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ABSTRACT 

 

Solids transport in multiphase systems is one of the issues under the umbrella 

of ‘‘flow assurance.’  But unlike issues such as waxes and hydrates, solids 

transport has received relatively little interest to date. The overall aim of this 

research was to investigate the fluid viscosity effects on sand particle transport 

characteristics in pipelines. Investigations were conducted using a 3-inch test 

facility for oil and a 4- inch flow loop for water and CMC experiments.  Three 
oil viscosities were used including 105 cP, 200 cP and 340 cP. The sand used 

had a density of 2650 kg/m3 and a median diameter of 0.2 mm. The sand 

loadings were 50 lb/1000 bbl and 200lb/1000bbl. Based on the King et al 

(2000) sand minimum transport condition definition, the sand transport 

velocity for water, CMC solutions  and oil (105 cP, 200 cP and 340 cP) were 

determined by visual observation and camera . The observed sand/oil flow 

regimes were compared. For oil/sand tests, it was observed that the dominant 

regime when approaching the critical sand transport velocity was the sliding 

sand bed, sand dunes were notably absent. However, for water and 7 cP CMC 

solution, sand dunes and sliding sand bed regimes were observed when 

approaching the sand transport velocity. For 20cP CMC solution, it was 

observed that the sand particles in the region between the main dunes were 
very active compared to those within the dunes.  

  

NOTATIONS  

Cv    sand volume fraction, lb/1000bbl (v/v) 

D:    pipe diameter, m 

dp:   particle diameter, m 

s:     particle density/ liquid density, kg/m3 

ut:   Terminal settling velocity, m./s 

VSL:superficial liquid velocity m/s 

μ:    viscosity, cp. 

ν:     kinematic viscosity, m2/s 
ρg:   gas density, kg/m3 

ρl:    liquid density, kg/m3 

ρp:   particle density, kg/m3 

 

1   INTRODUCTION 

 

Products from oil reservoir are sometimes accompanied by small quantities of 

solid such as sand or fracturing materials. Solids transport in multiphase systems 
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is one of the issues under the umbrella of flow assurance. Sand deposition in the 

flow lines can cause many problems such as reduced production rates, corrosion, 

erosion and blocking the passage of pigs. Setting up gravel packs, screens and 
scraping are some of the common practices to prevent sand deposition or to 

remove the settled sand. As these are expensive to maintain and also require lot t 

of design considerations, it is important to understand the behaviour of sand 

particles in oil flow in pipelines in order to establish the sand transportation flow 

regimes and the critical sand transport velocity for pipeline design. 

1.1 Sand transport flow regimes 

Flow regimes for solids transport can be classified according to solid/liquid and 

solid/liquid/gas systems. However, in this paper we are focused on solid/liquid 

flow regimes in the pipeline. In the literature, solid/liquid flow regimes are 

obtained mostly for solid/water flows with high sand concentration as found in 

slurry transport. There is very little reported work on low concentrations and 
high liquid viscosity as found in heavy oil pipelines. The flow of sand and water 

in pipelines can adopt a number of configurations or flow regimes as illustrated 

in Figure 1. 

 Stationary bed: At very low liquid velocities, a stationary bed is formed with 

sand particles at the bottom and no grains move at all.  With an increase in the 

velocity, a stable bed height is reached where the particles at the top are 

transported further downstream the upper surface of the bed is flat at very low 

velocity but becomes wavy as the. At higher liquid velocity the height of the 

stationary bed decreases. An equilibrium bed is reached when the shear at the 

upper surface of the bed transports sand downstream at a rate equal to the sand 

inflow rate. 

 Moving dunes: If the liquid velocity is increased further the bed breaks up and 
the particles arrange themselves into moving dunes in which the grains on the 

upper surface of the dune roll along from back (upstream) to front 

(downstream).  The grains then fall into the sheltered region at the front of the 

dune.  The dune passes over these particles until they are once again on the top.  

The motion of the dunes is similar to sand dunes in the desert and to snow drifts.  

