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Novel adaptation of the spectral kurtosis for 
vibration diagnosis of gearboxes in non-stationary 

conditions

In this paper, the adaptation of spectral kurtosis technology is proposed, demonstrated and experimentally validated. 
Raw data signals were collected from a single-stage gearbox run in different combinations of speed and load,  

after which time synchronous averaging was used to leave the classical residual signal once meshing harmonics were 
removed. Each data file is split into many individual realisations based on the time taken for the time synchronous 
average to converge on stable values, after which the short-time Fourier transform is used to calculate the spectral 

kurtosis for each realisation. The effects of adapting spectral kurtosis technology parameters such as the resolution and 
threshold used in creating a Wiener filter are evaluated, showing the effects on the consistent frequency bands identified 

throughout the realisations. Taking a baseline set of processing parameters, the probability of correct diagnosis was 
calculated using a three-stage decision-making technique incorporating the k-nearest neighbour and cluster analysis 

methods. Adaptation of the spectral kurtosis technology is then shown to dramatically improve the probability of correct 
diagnosis, highlighting that each speed and load case requires different resolution and threshold values to return the 

optimal results.

L Gelman, S Kolbe, B Shaw and M Vaidhianathasamy

1.	 Introduction
Condition monitoring of rotating machinery is an ever-evolving 
area of research, with a large amount focusing on vibrational signal 
analysis by employing time-frequency transforms and spectral 
analysis. However, most of this research is based on data collected 
from machinery run in constant speed and load conditions, thereby 
increasing the chances of a correct machinery condition diagnosis. 
In such a situation, the only variable that changes between datasets is 
the presence of damage, meaning algorithms and signal processing 
can be extremely sensitive to such fluctuations. 

The bulk of research into vibrational analysis of rotating 
machinery can be traced back to the initial proposal of time 
synchronous averaging (TSA) by McFadden[1,2]. More specifically, 
the application of TSA to gearbox teeth and meshing components 
was first approached by Badaoui et al[3], whereby complex FEA 
models were built to theoretically demonstrate and compare 
various diagnostic techniques already proposed in[1,2]. Practical 
proof of the methods was performed by Bonnardot et al[4] before 
developing the concept of angular resampling of signals to obtain 
instantaneous shaft positions. This was further developed by 
Combet and Gelman[5] to allow for speed estimation without a 
tachometer, meaning that gearbox operating conditions could be 
accurately observed at all times.

In the field of bearing and gear diagnosis, it was observed that 
the spectral kurtosis (SK) is sensitive to non-stationary changes in 
a vibrational signal and as a result is able to indicate the frequencies 
at which these non-stationary signal components occur[6,7,8]. 
The SK-derived Wiener filter was born from this field after it 
was observed that the SK and a Wiener filter (widely accepted as 
being an optimal denoising filter) had a very similar mathematical 
composition and could be applied to dramatically enhance small 
transients in vibration signals caused by tooth damage[8]. This has 
now become standard filtering in the signal processing field.

There are several methods that can be used to validate the results 

of new research. The Fisher criterion indicates the effectiveness 
of a change in processing parameters or algorithms and allows a 
comparison between multiple sets of results[8,9]. An alternative 
method is to use automated decision-making codes to perform 
damage diagnosis and return a ‘probability of correct diagnosis’, 
which is a more useful measure of improvement between processing 
attempts[10,11].

It is widely accepted that damage diagnosis in gearboxes 
operated in non-stationary conditions is particularly challenging 
due to the fact that vibrational diagnostic features are speed and load 
dependent[12]. Ongoing research in the area primarily concentrates 
on identifying the changes to the raw signal as well as attempting to 
find new damage indicators[12,13,14]. The analysis focuses on trying to 
find new methods to detect damage, rather than adapting known 
techniques to match the varying operating conditions. Adaptive 
methods have been used to more accurately detect the gearbox 
state based on load but not to diagnose damage[15]. The adaptation 
of wavelet and classical residual technology for gearboxes operated 
with varying speed and load was proposed by Gelman and presented 
at the International Condition Monitoring Conference in 2012[16]. 
However, based on a comprehensive literature review, the authors 
believe that nobody has yet proposed, investigated and validated 
adaptation of the SK technology to the varying speed and load of 
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gearboxes.
This paper begins to explore the effects of varying speed and 

load conditions on the signal responses of gearbox vibrational 
data. Furthermore, an adaptation of SK technology that increases 
the probability of correct diagnosis for variable speed and load 
conditions is proposed here.

