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SUMMARY

A glass fibre epoxy resin laminate was prepared from a flexible
thermosetting resin and a 'plain weave' glass cloth. Experiments in
simple tensile creep were carried out on strips cut with their long
dimensions at various angles to the warp threads in the glass cloth. It
was found that each of these strips showed, over the limited range of
loads and times covered, essentially linear creep behaviour. The creep
compliance varied systematically with direction being as much as twenty
times smaller in the warp and weft directions as at 45° to these directions.
It was found that the shape of the creep compliance versus orientation
curves was similar for all times and the behaviour can therefore conveniently
be described by two curves, a master curve of reduced creep compliance as
a function of direction and a curve of reduction factor versus time.

The significance of both these curves is discussed in terms of an
extension of linear viscoelasticlity theory to the case of antisotropic
materials. It is shown that the variation of creep compliance with
direction is similar in form to the variation of elastic compliance with
direction in orthorhombic anisotropic elastic materials and also that the
results are consistent with a similar variation of relaxation time spectrum
with direction.
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Introduction

The linear theories of viscoelasticity as presented by Gross (1953),
Ferry (1961) and other workers are commonly restricted to the incompresse-
ible isotropic case. Extensions to take into account bulk (volume)
effects have been proposed and some experimental work has been reported
to investigate such effects in real materials.

Interest in viscoelastic behaviour in anisotropic media is however,
not well developed. Biot (1954) has investigated the matter theoretically.

In this paper some results of creep measurements on a fibre-glass-
resin laminate, which might be expected to approximate to orthorhombic
symmetry in its mechanical properties, are presented. The results are
discussed in terms of some simple extensions of isotropic linear visco-
elastic theory.

Materials

The glass fibre laminate was prepared from a plain weave glass cloth
(Marglass 121T finish P.703) of density 2.5L4 gm/cc with 27 threads/inch in
both warp and welt. The resin employed was a flexible epoxy resin made
up of 60 parts by weight of Bakelite resin R1877k with 4O parts of
flexibiliser DQ19116.

The laminates were prepared in 9 inch by 9 inch squares each containing
13 layers of glass cloth. The cloth squares were carefully laid with
their warps parallel and stapled together. The individual pieces of cloths
were then fully impregnated with the resin by hand and the whole cured at
about 80°C for 24 hours in a hot press in a suitdble mould. The density
of the laminate was 1.70 gms/cc compared with a resin density of 1.13 gms/cc
and a glass density of 2.54 gms/cc.

The laminate thickness was approximately 1/8 inch.

Experimental

trips approximately %-inch wide and 6 inches long were cut from the
laminates with their long dimensions making sngles of 0, 15, 30, 45, 60,
75 and 90 degrees to the warp direction of the glass cloth.

Each strip of laminate was subjected to a series of creep and recovery
experiments at various constant loads.

The strip was clamped at its upper end to a rigid support. A Turther
clamp at the lower end of the sample supported a small lightweight carrier
to which deadweight creep loads could be added.

Extensions in the sample were observed using a Lamb extensometer having
a gauge length of 2 inches and a sensitivity such that a strain of 10 3
“could be measured to 1%.




The whole apparatus was enclosed in an air thermostat which gave
temperature control to * 1°C. . ~

The following procedure was adopted. The smallest creep load was
applied at the time taken as zero time and creep observed for a period of
2 minutes. The specimen was then allowed to relax, free of load, for a
further period of 1 hour after which the next highest creep load was
applied and the cycle repeated. Seven cycles, with increasing loads, were
carried out on each sample.

The dimensions of each sample were measured with a travelling micro=
scope and micrometer gauge.

Results

The temperature dependence of the creep curves was greater than had
been expected and the degree of temperature control achieved (viz. * 1°C)
was barely adequate. In view of this, care was taken to begin each creep
curve at the same temperature but undoubtedly variations of temperature did
result in some scatter in the results.

