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Abstract

A consequence of the Birch and Swinnerton-Dyer conjecture is that the parity of the

rank of abelian varieties is expected to be given by their global root numbers. This
is known as the parity conjecture. Assuming the finiteness of the Shafarevich-Tate
groups, the parity conjecture is equivalent to the p-parity conjecture for all prime
p, that is the p® Selmer rank is expected to be given by the global root number.

In this thesis we study the parity of the 2°° Selmer rank of Jacobians of
hyperelliptic curves of genus 2 defined over number fields. This forces us to assume
the existence of a Richelot isogeny (the analogue of a 2-isogeny for elliptic curves) to
provide an expression for the parity of their 2°° Selmer rank as a sum of local factors
A, modulo 2. Based on a joint work with T. and V. Dokchitser and A. Morgan on
arithmetic of hyperelliptic curves over local fields, this makes the parity of the 2°°
Selmer rank of such semistable Jacobians computable in practice.

By introducing a set of polynomial invariants in the roots of the defining
polynomials of the underlying curves of a specific family of Jacobians, we provide
an expression for the local discrepancy existing between the local factors A, and the
local root numbers, and prove the 2-parity conjecture in this case.

One outcome of this result it that, using the theory of regulator constants,
one can lift the assumption on the existence of an isogeny and prove the parity
conjecture for a class of semistable Jacobians of genus 2 curves assuming finiteness

of their Shafarevich-Tate group (see [17]).



Chapter 1

Introduction

This thesis studies the parity of ranks of Jacobians of genus 2 curves defined over a

number field I that admit a Richelot isogeny. Curves of genus 2 can be written as
C/K:y* = f(a),

where f(x) is a separable polynomial in K[z| of degree 6. A Richelot isogeny is the
analogue of a 2-isogeny for elliptic curves, and the condition for the Jacobian J of C
to admit such an isogeny is that the Galois group of f(x) preserves a factorization
into three quadratics. This work involves investigating the arithmetic of such curves
and their Jacobians over both local fields and number fields.

By the Mordell-Weil theorem, the group of rational points of an abelian
variety A defined over a number field K is finitely generated. The main arithmetic
invariant of A/KC is its rank, denoted rk(A/K) and defined to be the number of
generators of infinite order in this group. At present, computing the rank of abelian
varieties in general remains an open problem. However, the Birch and Swinnerton-
Dyer conjecture, formulated in the 1960’s, predicts that the rank of an abelian

variety is given by the order of vanishing of its L-function at s = 1.

Conjecture 1.0.1 (Birch and Swinnerton-Dyer conjecture). Granting analytic con-
tinuation of L(A/K,s) to the whole of C,

rk(A/K) = ords—1 L(A/K, s).

Now, the conjectural functional equation for the L-function of A/K relates
L(A/K,s) to L(A/K,2 — s) in such a way that L(A/K,s) is either (essentially)
symmetric or anti-symmetric about s = 1. In particular, the sign in the functional
equation controls the parity of the order of vanishing of L(A/K,s) at s = 1. This
yields the “Birch and Swinnerton-Dyer conjecture modulo 2”7, that is the parity of

rk(A/K) is given by this sign. In addition, it is expected that this sign equals the



global root number w(A) of A, an invariant defined independently of any conjec-
ture. The Birch and Swinnerton-Dyer conjecture modulo 2 then yields the parity

conjecture.

Conjecture 1.0.2 (Parity conjecture).
(_1)rk(A/IC) _ w(A)

One outcome of this work is that if the Shafarevich-Tate group of J is finite,
then the parity conjecture holds whenever C is semistable with some extra condi-
tions. In an ongoing work, we use the theory of regulator constants to remove the
assumption that J admits a Richelot isogeny. We also expect to be able to remove
the extra technical conditions on C.

Assuming finiteness of the Shafarevich-Tate group of A, for each prime p, the
rank of A/KC is equal to its p> Selmer rank, denoted rk,(A/K) (the rank expected
from knowing all the p™ Selmer groups for n > 1). In particular, for all prime p,
the parity conjecture is then equivalent to a more accessible conjecture: the p-parity

conjecture.

Conjecture 1.0.3 (p-parity conjecture).
(1) = (A /K)

The two central results of this thesis are an explicit formula for the parity of
the 2°° Selmer rank (Theorem and the proof of the 2-parity conjecture for
a class of Cy x Dy Jacobians (Corollary . These are Jacobians of curves C
such that the Galois group of f(z) defining C is a subgroup of Cy x D4. The latter
amounts to the Galois group of f(z) preserving a factorization into three quadratics
and fixing one of the quadratic factors.

Principally polarized abelian surfaces are either Jacobians of genus 2 hyper-
elliptic curves, products of two elliptic curves or Weil restrictions of an elliptic curve
defined over a quadratic field extension (see Theorem 3.1. in [I8]). In the last two
cases, the parity of their rank is given by that of the underlying elliptic curves,
which has been thoroughly studied by Monsky, Dokchitser, Dokchitser, Nekovar
and Cesnavicius among other contributors. This is why we restrict our attention to
Jacobians of genus 2 curves.

Our approach to control the parity of the 2°° Selmer rank follows that of Cas-
sels and Fisher (see [I6][Appendix] and [2]). Assuming finiteness of the Shafarevich-
Tate groups of abelian varieties, Cassels-Tate-Milne showed (see [25] §1.7) that both
statements in the Birch and Swinnerton-Dyer conjecture are invariant under isogeny.
As a result, if the abelian variety considered admits an isogeny, it is sometimes pos-

sible to show that its rank is at least one, and more generally to determine its parity



(see §1.3 in [§] for an example using elliptic curves). In particular, the same result
can be achieved unconditionally of the finiteness of III(A/K) for the p> Selmer rank
of abelian varieties admitting a suitable isogeny.