The main objectives of this paper are:
l	 To propose, develop and experimentally validate a novel 

adaptation of the SK technology for gearboxes in non-stationary 
conditions of speed and load;

l	 To compare the consistent frequency bands identified across 
different combinations of speed and load for both damaged and 
undamaged cases;

l	 To show that the optimal parameters to use when adapting the 
SK technology vary depending on operating conditions;

l	 To compare the adaptive and non-adaptive technologies to 
demonstrate the gains achievable in the total probability of error 
diagnosis.

The result of this is to allow the SK technology to be more 
effectively applied to real-world scenarios where the machinery 
being monitored is rarely run in one set of conditions for its entire 
lifetime. The overall aim is to improve the effectiveness of diagnosis 
of a gearbox regardless of the operating parameters by adapting the 
SK technology. Speed and load channels/sensors could be utilised 
to allow for online adaptation of the automated processing and 
decision making.

2.	 The spectral kurtosis
The spectral kurtosis is a measure of the ‘peakedness’ of a frequency 
distribution, more accurately described as the deviation from 
Gaussianity, and has long been used as a signal processing tool 
for advanced damage detection diagnosis of rotating machinery, 
particularly bearings and gears. This is due to its inherent sensitivity 
to non-stationary changes in a signal and is thus capable of detecting 
the frequencies at which these changes occur[7,6,8].

The spectral kurtosis of a signal is defined as the fourth-order 
spectral moment, given through:

                               K = n
xi − xavg( )4i=1

n∑
xi − xavg( )2i=1

n∑⎡⎣ ⎤
⎦
2

................................ (1)

where K is spectral kurtosis, xi and xavg represent each individual 
data point and the average of all data points, respectively. If this is 
performed in the time domain, it is simply the kurtosis.

Another advantage is the similarity between the spectral kurtosis 
and the Wiener filter, which is commonly accepted as one of the 
optimal filtering technologies within the signal processing field. 
The two are linked through W f( ) ∝ Kx f( ) , so the Wiener filter 
is created by identifying where the SK value is greater than a pre-
set threshold (otherwise W(f) = 0). As such, the SK-based Wiener 
filter has become standard in damage diagnosis research in order to 
isolate changes to the signal’s frequency spectrum due to damage[8].

Once a vibrational signal has been obtained in the time domain, 
it is divided into individual realisations, the length of which is 
based on the number of shaft periods taken for the TSA response to 
converge on a stable value[5]. Once the TSA has been calculated for 
each realisation and harmonics at meshing frequencies removed, 
the result is a set of classical residual signals[1].

Utilising the short-time Fourier transform (STFT), the classical 
residual signals are converted into the frequency domain, whereby 

an overlapping window (for example a Hanning window) is applied 
to effectively smooth the response before the SK at each frequency 
is calculated from the magnitude of the STFT across a window of 
pre-defined length:
                                       Kx f( ) = S4,x f( )

S2,x f( ) − 2 .................................. (2)

where Sn,x(f)=〈|X(t,f)|n〉 and is the complex envelope of signal x(t), 
which can be estimated by the STFT.

The length of the smoothing (ie length of window) is described as 
the SK time resolution and has a large impact on the overall results 
and separation of the signal between damaged and undamaged cases.

Wherever the calculated SK is above a specified threshold, the 
SK-based Wiener filter is derived and can then be applied back to 
the original signal in order to formulate an SK residual. It is from 
this that a diagnostic feature (typically a squared energy envelope) 
is calculated prior to automated decision-making based on cluster 
analysis and k-nearest neighbours.

Effective selection of the SK resolution and SK threshold have a 
significant impact on the effectiveness of the derived Wiener filter 
and, therefore, these technology parameters are among those which 
should be optimised/adapted based on the dataset being considered.

