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Abstract—The emerging development of connected and au-
tomated vehicles imposes a significant challenge on current
vehicle control and transportation systems. This paper proposes
a novel unified approach, Parallel Driving, a cloud-based cyber-
physical-social systems (CPSS) framework aiming at synergizing
connected automated driving. This study first introduces the
CPSS and ACP-based intelligent machine systems. Then the
parallel driving is proposed in the cyber-physical-social space,
considering interactions among vehicles, human drivers, and
information. Within the framework, parallel testing, parallel
learning and parallel reinforcement learning are developed and
concisely reviewed. Development on intelligent horizon (iHorizon)
and its applications are also presented towards parallel horizon.
The proposed parallel driving offers an ample solution for achiev-
ing a smooth, safe and efficient cooperation among connected
automated vehicles with different levels of automation in future
road transportation systems.

Index Terms—ACP theory, connected automated driving,
cyber-physical-social systems (CPSS), iHorizon, parallel driving,
parallel horizon, parallel learning, parallel reinforcement learn-
ing, parallel testing.

I. INTRODUCTION

ALONG with the development of cyber-physical-social
systems based parallel control and management theory

(ACP approach)and its applications in the past decade [1]−[7],
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the framework of parallel driving has been steadily conceived,
as seen in [8]−[11].This has also been significantly motivated
by the emerging development in connected and automated
vehicles [12]−[14].

Different levels of vehicle automation have been recently
defined and recommended by SAE (2014), Germany Federal
Highway Research Institute (BASt, 2012) and US National
Highway Traffic Safety Administration (US NHTSA, 2013)
[15]−[17], where a distinct jump in automation levels occurs
between Level 2 and Level 3 automation in the SAE definition.
For Level 2 automation, the driver is required to continuously
monitor the driving situation, while for Level 3 the automated
driving system will monitor the driving situations so the driver
is allowed to be fully disengaged from the driving task.
However, if requested, the driver must be ready to take over
within a certain period of time.

Current automotive technology advances primarily at Level
1 and partially at Level 2, with several commercial product
available, such as adaptive cruise control (ACC) for Level 1
automation, and BMW’s Traffic Jam Assistant, GM’s Super
Cruise, Mercedes’ Distronic Plus with Steering Assist, Toy-
ota’s Automated Highway Driving Assist, Volvo’s ACC with
Steer Assistance and Tesla Model S for Level 2 Automation
[12], [18].

Thanks mainly to the DARPA Challenge, there have been
substantial technological developments at Levels 4 and 5 (or
full automation) [19]−[22] in the past decade, as also reflected
in the Google self-driving cars. One of the on-going chal-
lenges for fully autonomous driving is the reliable and robust
operation in more complex real-world driving environments,
such as those found in urban driving [e.g., 13, 23]. In parallel,
vehicle platoons or cooperative vehicle automation have also
been investigated for a few decades, further enhancing vehicle
safety, energy efficiency as well as highway capacity (e.g. the
PATH project [24], along with more recent efforts [14], [25]).

European roadmap [26] has suggested three main automated
driving milestones up to 2030, such that: Level 3 automation
to be available at low speed and less complex driving scenarios
by 2020, and full autonomy to be available on highways by
2025 and in urban areas by 2030 that is significantly enabled
by advances in connected vehicle technologies [12], [14].

It can therefore be well foreseen that in the coming two to
four decades (e.g. up to 2050), our road transportation system
would be consisting of a mix of connected vehicles with
different levels of automation, which necessitates a unified
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approach for future smart and safe driving. This considerably
motivates the development of CPSS-based parallel driving.
Section II outlines CPSS and ACP-based intelligent machine
framework. Section III proposes the parallel driving in CPSS.
Section IV presents parallel testing, parallel learning as well
as parallel reinforcement learning. Development of intelligent
horizon and its applications are presented towards parallel
horizon concept in Section V. Concluding remarks are then
given in Section VI.

