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Calculating the shear angle in orthogeonal
metal cutting from fundamental stress~-strain-strain rate
properties of the work materisl”
..'by.-

P.L.B. Oxley and M.J.M. Welsh

An anslysis of the orthogonal metal cutting process is made which
enables the shear angle to be calculatea from certain fundamental properties
of the work material and the specified cutting conditions. Shear angles
are calculated for a range of cutting conditions and good agreement is
shown between theory and experiment. In particular, such trends as the
decrease in shear angle with decrease in cutting speed and the tendency
for the chip to become discontinuous at slow cutting speeds which are found
experimentally and cannot be explained in terms of previous shear angle
analyses, are shown to be consistent with the present analysis.

Given at the kth International Machine Tool Design and Research
Conference (l963) and reproduced by permission of Pergamon Press Ltd.



Introduction
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In orthogonal metal cutting when cutting relatively ductile
materials the magnitude of the shear angle (i.e. $ in Fig. 1) gives

an indication of the efficiency of the process. Large values of shear
angle are associated with cutting with a continuous chip (i.e. a chip
formed by plastic deformation), resulting in a good surface finish and
relatively low cutting force. With small values of shear angle the
chip becomes discontinucus (i.e. fracture occurs), the surface finish
deteriorates and the cutting force increases. Cutting conditions
vhich tend to give a large value of shear angle are a high cutting
gpeed, a large tool rake angle (i.e. o in Fig. 1) and a low frictional
resistance along the tool chip surface.

There have been a number of attempts to predict the shear angle
theoretically and, for example, Merchantlderived the shear angle
equation.
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where )\ is the mean angle of friction at the tool-chip interface.
. » . ; ) - o =
Another well known equation is thet due to Lee and Shaffer®, namely

b =

+ o - A (2)
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These equations show that a decrease in A Or an increase in
both lead to an increase in § and this 1s consistent with experience,
Unfortunately, when a wide range of cutting conditions is considered,
both equations, and indeed all existing shear angle equations, show
very poor quantitative agreement with experiient. It is apparent from
experimental results that $ is dependent on cutting speed, depth of
cut (t in Fig. 1) and work material properties. It is not surprising
therefore, that existing shear angle equations, which are all
e
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independent of these parameters (except for associated variations in
1) show poor egresment with experiment.

In this paper an analysis is presented in which the cutting speed,
depth of cut and certain fundamental work materisl properties are taken
into account.

Theors

v o .

t is now generally accepted that the snear plane model of chip
formation (Fig. 1), vwhich assumes that the chip is formed by simple
shear across a single shear plane, 1s inaccurate. Direct observations
of chip formatlion have shown that the chip is formed in a finite plastic
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zone which is roughly of the shape shown in Fig.

n

Following a recent analysisBlet us idealize the finite plastic
zone to the parallel-sided shear zone shown in Fig. 3 with D, AB and

<
o

EF straight parallel slip-lines representing the directions of maximum
shear-stress and maxinum shear-strain rate. Chip curl is, therefore,
neglected and it is assumed that the state of strain, and therefore the
shear flow stress, along each of the parallel slip-lines are constant.
Tet us further assume that we can represent the frictional condition
along the tool-chip interface by a mean angle of Ifriction ).

Neglecting any up-thrust on the base of the tool, the slip~line
AB (FiG, 3) will transmit the resultant cutting force and it is
convenient to base our analysis on this slip-line. The method of
analysis will be to analyse the stresses along AB and then tc select
the value of p (i.e. the angle made by AB with the direction of cutting)
to give a resultant cutting force direction across AB which is consistent
with the direction given by considering the mean angle of friction at
the tool~chip interface. From a geometrical viewpoint AB can be
looked upon as the shear plane and $ as the shear angle, that is,
from Fig. 3.

T /i i
tan = [z SR (3)
1 - L'/T?? sin o

wvhere t is the depth of cut and T the chip thickness, and this eguation
.

ig identical to that for the shear plane model of chip formation.