3.	 The consistency parameter of the 
SK

The consistency parameter has been proposed by Gelman[17] as a 
methodology for identifying a frequency band that has a consistently 
high peak across the majority of realisations in an analysed data file. 
This peak would form the basis of the SK-derived Wiener filter. That 
work was limited to the identification and calculation of consistency 
when applied to data containing only one significant peak in the 
spectral kurtosis and assuming that any peak was likely to be at the 
same frequency in all the realisations. The only check for this was a 
visual one by the operator. It was also noted that if the SK threshold 
is incorrectly chosen, this will potentially lead to the SK being  
zero across an entire realisation and, as thus, no peak will be 
detected.

By continuing to develop the algorithm, it has been possible 
to add the capability to allow for the identification of multiple 
consistent frequency bands across the realisations in a dataset and 
independently calculate their consistency parameter.

To calculate the consistency parameter(s), spectral kurtosis 
values are assigned either a 0 or 1 based on whether they fall above 
or below the selected SK threshold. By performing equal width 
binning on the SK data, each bin for each realisation is then assigned 
a 0 or 1 depending on whether there is a non-zero SK value within 
that frequency range. The consistency parameter is then evaluated 
per bin by evaluating the formula below:

                                     pb =
CMb∑

Nreal
×100 ..................................... (3)

where p is the consistency parameter (in percent), CM is the 
consistency matrix for each bin, Nreal represents the total number 
of realisations and subscript b denotes the bin number.

The newly-developed algorithm then performs a second 
iteration of the same calculation, in which the bin widths are 
automatically adjusted so that if neighbouring bins both show high 
consistency parameter values they are merged into one bin for the 
second iteration. This removes any calculation errors that may 
come from SK peaks spread across two of the initial bins.

The outcome of this process is to identify frequency bands that 
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have consistently high SK values across all realisations in a data file 
and which cannot be due to noise or other discrepancies in the raw 
data. Ensuring that the SK threshold is chosen to still allow for some 
highly-consistent frequency bands results in a higher likelihood of 
correct diagnosis, as the vibration signature across all realisations is 
comparable and the resulting SK-based Wiener filter is more likely 
to isolate diagnostic features rather than noise.

4.	 Adaptation of the SK technology
The research presented in this paper is focused on applying an 
advanced vibrational signal processing technique to data collected 
from gearboxes being run in varying speed and load conditions. 
Typical data capture is from rotating machinery running at 
a constant speed and load for its entire lifetime, which is not 
representative of actual operational conditions outside of research. 
Identical processing parameters are then applied across datasets 
and often these parameters are not optimised; merely trial and 
error finds values that perform adequately. In this scenario, the 
presence of damage is the only system change between cases and 
therefore the system can be accurately tuned to give high diagnosis 
probabilities or, conversely, an adequate result can be achieved with 
sub-optimal parameters.

Many real-world systems (cars/aircraft jet engines and 
gearboxes, industrial motors and gearboxes, wind turbines, etc) 
have several sets of standard operating conditions of speed and 
torque, for example:
l	 Low speed, low load: for example idling
l	 Low speed, high load: for example acceleration from stationary
l	 High speed, low load: for example cruising once the desired 

speed is achieved 
l	 High speed, high load: for example acceleration when already in 

motion.

Therefore, the main novel aspect of this research is to propose, 
investigate and validate that the SK technology should be adapted 
to the varying speed and load conditions of gearboxes in order to 
increase the effectiveness of diagnosis. The gearbox condition must 
be effectively diagnosed in all operational states for successful 
condition monitoring as, if damage is only detected in one set 
of running parameters, it may be many hours between damage 
occurring and it being detected.

With the proposed adaptation, the SK-derived Wiener filter will 
be composed only of frequency bands that have a high consistency 
across all realisations, meaning the resulting probability of diagnosis 
will be increased. The consistent frequency bands identified are 
likely to be different for each combination of running parameters, 
along with the SK technology parameters that best identify them 
and subsequently lead to the highest probability of correct diagnosis.

This paper shows that adapting the main SK technology 
parameters (the SK resolution (SKres) and the SK threshold 
(SKthres)) results in changes to the consistent frequency bands 
detected for each set of operating conditions and that fully adapting 
SK parameters to varying speed and load can significantly improve 
the probability of correct damage diagnosis. 

