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Abstract

This paper proposes an efficient aimpoint tracking filter for high-range

resolution FMCW radar seekers. A modified probabilistic data association

scheme is devised to deal with closely located measurements generated by

scatterers of an extended target and multipath clutter. In order to discriminate

the aimpoint measurements from others, an approximate target range profile

is used for calculating likelihoods of the validated measurements. Simulation

results show the effectiveness and performance of the proposed approach.



1 Introduction

The surface-to-air missile(SAM) system has been developed as a layered defense

to defeat all ranges of threats from aerial targets [1–3]. As an efficient way for

intercepting highly maneuvering aerial targets, a hit-to-kill requirement has the

increasing importance in modern SAMs [1]. To make the hit-to-kill guidance

feasible, it is desirable to adopt a high-range resolution(or wideband) radar

seeker which provides not only the kinematic states of an aerial target but also

its size and shape. The additional target information is very useful to analyze

the vulnerability of an aerial target and precisely track an aimpoint of target

interception as well [4–6]. Nevertheless, very few research results on this issue

have been available so far.

The target tracking using a wideband FMCW radar seeker is inherently

accompanied by a difficult data association problem. Unlike a narrowband

radar seeker which recognizes a target as a single object, a wideband seeker

potentially offers multiple measurements corresponding to individual scatterers

within the target extent [7]. It leads to the complex radar cross section(RCS)

characteristics of a target due to multiple closely located scatterers, which make

the target tracking problem complicated. To have a good grasp on this problem,

it is necessary to understand the typical signal processing scheme of the FMCW

radar seekers based on the triangular frequency modulation technique [8, 9].

The seeker receives signals originated from scatterers at interested sections

of an aerial target and calculates its power spectrum in each up and down

chirp period [10]. The frequency with maximum power is usually defined as

the target frequency measurement under the assumption that the power of an

interested scatterer is dominant compared to others. Then, its relative range

and range rate are obtained by associating the frequency measurements in each

chirp period [8]. However, this conventional measurement generation principle

could not be applied for extended target tracking using wideband seekers. This

is because, if there exist multiple target measurements, numerous local peaks of

the power spectrum appear in each chirp period. For such case, a well-defined

association logic is required for target detection.

Meanwhile, the complex RCS characteristics of an aerial target is an another

factor making the problem more difficult. As shown in Fig. 1, the RCS of an
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aerial target tends to be mainly determined by its nose, body and tail sections.

The main scatterers are close to each other, thus they have very similar values

of range and range rate with respect to the seeker. Besides, if the aimpoint

of an aerial target has the smaller RCS value than the others or even the

target detection threshold, it might not be detected in occasion. Therefore,

the aimpoint tracking using wideband FMCW seeker can be cast into the

target tracking problem with multiple adjacent measurements and a relatively

small detection probability as well. Unfortunately, closely located multiple

measurements might severely deteriorate the aimpoint tracking performance

of the conventional data association filters.

To tackle the above mentioned problems, a precise aimpoint tracking filter is

developed in range-Doppler domain. The main idea of the proposed approach is

to consider an approximated target range profile and to modify the association

probability of the conventional probabilistic data association(PDA) scheme in

[11]. If the typical length of an arieal target are roughly known from a wideband

seeker, the a priori information on kinematic relation between dominant radar

scatterers can be generated and the most probable position of an aimpoint

can be guessed as well [12]. Since the aimpoint measurements are randomly

distributed around the predicted aimpoint, the aimpoint appearance is described

as a likelihood function. To effectively separate the aimpoint measurement

from others, the data association procedure of the existing PDA filter(PDAF)

is redefined using our approximate target range profile. In consequence, the

proposed filter shows the reliable aimpoint tracking performance even when

the aimpoint detection probability is relatively low. Moreover, the proposed

aimpoint tracking algorithm can be implemented in real-time because of its

simple filter structure.
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2 System Model for Filter Design in Range-

Doppler Domain

2.1 Measurement Model

Once the time delay between transmitted and received signals of a FMCW radar

based on triangular modulation is converted to a frequency differences(or beat

frequencies) as shown in Fig. 2, the target range and range rate measurements

are obtained from the beat frequencies.

The transmitted signal is assumed as

sT (t) = AT cos(ϕT (t)), (1)

where t is the continuous time index. AT and ϕT are the gain and phase of the

transmitted sinusoidal signal, respectively. The frequency of the transmitted

signal in the FMCW radar is linearly varied in each chirp period. For t ∈
[−Ts/2, Ts/2),

fT (t) = fc + sc
B

Ts
t, sc ,

 +1, up-chirp

−1, down-chirp
. (2)

In the above, fc is the center frequency, B is the sweep bandwidth and Ts is the

sweep time.