In order to study the 2°° Selmer rank of Jacobians of genus 2 curves using
this approach, the following features associated to a Richelot isogeny make it the
right candidate. Similarly to the case of a 2-isogeny on an elliptic curve, a Richelot
isogeny splits multiplication by 2 at the level of the Jacobian and its existence can
be checked from the Galois group of the polynomial defining the underlying curve.
Namely, if Gal(f) C C§ x Ss then J admits a Richelot isogeny. In addition, the
codomain J of J is also the Jacobian of a genus 2 curve C, and a model for C
is given by the Richelot construction. Since unlike for elliptic curves, we need to
distinguish the curve C' from its Jacobian J, these features are very relevant for
us as our method to study the arithmetic of Jacobians of genus 2 curves is via the
study of that of their underlying curves. More precisely, we will express all the
arithmetic invariants of J that we study in terms of the polynomial f(x) defining C
(see Sections 3.5).

Considering Jacobians admitting a Richelot isogeny, our first step is to pro-
vide a formula that computes the parity of their 2°© Selmer rank. The main obstacle
here is the order of the finite part of their Shafarevich-Tate group. For principally
polarized abelian varieties of dimension > 1, this order is either a square or twice
a square as pointed out by Poonen and Stoll in [32]. Fortunately, in this article,
the authors also provide a way to tell these two cases appart when the variety is a
Jacobian. Using their result, we express the parity of rky(J) as the following sum
over places v of

rka(J/K) =) Ay mod 2,
v

where A, involves invariants of both J and J such as their Tamagawa numbers and
the deficiency of C' and C' (see Definition .

At odd finite places and for semistable Jacobians, the local factors A, can
be computed thanks to a joint work with T. and V. Dokchitser and A. Morgan
presented in [14]. For finite places above 2, we take a slightly different approach and
use a result of A. Morgan presented in the appendix. While it provides a way to
compute the parity of the 2°° Selmer rank in practice, this formula can also be used
to prove theoretical results. In particular, we use it to prove the 2-parity conjecture
in this case.

Since the global root number is defined as a product of local root numbers,

the 2-parity conjecture now becomes equivalent to the statement

[1> = [ wer where Ay = (=1)* and [ w,(J/K) = w(J/K).



It does not come as a surprise to find that the local terms A, and w, are not equal in
general but differ by a term which vanishes when taking product over all places. This
was already the case for elliptic curves and abelian varieties for odd primes. However,
it follows that finding the exact expression for this local discrepancy represents the
crux in the proof of the 2-parity conjecture.

As suggested by the proof of the 2-parity conjecture for elliptic curves, using
a product of Hilbert Symbols involving invariant polynomials in the roots of the
defining polynomial of the underlying curve seemed like a possible answer to match
the local discrepancy, particularly thanks to the product formula for Hilbert Sym-
bols. Only, A\, and w, are sensitive to reduction types and specific Galois actions on
the special fibre of J (this is by definition of local root numbers, Tamagawa numbers
and deficiency, see Section . Therefore the sought invariants are expected to re-
spond accordingly to different reduction types. However, in the case of a semistable
elliptic curve, there are essentially five cases to consider (excluding infinite places
for simplicity): good reduction, split multiplicative and non-split multiplicative re-
duction, where the last two cases also depend on the particular 2-isogeny chosen.
One can then study these cases carefully and find the three invariant polynomials
in the roots of the defining polynomial of the elliptic curve that control the local
discrepancy (see §7 in [9]). But for a Jacobian of dimension 2, there are roughly
150 cases to consider, excluding infinite places, which complicate the hunt. We tried
several methods and proceeded via trial and error using specific families of genus 2
curves and examining infinite places and finite places alternatively. Eventually, un-
der the condition that the Galois group of f(z) be a subgroup of Cy x Dy C C3 x Ss,
we found a set of invariant polynomials Ay, .., A;7 (see Section which, paired in
Hilbert Symbols to form the local term FE,, as shown below, correctly match the local
discrepancy between A, and w, at all infinite places and finite places of semistable

reduction (with a specific condition at 2-adic places):
Ey, = (-1, A1)(A2, A3)(As, A5) (A6, A7)(As, Ag)(Ar0, A11)(Ar2, A13)(Ara, A1s)(Ase, Arr).

Moreover, the condition Gal(f) C Cy x D4 was acceptable for us since Cy x Dy is
the 2-Sylow subgroup of Sg which was the requirement for our application toward
the parity conjecture (see Chapter [7).

Lastly, having produced these invariants experimentally, it remained to prove
that they indeed match the discrepancy at all places in order to claim that the
2-parity conjecture holds for this family. Unfortunately at the moment, the “con-
ceptual” meaning of these invariants is still mysterious. We therefore found the
algebraic relations that they satisfy in order to, using a case by case analysis, com-
pute and compare the local factor, local discrepancy and local root number at each

place and for each reduction type. The exhaustivity of our list of cases and the fact



that we found the product of local factor and Hilbert Symbols to be equal to the

local root number in each case, constitutes our proof of the 2-parity conjecture.

This work is presented as follows. In Chapter 2, we start by recalling some
background material on hyperelliptic curves and their Jacobians. After recalling the
definition of Richelot isogenies and the Richelot construction, we give an overview
of the p-parity and parity conjectures followed by a summary of the known cases.

The first part of Chapter 3 then relates the parity of the 2°° Selmer rank
to the existence of an isogeny and provides a local factorization for the 2°° Selmer
rank of the Jacobian of a genus 2 curve admitting a Richelot isogeny. In its second
part, Chapter 3 presents how to express each local factor in terms of the polynomial
defining the underlying curve, considering infinite places, odd finite places and finite
places above 2. Each computation is illustrated by an example and, combining all
local computations, this chapter ends by providing an example of the computation
of the parity of the 2> Selmer rank for an explicit Jacobian.

In Chapter 4, we introduce the specific family of Cy x D4 Jacobians and
define the invariants that form the term of local discrepancy. We then tabulate the
local computations at each place and for each reduction type that compose our proof
of the 2-parity for Cy x D4 Jacobians.

Chapters 5 and 6 provide a detailed proof of these local computations. Chap-
ter 5 addresses the computation of each local factor and root number while Chapter
6 deals with the computation of the local discrepancy in each case.