This adaptation has been applied to both datasets with and 
without damage, obtained from a back-to-back gearbox test 
set-up run in four combinations of speed and load. Any changes 
in consistent frequency bands across the datasets were then 
investigated. The results of this study highlight the need to alter 
technology parameters to the operating conditions in order to 
achieve optimal diagnosis outcomes in all circumstances.

5.	 Experimental results
As detailed in Section 2, the general process followed is widely 
accepted in the field as being standard for pre-processing of a 
vibrational signal. The time synchronous averaging is performed, 
in this case using a tacho pulse to index each rotation, to eliminate 
interference and non-stationary components from the signal. After 
removal of meshing frequencies, the result is the classical residual 
signal, which is taken forwards for SK-based filtering. A typical data 
file in this analysis resulted in over 150 realisations, each 8 s long as 
this is enough time to ensure convergence of the residual signal in 
all speed conditions.

The SK resolution value is an input to the software, which 
affects both the smoothing of the signal and the window length 
for calculation of the SK. The SK is then calculated using the STFT 
technique and, after setting an SK threshold value, the consistent 
frequency bands for each speed and load combination are observed.

The remainder of the paper will focus on two combinations of 
running parameters. These speed and load conditions contain one 
at low speed and low load (1500 r/min, 250 Nm) and the other at 
high speed and high load (3000 r/min, 500 Nm).

The gearbox used for acquiring data was a back-to-back set-up 
at the Gear Research Centre within Newcastle University and was 
operated by B Shaw and M Vaidhianathasamy, who collected the 
data but had no involvement in the signal processing or condition 
monitoring optimisation. The set-up contained two gearboxes, each 
with a ratio of 1:1.5 (ie 16 teeth on the pinion and 24 teeth on the 
wheel) connected by two torsionally-compliant shafts, one of which 
was connected to the motor and the other to a torque actuator used 
to load the gearboxes.

During testing, there were both optical and proximity 
speed sensors placed on the input shaft as well as two tri-axial 
accelerometers on the gearbox housing. All data was logged at  
40 kHz using a LabView program to store the data as .bin files for 
processing. 

5.1	 Non-adapted SK processing
As a baseline, the data files were processed using identical SK 
parameters, which allows the impact of changing the SK technology 
variables to then be demonstrated.

Figure 1. Illustration of the test-rig set-up

Figure 2. Experimental gearbox set-up
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The data represented in Figures 3 and 4 represents the low-speed, 
low-load data and high-speed, high-load data, respectively. At this 
stage the data files were processed with a baseline set of values, ie 
SK resolution of mesh period and SK threshold of 0.2, which from 
experience are predicted to give adequate results.

It can be clearly seen that there are consistent frequency bands 
visible on both the undamaged and damaged data; however, the 
number of consistent bands and the frequencies at which these 
occur are different (Figures 3(c) and 3(d)). There is not a large 
change in consistency parameter value between the undamaged 
and damaged cases.

The areas of high consistency in the undamaged data is an 
indication of signal elements unrelated to the gear meshing but 
that are affecting the recorded vibration signal. As the diagnostic 
feature is unaffected, it appears that these are independent of gear 
meshing. The adaptation techniques explored later in the paper 
demonstrate that even with these artefacts in the signal, effective 
correct diagnosis is still achievable.

The high-speed and high-load data (Figures 4(c) and 4(d)) 
exhibits the same number of consistent frequency bands when 
compared to Figure 3, yet only one of them is similar between the 
two speed and load cases. In all cases the consistency is high.

5.2	 Adaptation of the SK
The data files were processed again while simultaneously adapting 
both the SK resolution and the SK threshold to find the best possible 
probability of correct diagnosis for each speed and load case. The 
results can be seen in Figures 5 and 6.

This set of adapted parameters (the optimal combination of all 
those tested) has the effect of completely removing any consistent 
frequency bands for the undamaged data and leaving only one 

relatively consistent peak in the damaged data. This is likely to 
result in a high probability of correct diagnosis, which testing more 
combinations of parameters may increase further if it is possible to 
increase the consistency of the damaged data.