It was shown in a detailed analysis®of the stresses in the
plastic zone that the hydrostatic stress in the reglon of A could be
calculated most relilably from the free surface condition in the surface
ghead of A. Let us therefore assume that AE bends to meet this free
urface at 45 degrees (i.e, free surface condition) but does so in
negligible distance. Then as p = k (compressive) at the free surface
we can show from slip-line theory that

b, = x| 142 - 4 | (1)

L J

where Py is the hydrostatic stress at A (i.e. the normal stress acting

on AB at A) and k is the shear flow stress along AB.

Consider next the equilibrium of the small element of the shear
zone shown in Fig. 4. As the material passes through the shear zone
its shear flow stress will change, as a result of strain-hardening,
temperature etc. Therefore, let the shear flow stress along CD (i.e.
initial shear flow stress at zero plastic strain) be k;él., and let the
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shear flow stress along EF be k +e%i, The total chenge in shear Tlow

stress is then Ak. Resolving forces parallel to AB gilves

where Ap is the change in hydrostatic stress across the element, ASq
is the width of the shear zone and Asp is measured along AB.  Applying
this equation between A and B (Fig. 3) we obtain

Po = P T as; sin g (5)
or
Y. S
Py T Py 7 As, sin g

where P3 is the hydrostatic stress at B (i.e. normal stress on AB at

B). It is of interest to note that if Ak is positive, as we would
in general expect it to be, then Py has a smaller compressive value
)
, . K .
than Ppe Following the assumptions made, %E- is constant along AB,
FAXSH
and therefore the correspouding variation in hydrostatic stress along
AB will be linear. It follows that if ¢ (Fig. 3) is the angle between
the resultant cutting force and AB, then

5 (6)

tan 6 =

By considering the directlon of the resultant c
determined by the mean engle of friction along the tool chip interface,
it is easily shown that:

6 = fé AN =~ O (7)

Before equations (&), (5), (6) and (7) can be used to calculate §

it is necessary to know the value of Ak in equation (5). Let Fig. 5
represent the idealised shear flow stress-strain curve of the work

material corresponding to the mean shear straln-rate in the shear gzone
(the slope of the curve and +the initial yield stress will vary with
strain-rate’). Then if the total shear strain occuring in the shear
zone is y we have

Ak = m.y (8)

where m is the slope of the idealised stress-strain curve and where y
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is given by (see ref. 5)

COS ¢

7 % Sin § cos (ba)

Tn order to find m and also k (the shear flow stress along AB)
we must know the mean shear strain-rate 7 in the shear zone. In a
recent analysisSthis was shown to be given by the equation

. 0.2 U cos ¢
Asy cos (p-=a)

¥ per sec. (10)

where U is the cutting speed in feet per minute and As; (the width of the
shear zone) is in inches.

HEAR ANGLE CALCULATIONS

Before the theory developed in the last section can be used to
calculate values of shear angle, some assamption must be made as to the
width of the shear zone (As1 in Fig. 3). From the limited number of
regults available®>72%1% appears that the length to width ratio of the
shear zone is reasonably constant. That is, although the width (As1)
changes with cutting conditions (for example, it Increases with decrease
in cutting speed) so does the length (t/sin §) thus maintaining a shear
zone of approximately constant proportions. For the purpose of our
calculations let us assume that the ratio is constant, l.e.

i _ ! )
AL smg const. (11)

Trom the measurements recorded the ratio is approximately equal
+o 10 and this is the value we shall take as our constant.

For the work material, we must know the values of the slope m
(Fig. 5) and the initial shear flow stress Tor the range of shear
strain-rate considered. These are apparently fundamental properties
and indeed the variation of initial flow stress with strain-rate has
been investigated directly. To the authors! knowledge no direct
measurements of the slope m have been male.

Figs. 6 and 7 show graphs of the slope m and initial shear flow
stress Tor a mild steel (SAE 1015,118Bhn) obtained®by analysing
cutting test results. Lacking any cther information on the variations
of m with strain-rate our calculations will be based on these graphs.

Tn making the calculations the most convenient method is to assume
a particular value of é, for given conditions of rake angle, depth of
cut and cutting speed, and then to work through the equations to find
the correspcnding value of friction angle X. Graphs of é agalinst h-x
can then be plotted in the usual way.