II. CYBER-PHYSICAL-SOCIAL SPACE AND ACP-BASED
INTELLIGENT MACHINE FRAMEWORK

Cyber-physical systems (CPS) has been gaining increasing
concerns in the past two decades, while CPSS augments the
CPS capacity by integrating an additional dimension-human
and social characteristics, so as to achieve more effective
CPS design and operation [6]. This augmentation also has a
philosophical implication for being in line with Karl Popper’s
theory of reality, which states that three interacting worlds co-
exist in our universe: the physical world, the mental world,
and the artificial world, as shown in Fig. 1.

These three worlds are coupled by physical space and cyber
space respectively, so as to conceive the cyber-physical-social
space (CPSS). Rapid development in ICT enables us to exploit
more in the artificial world so as to design and optimize the
systems in the physical and mental world.

Fig. 1. Representation of cyber-physical-social spaces and their interactions.

The ACP theory and approach (Fig. 2) has been developed
by Fei-Yue Wang and his research group since 2004 [1]−[7],
aiming at modelling, analysis and control of complex systems,
such as systems in the CPSS:

ACP = Artificial societies + Computational experiments +
Parallel execution

Fig. 2. Scientific foundation of the ACP approach.

Fig. 3 depicts the framework of the ACP-driven intelligent
machine. In the framework, the physically-defined machine
(or called Newton machine) interacts with the software-
defined machine (or called Merton machine) through three
coupled modules, namely management and control, experi-
ment and evaluation, and learning and training, within the

cyber-physical-social spaces. This parallel execution between
the physically- and software-defined machines is expected to
enable an optimal operation of the machines [27], [28].

Fig. 3. Framework of ACP-based intelligent machines.

III. PARALLEL DRIVING IN CPSS

For future connected automated driving, three main ele-
ments exists: physical vehicle (with physical attributes),human
driver (with both physical (e.g. neuromuscular dynamics) and
cognitive (e.g. attention, intention) attributes), as well as con-
trol and information related to driving (artificial). According
to the ACP approach, these three road driving elements can
be naturally projected into the three parallel worlds, namely
physical world, mental world, and artificial world, as seen
in Fig. 4, which conceives the CPSS-based parallel driving
framework [29]−[31].

Fig. 4 presents the three levels of worlds co-existing in
parallel: physical (Level I), mental (Level II), and artificial
(Level III). The artificial world consists of two layers. Level
IIIb refers to CPSS services consisting of three components:
people (social web), place/location (geo web) and technology
(sensors, Internet of Things, etc), similar to that proposed in
[32]. Addition to this, in parallel driving, the artificial world is
enhanced to also have a dedicated driving layer, namely Level
IIIa for artificial drivers and artificial vehicles (ADAV), which
is designed to realize the “computational experiments” and
“parallel execution”elements within the ACP approach [7].

Furthermore, for each of the vehicles, an ADAV control
module will be assigned which communicates with the ar-
tificial world and other ADAV modules, interacts with the
human driver (monitoring driver state/behavior/intention, e.g.,
[33]−[36], joint cognition [37], driver-vehicle shared control
[38]−[40], etc) in the mental world, while operating the
physical vehicle in the physical world.

Human drivers are active in both mental and physical
worlds, but if the fully autonomous driving function is ac-
tivated, a driver’s driving-related physical behaviors are not
needed. However, if the driver intends to take over the control,
the vehicle will switch to a lower level of automation, where
driver’s physical behaviors have to reengage within the driving
tasks. Thus different HD-RD-ADAV units could suggest very
different automation-driving patterns (e.g. from Level 0 to
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Fig. 4. Framework of parallel driving. (RD: real driving; DC: driver cognition; CPSS services including three components: people (social web), place/location
(geo web), and technology (sensors, Internet of Things, etc); HD: human driver; RV: real vehicle; ADAV: artificial driver and artificial vehicle; and SA: situation
awareness).

Level 6) with possible frequent shifting among different au-
tomation levels during real-world driving [41], [42].

