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ABSTRACT 

Water limitations typically reduce UK wheat yields on average by 1-2 t ha-1, 

although this can be considerably more in extreme drought years. With the 

frequency and intensity of droughts expected to increase under a changing 

climate, an improved understanding of the impacts of drought and better systems 

for agricultural drought monitoring are required. Previous studies, however, have 

found no significant relationship between UK wheat yields and commonly 

employed drought severity indices (DSI). Using historical (1911-2015) daily 

weather data for Cambridge the Standardized Precipitation Index (SPI), the 

Standardized Precipitation and Evapotranspiration Index (SPEI), the Palmer 

Drought Severity Index (PDSI) and the Potential Soil Moisture Deficit (PSMD) 

were calculated on various time steps (e.g. 1-12 months for SPI and SPEI) to 

provide a drought record for the site. A wheat crop growth simulation model 

(Sirius) was then used to simulate the effects of the identified historic droughts 

on wheat yields. The use of the Sirius crop model removed the non-drought 

related yield losses (e.g. disease, pests, and lodging) present in national yield 

records. Using the Spearman’s Rho correlation coefficient (r) the simulated yield 

record was then correlated against the different DSIs. The droughts of 1921, 1976 

and 2010 were found to be the most extreme in term of yield reduction. In 

addition, there were also two noticeable periods of successive yield loss in the 

early 1940s and between 2009 and 2013. All DSIs showed significant (p = 0.05) 

correlations on monthly time steps between April and August. The SPI, SPEI and 

PSMD showed a strong correlation to wheat yields (r = 0.64 to 0.66) on time steps 

incorporating the end of the ‘construction’ and the entirety of the ‘production’ 

phases for wheat growth. The PDSI showed the weakest correlation (r = 0.55), 

although it may be helpful in identifying yield-limiting droughts earlier in the year. 

The research has contributed new scientific insights and understanding of the 

impacts of historic droughts on wheat productivity, and demonstrated the 

application of DSIs in monitoring potentially yield-limiting droughts. The research 

also provides new evidence to support developments in UK food security and 

drought management for agriculture. 
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1 Introduction  

Wheat is the most widely cultivated cereal globally, contributing 20% of total 

dietary calories consumed (Shiferaw et al., 2013). A 40% increase in cereal 

production is needed by 2050 to feed a larger, wealthier population (FAO, 2009). 

However, Hall and Richards, (2013) report of the ‘hard truth’ that the vast majority 

of data indicates that currently the potential yield increase rates fall well below 

that needed to meet future food demands.  

The UK produces a small, but not insignificant proportion of global wheat. Recent 

short intense periods of drought (Kendon et al., 2013; Parry et al., 2013) have 

highlighted the risks to UK wheat production. It is reported that approximately 

30% of the UK wheat crop is grown on soils prone to drought, resulting, on 

average, to a 10% to 20% (£72m) loss in total production (Foulkes, et al., 2007; 

Ober et al., 2011). However, this can be considerably more in severe drought 

years. It is unsurprising then, that stakeholders from across the UK wheat sector 

rank ‘unpredictable weather’ highly among perceived risks to wheat production 

(Ilbery et al., 2013). 

Despite the risks from drought to agriculture in the UK, metrics such as Drought 

Severity indices (DSI) are an underutilized resource (Barker et al., 2016). DSI can 

help describe the magnitude, duration, severity and spatial extent of droughts. 

They often form the primary tool for disseminating drought warnings and 

forecasts (Zargar et al., 2011), and constitute an integral part of drought 

monitoring and early warning systems (M&EW) in many countries. Before a DSI 

is implemented in drought M&EW it is advantageous to determine which is the 

most appropriate for measuring sector specific risks (Quiring and Papakryiakou, 

2003). However the lack of reliable information on drought impacts make this task 

problematic (Bachmair et al., 2016). There is no regional or local database 

documenting drought impacts and trends to the UK wheat sector. Such 

information would allow a comparison between DSI and wheat yield allowing for 

a more sector targeted drought M&EW system.  
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1.1 Background 

This section provides an overview of the importance of UK wheat production 

internationally, the history of wheat production in the UK, and finally an outline of 

the current UK wheat production system.   

 

1.1.1 UK position within global and EU wheat market 

Table 1 shows the leading countries for wheat production, harvested area and 

yield average globally. Wheat is considered a temperate species, making 

conditions particularly favourable in Western Europe (Braun et al., 2010). 

Western Europe produces seven of the ten highest wheat-yielding countries, 

including the UK. The UK’s 8.6 t ha-1 average yield allows its relatively small 

wheat cropped area of 2 million ha to produce approximately 2% of global output 

(305 million t) (FAOSTAT, 2016). Although this remains small compared to 

countries with vast agricultural areas such as China, India, the United States of 

America (USA) and Russia, it remains an important contributor to the European 

market. The European Union (EU) produces more wheat than any nation or 

political-economic union in the world and maintains a large export market 

Table 1 Countries by wheat production (million t), area harvested (million ha)  and yield 

(t ha
-1

) in 2014 (FAOSTAT, 2016) 

Rank	 Country	 Production	
(million	t)	 Rank	 Country	 Area	harvested	

(million	ha)	 Rank	 Country	 Average	
Yield	(t	ha-1)	

1	 China	 2246	 1	 India	 31	 1	 Ireland	 10.0	
2	 India	 1538	 2	 China	 25	 2	 Belgium	 9.4	
3	 USA	 1254	 3	 Russia	 24	 3	 Netherlands	 9.2	
4	 Russia	 910	 4	 USA	 19	 4	 Germany	 8.6	
5	 France	 751	 5	 Australia	 13	 5	 New	Zealand	 8.6	
6	 Canada	 531	 6	 Kazakhstan	 12	 6	 UK	 8.6	
7	 Germany	 451	 7	 Canada	 9	 7	 U.A.E	 7.5	
8	 Australia	 431	 8	 Pakistan	 9	 8	 Denmark	 7.5	
9	 Pakistan	 423	 9	 Turkey	 8	 9	 France	 7.4	
10	 Turkey	 413	 10	 Ukraine	 6	 10	 Zambia	 7.2	
11	 Ukraine	 356	 11	 Iran	 6	 11	 Sweden	 6.8	
12	 UK	 305	 12	 France	 5	 12	 Namibia	 6.7	
13	 Argentina	 274	 13	 Argentina	 5	 13	 Egypt	 6.5	
14	 Kazakhstan	 243	 14	 Germany	 3	 14	 Czech	Republic	 6.5	

15	 Iran	 238	 22	 UK	 2	 15	 Switzerland	 6.2	
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(Barassi & Ghoshray 2007). The UK provided 10.5% of EU wheat in 2014 

(FAOSTAT, 2016) making it a key producer in what is collectively the most 

important wheat growing area (Pohankova et al. 2013).  

 

1.1.2 UK wheat production  

1.1.2.1 Wheat cropped area, yield and management 

Figure 1 shows UK wheat area, wheat yields and agricultural nitrogen application, 

between 1885 and 2015. Over 1.8 million hectares (40% of the UK arable area) 

was dedicated to wheat production in 2015. With outputs valued at £2.03 billion 

(DEFRA, 2016). Contributing significantly to the UK rural economy. Wheat area 

experienced rapid expansion from the mid-1970s, due to wheat’s increased 

productivity compared to barley (Marks & Britton, 1988 cited in Bolton et al. 2015). 

Stabilising during the mid-1980s, with the 5 year moving average (MA) remaining 

just below 2 million ha  ever since, with significant annual fluctuations. These 

fluctuations are a result of farmer’s ability to respond to market pressures (Spink 

et al., 2009) and/or seasonal weather variations. For example, 2008 resulted in a 

14% increase in wheat area as a result of favourable autumn sowing conditions, 

strong market prices and changing attitudes and policy (DEFRA, 2008).   

Figure 1 UK time series of wheat area 1885-2015 (thousand ha
-1

)(DEFRA, 2015a), nitrogenous 

fertiliser application 1961-2002 (thousand t) (FAOSTAT, 2016) and wheat yield 1885-2015 (t ha
-

1
) (DEFRA, 2015c) 
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The UK’s average yield increased just 0.5 t ha-1 between the late 19th century and 

the middle of the 20th century, with 1953 witnessing the first yield above 3 t ha-1. 

During the second half of the twentieth century yields increased dramatically 

(Bonjean et al., 2011), slowing in the 1990s when the rate of improvement 

declined (Spink et al., 2009). Mackay et al., (2011), citing the work of Silvey 

(1978; 1981 and 1986), reported that roughly 50% of yield increase between 

1947 and 1983 could be accredited to advances in plant breeding and selection. 

The remainder was likely to be a consequence of mechanisation, improved soil 

management, fertiliser application and an increase in herbicide and pesticides 

use. Mackay et al. (2011) building on the work of Silvey (1978; 1981 and 1986) 

reported that since 1982 at least 88% of the improvement in cereal yield could be 

attributed to genetic improvements with little evidence that agronomic practices 

have improved yields.  

There is evidence to suggest that yield increases seen in Europe over the last 60 

years are unlikely to be maintained. Spink et al.(2009) report that since 2002 

genetic gains in yield appear to have halted, with some studies suggesting 

stagnation started as early as 1992-1995 (Peltonen-Sainio et al., 2009; Finger, 

2010).  Spink et al. (2009) attribute the recent decline in yield increase to a 

combination of possible factors, including reduced on farm investment and 

management attention, declining market size and profitability of agricultural input 

supplies, reduced investment and innovation, poor profitability of commercial 

plant breeding, constraints on applying new technologies, agricultural polices 

limiting production through restriction on chemical use and the need for farmers 

to invest in environmental schemes. Not all studies attribute the stagnation of 

yield increases to a reduction in genetic and agronomic advances or investment. 

In contrast, Brisson et al. (2010) reported that genetic progress in France has not 

declined, and that depressed yields are more likely a result of climate change 

(high temperatures during grain filling and drought during stem elongation) but 

do not rule out the effect of negative agronomic practices (in particular the decline 

of legumes in cereal production). 
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The required increase in production is constrained more than ever by limited 

resources (Conway, 1998). Therefore, it is likely that more food will need to be 

produced from the same amount, if not less, agricultural land (Godfray et al., 

2010) leading to increased attention on minimizing yield losses from water 

limitations . Recent studies have investigated the potential for irrigation (El Chami 

et al., 2015) the use of film antitranspirants (Kettlewell et al., 2010), cultivar 

improvement (Semenov and Stratonovitch, 2013), varietal performance (Henley, 

2012) and improved soil and agricultural practices (Ghaffari et al., 2002a; Spink 

et al., 2009). Despite many of these adaptation/mitigation options relying on 

accurate measurements of drought risk few studies have managed to correlate 

DSI across different time steps using UK wheat yield data.  

 

1.1.2.2 Contemporary UK wheat production system 

The majority (≈95%) of wheat grown in the UK is winter wheat, which is typically 

sown between September and November. The mild humid climate allows the 

plant to develop through the winter, producing higher yields than spring sown 

varieties (AHDB, 2015a; El Chami et al., 2015). The favorable climate also makes 

UK cereal production among the most water efficient in the world with just 0.3% 

receiving irrigation (Watts et al., 2016). England contains 93% of UK wheat area, 

with a quarter (26%) located in Eastern England (Table 2). Winter wheat requires 

between 180-250 growing days to mature (FAO, 2016). With a growing season 

length of 290 to 310+ days (Met Office using definition Perry and Hollis, 2005) 

and with relatively large fields, fertile soils and flat topography, Eastern England 

is considered ideal for wheat production.  

A full description of UK winter wheat growth is produced by the AHDB (AHDB, 

2015a)., The growing season is split into three phases; the foundation phase 

(sowing to stem elongation), the construction phase (first node to flowering 

(anthesis), and the production phase (anthesis to ripening) (Figure 2) (Tottman 

and Broad, 1987). 
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Table 2 Regional UK wheat averages 2010-2015, and UK plotted wheat cropped area 

(2010) ha per 2 km
2
 grid square, data from (EDINA, 2016) (no data for NI) 

Region  

Area  

(000 ha) 

Production 

(000 t) 

Yield  

(t ha
-1

) 

UK wheat cropped area 2010 

 (ha per 2 km
2

) 

England 1,743 13,634 7.8  

North East 65 501 7.7  

North West & Merseyside 34 202 5.9  

Yorkshire & The Humber 240 1,922 8.0  

East Midlands 353 2,803 7.9  

West Midlands 165 1,227 7.4  

Eastern 487 3,904 8.0  

South East and London 231 1,855 8.0  

South West 167 1,221 7.3  

Wales 22 159 7.1  

Scotland 105 864 8.2  

N. Ireland 9 70 7.5  

United Kingdom 1,880 14,728 7.8  

Figure 2 Winter wheat crop development in the UK based on the Tottman and Broad, (1987) 

decimal code for wheat growth (AHDB, 2015a) 
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1.2 Literature review  

This review addresses the following key questions: 

 

1. What is the relationship between droughts, wheat yield and climate 

change in the UK? 

 

2. How are drought severity indices (DSI) defined and used in agricultural 

drought monitoring and what potential is there for integration with crop 

simulation modelling?; 

 

3. Which crop simulation model (CSM) is the most suitable for evaluating the 

impacts of historic climate variability on UK wheat. 

 

1.2.1 Relationship between drought and wheat yields 

1.2.1.1 Wheats response to water stress 

The UK produces some of the world’s highest yielding wheat (Table 1). However 

average yields are significantly lower than the potential of modern varieties (Spink 

et al., 2009). In 2015 a Lincolnshire farmer achieved the wheat yield world record 

of 16.52 t ha-1 (Jones, 2015). Over double the 2010-2015 average for that region 

(Table 2). Reduced yields result from a number of external pressures including 

pests and disease (2-6% average loss) (Hardwick et al., 2001; Spink et al., 2009), 

lodging (widespread once every 4 years, losses recorded up to 16%) (Berry et 

al., 1998; Sterling et al., 2003), and field accessibility (reduced autumn 

planting/increased spring drilling resulted in a 19% reduction in area in 2013) 

(DEFRA, 2013). However, one of the most detrimental yield impacts is through 

water limitations. It is reported that approximately 30% of the UK wheat crop is 

grown on soils prone to drought causing losses of c1-2 t ha-1 on average, 

equivalent to 10%-20% of total production (Foulkes, et al., 2007) and costing the 

economy c.£72 million a year (Ober et al., 2011). However, this can be 

considerably more in severe drought years. A recent study which interviewed 34 

actors from across the UK wheat sector, including 16 growers ranked 
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‘unpredictable weather’ highly among perceived risks to wheat production (Ilbery 

et al., 2013). The extent of yield loss depends significantly on the timing and 

magnitude of water limitations in relation to sensitive stages of crop development 

(Dodd et al., 2011).  

Wheat is particularly vulnerable to drought stress over a number of key 

phenological stages. During the foundation stage drought can reduce 

germination and increase tiller death (Baker, 1989). In the UK, however, drought 

threat is thought to be negligible during the foundation phase (El Chami et al., 

2015) as there is typically sufficient rainfall and minimal water loss through 

evapotranspiration (ET). However, as ET rates increase over the construction 

phase, the drought risks increase. Stem extension and early booting stage (pollen 

development) is reported to be particularly sensitive to drought. Water stress over 

this period reduces pollen sterility resulting in fewer grains at maturity (Dodd et 

al., 2011a; Ober et al., 2011; Dolferus et al., 2011; Fischer, 1973; Kettlewell et 

al., 2010). During the production phase drought accelerates senescence (Baker, 

1989). Water stress during anthesis (flowering) results in low grain numbers 

reducing yield. Grain filling (up to one month after anthesis) is when the grain 

accumulates more water than dry matter allowing cells to first divide then expand. 

During this period as dry matter growth accelerates, drought stress can cause 

the grain to inadequately fill and heat stress then affects floret fertility, leading to 

a reduction in yield (AHDB, 2015; Trnka et al., 2014). 

It is likely that climate change will cause a decrease in summer precipitation and 

an increase in evaporation rates, resulting in increased soil moisture deficits, 

particularly in the east of England (Gornall et al., 2010; Knox et al., 2010) and 

thus increasing drought risk to crops (Richter and Semenov, 2005). Many studies 

however, predict that under future climates wheat yields are likely to benefit from 

increased radiation use efficiency (RUE) from elevated atmospheric CO2 

concentrations and through earlier maturation, thus avoiding severe summer 

drought effects (Richter and Semenov, 2005). Semenov and Shewry (2011) 

using the Sirius wheat crop model, projected that across Europe relative yield 

loss from drought will be smaller in future. Semenov (2009) reported that modern 
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cultivars would mature almost three weeks earlier under a high emissions 

scenario in the 2050s, increasing yields in East Anglia by 12.5 to 17.5%. 

However, there is evidence to suggest these increases may not materialise.  El 

Chami and Daccache (2015) reported that the increase in drought periods in 

future will result in a yield reduction of between 5.4% and 32-9% in East Anglia. 

This supports Semenov (2009) findings that increased heat stress around 

anthesis could potentially cause substantial yield loss. 

Despite the projected increases in yield in response to climate change, it is also 

recognised that there is potential for extreme losses and crop failures from 

adverse weather conditions to increase in Europe (Trnka et al., 2014). In order to 

assess the possible impacts of a current or future drought quantitative information 

on both the severity of past events and their related impacts is required 

(Naumann et al., 2015).   

 

1.2.1.2 Historic droughts and winter wheat 

Droughts are often non-structural and difficult to quantify, and spread over a large 

spatial area (Wilhite 2000). However negative socio-economic impacts are often 

reported, particularly for agricultural production (Naumann et al., 2015). Table 3 

shows the major reported UK droughts and their documented agricultural 

impacts. The iconic, nationwide 1976 drought had quantifiable impacts including 

a 10-15% reduction in cereal yields and £500m in agricultural losses. However 

not all droughts affect the entirety of the country. Droughts often exhibit 

substantial regional variations in intensity such as those of 2004-2006 and 2010-

2012 (Marsh et al., 2007), making it harder to identify impacts. As a result the 

variability in production on a single farm is often larger than that of a aggregated 

figure from a larger area as the variability tends to be averaged out (Heady et al. 

1954 cited in Marra & Schurle 1994). In addition, some of the extreme UK drought 

episodes occur outside living memory, where documented impacts are rare (e.g. 

1912, 1933-34) (Table 3).  
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Table 3 Characteristics of the major 20
th

 and 21
st

 century droughts and their documented 

impact. Other notable 20
th

 Century droughts reported by Cole & Marsh (2006a) also feature 

 

Drought episode  Details 

2010-2012 

Among the ten most significant one to two year droughts in lowland 
England in the last 100 years (Kendon et al., 2013). By spring, 2012 
severe drought conditions affected much of southern central and eastern 
regions. The Drought was terminated with wettest April to July, 2012 in 
almost 250 years (Kendon et al., 2013). 

Farmers struggled to grow and harvest crops (Kendon et al. (2013). In 
2010 crops were affected by the dry spell in April and May followed by 
continued dry weather during grain filling (June and July) causing stress 
to crops on all soil types (DEFRA, 2010). In  2011 wheat crop yields 
varied widely with the drought in spring and early summer having the 
greatest effect on lighter soils in the south and east (DEFRA, 2011) 

2004-2006 

Drought developed from late autumn 2004 and lasted until early winter 
2006 across much of the English lowlands. There drought episode had a 
very strong regional focus. With the English low lands particularly South 
East experience particular strong summer droughts in 2005 and 2006 
(Marsh 2007, Marsh et al. 2007). 

There is little documented evidence of the effect of the 2004 to 2006 
drought on agriculture. 

 2003 

The driest UK February-October since 1921, episodic across much of the 
UK, with a damp late spring and early summer (Marsh, 2004) 

The soil moisture deficit developed quickly in April  but more erratically 
thereafter, but remaining well above average throughout the summer-
causing problems for the agricultural community(Marsh, 2004). 

1995-1997 

 

 

Third lowest England and Wales 18 month rainfall total. Resulting in a 
major drought with intense period effecting eastern Britain in the summer 
of 1995 (Marsh et al., 2007).  August (1995) rainfall totals were 15% of 
average for most of England (Marsh, 1995). 

Caused £180m agricultural losses (mainly to root crops, vegetables and 
livestock) (Palutikof et al. 1997, cited in Cole & Marsh 2006)  

1990-1992 

 

 

Widespread and protracted rainfall deficiencies. Intense during the 
summer of 1990 in southern and eastern England (Marsh et al., 2007).  

Agriculture impacts felt more in continental Europe than the UK (Marsh et 
al., 1994).  

1983-1984 

 

 

June 1983 to October 1984, borderline Class 1 drought,with no core 
months (Phillips and McGregor, 1998)  

Drought impacts less serve with minor impact on agriculture  
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1976 

May 1975 to August 1976 was the lowest 16 month rainfall in England 
and Wales. Drought was at its most extreme during the summer of 1976 
(Marsh et al., 2007). Although affected the UK as a whole, Intensity most 
extreme across central and southern England (Hamlin & Wright 1978, 
cited in Marsh et al. 2007). 

Substantial affects on agriculture, with more than £500 million in failed 
crops. Cereal yields 10-15 % below the 1970-1974 average (Cole and 
Marsh, 2006b) 

1959 
A major drought, most intense in eastern, Central and North Eastern 
regions, although there was significant spatial variation in intensity 
(Marsh et al., 2007) 

1933-1934 

Major drought episode autumn 1932 to autumn 1934, most intense 
across southern Britain (Marsh et al., 2007).  Low reservoir levels and 
inflows and many woodland fires, it was the first time there was no water 
in the well at Kew since 1914 (Cole and Marsh, 2006b) 

1921-1922 

Autumn 1920 to early 1922 a major drought with second and third lowest 
6 and 12 month rainfall totals respectively (England and Wales), sever 
across much of England and Wales, including east Anglia and the south 
east (Marsh et al., 2007).  

Relatively few reports of impacts (Cole and Marsh, 2006b) 

Other notable 20th century droughts reported by Cole & Marsh (2006a) 

 

1911; 1913; 1914-1915; 1919; 1929; 1937-38; 1941; 1943-44; 1947-1949; 1955-56; 1962-65; 
1972-73; 1988-89 

	

Few studies have attempted to identify the complexity of drought impacts at both 

local and regional scales, with databases documenting impacts and trends for 

individual sectors virtually non-existent (Wilhite et al., 2007). To be able to assess 

the likely impact of an ongoing or potential future drought event sufficient 

information on historic drought severity and impacts is required (Naumann et al., 

2015). However, It is difficult to assess and compare the economic, social, 

environmental and agricultural losses from droughts due to lack of reliable 

historical estimates of impacts (Wilhite 2000 and Quijano et al. 2015). Records 

for UK average wheat yields date back to 1885 with some nationwide drought 

events causing noticeable depression in yields (e.g. 1976 and 1992) (Wreford 

and Adger, 2011). However, some droughts that display a strong regional focus 

appear not to have affected national yields (e.g. 2004-2006). It is hard to provide 

a regional perspective of yield-drought relationships due to the limited temporal 
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span of regional records (1999-2015) (DEFRA, 2015a). In addition, the rapid 

increase in yields (1.2% yr-1) (Shearman et al., 2005) over the 20th century (Figure 

1) means the effects of drought can be masked, although de trending can remove 

some of this uncertainty (Vicente-Serrano et al., 2012). Losses due to drought 

can also be misinterpreted or hidden by yield reductions brought about through 

other pressures such as lodging (Sterling et al., 2003), disease (Fones and Gurr, 

2015) and pest outbreaks (Millet and Miner, 2009). These limitations are likely 

contributing factors to why few studies have compared the effect of historic 

droughts on UK wheat yields. Wreford and Adger (2011) compared the effects of 

recent (1976-2006) droughts on national average wheat yields and reported a 

lessening of drought impacts. However, they do recognize the imprecision of 

using national wheat yields, ignoring the regional influences of drought.   