Figure 3. SK plots and consistent frequency bands for gearbox 
data collected at 1500 r/min and 250 Nm. SK resolution is fmesh, 
SK threshold is 0.2 and a realisation time of 8 s has been used 
throughout: (a) SK plot of classical residual – undamaged; (b) SK 
plot of classical residual – damaged; (c) consistent frequencies –
undamaged; (d) consistent frequencies – damaged; (e) consistent 
frequencies – undamaged; (f) consistent frequencies – damaged

Figure 4. SK plots and consistent frequency bands for gearbox 
data collected at 3000 r/min and 500 Nm. SK resolution is fmesh, 
SK threshold is 0.2 with a realisation length of 8 s: (a) SK plot of 
classical residual – undamaged; (b) SK plot of classical residual –
damaged; (c) consistent frequencies – undamaged; (d) consistent 
frequencies – damaged; (e) consistent frequencies – undamaged; 
(f) consistent frequencies – damaged

Figure 5. SK plots and consistent frequency bands for gearbox 
data collected at 1500 r/min and 250 Nm, when processed with 
an SK resolution of 200 Hz and SK threshold of 1: (a) SK plot of 
classical residual – undamaged; (b) SK plot of classical residual – 
damaged; (c) consistent frequencies – undamaged; (d) consistent 
frequencies – damaged; (e) consistent frequencies – undamaged; 
(f) consistent frequencies – damaged
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Again, the adaptation has completely removed any consistent 
frequency bands from the undamaged data and isolated just one 
in the damaged data. As with the low speed and load data seen 
previously, by testing even more combinations of speed and load 
it may be possible to further improve this one consistent frequency 
band and ultimately improve the diagnosis probability.

Whilst the outcomes of the SK adaptation are similar (removing 
all consistent bands from the undamaged data that are not related 
to the meshing process and leaving just one in the damaged data), 
the most notable fact is that this result is achieved by using different 
SK technology parameters. The SK time resolutions for the highest 
probability of correct diagnosis are wildly different, while the SK 
threshold required still shows some variation.

5.3	 Effectiveness of damage diagnosis
The non-adapted baseline set of processing parameters used in this 
study (SK resolution of mesh frequency and SK threshold of 0.2) results 
in percentages of correct diagnosis of 53% and 52%, respectively, for the 
two speed and load combinations. In the low speed and load condition 
(Figure 7) it can be seen that this is because the gearbox almost always 
results in damage being diagnosed. The damaged cases would therefore 
mostly be diagnosed correctly, but the undamaged data would rarely be 
identified as such. The non-adapted parameters perform similarly for 
the high-speed, high-load case (Figure 8).

Adaptation of the SK technology parameters enables the probability 
of correct diagnosis to increase to 87% and 97% for low-speed, low-load 
and high-speed, high-load cases, respectively. However, the notable 
difference is that the optimised SK resolution and SK threshold values 
are different in each case. SK resolution values tested ranged from  
0.25 × fmesh to 4 × fmesh and SK threshold values of 0.01 to 1.

In the low speed and load scenario (1500 r/min, 250 Nm) the 
highest probability of correct diagnosis was achieved when the SK 
resolution was 200 Hz and the SK threshold set at 1 (Figure 9).  

Conversely, in the high-speed and high-load case (3000 r/min, 

500 Nm) the highest probability of correct diagnosis was at an SK 
resolution of 1200 Hz and an SK threshold of 0.75 (Figure 10).

Whilst this was not an exhaustive study of all possible 
parameters, it shows that even minor adjustment to the SK 
technology parameters can achieve large gains in damage diagnosis. 
There are some small signal elements in the undamaged data that 

Figure 6. SK plots and consistent frequency bands for gearbox 
data collected at 3000 r/min and 500 Nm, when processed with 
an SK resolution of 1200 Hz and SK threshold of 0.75: (a) SK plot of 
classical residual – undamaged; (b) SK plot of classical residual – 
damaged; (c) consistent frequencies – undamaged; (d) consistent 
frequencies – damaged; (e) consistent frequencies – undamaged; 
(f) consistent frequencies – damaged