Smaller dunes move faster than larger ones and a given length of stationary 

deposit will break up into a number of dunes, each with a characteristic length 

and velocity.  

 Scouring: As the velocity is increased further the grains roll along the top of 

the dunes with sufficient momentum that they escape from the sheltered 

downstream region and are swept away as individual scouring grains.  Dunes 
can still survive in this erosion environment by replenishment from upstream 

particles. 

 Dispersed: At high liquid velocities the dunes are dispersed.  The sand 

particles now move in the produced fluid in an erratic pattern.  However, a 

strong concentration gradient across the pipe is usually observed.   

1.2 Review of sand/liquid transport velocity in pipeline  

Hydraulic slurry transport had been experimentally investigated for many 

decades by many researchers, beginning with the work of Blatch (2) followed by 

several extensive  



  

research efforts performed by Durand and Condolios (3), Durand (4), Newitt et 

al. (5), Cairns et al. (6),  Hughmark (7), Thomas (8, 9 and 10), Wicks (11), 

Babcock (12), Oroskar and Turian (13), Davies (14), Salama (15), ,Kokpinar and 
Gogus (16) Al-Mutahar (17),Papavinasam et al.(18) and Al-Lababidi et al. (19). 

Table 1 summarises the experimental variables for the slurry systems studied 

including solids concentration, pipe diameter, particle mean diameter, carrier 

liquid density and viscosity.  From this table it can be concluded that the 

majority of the work used water as the carrier liquid. Only limited published 

work, Sinclair (20), Shook et al. (21) and Wani et al. (22) and Gillies et al. (23) 

used kerosene (1.2 cP), ethylene glycol (38cP) and oil 78 cP respectively other 

than water as the liquid carrier, Table 2.  

 

 
Figure 1: Liquid/sand Flow Regimes in Horizontal Pipelines (1) 

 

1.3 Critical transport velocity models 

In the early 70s, Wicks (11) developed a model for the “solids critical transport 

velocity”. Initially, the model was developed for slurry flow and it assumes that 
a particle will only be transported if a sufficient force is applied to it to move it 

out of contact with two other particles. Based on the force balance acting on a 

single particle, two terms S (Wicks’ dimensionless group) and  (dimensionless 
liquid flow rate) are found in the expression containing the variables that depend 

on the particle Reynolds number Rep, particle diameter dp to pipe diameter D 

ratio, sand transport rate Φ , and the particle and liquid physical properties.  As a 

result, the relationship between the two terms,  Sf  was then used to predict 

the critical velocity for the formation of a sand bed.   
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Wasp et al. (30) modified Durand’s (4) relation to adequately represent the 

effect of the sand volume concentration and the mean particle size. Wasp 



  

reploted the dimensionless coefficient FL as a function of the sand volume 

concentrations using the results of different sand concentration, however the 

minimum sand volume concentration considered in the study was 1%.   Oroskar 
and Turian (13) developed a correlation at which solids start to form a sliding 

bed. The correlation was derived based on the fluid-particle energy balance 

model to describe the sand critical transport condition by “remaining suspension 

in the turbulent core”. This correlation was obtained by conducting several sand 

slurry experiments, thus the sand concentration term is only included.   

0.30x

0.09

lμ

1)(spgdlDρ0.378

D

pd0.3564)vC(10.1536
v1.85C

1)(spgd

cV















 

















  (2) 

Based on the experimental data, Oroskar and Turian (13) found x to be close to 

unity (> 0.95). Cairns et al. (6) derived a dimensionless empirical correlation 
which can be used to predict settling velocity (inferred as the velocity at which 

particles drop out from suspension). 
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Kokpinar and Gogus (16) proposed an empirical equation to predict critical 

velocity. They defined critical velocity as the velocity below which deposits will 

occur but above which no deposits in the pipeline will be encountered. Kokpinar 

and Gogus (16) used their data and data from other researchers including Durand 

(4), Wicks (11) and Sinclair (20), and came up with the relation: 
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Al-Mutahar (17) developed a mechanistic model for critical deposition velocity, 
defined as the minimum flow stream velocity needed for keeping sand particles 

in suspension in pipe flow to prevent sand deposition, based on a force balance 

and turbulent theory approach used by Davies (14) and Oroskar and Turian (13).  