It has become common practice to use crop simulation models (CSM) to study 

the impacts of historic climate variability on yields (Garcia Y Garcia et al., 2006). 

A CSM is ‘the dynamic simulation of crop growth by numerical integration of 

constituent processes with the aid of computers’’ (Sinclair and Seligman, 1996). 

Matthews and Stephens, (2002) expand on this describing a CSM as a computer 

program describing the dynamics of crop growth in response to the environment, 

on a time step below a growing season. Meinke and Hammer, (1995) used a 

CSM to reconstruct historic peanut yields in Northern Australia, demonstrating 

how a period of less variable, wet summers encouraged industry expansion. Also 

for peanuts Garcia Y Garcia et al. (2006) analysed the impacts of climate 

variability on long-term historic simulated yields in Georgia, USA. Song et al., 

(2006) used long-term (1961-2000) weather data from across China with the 

wheat CSM World Food Studies (WOFOST) to demonstrate yield changes 

because of observed climate change. Few studies however, have used historic 

climate data and a CSM to assess the effects of historic droughts on UK 

agriculture. Environmental growth models have been used to reconstruct the 

effect of historic climate on other biotic processes. Yu and Berry (2016) simulated 

historic drought induced tree mortality in the Thames basin between 1960-2006, 

identifying two peak mortality episodes (1981-87 and 1995-2001).  
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Therefore, by using a CSM with long-term climate data, external influences on 

yield can be removed and just the impact of climate variability on production 

considered, thus allowing for an assessment of potential yield loss from historic 

UK droughts on a modern wheat production system. 

 

1.2.2 Agricultural applications of drought severity indices (DSI) 

The onset, termination and spatial extent of droughts are difficult to determine. 

These difficulties are compounded by the absence of precise measures of 

severity that other hazards possess (e.g. Richter scale, earthquakes). Because 

of this considerable scientific effort has been dedicated to developing tools that 

provide an objective and quantitative evaluation of drought severity (Vicente-

Serrano et al. 2012).  These tools are often referred to as Drought Severity 

Indices (DSI). DSI describe the magnitude, duration, severity and spatial extent 

of droughts and are typically derived from meteorological or hydrological 

variables, such as precipitation, evapotranspiration, streamflow, soil moisture or 

groundwater levels. Converting such data into an index is easier to interpret than 

considering the raw data (Zargar et al., 2011; Wilhite, 2005). It is estimated that 

between 80-150 DSI have been developed (Niemeyer, 2008).  

DSI often form a primary tool for disseminating drought warnings and forecasts 

among entities. Usually through publicly accessible gridded drought situation 

maps (Zargar et al., 2011). There are numerous examples of drought monitoring 

and early warning systems (M&EW) (Table 4); for example, the North American 

Drought Monitor (NADM) provides monthly updates of the PDSI and SPI across 

the North American continent. The European Drought Observatory (EDO) 

provides blended and interpolated monthly SPI from SYNOP station across 

Europe. The SPEI Global Drought Monitor delivers monthly 0.5 degree gridded 

global SPEI. National drought M&EW are also in place, focusing on two European 

Examples; the German Drought Monitor provides daily Soil Moisture Index values 

for across Germany; and the Portuguese Institute of the Sea and Atmosphere  

(IPMA) disseminates monthly SPI, PDSI and soil water (%) throughout Portugal.  
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In the UK, DSI as part of a drought M & EW system are not widely used (Barker 

et al., 2016). Monthly water situation reports for England and its regions are 

produced by the Environment Agency. These reports feature precipitation totals 

for the current month and the last 3, 6 and 12 months, classified based on their 

occurrence percentage. Maps for soil moisture deficits, river flow, and 

groundwater and reservoir storage are also produced. These metrics however 

have little context in terms of quantifying expected impacts nor provide warning 

to specific sectors, leading some to conclude that more easily interpreted DSI are 

an underutilized resource in drought monitoring and management in the UK 

(Lennard et al., 2014). Because of this, few studies in the UK and internationally 

have performed statistically evaluated DSI recommending preferential use of one 

over another, particularly on their relative performance at identifying impacts on 

a particular system (Vicente-Serrano et al., 2012; Bachmair et al., 2016b)  

In a UK context Bachmair et al., (2016) tested four DSI including the SPI and 

SPEI for correlations with regional text-based agricultural impacts from the 

European Drought Impact report Inventory (EDII). It was reported that there was 

significant regional variation in the strength of correlation, with little difference in 

performance of the SPI and SPEI. Although a useful exercise, Bachmair et al., 

(2016b) generalization of impacts to agriculture provides little insight into crop 

specific responses to DSI classification. Vicente-Serrano et al. (2012) correlated 

(Pearson correlation coefficients) six DSI (including the SPI, SPEI and PDSI) with 

de-trended UK national wheat yields between 1960 and 2009. Reporting the 

SPEI showed the strongest correlation (<0.3). More recently Naumann et al. 

Table 4 Drought Monitoring systems employing DSI  

Drought Monitor  Source  

The North American Drought Monitor  https://www.ncdc.noaa.gov/temp-andprecip/dro ught/nadm/indices) 

The European Drought Observatory http://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1111) 

The SPEI Global Drought Monitor  http://sac.csic.es/spei/map /maps.html 

The German Drought Monitor  http://www.ufz.de/index.php?en=37937 

The IPMA (Portugal) https://www.ipma.pt/pt/oclima/observatorio.secas/ 
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(2015) found no significant (p-0.05) correlation to UK de-trended cereal yields 

and the SPI and SPEI at 3 and 12 month time steps.  

The main obstacle in evaluating DSI performance for identifying impacts on a 

specific sector is the lack of reliable information on drought impacts (Bachmair et 

al., 2016). The use of national yield records (e.g. Vicente-Serrano et al., 2014; 

Naumann et al., 2015) has two major limitations. Firstly, the regional variation in 

yield caused by the spatial variability in intensity and duration of droughts in the 

UK (Marsh, 2007) is excluded. And secondly, although de-trending goes some 

way to remove the effects of advances in technological and management 

practices on yield (Vicente-Serrano et al., 2012) it fails to remove other causes of 

yield loss including lodging (Sterling et al., 2003), disease (Fones and Gurr, 2015) 

and pest (Millet and Miner, 2009) outbreaks. Therefore the use of a CSM to 

simulate the impacts of climate variability to a sector (Garcia Y Garcia et al., 2006) 

could provide a localised, long-term data set of simulated drought impacts that 

can provide a more robust analysis between DSI and yield impacts.  

This study focuses on four of the most widely used DSI; the Standardized 

Precipitation Index (SPI) (Mckee et al., 1993); Standardized Precipitation 

Evapotranspiration Index (SPEI) (Vincente-Serrano et al., 2010); Palmer Drought 

Severity Indices (PDSI) (Palmer, 1965); and the Potential Soil Moisture Deficit 

(PSMD) (Knox et al., 1997). The following sections will review each of these 

focusing on their computational differences, strengths, weaknesses and any 

demonstrated relationship to agriculture (in particular wheat). 

 

1.2.2.1 SPI  

The SPI is based on the probability of precipitation for a given time scale. A 20 to 

30 year (50+ optimal) precipitation record (Mckee et al., 1993; Guttman, 1998) is 

fitted to a probability distribution (e.g. gamma or person iii). This is then converted 

to a normal distribution so that the average SPI for a specified time step is zero. 

Deviation from this provides a classification of drought or wet period (Table 5) 

(Wilhite, 2005; World Meteorological Organization, 2012; Vicente-Serrano et al., 
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2012). Complete calculation procedures can be consulted in Mckee et al., (1993) 

and World Meteorological Organization (2012). The SPI is standardized, meaning 

regardless of location the values (classifications) have the same probabilities of 

occurrence. It’s reported that a moderate drought will be classified 9.2 % of the 

time, a severe drought 4.4% of the time and an extreme drought 2.3% of the time 

(Mckee et al., 1993). 

The SPI simplicity, requiring just a single parameter (precipitation) and its ability 

to be computed on different time steps (1-24 months) are its main strengths 

(World Meteorological Organization, 2012). Its weakness lies in its inability to 

account for other drought influencing variables such as reference 

evapotranspiration (ETo). It also assumes that precipitation data has no temporal 

trend, i.e. the climate is becoming wetter or drier (Vicente-Serrano et al., 2012).    

The SPI has been demonstrated to identify impacts on agriculture. Including 

major crop yields in Southeast Anatolia, Turkey (Ozelkan et al., 2016) and for rice 

and wheat in the Indo-Gangetic Region of India (Subash and Mohan, 2011). The 

SPI has been employed in the UK including the aforementioned Vicente-Serrano 

et al., (2012) and Naumann et al., (2015)  studies. As well as studies involving 

drought categorization (Folland et al., 2015), resource management (Lennard et 

Table 5 SPI and SPEI classification 

(Mckee et al. 1993 and World 

Meteorological Organization 2012) 

SPI/SPEI 
Classification 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-.99 to .99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 
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al., 2016; Lennard et al., 2014) and hydrological and meteorological drought 

identification (Barker et al., 2016).  

 

1.2.2.2 SPEI 

The SPEI is based on the calculation procedure of the SPI, with the difference 

that reference evapotranspiration (ETo) is included. A water surplus or deficit for 

each month is calculated by subtracting evapotranspiration from precipitation 

(Vicente-Serrano et al., 2010). A three parameter log-logistic distribution is then 

used to adjust the calculated surplus or deficit. Values can be accumulated at 

different time scales (1-24 months), which are then converted to standard 

deviations from the average (Vicente-Serrano et al., 2012). Comprehensive 

calculation procedures can be referred to in Vicente-Serrano et al., (2010) and 

Beguería et al., (2014). The SPEI adopts the same classification system as the 

SPI (Table 5). With Potopová et al., (2015) reporting a 2% frequency of extreme 

drought a 5% frequency of severe drought and 10% frequency of moderate 

drought. 

The SPEI maintains the simplicity of the SPI computation but provides the 

capacity to account for the effects of ETo on drought formation (Vicente-Serrano 

et al., 2012). However, weather variables to calculate ETo are not always readily 

available (Vicente-Serrano & NCAR 2015).  The SPEI has been applied to a 

number of agricultural impact studies (Beguería et al., 2014), including; the 

effects of drought on  wheat, maize, sugar beet and sunflower in the Republic of 

Moldova (Potopová et al., 2015a), vegetable crops (Potop et al., 2012) and 

eleven agricultural crops, including wheat (Potopová et al., 2015b) in the Czech 

Republic. Potopová et al. (2015) correlated wheat yields with the SPEI on lags 

from 1-12 months in Czech Republic, highlighting specific periods of intensified 

drought risk that can be useful when investigating the potential consequence of 

droughts on agricultural production. The SPEI has had limited agricultural 

applications in the UK. It has, however, been used for drought identification and 

comparison (Spinoni et al., 2015) and in the impact assessments of Vicente-

Serrano et al., (2012) and Naumann et al., (2015).  
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1.2.2.3 PDSI 

The PDSI,  developed in the 1960s (Palmer, 1965), requires precipitation, ETo 

and soil available water capacity (AWC). From these a water balance equation is 

used that features expressions of evapotranspiration, soil recharge, run off and 

surface soil moisture loss (Alley 1984; Jacobi et al., 2013). A full computational 

methodology is described in Alley, (1984). The PDSI provides dimensionless 

values, classified into 11 categories (Table 6). Wilhite, (2005) report that the 

cumulative frequency of the drought classification as Extreme drought 4%, 

severe drought 5-10% and mild to moderate drought 11-27%. 

The PDSI is one of the most widely used DSI, and forms the basis for a number 

of drought M&EW systems (e.g. NADM). Like the SPEI, the PDSI also factors the 

effects of ETo on drought formation. The PDSI has a number of documented 

limitations; it requires the largest number of parameters i.e. ETo, precipitation and 

AWC of the soil; It cannot be calculated on varying time steps like the SPI and 

Table 6 PDSI classification (Lloyd-Hughes and Saunders, 2002) 

PDSI  Classification 

4.00 or more Extremely wet 

3.00 to 3.99 Very wet 

2.00 to 2.99 Moderately wet 

1.00 to 1.99 Slightly wet 

0.50 to 0.99 Incipient wet spell 

0.49 to-0.49 Near normal 

-0.50 to -0.99 Incipient dry spell 

-1.00 to -1.99 Mild drought 

2.00 to -2.99 Moderate drought 

-3.00 to -3.99 Severe drought 

-4 or less Extreme drought 
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SPEI therefore its ability at identifying shorter drought episodes diminishes 

(Vicente-Serrano et al., 2012).  

The PDSI has been applied to agricultural drought monitoring in a wide range of 

environments, including; Canada (Quiring and Papakryiakou, 2003), the Czech 

Republic (Kolár et al., 2014), Greece (Mavromatis, 2007) and China (Wang et al., 

2016) its use for in studies on agriculture in the UK is limited. Todd et al., (2013) 

use the self-calibrated PDSI to analyses historic drought characteristic in 

southeast England.  

 

1.2.2.4 PSMD (!"#$% = 	!"#$%() + +,-% − !%) 

The PSMD (mm) can be estimated on a monthly, weekly or daily time step using 

a simple water balance model. At the start of the season the PSMD is assumed 

to be zero then for each time step (month, week or day) the ETo - precipitation is 

added to the PSMD (ETo – precipitation) for the previous time step. If after heavy 

rainfall the PSMD is less than zero any previous moisture deficit is assumed to 

have been filled and excess water is lost through percolation or runoff (PSMD is 

never below 0) (Rodriguez-Diaz et al., 2007). The seasonal maximum PSMD 

(PSMDMax) can then be used as a drought indicator. The main strengths of the 

PSMD are its simple computation, it does not depend on any site characteristics 

such as AWC, it accounts for the effects of ETo and it does not rely on long term 

weather data that the other DSI require (Rodriguez-Diaz,. et al. 2007).  

The PSMDMax has been shown to have a strong correlation with irrigation needs. 

Knox et al. (1997) use the PSMDMax in an assessment of irrigation requirements 

for main crops in the UK. Downing et al., (2003) used the change in PSMDMax 

under different climate scenarios to estimate changes in irrigation demand in the 

UK in the future; and Silva et al. (2007) estimate irrigation requirements on paddy 

fields in Sri Lanka. However, no study has directly correlated yield loss with the 

PSMDMax for rainfed crops.  
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1.2.3 Wheat crop simulation models (CSM)  

The use of a CSM allows for a comparative analysis between historic climate 

variability and wheat yields. Moreover, the relationship between the long-term 

simulated yield record and four commonly used DSI can be explored. There are 

numerous CSM available. It is therefore necessary to critically evaluate models 

based on their intended use (Bennett et al., 2013). Models vary in complexity. 

The more complex capture a wider range of parameters accounting for genetic 

features and complex plant, water and nitrogen interactions. These however 

often require more parameters, which are not always obtainable (Sadras et al, 

2015).  Brooks & Tobias (1996) recommend using the simplest model that meet 

the needs of the objectives. The simpler the model the easier it is to parameterise, 

interpret and understand (Brooks et al., 2001). Ittersum et al. (2013)  report that 

models used in yield gap analysis should use daily weather data, incorporate 

management practices, be crop specific and should have been validated through 

peer-reviewed publications. Hess and Stephens, (1996) identify constraints that 

have hindered the uptake of the PARCH model in Africa. Although not directly 

related to this study these provide and useful set of criteria desired by the 

selected CSM (Table 7).  

A review based on the criteria set out in Table 7 was conducted for seven widely 

used wheat CSM; AquaCrop, CropSyst, DSSAT, Sirius2005, WOFOST and 

STICS (Table 8). These do not represent all the available wheat CSM. Asseng et 

al., (2013) reported on 27 used in the AgMIP wheat study. The seven reviewed 

in this study were selected through discussion regarding the aims of the research 

with experienced crop modellers.  

There is no evidence of the use of STICS and DAISY for simulating wheat yields 

in the UK and the only mention of CropSyst is reported by Hunt (2008) who cite 

Hanley et al., (2006) as simulating wheat yields under different climate change 

scenarios across England and Scotland. WOFOST has been applied to studies 

investigating yield gaps (Boogaard et al., 2013) and historic trends in wheat yields 

(Supit et al., 2010) across Europe. However, there is no evidence of site-specific 

validation of WOFOST in the UK. In addition the accuracy of WOFOST, STICS 
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and CropSyst at simulating grain yield is reported to be less than other available 

models (Palosuo et al., 2011). Therefore, CropSyst, DAISY, STICS and 

WOFOST were not considered appropriate models for this study. AquaCrop was 

validated to simulate wheat yields in the East Anglia, UK (El Chami and 

Daccache, 2015; El Chami et al., 2015). However, the ‘reasonable’ reported 

accuracy of validation (El Chami et al., 2015) is uninspiring compared to reported 

accuracy of other models e.g Sirius (‘very well’ Richter and Semenov, 2005). In 

addition  (El Chami et al., 2015) is the only documented use of AquaCrop for 

winter wheat simulation in the UK.  

Palosuo et al., (2011) provided a comparison on eight wheat CSM in variable 

European Climates (not including AquaCrop or Sirius) and reported that DSSAT 

was one of the most accurate models for yield simulation. DSSAT has been used 

in UK wheat studies. Falloon et al., (2012) used yields from the Broadbalk field 

experiment at Rothamsted from 1999-2009 to validate a generic cultivar, but 

reported an overestimation of yield. Ghaffari et al., (2002a) calibrated and 

Table 7 Constrains hindering the uptake of the PARCH crop simulation model (Stephens 

and Hess, 1996) and there application for model selection for simulating UK winter wheat 

Stephens and Hess (1996)  Application to this study 

No relevant application  
Has it been used for wheat simulation 

in the UK? 

Not convinced of credibility  
Has it been demonstrated to 

accurately simulate yields?  

Lack of access  Is the model open access? 

Couldn’t understand the model  Is it of intermediate complexity? 

Couldn’t obtain meteorological data  
Are the parameters (weather, cultivar, 

soil) obtainable?  

Lack of technical/intellectual 

support 
 Is there suitable support available to 

aid in calibration?  
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validated the cultivar (cv.) Mercia on 5 soil types for the 1991-1994 period. It was 

reported grain yield simulations were ‘quite good’ (Root Mean Square Difference 

= 0.55 t ha-1). Soltani and Sinclair (2015) reported however that DSSAT requires 

211 parameters, over four times more than simpler models (CropSyst). This 

complexity and the documented difficulty in obtaining modelling parameters 

(Sadras et al., 2015) made DSSAT-Ceres an unsuitable choice for this study.  

Sirius has been demonstrated to accurately simulate grain yield of modern wheat 

cultivars in a wide varitey of enviroments including the UK, Europe, New Zealand 

and USA (Semenov and Doblas-Reyes, 2007) (Figure 22, APPENDICES A) It 

has been extensively used in the UK to assess the impacts of climate change 

(Richter and Semenov, 2005; Semenov, 2009) cultivar adaptation in response to 

climate change (Semenov and Stratonovitch, 2015; Stratonovitch and Semenov, 

2015) crop nitrogen uptake (Jamieson and Semenov, 2000; Semenov et al., 

2007) and disease (Madgwick et al., 2011). It is recognised that Sirius does not 

provide the published operational manual or online support forum that other 

models offer (e.g DSSAT, AquaCrop and STICS). However its simplicity, along 

with technical advice obtained through personal comunication with Rothamsted 

Research overcomes this deficency. 



Table 8 Characteristics of wheat crop simulation models  
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Eu
ro
pe

	

	U
K	

AquaCrop 
(Steduto et al., 2009) ü Simple  (Steduto et al, 2009; 

Asseng et al., 2013)      ü ü ü ü ü ü 

Mkhabela and Bullock 
(2012)  Canadian prairies 

Soddu et al., (2013) in 
Southern Sadinia, Italy 

El Chami et al., (2 015) 
and (El Chami and 

Daccache, 2015) East of 
England 

CropSyst 
(Stockle et al., 2003) ü Simple (Donatelli et al, 1997; 

Asseng et al., 2013) ü û ü ü ü ü 

Benli et al., (2007) in 
Turkey; Anwar et al., (2007) 

in Australia 

Torriani et al., (2007)  
Switzerland; Palosuo et al., 

(2010)  Europe wide 

Hunt, (2008) cite Hanley et 
al., (2006) effects of 

climate change scenarios 
in Scotland and UK 

DAISY 
(Abrahamsen and 

Hansen, 2000) 
ü 

 Complex but flexible, 
recommended users have a 

good understanding of 
agronomic and physical 
processes (University of 

Copenhagen, 2016) 

ü û ü ü ü ü 

Manevski et al., (2016) in 
China; 

(Takac et al., 2011) in 
Slovakia; Palosuo et al., 

(2010) Europe wide; 
Svendsen et al., (1995) in 

Germany 

No application found 

DSSAT (CERES-Wheat)  
(Jones et al., 2003) ü Complex (Soltani and 

Sinclair, 2015) ü ü ü ü ü ü 

Attia et al., (2016) in USA; 
He et al., (2014) in Canada; 
Singh and Kalra, (2016) in 

India.  

Alexandrov and 
Hoogenboom, (2000) in  
Bulgaria; Palosuo et al., 

(2011) Europe; Mihailović et 
al., (2015) in Serbia. 

Ghaffari et al., (2002a) 
South East England; 
Falloon et al., (2012) 

across all  13 UK 
administrative boundaries.  

Sirius 2005 
(Jamieson et al., 1998b; 

Lawless et al., 2005) 
ü Low to intermediate 

complexity  û û ü ü û ü 

Ewert et al., (2002) in 
Arizona, USA;  

Ewert et al., (2002) at 
Braunschweig and Giessen 
in Germany; Vanuytrecht et 

al., (2015) in Belgium 

Semenov, (2009) 18 sites 
across the UK; Brooks et 
al., (2001)at Rothamsted 
and Edinburgh; Crout et 
al., (2014) in England;  

STICS 
(Brisson et al., 2009) ü 

STICS relies on the 
simplification of existing 

models (Brisson et al., 2003) 
ü ü ü ü ü ü 

Hadria et al., (2007) on the 
Haouz plain, Morocco. 