Chapter 7 concludes this work and is followed by an appendix containing a
result of A. Morgan concerning isogenies between abelian varieties with split totally
toric reduction which is used in Chapter 5 when considering computations at finite

places above 2.



Notation

The following notation will be used throughout the entire thesis.

K number field
K algebraic closure of K

My set of places of K

v a place in My

K,  completion of K at v
P a prime in Q

K finite extension of Q,

Ok  ring of integers of K

K algebraic closure of K

K™ maximal unramified extenstion of K
T uniformizer of K

v normalized valuation of K

k residue field of K
k

algebraic closure of k

Some sections introduce a large number of new definitions and conventions.
For clarity, each introduction of chapters is followed by the list of specific notations

used in the chapter.



Chapter 2

Background Material

2.1 Hyperelliptic curves and their Jacobians

2.1.1 Hyperelliptic curves

By a hyperelliptic curve C' over a number field K given by C/K : y? = f(z) of genus
g, where f(z) € K[x] is of degree 2g 4+ 1 or 2g + 2 with no multiple roots, we mean
the pair of affine patches

1
Ui = (), Uiio? = 299202,

glued together along the maps x = % and y = 557. We refer to the points at infinity
(i.e. C'\U,) for the points with ¢ = 0 on U;. Explicitly, denoting ¢ € K£* the leading
term of f(z), if f(x) is of degree 2g + 1 then

2g+1 2g+1
Ux:yzch(a:—ri), Ut:v2:tcH(tri—1)
i=1 i=1

and we denote P, = (0,1) the only point on C” with ¢ = 0. Otherwise if f(z) is of
degree 2g + 2 then

2g-+2 2g+2
Um:yQ:cH(x—ri), Ut:U2:cH(tm—1)
i=1 i=1

and we denote PE = (0, ++/c) the two points on U; with ¢t = 0. We refer to [35] for

an introduction to the arithmetic of Hyperelliptic curves.



2.1.2 Jacobians of hyperelliptic curves

Let C be a hyperelliptic curve of genus g defined over K by

where f(x) € K[z] is a polynomial of degree 2g + 1 or 2¢ + 2 with no multiple root.

Definition 2.1.1 (Hyperelliptic involution). Let P = (xp,yp) be a point on C(K).
We call P = (xp, —yp) its conjugate under the hyperelliptic involution.

Definition 2.1.2 (Divisors). A divisor D on C is a formal sum

Z in,

PeC

where np € Z and np = 0 for all but finitely many points P € C(K). The integer
np is called the multiplicity of P in D and deg(D) = Y p.np denotes the degree
of D.

Divisors of a curve C' are elements of the free abelian group on the set of points

P € C(K). We denote Div(C) the group of divisors on C.

Definition 2.1.3 (Rational divisors). A divisor

D= Y nyP,

PeC(F)

for some finite Galois extension F/K, is said to be K-rational or defined over K if
D? = D for all o € Gal(F/K).

Definition 2.1.4 (Principal Divisors). Let f be a non zero rational function on C.
Define the divisor of f

[f]="Y_ ordp(f)P,

where the multiplicity of P in [f] is given by the order of vanishing of f at P in
terms of a local uniformizer. Divisors given by a function f on C' are called principal
divisors and we denote by Princ(C') the subgroup of principal divisors. As a rational
function, f has as many zeroes as it has poles. Consequently, principal divisors have

degree 0.

Definition 2.1.5 (Picard group). The Picard group is defined to be

Pic(C) = Div(C)/Princ(C).



In particular, two divisors differing by a principal divisor are in the same divisor
class and are said to be linearly equivalent. The Picard group inherits a notion of
degree from Div(C) and we denote by Pic’(C) the set of elements of Pic(C) of
degree j.

Definition 2.1.6 (Jacobian of C'). The Jacobian of C' is defined as
J = Pic’(0).

Points on J are classes of divisors of degree 0 on C.

Theorem 2.1.7 ([26], Theorem 1.1, Proposition 2.1). The Jacobian of a curve of

genus g is an abelian variety of dimension g.

Theorem 2.1.8 (Mordell-Weil). The group of K-rational points of J is finitely
generated. Hence
J(K) = Z™ ) @ J(K) iors,

where rk(J/K) < oo is called the rank of J/IC and the group of torsion J(K)iors is
finite.

Our main goal is to compute the parity of rk(J/K) in the case of Jacobians of
dimension 2. Our approach involves the use of an isogeny on J whose kernel is
composed of 2-torsion elements. We therefore review briefly how to construct 2-
torsion points on J from the roots of the defining polynomial of C'. For a detailed
exposition on torsion elements on Jacobians of genus 2 curves we refer to [5], Chapter
8.

2.1.3 Jacobians of hyperelliptic curves of genus 2

Let C be a hyperelliptic curve of genus 2 defined over K by

where f(x) € K[z] is a polynomial of degree fﬂ with no multiple root.

Points on C(K) and J(K)

A point D € J(K) can be given as a divisor on C of the form

D=P+Q- P} - P,

'f C is defined by a polynomial of degree 5, it is always possible after a change of variable, to
consider a model for C' with a defining polynomial of degree 6



for some P,Q € C(K) and where Pf, Py denote the two points at infinity of C.
We will use the notation D = [P, Q] to denote the point D on J(K). Note that
a point P € C(K) and its image P through the hyperelliptic involution are the
points of intersection of a vertical line and f(x). In particular, the principal divisor

D = [P, P] can be chosen as a representative for the class of 0 € J(K).

Addition on J

Choose four points P, P/, @, Q" in general position on C(K). Then there exists a
curve y = p(x), where p(x) is a polynomial of degree 3, passing through P, P', Q, Q'
and intersecting C' in two more points S, 5" (see Figure .

The principal divisor
[y—p(2)] = P+P'+Q+Q'+S+5'-3PL -3P5

yields

[P7 Pl] + [QﬂQl] = _[Sv Sl]
Since [S, R] = [S’, R'] = 0, we obtain

[P’ Pl] + [Qa Q/] = [R7 R/]'

Figure 2.1: y? = f(x) and y = p(z)
This prompts the following Lemma.