Integrating (2) from −Ts/2 to t yields the phase of sT (t).

ϕT (t) , 2π

∫ t

−Ts2
fT (t)dt = 2π

(
fc t+ sc

1

2

B

Ts
t2
)
− ϕ0, (3)

where ϕ0 denotes an integration constant.

For the FMCW radar seeker with conventional superheterodyne receiver, the

received signal goes through the mixer and then is amplified in the intermediate

frequency(IF) band. The received signal is used as the reference signal to detect

target reflection signal and frequency. By passing the received signal within the

IF band through the mixer again, the beat signal sb is obtained.

sb(t) = Ab cos(∆ϕb(t)), ∆ϕb(t) = ϕT (t)− ϕT (t− τ) (4)

In the above equation, Ab and ∆ϕb are the gain and phase of the beat signal,

respectively. τ = 2R+Ṙt
c is the time delay between the transmitted and received

signal where R and Ṙ mean the range and range rate. c is the speed of light.
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If τ
Ts
� 1 and the range-range rate coupling is negligible, the phase of the beat

signal is approximated as

∆ϕb(t)≈2π

[
2fcR

c
+

(
sc

2BR

Tsc
+

2fcṘ

c

)
t

]
(5)

Thus, the beat frequency is obtained according to

fb ,
d

dt
∆ϕb(t) ≈ sc

2BR

Tsc
+

2fcṘ

c
(6)

Finally, the measurement equation is derived as follows:

yk = Hkxk + vk. (7)

Letting the target acceleration in vertical plane be atz, the target state vector

x, the measurement y, and the measurement matrix H in the above equation

are

x ,
[
R Ṙ atz

]T
, y , fb, H ,

[
sc

2B
Tsc

2fc
c 0

]
.

In (7), the measurement noise v is assumed as a zero-mean and is normally

distributed with covariance Rv.

Note that since the distance between the dominant scatterers of an aerial target

is negligible compared to the range from the SAM, the measurement model of

the scatterers is regarded as approximately the same.

2.2 Target Motion Model

Let us consider the engagement geometry in the vertical plane. In Fig. 3,

(XI , ZI) represents the inertial frame, R is the range and λθ is the LOS angle.

ωy = λ̇θ indicates the vertical LOS rate. amz , vm, γm are the pitch acceleration,

velocity and flight path angle of the missile. Similarly, atz, vm and γt are the

quantities for the target. The kinematic relations are given as follows:

Ṙ = vt cos(γt − λθ)− vm cos(γm − λθ) (8)

Rωy = vt sin(γt − λθ) − vm sin(γm − λθ) (9)

Under the piecewise constant velocity assumption, differentiating (8) and

substituting (9) into the result yield

R̈−Rω2
y≈vm sin(γm − λθ)γ̇m − vt sin(γt − λθ)γ̇t
=atz − amz .

(10)
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The unknown target acceleration is modeled as

ȧtz = −1/τR · atz + wR, (11)

where τR is the time constant for target maneuver. wR is the target jerk assumed

to be a zero-mean white noise with variance qR.

Using (8)∼(11), the target dynamics model is written as

ẋ(t) = Ax(t) + u(t) +Buc(t) (12)

where the unknown incremental acceleration u, the known input uc, and the

relevant matrices are defined as

u,


0

0

wR

 , uc=−amz , A,


0 1 0

ω2
y 0 1

0 0 − 1
τR

 , B,


0

1

0

 .
If T/τR � 1, ωyT � 1 and ωyτR � 1 for the signal processing time duration T

of an FMCW radar seeker, the target motion model in discrete-time is obtained

from (12).

xk+1 = Fxk + uk + Gcuck, uk ∼ N (0, Qk), (13)

F =


1 T T 2

2

0 1 T

0 0 1

, Gc =


T 2

2

T

0

, Q = qR


T 5

20
T 4

8
T 3

6

T 4

8
T 3

3
T 2

2

T 3

6
T 2

2 T

 .
In (13), k is the discrete time index. N (µ, σ2) is the normal distribution with

mean µ and standard deviation σ. Note that the proposed algorithm requires

the standing assumption that the target motion is described by the Singer model

(11). If this is not satisfied as in [13], the aimpoint tracking performance of

the proposed filter could be degraded. For such case, the underlying design

concept of our aimpoint tracking filter should be associated with the existing

target maneuver detection techniques based on an interacting multiple model

tracking, multiple hypotheses tracking, and so on [14].