Sansoulet et al., (2014) in 
Eastern Canada  

Coucheney et al., (2015)  
France; Dumont et al., 

(2016) in Belgium; Palosuo 
et al., (2011) across Europe 

No application found 

WOFOST 
(van Diepen and de Wit, 

2009) 
ü Fairly complex database 

structure ü û ü ü û ü 

Song et al., (2006) in China;  
Confalonieri et al.,(2013) in 

Morocco  

Boogard et al (2013) 
Throughout the EU.Palosuo 

et al., (2010) Europe; 
Eitzinger et al., (2001) in 

north-eastern Austria. 
  

No application found  
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1.3 Aim and objectives  

 

1.3.1 Aim 

To assess the impacts of historical drought on UK wheat yields and evaluate the 

performance of DSI in quantifying drought risk. 

 

1.3.2 Objectives   

 

1) To parameterise and validate the Sirius crop simulation model for wheat 

using existing industry field trials and published scientific data; 

 

2) To simulate the impacts of historic climate variability on UK wheat yield, 

and; 

 

3) To assess the performance of selected drought indices for drought 

management for the UK wheat industry and agricultural sector.   
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2 Methodology 

This study uses the Sirius wheat CSM (Jamieson et al., 1998b) to assess the 

impacts of drought on wheat yields in East Anglia together with a suitability 

assessment of DSI for agricultural drought management and early warning.  

The methodology included six key stages;  

 

1) Identify a site in East Anglia with long term historic climate record and 

observed yield data; 

 

2) Calculate the SPI, SPEI, PDSI and PSMD from the long term weather record; 

 

3) Parameterise and validate the Sirius wheat crop model for the defined 

location; 

 

4) Generate simulated historic wheat yield record for at the defined location; 

 

5) Conduct a sensitivity analysis to assess the impacts of contrasting soil types 

and rooting depths on yield, and; 

 

6) Correlate modelled wheat yields with DSI  

 

2.1 Site identification and data collection and processing  

UK wheat cropped area was mapped in ArcGIS using the 2010, 2 km2 gridded 

wheat area data set compiled from the June Agricultural Census (EDINA, 2016). 

This was then compared to the record of Met stations with long term daily climate 

variables (BADC, 2016) and observed yield records from the AHDB 

Recommended List Trials (RLT) (AHDB, 2015b). Figure 3 shows Cambridge, 

Cambridgeshire (52.20 °N, 0.12 °E) in relation to UK wheat area, met stations 

with historic long-term daily variables and observed yield records from the RLT 
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and their underlying soil types. Cambridge was selected as the representative 

site for this study for a number of reasons. Firstly, Cambridge is situated in the 

intense wheat-producing region of East Anglia. Secondly, the close proximity of 

met stations to provide daily weather variables from which a long term daily 

weather record could be assembled. Thirdly, there was a large assembly of yield 

records (for use in model validation) from the UK AHDB RLT for the period 2001-

2015. Finally, the dominant soil series (Evesham 3) for the RLT sites was 

considered representative of that typically used for wheat cultivation, a slowly 

permeable calcareous clayey or fine loamy over clayey soil (Cranfield University, 

2016). 

(B) 

(C) (D
) 

(A) 

Figure 3 (A) Cambridge in relation to the UK (exc N.Ireland) 2010 wheat cropped area (ha/2 km2) (EDINA, 

2016), (B) RLT yield records for two sites in Cambridge and near St Neots in relation to Met stations 
used to compile long term daily climate record. (C) St Neots RLT yields in relation to the locations Soil 
series, (D) Cambridge RLT yields in relation to the location Soil Series   

Cambridge  
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2.1.1 Meteorological summary  

Cambridge provides a well suited location to investigate the effects of climate 

variability on UK wheat production due the surrounding high wheat productivity 

and vulnerability to water stress. The East of England accounted for around 26% 

of the UK wheat area and production in 2015 (DEFRA, 2015b), making it the 

largest wheat producing area in the UK. However, East Anglia is the driest region 

in the UK (Figure 4) with Cambridge receiving, on average less than 580 mm of 

rain a year (Met Office, 2016). ETo is also considerably higher than precipitation 

during the summer months (Figure 5). Almost all of the wheat in the UK is rain-

fed  due to the favourable humid climate and distribution of summer rainfall (El 

Chami et al., 2015). However yield loss is common place due to insufficient 

moisture availability (Foulkes, et al., 2007).  

 

Figure 4 UK Annual averages rainfall (mm) for 
1981-2010 (Met Office, 2016) 
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2.1.2 Long-term climate record  

Assessments of historic drought on agriculture require a long period of climate 

data to provide stochastic stability and ensure sufficient dry years are included 

(El Chami et al., 2015). The central mechanism for models that attempt to 

simulate the effects of drought on yields is the calculation of ETo and the 

depletion of soil water.  Sirius typically calculates ETo using the Penman-

Monteith method (Richter and Semenov, 2005). The SPEI, PDSI and PSMD 

drought indices are based on a climatic water balance derived from precipitation 

and ETo (Vicente-Serrano et al., 2012). The FAO recommends the use of the 

FAO-56 Penman-Monteith equation for calculating ETo as it provides estimates 

that are more consistent with actual crop water use data worldwide (Allen et al., 

1998). Both methods require measurements of air temperature vapour pressure 

(VP), solar radiation and wind speed.  

A 105 year (1911-2015) daily time-step weather series for Cambridge was 

compiled from three Met stations from the Met Office Integrated Data Archive 

System (MIDAS) Land and Marine surface stations data (Met Office, 2012), 

extracted from the British Atmospheric Data Centre. Cambridge Botanic Garden 

Figure 5 Monthly climate averages for Cambridge (1911-2015) 
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(CBG) (Lat: 52.1935, lon:0.13113), Cambridge NIAB (CN) (Lat:52.245, 

Lon:0.10196) and Boxworth: Samson field (BSF) (Lat:52.2515, Lon:0.03094) 

(Figure 3 (B) and Figure 6) In addition, a small period of radiation data was 

received from colleagues at Cambridge NIAB. CN started recording in the late 

1950s. To increase the temporal length of the data set daily weather variables 

were obtained from CBG. To ensure that the data from the two stations can be 

used in conjunction with each other and do not differ considerably in daily climate 

measurements a comparison of daily maximum and minimum temperature and 

precipitation was carried out (Figure 23, Figure 24 and Figure 25 in 

APPENDICES B). There was no overlapping sun hours data for CN and CBG, 

however radiation is unlikely to vary considerably over such a small spatial scale 

(Hess et al., 2015).   Data from BSF and Met Office Hadley Centre Central 

England Temperature data (HadCET) (Parker et al., 1992) was used to patch 

small periods of missing data. These records also showed a very close correlation 

with weather data from CN (Figure 26, Figure 27, Figure 28 and Figure 29 in 

APPENDICES B). 

Figure 6 Temporal composite of daily weather records from Cambridge NIAB 
(CN) , Cambridge Botanic Garden (CBG) and Boxworth Samson Field (BSF) for 
temperature (A), precipitation (B) and radiation (C) 

(B) 

(C) 

(A) 
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2.1.2.1 Temperature (°C)  

Daily maximum and minimum temperature (C°) were patched from the CN, CBG 

and BSF met stations (Figure 6). For single days when data was not recorded at 

either of these stations, the average of day+1 and day-1 was used. If more than a 

single day of data was absent the HadCET (Parker et al., 1992) was used to fill 

in the gaps.  

 

2.1.2.2 Precipitation (mm) 

The daily precipitation record was comprised of recorded values from the CBG 

and CN met stations (Figure 6). 

 

2.1.2.3 Solar radiation (MJ/m2/day) 

A short period (1957-1971) of recorded daily solar radiation (MJ/m2/day) was 

available for CN. Sunshine hours however, recorded at CN and CBG spanned 

the majority of the 1911-2015 period. A record of solar radiation was compiled 

using the Angstrom formula which relates solar radiation to extra-terrestrial 

radiation and recorded sunshine hours (Allen et al., 1998) (Equation 1). Where 

records for sunshine hours were absent recorded, solar radiation (MJ/m2/day) 

(1957-1971) was extracted from CN, or through personal communication with 

colleagues at NIAB, Cambridge (Figure 6). 

!" = 	 %&	 + (&

)

*
!+ Equation 1 

Where   

Rs = Solar or shortwave radiation (MJ/m2/day 

n = actual duration of sunshine (hour) 

N = maximum possible duration of sunshine/daylight (hour) 

n/N = relative sunshine duration  

Ra = extra-terrestrial radiation (MJ/m2/day) 
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as = regression constant, expressing the fraction of extra-terrestrial 

radiation reaching the earth on overcast days (n=0) 

as+bs = fraction of extra-terrestrial radiation reaching the earth on clear 

days (n-N)  

   

2.1.2.4 Wind (m/s at 2 m) 

A record of daily wind speed was not available from the Met office stations around 

Cambridge for 1911-2015 period. As wind speed cannot be readily estimated 

from other variables it is recommended the global average of 2 ms-1 is used  (Allen 

et al. (1998). However a daily record from 1972-2007 was available from the CN 

station, therefore daily averages for each month from 1972-2007 were 

extrapolated across the whole record (1911-2015). 

 

2.1.2.5 Vapour pressure (VP)  

With the absence of recorded variables, including relative humidity and dew point 

temperature, VP was estimated from the daily minimum temperature record 

(Allen et al., 1998) (Equation 2). To improve the accuracy of the estimated VP 

from minimum temperature the VP for CN derived from relative humidity (RH) 

was used to adjust the temperature derived VP. The RMSE was calculated for 

the years that estimated VP from minimum temperature and VP derived from RH 

(1972-2007). Using the Excel solver function the estimated VP from minimum 

temperature was adjusted so that the Relative Root Mean Square Error (RMSE) 

was minimized. The solver function added 0.103 to the estimated VP daily for the 

period. The remaining estimated VP (1911-1972 and 2007-2015) values were 

amended by +0.103.  

 

,º(/01)) = 0.6108exp	(
17.27 ∗ (/01))

/01) + 237.3
) Equation 2 
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2.1.2.6 Reference evapotranspiration (ETo) (mm d-1) 

The Sirius wheat model calculates ETo directly from the weather data provided 

using the Penman-Monteith (PM) method (Richter and Semenov, 2005).The tool 

used to compute PDSI (Jacobi et al., 2013) also calculates ETo directly using the 

Hargreaves method (Hargreaves and Samani, 1982).  The SPEI and PSMD 

however require ETo to be externally calculated. For this daily ETo was 

calculated using the PM method from daily weather values for Cambridge (1911-

2015) using the WaSimET program (Hess, 2000). The SPI does not require ETo 

to be computed.  

 

2.1.3 Observed yield records 

Variety trials, if carried out under optimal management and on sufficient plots size 

are acknowledged as a good source of yield and phenology data (Grassini et al., 

2015), and have been previously used for the validation of Sirius (Madgwick et 

al., 2011).  For this study 10,901 observed yield records from the AHDB 

Recommended List Trials (RLT) (2000-2015)(AHDB, 2016a) from across the UK 

were obtained. The RLT data provides annual records of sowing date, yield, soil 

type, trial location (i.e. latitude and longitude), and nitrogen, phosphorus and 

potassium applications for varieties on the RL at a specific trial site. Trials are 

often carried out in the same locality for a number of years, providing a series of 

yield records. A full description of the RLT protocol can be found on the AHDB 

website (AHDB, 2015b). Two sites, one to the north of Cambridge provided 195 

yield records from 57 cultivars and second near St Neots provided 66 yield 

records from 23 cultivars, for 2000-2011 period. These trials were grown on soils 

representative of that used in UK wheat production (Table 9).  
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2.2 Drought severity indices (DSI) 

The SPI, SPEI, PDSI and PSMD were derived from the 1911-2015 daily weather 

record for Cambridge. The SPI required only monthly precipitation totals (mm), 

the SPEI; monthly precipitation and ETo totals (mm), the PDSI; monthly 

precipitation, temperature averages and soil available water capacity (AWC) and 

the PSMD requiring daily precipitation and ETo (mm). The SPI, SPEI and PDSI 

were computed using widely established computation programs, with all 

parameters set to the recommended defaults for each program to allow for an 

unbiased comparison between each DSI and to represent those typically used.  

 

2.2.1 SPI 

The SPI was calculated using an open source SPI program (SPI_SL_6.exe) 

recommended by the World Meteorological Organisation (WMO), who provide an 

operational manual (WMO, 2012). The program has been employed in a number 

of previous studies  (Dabrowski et al. 2014; Vijaya Kumar et al. 2013; Kgosikoma 

& Batisani 2014; Pratoomchai et al. 2015) and can be downloaded from  

Table 9 Dominant soil series for the RLT field sites near Cambridge (National Soil Resource 

Institute, 2016b) (Figure 3) 

Site Soil series Description / Land use Drought vulnerability  

Cambridge 
Evesham 3 

(411c) 

Slowly permeable calcareous clayey, and 

fine loamy over clayey soils / Winter 

cereals and grassland 

slightly or moderately 

droughty for cereals 

St Neots 
Hanslope 

(411d) 

Slowly permeable calcareous clayey 

soils/ winter cereals with other arable 

crops, some grassland  

slightly deficient for 

arable crops  
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http://drought.unl.edu/MonitoringTools/DownloadableSPIProgram.aspx. The SPI 

was calculated at time steps from 1-12 months from monthly precipitation totals. 

 

2.2.2 SPEI 

Using monthly precipitation and  ETo values from the Cambridge (1911-2015) 

data set  SPEI values at time steps from 1-12 months were calculated within the 

R package SPEI (Beguería and Vicente-Serrano, 2013). This is a widely 

employed method of computing SPEI (Levesque et al. 2013; Dorman et al. 2015; 

Marcos et al. 2015 and Potopová et al. 2015) designed by the developers of SPEI 

(Vincente-Serrano et al., 2010). The R Package allows users to define 

parameters that best fit their specific use. The choice of three probability 

distributions (Log-Logistic, Gamma and Pearsons III) is provided. The 

recommended Log-Logistic was selected for this study. Users are required to 

select from three distribution functions (unbiased probability weighted moment, 

plotting position and maximum likelihood); again, the recommended unbiased 

probability weighted moment was selected. Different kernel functions allow 

previous time steps to be allocated different weights (rectangular, triangular, 

circular and Gaussian) the default rectangular kernel function was selected, 

therefore the highest weight will be given to the observation of the current month.  

 

2.2.3 PDSI 

Most of the studies that use the PDSI do not provide methods of calculation, 

making it difficult to compute PDSI independently. Furthermore the various 

computer codes available for calculating PDSI lack transparency and ease of use 

(Jacobi et al., 2013). To overcome these concerns Jacobi et al. (2013) present 

an easy to use, well documented and transparent MATLAB tool for calculating 

monthly PDSI at any spatial scale and location. Since its publication Jacobi et al.( 

2013) this tool has been extensively applied in drought studies (Gunda et al. 

2016; von Freyberg et al. 2015 and Hess et al. 2016). The tool uses the 

Thornthwaite (1948) method of calculating evapotranspiration  requiring mean 
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monthly temperature and precipitation averages in addition to the latitude of the 

weather station. The PDSI factors in the water content of the soil into its water 

balance equations, requiring AWC to be entered. The AWC for the Evesham 3 

soils series at the Cambridge trial sites was used (150 mm/m) derived from the 

Soil Series Horizon Hydraulic Data set from NATMAP (Hollis et al. 2015). The full 

weather record was used to calculate the “Climatologically Appropriate for 

Existing conditions’’ calibration. It is recognised that using different ETo 

calculation methods such as Thornthwaite (PDSI) and Penman-Monteith (SPEI 

and PSMD) is likely to cause variations in the ETo used to calculate the DSI. 

Although it is accepted that some methods provide better results than others in 

estimating ETo (Droogers and Allen, 2002) Vincente-Serrano et al., (2010) report 

that the use of ETo in DSI is to obtain a relative temporal estimation, and therefore 

the method used in calculation is not critical.    

 

2.2.4 PSMD 

Growing season (PSMDMax) and monthly (PSMDMonth) maximum potential soil 

moisture deficit (PSMD) were calculated from the daily climate record (Equation 

3).  

?@ABC = 	?@ABCDE + F/GC − ?C Equation 3 

Where 

 PSMDi   = potential soil moisture deficit at the end of month i, mm 

 PSMDi-1 = potential soil moisture deficit at the end of the month i-1, mm 

 EToi = Potential evapotranspiration in month i, mm 

 Pi  = Precipitation in month i, mm 

At the start of each growing season (October) the PSMD is assumed to be zero. 

If the PSMD reaches a point less than zero, for example after heavy rains, any 

previous moisture deficit is assumed to be filled and excess precipitation is 

assumed lost as runoff or deep percolation (PSMD is reset to zero) (Rodriguez-
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Diaz et al., 2007). In addition to calculating the seasonal maximum PSMD 

(PSMDMax) the maximum soil moisture deficit for each month within the season 

was calculated (PSMDOCT, PSMDNOV, PSMDDEC, PSMDJAN, PSMDFEB, PSMDAPR, 

PSMDMAY, PSMDJUN, PSMDJUL and PSMDAUG). Figure 7 shows the evolution of 

the PSMD through a growing season with the PSMDMax and maximum PSMD for 

an example month (May) (PSMDMAY) shown.  

 

2.2.5 DSI synthesis 

The results from the various DSI analyses were synthesised to produce a 

complete drought indices record for Cambridge from 1912 to 2015.  The use of 

all four DSI in drought identification allows for comparison of each DSI to be 

included. The SPI and SPEI are multi-scalar therefore can identify drought on 

different time scales, this temporal versatility makes it easier to identify the onset 

and cessation of droughts (Lloyd-Hughes and Saunders, 2002). Despite this, the 

PDSI offers the useful feature of taking into account the AWC of the soil at the 

defined location.  

Figure 7 Evolution of the PSMD through a growing season with the PSMDmax 

for the entire growing season and the maximum PSMD for May (PSMDMAY) is 
highlighted. 

Growing season  



37 

 

Table 10  shows the time steps of each DSI used in drought identification in 

relation to typical winter wheat development in the UK. The PDSI relates to a 

fixed temporal scale (between 9 and 12 months) (Vincente-Serrano et al., 2010). 

Guttman (1998) report the SPI best correlates with the PDSI on a 9 month scale. 

The SPI-9, SPEI-9 and the PDSI for August (harvest month) were used as an 

indicator of drought affecting the crop from December (early tillering) to August 

(harvest). This period includes half of the foundation, the entire construction and 

production phases of wheat growth in the UK. The SPI-6 and SPEI-6 for August 

provide an indicator of drought for the entire construction and production stages 

Table 10 Crop development phases and growth stages using the Decimal Code System for measuring wheat 
growth (Tottman and Broad, 1987) with timings and diagrams for a benchmark winter wheat crop in the UK 
(AHDB, 2015a) and the temporal span of each DSI at a given scale for the harvest month (August), PSMDMax  

 

           
Growth 
Stage  
 

GS0-12 GS13 
GS20-

29 
GS30 GS31 GS39 GS59 GS61 GS71 GS87 GS93 

 
Description  

Sowing, 

emergence 

and 2 

leaves 

unfolded 

3 leaves 

unfolded 
Tillering 

Stem 

elongation 

First node 

detectable 

Flag leaf 

blade all 

visible 

Ear 

completely 

emerged 

above flag 

leaf ligule 

Start of 

flowering 

(anthesis) 

Grain 

watery 

complete 

Hard dough Harvest 

 
Timing 
  

October to 

middle 

November 

Late 

November 

Late 

November 

to late 

March/ 

early April 

Late March/ 

Early April 

Early/ 

middle April 

Middle/ late 

May 
Early June 

Early/ 

middle 

June 

Middle/ late 

June 
Late July 

Early/ 

middle 

August 

 
SPI/SPEI-9 

           

 
PDSI  

           

 
SPI/SPEI-6 

           

 
SPI/SPEI-3 

           

 
PSMDMAX 
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(March-August). The SPI-3 and SPEI-3  for August identifies of droughts that 

have occurred over the production phase (June-August) incorporating drought 

sensitive growth stages such as anthesis and grain filling (AHDB, 2015a).   

The PDSI uses a different classification system to the SPI and SPEI (Section 

1.2.2). However, the three upper most drought classifications use the same 

terminology, ‘extreme’, ‘severe’ and ‘moderate’ drought. The reported occurrence 

rates of each DSI do differ slightly (see section 1.2.2). In a study across Europe, 

however, it is reported that the mean number of extreme and moderate droughts 

for the SPI and PDSI (1901-1999) on a 0.5° grid is of near equivalence on a 9 to 

12 month lag. The SPI-9 and PDSI were reported to experience 9 and 8 extreme 

droughts on average respectively and 30 and 26 moderate droughts respectively 

(Lloyd-Hughes and Saunders, 2002). Therefore, in this study it was assumed that 

the PDSI, SPI-9 and SPEI-9 will not differ substantially for the amount of droughts 

in each category. Allowing direct comparison to how years are classified by each 

DSI. The classification of ‘moderate’ drought has been used as the baseline 

classification in recognising drought for all DSI. The less severe categories of the 

PDSI (‘incipient’ and ‘mild’ drought) were not identified as drought years. It is 

recognised that the SPI, PDSI and SPEI have been calculated in independently 

unrelated programs therefore their distributions and frequencies of classification 

are likely to differ, but not to the point that a single DSI will be considerably over 

represented in the synthesis.  

 

2.3 Sirius crop modelling  

2.3.1 Description  

The Sirius wheat simulation model (Jamieson et al., 1998) was selected to assess 

the impacts of drought on winter wheat. The model simulates biomass production 

from intercepted photosynthetically active radiation and radiation use efficiency. 

Leaf area index (LAI) is established from a thermal time sub model, with 

phenological development being calculated from mainstream leaf appearance 

rate and final leaf number. Water and nitrogen limitations are simulated through 
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their effects on leaf area index (LAI) development and radiation use efficiency 

(Jamieson et al., 1998b). Sirius provides outputs for potential (PO) and water 

limited (WL) yield. PO yield is calculated by assuming the crop has sufficient 

water availability to maximise yield. Annual variations in PO yield are a product 

of temperature and radiation. The WL yield is defined as “the expected losses in 

simulated grain yield due to water stress’’ (Semenov et al., 2009).  Sirius has 

been previously validated and demonstrated to accurately simulate grain yields 

in a wide range of countries and environments including Bulgaria (Ewert et al., 

2002), New Zealand, USA (Jamieson and Semenov, 2000) and the UK 

(Semenov 2009, Jamieson & Semenov 2000). Sirius is of medium to intermediate 

complexity making it suitable for research, and is free to download:  

http://www.rothamsted.ac.uk/mas-models/sirius. 