The fundamental principle of parallel driving is that the IIIa
ADAV layer together with the allocated individual ADAVs
deal with the complex automated driving while keeping the
real vehicles themselves as simple as possible. Fig. 5 outlines
the ACP-driven synergy between physical vehicles and virtual

Fig. 5. ACP-based synergy between the physical built and software-defined
virtual vehicles through the interactive prescriptive, predictive and descriptive
intelligence within CPSS.

vehicles through the interactive prescriptive, predictive and
descriptive intelligence. The next session focuses on discus-
sions on the subsystems development: parallel testing, parallel
learning and parallel reinforcement learning.

IV. PARALLEL TESTING, PARALLEL LEARNING AND
PARALLEL REINFORCEMENT LEARNING

A major problem that hinders automated vehicle design
is the lack of testing data. Due to the complexity of traffic
scenarios, it is hardly to collect all the data to train or test the
automate vehicles that we made. To address this challenge, we
have proposed and developed the so called parallel learning
theory in automated vehicle design [43], [44].

As shown in Fig. 6, the theoretical framework of parallel
learning consists of two parts. Above the dotted line is
the data preprocessing stage based on the artificial system
defined by the software. The lower part of the dotted line
shows the predictive learning and ensemble learning based
on the computational experiment, and the parallel control and
prescriptive learning. Fine arrows represent data generation or
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data learning, and bold arrows represent interactions between
action and data.

Fig. 6. Parallel learning framework.

In the data processing stage, parallel learning method first
selects the specific “small data” from the original data, feeds
into the software-defined artificial system, and generates a
large amount of new data from the artificial system. These
artificial data, together with the specific raw data, form a set
of “big data” that used for updating the machine learning
model. An example is that we can use GAN models to build
virtual videos to test automated vehicles. Fig. 7 demonstrates
our development of a simulation test platform, which includes
parallel traffic systems. The upper left figure shows the cyclic
updating method of the co-evolution between the real testing
ground and parallel virtual testing ground, while the upper
right figure presents an illustration on mapping the real view
data onto virtual space for facilitating testing.

Fig. 7. Realization and demonstration of parallel testing.

Notice that we need labeled data to train automated vehicles,
we use predictive learning carried out on parallel machine to
self-label the data we required. Predictive learning originated
from the interpretation of cognitive psychology in children’s
learning styles. Its core is to model the real environment inside
machines, simulate and predict the possible future, and observe
how the world works by observing and demonstrating. The
simulation is unsupervised or semi-supervised; while the initial
states and the final results are supervised.

A recently-developed example of predictive learning for
parallel vehicle is “parking like human” [45]. In this example,
we aims to teach automated vehicles to learn the general

parking skills of human. Usually, an autonomous vehicle
first plans a trajectory that links the start and destination
states. Then, it determines a sequence of steering actions to
make sure that the vehicle moves along with this trajectory
toward the destination state. The major problem of these
trajectory planning methods is that we must fully consider
vehicle dynamics heavily affecting the geometry property of
the candidate trajectories.

Parallel learning provides an alternative way to solve this
problem by directly bridges the actual parking trajectories and
the steering actions to find the best parking trajectory. First,
we sample a large number of vehicle parking trajectories that
we can make during a certain time period and build a deep
neural network to remember all these trajectories (suppose we
had shifted the start points of all these trajectories into the
same original state). From the viewpoint of parallel learning,
this is indeed the self-labeling process.

Specially, the input of this neural network is the destination
state and the output of this neural network is the corresponding
control actions and also the corresponding trajectory (Fig. 8).
If more than one set of control actions can lead to the same
destination state, we only let the neural network to remember
the ones with optimal (time, energy, etc.) cost.Each time when
a target destination state is known, we let the trained neural
network to directly recall the needed control actions [46].

Fig. 8. Parallel parking like a human driver.
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Fig. 9. The theoretical framework of the parallel reinforcement learning.