Al-Mutahar developed his model in three steps. In the first step, the required 

turbulent velocity fluctuation necessary to keep the particles in suspension is 

calculated and then the turbulent velocity fluctuation generated by the flow is 

evaluated. Finally, with the assumption that required and produced turbulent 

velocity fluctuations should be equal in order to keep the particles in suspension, 

he presented his final form of the critical deposition velocity, Vc,  
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Where  
vC64.31

1


  , for higher concentrations (>>1%)  (Proposed by Davies), and  

 vC64.315.0

1


  , for concentration around 1% and lower (proposed by Al-Mutahar (7)). 

Salama (15) presented several correlations for predicting sand erosion rate and 

“sand settling velocity”. The approach taken was based on turbulence theory, 

considering the kinetic energy dissipated from turbulent eddies that is required 

to prevent the sand deposition. In his model, Salama (15) introduced the mixture 



  

velocity of two-phase air/water flow into Oroskar and Turian (13) and Davies 

(14) models. He considered the mixture velocity of the two-phase air/water flow 

is the velocity required to prevent the accumulation of the sand particles on the 
bottom of the pipe.  
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Where Vmix is the minimum mixture velocity to avoid sand settling (m/s). 

Sinclair (20) showed in his studies that the limit deposit-velocity for any systems 

depends on the particle-fluid system, particle diameter, pipe diameter, and the 

transport concentration of solids. However, in his correlation, Sinclair (20) did 

not include the fluid viscosity parameter in the correlation,  
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The form of the function f3 can be explained to some degree in terms of 

boundary layer theory. Vmax is the maximum value of the limit deposit velocity 

(ms-1). 

Shook et al. (21) developed a correlation for the critical transition velocity from 

stationary bed to moving bed differentiating Durand (4) pressure drop equation,  
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Gillies et al. (23) found a three-layer model which appears to be useful to 

describe turbulent slurry flow in the presence of a stationary deposit. The model 

assumes that the velocity in the region above the deposit scales as the square 

root of the hydraulic equivalent diameter of the region above the deposit. The 

experimental data showed that the Meyer-Peter et al. (31) equation is useful for 

the prediction of the sand critical velocity for particles of diameter greater than 

100 micron; however, for a very fine particle the equation was inappropriate. 

Danielson (32) carried out experiments to study the critical condition of sand 

flow under different fluid conditions using a 3-inch (ID=0.07 m) inner pipe 

diameter flow-loop with 215 m length.  Sand was injected into the flow loop as a 
slurry of sand in liquid (approximately 30% by volume) using a peristaltic 

pump.  Two-phase gas\liquid with sand experiments were performed, water and 

oil (Exxsol D80) were used for the liquid phase and air was used as the gas 

phase. The sand used in the experiments had a median diameter of 280 and 550 

microns.  
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1.4 Research objectives 

Unlike issues such as waxes and hydrates, Solids problems have received 

relatively little interest to date; this is especially true for solids transport in high-

viscosity oils. Understanding the behaviour of Oil and Sand mixture (slurry) is 

important to develop the slurry treating processes.  

The work reviewed above are for particle concentrations a lot higher and the 

carrier liquid viscosities used are much lower than commonly found in oil 



  

pipelines. Thus, the effects of viscosity on the low concentration sand transport 

warrants further investigation. The focus of this research was to investigate the 

viscosity effects on sand transport conditions and sand flow regime for different 
fluid viscosities that ranged from 1cP (0.001 kg/m.s) up to 340 cP (0.340 

kg/m.s). The sand transport velocity is based on the definition proposed by King 

at al. (24) as the mean stream velocity required to prevent the accumulation of a 

layer of sliding particles on the bottom of a horizontal pipe. The obtained sand 

transport velocity for different fluid viscosities will be compared with selected 

correlations from the review presented above. 