A further source of error derived from the use of the Lamb extensometer.
It was found that the forces needed to operate the extensometer were not
negligibly small compared with the creep loads; this results in the stress-
strain curves for a given time not passing through the origin. A first
correction for this error has been applied by subtracting the load at zero
deformation (obtained by extrapolation of the stress-strain relations to
zero strain) from the applied load to give the effective creep load. The
results are presented in terms of this effective creep load.

In Figure 1 the creep data obtained on a sample cut from the sheet
with its long direction at 30° to the warp direction are presented. . The
figure shows creep strain at various given times after application of the
creep load plotted against the (effective) creep load. These curves were
obtained by interpolation from ordinary creep cuxves. The results are
typical of the behaviour of other samples in that they show that at loads
less than 1 kg the load deformation relations are essentially linear.

It follows that for sufficiently low loads the creep behaviour of
the samples may be represented by a creep compliance J(t,e) defined as the
creep strain per unit (effective) applied creep stress. t is the time of
creep in seconds and 6 the angle of orientation of the long dimension of
the sample relative to the warp threads. (Since the creep strains are
small we shall ignore the distinction between creep at constant load and
creep at constant stress; in fact the creep compliances are all computed
with reference to the initial creep stress, i.e. the unstrained cross
sectional area).

The creep compliances were obtained simply from the slopes of the load-
deformation curves in the linear regions and the known sample dimensions.



In Table 1 values of creep compliance, obtained from the creep
data as outlined above, are given for various times of loading and for
samples with various orientations.

These results are also presented graphically in Pigure 2.

Discussion
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The results in Figure 2 suggest that the shapes of the curves of
J(t,8) vs 6 are the same for all times. To test this hypothesis a
quantity Ji defined as,

J(120,45°
Ty = (5,0) H120157) (1)

has been computed and its values are given in Table 2.

Close inspection of Table 2 shows that the values of Jg in each of
the groups corresponding to a given value of 6 do not vary in a systematic
manner with time. The mean value of Jg for each group has therefore been
computed and in Figure 3 is plotted sgainst 6. The variation of the
maximum and minimum values of J(t,0) from the mean in each group is shown
by the length of the vertical lines through the points. We may conclude
from Figure 3 that to a first approximation, at least, Jg can be taken to
be a function of § but not of time. The anisotropic creep behaviour of
this material may therefore, within the limits of this investigation, be
represented by a curve of the form JR vs 6 together with one showing the

‘s o 9(120,45° : . 5 . . .
variation of 7(z,45° vs t. This latter curve is shown in Figure L.
s :

It is of interest to discuss the form of these two curves and in
particular to discuss the form of JR(Q). A starting point for this discussion
may be found in the linear theory of elasticity for anisotropic materials
(see for instance Hearmon (1961)).

Following the notation used by Hearmon (1961) (see p.3 et.seq) we
may describe the stress tensor gij in terms of six components ¢i, gz, ... Og
where 0y = 011, Oz = U2z, 03 = (33, 04 = 023, Os = 015 and og = 012, We
may also describe the strain tensor €13 in terms of components €1, €z; ..v. €5.

The stress-strain relation for the linear elastic case may now be written
(2)

using the usual summation convention and allowing i and j to take values
from one to six. The Sij are now elastic compliances.

ei Sijgj

For the case of orthorhombic symmetry equation (2) becomes




g1

€ 811 Siz2 Siz O 0 0
€2 _ Sz2  Szz O 0 0 Oo
< €3 - ( 8zs O 0 0 > ( o > (5)
€4 Sasq 0 0 . Oa
€5 855 O s
€6 Ses Oe

For a sheet sample cut with the normal to the sheet corresponding to
the three directions the elastic compliance S(6) for temsile loading of a
strip cut with its long dimensions making an angle € to the 1 direction is

S(6) = S11c08% + (2812 + Seg)sin®cos? + Spesin®e (%)

These relations apply to the case of elastic deformations. In
dynamic elastic deformation (i.e. without damping) S; 3 becomes Sij(w)
where o is the (circular) frequency of the deformation.