Lemma 2.1.9. Each non zero element of J(K)[2] may be uniquely represented by
the following pairs of points of C(K). Let x1,..,x6 € K be the roots of f(z), then

JO)2] =A{IT3, Ti),i # k} U {0}, T = (2,0) € C(K).

Proof. See [0], §8.1 and proof of Lemma 8.1.3. in [34]. O

The sequent sections and results rely on the existence of an isogeny on J
whose kernel is a subgroup of J(K)[2]. Using this last Lemma, we conveniently
avoid considering an algebraic model for J and simply define its 2-torsion elements
from the roots of the defining polynomial of its underlying curve C. Moreover as
shown in Chapter [3| this identification allows us to study the local arithmetic of J

from that of C.

10



2.2 Richelot Isogenies and Richelot Construction

We recall here the notion of a Richelot isogeny. Defined for Jacobians of genus 2
curves, they split multiplication by 2 at the level of the Jacobian. Their codomain
is the Jacobian of a curve, a model of which is conveniently given by the Richelot
construction. Similarly to the case of elliptic curves, their kernel consists of a sub-
group of 2-torsion and we show using Lemma [2.1.9/how to guarantee the existence of
such an isogeny from the Galois group of the defining polynomial of the underlying
curve. Our exposition follows that of [4] to which we refer for the proofs. Other

expositions of Richelot isogenies can be found in [5] and [34].

Richelot and Richelot dual polynomials

Definition 2.2.10. 1) Given two polynomials P(z), Q(z) € K[z] of degree at most
2, we define the Richelot operator [, | by

[P(z), Q)] = P'(2)Q(z) — Q' () P(x),

where ’ refers to the differentiation with respect to z.
2) We say that a polynomial G(z) € K[z] of degree 5 or 6 is a Richelot polynomial

over IC if we can fix a factorization
G(z) = G1(x)G2(2)Gs(),

where for i = 1,2, 3, the polynomials G;(x) are of degree at most 2, defined over K
individually and over K as a set?}
3) If G(x) is a Richelot polynomial over K, write

Gi(z) = gina® + gnz + gio = gi(x — i) (x — B;), i=1,2,3,
for its factorization over K and define
Ag = det ((gi5)o<ij<2) -

Definition 2.2.11. 1) To a Richelot polynomial G(z) with fixed factorization
G(z) = G1(2)Ga2(z)G3(x) such that Ag # 0, we associate its Richelot dual polyno-
mial F(z) given by

F(z) = H Fi(z), with Fj(z) = AlG[Gm(x), Giya ()],

%i.e. the set {Gi(z),i = 1,2,3} is preserved by the action of Gal(K/K)

11



where addition of indices is performed modulo 3. Note that by construction, F(x)
is a Richelot polynomial over K with given factorization Fi(x)Fs(z)F3(x).
2) Write

Fi(x) = fiox® + faz + fio = filr — A))(x — By), i=1,2,3,
for the factorization of F(x) over K and define

Ap = det((fij)o<ij<2)-

We will keep the above notation for the roots of G;(x) and F;(z) throughout
the entire thesis. The quantity Ag is essential to the Richelot construction due to
the following definitions. We also note that although Ag might not be defined over
IC, its square Aé is.

Richelot and Richelot dual curves

Definition 2.2.12. 1. We say that a hyperelliptic curve C/K of genus 2 is a

Richelot curve over I if it is given by
C:y*> = G(x), together with the factorization G(z) = G1(x)Ge(x)G3(x)

as a Richelot polynomial over K such that Ag # 0.

2. To a Richelot curve C/K, we associate its Richelot dual curve C /K given by
C: AZy? = F(x),

where F'(x) is the Richelot dual polynomial of G(z) with respect to the given

factorization.

Remark 2.2.13 (Richelot dual polynomial). Our definition of the Richelot dual
polynomial differs from that of [5] and [34] but agrees with that of [4]. This is
because we insist that F(x) = Fy(z)Fy(x)F3(x) be a Richelot polynomial, that is,
the set {F1(x), Fa(x), F3(x)} be Galois stable. However, this has no incidence on the

definition of the dual curve C' as the following change of variable & — x, y — ALQ
G

is an isomorphism over K between our curve C' and that given in [5].

Remark 2.2.14 (Galois group of Richelot polynomials). Let G(x) € K[x] a poly-
nomial of degree 5 or 6. Denote by K¢ its splitting field. Then the conditions for
G(z) to be a Richelot polynomial over I (and hence for C to be a Richelot curve)
can be rephrased as

Gal(Kg/K) C C3 x S3 C Sg,

12



where the three copies of (5 are given by the permutations of roots of quadratic

factors G;(x), themselves acted upon by Ss.

Proposition 2.2.15. Let C'/K be a Richelot curve with fized quadratic factorization
G(z) = G1(x)Ga(z)Gs(x). Let J be its Jacobian. Keeping notation as in Definition
2.2.11}, for each pair of points (P;,Q;) € C(K)?, with P; = (04,0),Q; = (Bi,0),i =

1,2,3, consider the associated 2-torsion elements of J(K)
D; = [P;,Qi] € J(K)[2].

Then
i) the subgroup H = {0, D1, D2, D3} C J(K)[2] is defined over K,
ii) H is a mazimal isotropic subrgroup of J(K)[2] with respect to the 2-Weil pairing.

Proof. (i) Follows from the definition of a Richelot polynomial.

(ii) A subgroup H of J(K)[2] is maximal isotropic with respect to the 2-Weil pairing
if and only if it is composed of 2-torsion points of J given by two distinct Weier-
strass points of C' (see [34] Lemma 8.1.4). The result follows from the definition of
D1, Dy, D3 and the fact that C' being a hyperelliptic curve implies that the G;(z)s

are necessarily coprime. O

Richelot isogenies

Definition 2.2.16. Let C'/K be a Richelot curve with fixed quadratic factorization
G(z) = G1(x)G2(x)Gs(x). Let J be its Jacobian. Consider the 2-torsion points of

J(K) defined by the quadratic factorization of G(x)
D; = [P, Q] € J(K)[2],

where P; = («;,0),Q; = (8i,0),i = 1,2,3 as in Definition Then the isogeny
over K for J whose kernel is the subgroup H = {0, D1, Dy, D3} C J(K)[2] is called
a Richelot isogeny.

