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Abstract 

 

The reliability of cast components is dependent on the quality of the casting process. This can be 

characterised by the robustness (repeatability) and specific fluid flow characteristics within the 

running system. During this transient filling phase the prevention of free surface turbulence and 

thus oxide entrainment is critical to the mechanical integrity of the component [1,2,3]. Past 

research has highlighted that return waves are major causes of free surface entrainment [4]. To 

reduce the entrainment occurring during the transitional filling of the runner a steady quiescent 

flow must be developed. 

 

Using FLOW-3D
1
, the Froude number was extracted to allow the quantitative assessment of air 

entrainment for four different designs of sump at the end of the runner. The results show that, for 

the designs used, the addition of a correctly designed sump can be advantageous. However, an 

incorrect design may reduce the Froude number but can greatly increase the persistence of the 

return wave and entrainment and is therefore extremely detrimental to the cast component. 

Additionally, the in-gate design is of utmost importance in controlling the back pressure and thus 

the persistence of the back wave between the in-gate and the downsprue exit.  This has a direct 

effect of the level of oxide entrainment. 

 

Introduction 

 

The return wave [1] is known to be a highly entraining flow regime common in many casting 

systems during the period of transient filling. The use of low profile runners, i.e. a height of less 

than the sessile drop height of the fluid has been advocated to stop this regime occurring [5,6]. 

However this is not always possible due to; manufacturing constraints, lack of flow control for 

multiple gated systems etc.  

 

 

 

Figure 1.  Highly entraining return wave 

 
1
FLOW-3D is a CFD software developed by Flow Science Inc; 683 Harkle Rd. Ste A, Santa Fe, NM  87505 
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The availability of quantitative data will allow the casting engineer to optimise the running 

system design to improve casting integrity. The Froude number has been used in casting 

applications previously for uphill teeming of steel ingots [7]. It has been proposed that it would 

be useful in the assessment of the tendency towards the development of waves in the running 

system [8]. Planned future work will correlate this criterion with experimental data.  

 

Assessment Criterion 

 

The Froude number (Fr) is defined as the ratio of initial and gravitational forces and can be 

represented by Equation 1 & 2: 
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Where; ρ is density (kgm
-3

), l is characteristic length (m), v is characteristic velocity (ms
-1

), and g 

is the gravitational acceleration (ms
-2

). 

 

The Froude number has commonly been used by civil engineers to assess air entrainment in 

hydraulic structures. Research has shown a Froude Number >1.7 entrains air [9] [Figure 2]. 

 

 
Figure 2. Entrainment magnitude schematic [9] 

 

The Froude number has been modified to allow quantitative assessment of return waves as seen 

in Equation 3. 
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Where v1 is the average entry velocity and v2 is the average return wave velocity as depicted in 

Figure 3. A sub-routine has been written for FLOW-3D to allow the extraction of this criterion at 

a predetermined time period.  

 

To obtain the Fr number variables are defined for the subroutine in an input file. These are: cell 

plane and mesh block in which to undertake the calculation, cell values for both the top and 

bottom of the runner, height at which to scan to find the metal front, and the predetermined time 

step at which to undertake the operation.  

 

The sub-routine takes the following steps to obtain the Fr number for each predetermined time 

step (Figure 3): 

 

1. The cells along the predefined plane at the defined height are scanned until a cell with 

fluid is detected.  



2. The cells in the vertical plane are then scanned to check they are full of fluid. If the cells 

in this column are not full of fluid the next column is assessed until the first column of 

full fluid cells is found. 

3. From the predefined top cell the column is scanned searching for a change in flow 

direction. If more than one change of flow direction is found an output of -1 is given to 

indicate turbulent flow. 

4. The distance from the cell where the flow direction changes to the predefined bottom cell 

in the runner is labelled l. 

5. The average velocities v1 and v2 are calculated. 

6. The Fr number is then calculated using the values of l, v1 and v2 obtained using Equation 

3. This is then output to a text file. 
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Figure 3. 2D Return wave showing Fr calculation method 

 

Sumps 

 

The addition of a sump to a casting running system has historically had different levels of 

success. Two main reasons for addition have been identified. The first is to capture the initial 

fluid volume which is believed to contain the highest concentration of oxide films and other 

inclusions, thus stopping this fluid volume entering the casting [10]. For this reason the sump is 

often also known as a ‘dross trap’. The second is to dissipate energy so as to reduce free surface 

turbulence during the transient filling of the running system [11].  

 

Experimental Design 

 

A simple running system was designed which conformed to known ‘best practice principles’ for 

a medium sized aluminium casting using a mass flow rate of 2.54 kgs
-1

 and a sprue exit velocity 

of 3.5 ms
-1

 [2] (Figure 4). Three different in-gate heights and three different sump heights, in 

addition to a “no sump” case were chosen. A full experimental matrix was simulated and the Fr 

number data extracted (Table I). 

 

As can be seen in Figure 4 not all of the down sprue was modelled. This was to save computation 

time. However enough downsprue was modelled to allow a parabolic fluid front to form before 



impacting with the runner bar, using a pressure equivalent to a total head height of 0.6 m. 

Therefore the results are in no way affected.  
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Downsprue (not 

to scale) 
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Modelled 
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D In-gate 
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Figure 4. Running system designed to best practice 

principles. (Trial 5) 

  

 

Results 

 

The extracted Fr number results were integrated with respect to time to give a total damage value 

for each trial (Table I).  

 

Table I: Trial Matrix and Results 

Trial 
Sump height 

(mm) 
In-gate height 

(mm) 
Total Fr 

Running system 
Filling Time (s) 

1 500 25 11646.13 1.93 

2 500 50 11420.91 1.85 

3 500 100 8170.50 1.48 

4 250 25 9892.41 2.03 

5 250 50 8520.82 1.73 

6 250 100 6498.81 1.42 

7 125 25 10230.44 2.00 

8 125 50 8888.40 1.75 

9 125 100 6058.59 1.27 

10 0 25 10071.36 1.76 

11 0 50 9368.87 1.65 

12 0 100 7695.52 1.36 

 

Discussion 

 

These results show the best case to be Trial 9 (125 mm sump & 100 mm in-gate) and the worst 

Trial 1 (500 mm Sump & 25 mm In-Gate). The single highest Fr value of 11.96 was in Trial 13 

and the single lowest an Fr of 2.57 in Trial 6, therefore all values exceed the 1.7 entrainment 

threshold. 
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The persistence of the wave has 

a large effect on the total 

damage. The 92% increase in 

the damage for Trial 1 when 

compared to Trail 9 was largely 

due to the increased persistence 

(Figure 6). 

 

Statistical Analysis 

An ANOVA (Analysis of 

Variance) was carried out 

which showed both variables to 

be significant to a 5% 

significance level; the in-gate 

was shown to be the most 

significant at 0.1% compared to 

the sump at 3.3% significance. 

Low level interactions were 

also identified.  
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Figure 6. Fr Number Vs Time Plot for best and worst cases 

 

Conclusions 

 

1. The design of a casting’s in-gate is of upmost importance, as this controls the rate of back 

pressurisation and thus the period required to prime the area between the in-gate and the 

down sprue. 

2. The design of a sump is critical to its effectiveness as an incorrectly designed sump can 

be extremely detrimental to casting integrity. 

3. Interaction is present between the sump and in-gate design and casting integrity, so 

therefore the system must be designed as a whole. 

 

 

 

Figure 5. Response surface: Fr v. sump height v. in-gate 
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