Furthermore, to handle the integrated data from the artifi-
cial system and computational experiment, we combine the
parallel learning and deep reinforcement learning approaches
to propose the parallel reinforcement learning (PRL) theory
for automated vehicle design [47]. The framework of the PRL
is depicted in Fig. 9.

In the data processing stage of deep reinforcement learning,
the big data is modeled as a Markov decision process (MDP)
(S, A, f , R), where S={s(t)} and A={a(t)} are set of state
variables and control actions, f is the state transition proba-
bility density function, R = {r(s, a)} is the reward function.
The optimal value function is exhibited as the finite expected
discounted sum of the rewards

V ∗(s) = min
π

E(
tf∑

t=t0

µtr(s, a)) (1)

where the control policy π is the distribution over the control
actions. T = [t0, tf ] is the entire time interval, µ ∈(0, 1) is a
discount factor. To derive the optimal control action for current
state variable, (1) is reformulated recursively as follow

V ∗(s) = min
a

(r(s, a) + µ
∑

s′∈S

psa,s′V
∗(s′)) ∀s ∈ S (2)

where psa,s′ is denoted as the transition probability from state
s to next state s′ taking action a. As the optimal value function
is determined, the optimal control policy is computed as

π∗(s) = arg min
a

(r(s, a) + µ
∑

s′∈S

psa,s′V
∗(s′)). (3)

Furthermore, the action-value function Q(s, a) and its op-
timal value Q∗(s, a) are defined as the following formula:




Q(s, a) = r(s, a) + µ
∑

s′∈S

ps′a,sQ(s′, a′)

Q∗(s, a) = r(s, a) + µ
∑

s′∈S

ps′a,s mina′ Q
∗(s′, a′) (4)

In the deep Q-network method, the action-value function
Q(s, a) is represented by the Q-network with weights was

Qw(s, a) = Q∗(s, a). (5)

The mean squared error (MSE) is written as

I = (r + µmin
a′

Qw(s′, a′)−Qw(s, a))2. (6)

Similarly, the MSE in the double Q-learning (DQL) is
rewritten as follow

I = E(s,a,r,s′)

{(r + µQŵ(s′, arg min
a′

Qw(s′, a′))−Qw(s, a))2} (7)

in which current Q-network is used to select actions and older
Q-network is used to evaluate actions.

The deep deterministic policy gradient (DDPG) is the con-
tinuous analogue of deep Q-network. The MSE in DDPG is
described as

Iw = (r + µQŵ(s′, πθ̂(s
′))−Qw(s, a))2. (8)

Finally, the special knowledge derived from the PRL can
be applied to the feedback control for the parallel artificial
system, and also can be utilized for the indicative control in
real dynamic system.

V. PARALLEL HORIZON: DEVELOPMENT OF INTELLIGENT
HORIZON AND IT APPLICATIONS

Based on the current infrastructure, and with the future per-
spective of the simultaneous concurrence of different automa-
tion levels in common environments, the intelligent horizon
(iHorizon) has been developed towards a long-term realization
of parallel horizon.

iHorizon novel framework takes a step forward from current
eHorizon technology made available by Bosch [48], conti-
nental [49] and HERE [50] by integrating fewer informa-
tion requirements further exploited using machine learning.
Furthermore, it provides a dynamic prediction of the speed
profile, which can be suitable for further applications related
to safety and energy consumption, and includes the driver as
an essential component to improve the prognosis results.
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As shown in the Fig. 10, the baseline iHorizon consists of
three main modules. First, the driving style recognition (DSR)
algorithm is used to identify the driver and classify it within
a continuous index into calm, normal and aggressive clusters
[51], [52]. This information is used in the second and third
module to provide long-term and short-term predictions of the
speed profile [53], [54].

Fig. 10. The developed iHorizon framework including three main modules:
1) Driving style recognition (DSR); 2) long-term future speed prediction with
cycle-length horizon; and 3) short-term future speed prediction.