Let us now consider a specimen calculation, taking the following
conditions: -

50°
0,010 ins.
1,0C0 £t/min.

if

rake angle ¢
depth of cut t
cutting speed U

o

Assume p = 30°
from equation (11) -~ (Const = 10)
Asy = 002 in.

from equation (10)
v~ = 86,600 per sec

referring to Figs 6 and 7
m = 0.87 ton/in®

and the initial shear flow stress (k-<¢:/2) = 31 ton/in®
from eguation (9)
7 =173
from equation (8)
Ak = 1.5 ton/in®
the shear flow stress, k, on CD (Fig. 3) is given by
¥ = initial shear flow stress (k - Ak/2) + Ak/2
= 31.75 ton/in®

from equation (L)

p,/k = 1.52
from equation (5)

(p, ~pg)/k = W7
hence pB/K = 1.05
from equation (6)

8 = 52°
from equation (7)

A - = 22°

For o = 30° A = 52°, we can now say that the analysis gives § = 30°

There is a second possible solution which satisfies the equations, in
which £ is much smaller, and this is true for the majority of cutting
conditions (see for example Fig. 8 ¢ = - 10° U =1 ipm). The higher
value of $ has been taken in each case as it gives the lower value of
cutting force. The possibility of cutting with the second smaller value
of shear angle should not be dismissed and will be considered in a future

paper.
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Using this method_graphs of § against A-¢, for various rake angl %5 '%§¥
cutting speeds and depths of cut, have been obtained and are givey in g}”
Figs. 8 and 9. The calculated values of the hydrostatic stress ne Sf&ﬁ’

the tool cutting edge (pg) are given in Figs. 10 and 11.

DISCUSSION

Referring to Figs. 8 and 9O it can be seen that the theory predicts
that for a given rake angle ¢ and friction angle ), a decrease in
cutting speed or an increase in depth of cut t gives a decrease in shear
angle é. Experimental results show that, in general, these predictions
are correct. A guantitative comparison between theoretical and
experimental results is made difficult by the limited number of
experimental results available, for the steel considered in the analysis.
As this steel is apparently a typical mild steel, results obtained for
other mild steels have also been used.l27»8s11-

The experimental values of ﬁ and )\ - which are plotted in Figs. &
and 9 were obtained from chip thickness retio and cutiing force nmeasure-
ments using equation (3) and the relation (see Fig. 1).

tan (A=) = Fi/Fe (12)

The agreement between the predicted and cxperimental values of ¢
ie reasonably good, and, in particular, the influence of speed 1s clearly
shown. Although the predicted increase in é with decrease in depth of
cut t is masked by an increase in A (Fiv. 9)} the experimental results
do follow the predicted trend. It is of interest that in considering the
shear zone mechanism a decrease in t (depth of cut) has the same effect as
an increase in the cutting speed i.e. both increase the shear strain-rate
in the shear zone. The increase in shear strain-rate resulting from a
Jdecrease in © tends to increase the value of the shear flow stress,

(Fig. 7) and this could account for the so-called size effect in metal

cutting.

At present it is not possible to predict from a given state of stress,
strain and strain-rate whether or not a naterial will fracture. It
seems reasonable, however, to assume that the lower the compressive value
of the hydrostatic stress near the tool cutting edge (pB) the more likely

is a chip to become discontinuous. If we accept this assumption it can
be seen that according to the theory, the changes which would lead to a
decrease in Py and therefore tend to give a discontinuous chip are: a

decrease in cutting speed, a decrease in rake angle and an increase in
depth of cut. All of these changes are known in practice to be
sssociated with the transition from a continuous to a discontinuous chip.

Although the curves of the slope m are not available for materials
other than the one used in the analysis, there are cutting experiments
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reported®in which the effective stress=-strain curves of the work material
are given, If we assume that a high value of m from a static test is
indicative of a comparably high value of m at higher strain rates then
we can make some predictions as to the general order of shear angles for
a particular material from its static stress~strain curve. From the
calculations given in the previous section it can be seen that the
significant parameter in calculating the change in hydrostatic stress
across AB is not simply the slope m but the ratio m/k (where k is the
shear flow stress along AB). Unfortunately k will depend on the shear
strain along AB and canrot be determined until g is known.