3 Aimpoint Tracking Filter Using an Approxi-

mate Target Range Profile

This section introduces an aimpoint measurement appearance model used for

enhancing the performance of the conventional PDAF and outlines the proposed
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aimpoint tracking algorithm. For convenience, the aimpoint is set as the nose

section of an aerial target but it is changeable.

The following assumptions are made in order to develop an approximate

measurement appearance model associated with the target range profile given

by a seeker.

A1. The measurement corresponding to the peak power spectrum is usually

originated from the body center of an aerial target as shown in Fig. 1.

A2. The range difference dn between aimpoint(nose) and body center is

modeled as the Gaussian distribution with mean d̄n and variance σ2
n:

dn ∼ N (d̄n, σ
2
n).

From Fig. 1, the measurements corresponding to the peak power spectrum

are mostly originated from the body center or the tail. The assumption

A1 is reasonable since, through the validation process in the PDAF, the tail

measurement is discarded from other measurements. The parameters d̄n and

σ2
n required for A2 are regarded as known constants because these can be

calculated using the additional target information provided by a wideband radar

seeker [12]. For instance, d̄n is readily calculated from the length of a target.

When a target with length L is approaching, the range difference between

aimpoint and body center section could be approximated as d̄n ≈ −L/2. σn

reflects the error of the above approximation.

Based on A1 and A2, the aimpoint measurement appearance is approximated

as follows:

pn(y(i))= |2πσ2
f |−1/2 · e

− 1

2σ2
f

(y(i)−ŷn)2
, i = 1 ∼ Ny,

ŷn = ypeak − sṘsc 2BTc d̄n,

sṘ =

 +1, Ṙ > 0 (receding target)

−1, Ṙ ≤ 0 (approaching target)

(14)

In (14), y(i) is ith frequency measurement obtained from FMCW radar seeker.

Ny is the number of measurements. σf is the standard deviation of the frequency

measurement noise, which is computed as σf = 2B
Tcσn. ŷn is the predicted

aimpoint frequency measurement.
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Note that ypeak is the frequency measurement corresponding to the peak

power spectrum provided by the signal processing unit of a FMCW radar seeker

and is considered to be generated by the body center of a target from the

assumption A1. 2B
Tc d̄n is the difference between frequency measurements of the

aimpoint and the body center. The predicted aimpoint frequency measurement

ŷn depends on the relative geometry. It is bigger than ypeak by 2B
Tc d̄n when the

target approaches the seeker. On the other hand, in the case of the receding

target, it is smaller than ypeak by 2B
Tc d̄n.

From (14), our aimpoint measurement appearance model pn(y(i)) provides the

probability that the obtained measurement is originated from the aimpoint. It

will have a large value, if the frequency measurement y(i) is nearly equivalent

with the predicted aimpoint frequency measurement ŷn as illustrated in Fig. 4.

In accordance, the aimpoint appearance model pn(y(i)) serves as a likelihood

function to represent whether the given measurement is similar with the

aimpoint measurement.

Since there exist multi-path clutters in real situations, the probabilistic

model of clutter appearance pc(y) is also taken into account. For simplicity,

it is assumed to be uniformly distributed as follows:

pc(y) = 1/(ymax − ymin) (15)

In (15), ymax and ymin are regarded as the known frequencies determined by

the detection region of an FMCW radar seeker. Thus, pc(y) can be computed

in advance.

Now, incorporating (14) with (15) yields the following approximate

measurement appearance model.

l(y(i)) = pn(y(i))/pc(y) (16)

The measurement appearance model l(y(i)) facilitates the aimpoint tracking

performance improvement of the conventional PDAF. This is because the

aimpoint measurement can be efficiently discriminated from others by using

the modified data association probability.

The proposed algorithm is summarized as follows:

1) The innovation sequence νk(i), i = 0 ∼ Ny and its covariance Sk are

defined using the a priori state estimate and its error covariance of the
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Kalman filter.

x̂k|k−1 = F x̂k−1|k−1,

Pk|k−1 = FPk−1|k−1F
T +Qk,

νk(i) = yk(i)− ŷk|k−1, ŷk|k−1 = Hkx̂k|k−1,

Sk = HkPk|k−1H
T
k +Rk.