2 EXPERIMENTAL SETUP  

Investigations were conducted using the 3-inch and 4-inch test facilities in the 

laboratory of the Department of Process and Systems Engineering, Cranfield 

University. Flow regimes for solids transport detected by  

 Visual observation.  

 Videos captured using HD camcorders (SONY HANDYCAM HDR-

CX550VE, 12.0 megapixels). 

2.1 4-inch Test Facility  

The 4-inch sand transportation test facility was designed to operate under 

different multiphase flows including two-phase air/water, two-phase air/oil and 

three-phase air/water/oil with and without sand.  For the experimental 

investigations conducted, water and carboxy methyl cellulose (CMC) were used 

as the test fluid with sand, see Figure 2. The test section is made of 4-inch (ID = 

0. 1m) steel pipe (316 L) and is 40 m in length.  The 40 m length is divided into 

20 m outward flow pipeline, U shaped bend, and a 20 m return flow pipeline. 

The test section pipeline is supported on a steel structure and different 

inclinations can be achieved using an A-frame and lifting chain blocks. Both the 
beginning and the end of the test section pipeline are fixed using a pivot to allow 

the pipeline to be tilted at different angles including 5, 10 and 20 degrees, as 

illustrated in Figure 3. Two 1.2 m long Perspex windows (viewing sections) are 

installed in the outward and return legs to facilitate visual observations of the 

sand particles in the flow.  Water is stored in a tank of 4.4 m3 capacity. The 

water is pumped by a variable speed progressive cavity pump (PCP) to the test 

section through an approximately 8 m long 3-inch (ID = 0.075 m) line. The 

water pump has a maximum capacity of 0.025 m3/s and a maximum discharge 

pressure of 5 barg. The water flow from the pump is also controlled by means of 

a by-pass line with the fluid from the pump outlet being recycled back to the 

water tank via a valve. The water flow to the test pipeline is metered using an 
electromagnetic meter, Endress+Hauser PROMAG 50W DN 80, with range of 0 

m3/s to 0.05 m3/s. The electromagnetic flow meter has a 4-20 mA HART output 

that can be connected to the data acquisition system. A sand injection point is 

installed after the mixing point of water and air. The sand feeder unit consists of 

a cylindrical stirred vessel (0.8 m diameter by 0.5 m high), with a 0.365 m 

diameter axial flow impeller, and a variable speed progressive cavity pump 

(PCP) with a capacity of 8.33*10-05 m3/s and 5 barg maximum discharge 

pressure. 



  

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

Figure 2: 4-inch test facility 

 
 

 

 

 

 

 

 

 

 
Figure 3:4-inch test facility tilted at 5, 10 and 20 degrees 

 

2.2 3-inch test facility  

Figure 4 shows the 3-inch (ID = 0.075 m) test facility. Oil was stored in a tank 

of 15.3 m3 capacity at the ground floor level. The oil was pumped by a 
progressive cavity pump (PCP) through a 3-inch pipe. The oil progressive cavity 

pump has a maximum capacity of 0.025 m3/s and a maximum discharge pressure 

of 5 barg.  Azolla 100 oil (hydraulic type oil) was used for the test programme.  

The inlet oil flow was metered by a Coriolis mass flow meter, Endress+Hauser 

Promass 83I DN 80. The Coriolis flow meter has three outputs i.e. mass flow 

rate, density and viscosity. To investigate the oil viscosity effects on sand 

transport behaviour and mechanism, Azolla 100 oil was heated in the main oil 

tank to obtain the desired dynamic viscosities at which tests were performed. 