We say that a Jacobian admits a Richelot isogeny over K if its underlying curve is

a Richelot curve over K.

Theorem 2.2.17. Let C/K be a Richelot curve with fized factorization G(x) =
G1(2)Go(z)Gs(x) for its Richelot polynomial. Let C/K be its Richelot dual curve
and let ¢ denote the associated Richelot isogeny on J. Then

¢:J —J,

where J is the Jacobian ofC’ and, denoting ¢' the dual isogeny of ¢, we have ¢ o ¢t

18 multiplication by 2.
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Proof. This is Definition 8.4.10, Corollary 8.4.9 and Theorem 8.4.11 of [34]. O

2.3 Parity and p-parity conjectures

We refer to [§] for an overview of the parity and p-parity conjectures for elliptic curves
and present here a review of the situation for abelian varieties. Complementary
references include [36] and [37]. Let A/KC be an abelian variety over a number field.
By the Mordell-Weil theorem, the group of rational points A(K) of A is finitely

generated, so that
A(’C) >~ Zrk(A/’C) ® A(,C)tO’I‘S7

where rk(A/K) < oo is called the rank of A/K and the group of torsion A(K)iors is
finite. The rank of A is predicted by the following conjecture.

Conjecture 2.3.18 (Birch and Swinnerton-Dyer [3], Tate [36]). Granting analytic
continuation of the L-function of A/K to C,

rk(A/K) = ords=1 L(A/K, s),

where ords—1 denotes the order of vanishing of L(A/K,s) at s = 1.

Once the analytic continuation of the L-function of A/K to C is assumed,
it is also predicted that the completed L-function of A/K satisfies the following

functional equation.

Conjecture 2.3.19.
L*(A/K,s) =W(A) L*(A/K,2 —s), WI(A) e {£1}.

A direct consequence of this functional equation is that the parity of the
order of vanishing of L(A/K,s) at s = 1 is given by the sign W(A), i.e.

(71)ord5:1L(A/K7S) = W(A)

Therefore, combining with the prediction on the rank of A/K given by the Birch

and Swinnerton-Dyer conjecture, we obtain the following prediction for the parity
of rk(A/K).

Conjecture 2.3.20 (Birch and Swinnerton Dyer Modulo 2).
(-1~ (a).

Moreover, it is known for elliptic curves in some cases that the sign in the

functional equation above equals the global root number of the curve. In general,
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this fact remains a conjecture.

Conjecture 2.3.21. The sign W (A) in the conjectural functional equation of L*(A/K)
is equal to the global root number w(A) of A:

W) =w(a) = [[wua),

where wy,(A) denotes the local root number of A at the place v of M.

This justifies the prediction on the parity of rk(A/K) given by the parity

conjecture.

Conjecture 2.3.22 (Parity conjecture). The parity of the rank of an abelian variety

1s given by its global root number:
(_1)rk(A/IC) _ w(A)

Definition 2.3.23 (p> Selmer rank). Recall that for each prime p, the p-primary
part of III(A/K) can be written as

W [p™) = (Qp/Zp)" x Wo[p™], [ Mp[p™]| < oo.
We define the p™ Selmer rank of A/K to be
rky(A/K) = rk(A/K) + 6.

In particular, assuming that III(A/K) is finite, the rank of A/K equals its

p>° Selmer rank for all primes p. This yields the p-parity conjecture.

Conjecture 2.3.24 (p-parity conjecture).
(_1)rkp(A/lC) _ w(A)

Thanks to the work of Monsky, Nekovar, Dokchitser, Dokchitser, Cesnavi-
cius, Coates, Fukaya, Kato, Sujatha, Kramer, Tunnell and Morgan among other
contributors, on the p-parity conjecture, the following cases of the parity conjecture

have been proven:

1. for elliptic curves E/Q assuming III(E)[p*] finite for some p (see [27] for
p =2, [29], [21], [11] for odd primes),

2. for elliptic curves E/K, where K is a totally real field, assuming III(E)[p*]

finite for some p and mild constraints (see [30] and [12]),
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3. for elliptic curves E/K admitting a p-isogeny, assuming II(E)[p*°] finite (see
[9] and [6]),

4. for elliptic curves E/K(v/d), E defined over K, d € KX\K*2, ILI(E/K(Vd))[2*]
finite (see [23], [22] and [12]),

5. for elliptic curves E/K assuming II(E/F)[2%°],II(E/F)[3°] finite, where
F = K(E[2]) (see [11] and [12]),

6. for Jacobian varieties A/K(V/d), A = Jac(C), C semistable hyperelliptic curve
over K, d € KX\ K*2, III(A/K(v/d))[2°] finite, and mild constraints (see [28]),

7. for principally polarized abelian varieties A/K admitting an isogeny ® : A —
A’ s.t. @*® = [p], assuming II1(A)[p*] finite, p odd and mild constraints (see

[71)-

One of the main motivation for this work was the proof of the fifth case. It relies
on the fact that the 2-parity conjecture holds for elliptic curves over K(E[2]), and
make use of the theory of regulator constants to prove a result on the parity of the
rank of E//K. The same method can be applied to Jacobians of dimension 2 but

first, it is crucial to prove the 2-parity conjecture for those.
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Chapter 3

Parity of the 2°° Selmer rank

3.1 Introduction

In this chapter we develop an explicit formula for the parity of the 2°° Selmer rank of
Jacobians of genus 2 curves admitting a Richelot isogeny. The first section explains
how to use the existence of a Richelot isogeny to express the parity of the 2°° Selmer

rank in terms of local factors as follows.