Consider the curves for the five materials shown in figure 12. For
the purpose of estimating the relative range of shear angles for these
materials let us take the value of k corresponding to an effective strain
of 0.5; and since it has been shown'©that it is the slope of the stress~
strain curve at high strains rather than the initial slope which is
important in metal cutting, let us take as our values of m the mean slope
of the curves above an effective stress of 0.2. .

[N.B. v = 9eff  and y =3 e__. so that
ff
/3 €

m _ slope of effective stress-strain curve ]
k /5 effective strain
TABLE 1
Material Lk
1. SAE 1112 steel (as received) 1k
2, 2024 - T4 Alvminium alloy .10
%,  SAE 1112 stezl (annealed) .25
k., 6061 - T6 Aluminium alloy A1
5, Alpha brass - ke

For given values of A and ¢ the theory predicts that the larger
the value of m/k, the smaller will be the value of .  Therefore from
the values of m/k in Table 1, we can expect that the range of values of
4 will be lowest Ffor alpha brass and then in the order, SAE 1112 annealed,
SARE 1112 as received, 6061 - T6 Al, 202k ~ Th A.  Experimental values of
4 for trese materials (Fig. 13) confirm this trend.

Let us assume that the limiting value of m as strain-rate increases
is zero (i.e. non-strain-hardening material). By applying the analysis
we obtain the line shown in Figure 1k (which is independent of Q)

Thig line can now be loocked upon as setting an upper limit to values of

é, above which an increase in strain-rate (brought about by an increase

in cutting speed or a decrease in depth of cut) will have no effect.
Experimental values for a wide range of cutting conditions and work
materials are plotted in Figure 14 and it can be seen that most of these
results fall below the limiting line. A possible reason for points which
fall above this line is that strain-softening (i.e. negative m) occurred.
during cutting. A more likely explanation, however, 1s to be



found in the simplifying assumptions which have been made ir

Let us now consider these assumptions and thelr limitations in some detall.
It would be very surprising if the shear gzone Lﬁﬁguh to width ratio

(t/Asy sin §) remained constant (assumed equal to 10 in the calculations)

for all materials and cubiing conditions. From the few measurements

which have been made (Tlmvue& o i ild steel) it anvea 5 that the ratio

decreases slightly with reduction in cutiving speed Allowing

for this reduction would emnhas>se the difference between the results

for slow and high speed cutting, predicted in the analysis. The

actual shape of the shear zone is also important and although we have

assumed a parallel-aided zone it is now generally accepted that the width

of the zone decreases towards the cutting edge of the tool. With such

‘& zone the hydrostatic stress distribution along AB would not be linear

and equations (5) and (6) would be modified. Photographic investigations

of “the shear zone are now being made in order to determine the size and

shape of the zone for a wide range of cutting conditions and work

materials.

In the analysis & mean value of shear strain-rate has been defined
and used to find the correspond*ng mean value of the slope m. It is
known from e%werﬁwertc that the shear utra,ul-rate and therefore m vary
from point to point in the shear zone; Ffor many materlals m is also a
function of the shear strain. As & rebulu of the variation of shear
strain in the shear zone the chip is 'born' curled and does not flow
parallel to the tool over its full thickness as assumed in the analysis.
A more detailed analysis will have to take into account these variations
in shear strain-rate and shear strain, and also chip curl.

In the analysis no attempt has been made to show that the values
of the hydrostatic stress at B(p,) calculated from equation (5), are
consistent with the frictional conditions at the tool cutting edge.
(In an earlier paper”this boundary condition was used to find Py directly)

There are two main reasons for +hws, first it is very difficult to say
from a measurement of the mean angle of friction at the tool-chip inter-
face just what the frictional ,vﬂQliJOFs at the cutting edge are, and
second the stress gradients in the shear zone adjacent to the cutting
edge can be very large. In the photographic investigations mentioned
ghove, particular attention is being paid to the L]OV round the cutiing
edge. The influence of a bullit-up edge (neg¢ec ted in the analysis)

is also being investigated.

It can be concluded that, in spite of the limitations Imposed by
the various simplifying assumptions made, the analysis gives at least
a gualitative explanation of the main trends observed in cutting.
Further work both theoretical and experimental, should lead to a more
precise analysis. :
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