These viscosities are: 

A.  Viscosity=340 cP (0.340 kg/m.s) at 16oC and density = 884 kg/m3. 

B. Viscosity = 200 cP (0.200 kg/m.s) at 25oCand density = 880 kg/m3.  
C. Viscosity = 105 cP (0.105 kg/m.s) at 35oC and density = 875 kg/m3. 
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A sand/oil injection point was installed in the 7 m Perspex flow line. The sand 

feeder unit consists of a stirred vessel with an axial flow impeller and a 2.50*10-

4 m3/s slurry pump. A known amount of sand is mixed with the oil in the stirred 
vessel and injected at the appropriate rate to give the correct sand concentration 

in the 3-inch line.  The average sand diameter is approximately 200 micron with 

a density of 2650 kg/m3: The sand settling tests carried out were with sand 

loadings of 50lb/1000bbl (5.38E-03 vol. %) and 200lb/1000bbl (2.15E-02 vol. 

%).  

 

 

 

Figure 4: 3-inch test facility 

 

3  RESULTS AND DISCUSSION 

 

3.1 Sand/oil flow regimes in 3-inch pipeline 

Sand particles movement and behaviours were observed for oil with 340 cP at 

16OC, 200 cP at 25OC and 105cP at 35 OC. The oil viscosity, density and mass 

flow rate were measured using Coriolis flow meter. From the visual observations 

of the sand particles in the 3-inch pipe, the oil/sand flow regimes were obtained 

when approaching the sand transport velocity for 50 lb/1000 bbl and 200 

lb/1000bbl as illustrated in Figures 5 and 6 for 340 cP. Using the definition by 
King et al. (24), the sand transport velocities were observed to be between 0.07 

m/s and 0.15m/s for 50 lb/1000 bbl and between 0.2 m/s and 0.25 m/s for 200 

lb/1000 bbl. The dominant oil-sand regime, when approaching sand transport 

velocity, was sliding sand bed. Moreover, the sand bed appeared to get more 

compact at oil velocities lower than the velocity at sand transport conditions.  No 

sand dunes were observed. At an oil viscosity of 340 cP, the bulk flow at sand 

minimum transport condition was laminar.  



  

 

   
VOil=0.35m/s for 50 lb/1000 bbl      VOil=0.07 m/s for 50 lb/1000 bbl 

Figure 5: Sand transport condition for oil (340 cP at 16OC) and for 50 lb/1000 bbl 
(Bottom view) 

 
Figure 6: Sand transport condition for oil (340 cP at 16 OC) and for 200 lb/1000 bbl, 

VOil=0.25 m/s (Bottom view) 

 

To obtain a viscosity of 200 cP, the Azolla 100 was heated to approximately 25 
OC in the oil tank.  From the visual observation of the sand particles in 200 cP 

oil (density =880 kg/m3), it was concluded that the sand transport velocities for 

50lb/1000bbl was between 0.25 m/s and 0.3 m/s (Figure 7), and at these 

velocities the bulk flow was laminar. For 200 lb/1000 bbl, (Figure 8), it was 

found the sand transport velocity was between 0.3 m/s and 0.35 m/s. Again no 

sand dunes were observed at 200 cP. A sand bed was observed at sand transport 

velocity, this bed was enlarged at oil velocities lower than the transport velocity. 

The flow at sand transport condition was laminar and the Reynolds number was 

between 102 and 120.   
 

    
                      VOil=0.30 m/s                                                                      VOil=0.25 m/s 

Figure 7: Sand transport behaviour in 200 cP oil at 25 OC for 50 lb/1000 bbl  
(Bottom view) 

    
VOil=0.35 m/s 

Figure 8: Sand transport behaviour in 200 cP at 25 OC for 200 lb/1000 bbl  
(Bottom view) 

 

The Azola oil was heated to approximately 35 OC to obtain 105 cP oil viscosity. 

The same sand settling procedures were repeated and the sand/oil flow regimes 



  

when approaching the sand transport velocity were noted for 50 lb/1000 bbl and 

200 lb/1000 bbl. For 50 lb/1000 bbl and 200 lb/1000 bbl, it was found that by 

decreasing the oil viscosity from 200 cP to 105 cP, the required velocity to 
approach the sand transport condition was increased and with the absence of 

sand dunes formation.  The sand transport velocities for 50 lb/1000 bbl and 

200lb/1000bbl were approximately 0.35 m/s and 0.45m/s respectively and the 

bulk flow type was laminar flow. 