(17)

2) The measurement validation is performed to eliminate measurements

which are less likely to be originated from the aimpoint section. The

validated measurements satisfy the constraint (18) where γ is the threshold

for measurement validation.

V(k, γ)=
{
y : νk(i)TS−1k νk(i) ≤ γ

}
(18)

3) The association probabilities are redefined by applying the aimpoint

appearance model.

βk(i)=


cn
pc(y)

Lk(i) , i=1 ∼ Nvy

cn|(2π)2Skσ
2
f |

1
2Nvy

1− PGPD
VkPD

, i=0

Lk(i)= exp

{
−
(
νk(i)2

2Sk
+

(yk(i)− ŷn)2

2σ2
f

)}
(19)

In (19), cn is the normalizing constant, PG is the gating probability, PD is

the detection probability, Vk is the volume of the measurement validation

region, and Nvy is the number of validated measurements. i = 0 means

all measurements are false-alarmed.

4) The measurement update is performed as in the standard PDAF.

x̂k|k=x̂k|k−1 + Pk|k−1H
T
k S
−1
k

Pk|k=βk(0)Pk|k−1+
(
1−βk(0)

)(
Pk|k−1−WkSkW

T
k

)
+Wk

(
Σ
Nvy
i=1 βk(i)νk(i)2−ν̄2k

)
WT
k (20)

Wk=Pk|k−1H
T
k S
−1
k , ν̄k = Σ

Nvy
i=1 βk(i)νk(i)

It is remarkable that the modified association probability (19) utilizes the

kinematic relation between dominant scatterers to enhance the data association

performance. This enables us to effectively avoid the performance deterioration

of the existing aimpoint tracking filter in the cluttered environment with

multiple closely located measurements.
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4 Simulation Result

For the typical engagement scenario shown in Fig. 5, simulations are carried out

to demonstrate the aimpoint tracking performance of the proposed algorithm.

The simulation parameters are given as follows:

PD = 90%, PG = 99%,

T0 = 1.5[sec], Tf = 8.0[sec], T = Ts = 0.01[sec],

Rv = 2.5[kHz], qR = 30, d̄n = 3[m], σn = 1[m]

Note that the range differences between scatterers are nearly constant regardless

of flight time and the range rate differences are negligible. Figure 6 shows that

there are at least two measurements including clutter measurements which are

uniformly distributed with detection probability of 75% and average number of

2.

The range and range rate estimation errors obtained from 100 Monte-Carlo

trials are depicted in Fig. 7 and Fig. 8, respectively. For performance

comparison, the nearest neighborhood filter(NNF) and the standard PDAF

are simulated with the proposed method. It is clear that the existing NNF

and PDAF show poor aimpoint tracking performance. As mentioned with Fig.

5, this is because the scatterers of the aerial target are closely located and the

measurements originated from the body center have higher detection probability

than those from the tail or the

nose. For such reasons, the standard PDAF cannot classify adjacent radar

measurements and thus provides unsatisfactory aimpoint tracking results.

This can also be confirmed by analyzing the residual sequences νk(i) within

the validation gate V(k, γ) in Fig. 9. The standard PDAF validates

the measurements generated from the aimpoint and the body center but

it consistently confuses the body center measurement with the aimpoint

measurement. In contrast, the proposed method is successful in tracking the

aimpoint because it can discriminate the aimpoint measurements from others

using the appearance model (14).

From a wideband seeker, coarse information about the size and/or the type

of an aerial target would be provided for a SAM. Nevertheless, the standard

deviation σf ∝ σn used in our aimpoint appearance model (14) may be uncertain
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in practice. In order to check whether the proposed algorithm is robust against

this uncertainty, the additional simulations are performed for ±50% parameter

variations of σn. The aimpoint tracking results in Fig. 10 show that there is no

noticeable performance degradation even in the

presence of the uncertainty in the parameter σn. It implies that the suggested

method is less sensitive to the imperfectness of the aimpoint appearance model.

5 Conclusion

A novel aimpoint tracking filter was proposed for a wide-band FMCW radar

seeker. To resolve the intrinsic data association problem involved with the

FMCW seeker, the target range profile was approximately modeled as a function

of the length of an aerial target and the closing velocity and used for representing

the aimpoint measurement appearance. The resultant model was applied by

modifying the association probability of the standard PDA method. This

approach made it possible to efficiently separate warhead measurement from

others. From the computer simulations, it was confirmed that the proposed

approach could provide the superior aimpoint tracking performance compared

to the existing methods.
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