 

2.3.2 Model parameterisation 

2.3.2.1 Cultivar parameters  

Sirius requires a set of cultivar-specific parameters that determine which variety 

of wheat is simulated (Table 11). Although Sirius is of intermediate complexity, 

often there are difficulties in measuring many of the cultivar parameters (Brooks 

et al., 2001). This can be attributed to limited experimental data. Crop systems 

experimentation is time consuming and requires land, equipment and man power 

(Wallach et al., 2006). Due to time constraint of this study it was not possible to 

perform the necessary experiments to obtain the parameters required to calibrate 

Sirius with some of the most widely grown cultivars such as cv. JB Diego (10.2%), 

cv. Skyfall (8%) and cv. Revelation (6.3%) (Pers. Comm 1). The data required to 

parameterise a cultivar appears not to be readily available from the information 

gathered by breeders or the information provided in the AHDB RLT data. 

The parameters for the cv. Claire were selected (Table 11). It is the only cultivar 

that is on the 2016/17 AHDB Recommended List that has been previously 

calibrated in Sirius. Claire is popular group 3 wheat grown on 2% of the UK wheat 

area (pers. Comm 1).  It has been on the RL since 1999 making it the oldest 
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variety on the RL and remains the benchmark for group 3 wheats (AHDB, 2016b). 

It is important to note that there are limitations in using Claire. Its popularity 

amongst growers is less than that of other cultivars such as the cv. Skyfall and 

cv. JB Diego. However, varieties have an increasingly short lifespan, with new 

varieties being registered each year. It is therefore impossible to identify cultivars 

that are likely to be extensively grown in subsequent years (Wallach et al., 2006). 

Although cv. Skyfall and cv. JB Diego are currently popular, there is no evidence 

to suggest they will remain leading cultivars. The yield average for cv. Claire in 

the RLT is also lower than for some more modern cultivars (Table 12). Despite 

this, the AHDB identifies several reasons why varieties are removed from the RL 

including non-competitive yields, increased susceptibility to disease, and no 

longer meeting the requirements of the end user or insufficient market share 

(AHDB, 2016c). Since cv. Claire remains on the RL it is still comparable to other, 

more modern wheat cultivars.  

  

Table 11 Cultivar parameters required in Sirius and values used previously to calibrate 
cv. Claire, provided in the Sirius download (Rothamsted Research, 2016) 

Cultivar Parameter Values for cv. Claire 

Thermal time from sowing to emergence  150 

Thermal time from anthesis to beginning of grain fill 100 

Thermal time begging of grain fill to end of grain fill  650 

Thermal time end grain fill to harvest maturity 200 

Potential maximum leaf size 0.007 

Phyllochron in degree days 110 

Minimum possible leaf number 8 

Absolute maximum leaf number 18 

Day length response in leaves per hour of day length  0.5 

Response of vernalisation rate to temperature  0.0012 

Vernalisation rate (1/days) at 0 C° 0.012 

PAR extinction coefficient  0.7 

Max protein concentration (% at 15% grain moisture) 15 
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cv. Claire is the oldest cultivar on the RL meaning there is considerably more 

yield data (16 years) compared to more modern cultivars such as cv. Skyfall (3 

years), cv. JB Diego (9 years) and cv. Revelation (4 years). The cultivar 

parameters for cv. Claire have been used in a number of studies simulating wheat 

yields in Sirius. Semenov & Stratonovitch (2013) optimised the parameters for cv. 

Claire for climate change scenario, in addition they compared these optimised 

ideotypes to that of the modern cv. Claire. Madgwick et al. (2011) did not use cv. 

Claire, however they refer to it being a cultivar that is on the UK RL and has been 

calibrated for Sirius. Jamieson et al. (2007) reported that correlations between 

observed and simulated duration from sowing to anthesis for the wheat cv. Claire 

at Lincoln, New Zealand in Sirius was very high (r=0.996). Semenov et al. (2014)  

compared the anthesis and maturity dates, and grain yields of cv. Claire at 

Edinburgh, UK, Wageningen, Netherlands and Mannheim Germany with future 

wheat ideotypes created using an evolutionary algorithm to optimize ideotypes 

for future climatic conditions. It is recommended that the parameters for Claire 

are used for European winter wheats in the Sirius download package. 

Claire provides a suitable cultivar to examine the impacts of drought on UK wheat 

production for a number of reasons. Firstly, given the time constraints of this study 

and apparent lack of sufficient data from other experimental studies make it 

difficult to parameterise a modern cultivar. Secondly, there is no guarantee that 

a newly calibrated cultivar will provide an accurate representation of UK wheat in 

near future. Thirdly, the availability of extensive validation data for Claire 

Table 12 Reported yields of cv. Claire compared to most popular cultivars taken from 
the most recent recommended lists, Control is calculated by selecting a number of 
established varieties from each years trials and the average UK yield of these varieties 
is set to 100% (AHDB, 2016a) 

  % of control   

Recommended List Claire Skyfall JB Diego Revelation Control (t/ha) 
2014/2015 97 102 102 103 9.9 

2015/2016 98 102 102 103 10 

2016/2017 98 101 102 101 10.4 
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improves the validation procedure. Finally, cv. Claire has been previously 

calibrated and validated in a number of locations and climates.   

 

2.3.2.2 Climate and location parameters 

Sirius requires location data and daily precipitation, maximum and minimum 

temperature, wind speed and vapour pressure. Location parameters were 

defined for the CN station (lat. 52.25; long. 0.10; Alt 26 m). Daily maximum and 

minimum temperature (C°), precipitation (mm), wind run and vapour pressure (m-

bar) for 1999-2006 were extracted from the 1911-2015 Cambridge climate 

record. CO2 concentration (ppm) was set according to the NOAA globally 

averaged marine surface annual mean (Dlugookencky and Tans, 2016) for the 

year of sowing (Table 15). 

 

2.3.2.3 Evesham 3 soil parameters  

Sirius requires soil parameters for; saturation water content (soil porosity), 

drained upper and lower limits at different depths, a percolation coefficient and a 

variety of parameters on the distribution and accumulation of nitrogen within the 

soil. With the exception of the percolation coefficient and nitrogen related 

parameters all the necessary parameters for UK soils were obtained from the 

National Soil Map (NATMAP) using the dominant soil series at the point of interest 

(as recommended by Semenov, 2009). The Evesham 3 soil series (Table 9 and 

Figure 3) was selected as the dominant soil type as it is that featured at the site 

of RLT yields at site to the north of Cambridge, close to the met stations used. 

The Handslope soil series featured at the additional site near St Neots is a very 

similar calcareous clayey soil type with similar drought classification (Table 9 and 

Figure 3). Therefore, it was decided to use the same soil parameters (Evesham 

3) for all the selected observed yield records. 

The soil profile depth intervals and corresponding values for saturation moisture 

content, drained lower limit and were taken directly from the Soil Series Horizon 
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Hydraulics Data (National Soil Resource Institute, 2016a) for the Evesham 3 soil 

series. Sirius requires field capacity to be expressed at 33 kPa. However, the Soil 

Series Horizon Hydraulics data (National Soil Resource Institute, 2016a) only 

provides volumetric water content at -1, 5, 10, 40, 200 and 1500 kPa. In addition, 

there is no corresponding pedotransfer function defined by Hollis et al. (2015) 

(the pedotransfer functions used to construct the Soil Series Horizon Hydraulics  

data set). Addiscott & Whitmore (1991) report however, there is likely to be only 

a small difference between the values at 0.33kPa and 0.40kPa, therefore the 

latter was used. The percolation coefficient was estimated using the nonlinear 

regression relationship for British soils from clay content (%) (Table 13) derived 

in Addiscott & Whitmore (1991) used by Semenov (2009);  

If % Clay ≤9.5 percolation coefficient = 1.0 

If % Clay 9.5-58.3 percolation coefficient = 1.0271-0.000302 (% Clay)2  

If % Clay is ≥58.3  percolation coefficient =0.0 

Clay (%) content for the Evesham 3 soil series was acquired from the Soil series 

Horizon Summary Data set (National Soil Resource Institute, 2016a). The 

average clay content for the horizons under 1m was used by Addiscott and 

Whitmore (1991), therefore the average of the 0-75cm depth horizons were used 

to calculate the average for clay content to derive percolation coefficient for 

Evesham 3.   

Table 13 Calculation of percolation coefficient using nonlinear regression relationship 
for British soils  (Addiscott and Whitmore, 1991) 

Percolation coefficient 

Clay (%) Evesham 3 (average 0-75cm) = 54.3 

1.0271-0.000302*(54.3)^2 = 0.135 

Percolation coefficient = 0.14 
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The RL trial yields used in the validation follow the guidelines that “Nitrogen 

applications should be tailored to give maximum yield” (AHDB, 2015b).  As this 

study is an investigation into the effects climate has on wheat production (not 

fertiliser application) and all yields used in validation are assumed not to suffer 

any nitrogen deficiency all simulations were carried out without nitrogen limitation, 

therefore all soil parameters relating to nitrogen did not require specification. 

Table 14 shows the soil parameters used in Sirius for the Evesham 3 soil series 

in validation. 

 

2.3.2.4 Management parameters    

Sirius allows users to define management practices regarding nitrogen 

application, irrigation and sowing date. Since only a tiny proportion of wheat is 

irrigated in the UK, the wheat crop simulated in Sirius model was assumed to be 

rainfed. All RL trials are designed not to induce nitrogen deficiency, therefore 

Sirius was set to assume the crop has sufficient nitrogen to maximise yield. 

Sowing date was defined according to the RLT data.  

 

Table 14 Soil parameters required in Sirius for the Evesham 3 soil series (National Soil 

Resource Institute, 2016a) 

Soil parameter Evesham 3 depth (m) 

 0.25 0.50 0.75 1.50 

Saturation moisture content vol% (soil porosity)  55.9 53.6 49.9 48.8 

Drained Upper limit vol% at 33 kPa tension  41.4 46.5 43.2 42 

Lower limit vol% at 1500 kPa tension (wilting point) 26.8 34.8 32.5 31.7 

Percolation coefficient  0.14 

Available water Capacity  169 

Maximum rooting depth (cm) 150 
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2.3.3 Model validation  

2.3.3.1 Observed yield records  

Ten yield records for the cv. Claire for a site north of Cambridge were available 

in the RLT data. Four of these were defined as being grown on a ‘medium’ soil 

type, one on ‘deep silt’ and five on ‘deep clay’ according to the Defra (2010) 

classification system (Table 24, In Appendix C). Using the Soil Site Reporter 

(National Soil Resource Institute, 2016b) the principal soil series for the area 

including the RL trials was Evesham 3. This constitutes a slowly permeable 

calcareous clayey and fine loamy over clayey soils, some slowly permeable 

seasonally waterlogged non-calcareous clayey soils. As the description of ‘deep 

silt’ and ‘medium’ soils (DEFRA, 2010b) do not match the description of the 

Evesham 3 soil series, they were discarded from the validation data set. To 

extend the validation procedure four additional ‘deep clay’ yield records <40km 

(near St Neots) east of Cambridge were added (Table 15).  It is recognised that 

the spatial distance between the climate record and the St Neots yield records 

has the potential to affect the accuracy of simulated yields, as simulations may 

experience weather that was not experienced by the crop. Despite this  Hess et 

al (2016) report that in the month of maximum ETo (July) mean absolute deviation 

from the median is generally low in  Eastern, Central and Southern England (all 

lowland areas). In addition, monthly precipitation values (1930-1949) for St Neots 

met station did not differ substantially to that of CB (Figure 30, Figure 30 

APPENDICES B).   
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2.3.3.2 Model validation  

The Sirius model validation involved simulating WL yields for cv. Claire with 

Evesham 3 soil parameters at an altitude of 26m. For each simulated year sowing 

date was matched to the RLT and CO2 levels adjusted (Table 15). Nine years (5 

at Cambridge and 4 at St Neots) of simulated yields compared to the observed 

yields to assess model performance. There are a number of methods that can be 

used to compare simulated and observed data. As there is no single definitive 

method, it is good practice to use a number of methods (Wallach et al., 2006). 

Five methods of evaluation were used Mean Bias Error (MBE), Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Relative Root Mean Square 

Error (RRMSE) and the square of the Pearson product moment correlation 

coefficient (R2). The methods were selected to complement each other, seeking 

to provide a thorough evaluation of the Sirius model performance.  

Jacovides and Kontoyiannis (1995) recommend the use of the MBE (Equation 4) 

and the RMSE (Equation 5) for model evaluation. The MBE returns the average 

difference between the simulated and observed yields. Explaining how much a 

model is over-predicting (positive) or under-predicting (negative) yields. A MBE 

close to zero would imply that the model is estimating yields well; however it could 

Table 15 Sowing date, yield, location (AHDB, 2016a) and atmospheric CO2 (Dlugookencky 

and Tans, 2016) for the Cambridge and St Neots observed used in the validation procedure  

Site	
Trial	year	 Sowing	date	 Observed	

Yield	(t	ha-1)	

Lat/Long	 Atmospheric	

CO2	(ppm)	

Cambridge	 2000	 12/10/1999	 9.99	 52.239/0.09304	 368	

Cambridge	 2001	 20/10/2000	 10.13	 52.23618/0.10023	 369	

Cambridge	 2004	 01/10/2003	 10.68	 52.23533/0.09726	 375	

Cambridge	 2005	 09/10/2004	 10.44	 52.24157/0.10048	 377	

Cambridge	 2006	 04/10/2005	 9.04	 52.23713/0.09734	 379	

St	Neots	 2003	 11/12/2002	 8.54	 52.25024/-0.39433	 372	

St	Neots	 2004	 17/10/2003	 9.98	 52.23727/-0.36697	 375	

St	Neots	 2005	 05/11/2004	 8.78	 52.25347/-0.36784	 377	

St	Neots	 2006	 19/10/2005	 11.81	 52.24573/-0.39303	 379	
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equally be a result of large over and under predictions cancelling each other out 

(Wallach et al., 2006). The RMSE can be employed to eliminate the problem of 

compensation between over- and under- predictions. By squaring the error all 

numbers are returned positive. However because the RMSE uses the average of 

the squared differences, large differences are weighted more heavily. The Mean 

Absolute Error  (MAE, Equation 6) which by definition averages the absolute 

errors (all errors are positive) can overcome the over-weighting of large 

differences (Wallach et al., 2006). The RRMSE (Equation 7 and Equation 8), is 

obtained by dividing the RMSE by the mean of the recorded yields, returning a 

percentage. This allows a comparison between different data sets and validation 

results (Wallach et al., 2006). As the RRMSE is a uniform scale, Jamieson  (1991) 

provide boundaries that allows users to objectify the performance of a model: 

RRMSE <10% = excellent, 10-20% = good, 20-30% = fair and >30% = Poor. The 

R2, (Equation 9) is the Square of the Pearson’s product moment correlation of 

simulated and recorded yield. This can be interpreted as how well a model 

explains variation in yield.  
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!Q = (
(R − R)(P − P)

(S − S)
Q

(O − O)Q

)Q	 Equation 9	

 

2.3.4 Sirius yield simulation  

Water limited (WL) and potential (PO) modelled yields for 104 years (1912-1915) 

for Cambridge using the validated Evesham 3 soil parameters were simulated 

using the Sirius model. Simulations used cultivar parameters for cv. Claire, 

location parameters for the CN met station, and a typical sowing date for England 

and Wales (10th October) (Semenov, 2009). Atmospheric CO2 levels were set to 

the 2015 global average (399 ppm) (Dlugookencky and Tans, 2016). The use of 

the same cultivar, sowing date, soil series parameters and CO2 ensures only 

modelled variations in climate affect annual yields, bias due to non-climatic 

factors such as fertilizer application, cultivar change, improved technology, tiller 

practices and weed control found in long term recorded yields (Potopová et al., 

2015b) is removed.  

 

2.3.5 Sensitivity analysis  

A sensitivity analysis was performed to investigate the relative impacts of soil 

parameters on yield. This was done by reducing maximum soil profile depth at 

10cm intervals from 1.5 m to 0.7m, and as a consequence reducing the root zone 

AWC. Simulations were run with a maximum (1) and minimum (0.0) Percolation 

coefficient. The results corresponded with other studies that reported fluctuations 

in AWC resulted in variations in simulated yields in England (Lawless et al. 2008). 

Therefore, using a GIS, gridded wheat area (ha per 2km2) data for England and 

Wales was overlaid with a 2km gridded soil data set (average crop non specific 

available water capacity (AWC)) (NATMAP, 2016) to estimate the split between 

wheat area and AWC for England and Wales (Figure 8). Crop nonspecific AWC 

is defined as the water available to the soil between 5 and 1500 kPA to 1 m (Hall 

et al., 1977).  
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The majority (88%) of wheat grown in England and Wales is cultivated on soils 

with a crop nonspecific AWC between 95-215 mm/m (Figure 9). The validated 

Evesham 3 soil series placed in the middle of this range with an AWC of 150 

mm/m making it a suitable soil series for yield simulations on a medium AWC. 

Two additional soil series, Badsey and Hanworth, were selected to represent 

soils with high and low AWC, respectively (Figure 8 and Figure 9). As well as the 

physical structure of the soil (texture and organic matter content) affecting AWC, 

a shallow rooting depth or impeding layer and stone content can reduce water 

availability to the crop (Lucas et al., 2000). Barraclough & Weir (1988) reported 

that typically the rooting depth in a compacted light sandy loam soil reached a 

maximum of 1m at anthesis, compared to 1.4m in an unimpeded soil. Therefore 

in addition to simulations assuming a representative low, medium and High AWC 

soil. A deep (1.5m) and shallow (1m) profile for each soil series was also included.  

Figure 8 Total wheat cropped area (ha) (EDINA, 2016) by available water capacity 
(mm /m)(NATMAP, 2016). Red line represents low AWC soil series (Badsey), the 
green line represents the medium AWC soil series (Evesham 3) and the blue line 
represents a high AWC soil series (Hanworth) 
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The soil parameters required in Sirius for each soil series were extracted from 

the National Soil Resource Institute (2016a) and NATMAP (2016). WL yields 

were then simulated for 3 different AWC soils (low, medium and high AWC) on 

1m and 1.5m deep soils, (Table 16). It is important to note that the Badsey and 

Hanworth soil series have high percolation coefficents which is likely to increase 

their drought risk as water is lost through the soil profile at a quicker rate.  

 

2.4 Correlating simulated yield with drought severity  

The relationship between DSI and simulated yield was assessed using the non-

parametric Spearman’s Rho coefficient with a significant threshold of p<0.05, a 

Table 16 Soil AWC, and percolation coefficients for the three 
representative soil series 

Soil	Parameter		 Badsey	 Evesham	3	 Hanworth	

Crop	nonspecific	AWC	(mm/m)	 105	 150	 190	

Percolation	Coefficient	 0.98	 0.14	 1	

	 	 	 	

Figure 9 Cummulative wheat area (%) (EDINA, 2016) correlated against 
soil AWC, with the three representative soil series highlighted, Badsey 
(Ba), Evesham 3 (Ev) and Hanworth (Ha) 
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method similar to that employed for agricultural yields and SPEI in the Czech 

Republic by Potopová et al. (2015).  The simulated WL yields (t ha-1) were ranked 

in ascending order. This was repeated for the DSI values at the various time steps 

(e.g. SPI/SPEI 1-12 month lags) for each month of the growing season. For 

example the lowest value (indicating drought) for the SPI-1 for January was 

ranked, 1, the wettest, 104. This was repeated for each month for all monthly time 

steps (1-12 months). The Spearman’s Rho coefficient was then applied to the 

ranked yield data and drought indices at various time steps for each month in the 

respective growing season. 
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3 Results  
3.1 DSI analysis   

Table 17 shows the Spearman’s rho correlation coefficients (r) between the SPI-

9, SPEI-9 and the PDSI for August and PSMDMax (1912-2015). The SPI and the 

SPEI (0.92) show the strongest correlation, the SPI and the PSMDMax show the 

weakest (0.70). The PDSI shows similar levels of correlation with the SPEI, SPI 

and PSMDMax (0.81, 0.78 and 0.77, respectively). Although the DSI show good 

agreement between each other the correlation coefficients suggest there may be 

variations in how individual DSI categorise the weather for a specific time period. 

Therefore, the drought analysis has been undertaken using the results from all 

four DSI.   

Figure 10 shows the SPI 9, SPEI 9 and the PDSI for August (harvest) along with 

the PSMDMax values for the winter wheat growing seasons 1912-2015. Droughts 

are identified at varying magnitudes by all four DSI. The majority of the major 

droughts reported in the UK (Cole and Marsh, 2006a) are recognised by the DSI 

(i.e. 1921, 1934 and 1976). Droughts such as 1921 and 1934 whose impacts are 

less well understood are evident in all DSI, allowing this study to simulate the 

potential impact of these historic droughts on a modern wheat production system. 

Previously reported droughts that do not appear to manifest over the majority of 

a winter wheat growing season include 1959 and 1983-1984. 

 

Table 17 Spearman’s Rho Correlation 
Coefficient between DSI index values for the SPI-
9, SPEI-9 and PDSI for August and the PSMDMax 

 SPEI SPI PSMD PDSI 

SPEI  0.92 0.84 0.81 

SPI 0.92  0.70 0.78 

PSMD 0.84 0.70  0.77 

PDSI  0.81 0.78 0.77  
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The extent of the UK seasonal variability in weather is clearly observed (Figure 

10), an example being the significant drought during the 2011 season followed 

by a significantly wet season in 2012. In contrast, there are episodes where 

drought years are clustered, the most prominent during the early 1940s, where, 

using the SPEI and PDSI as an example 1940, 1942, 1943, 1944 and 1945 are 

all identified as drought years (Figure 10). The 1921 and 1976 droughts are the 

most prominent regarding the SPI-9, SPEI-9, PDSI for August and the PSMDMax.  

Table 18 provides a synthesis of the DSI results for the SPI 9, SPI 6, SPI 3, SPEI 

9, SPEI 6, SPEI 3, and PDSI for August (harvest) and PSMDMax for Cambridge. 

For the years featured, one or more of the SPI-3/6/9, SPEI-3/6/9 or PDSI have 

identified a ‘moderate’ drought in August. The occurrence (%) of each drought 

classification for each DSI is also shown at the bottom of Table 18 and whether 

a drought for that year was reported in the literature.  

Despite the humid climate, droughts frequently manifest themselves at different 

scales during the growing season. One or more of the SPI 9, 6, 3, SPEI 9, 6, 3 or 

the PDSI identified the occurrence of a ‘moderate’ drought episode in 30 of the 

104-years (1911-2015) at Cambridge (Table 18). For a large proportion of years, 

the DSI can be described as being in agreement with each other. The 1921 

season is identified as an ‘extreme’ drought by all the DSI on all time steps. This 

is also true for 1976 with the exception of the SPI 3. The 2011 drought is also 

categorised as ‘severe’ drought by all the DSI at a 9 and 6-month time step and 

no drought on the 3 month time step. Despite this documented agreement 

between DSI, there are seasons where the DSI classifications differ markedly. 