A. Driving Style Recognition Algorithm

Driving style is essential to guarantee safe and efficient driv-
ing in level 0 automation vehicles, and important requirement
to guarantee human acceptance of higher levels of automation
[55], [56]. Eco-driving index in nowadays vehicles and driving
by demonstration are some of the examples that support
driving style relevance for autonomous vehicle development
[57]−[60].

DSR is designed using unsupervised machine learning as
introduced in [51]. Unsupervised methods allow to encourage
the results generalization and support their objectivity. In
the context of the iHorizon, driving style not only strongly
contributes to safety improvement, but also highly affects
acceleration profiles, and energy consumption [57], [58].

Fig. 11 illustrates DSR development from real-world testing
data using an experimental car. The design process consist
of a first stage for relevant signals selection using k-means
algorithm as included in Table I and a second stage of final
clusters selection and algorithm definition using Gaussian
mixture model. Whilst k-means uses rigid margins to clas-
sify driving styles within calm, normal and aggressive, the
Gaussians allow soft margins and provide better classification
accuracy as well as consistency implementing the so-called
Expectation-Maximization algorithm, as included in Table II.

Further details can be found in [49]. The data used consist
of driving style specific speed profiles from rural, urban and
highway roads with feedback from the driver. Unsupervised
learning allows dealing with the data with independence of the
subjective labels, which are only used to test the consistency
of the algorithm output and the driver perception.

DSR is able to return a continuous index from 0-very calm
to 1-very aggressive and provide a three class driver style

classification. Driver style is used as input for future speed
prediction in the second and third modules.

TABLE I
K-MEANS ALGORITHM

Step 1: Initialize µk randomly

Step 2: Minimize J with respect to rnk keeping µk fixed.

The data points are classified with the current means. Calculate for all

data points and means:

rnk =

{
1, if k = arg minj ‖xn − µj‖2
0, otherwise

Step 3: Minimize J with respect to µk keeping rnk fixed.

Update mean values to locate them at the minimum distance to all

elements in the cluster. Considering the total number of elements in a

cluster its n means are updated following:

dJ
dµk

=0 →
n∑

k=1
rnk (xn−µk)=0 → µk =

n∑
k=1

rnkxn

/
n∑

k=1
rnk

Repeat Steps 2 and 3 until convergence.

TABLE II
EXPECTATION-MAXIMIZATION ALGORITHM FOR GAUSSIAN

MIXTURES

Step 1: Initialize parameters: µk , πk and Σk

Step 2: E-Expectation

Evaluate posterior probabilities with the current parameters: γ(znk)

Step 3: M-Maximization

Re-calculate the parameters using current posterior probabilities values:

µk =
N∑

n=1
γ(znk)xn

N∑
n=1

γ(znk); πk = Nk/N ;

Σk =
N∑

n=1
γ(znk)(xn − µk)(xn − µk)T

N∑
n=1

γ(znk)

Iterate Steps 2 and 3 until convergence of either likelihood or parameters

value.

B. Future Speed Prediction

Second and third module receive diving style information
and predict the future speed in cycle-length and short-term
horizons. These incorporate information about the road type
readily available in a commonly used GPS device, and can
handle minimal information about the traffic conditions [53],
[54]. In both cases, the speed and acceleration is obtained
using a 2 dimensional Markov Chain which uses current
speed and acceleration values to generate the next state.
These consist of an array of random variables, z, that are
conditionally independent and therefore allow for major model
simplification as included in (9). The transitions are stored
in a transition probability matrix (10) whose components are
obtained from data with (11) [61]−[64].

P (zm+1|z1, . . . , zm) = P (zm+1|zm),
m ∈ P{1, . . . , M − 1} (9)

TPM(zm, zm+1) ≡ P (zm+1|zm) (10)

Pij =
nij

ni
, ni =

m∑
j=1

nij (11)
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Fig. 11. Driving style recognition algorithm development using unsupervised machine learning including subjective data collection, signals selection with
k-means and clusters definition with Gaussian mixture models.