Theorem 3.1.1 (Theorem [3.2.16). Let C'/K be a hyperelliptic curve of genus 2
such that its Jacobian J admits a Richelot isogeny ¢. Denote by C and J the
corresponding curve and isogenous Jacobian. Denote w;, w; the Néron exterior

forms at the place v of IC for J and J respectively. Then

rka(J/K) = Z A, mod 2 with
vE M

T+ My

|ker(@)| - n - my,

Cy - MMy

) forv|oo, Ay =ords (A

Cy * My

¢*wy

szord2< > for v 1 oo,

wy
where n, i are the number of IC,-connected components of J and j, @ is the restric-
tion of ¢ to the identity component of J(Ky), ¢, and ¢, the Tamagawa numbers of
J and J, and m, = 2 if C is deficient at v (see Definition , my = 1 otherwise,

and similarly for my,.

In the second section, we describe how to express the invariants involved in Theorem
3.2.16| above in terms of the polynomial defining C, when the given Jacobian is
semistable. Part of this work is joint with T. and V. Dokchitser and A. Morgan and
is presented in the articles [I5] and [14]. We only provide here a summary of the
results needed and refer to the articles for the proofs. It follows that the parity of the
2°° Selmer rank is computable in this case and an example of such a computation

is given in the last section.
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List of notation for this chapter

C Richelot curve defined over K with the given factorization
y* = G(z) = G1(2)G2(2)Gs()

c leading term of G(x)
J Jacobian of C' admitting a Richelot isogeny ¢
C Richelot dual curve defined over K by
AZy? = F(z) = Fi(z)Fy(x)F3(x) (see Section
l leading term of F'(x)
J Jacobian of C
0;,1=1,2,3 discriminant of G;(x)
S, i=1,2,3 discriminant of F;(x)

ai, Bi, 1 =1,2,3  roots of G;(x)

A;,Bi,i=1,2,3 roots of F;(x)

P;,Qi, 1 =1,2,3 Weierstrass points P; = («;,0),Q; = (5;,0)
Di,i=1,23  D;=[P,Qi € ker(¢),

Ny, Ty number of connected components of .J(K,) and J(K,) when v

| o0
My m, = 2 if C is deficient at v, m, = 1 otherwise (see Definition [3.2.7
oRr map induced by ¢ on J(K,) when I, = R
® restriction of ¢ to the identity component of J(K,) when K, = R
Cy, Cy Tamagawa numbers of J and J at v when v f oo
w a fixed choice of a non-zero exterior form for .J
w the pullback of @ through ¢ : w = ¢*w

3.2 Parity of the 2°° Selmer rank of Richelot Jacobians

Recall that for an elliptic curve E/K with an isogeny ¢ of degree p over K, one can

rkp(E/K)

express the parity of its p>° Selmer rank (—1) as the product of power of p

in

|coker(¢, : E(K,) — E(Ky,))|
[ker(w : E(Ky) = E(Ky))|
for all places v of K as shown in [I6][Appendix|. In [II] and [7], Dokchitser-
Dokchitser and Coates-Fukaya-Kato-Sujatha gave generalizations of the above to
abelian varieties. In the latter, the authors prove that, for odd primes p and under
mild restrictions at places v dividing p, the p-parity conjecture holds for principally
polarized abelian varieties A admitting a suitable isogeny. When p = 2 however,
the key problem to extend their result is that the order of III(A) could be twice a
square. In [32], Poonen and Stoll provide a way to compute whether the order of
the Shafarevich-Tate group of Jacobians is a square or twice a square in terms of

local invariants. This is why the use of Richelot isogenies on the Jacobians J that
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we study is crucial. Since it guarantees that the codomain of J is also a Jacobian,
it let us control the parity of the 2°° Selmer rank in this case.

In this section, we recall how to express the parity of the 2°° Selmer rank of an
abelian variety of dimension g admitting an isogeny of degree 29 to then provide a
formula for the parity of their 2°° Selmer rank.

3.2.1 Parity of the 2> Selmer rank and isogenies

Let A, B be abelian varieties over K. Recall the following definitions and results
presented in [IT] (Section 4.1) concerning the isogeny invariance of the BSD-quotient

for Selmer groups.

Definition 3.2.2. For an isogeny ¢ : A — B over K, let
Q(¢) = |coker(¢p : A(K)/A(K)tors = B(K)/B(K)tors)|x|ker(¢ : III(A)gip, — TI(B)gi)],

where III(A)g;, denotes the divisible part of III(A).

Lemma 3.2.3. Q(¢) as defined above satisfies the following properties:
1. If g : A— B and ¢' : B — C are isogenies then Q(¢'¢) = Q(¢')Q(¢),
2. If ¢ : A — A is multiplication by p then Q(¢p) = p"Fr(A/K),

Theorem 3.2.4. Let A, B/K be abelian varieties given with exterior forms wa,wp.
Suppose ¢ : A — B is an isogeny and ¢' : Bt — A its dual. Let NIo(A/K) be
II(A/K) modulo its divisible part and

complex

For two exterior forms wy,ws, writing o= A € K whenever wi = Aws, set

c(a/K) = T el 2

vfoo

where ¢, and w are respectively the local Tamagawa number and the Néron exterior

form at a finite place v of KC, and similarly for B, then:

| B(K) tors|IB' (K) tors| C(A/K)Q2a 11 [Mo(A)[p>]] _ Q")

AW ors | A ) iors OB/ AL LB ~ Q)
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Lemma 3.2.5. Let A/K be a principally polarized abelian variety admitting an
isogeny ¢ : A — A so that A is principally polarized. Write ¢ for the dual of ¢ and
suppose that p¢t = [p]. Then, keeping notation as in Theoremm

rkp(A ordp<%np\dcg¢ W)
(—1)"* ) = N(A),  where A\(A) = (1) BN Tl (A) [

Proof. Using properties 1 and 2 of Lemma we have

Q) _ QHQW) _ Q(o'p) _ pr

Ql¢)  Qe)?  Qe)?  Q(9)?