3.2 Sand/water flow regimes in 4-inch pipe 

Based on the experimental observations of the sand behaviours in water 

experiments with sand, it was found that reducing the water flow rate from the 

sand transport conditions, VWater = 0.5 m/s, the sand transport regimes changed 

eventually to sand dunes on the bottom of the pipe when the liquid velocity was 

reduced to VWater= 0.3 m/s as shown in Figure 9. 

It was observed that the sand patterns in water flow changed with sand 

concentrations. When the sand concentration was 200 lb/1000 bbl, sand particles 

were transported in the form of a sliding bed while the particles were moving in 

streaks when the sand concentration was equal to 50 lb/1000 bbl.  

 

 
a) Water velocity at VWater= 0.5 m/s      b) Water velocity at VWater= 0.3 m/s 

Figure 9: Sand flow pattern in water flow with sand (Top view) 

 

3.3 Sand/CMC solution flow regimes in 4-inch pipe 

For 50 and 200 lb/1000 bbl sand concentration in a CMC solution of 7 cP, the 

sand transport velocity was observed to be 0.7 m/s and 0.75 m/s respectively. 

The bulk flow condition was turbulent and the Reynolds number was 

approximately 10000. When approaching the sand transport velocity at 0.65m/s 

and Re= 9350 dunes were formed as shown in Figure 10. 

 

 
Figure 10: Sand dune at CMC solution of 7cP, VL= 0.65 m/s, Re= 9350  

(Bottom view) 

 

For 50 and 200 lb/1000 bbl sand concentration in a CMC solution of 20 cP, the 

sand transport velocity was observed to be 0.75 m/s and 0.8 m/s respectively. 

The Reynolds number was 3750 and the bulk flow was in the transition region. 

When approaching the sand transport velocity at 0.7 ms-1, the sand dunes were 



  

observed to be very concentrated and connected with each other and the 

Reynolds number was equal to 3524, see Figure 11. Also, it was observed that 

the sand particles in the region which connected the main dunes were active 
compared to those within the dune body. 

 

 
Figure 11: Sand dune at CMC solution of 20cP, VL= 0.7m/s, Re=3524  

(Bottom view) 

 

3.4 Viscosity effects on sand transport velocity in pipe 

Table 3 and Table 4 listed the comparisons between sand transport velocity flow 

regimes for sand concentrations of 50 and 200 lb/1000 bbl.  

Table 5 compares the sand minimum transport velocities from this study with a 

number of selected correlations of previous studies.  It was found that the 

majority of correlations failed to predict the sand concentration effects on the 

transport velocities. Salama (15), Danielson (32) and Wicks (11) correlations do 

not account for the sand concentration factor, whereas the other correlations 

including the sand concentration effect did not predict well for both sand 

concentration. For viscosity effects, it can be concluded form Table 5 that: 

  Salama (15), Kokpinar and Gogus (16) correlations grossly under- predicted 
the sand transport velocities.  

 Wicks(11) correlation over-predicted the sand transport  velocities, 

  The majority of the selected correlations under-predicted the sand transport 

velocity when fluid viscosities were at 7 cP and 20 cP. But Wicks [11] 

correlation slightly over   predicted the sand transport velocity. 

  For 200 cP, Oroskar and Turian (13), Al-Mutahar (17) and Danielson (32) 

correlations predict well the sand transport velocity. However, these correlations 

then over predicted the transport velocity when the fluid viscosity was 340cP. 

 

4  CONCLUSIONS 

 
Experimental investigations were conducted on sand particle behavior and sand 

transport velocity for different fluid viscosities in 3-inch and 4-inch test 

facilities. Water and CMC solutions were used as carrying fluids in the 4-inch 

facility, while Azolla 100 oil(340 cP at 16 OC) was used in the 3-inch the tests. 