For example, for 1972 and 1990 on a 9 month time step the years can be 

categorized as either severe’, ‘moderate’ or ‘no’ drought depending on the choice 

of DSI. The DSI analysis (Table 18) demonstrates variations in the temporal 

extent of droughts affecting wheat. The droughts of 1921 and 1976 are classified 

as ‘extreme’ regardless of the time step (with the exception of SPI 3, 1976). This 

is not the case for 1975, 1983 and 1994. The majority of the DSI at the 9 and 6-

month time steps do not identify a drought event for these years. They do 

however; identify a ‘severe’, ‘moderate’ and ‘severe/extreme’ drought 



54 

 

respectively for the SPI 3 and SPEI 3. A number of years demonstrate an 

opposing trend, for example, 1944/45, 1973 and 2011 are not identified as 

drought years by SPI 3 and SPEI 3, however, the weather for the majority of the 

growing season (SPI 9, SPEI 9 and PDSI) is classified as a drought year.   

The DSI also identify a number of droughts that have not been previously 

identified in the literature. For example 1935, 1940, 1942, 1952, 1957, 1961 and 

2000 are all identified as ‘moderate’ droughts by one or more of the DSI. The 

1994 season is classified as an ‘extreme’ (SPI 3) and ‘severe’ (SPEI 3) drought 

over the production phase. The literature however often identifies the drought 

periods of 1995-1997 and 1990-1992 but no study identifies the significant 

drought experienced during the summer of 1994.     
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Figure 10 Annual time series plot of the SPI-9 (A), SPEI-9 (B) and PDSI (C) for August (harvest 
month) and the growing season PSMDMAX (D) (1912-2015). For the SPI and SPEI the coloured 
lines represent different drought/wetness classifications in Table 5, for the PDSI the lines 
indicate the classifications in (reference figure). The PSMD marked by the average (black line), 
25th percentile (blue line) and 75th percentile (red line) 
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 Table 18 Cambridge winter wheat growing season drought record. Complied using the SPI and SPEI at a 9, 6 and 3 
month lags from August and the PDSI August. It is also reported whether the growing season occurs within a 
published drought. The occurrence (%) for each DSI classification is attached to the bottom of the table. 

Harvest	Year	
SPEI	

9	

SPI	

9	

PDSI	

(9)	

SPEI	

6	

SPI	

6	

SPEI	

3	

SPI	

3	
PSMDmax	 Literature	

1913	 -0.6 -0.7 -1.0 -0.5 -0.9 -0.6 -1.2 244 (Cole	and	Marsh,	2006a) 

1914	 -1.1 -0.8 -2.2 -0.7 -0.2 -0.4 -0.3 297 (Cole	and	Marsh,	2006a) 

1921	 -2.2 -2.9 -6.2 -2.2 -2.9 -2.0 -2.4 458 (Cole	and	Marsh,	2006a) 

1929	 -1.5 -1.6 -2.4 -1.4 -1.2 -1.1 -1.2 324 (Cole	and	Marsh,	2006a) 

1933	 -1.7 -1.6 -2.5 -1.4 -0.7 -1.6 -1.0 339 (Cole	and	Marsh,	2006a) 

1934	 -2.0 -2.7 -6.3 -1.4 -1.3 -1.3 -0.9 361 (Cole	and	Marsh,	2006a) 

1935	 -0.7 -0.1 -3.0 -1.2 -1.0 -1.4 -0.8 321  

1938	 -1.3 -1.6 -2.6 -1.4 -2.0 -0.7 -1.1 331 (Cole	and	Marsh,	2006a) 

1940	 -1.0 -0.6 -2.0 -1.0 -0.6 -1.3 -1.4 325  

1942	 -1.0 -1.0 -2.1 -1.0 -0.8 -0.6 -0.5 289  

1943	 -1.3 -1.1 -3.4 -1.6 -1.8 -0.9 -1.1 372 (Cole	and	Marsh,	2006a) 

1944	 -1.5 -2.0 -6.0 -1.1 -1.3 -0.2 -0.5 330 (Cole	and	Marsh,	2006a) 

1945	 -1.3 -1.4 -3.0 -1.1 -1.0 -0.4 -0.5 301  

1947	 -0.5 -0.1 -1.6 -0.6 0.1 -1.0 -0.6 328 (Cole	and	Marsh,	2006a) 

1949	 -1.4 -0.9 -0.7 -1.0 -0.4 -1.0 -0.3 288 (Cole	and	Marsh,	2006a) 

1952	 -1.0 -0.5 -1.5 -0.7 0.0 -0.6 -0.4 291  

1955	 -0.8 -0.6 -1.4 -1.0 -0.8 -1.1 -0.8 287 (Cole	and	Marsh,	2006a) 

1957	 -0.9 -0.6 -2.3 -1.0 -1.0 -0.2 0.0 282  

1961	 -0.6 -0.5 -1.8 -1.1 -1.3 -0.6 -0.6 298  

1972	 -0.8 -1.6 -2.0 -0.6 -1.3 -0.6 -1.4 252 (Cole	and	Marsh,	2006a) 

1973	 -1.1 -1.1 -4.5 -0.6 -0.4 -0.7 -0.4 244 (Cole	and	Marsh,	2006a) 

1975	 -0.5 0.1 -1.7 -0.1 0.4 -1.8 -1.7 326 (Cole	and	Marsh,	2006a)	

1976	 -2.2 -2.9 -6.6 -2.0 -2.2 -2.2 -1.5 450 (Cole	and	Marsh,	2006a) 

1983	 0.3 0.1 -0.8 0.3 0.3 -1.1 -1.4 233 (Wreford	and	Adger,	2011) 

1989	 -1.4 -0.9 -2.6 -1.2 -0.5 -1.3 -0.7 339 (Cole	and	Marsh,	2006a) 

1990	 -1.1 -0.5 -3.6 -1.9 -2.8 -1.6 -2.0 405 (Cole	and	Marsh,	2006a) 

1991	 0.0 -0.4 -2.8 0.3 0.0 0.5 0.5 181 (Cole	and	Marsh,	2006a) 

1994	 -0.3 -0.1 -1.9 -0.8 -1.0 -1.6 -2.2 308  

1995	 -1.4 -1.0 -3.5 -1.9 -2.4 -2.0 -2.5 417 (Cole	and	Marsh,	2006a) 

1996	 -1.0 -1.2 -3.5 -1.2 -1.8 -0.9 -0.5 336 (Cole	and	Marsh,	2006a) 

1997	 -0.7 -0.3 -2.3 -0.2 0.4 1.0 1.4 229 (Cole	and	Marsh,	2006a) 

2000	 0.3 0.2 0.6 0.4 0.2 -0.5 -1.0 179  

2003	 -0.9 -0.6 -1.8 -1.4 -1.4 -0.9 -0.7 338 (Wreford	and	Adger,	2011) 

2005	 -0.9 -1.1 -2.4 -0.5 -0.6 -0.2 -0.1 244 (Wreford	and	Adger,	2011) 

2006	 -1.1 -1.1 0.5 -0.6 -0.3 -0.9 -0.3 263 (Wreford	and	Adger,	2011) 

2011	 -1.5 -1.5 -3.2 -1.5 -1.6 0.0 0.1 353 (Kendon	et	al.,	2013) 

Classification	 % % % % % % % 
  

 (SPI,SPEI and PDSI) 

Extreme	 2.9 3.8 4.8 1.9 4.8 2.9 3.8 

 

 Extreme drought 

Severe 3.8 4.8 6.7 3.8 2.9 3.8 1.9  Severe drought 

Moderate 13.5 7.7 12.5 15.4 9.6 8.7 8.7  Moderate drought 

Total	 20.2 16.3 24 21.2 17.3 15.4 14.4 
  No drought reported 

  (PSMD) 

	         
 PSMD outside 75th percentile 

 PSMD inside 75th percentile 
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3.2 Sirius crop modelling  

3.2.1 Model validation  

Table 19 shows the observed yields from the RLT compared against Sirius 

simulated yields for 1.5 m and 1 m maximum rooting depths (MRD). The 

statistical analysis presented in Table 20 shows the results for all yield records 

(n=9), just the Cambridge records (n=5), just the St Neots records (n=4) and 

when average observed yield is compared to the average simulated yield for 

years when more than one record is available (2003, 2004 and 2005) (n=6). 

Figure 11 shows the relationship between the observed and simulated yields for 

n=9, n=6, n=8 and with a significant outlier removed (St Neots; 19/10/2005) (n=8) 

for 1.5 m and 1 m MRD. 

 

Table 19 Site, sowing date, observed (RTL) yield and simulated yield (t ha-1) at 1.5 and 
1m maximum rooting depth (MRD) for the Evesham 3 soil series 

Site	
Sowing	

date	

Observed	

yield	(t	

ha-1)	

1.5	m	MRD	simulated	

yield	(t	ha-1)	

1	m	MRD	simulated	yield			

(t	ha-1)	

Cambridge		 12/10/1999	 10	 10.4	 10.4	

Cambridge		 20/10/2000	 10.1	 10.8	 10.5	

Cambridge		 01/10/2003	 10.7	 11.6	 11.5	

Cambridge		 09/10/2004	 10.4	 10.2	 9.70	

Cambridge		 04/10/2005	 9	 10	 9.1	

St	Neots	 11/12/2002	 8.5	 10.2	 9.6	

St	Neots	 17/10/2003	 10	 10.9	 10.8	

St	Neots	 05/11/2004	 8.8	 10	 9.5	

St	Neots	 19/10/2005	 11.8	 9.9	 9	
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For the Evesham 3 soil (MRD 1.5m) Sirius can be described as simulating yield 

to a ‘good’ level of accuracy for all sites (n=9) with a RRMSE of 11.2%. 

Simulations are of a greater accuracy for the RLT sites at Cambridge 

(RRMSE=6.93,’excellent’) compared to St Neots (RRMSE=15.12%,’Good’). It is 

important to note that the St Neots records are located further from the weather 

stations used in the climate record and situated on a slightly different soil series. 

Therefore it can be expected simulations are likely to differ from measured yields. 

The average (n=6) RRMSE shows that simulated yields are ‘excellent’ at all sites. 

Sirius significantly underestimates (1.91 t ha-1 less than observed yield) a yield 

record at St Neots. The exclusion of this outlier significantly improves the 

accuracy of the simulations (n=8). 

Although Sirius provides statistically ‘good’ simulations of wheat yields on an 

Evesham 3 soil series with a 1.5 m MRD, the model shows a bias towards the 

overestimation of yields (MBE=0.51 t ha-1), this increased to (0.81 t ha-1) once 

the outlier is excluded (Table 20). One possible explanation for this is the way 

Sirius define rooting depth. The MRD in Sirius is defined as the deepest depth

Table 20 Root Mean Square Error (RMSE), Mean Bias Error (MBE), Mean Absolute Error (MAE) and 
Relative Root Mean Square Error (RRMSE) for  RLT data (t ha-1) and simulated yields (t ha-1) for the 
cv. Claire for 1.5m and 1m maximum rooting depth (MRD) 

Site	 MRD	 n	 RMSE	(t	ha-1)	 MBE	(t	ha-1)	 MAE	(t	ha-1)	
RRMSE	

(%)	
R2	

All	sites	 1.5m	 9	 1.11	 0.51	 0.99	 11.22	 0.05	

Cambridge	 1.5m	 5	 0.7	 0.3	 0.64	 6.93	 0.49	

St	Neots	 1.5m	 4	 1.48	 0.47	 1.43	 15.12	 0.01	

Excluding	outlier		 1.5m	 8	 0.97	 0.81	 0.87	 10.01	 0.51	

Average		 1.5m	 6	 0.88	 0.61	 0.77	 8.98	 0.12	

All	sites	 1m	 9	 1.14	 0.08	 0.87	 11.49	 0.03	

Cambridge	 1m	 5	 0.55	 0.1	 0.48	 5.48	 0.59	

St	Neots	 1m	 4	 1.6	 -0.05	 1.35	 16.34	 0.01	

Excluding	outlier	 1m	 8	 0.69	 0.44	 0.62	 7.15	 0.55	

Average		 1m	 6	 0.82	 0.21	 0.67	 8.29	 0.10	
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Figure 11 Comparison between observed yields (RLT) (t ha-1) and Sirius simulated yields (t ha-1) at 1.5 m and 1 
m MRD for all records, the average yields for years with multiple records and excluding the 19/10/2005 St Neots 
outlier. Dashed grey line=1:1 line. Black line=linear regression line 
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parameters of the soil profile, with a maximum rooting depth of 1.5 m to cease at 

anthesis. Although the Soil Horizon Hydraulic data for Evesham 3 provides soil 

profile characteristics to 1.5m in the Series Agronomy Data set the average depth 

to rock is defined as 0.8 m. Therefore, by using the standard values of Evesham 

3 with a MRD of up to 1.5m Sirius may be overestimating root growth and 

therefore soil profile available water capacity. Reducing the maximum soil depth 

to 1m with the same clay, sand, silt and organic matter content reduces the soil 

profile AWC for the Evesham 3 soil series to 118 mm in Sirius. Table 20 shows 

that by reducing the soil depth to 1 m improves the accuracy of the validation. 

Although the RRMSE (11.49%), for n=9 does not change significantly the 

overestimation of yield has been reduced. The MBE and MAE for all n values 

(n=9, n=5, n=4,n=8 and n-6) improves with the 1m soil profile. The yield record 

for St Neots (sowing date 19/10/2005) is still underestimated (-2.8 t ha-1) 

compared to the observed yield. The improved accuracy of the simulation is 

shown when this outlier is removed (n=8) with the RRMSE of 7.15% 

demonstrating ‘excellent’ model accuracy.  

 

3.2.2 Simulated historic yield (Evesham 1m) 

Figure 12 shows the simulated PO and WL yields for the Evesham 3 soil series 

with a MRD of 1m (1912-2015). Table 21 provides the supporting statistical 

analysis.  

The average yield loss due to water limitation was 6.1%. The average yield loss 

however is less than that of the estimated national average (10%) (Foulkes, et 

al., 2007). The 3 major growing season droughts (1921, 1934 and 1976) identified 

both in DSI analysis and as major droughts in the literature (Table 18) show 

significant yield loss due to water limitations. The lowest simulated WL yield 

occurred in 1921, where yields fell to 7.3t ha-1 (38% yield loss). The second 

lowest simulated WL yield occurred in 2010 (7.5 t ha-1, 32% yield loss). The 

growing season does fall into a documented UK drought  (2010-2012, Kendon et 

al., 2013), however is not identified in the DSI analysis in Table 18.  The 1976 
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drought showed a significantly reduced yield of 7.9 t ha-1, the third overall lowest 

simulated yield. The 1976 drought is one of the most documented droughts in the 

UK, with substantial agricultural losses reported and is identified in the DSI 

analysis as an extreme drought year (Table 18).  

The 2011, 1996, 1995, 1957, 1949, 1944, 1943, 1942 and 1934 seasons also led 

to significant yield loss (<15%) based on the Sirius simulations. The 1934, 1943, 

1944, 1949, 1995, 1996 and 2011 growing seasons all fall under drought 

episodes reported in the DSI analysis (Table 18) and drought literature. There is 

a strong link between identified droughts and yield loss for a medium AWC soil 

at Cambridge.  

 

3.2.3 Sensitivity analysis  

Figure 13 shows the simulated WL yield and standard deviations of the WL and 

PO yield for the Badsey, Evesham 3 and Handsworth soil series at 1m and 1.5m 

MRD, 1912-2015. Table 21 shows the statistical analysis of the historic simulated 

yield records presented in Figure 13. The sensitivity analysis demonstrates that 

soil properties affects a wheat crop’s vulnerability to drought in East Anglia. 

Figure 12 Simulated potential (PO) and water limited (WL) yields (t ha-1) for Cambridge 
(1912-2015) for the Evesham 1m soil series 
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Figure 13 Box and whisker of simulated yield for the 3 soil series at 1.5m and 1m MRD 
(whiskers: 10th and 90th percentile; box: 25th and 75th percentiles; horizontal line: 
median; black dots: outliers) and Bars displaying the standard deviation of the WL yield 
and PO  

AWC High AWC Low 

Table 21 Statistical analysis of simulated historic yield for the Evesham, Hanworth and 
Badsey soil series at 1.5m and 1m maximum rooting depths (STDEV = standard 
deviation) 
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Hanworth (1.5m) 
H H 

10.9 10.8 11.3 0.5 4.4 11.9 8 3.3 28.2 0.7 0.4 

Hanworth (1m) 10.2 9.8 11.3 1.5 12.8 11.7 6.1 5.4 46.4 1.3 0.4 

Evesham (1.5m) 
M L 

11.2 11.1 11.3 0.2 1.5 12.1 9.4 2.3 19.6 0.5 0.4 

Evesham (1m) 10.8 10.6 11.3 0.7 6.1 11.9 7.3 4.4 37.7 0.9 0.4 

Badsey (1.5m) 
L H 

10 9.6 11.3 1.7 14.9 11.7 5.7 5.7 48.8 1.4 0.4 

Badsey (1m) 9 8.7 11.3 2.6 22.7 11.6 5 6.6 56.6 1.8 0.4 
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The low AWC Badsey soil series was the most affected by water limitations with 

an average yield loss of 1.7 t ha-1  and 2.6 t ha-1 for 1.5m and 1m rooting depths 

respectively. Despite the higher AWC of the Hansworth soil series it showed 

larger average yield losses than the Evehsam 3 soil series at both rooting depths. 

This is likely a result of the higher percolation coefficient. Sirius describes soil in 

terms of it is capacity to hold water in various states. Of these the plant can use 

immobile plant available water (the root zone AWC) and mobile plant water (water 

that can drain from one layer to the next and may be extracted unhindered) 

(Jamieson et al., 1998b). The percolation coefficient is a rate parameter, 

determining the downward flow of this mobile water through the soil (Addiscott 

and Whitmore, 1991). A higher percolation coefficient increases the rate that 

water is lost through the soil, reducing the mobile plant available water. 

Reducing the rooting depth to 1m increased the vulnerability to drought on all soil 

types. By subtracting the PO standard yield deviation from the WL standard yield 

deviation the standard yield deviation that can be wholly attributed to water 

limitations is calculated. The Badsey (1m) soil produced the highest yield 

deviation (1 t ha-1) with the Evesham 1.5m soil producing the smallest (0.1 t ha-

1). All soils showed the potential to suffer considerable yield loss due to water 

limitations in years with extreme water limitations. Even the least droughty 

Evesham 3 (1.5m) soil experienced a maximum yield loss of 19.6% (2.3 t ha-1).  

 

3.3 Relationship between DSI and simulated wheat yield  

 Figure 14 shows the Spearman’s Rho correlation coefficients (r) between the 

monthly DSI at their computed time steps (lags) and the simulated wheat yields 

at Cambridge 1913-2015. Figure 15 shows the difference in the correlation 

coefficients between the SPI and SPEI. In Figure 15 the negative values (blue) 

are time steps where the SPI has a stronger correlation, the positive values 

(yellow) are time steps the SPEI is stronger. Figure 15 indicates there is very little 

difference between the strength of the correlations between the SPI and SPEI at 

various time steps. The SPI shows a slightly stronger (0.05-0.07) correlation at 
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various time steps between February and June, with the SPEI showing very 

slightly stronger (0.06-0.09) correlations at the 1-2 and 2-3 month lags for July 

and August, respectively. Therefore, the results for the SPI and SPEI depicted in 

Figure 14 are described together.  
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Figure 14 shows no significant correlations (p-0.05) between historic weather 

expressed as the SPI, SPEI (regardless of the time step), PSMDMonth and the 

PDSI between October (sowing) and March although not significant (0.15, P= 

0.13) The PDSI shows small correlation for March. From April all the DSI show 

Figure 14 Spearman’s Rho correlation coefficient (r) between monthly SPI 1-12 , SPEI 1-
12, PDSI, PSMDMax and PSMDMonth and simulated wheat yields at Cambridge. Correlation 
coefficients in bold represent those that are statistically significant (p-0.05)  

Figure 15 The Spearman’s Rho correlation coefficients (r) between simulated wheat yield 
and the SPEI 1-12 subtracted from the equivalent spearman’s Rho correlation coefficient 
(r) for the SPI 1-12 

1 2 3 4 5 6 7 8 9 10 11 12
SEP 0.00 -0.09 -0.09 -0.10 -0.09 -0.08 -0.05 -0.04 -0.04 -0.06 -0.04 -0.05

OCT	(S) 0.05 -0.02 -0.05 -0.04 -0.06 -0.03 -0.01 -0.01 -0.01 -0.02 -0.01 -0.04

NOV -0.03 0.04 -0.02 -0.06 -0.07 -0.07 -0.04 -0.02 -0.01 -0.02 -0.03 -0.01

DEC 0.00 0.02 0.01 0.05 -0.04 -0.07 -0.06 -0.06 -0.03 -0.01 0.01 -0.01

JAN -0.07 -0.06 -0.05 -0.05 0.01 0.05 0.04 0.05 0.03 0.00 -0.01 -0.01

FEB 0.00 0.06 0.03 0.03 0.05 -0.02 -0.04 -0.04 -0.05 -0.03 -0.01 0.00

MAR -0.01 -0.02 0.04 0.00 0.01 0.03 -0.01 -0.05 -0.05 -0.06 -0.03 0.00

APR 0.36 0.24 0.23 0.25 0.21 0.16 0.17 0.11 0.07 0.04 0.04 0.04

MAY 0.21 0.39 0.32 0.31 0.33 0.30 0.22 0.23 0.16 0.12 0.10 0.08

JUN 0.41 0.44 0.53 0.46 0.45 0.46 0.42 0.35 0.33 0.27 0.22 0.20

JUL 0.41 0.58 0.58 0.65 0.60 0.58 0.59 0.56 0.48 0.48 0.40 0.34

AUG	(H) 0.24 0.42 0.56 0.57 0.63 0.60 0.58 0.59 0.57 0.52 0.51 0.46

No.	months	lagSPEI

SEP -0.02

OCT	(S) 0.03

NOV 0.02

DEC 0.08

JAN 0.06

FEB 0.08

MAR 0.15

APR 0.33

MAY 0.37

JUN 0.46

JUL 0.53

AUG	(H) 0.55

PDSI

SEP -0.03

OCT	(S) -0.05

NOV -0.13

DEC 0.16

JAN 0.13

FEB 0.01

MAR -0.05

APR 0.18

MAY 0.32

JUN 0.51

JUL 0.66

AUG	(H) 0.63

PSMDMonth
Key
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PSMDMax

0.64
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an increased relationship with simulated yields as a drought event extends 

through the production and construction phases. Figure 14 highlights (black box) 

the strongest correlating time step for the SPI and SPEI each month from April. 