Hence by Theorem 2.23. this yields

P Ao || AL |C(A)Qa 1 Mo (A)[p>]|
Q(d))z ‘AtorsHAt ‘C(A)QA pldege ’LHO(A)[poo”

tors

The result follows since |Ayys| = |AL, .| and |Asors| = | A O

OT‘S"

The conditions required by Lemma [3.2.5| are satisfied by Jacobians of genus 2
curves admitting a Richelot isogeny. Richelot isogenies are such that their codomain
is the Jacobian of a genus 2 curve, a model of which is given explicitly (see Section
. In particular, Richelot isogenies have principally polarized codomains and are
of degree 4. It therefore follows from Lemma that the parity of the 2°° Selmer

rank of a Jacobian admitting a Richelot isogeny can be expressed as follows.

Theorem 3.2.6. Let A/K be the Jacobian of a genus 2 curve admitting a Richelot
isogeny. Then

C(A)Q 4 |HIg(A)[2°°]]
ordg( - e )
(_1) C(A)Q 4 Mo (A)[2°°]]|

(‘DHQ(A) =A(4), where \(A) =

Proof. Follows from Lemma and by definition of Richelot isogenies (see The-
orem [2.2.17)). O

3.2.2 Local factorization of the parity of the 2> Selmer rank
Let J/K be a Jacobian admitting a Richelot isogeny and denote by J its codomain.

Then by Theorem [3.2.6| we have

C(N)Qy Mg (J)[2°°]|
ords (77>
1) C(J)2 5 [ ()[2°°]]

(=1)™*2() = X(J),  where A(J) = (—

We now wish to express A\(J) as a product of local terms. Note that Theorem

N

already gives a partial result by defining C(J)€2; and C(J)2; in this way. Using a

20



results of Poonen and Stoll presented in [32], we factor the term % in A(J)
as a product of local factors. We then refine the formula obtained for A(J) using

local invariants of both J and J as well as their underlying curves C and C.

Odd Jacobians and deficient places

Recall that for an abelian variety A//C, III(A/K)[p™] is of the form (Q,/Z,)% x
Iy (A/K)[p™°] where IIIy(A/K)[p™] is a finite p-group (see e.g. [§]). A consequence
of the Cassels-Tate pairing for elliptic curves E /K is that IIIo(E/K)[p™] is of square
order. For general principally polarized abelian varieties however, its order could be
twice a square.

In particular, a Jacobian J of a curve is said to be odd if the finite part of III(.J)
has order twice a square, is said to be even otherwise. Thanks to a result of Poonen
and Stoll in [32] it is possible to know whether J is odd or even by studying the

deficiency of its underlying curve.

Definition 3.2.7. If C is a curve of genus g over a local field K,, we say that C' is
deficient if it has no IC,-rational divisor of degree g — 1.

If C'is a curve of genus g over a global field IC, then a place v of I is called deficient
if C'/KC, is deficient.

Remark 3.2.8. For genus 2 curves, this is equivalent to saying that C' does not

have a L-rational point in any extension £/K of odd degree.

Definition 3.2.9. For a curve C and a local field IC,, as above, we define

() = { 2 if wv is deficient for C,

1 otherwise.

Theorem 3.2.10. [32//Corollaries 9, 12]
If N is the number of deficient places of C then |Illy(J/K)| = 2N - r = [[, my - 7,

where r s a square integer.
This prompts the following factorization for A(J).

Lemma 3.2.11. Let J/K be a Jacobian admitting a Richelot isogeny ¢ over K and

denote by J its codomain. Then

mv((;)

) = (- (E) [T -y~ (@)

veEMic

Proof. This follows from Definition Theorems [3.2.6[ and |3.2.10| as they yield

M(EX] 1 7€) g

Mo(D)2®)| o, mal€)
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Infinite places

Definition 3.2.12. Let J/K be a Jacobian admitting a Richelot isogeny ¢ over K.
For v € M such that v | oo, we let ¢, denote the map induced by ¢ on J(K,) and
define

o1 J(K)" = J(K)",
the restriction of the map ¢, to the identity component J(K,)° of J(IC,).

Lemma 3.2.13. Let J/K be a Jacobian admitting a Richelot isogeny ¢ over K. Let
& be a choice of exterior form for J and choose w = ¢*@& as an exterior form for J.

Keeping notation as in Theorem we have

J _ ”(j(lcv))
= etomeicy

J

where n(J(Ky)) and n(J(K,)) denote the number of connected components of J(Ky)
and J(IC,) respectively.

Proof. As in Lemma 7.4 in [13], we have

v))
v)

Q5 _ |ker(¢: J(ICy) — J(K w
2 ﬂo|coker<¢ I — S| FE

|
)

ker (¢ : J(Ky) — J(Ky))]
B H - |coker(¢ J(ICv) — JIE))|

by our choice of exterior forms. Now, denote v : J(K,)/J(Ky)? — J(Ky)/J(Ky)°
the map induced by ¢, on J(K,)/J(K,)? and consider the following morphism of
short exact sequences.
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ker () ker(¢y) ker(i))
0——J(K,)" ——J(K,) T(K) /T (Ky)® —0
0 —— J(K,)" — J(K,) J(Ku) /T (Ky)? —0
coker () coker (¢y) coker (1)
0 0 0

As a consequence of ¢ having finite kernel and cokernel, and by the Snake Lemma

we have

|ker(p)|[ker(¢)||coker(dv)]
|ker(¢o)||coker (p)||coker ()]

|coker(¢y)] _ |coker(p)||coker(v)]
|ker(ov)| |[ker ()| |ker ()]

=1, and hence

Now denoting n(J(Ky)) = |J(Ky)/J(Ky)°| and n(J(Ky)) = [J(Ky)/J(Ky)°| the
number of connected components of .J(K,,) and J(K, ) respectively, the third column
yields :

[ker () [n(J(K,))

(I () coker()] -

Hence R
|coker(¢py)| B |coker(p)|n(J(Ky))

[ker(go)l — [ker(¢)In(J(Ky))