To study the viscosity effect CMC solutions (of 7cP and20 cP) and the Azolla 

100 was heated to obtain 200 cP and 105 cP. The sand particles used had a 

0.2mm median diameter and sand concentration of 50 lb/1000 bbl and 200 

lb/1000 bbl were used.  It was found that the sand minimum transport condition 

was influenced by fluid viscosity and the sand/liquid flow regimes at transport 

conditions were different. With high viscosity, because of the lack of turbulence 

energy, the sand movement is mainly via shear force and no sand dunes were 



  

observed. In addition there no observed change on the sand flow regime as sand 

concentration increased from 50 to 200 lb/1000 bbl. 

The CMC solution (7 cP and 20 cP) and Azolla oil (340 cP at 16 OC, 200 cP at 
24.7 OC and 105 cP at 34.7 OC) were used instead of water in 4 inch pipeline and 

3 inch pipeline, respectively. It was found that the sand MTC increased slightly 

as the fluid viscosity increased (from 1 to 20 cP). However, when the flow 

become laminar (viscosity higher than 105 cP), the MTC decreased as the fluid 

viscosity increased. 

The transport velocity seemed to decrease at high fluid viscosity. Obviously 

further analysis and more detailed experiments would be required to give more 

definitive explanation and prediction. In general, correlations from previous 

studies failed to predict the observed sand transport velocities. Therefore, new 

correlation would be also required to better account for fluid viscosity. 
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 Table 1: Review of range of experimental variables for sand/water in pipes 

Researcher 
Solids 
Conc. 

(vol. %) 

Pipe 
Diameter 

(m) 

Particle 
mean 

diameter 
x10-3 (m) 

liquid 
density 

(kg/m3) 

Liquid 
viscosity 

x10-3 
(kg/ms) 

Blatch (1906) 5.35 0.025 
0.190 and 

0.580 
1000 1 

Durand (1953) 2 to 30 
0.038 and 

0.686 
0.200 and 

2.470 
1000 1 

Howard (1939) 10 to 40 0.102 0.382 1000 1 

Spells (1955) 2 to 33 
0.076 and 

0.300 
0.080 and 

0.820 
997.7 1 

Thomas (1962) 1 to 15 
0.013 and 

0.813 
0.190 and 

3.800 
999.7 1 

Sinclair (1962) 5 to 20 0.025 0.495 997 1 

Weisman (1963) 0.2 to 33 
0.013 and 

0.610 
0.013 and 

2.000 
998 1 

Zandi and Govators 
(1967) 

5.25 to 
33 

0.025 and 
0.610 

0.100 and 
1.270 

1000 1 

Smith (1973) 12.29 0.154 3.785 1000 1 

Smith (1973) 8.3 0.269 0.029 1000 1 

Shook et al (1973) 5.36 0.052 0.2105 993.6 1 

Kokpinar and Gogus 
(2001) 

1 to 30 
0.025 and 

0.076 
0.230 and 

5.340 
1000 1 

Al-lababidi et al 
(2007) 

0.05 0.052 0.2 1000 1 



  

Table 2: Review of range of experimental variables for viscous fluids as a liquid carrier 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

Researcher Solid/Liquid 
Solids Conc. 

(vol. %) 
Pipe Diameter 

(m) 

Particle 
mean 

diameter 
x10-3 (m) 

liquid density 
(kg/m3) 

Liquid 
viscosity 

x10-3 
(kg/ms) 