Correlations are strongest for time steps that incorporate weather from April to 

the month of calculation. The strongest correlations occur either in July (SPEI 4 

and PSMDMonth) or August (SPI 5 and PDSI). However, for all DSI there is very 

little difference in the strongest correlation in July and August. The PSMDMax does 

show a strong correlation (0.64) to simulated wheat yields. However, the 

PSMDMax has no fixed time step and can occur in different months depending on 

that seasons weather, therefore it is not linked to a specific month in the growing 

season. 

In Figure 14 the highlighted correlations for the SPI and SPEI show the strongest 

correlation in each month. However, other time steps also show significant 

correlations to simulated wheat yield. Such as the SPI and SPEI 1-5 for April, SPI 

1-9 and SPEI 1-8 for May, SPI and SPEI 1-12 June and July and the SPI 2-12 

and SPEI 1-12 for August. The PSMDAPR shows a noticeably weaker correlation 

(0.18) compared to the strongest correlating time step of the other DSI (0.33-

0.36). The strongest correlation of the PDSI (0.55) is weaker than the strongest 

of the other DSI (0.65-0.66)   

Figure 16 shows the linear relationship between the SPI 4, SPEI 4 and PDSI for 

July and the PSMDJUL. It is recognised that the SPI and PDSI have a slightly 

stronger correlation (r) in August than July (Figure 14), but this is minimal and as 

a large part of August weather occurs after harvest, the DSI in July seems more 

appropriate. Figure 16 demonstrates that there is a relationship (R2 0.36-0.47) 

between a low SPEI, SPI, PDSI in July, high PSMDJUL and simulated wheat 

yields. The PSMDJUL shows the strongest regression and the PDSI the weakest. 

There are however outliers in all of the plots. The 1942 season saw noticeably 

depressed yields yet the SPI and SPEI classified weather as near normal. An 

opposing trend can be seen for the 1990 season, which saw a drought classified 

by all the DSI, however, no significant impact on yield was simulated in Sirius.  
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Figure 16 Linear relationships between the SPI-4 and SPEI-4 July, the PDSI July and the PSMDJUL and 
simulated wheat yields.  For the SPI, SPEI and PDSI years that are classified as a moderate, severe or 
extreme drought are coloured red (labelled ‘Dry’), years that fall in the normal range are coloured grey 
(labelled ‘Normal’), and years that are classified as moderately, severely or extremely wet are coloured 
blue (labelled ‘Wet’). The PSMDJul has no classification system therefore all years are coloured grey. 
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4 Discussion 

This chapter discusses the context of historic droughts identified through DSI 

analysis and their effects on simulated wheat yields, the potential application for 

DSI in agricultural drought monitoring, the methodological limitations, and finally, 

the implications of the research for science, the UK wheat and agricultural 

industry and drought management policy.  

4.1 Historic droughts 

Despite it is humid climate it is recognised that the UK and some regions (notably 

eastern England) are vulnerable to drought (Cole and Marsh, 2006a; b). The DSI 

analysis (Figure 10) showed that ‘moderate-extreme’ droughts were identified 

across the winter wheat growing season. At least one of the SPI-9,6,3, SPEI-

9,6,3 and PDSI drought indicators highlight a ‘moderate’ drought in nearly a third 

(30 of 104) growing seasons (1911-2015). This is comparable to the results of 

Cole and Marsh (2006a) who used a range of sources to classify 12 ‘notable’ and 

6 ‘major’ UK drought episodes, featuring 35 years from 1912-2000. Of the 18 

notable and major drought episodes identified by Cole and Marsh, (2006a), 14 of 

these had a coinciding growing season identified for the Cambridge site (Table 

18). It is therefore unsurprising that growers rank unpredictable weather highly in 

assessment of risks to wheat production (Ilbery et al., 2013), emphasising the 

need for better understanding of droughts and their impacts. With 14 of the 18 

droughts reported by Cole and Marsh, (2006a) shown to have occurred during 

the winter wheat growing season, Cambridge provides a good representative site 

for exploring the drought/yield relationships and likely adaptation responses.  

The DSI’s used in this study were in close agreement with each other both 

through the statistical analysis (Table 17), via visual appraisal (Table 18), and 

with previous observations (Vicente-Serrano et al., 2010; Paulo et al., 2012). 

There are years where the DSI differ in their drought classification, such as 1972 

and 1990 on a 9-month time step which justifies the need to compare all four DSI 
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with simulated wheat yields. For example, depending on the DSI used , 

agricultural stakeholders could be advised that the 1990 winter wheat growing 

season was either ‘near normal’, a ‘moderate’ or ‘severe’ drought. This highlights 

the difficulty in selecting one representative drought index for a specific purpose 

(Vicente-Serrano et al., 2012). 

There were a number of ‘notable’ drought episodes (1919, 1941, and 1962-1965) 

reported by Cole and Marsh (2006a) that were not identified by the DSI analysis. 

Of potentially greater significance, however, is the absence of the ‘major’ 1959 

drought episode, reported as an ‘intense 3 season drought’ (February-November) 

which was particularly severe in Eastern England (Cole and Marsh, 2006a). The 

SPI 1-12 for each month in 1959 (Figure 17) shows that although dry months are 

present in February, May and July these were preceded by a wet March and July, 

thus preventing any serious drought episode from taking hold. The main 

expression of the 1959 drought occurred at the end of (August), and after 

(September/October) the winter wheat growing season, resulting in a ‘severely’ 

dry SPI-4 for November. Therefore, this was unlikely to have affected wheat 

yields. Wilhite et al., (2007) noted that the economic impacts of drought are highly 

variable within and between economic sectors. The 1959 drought at Cambridge 

highlights this, with it is main expression outside a typical wheat growth season. 

However, it is late summer/autumn expression threatened crops such as 

grasslands supporting livestock. This reinforces the need for drought 

1 2 3 4 5 6 7 8 9 10 11 12
JAN 1.2 1.1 0.7 0.5 0.7 0.7 1.0 1.8 2.0 1.8 1.7 1.9

FEB -2.5 -0.1 0.3 0.0 0.0 0.2 0.3 0.6 1.5 1.6 1.5 1.3

MAR 1.1 0.0 0.6 0.8 0.5 0.4 0.5 0.6 0.8 1.6 1.7 1.6

APR 0.4 0.9 0.1 0.6 0.8 0.5 0.4 0.5 0.6 0.8 1.6 1.7

MAY -1.7 -0.8 0.1 -0.7 -0.1 0.1 0.0 -0.1 0.1 0.2 0.5 1.2

JUN 0.3 -0.9 -0.5 0.1 -0.5 0.0 0.2 0.0 0.0 0.1 0.2 0.5

JUL 1.3 1.1 0.3 0.4 0.7 0.3 0.6 0.7 0.5 0.4 0.6 0.6

AUG -1.1 0.3 0.3 -0.3 -0.2 0.2 -0.3 0.1 0.3 0.1 0.1 0.2

SEP -3.2 -2.6 -0.7 -0.5 -1.1 -0.9 -0.5 -0.9 -0.6 -0.4 -0.5 -0.5

OCT -0.3 -1.6 -2.1 -0.8 -0.7 -1.2 -1.0 -0.7 -1.1 -0.7 -0.5 -0.6

NOV -0.6 -0.7 -1.8 -2.2 -1.0 -0.9 -1.3 -1.2 -0.8 -1.2 -0.9 -0.7

DEC 1.2 0.5 0.1 -0.9 -1.4 -0.5 -0.4 -0.9 -0.8 -0.4 -0.8 -0.5

1959 No.	months	lag

Figure 17 SPI1-12 for 1959 at Cambridge 
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 monitoring and reporting to be not only industry specific (e.g. agriculture) but also 

sector specific (e.g. wheat). 

The most recent 2010-2012 drought was identified by being ‘severe’ with dry 

conditions for the 9 and 6 months (SPI-SPEI-6,9 and PDSI) prior to harvest in 

2011. The lack of expression over the production phase (SPI/SPEI-3) can be 

explained by Kendon et al., (2013) who noted an exceptionally dry March and 

April persisting into May, with much of the UK experiencing a cool above-average 

rainfall during the summer. Kendon et al. (2013) also reported that in 2010, 

England received less than 70% of it is average spring rainfall followed by a warm 

and dry July. Considering this, and the documented impacts of water limitations 

on wheat in 2010 (DEFRA, 2010a) it raises the question of why this drought 

episode was not identified in Table 18? Kendon et al., (2013) provide a possible 

explanation. August was used as the base month for the DSI analysis (Table 18) 

and was described as being cool and wet month, with over twice the monthly 

rainfall in parts of East Anglia. The SPI evolution (Figure 18) shows this 

expression with a very dry April continuing through to July were the SPI-4 and 

SPI-5 classify this as a ‘severe’ drought. However, the exceptionally wet August 

wipes out the expression of the previous drought episode. The failure of the DSI 

on time steps used in Table 18 to identify the 2010 drought highlights the varying 

temporal and spatial scales that droughts can extend over. Therefore, classifying 

a drought episode into a single value, such as SPI-9 for August can be 

misleading, particularly if the time step includes periods after the drought has 

Figure 18 SPI-1-12 month time steps for the 2010 winter wheat 
growing season at Cambridge 

1 2 3 4 5 6 7 8 9 10 11 12
SEP -1.4 -0.7 0.5 0.4 0.1 -0.3 -0.3 -0.1 -0.2 -0.5 -0.4 -0.3

OCT	(S) -0.4 -1.4 -0.9 0.2 0.1 -0.2 -0.5 -0.6 -0.3 -0.4 -0.7 -0.6

NOV 1.7 0.9 0.1 0.1 0.8 0.7 0.5 0.2 0.1 0.3 0.2 -0.1

DEC 1.1 2.0 1.3 0.5 0.5 1.2 1.0 0.8 0.5 0.4 0.6 0.5

JAN 0.0 0.8 1.6 1.1 0.4 0.4 1.1 1.0 0.7 0.4 0.4 0.5

FEB 1.3 0.9 1.2 1.9 1.4 0.8 0.8 1.3 1.2 1.0 0.7 0.7

MAR -0.4 0.6 0.4 0.8 1.5 1.1 0.5 0.5 1.1 1.0 0.8 0.5

APR -1.3 -1.4 -0.3 -0.3 0.3 1.0 0.7 0.2 0.2 0.8 0.7 0.5

MAY -0.5 -1.4 -1.6 -0.6 -0.6 -0.1 0.7 0.4 -0.1 0.0 0.6 0.5

JUN 0.0 -0.6 -1.2 -1.4 -0.7 -0.7 -0.2 0.6 0.3 -0.1 -0.1 0.5

JUL -1.1 -0.9 -1.1 -1.6 -1.8 -1.1 -1.1 -0.6 0.2 -0.1 -0.5 -0.4

AUG	(H) 1.9 1.1 0.9 0.6 0.1 -0.1 0.3 0.3 0.6 1.1 0.8 0.4

2010 No.	months	lag
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ended. This emphasises that DSI should be used in conjunction with the specific 

sector of interest and should be monitored at varying time steps.  

The DSI analysis (Table 18) identified growing season droughts that did not fall 

into previously reported drought episodes. Some of these appear to be minor 

deviations from the normal weather, acknowledged by just one DSI (1952 and 

2000). More pronounced events (1935, 1940, 1942, 1957 and 1961) are 

classified as ‘moderate’ droughts by more than one DSI at various time steps. A 

significant event however occurred over the 1994 production phase, with the SPI-

3 and SPEI-3 classifying an ‘extreme’ and ‘severe’ drought respectively. 

Considerable attention has been given to the 1988-1992 (Marsh et al., 1994; 

Marsh, 1998) and 1995-1997 (Marsh, 1995) droughts, with little attention given 

to a potentially dry summer in 1994. Spinoni et al., (2015) report of a 1994 drought 

across North Eastern Europe. Whether the significant drought reported at 

Cambridge was experienced more widely requires further research and highlights 

the importance of studies such as this that attempt to analyse the complexity of 

drought event and their impacts at a local scale (Wilhite et al., 2007). 

4.2 Wheat yield simulation 

4.2.1 Model performance 

Before the effects of drought on yield could be simulated, Sirius was first validated 

for the Cambridge site. The observed yields at Cambridge were simulated with 

an ‘excellent’ level of accuracy (Table 20). Nevertheless, the range (9-10.7 t ha-

1) and sample size (n = 5) was relatively small (Table 19), although, not dissimilar 

to the 8.3-11 t ha-1 range of for an identical sample size (n = 5) used by 

Vanuytrecht et al., (2015) to validate Sirius in the Flemish Region of Belgium. As 

the weather over central England is nearly uniform (Butterfield et al., 1998 cited 

in Jamieson et al., 1999; Hess et al., 2015) and the RLT data featured 4 additional 

sites near St Neots (~40 km) grown on similar soil characteristics the validation 

was extended to include these sites. Unsurprisingly the model simulated yields 

more accurately at the Cambridge site (RRMSE = 5%) compared to St Neots 

(RRMSE = 16%). When combined (n = 9) the simulated yields were still to a 
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‘good’ level of accuracy over an increased range (8.6-11.8) and sample size. 

There is a noticeable outlier for the St Neots site (19/10/2005), where yield is 

under-estimated by 2.8 t ha-1. If excluded from the data set the model was shown 

to simulate yields to an excellent (RRMSE=7%) level of accuracy. The 

underestimation in yield for the outlier was not considered important for validation 

as the record for that year at the Cambridge site was simulated almost perfectly 

(0.1 t ha over estimation) (Table 19). In addition, when the average yield from all 

the RLT observations from Cambridge (n = 22) was compared to the Sirius 

simulated yield there was no major difference (Figure 19) confirming that the 

Sirius model provided a good yield simulation in East Anglia for that year.   

4.2.2 Historic yield simulations 

Simulated wheat yields on a medium AWC soil with a 1m MRD were supressed 

through water limitations (Figure 12). However, the simulated average yield loss 

of 6.1% (0.7 t ha-1), is not high. El Chami et al. (2015) simulated an average yield 

loss (irrigated yield-rainfed yield) of 24.6% (1.9 t ha-1) on a light sandy loam soil 

Figure 19 Average yield across all RLT observations for all cultivars and 
all soil types in Cambridge, 2000-2015 (no records 2008), range of annual 
observations (12-74) and Sirius simulated yield (cv. Claire, Soil: Evesham 
3 1m MRD) 



 

73 

 

at Silsoe, Bedfordshire using the Aquacrop model. The ‘heavier’ soil type 

(Evesham 3; clay / loam-clay) used in this study helps explain the lower average 

yield loss. The standard deviations of the PO and WL yield suggest that around 

half of the simulated yield deviation is a result in water limitations, and half due 

to temperature and radiation levels (Figure 13 and Table 21). 

 

El Chami and Daccache (2015) reported that rainfed winter wheat grown on 

lighter soils (sandy loam AWC 120 m/mm) produced 14% less yield than on 

heavier soils (silty clay loam –AWC 220mm/m, 4m MRD). The results from the 

sensitivity analysis (Figure 13 and Table 21) support El Chami and Daccache 

(2015) findings with the low AWC Badsey soil (MRD 1.5m) resulting in a 14% 

reduced yield compared to the medium (MRD 1.5m) AWC soils. The high AWC 

Hanworth soil demonstrated a lower median yield and a greater yield variance 

compared to the medium AWC Evesham soil at both 1m and 1.5m rooting depths; 

this can be explained by the soil characteristics increasing the rate at which the 

soil drains and dries.  

The average day of anthesis across the simulated record was 12th June which is 

comparable to the average anthesis date 15-19th June for East Anglia for a 

baseline climate scenario 1960-1990 reported by Madgwick et al., (2011), 

confirming that the site chosen for this study was representative for wheat 

production in East Anglia. The slightly later anthesis date reported by Madgwick 

et al. (2011) can be explained by lower CO2
 concentration (334 ppm) used, the 

different location, differences in cultivar parameters and sowing dates.   

Although yield loss was small compared to more droughty soils, assuming an 

average UK milling wheat price (2016-2010) of £150 (Nix, 2016), the annual 

average loss equates to £105 per ha. El Chami et al. (2015) reported that wheat 

typically occupies 50 ha per farm in East Anglia, which would therefore equate to 

an average annual farm loss of £7500. Based on El Chami et al., (2015) cheapest 

cost for irrigation of £915.9 ha  and assuming all yield losses could be mitigated 

by supplemental irrigation , on average irrigation is still not financially viable for 

the soil type at Cambridge. This confirms El Chami et al., (2015) findings that a 
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significant increase in grain price or a major reduction in irrigation cost would be 

needed before wheat is widely irrigated in the UK. 

 

4.2.3 Extreme yield limiting years  

Crop simulation models can help predict crop responses to large variations in 

weather (Jamieson et al., 1998a), but are less effective in predicting smaller yield 

fluctuations (Porter et al., 1993). Therefore discussion will focus on years where 

Sirius predicts significant yield loss due to water limitations (>15% yield loss) 

(Table 22). 

The simulated yield limiting years (Table 22) correspond with growing seasons 

identified as experiencing drought through the DSI analysis (Table 18).  The 

simulated loss during the more recent drought episodes (from 1976 onwards) can 

be corroborated with regional and national yield records, industry reports and 

newspaper or magazine articles.  

Table 22 Years when water 
limitations simulated yield 
loss of >15% compared to 
potential yield 

Year 
Yield loss 

(%) 
1921 37.7 
1934 24.1 
1942 24.7 
1943 15.2 
1944 21.2 
1949 17.6 
1957 21.3 
1976 28.9 
1995 17.0 
1996 23.0 
2010 32.4 
2011 19.4 
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The 1976 drought had significant reported impacts on agriculture (Table 3). Sirius 

simulated a 32% yield loss in 1976, with the SPI showing drought months 

throughout the growing season (October, December, February and June (Figure 

31, Appendix D). As a result, the time steps incorporating the complete growing 

season (SPI-6 to SPI-12) identify an ‘extreme’ drought.  

The SPI for the 1995 growing season at Cambridge (Figure 31 in Appendix D) 

identified a wet winter/early spring followed by a dry April that progressed through 

the summer to an extremely dry August. Substantial impacts were reported with 

£180 million losses in agriculture mainly to damage to root crops, vegetables and 

livestock (Palutikof et al., 1997). However, UK national wheat yields were above 

the 5 year running mean (Wreford and Adger, 2011). Despite this, there were 

reports of yield loss in Cambridgeshire; 

"Wheats on heavy land with some rain topped 4 t/acre, while on dry light 

land they have come in below 3t", says store manager Phil Darke. "We 

have averaged about a quarter tonne down on last year" (“Almost the last 

gasp" Farmers Weekly, 25th August 1995, vol 123 (8), p 46) 

The more recent 2010 drought had documented impacts in the Eastern region. 

Wheat yields were reported to be 6% below the previous 5 year average and 11% 

below the record up to 2010 (2008) (Figure 20) It was reported that crops were 

adversely Affected by the prolonged dry spell in April and May with continued dry 

weather during grain filling (June and July) causing stress to crops on all soil 

types (DEFRA, 2010a); this description is supported by the SPI for Cambridge 

(Figure 31, Appendix D). A report in Farmers Weekly quoted a Lincolnshire 

farmer describing the drought impacts:  

“the drought caught us out and did a lot of crop damage……the wheat 

suffered, especially JB Diego, which died in patches’’ (Farmers Weekly, 

3rd September 2010,  

Sirius simulated a 19.4% yield loss in 2011. It was reported that the drought in 

spring and early summer having the greatest affect on light soils in the South and 
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Eastern regions (DEFRA, 2011); this corresponds with the SPI which identified a 

dry March, April and May over the growing season. This is also evident in the 

regional yield time series for East Anglia where yields were 10% below the 1999-

2015 average, and considerably below the high yielding years (2008, 2014 and 

2015) (Figure 20). An East Anglian farmer reported: 

“…yields are so far low, about where we feared they would be and nowhere near 

the 9-10 t ha I have heard about further west” (Farmers Weekly, 12th August 2011,  

Prior to 1976 documented impacts of droughts on wheat are harder to identify. 

Evidence from newspaper articles and yield records suggests yields were not 

considerably affected, and in some cases may have benefitted (Table 23). It is 

recognised that a drought event today may be of comparable intensity and 

duration as a historical event, but the impacts can be expected to differ markedly 

because of changes in societal characteristics (Wilhite et al., 2007). Therefore, it 

must be acknowledged that simulations were for a modern wheat cultivar, under 

a modern wheat production system and that pressures on yield were different 

prior to the adoption of fertiliser application, plant growth regulators and crop 

breeding programs. An explanation as to why wheat may have performed better 

during droughts in the first half of the 20th Century was not the purpose of this 

study. However, some explanation may be evident in anecdotal evidence from 

the 1921 and 1944 seasons (Table 23). The reduced length in the straw appears 

Figure 20 Eastern region average wheat yield (t ha-1) 1999-2015  
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to be a common consequence of a drought stricken harvest, implying that in an 

era prior to PGR and the selective breading of wheats drought formed a natural 

resistance to lodging. Lodging is the permeant displacement of stems from the 

vertical through interactions plant wind, rain and soil (Sterling et al., 2003). Great 

progress in reducing the risk of lodging in the UK was made in the 1960s and 

1970s through the use of plant growth regulators and the breeding of shorter 

stemmed crops (Berry et al., 2004). The anecdotal evidence suggests that the 

Table 23 Summary of reported drought impacts prior to 1976 and comparison of  5 year 
moving average yield deviation(excluding drought year, see Wreford and Adger, (2011) 
against Sirius modelled yield loss   

Year 
UK yield 

deviation (%) 

Simulated 
yield loss 

(%) 
Documented impacts 

1921 +20% -37.7% Department of Agriculture report ‘fields of winter wheat were 

described as excellent’ the straw was barely a foot in length in 

southern counties (Weekly Freeman’s Journal, 6th August 1921)  

/ Autumn-sown wheat has stood the dry weather well. Though in 

some cases the straw is short” (Sussex Agricultural Express 15th 

July 1921) 

 

1934 +11% -24.1% In the Feltwell area crops on lighter land are described in perfect 

condition (Thetford and Watton Times 25th  August 1934) 

 

1942 +8% -24.7% Given sunshine and good weather Bedfordshire harvest this year 

may be the best for many years……it can be said wheat is the 

crop of the year (Bedfordshire Times and Independent-Friday 

21st August 1942 

 

1944 0% -21.2% Essex farmers, greatly concerned about the poor prospects of 

the wheat harvest, on account of prevailing drought conditions-

Abnormally short straw will not allow the use of mechanical 

harvesters. 

 

1949 +13% -17.6% In my experience this is the worst year for crops since 1921…..if 

drought continues for another week or so farmers will be facing 

heavy losses…there should be a bumper wheat crop this year, 

but barley, root and oats badly need rain (Shropshire farmer) 

(Bury Free Press, July 1st 1949) 

 

1957 -3% -21.3% N/A 
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drought in the first half of the 20th Century may have acted as a natural growth 

regulator stunting stem growth (see 1921, 1944 in Table 23) and reducing losses 

from lodging. Other possibilities include higher levels of radiation experienced 

during drought aided yield formation and the fast on field drying experienced 

during drought minimised post-harvest losses.         