Figure 7. Damage diagnosis maps for 1500 r/min, 250 Nm data 
when processed with the baseline parameters. The resultant 
probability of correct diagnosis is 53%: (a) automated diagnosis – 
undamaged; (b) automated diagnosis – damaged

Figure 8. Damage diagnosis maps for 3000 r/min, 500 Nm data 
when processed with the baseline parameters. The resultant 
probability of correct diagnosis is 52%: (a) automated diagnosis – 
undamaged; (b) automated diagnosis – damaged

Figure 9. Damage diagnosis maps for 1500 r/min, 250 Nm data when 
processed with an SK resolution of 200 Hz and SK threshold of 1. 
The resultant probability of correct diagnosis is 87%: (a) automated 
diagnosis – undamaged; (b) automated diagnosis – damaged

Figure 10. Damage diagnosis maps for 3000 r/min, 500 Nm data when 
processed with an SK resolution of 1200 Hz and SK threshold of 0.75. 
The resultant probability of correct diagnosis is 97%: (a) automated 
diagnosis – undamaged; (b) automated diagnosis – damaged
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are not related to gear meshing but still result in non-zero SK 
values. However, despite these signal abnormalities, the parameter 
adaptation has significantly improved the total probability of 
correct diagnosis in the two demonstrated cases.

Both sets of data used the same values within the automated 
decision-making codes, but it is also proposed that these could 
be optimised to each speed and load case to further improve the 
results. Initial observations suggest that the values used in this case 
were overly sensitive (based on the non-optimised diagnosis), but 
by adapting the SK values appropriately the effect of incorrectly 
chosen decision-making parameters is dramatically reduced. 
Seeing as these variables are also typically chosen through trial and 
error, this is a key observation for future work as less time will be 
required to find suitable decision-making variable values. Adapting 
the decision-making parameters to the speed and load conditions 
may also affect the optimal SK technology values as the parameters 
should ideally all be adapted together.

6.	 Conclusions
This paper has proposed and investigated the adaptation of the 
powerful spectral kurtosis signal processing techniques to the main 
operating parameters of rotating machinery, ie the effect that operating 
parameters have on the SK of gearbox vibration data. Signals were 
obtained from the same gearbox run in different combinations of 
speed and load, after which TSA and removal of mesh harmonics was 
performed. The SK calculation is performed based on the STFT of the 
local signal power, as is common throughout literature in the field.

It has been shown that optimisation of both the SK resolution 
and SK threshold are dependent on gearbox operating conditions. 
Adapting the SK technology parameters leads to an SK-based Wiener 
filter customised to the specific speed and load case, improving the 
consistency of the signal across each realisation, removing noise or 
other signal irregularities and resulting in increasing the probability 
of a correct diagnosis.

Correctly adapting the SK technology parameters allows damage 
to be correctly diagnosed even if the separation between damaged 
and undamaged data is minimal or data quality is compromised. 
The effectiveness of diagnosis improves if there are frequency bands 
with consistently high SK values in the data.

A baseline case was taken whereby four data files (one damaged 
and one undamaged for two combinations of speed and load) were 
processed using selected SK technology variables, after which 
the effect of adapting the SK resolution and SK threshold were 
demonstrated. Adapting each parameter achieved an increase in the 
probability of correct diagnosis from 53% to 87% and 52% to 97% for 
the two combinations of operating conditions. Thus, the proposed 
adaptation improved the effectiveness of gearbox diagnosis in 
conditions of varying speed and load, with effectiveness gains of 3.6 
times and 16 times, respectively, in terms of total error probabilities.

The proposed adaptation is highly important for the diagnosis of 
gearboxes operating in non-stationary conditions (for example in 
the aerospace, marine, water, robotics and automotive industries).

Acknowledgements
The authors thank colleagues Dr H Nedunuri and Dr I Petrunin 
(both from Cranfield University) for providing initial sample sets of 
processing codes along with advice when required.