Fig. 12. Information requirement for short-term and cycle-length speed prediction. Short-term module uses a 0.2 s Markov Chain, driving style and road type,
whilst cycle-length module incorporates the complete route, traffic information and the speed limit.

where m refers to current state in time within a M total
states, P alludes to probability function, TPM is the transition
probability matrix and nij the number of transitions observed
from state zi to state zj .

Cycle-length speed prediction provides a guideline speed
and acceleration profile for an entire drive cycle as valuable
information to anticipate energy consumption, whilst short-
term prediction is able to provide a more precise prognosis

using updated speed and acceleration values, and a 5 s to 10 s
window. Both models are elaborated in [53] and [54] for short-
term and cycle-length speed prediction respectively.

Fig. 12 illustrates both prediction modules along with the
information requirements. The results of both cycle-length
speed guideline and short-term prediction are included in
Fig. 13 (left) and (right) respectively. Fig. 13 (left) illustrates
short-term prediction in 10 s results, and long-term guideline
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Fig. 13. (left) shot-term speed prediction in highway road with a calm driver; (right) cycle-length guideline speed profile for a complete cycle combining
city and highway driving with variable driving style.

Fig. 14. Intelligent energy management for PHEV based on iHorizon application and neural network control.

profile is included in Fig. 13 (right).

C. iHorizon Application to Intelligent Energy Management
iHorizon framework allows for multiple application in terms

for energy management and autonomous feature development.
Probably one of the most evident is the use of the cycle-length
speed prediction for plug-in hybrid electric vehicle (PHEV)
control optimization. Both acceleration and speed profile can
be used along with a vehicle model to anticipate driver power
demand and cycle power requirements so as to guarantee full
battery depletion by the end of the planned cycle. This is
the case explained in [61] where the authors use multiple
optimal control strategies, which produced using dynamic
programming, to teach a layer recurrent neural network using
back propagation, where the weights update is modified using
extended Kalman filter (EKF). In this approach to neural
network training the weights update is described as a finding
the minimum square error of the weights estimation as in (12)
using the EKF algorithm included in (13)−(15).{

ω(t + 1) = ω(t) + q(t)
d(t) = h(ω(t)) + r(t) (12)

K(t) = P (t)H(t)[R(t) + H(t)T P (t)H(t)]−1 (13)

ω̂(t + 1) = ω̂(t)(d(t)−H(t)ω̂(t)) (14)

P (t + 1) = P (t)−K(t)H(t)T P (t) + Q(t) (15)

where ω, ω̂k, Pk, Rk,Hk, and Qk are respectively: weights
value, weights estimation using EKF, error covariance matrix,
measurement noise covariance matrix, matrix derivative with
respect to the weights of the network outputs and process noise
covariance matrix [65]−[67].

The intelligent energy management resulting from the neural
network training makes uses of the iHorizon as illustrated in
Fig. 14 and is able to emulate with an average 3% state of
charge error optimal results with potential real time capability.
The results in term of fuel consumption where also very
optimistic in simulation environment event for reasonable long
drive cycles with a maximum absolute error below 0.06 kg in
all cases (Fig. 15).
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Fig. 15. (left) SoC error with respect to the global optimal reference (blue) using 10 and 20 neurons in the hidden layer; (right) idem for fuel consumption
error.

VI. CONCLUDING REMARKS

Based on the ACP approach, this paper proposes a novel
cloud-based CPSS parallel driving framework for synergizing
future connected automated driving involving complex multi-
level vehicle automation as well as driver-automation interac-
tions. Within the parallel driving framework, parallel testing,
parallel learning, parallel reinforcement learning, as well as
development of intelligent horizon (iHorizon) towards parallel
horizon are presented and discussed with examples.

The fundamental principle of parallel driving is that the
designed computational artificial ADAV layer together with
the allocated individual ADAV control modules deal with the
complex automated driving while keeping the real vehicles
as simple as possible. The proposed parallel driving is able
to offer an ample solution for achieving a smooth, safe and
efficient collaboration among connected automated vehicles
with different levels of automation in future transportation.
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