Despite the ability of the Sirius model to be able to accurately simulate yields 

across a wide range of environments including drought, it is important to note that 

modelling yield in response to extreme events, particularly when they correspond 

to sensitive growth stages, remains a challenge (Craufurd et al., 2013 Semenov 

et al., 2014). It was not however the purpose of this study to quantify the yield 

loss of a historic drought if it occurred today. It was to identify historic droughts 

by their potential to cause yield loss to a modern wheat production system. Such 

studies are important a farmer’s changing perception of risk influences their 

decision around this risk (e.g. what cultivar should be grown). This perception is 

often shaped through personal experiences and memories (Ilbery et al., 2013). 

For example, a farmer at Cambridge is likely to be aware of drought risk from 

recent drought events (2010 or 1976) however, it is important to be aware that 

these may not be the worst case scenario. The crop modelling shows that historic 

weather patterns such as that of 1921 may be very detrimental to yield were they 

to reoccur.  

This study also showed that varying types of droughts can dramatically reduce 

yield (Figure 31, Appendix D). These included droughts that showed a strong 

expression over the entire growing season (1921, 1934, 1944, 1976 and 2011), 

those that formed over key growth stages only (1957 and 1996) even if preceding 

a wet winter and or spring (1990, 1995, 2010) and even those that had a single 

month expression after a serious of near normal months precipitation (1947).  
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4.2.4 Clustering of potentially yield limiting droughts 

It is reported that droughts can cluster (Marsh et al., 2007), occurring in 

successive years or in a number of years in close proximity. The causes of such 

clustering is poorly understood (Folland et al., 2015) although it is recognised that 

their impacts can exceed that of a single extreme event (Benton et al., 2012). The 

5 year running mean simulated yield (Figure 21) showed that when droughts 

appeared in close proximity, such as those during the early 1940s (Table 18) the 

impact on half decadal yield average can be greater than that of a single extreme 

yield reducing event, such as 1921. The recent 2010-2012 drought event was 

simulated to cause the second lowest 5 year average yield supporting reports 

that the multi-year 2010-2012 drought/flooding event led to compounding impacts 

on agriculture (Kendon et al., 2013). There is little knowledge on how temporal 

patterns of droughts will change, with some studies suggesting a clustering of 

droughts likely to become more common (Ping et al., 2012). However there is 

currently very limited understanding on how multi-seasonal (2010-2012) and 

drought clusters (1940-45) might change with climate change. The crop 

simulation results here reinforce the need for a better understanding of such 

events, as the potential impacts of these droughts can far outweigh single events.     

Figure 21 Simulated 5 year moving average WL yields and average WL yield (1912-2015) 
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4.3 DSI and simulated yield relationship  

Despite the documented impacts of drought on UK wheat (Foulkes, et al., 2007; 

Ober et al., 2011) studies investigating the relationship between national wheat 

yields and DSI have failed to show significant correlations (Vicente-Serrano et 

al., 2012; Naumann et al., 2015). The use of national yield records has two major 

limitations. Firstly, the regional variation in yield caused by the spatial variability 

in intensity and duration of droughts in the UK (Marsh, 2007) is excluded. 

Secondly, although de-trending removes the effects of advances in technological 

and management practices on yield (Vicente-Serrano et al., 2012) it fails to 

remove other causes of yield loss including lodging (Sterling et al., 2003), disease 

(Fones and Gurr, 2015) and pest (Millet and Miner, 2009) outbreaks. These 

limitations were overcome by modelling wheat yield response to historic (1912-

2015) water limitations, disregarding the effects of other pressures on yield. The 

results show that commonly used DSI have a significant relationship to simulated 

wheat yields (Figure 14 and Figure 16). There is however variance in the strength 

and timing of the correlations between DSI.  

On time steps before April, the DSI showed no significant correlation to simulated 

yields, which is consistent with understanding that water stress is typically 

minimal up to this period (El Chami et al., 2015). Although not significant (p=0.13), 

the PDSI showed a stronger correlation in March than the other DSI. Paulo et al. 

(2012) reported that the PDSI calibrated for a Mediterranean climate might help 

identify the onset of drought earlier providing it with an advantage in classifying 

agricultural drought. Any advantage the PDSI possesses is likely the result of it 

is ability to take into account runoff and soil moisture through soil AWC (Guttman, 

1998). Any potential for the PDSI to earlier identify agricultural drought in the UK 

requires further attention as the early warning of drought provides a foundation 

allowing well-timed decisions to be made at all levels (e.g. farmers and policy 

makers) (Wilhite et al., 2000). Such decisions for growers in the UK could include 

considering if irrigation provides economic sense based on the criteria set out by 

El Chami et al., (2015).   
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The correlations for all DSI strengthen as drought continues from April peaking 

in July and August, on time steps that include the entire construction and 

production phase for wheat (SPEI/SPI-4 July, SPI/SPEI-5 August, PSMDJUL, 

PDSIJuly and PDSIAugust). This pattern of correlation corresponds with how Sirius 

simulates yield, and with the current understanding of yield-drought interactions 

in the UK.  In Sirius, grain yield is dependent on biomass at anthesis and new 

biomass formed after the start of grain filling. In addition during unstressed 

conditions the decline in LAI and end of grain filling coincide, however during 

water stressed conditions senescence is accelerated, restricting grain filling, and 

reducing yield (Jamieson et al., 1998b). The correlations are consistent with Dodd 

et al's, (2011) conclusions, that early stem extension (April), flowering (June) and 

grain filling (June-July) are particularly drought sensitive stages. In addition, this 

correlation matches those of similar DSI yield relationship studies in Europe. 

Potopová et al., (2015) report that the SPEI and regional winter wheat yields in 

the Czech Republic correlate strongest in May and June (anthesis) at 1-7 month 

lags. They also find a less pronounced correlation in April (shooting stage). 

Potopová et al., (2015b) demonstrate a short-term drought (1-2 month) during 

wheat emergence (October) also correlates to yield. No such significant 

correlation was found in UK wheat. This is likely to be due to the fact that poor 

establishment due to weather in the UK tends not to reduce establishment 

enough that compensatory root growth or tillering fails to compensate (AHDB, 

2015a).  

The SPI and SPEI do not differ considerably in their correlations (Table 17). This 

contradicts Vicente-Serrano et al. (2012) who reported that SPEI shows the 

strongest maximum correlation to wheat yields. However it is consistent with 

Bachmair et al., (2016b) who showed that the two DSI perform similarly when 

correlated with documented UK drought impacts. Such findings are consistent 

with Paulo et al. (2012) who reported that in humid environments the SPI and 

SPEI do not deviate considerably. It is therefore likely that the SPI may be the 

more suitable over the SPEI for drought M&EW in the UK wheat sector due to it 

is reduced input parameters. However with climate change evapotranspiration 
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(ET) rates are likely to increase (Richter and Semenov, 2005) meaning the 

suitability of the SPEI in drought monitoring may increase.  

Despite the possible ability of the PDSI to identify yield-limiting droughts earlier, 

it fails to maintain it is advantage over other DSI during the sensitive growth 

stages. It is strongest correlation, August (0.55) is noticeably weaker than the 

strongest correlation of the other DSI (SPI 5 August (0.65), SPEI 4 July (0.65) 

and the PSMDJUL (0.66). Supporting previous studies who showed that multi-

scalar indices such as the SPI and SPEI outperform indices with fixed time step 

indices such as the PDSI in identifying agricultural impacts (Paulo et al., 2012; 

Vicente-Serrano et al., 2012; Wang et al., 2016). Although some studies have 

found the PDSI to be better linked to agricultural impacts (Tunaloglu and Durdu, 

2012). This highlights the need for location and sector specific studies. It is 

important to recognize that the PSMDMax/PSMDJUL are also calculated on a fixed 

time step (in the case of this study October-August) yet show the strongest 

correlation to simulated wheat yields. The reality is however that PSMD in the UK 

is normally accumulated over the spring and summer months (Figure 7) therefore 

is more a reflection of the drought situation from March to August, a time step 

featuring the key yield limiting growth stages (Dodd et al., 2011). The PSMDMonth 

shows that the timing of the PSMDMax has an impact on the effect on yield, 

agreeing with previous research (Richter and Semenov, 2005). 

Figure 16 shows the linear regression plots for the SPI 4, SPEI 4, PDSI and 

PSMDJUL. The substantial yield limiting years of 1921, 1976 and 2010 are all 

accompanied by ‘extreme’ or ‘severe’ drought classifications by the SPI and 

SPEI. Therefore, the monitoring of these DSI through the growing season would 

have provided the industry with the knowledge that a severe yield limiting drought 

was developing. The shortcomings of the fixed temporal scale of the PDSI is 

demonstrated in 2010. The SPI shows an extremely wet November, December 

and February (Figure 31, Appendix D). Which are not included in the calculation 

of the SPI 4 and SPEI 4 for July, However, the PDSI incorporates these months, 

potentially diminishing the effects of the summer drought episode. Highlighting 



 

83 

 

the importance of evaluating drought severity on different time steps, 

continuously (Wilhite, 2005).    

There are also examples when yields were noticeably depressed despite drought 

not being identified by the DSI at the highest correlating time step. The 1942 

season was not identified as a drought by the SPI-4 or the SPEI-4 for July, but 

experienced a 24.7% yield loss. For the SPI, June was the only month classified 

as a drought (Figure 31 in Appendix D). However, it coincided with certain 

sensitive growth stages in wheat (e.g. stem extension, anthesis and early grain 

filling) therefore, short intense precipitation deficits such as those seen in the SPI-

1 in June 1942 can reduce yield. Both the SPI and SPEI show a significant (0.39-

0.41) correlation for a single month drought identified in June. This emphasises 

the need for drought monitoring not only across multi-month times steps, but also 

across individual months including sensitive growth stages. Finally, for the 1990 

growing season (which demonstrates a contrasting trend to 1942) the SPI and 

SPEI classified the year as being a ‘severe’ and ‘extreme’ drought respectively 

and a PSMDJUL over 300 mm; however, the simulated yield loss was only 9.5%. 

The SPI (Figure 31, Appendix D) showed precipitation deficiencies in May, July 

and August after a wet winter.  

4.4 Methodological limitations 

The availability of weather data covering a large temporal resolution was limited. 

The absence of recorded mean wind speed, VP and radiation data for Cambridge 

meant estimates had to be derived from other variables. However long-term 

records for temperature and precipitation, the important variables influencing 

drought formation were available. In addition, estimates of absent variables were 

derived from other, available variables (i.e. minimum temperature (VP), sunshine 

hours (radiation) and monthly mean daily wind speed (daily mean wind speed).  

The RLT data provided sufficient information (sowing date and yield) to validate 

the cultivar cv. Claire in Sirius. However, to validate more recent, widely grown 

cultivars such as cv. Skyfall (Table 12) the timing of key growth stages was 
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required (e.g. anthesis, ripening date). These observations are required in the 

RLT protocol (AHDB, 2015b). In addition, observations of grain protein content 

would have allowed the effects of historic drought on grain quality to be 

investigated. Unfortunately, neither of these data could be obtained.  

The UK experiences significant spatial heterogeneity in climate (Figure 4), soil 

characteristics (Haygarth and Ritz, 2009), wheat production and productivity 

(Table 2). Therefore, to investigate the spatial variability of yields in response to 

historic droughts across different UK soils and climate, Sirius would need to be 

validated across a number of sites. Semenov (2009) simulated the impacts of 

climate change at 18 sites across England and Wales. For this study to be 

replicated, long-term climate data and soil parameters for sites with sufficient RLT 

yield observations for validation would be needed. 

The DSI also provide classifications of wet episodes (Table 5 and Table 6) and 

these have been shown to correlate with yield loss in Europe (Potopová et al., 

2015b). The UK is expected to experience an increase in excessive wet periods 

between sowing and anthesis increasing the risk from waterlogging (Trnka et al., 

2014). Unfortunately, the Sirius CSM does not simulate the effects of 

waterlogging on yield therefore no relationship between classified wet periods 

and yield response could be made. However, although waterlogging has been 

demonstrated to limit yields in the UK (Dickin et al., 2009) periods of winter 

flooding of up to 21 days have limited impact (Watts et al., 2016) .  

Finally, it is important to recognise the inherent limitations of DSI. A main 

limitation is the monthly time-step that DSI are often calculated on may not be a 

sufficiently high temporal resolution. A heavy precipitation event early on in the 

month may cause a month to be classed as normal, however in reality much of 

this is lost as run off or deep percolation and could be followed by 28 days of no 

rain, which (especially on droughty soils) may have caused a significant soil 

moisture deficit (Nain et al., 2005). 
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4.5 Research implications  

4.5.1 Implications for science  

It is accepted that there is little empirical evidence as to which DSI best 

represents drought impacts to a given sector, mainly due to the lack of information 

on drought impacts (Bachmair et al., 2016). However, the method presented in 

this study demonstrates that the use of models to simulate impacts can be used 

as substitute for limited and unsuitable recorded data, e.g. national or regional 

crop yields. Droughts pose a substantial threat to a multitude of UK sectors. 

Projects such as the UK droughts and Water Scarcity programme (NERC, 2016) 

(http://www.nerc.ac.uk/research/funded/programmes/droughts/), intend to 

support improved decision-making in relation to droughts through research that 

‘identifies, predicts and responds’ to drought and their impacts. The outputs of 

this study, particularly the long term daily climate data set (1912-2015) and 

subsequent DSI record, as well as the identification of historic droughts whose 

timing and intensity prove most detrimental to East Anglian wheat production 

contribute towards a number of the programmes projects. Including, the Historic 

Drought project (http://historicdroughts.ceh.ac.uk/) who intend to build a drought 

inventory of past drought characteristics, impacts and responses. Also to the 

Marius project (http://www.mariusdroughtproject.org/) which intends to analyse 

the frequency of drought at local and national scales in present climates. The 

yield simulations presented here provide valuable insights into the occurrence 

rate of potentially significant yield limiting droughts. In addition, commonly used 

DSI were shown to correlate to simulated wheat yield highlighting there potential 

for introducing alternative drought management arrangements and agricultural 

drought monitoring.  

Field studies are important in agricultural science; they represent a more realistic 

representation of agricultural practices with much more variable results 

(compared to controlled environments). Therefore it is important that 

environmental factors (particularly water stress) are monitored (Lawlor and 

Mitchell, 1991).  This study demonstrates that the monitoring of commonly used 
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DSI, particularly over key growth stages can provide an indication of water stress 

to wheat. This could assist in improving the understanding and validity of field 

experiments by forming a basis of comparison between years or experiments.  

4.5.2 Implications for industry  

There is no nationwide drought M&EW system for the UK. This study shows that 

for certain time steps the DSI could be used by the wheat industry in monitoring 

potentially yield-limiting droughts. In addition to the monthly water situation 

reports produced by the Environment Agency (Section 1.2.2) the AHDB provide 

monitoring tools for leaf spot, wheat bulb, aphid disease and weather 

https://cereals.ahdb.org.uk/monitoring.aspx. The weather and soil-monitoring 

tool provides weekly information on rainfall, temperature and wind speed. If a 

weekly or monthly SPI, SPEI or PSMD were provided growers would have more 

informed information on potential drought risk. Other actors could also benefit 

from a more targeted drought monitoring system. Using Ilbery et al, (2013a) 

separation of the UK wheat sector. ‘Upstream’ input providers supplying seed, 

fertilisers and chemicals may be able to make estimates on demand products. 

‘Intermediates’ such as grain merchants will be able to gauge supply scenarios, 

and output from upfront contracts. Downstream stakeholders such as mills, 

retailers and consumers may also find use in monitoring drought risk as 

reductions in UK production may increase the need for imports by millers resulting 

in a prize rise for wheat based products (Neate, 2012). 

Drought can increase risk to certain diseases in the UK. Foot rot (Cochliobolus 

sativus) although rare, can be found in very dry seasons. In dry seasons, Bunt 

(Tilletia tritici) may survive in the soil affecting following crops. Growers could also 

potentially use DSI to monitor risks from disease.   

Choosing drought tolerant varieties could yield an extra 1.3 t ha-1. However, the 

recommended list does not provide data on individual varieties yield stability 

(Henley, 2012). Meaning growers have little guidance on which varieties perform 

best in dry conditions (Ober, 2012). The SPI requires only precipitation data, 
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therefore could be potentially calculated at a large number of RL trial sites. The 

findings of this study suggesting that the SPI between April and August provides 

a good indicator of yield loss due to water restrictions potentially allowing for the 

comparative performance of varieties under drought stress. 

Studies have demonstrated that a single DSI can identify yield limiting droughts 

across a wide variety of agricultural crops (Potopová et al., 2015a Potopová et 

al., 2015b). The production of other UK crops is also often considerably limited 

by drought; including sugar beet (Jaggard et al., 1998; Ober et al., 2005), 

potatoes (Onder et al., 2005; Daccache et al., 2012) and oilseed rape (Wreford 

and Adger, 2011). Here DSI have been shown to correlate with simulated wheat 

yields in East Anglia.  There is potential therefore, for DSI to be applied across 

UK agriculture if studies similar to this were replicated on other drought vulnerable 

UK crops. This could provide an inventory of DSI-yield relationships to aid farmer 

and stakeholder decision making.   

The UK is often one of the first regions to experience drought across Europe 

(Hannaford et al., 2010). Therefore, a tool that identifies agricultural drought in 

the UK could potentially be a useful early warning for other parts of Europe. For 

example although for the UK a drought in March and February has no correlation 

to wheat, a drought in March or April in the UK may manifest later, over key 

growth stages in Europe.  It is important to note however that despite some broad 

patterns between drought in Europe, there tends to be few commonalities 

between major drought episodes (Hannaford et al., 2010). Therefore, other 

stakeholders in other countries could use the situation in the UK as an exemplar 

to monitor the situation in their country.  

There are a number of training programs for agricultural stakeholders in the UK. 

The outputs of this study could contribute to programs such as the AgriFood 

Advanced Training Partnerships Soil (ATP) and Water Management Course. This 

course offers a technical overview of the key factors in effective soil and water 

management. The DSI yield relationship tables (Figure 14) could be used in 



 

88 

 

training to inform how water limitations over key growth stages can be detrimental 

to yield, and how DSI can be used to monitor possible crop stress.  

4.5.3 Implications for policy  

National drought policy should include comprehensive M&EW systems (Wilhite 

et al., 2014). In England, the Environment Agency decides when a drought is 

happening by setting up and monitoring drought indicators, based on meteo-

hydrological thresholds or environmental indicators (Environment Agency, 2015). 

The production of monthly water situation reports supports and disseminates 

these situations.  This study demonstrates that DSI, particularly the SPI and SPEI 

could provide a more sector targeted drought M&EW system. Emphasising that 

drought policy should attempt to direct research priorities to establishing a greater 

understanding between the tools used in drought M&EW and it is impacts on a 

sector.  

5 Conclusions  

The aim of this research has been to assess the impacts of historical drought on 

a modern wheat production system and the performance of DSI in quantifying 

drought risk to UK wheat. The subsequent conclusions will focus on the three 

research objectives that form the major contributions to knowledge: 

 

1. To parameterise and validate a suitable crop growth model for wheat 

using existing industry field trials and published scientific data 

 

2. To simulate the impacts of historic climate variability on UK wheat, and; 

 

3. To assess the performance of selected drought indices for drought 

M&EW for the UK wheat industry and agricultural applications 
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Three main conclusions can be drawn from this study. The first conclusion is that 

Sirius was shown to simulate wheat yields to an ‘excellent-good’ level of accuracy 

(RRMSE 5.48-16.34) demonstrating it is use as a valuable tool for modelling 

wheat yields in the UK.  

The second conclusion is that simulated yield limiting droughts generally coincide 

with major reported droughts in the UK. With the 1921, 1976 and 2010 droughts 

being the most devastating in terms of yield loss simulated at Cambridge (1911-

2015). This yield reconstruction emphasises that historically droughts may be 

more damaging (1921) than those that shape growers or actors perceptions 

(1976 and 2010). In addition, years in which yield was limited by water restrictions 

are shown to potentially cluster together, compounding the impacts over a 

number of years. Simulations identified periods in the early 40s and over the more 

recent 2010-2012 drought as the most extreme examples.  

The third conclusion and arguably most significant is that the SPI, SPEI, PDSI, 

and the PSMDMonth all showed significant correlations to simulated wheat yields 

(0.18-0.66) between April to August with a strengthening of correlation as drought 

extends over the key growth stages. Previous studies have failed to find a 

significant relationship between DSI and UK national wheat yields. By using local 

simulated yields, confounding factors such as disease and lodging were 

removed. Presenting a method that may be taken forward an applied to other UK 

field crops and internationally.  

The SPI and SPEI showed little difference in their correlations, In agreement with 

other studies investigating DSI and impact relationships. The PDSI showed the 

weakest maximum correlation to wheat yields (0.55), in agreement with other 

previous comparative studies. However although not statistically significant 

(P=0.13) the PDSI may provide an earlier warning of yield limiting drought. This 

may require further investigation.  

Collectively, this new knowledge and insights can be taken forward and used in 

a more directed and sector specific drought M&EW system in the UK. Aiding 

farmers, grain merchants, miller’s retailers and consumers of potential production 
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risks. Field studies and trials can use DSI to monitor drought stress allowing for 

more informed information on drought tolerance between modern wheat 

varieties. 
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Figure 22 Comparison between Simulated yields 
in Sirius and wheat yields in contrasting 
environments: rain shelter experiment, Lincoln, 
NZ; nitrogen experiment, Brimstone, UK; and 
nitrogen and water experiment, Maricopa, USA 
(Semenov and Doblas-Reyes, 2007) 

APPENDICES 
Appendix A -  Sirius simulation accuracy  
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Appendix B -  Weather data comparison  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 23 Comparison of daily maximum temperature (C°) at 
the Cambridge Botanic Gardens and Cambridge NIAB Met 
office weather stations 1959-2005 

 

Figure 24 Comparison of daily minimum temperature (C°) at 
the Cambridge Botanic Garden and Cambridge NIAB Met 
office weather stations 1959-2005 
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Figure 25 Comparison of Monthly precipitation (mm) totals at 
Cambridge NIAB and Cambridge Botanic Garden (1961-1969 
and 1990-1999) 

Figure 26 Comparison of daily maximum temperature (C°) at 
the Cambridge NIAB and Boxworth Samson Field Met stations 
1977-1989 
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Figure 27 Comparison of daily minimum temperature (C°) at the 
Cambridge NIAB and Boxworth Samson Field Met stations 
1977-1989 

Figure 28 Comparison of daily maximum temperature (C°) at 
the Cambridge NIAB and Hadley Centre Central England 
Temperature data (HadCET) 1959-1963 
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Figure 29 Comparison of daily minimum temperature (C°) at the 
Cambridge NIAB and Hadley Centre Central England 
Temperature data (HadCET) 1959-1963 

Figure 30 Comparison of monthly precipitation totals for St 
Neots and Cambridge Botanic Garden Met station (1930-1949) 

Spring and summer 

months MBE St 

Neots +2.7 mm 



 

117 

 

 

Appendix C -  RLT soil classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 24 Soil classification system used for the AHDB RLT(DEFRA, 2010b; AHDB, 2015b) 

Descriptor Soil type Definition 
 

 
 
L 

Light sand soils Soils which are sand, loamy sand or sandy loam to 40 cm depth and are sand or 

loamy sand between 40 and 80 cm, or over sandstone rock. 