In the linear viscoelastic theory for isotropic materials the dynamic
properties of the material are represented by a complex dynamic compl iance
I (w), see for example Ferry (1961), the real part of which J'(w) is
essentially related to the energy storage propertles of the material in
dynamic deformation and the imaginary part J“{w) is related to the damping
or energy loss. We will assume that in the anisotropic viscoelastic case
a complex compliance can be defined which is a function of direction within
the material and that this function depends upon the symmetry of the
material in the same way as does the elastic compliance in the simple
elastic case. We can see no support for such an assumption other than its
convenience and tractability.

The complex viscoelastic compliance for an anisotropic material we will
write as J“{j(w) and for a material with orthorhombic symmetry we will expect
that -

J(8) = T711 cos® + (2J1n + Jeg)cos™ sin®e + Jop sin
(5)

by analogy with equation (h)-Jil, Jgg, esss €tc. will be complex function
of w and not functions of 8.

Now according to Gross (1953) p. 13 et seq., we may write, in the
isotropic case, (and with some changes in notation).

3(8) = 3+ 2+ 4(v) (6)

in which J_ is the instantaneous compliance J(o), n is a Newtonian viscosity
coeffizient and ¥(t) a creep function such that ¥(o) = 0 and %\J{ =0at t =o.
t



Similarly the dynamic compliance may be written:

& o= { - ..3:.... 4 |
@) = L3, + ()] + L= L+ 3 ()] (7)
From Gross (1953) p. 36 we now find the Fourier transforms:
«w o
%%(t) = % ~/\ J(w)cos wt dp = - f u/“J"(m)sin ot d  {(8)
, J J

The creep function may therefore be derived from either J/(w), the real
part of the complex dynemic modulus, or J”(w), the imaginary part.

For the anisotropic case we proceed by writing JZ = (2712 + Jeg)
vhence, adopting equations analogous to equation (7), we may write
L.
an(8)

(9)

J3icos% + J;cosgesinge + Jhosin® = {JO(Q) + T (w,8)] + [~

+ J" (w,0 )]

or writing always J = J/ + i J*
¢
J4, cos* + Jt cosZ0sin® + Joosing = JO(G) + I (w,6)

J%, cos®® + J;COSEQSinge + Jhosin®e = - iate) + 3 (w,0) (10)

where J{1, Tz, Jgs Jh1, J%2 and J, are all functions of w but not of 6.

Now we wish to apply Fourier transforms analogous to equations (8)
to the anisotropic case. For such a procedure to be possible J'(w,0) = o
therefore J,(6) must be of the form acos® + Bsin0cos® + ysin% in which
@, B and 7 are independent of w and 6., It follows therefare that J'(w,0)
must also be of this form except that now ¢, B and y are functions of w.
By a similar argument J”(w,0) must be of the same form.

We now use a Fourier transform, analogous to (8), of the fomm

v 80
gﬂé(t’e) =§ fJ’(a),G) cos W dw (11)
o
writing
J(w,8) = cos®* + B sin®cos® + y sin®e
we find

00 )
%‘}é (t,@) = 00849f a(m)cos wh dw + cos®Hsin®o fﬁ(a))cos wt dw
O

o

y 20
+ sino b/\ 7(w)cos ot av (12)
o




which may be written as

¥(t,8) = a(t)cos® + p(t)sin®0cos® + I'(t)sin® + X (13)
Noting that
K = K cos® + 2K cos®0sin® + K sin%

we see that ¥(t,0) is of the fomm

acos®e + Beos®Bsin® + ysino.

Having established the form of JO(G), %T5) and ¥(t,8), it follows that
J(t,0) has the form

J(t,9) = J11(t)cos®d + Ja(t)coszesinae + Joo(t)sin®e (1k)

In Figure % the curve marked 'theoretical® is computed from equation
(14) with Jy1(t), J.(t) and Jo(t), computed from the values of Jy at
° ° ° a
0°, 45° and 90°.