Shook et al (1973) 
sand/ethylene 

glycol 
5.42 0.052 0.2105 1096 5.79 

Shook et al (1973) 
sand/ethylene 

glycol 
5.3 0.052 0.2105 1116.8 14 

Shook et al (1973) 
sand/ethylene 

glycol 
5.3 0.052 0.2105 1116.8 14 

Shook et al (1973) 
sand/ethylene 

glycol 
5.24 0.052 0.2105 1132.6 38.1 

Shook et al (1973) 
sand/ethylene 

glycol 
5.18 0.052 0.718 1121 21.4 

Shook et al (1973) sand/CaCl2 brine 5.42 0.052 0.2105 1150 1.8 

Shook et al (1973) sand/CaCl2 brine 5.42 0.052 0.2105 1250 2.91 

Shook et al (1973) sand/CaCl2 brine 5.42 0.052 0.2105 1350 5.6 

Shook et al (1973) iron/kerosense 5 to 20 0.025 0.495 779 1.238 

Sinclair (1962) sand/kerosene 20 0.025 
0.833, 
0.208 

779 1.238 

Smith (1973) potash/brine 30-50 0.052 0.3 to 0.4 1140 to 1200 1.14 to 1.2 

Wasp et al (1970) iron/kerosense 1 to 18 0.0254 0.138 900 1.9 to 2.0 

Gillies et al (1997) sand/oil 41-55 0.052 
o.2, 0.1, 

0.01 
872 78 



  

Table-3: Sand transport velocity and flow regimes for 50 lb/1000 bbl 

 

 

 

 

 

 

 
Table-3: Sand transport velocity and flow regimes for 200 lb/1000 bbl 

 

 

 

 

 

 

 

Fluids 
Liquid 

Viscosity(kg/m.s) 
Transport 

velocity (m/s) 
Pipe 

Diameter (m) 
Re Sand/oil flow regimes 

Water 0.001 0.5 0.1 50000.0 sand dunes 

CMC solution (7cP) 0.007 0.7 0.1 10000.0 sand dunes 

CMC solution (20cP) 0.02 0.75 0.1 3750.0 connected-sand dunes 

Oil 105cP 0.105 0.35 0.0776 226.33 sliding sand bed 

Oil 200cP 0.200 0.25 0.0776 85.36 sliding sand bed 

Oil 340cP 0.340 0.07 0.0776 14.11 sliding sand bed 

Fluids 
Liquid Viscosity 

cp (kg/m.s) 
Transport  velocity  

(m/s) 

Pipe 
Diameter 

(m) 
Re Sand/oil flow regimes 

Water 0.001 0.7 0.1 70000.0 sand dunes 

CMC solution 
(7cP) 

0.007 0.75 0.1 10714.2 sand dunes 

CMC solution 
(20cP) 

0.02 0.8 0.1 4000.0 connected-sand dunes 

Oil 105cP 0.105 0.4 0.0776 291.00 sliding sand bed 

Oil 200cP 0.200 0.3 0.0776 102.4 sliding sand bed 

Oil 340cP 0.340 0.2 0.0776 40.31 sliding sand bed 



  

 
 Table 5: Comparisons between sand transport in this work with selected correlations for 200lb/1000bbl 

 

 

 

Liquid  

viscosity  

(cP) 

Minimum Transport Velocity, MTC (m/s) 

Experiment 

Oroskar and 

Turian 

(1980) 

Salama 

(2000) 

Turian et 

al (1987) 

Kokpinar et al. 

(2001) 

Al-Mutahar 

(2006) 

Wicks 

(1970) 

Danielson 

(2007) 

1  0.7 0.65 0.36 0.87 0.43 0.51 0.92 0.54 

7  0.75 0.54 0.31 0.87 0.13 0.39 0.90 0.44 

20 0.8 0.49 0.28 0.87 0.07 0.33 0.88 0.39 

105 0.4 0.42 0.24 0.86 0.02 0.28 0.87 0.31 

200 0.3 0.39 0.22 0.86 0.01 0.25 0.86 0.29 

340 0.2 0.37 0.21 0.85 0.01 0.23 0.85 0.27 



  

 Experimental investigations were conducted on sand particle behavior and sand transport Velocity.  

 Water and CMC solutions were used as carrying fluids in the 4-inch facility, while Azolla 100 oil was 

used in the 3-inch the tests.  

 It was found that the sand minimum transport condition was influenced by fluid viscosity and the 

sand/liquid flow regimes at transport conditions were different.  

 the sand transport velocity is increasing as viscosity is increased from 1 cP to 20 cP and then decreases 

*Highlights 2