 

Shallow Soils over chalk, limestone or other rock where the parent material is within 40 cm 

of the soil surface. Sandy soils developed over sandstone rock should be regarded 

as light sand soils. 

M Medium Medium textured soil that does not fall into other category. 

 
 
H 

Deep clay soils Soils with predominantly sandy clay loam, silty clay loam, clay loam, sandy clay, 

silty clay or clay topsoil overlying clay subsoil. Deep clay soils normally need 

artificial field drainage. 

Deep fertile soils Soils of sandy silt loam, silt loam to silty clay loam textures to 100 cm depth or more. 

Silt soils formed on marine alluvium; warp soils (formed on river alluvium) and 

brickearth soils (formed on windblown material) will be in this category. 

 
O 

Organic soils Soils that are predominantly mineral with between 6 and 20% organic matter. These 

can be distinguished by darker colouring that stains the fingers black or grey and 

gives the soil a silty feel. 

Peaty soils Soils that contain more than 20% organic matter derived from sedge or similar peat 

material. 

C (L) Chalky soil. Specific chalky soil within the L group described above. 

B (L) Limestone brash 

soil. 

Specific limestone brash within the L group described above. 

W (L) Wold Wold soil over chalk within the L group described above. 

F (O) Black Fen soil. Black fen within the O group described above. 

S (H) Silts Silty soils that are within the H group described above. 
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Appendix D -  SPI for years of significant simulated yield loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12
SEP 0.1 -0.6 -1.2 -0.9 -0.7 -0.8 -0.7 -0.7 -1.0 -1.5 -1.6 -1.0

OCT	(S) -0.1 -0.2 -0.7 -1.2 -1.0 -0.8 -0.8 -0.8 -0.8 -1.1 -1.6 -1.7

NOV -0.7 -0.7 -0.6 -1.0 -1.4 -1.2 -1.0 -1.0 -1.0 -1.0 -1.3 -1.7

DEC -2.5 -2.1 -1.8 -1.5 -1.8 -2.1 -1.9 -1.6 -1.6 -1.5 -1.5 -1.8

JAN -1.5 -2.5 -2.4 -2.2 -1.9 -2.2 -2.4 -2.1 -1.8 -1.9 -1.8 -1.7

FEB -2.2 -2.6 -3.2 -3.0 -2.6 -2.3 -2.5 -2.7 -2.4 -2.2 -2.2 -2.1

MAR -0.1 -1.3 -2.0 -2.8 -2.6 -2.4 -2.2 -2.4 -2.6 -2.3 -2.1 -2.1

APR 0.4 0.1 -0.8 -1.4 -2.1 -2.2 -2.1 -1.9 -2.2 -2.3 -2.1 -1.9

MAY -1.5 -0.7 -0.7 -1.5 -2.1 -2.7 -2.6 -2.5 -2.3 -2.5 -2.6 -2.4

JUN -0.9 -2.0 -1.2 -1.2 -1.9 -2.4 -3.0 -2.9 -2.8 -2.6 -2.8 -2.9

JUL -0.6 -1.2 -1.9 -1.4 -1.4 -2.0 -2.4 -3.0 -2.9 -2.8 -2.7 -2.8

AUG	(H) 0.0 -0.5 -0.9 -1.5 -1.3 -1.3 -1.8 -2.2 -2.7 -2.7 -2.6 -2.6

1934 No.	months	lag
1 2 3 4 5 6 7 8 9 10 11 12

SEP -1.6 0.2 0.0 -0.3 -0.3 -0.6 0.0 0.1 0.3 0.1 1.1 0.8

OCT	(S) 0.0 -1.0 0.0 -0.1 -0.4 -0.4 -0.6 -0.1 0.1 0.2 0.0 1.0

NOV 0.2 0.0 -0.8 0.0 0.0 -0.3 -0.3 -0.5 0.0 0.1 0.2 0.0

DEC -0.9 -0.5 -0.5 -1.3 -0.3 -0.4 -0.6 -0.6 -0.8 -0.3 -0.2 -0.1

JAN 0.3 -0.4 -0.3 -0.4 -1.1 -0.3 -0.3 -0.5 -0.5 -0.7 -0.2 -0.1

FEB 0.0 0.1 -0.5 -0.3 -0.4 -1.0 -0.3 -0.3 -0.6 -0.6 -0.7 -0.3

MAR -0.1 -0.3 -0.2 -0.6 -0.4 -0.5 -1.1 -0.4 -0.4 -0.6 -0.6 -0.8

APR -0.4 -0.6 -0.7 -0.5 -0.9 -0.7 -0.7 -1.2 -0.6 -0.6 -0.7 -0.7

MAY 0.2 -0.3 -0.5 -0.6 -0.4 -0.8 -0.6 -0.7 -1.2 -0.5 -0.5 -0.7

JUN -1.3 -0.9 -1.1 -1.1 -1.2 -1.0 -1.3 -1.1 -1.1 -1.5 -0.9 -0.9

JUL 0.8 -0.1 -0.1 -0.4 -0.5 -0.6 -0.5 -0.8 -0.7 -0.7 -1.1 -0.6

AUG	(H) -0.6 0.1 -0.5 -0.4 -0.7 -0.8 -0.8 -0.8 -1.0 -0.9 -0.9 -1.3

1942 No.	months	lag
1 2 3 4 5 6 7 8 9 10 11 12

SEP 0.7 -0.2 0.2 -0.1 -0.2 0.5 0.6 0.2 0.3 0.8 0.5 0.1

OCT	(S) -1.7 -0.4 -1.0 -0.4 -0.7 -0.7 0.0 0.1 -0.3 -0.2 0.3 0.1

NOV -2.3 -2.8 -1.3 -1.8 -1.1 -1.2 -1.2 -0.5 -0.5 -0.8 -0.7 -0.1

DEC -0.1 -1.6 -2.5 -1.5 -1.9 -1.2 -1.3 -1.3 -0.6 -0.5 -0.9 -0.8

JAN 0.3 0.0 -1.0 -1.8 -1.2 -1.6 -1.0 -1.2 -1.2 -0.5 -0.5 -0.8

FEB -1.7 -0.8 -0.7 -1.5 -2.2 -1.5 -1.9 -1.3 -1.4 -1.5 -0.8 -0.7

MAR -0.8 -1.8 -1.2 -1.1 -1.8 -2.4 -1.7 -2.1 -1.5 -1.6 -1.6 -1.0

APR 0.0 -0.6 -1.5 -1.2 -1.1 -1.7 -2.3 -1.7 -2.1 -1.5 -1.6 -1.6

MAY -1.4 -1.0 -1.4 -2.1 -1.8 -1.6 -2.2 -2.7 -2.1 -2.4 -1.8 -1.8

JUN -1.2 -2.2 -1.8 -2.0 -2.6 -2.3 -2.1 -2.5 -3.0 -2.5 -2.7 -2.1

JUL -2.2 -2.6 -3.0 -2.5 -2.8 -3.2 -2.9 -2.7 -3.1 -3.5 -3.0 -3.2

AUG	(H) -0.7 -2.0 -2.4 -2.8 -2.7 -2.9 -3.3 -3.0 -2.9 -3.2 -3.6 -3.1

No.	months	lag1921

1 2 3 4 5 6 7 8 9 10 11 12
SEP -0.2 -0.7 -1.6 -1.3 -1.3 -1.5 -1.9 -2.1 -1.3 -1.2 -1.7 -1.2

OCT	(S) -0.1 -0.4 -0.7 -1.4 -1.2 -1.2 -1.5 -1.8 -2.0 -1.3 -1.3 -1.8

NOV -0.6 -0.5 -0.7 -1.0 -1.5 -1.4 -1.4 -1.6 -2.0 -2.1 -1.5 -1.4

DEC -0.9 -1.2 -1.1 -1.3 -1.5 -2.0 -1.8 -1.7 -1.9 -2.3 -2.4 -1.7

JAN -0.9 -1.2 -1.5 -1.4 -1.5 -1.7 -2.1 -1.9 -1.9 -2.1 -2.4 -2.5

FEB -0.7 -1.3 -1.5 -1.6 -1.5 -1.6 -1.8 -2.2 -2.0 -2.0 -2.2 -2.5

MAR -1.9 -1.8 -2.1 -2.2 -2.1 -2.0 -2.0 -2.2 -2.5 -2.3 -2.2 -2.4

APR 0.2 -0.8 -1.2 -1.7 -1.9 -1.9 -1.8 -1.9 -2.0 -2.3 -2.1 -2.1

MAY -0.8 -0.5 -1.3 -1.6 -2.0 -2.2 -2.2 -2.1 -2.1 -2.2 -2.5 -2.3

JUN -1.2 -1.8 -1.3 -1.9 -2.2 -2.5 -2.6 -2.5 -2.4 -2.5 -2.5 -2.8

JUL -0.3 -1.1 -1.5 -1.2 -1.8 -2.0 -2.3 -2.5 -2.5 -2.4 -2.4 -2.5

AUG	(H) 0.6 0.1 -0.5 -0.8 -0.8 -1.3 -1.5 -1.8 -2.0 -2.0 -2.0 -2.1

1944 No.	months	lag
1 2 3 4 5 6 7 8 9 10 11 12

SEP -0.2 1.3 1.7 1.6 1.1 1.0 0.7 0.4 0.7 0.6 0.3 0.6

OCT	(S) -0.6 -0.7 0.8 1.2 1.2 0.8 0.6 0.4 0.2 0.5 0.3 0.1

NOV -1.3 -1.4 -1.3 0.3 0.7 0.7 0.4 0.3 0.0 -0.2 0.1 0.0

DEC 0.6 -0.4 -0.9 -1.0 0.4 0.9 0.9 0.5 0.4 0.1 -0.1 0.2

JAN -0.9 0.0 -0.8 -1.1 -1.2 0.1 0.6 0.6 0.3 0.2 -0.1 -0.2

FEB 1.0 0.2 0.5 -0.2 -0.5 -0.7 0.4 0.8 0.8 0.5 0.4 0.2

MAR 0.4 0.8 0.3 0.5 -0.1 -0.4 -0.6 0.4 0.8 0.8 0.5 0.4

APR -2.6 -0.9 -0.2 -0.6 -0.3 -0.7 -1.0 -1.1 0.0 0.4 0.4 0.1

MAY -1.1 -2.5 -1.6 -0.8 -1.2 -0.7 -1.1 -1.3 -1.4 -0.4 0.1 0.1

JUN -0.2 -1.2 -2.1 -1.6 -1.0 -1.3 -0.9 -1.2 -1.4 -1.5 -0.5 0.0

JUL 0.5 0.1 -0.5 -1.2 -1.0 -0.6 -0.9 -0.6 -1.0 -1.1 -1.3 -0.3

AUG	(H) 0.1 0.3 0.0 -0.5 -1.1 -1.0 -0.6 -0.9 -0.6 -0.9 -1.1 -1.2

1957 No.	months	lag
1 2 3 4 5 6 7 8 9 10 11 12

SEP 0.7 -0.1 -0.6 -1.1 -0.8 -0.1 0.6 0.5 0.5 0.3 1.1 1.3

OCT	(S) -2.2 -0.5 -1.0 -1.3 -1.7 -1.4 -0.7 0.1 -0.1 0.0 -0.2 0.6

NOV -0.4 -1.6 -0.7 -1.1 -1.4 -1.8 -1.5 -0.8 -0.1 -0.2 -0.2 -0.4

DEC -1.0 -1.1 -2.2 -1.3 -1.6 -1.8 -2.1 -1.9 -1.2 -0.4 -0.5 -0.4

JAN -0.9 -1.2 -1.3 -2.3 -1.4 -1.8 -2.0 -2.2 -2.0 -1.3 -0.6 -0.7

FEB -1.1 -1.5 -1.7 -1.7 -2.5 -1.7 -2.0 -2.1 -2.4 -2.2 -1.5 -0.8

MAR -0.8 -1.5 -1.8 -2.0 -1.9 -2.6 -1.9 -2.1 -2.2 -2.5 -2.3 -1.6

APR -0.5 -1.1 -1.7 -2.0 -2.2 -2.0 -2.7 -2.0 -2.3 -2.4 -2.5 -2.4

MAY -0.4 -0.9 -1.3 -1.8 -2.1 -2.3 -2.2 -2.8 -2.2 -2.4 -2.4 -2.6

JUN -1.8 -1.8 -1.9 -2.1 -2.5 -2.8 -2.9 -2.7 -3.2 -2.6 -2.8 -2.9

JUL -0.4 -1.5 -1.6 -1.8 -2.0 -2.4 -2.6 -2.9 -2.7 -3.1 -2.7 -2.8

AUG	(H) -0.5 -0.8 -1.5 -1.6 -1.9 -2.2 -2.4 -2.7 -2.9 -2.7 -3.2 -2.7

1976 No.	months	lag

1 2 3 4 5 6 7 8 9 10 11 12
SEP 0.8 -0.1 -0.9 -1.3 -1.2 -0.6 -0.6 -0.6 -0.3 0.1 0.2 0.6

OCT	(S) 0.9 1.1 0.4 -0.3 -0.7 -0.6 -0.2 -0.2 -0.2 0.1 0.4 0.4

NOV -1.0 0.2 0.6 -0.1 -0.6 -1.0 -0.9 -0.5 -0.5 -0.5 -0.2 0.1

DEC -0.1 -0.9 0.0 0.4 -0.2 -0.7 -1.1 -1.0 -0.6 -0.6 -0.6 -0.3

JAN 1.5 0.8 0.1 0.6 0.9 0.3 -0.2 -0.5 -0.5 -0.1 -0.1 -0.2

FEB 1.3 1.9 1.3 0.7 1.0 1.2 0.7 0.2 -0.1 -0.1 0.2 0.2

MAR 0.8 1.3 1.8 1.4 0.9 1.1 1.3 0.8 0.4 0.1 0.1 0.3

APR -1.3 -0.2 0.5 1.1 0.8 0.4 0.7 0.9 0.5 0.0 -0.2 -0.2

MAY -0.8 -1.6 -0.7 0.0 0.7 0.4 0.0 0.4 0.6 0.2 -0.2 -0.4

JUN -1.1 -1.6 -2.2 -1.3 -0.5 0.1 0.0 -0.4 0.0 0.3 -0.1 -0.5

JUL -0.8 -1.5 -1.8 -2.3 -1.6 -0.9 -0.3 -0.4 -0.7 -0.3 0.0 -0.4

AUG	(H) -2.4 -2.1 -2.5 -2.6 -3.1 -2.4 -1.6 -1.0 -1.0 -1.2 -0.8 -0.6

1995 No.	months	lag

1 2 3 4 5 6 7 8 9 10 11 12
SEP 1.5 0.3 -0.2 -0.7 -1.0 -1.4 -1.1 -0.6 -0.1 -0.2 -0.5 -0.2

OCT	(S) -1.6 0.5 -0.4 -0.8 -1.3 -1.5 -1.9 -1.6 -1.1 -0.6 -0.7 -0.9

NOV -0.9 -1.8 0.1 -0.8 -1.1 -1.5 -1.7 -2.1 -1.8 -1.3 -0.9 -0.9

DEC 0.8 0.0 -1.0 0.4 -0.5 -0.8 -1.2 -1.4 -1.8 -1.5 -1.1 -0.6

JAN -0.6 0.2 -0.3 -1.1 0.1 -0.7 -1.0 -1.3 -1.5 -1.9 -1.6 -1.2

FEB 0.8 0.1 0.5 0.0 -0.7 0.3 -0.4 -0.7 -1.0 -1.2 -1.6 -1.4

MAR -0.5 0.1 -0.3 0.1 -0.3 -0.9 0.0 -0.6 -0.9 -1.1 -1.3 -1.6

APR -2.1 -1.7 -0.9 -1.2 -0.6 -0.9 -1.5 -0.4 -1.1 -1.3 -1.5 -1.7

MAY -1.0 -2.2 -2.2 -1.5 -1.7 -1.0 -1.3 -1.8 -0.8 -1.3 -1.5 -1.7

JUN -1.4 -2.1 -2.9 -2.9 -2.1 -2.3 -1.6 -1.7 -2.2 -1.2 -1.7 -1.9

JUL -0.2 -1.1 -1.6 -2.3 -2.4 -1.9 -2.1 -1.6 -1.7 -2.1 -1.2 -1.7

AUG	(H) 0.5 0.1 -0.5 -0.9 -1.6 -1.8 -1.4 -1.6 -1.2 -1.4 -1.8 -1.0

1996 No.	months	lag

1 2 3 4 5 6 7 8 9 10 11 12
SEP -1.4 -0.7 0.5 0.4 0.1 -0.3 -0.3 -0.1 -0.2 -0.5 -0.4 -0.3

OCT	(S) -0.4 -1.4 -0.9 0.2 0.1 -0.2 -0.5 -0.6 -0.3 -0.4 -0.7 -0.6

NOV 1.7 0.9 0.1 0.1 0.8 0.7 0.5 0.2 0.1 0.3 0.2 -0.1

DEC 1.1 2.0 1.3 0.5 0.5 1.2 1.0 0.8 0.5 0.4 0.6 0.5

JAN 0.0 0.8 1.6 1.1 0.4 0.4 1.1 1.0 0.7 0.4 0.4 0.5

FEB 1.3 0.9 1.2 1.9 1.4 0.8 0.8 1.3 1.2 1.0 0.7 0.7

MAR -0.4 0.6 0.4 0.8 1.5 1.1 0.5 0.5 1.1 1.0 0.8 0.5

APR -1.3 -1.4 -0.3 -0.3 0.3 1.0 0.7 0.2 0.2 0.8 0.7 0.5

MAY -0.5 -1.4 -1.6 -0.6 -0.6 -0.1 0.7 0.4 -0.1 0.0 0.6 0.5

JUN 0.0 -0.6 -1.2 -1.4 -0.7 -0.7 -0.2 0.6 0.3 -0.1 -0.1 0.5

JUL -1.1 -0.9 -1.1 -1.6 -1.8 -1.1 -1.1 -0.6 0.2 -0.1 -0.5 -0.4

AUG	(H) 1.9 1.1 0.9 0.6 0.1 -0.1 0.3 0.3 0.6 1.1 0.8 0.4

2010 No.	months	lag
1 2 3 4 5 6 7 8 9 10 11 12

SEP 0.4 1.7 1.1 0.9 0.6 0.2 0.0 0.4 0.3 0.6 1.1 0.9

OCT	(S) 0.4 0.4 1.5 1.0 0.9 0.6 0.3 0.1 0.4 0.4 0.6 1.1

NOV -1.0 -0.4 -0.2 1.1 0.6 0.5 0.3 -0.1 -0.3 0.1 0.1 0.3

DEC -1.0 -1.6 -1.0 -0.7 0.8 0.3 0.2 0.0 -0.4 -0.5 -0.2 -0.2

JAN 0.8 -0.1 -0.7 -0.5 -0.3 1.0 0.5 0.4 0.2 -0.2 -0.3 0.0

FEB 0.1 0.5 -0.2 -0.7 -0.5 -0.3 0.9 0.4 0.3 0.1 -0.2 -0.3

MAR -2.3 -1.2 -0.5 -0.9 -1.3 -1.0 -0.8 0.4 0.0 0.0 -0.2 -0.5

APR -2.6 -3.6 -2.3 -1.4 -1.7 -1.9 -1.6 -1.3 -0.1 -0.4 -0.4 -0.6

MAY -1.3 -2.6 -3.5 -2.8 -2.0 -2.2 -2.3 -2.0 -1.7 -0.4 -0.7 -0.7

JUN 0.8 -0.1 -1.1 -1.8 -1.7 -1.2 -1.5 -1.7 -1.5 -1.3 -0.2 -0.5

JUL -0.4 0.2 -0.5 -1.2 -1.8 -1.7 -1.4 -1.7 -1.8 -1.6 -1.4 -0.3

AUG	(H) 0.1 -0.4 0.1 -0.4 -1.1 -1.6 -1.6 -1.3 -1.5 -1.7 -1.5 -1.4

2011 No.	months	lag

2011 19.4

21.2
32.2
17.4
23.4
32.5

Yield loss (%)
37.8
26.0
24.8
23.5

1976
1995
1996
2010

Year
1921
1934
1942
1944
1957

Value Classification
2.0+

1.5	to	1.99

1	to	1.49

-.99	to	.99 Near normal
Moderate drought

Severe drought
Extreme drought

-1.0	to	-1.49

-1.5	to	-1.99

-2	and	less Extremely wet 
Severely wet

Moderately wet

Key

Figure 31 SPI1-12 for the winter wheat growing season of significant yield limiting years	

1 2 3 4 5 6 7 8 9 10 11 12
SEP -1.0 -1.3 -1.3 -1.3 -1.9 -1.1 -1.0 -0.7 -1.0 -1.3 -1.4 -1.4

OCT	(S) -0.4 -1.1 -1.4 -1.4 -1.4 -1.9 -1.2 -1.1 -0.9 -1.2 -1.4 -1.5

NOV -0.5 -0.8 -1.3 -1.6 -1.5 -1.5 -2.0 -1.3 -1.3 -1.0 -1.3 -1.5

DEC 2.4 1.7 1.1 0.4 -0.1 -0.2 -0.3 -0.8 -0.3 -0.2 0.0 -0.3

JAN 0.0 1.9 1.3 0.9 0.3 -0.1 -0.2 -0.3 -0.8 -0.3 -0.3 -0.1

FEB 1.5 1.1 2.2 1.7 1.3 0.7 0.4 0.2 0.1 -0.3 0.1 0.1

MAR -0.3 0.8 0.6 1.8 1.4 1.0 0.5 0.2 0.1 0.0 -0.4 0.0

APR -0.2 -0.5 0.4 0.3 1.5 1.1 0.8 0.4 0.1 -0.1 -0.1 -0.5

MAY -2.4 -1.6 -1.6 -0.5 -0.6 0.9 0.5 0.3 -0.1 -0.4 -0.5 -0.5

JUN -0.7 -2.2 -1.9 -1.9 -0.9 -0.9 0.5 0.2 0.0 -0.4 -0.6 -0.7

JUL -1.4 -1.6 -2.6 -2.4 -2.4 -1.4 -1.4 -0.1 -0.2 -0.4 -0.8 -1.0

AUG	(H) -1.0 -1.9 -2.0 -2.7 -2.7 -2.8 -1.8 -1.8 -0.5 -0.6 -0.8 -1.1

1990 No.	months	lag


