the last four years. Even so, the average
performance of the class has not been dragged down. On the contrary, it has been increased steadily due
to various factors, one of which is the adoption of the latest technologies of Three.js for the effective
design and delivery of the model contents. Also, it is noted that the outstanding performance of the class
this year in comparison to previous three years, is because the module was assessed purely based on
assignment. Thus, we can conclude that the pure assignment based assessment enabled students to focus
on the design, implementation, and test of the system without being distracted by the exam.

Education and New Developments 2017

241

Table 1. The performance of the class in different academic years.

Academic year #(students) Assign/exam(%) Average (%) Std. dev. (%) Failure rate (%)

2016-2017 57 100/0 64.56 12.48 1.78

2015-2016 39 50/50 59.10 17.77 10.26

2014-2015 34 20/80 59.68 15.84 8.80

2013-2014 14 20/80 58.00 17.18 7.10

Feedbacks with positive comments like: “The module was well run and students seemed to
engage well with the assignment. It might be worth briefly mentioning coding style, and especially use of
global variables in the JavaScript that is available for use by the students.” from the moderator, “Really
good well taught module!”, “Feedback has been well acted on”, and “Some of the lectures have a heavy
mathematical focus which although useful, can end up being a bit overwhelming sometimes.” from the
middle term MEQ this year. Some comments from the middle term MEQ in 2015-2016 are: “The module
is very good structurally, could use a bit harder material such as OpenGl.” The comments from the
external examiner are: “a large amount of computation involved in the answers. The questions are in the
right level.” in 2015-2016 and “General: a large amount of contents involved in the 2 hour examination,
but only three questions answered from five. The question level is fine.” in 2014-2015. All the results
have been accepted as a set by the departmental examination board.

4. Conclusions

This paper investigates two main issues: the delivery and assessment of an advanced computer

graphics module. To facilitate the delivery of the contents in the module, we adopted the latest open
source library Three.js as the main language for topics explanation, demonstration, practical
experimentation and assignment. The package has an advantage that normal routine functions are
encapsulated, various primitives are provided, the code can be easily tested on the main stream web
browsers and students can thus just focus on the core tasks such as object modeling. The module was
assessed purely on an assignment with a submission of two elements: source code and a report so that
students can just focus on the design, implementation, test and report writing without being distracted by
the exam. Various means have been employed to evaluate the effectiveness of such “technology enhanced
learning and assignment only” course. A comparative study of the learning and teaching in the last four
years has shown that this approach does enhance the efficiency of learning and teaching of the module
and leads to a positive change in the attitude of students to learn (Kirkwood and Price, 2014). This is
demonstrated by the fact that the students picked up the topics more quickly, were more capable to
develop a system for testing, and dedicated themselves to improve the creativity of the system more
eagerly. We are thus encouraged to embrace the latest technologies for the teaching and delivery of such
challenging modules as computer graphics and machine learning.

References

Kirkwood, A.; Price, L. (2014). Technology-enhanced learning and teaching in higher education: what is

‘enhanced’ and how do we know? A critical literature review. Learning, Media and Technology,
39(1), pp. 6-36.

Alkhalaileh, M., Hasan, A.A., Al-Rawajfah, O. (2017). Evaluate the effectiveness of clinical simulation
and instructional video training on the nursing students’ knowledge about Cardio-Pulmonary
resuscitation: comparative study. American Journal of Educational Research, 5(1), pp. 63-68.

Mohamed S., Chebbi, M., Behera. (2016). Pervasive mobile learning system in the new millennium.
American Journal of Educational Research, 4(18), pp. 1257-1264.

Chowdhry, S., Sieler, K., Alwis, L. (2014) A study of the impact of technology-enhanced learning on
student academic performance. Journal of Perspectives in Applied Academic Practice, 2(3),
pp. 3-15.

three.js/docs. (n.d.). Three.js documentation, http://threejs.org/docs/
Yadav, A. (2015). Creating 3D cube: a practical guide to three.js with live demo,

http://www.awwwards.com/creating-3d-cube-a-practical-guide-to-three-js-with-live-demo.html
Liu, Y., Liu, H., Zhao, Y., Song R. (2016) Teaching of advanced computer graphics with three.js.

Proceedings of International Conference on Education and New Developments, pp. 13-17.
HTML. (2016). The language for building web pages, http://www.w3schools.com/html/html_head.asp

ISSN:2184-044X ISBN:978-989-99864-3-5 © 2017

242