References
1.	 P D McFadden, ‘Examination of a technique for the early 

detection of failure in gears by signal processing of the time 
domain average of the meshing vibration’, Mechanical Systems 

and Signal Processing, Vol 1, No 2, pp 173-183, 1987.
2.	 P D McFadden, ‘Determining the location of a fatigue crack in a gear 

from the phase of the change in the meshing vibration’, Mechanical 
Systems and Signal Processing, Vol 2, No 4, pp 403-409, 1988.

3.	 M El Badaoui, V Cahouet, F Guillet, J Danière and P Velex, 
‘Modelling and detection of localised tooth defects in geared 
systems’, Journal of Mechanical Design, Vol 123, No 3, pp 422-
430, 2001.

4.	 F Bonnardot, M El Badaoui, R B Randall, J Danière and F Guillet, 
‘Use of the acceleration signal of a gearbox in order to perform 
angular resampling (with limited speed fluctuation)’, Mechanical 
Systems and Signal Processing, Vol 19, No 4, pp 766-785, 2005.

5.	 F Combet and L Gelman, ‘An automated methodology 
for performing time synchronous averaging of a gearbox 
signal without speed sensor’, Mechanical Systems and Signal 
Processing, Vol 21, No 6, pp 2590-2606, 2007.

6.	 N Sawalhi, R B Randall and H Endo, ‘The enhancement of 
fault detection and diagnosis in rolling element bearings using 
minimum entropy deconvolution combined with spectral 
kurtosis’, Mechanical Systems and Signal Processing, Vol 21, 
No 6, pp 2616-2633, August 2007.

7.	 J Antoni and R B Randall, ‘The spectral kurtosis: application to 
the vibratory surveillance and diagnostics of rotating machines’, 
Mechanical Systems and Signal Processing, Vol 20, No 2, pp 
308-331, February 2006.

8.	 F Combet and L Gelman, ‘Optimal filtering of gear signals for 
early damage detection based on the spectral kurtosis’, Mechanical 
Systems and Signal Processing, Vol 23, No 3, pp 652-668, 2009.

9.	 F Combet, L Gelman and G Lapayne, ‘Novel detection of local 
tooth damage in gears by the wavelet bicoherence’, Mechanical 
Systems and Signal Processing, Vol 26, No 1, pp 218-228, 2012.

10.	 L Gelman, B Murray, T H Patel and A Thomson, ‘Novel 
decision-making technique for damage diagnosis’, Insight: 
Non-Destructive Testing and Condition Monitoring, Vol 55, 
No 8, pp 428-432, 2013.

11.	 L Gelman and I Petrunin, ‘Novel anomaly detection based on the 
nearest neighbours and sequential methods’, In: 8th International 
Conference on Condition Monitoring and Machinery Failure 
Prevention Technologies, CM 2011/MFPT 2011.

12.	 R Zimroz, W Bartelmus, T Barszcz and J Urbanek, ‘Diagnostics 
of bearings in the presence of strong operating conditions of non-
stationarity: a procedure of load-dependent feature processing 
with application to wind turbine bearings’, Mechanical Systems 
and Signal Processing, Vol 46, No 1, pp 16-27, 2014.

13.	 C Fakher, B Walter, Z Radoslaw, F Tahar and H Mohamed, 
‘Gearbox vibration signal amplitude and frequency modulation’, 
Shock and Vibration, No 4, pp 635-652, 2012.

14.	 F Chaari, W Bartelmus, R Zimroz, T Fakhfakh and M Haddar, 
‘Effect of load shape in cyclic load variation on dynamic 
behaviour of a spur gear system’, Key Engineering Materials, 
Vol 518, pp 119-126, 2012.

15.	 Y Zhan, V Makis and A K S Jardine, ‘Adaptive state detection of 
gearboxes under varying load conditions based on parametric 
modelling’, Mechanical Systems and Signal Processing, Vol 20, 
No 1, pp 188-221, 2006.

16.	 L Gelman, K C Gryllias, B Shaw and M Vaidhianathasamy, 
‘Condition monitoring of gearboxes’, In: International 
Conference on Condition Monitoring and Machinery Failure 
Prevention Technologies, CM/MFPT 2012.

17.	 L Gelman, H Nedunuri et al, ‘Novel gear diagnosis technique 
based on the spectral kurtosis’, In: 23rd International Congress 
on Sound and Vibration, 2016.