It will be seen that the experimentally observed curve is slightly
less symmetricabout € = 45° than the theoretical curve, but the deviations
are not marked, and correspond to an error in 6 of no more than 5°. Such
an error may, at least in part, arise from poor aligmment of warp and weft
in the several fabric layers.

It is usual in isotropic linear viscoelastic theory to relate the
creep compliance to a distribution of relaxation times f(T) by the relation

.00 -t
¥(5) = ff('r)(l me Myar.

O

Let us, in the anisotropic case, choose to write

00 nt

¥(t,0) = k/ fr,0)(1 -e Tar
O

Let us further suppose that

i

£(1,0) = £1(7) x £2(6)
then

V(%,8)

it

200) [0l - e M

o]

i

£-(0)F(t), say.



Now we have previously established that the creep functions ¥(t,0)

has the form given in equation (13).
It follows that we can now write
2(0) = cos® + B sin®0cos® + 7 sind

in which ¢, B and y are independent of both t and 6.

1
We have furth established the form of J. (€} and . Suppose
av rther establi o( ) 5?57 PP

we can write

— l —
JO(G) = Jofg(e) and T -

whence

L
i

N r2(6)

3(5,8) = £2(0)[7 ¢ + %T + 7(t).

It follows that

t
¢
J(,8) _ I T3

+ P(t)

J(T,0) I+ T

which is independent of 6.

+ F(T)

The reduction of the J(t,0) relations to the Jgp(6) relation by
equation (1) is therefore consistent with a distribution of relaxation

time £(7,8) given by

£(r,0) = (@ cos*6 + Bsin®Ocos® + y sin®9)fi(r)

on this basis the variation of the viscoelastic properties in direction

are completely prescribed.
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Creep compliance J(t,@) as a function of time of loading, and angle of

orientation of sample with respect

to the warp direction,

sSecs

O degrees
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4.28
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6.91
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9.54

Creep compliance in units of 10 10 cm®/dyne.
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Taple 2
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[d
Reduced creep compliance, J(%,0) g igisﬁj as
AV

loading t and angle of orientation 8.

a function of time of

6 degrees
t .
sec,

15

30

b5

60

&)

90

Reduced creep compliance in units 10 +° cm/dyne

S Op S P R S iy 0 L 45 B D GO0 ) S D Sk Sk D S UL R N O D

- 1 " O O (2T P O D W et GO W

20 0.83 k.65 9.31 1k.10  12.91 k.77 1.09

Lo 0.72 L.29 9.5  1k.10 12.55 4.69  0.99

60 0.67 L.27  9.33 ik10  12.76 k.77 0.9

80 0.62 L.16 9.51 14,10 12.49 k.85 0.93

100 0.60 k.07 9.54  1k.10 12.65 L4.85 0.90
120 0.65 %13  9.54 1k10 13.02 5.05  0.90

Mean Value 0.68  L4.26 9.4  1k,a0 12.75 L.83 0.97

Highest Value 0.83 L.65  9.54 - 13,2 5.05  1.09

Lowest Value 0.60 L4.07  9.25 - 12.49 k.69  0.90
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Table 3
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. O
Reduction factor g(i‘?%%) as a function of time

M e 218  1.59(5) 1.35 108 1.05(5) 1.00
G, 45
t secs 20 Lo 50 80 100 120




List of Captions

e - Nﬂﬂﬂ*ﬂn--‘n -

Figure 1

o B Dk e 0 B4

Figure 2

- T

Figure 3

s s o o vy o e

Figure L

99 e S50 NP 04 208 aes BB

The relation between effective creep load and creep
strain at various times after application of the load
for a strip cut with its long dimension at 30° to

the warp direction.

Creep compliance vs sample orientation for various
times after application of the creep load.

The reduced creep compliance, Jn(8), vs. sample
orientation. The points are tﬁe mean values of
Jg(e), at each value of orientation. The vertical
lines with each point indicate the spread, maximum
to minimum, in values within the group.

The reduction factor as a function of time.
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