The result follows since Im(y) is both open and closed in J(K,)° therefore ¢ is

surjective. O

Finite places

Let v be a finite place of K, & be a choice of exterior form for J and choose w = ¢*@
as an exterior form for J. Denote w; and w; their associated Néron exterior form
at v. For two exterior forms w1, ws, write g—; = X € K whenever w; = Aws.
Lemma 3.2.14. For the choices of exterior form as above

* ™0

1<%, = 2
wg’U (.:) v T w’g v
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Proof. There exists r € K such that w; = r@, hence

¢*A

o bogly _ 905

- )
v‘”U wv

e ’U
v =

| = [rlo

O

Lemma 3.2.15. Let J/K be a Jacobian admitting a Richelot isogeny ¢ over K and
denote J its codomain. Fiz & as a choice of exterior form for J and choose w = o*w

as an exterior form for J. Then keeping notation as in Theorem

C.J)
% H ‘ wo ‘1}7

where ¢, and ¢, denote the Tamagawa numbers of J and J at the finite place v € M.

Using Theorem together with Lemmata3.2.11] |3.2.13|and |3.2.15] we obtain the

following factorization for the parity of the 2°° Selmer rank of Jacobians admitting

a Richelot isogeny.

Theorem 3.2.16. Let C/K be a hyperelliptic curve of genus 2 such that its Jacobian
J admits a Richelot isogeny ¢. Denote by C and J the corresponding curve and
isogenous Jacobian. Denote &y, wy the Néron exterior forms at the place v of K for

J and J respectively. Then

rka(J/K) = Z Ay, mod 2,

veEMic
with
OTdQ(W) fOT v | oo,
Ay = ¢ ords(522) for v f 200,
ordy (222255 ) for v | 2,

where n, i are the number of IC,,-connected components of J and j, @ 1s the restric-
tion of ¢ to the identity component of J(KCy), ¢, and ¢, the Tamagawa numbers of

J and J, and my, = 2 if C is deficient at v, m = 1 otherwise, and similarly for m,,.

Proof. This is clear from previous Lemmata and since ords(|al,) = 1 for all places

vt2andall a € K. O

Corollary 3.2.17. Let C/K be a hyperelliptic curve of genus 2 such that its Jacobian
J admits a Richelot isogeny ¢. Denote by C and J the corresponding curve and

1sogenous Jacobian. Using notation as in Theorem we have

(—1)k2/0) — H Ao, with X\, = (=1)M.
vEMx
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3.3 Computation of local invariants at infinite places

In this section we discuss how to express the local factor A\, given by Theorem|3.2.16
in terms of basic properties of the defining polynomial of C' when v is an infinite

place. In this case, the local factor A, is given by
)\y = (_1>ord2 ( \k”ﬁ;ﬁz'mv ) ,

where n, 7 denote the number of connected components of J(K,) and J(K,), ¢ is
the restriction of ¢ to the identity component of J(K,), m, = 2 if C' is deficient for

v, my = 1 otherwise and similarly for m,,.

Case £, =C

Lemma 3.3.18. Let C be a Richelot curve and denote J its Jacobian. Then \, = 1
for places v of K with K, = C.

Proof. In this case A\, = 1 trivially as n = n =m, =1, = 1 and |ker(¢)|=4. O

Case £, =R

Using a result of Gross and Harris in [19], we compute the number of real connected
components of J and J from the number of real connected components of their
underlying curves. The computation of m, and m, follows from the definition of
the deficiency of a curve at the place v (see Remark . Finally we explain how
to compute |kery| from the defining polynomial of C'.

Proposition 3.3.19. [19][Proposition 3.2.2 and 3.5]
Let n(C(R)) denote the number of connected components on C(R). Then

2(CR)=1 it n(C(R)) > 0

MNR»:{1 if n(C(R)) = 0.

Proposition 3.3.20. Let C' be a Richelot curve with given quadratic factorization
G(z) = G1(z)G2(z)Gs(x) and denote by c the leading term of G(x). Let 1,02, 03
denote the discriminants of the quadratic factors Gi(z), Ga(z), Gs(x) respectively.
Then C is deficient over R, i.e. mr = 2 if and only if either

e 5, eR, 9, <0,Vie{l1,2,3} and c <0 or,
e up to reordering, 9 < 0, 83 = 63 and ¢ < 0.

Proof. This is clear from the definition of deficiency (see Definition [3.2.7)), since a
curve C' of genus 2 is deficient over R if and only if C(R) = 0 (see Remark[3.2.8). O
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Proposition 3.3.21. A divisor D; = [P;, Qi] € ker(¢) is in ker(y) if and only if
the points P;, Q; € C satisfy either

i) P, = Q;, or

ii) P;, Q; lie on the same connected component of C(R).

Proof. Recall that ¢ : J(R)? — J(R)? denotes the restriction of ¢g to the identity
component of J(R). In particular, a divisor D € J(R) belongs to ker(y) if D €
ker(¢) N J(R)?. But since

ker(¢) = {0, D1 = [P1,Q1], D2 = [P2, Q2], D3 = [P3,Q3]},

it follows that a divisor D; = [P;, Q;] € ker(y) if D; and 0 share the same connected
component on J(R). Equivalently, D; = [P;, Q;] € ker(y) if P;, Q; can be deformed
continuously into two points on C' defining 0 € J (those two points being the inter-
sections of C'(R) with a vertical line). This is clearly the case when P;, Q); are real
points and both lie on the same component on C'(R). On the other hand, consider
the case P; = Q;. If C has no real point then J(R) has only one component and
we are done. Otherwise we can assume that f(z) has at least a real root, say r and
let T'= (r,0) be the associated real point on C'(R). Pick any continuous path from
P; to T on C(C), i.e. a continuous function F : [0,1] — C(C), with F(0) = P; and
F(1) = T. Then G(t) = F(t) is a continuous path on C(C) from P; to T. Hence
D(t) = [F(t),G(t)] is a continuous path on J(R) from D; to [T,T] = 0. Lastly, if
P;, Q; are real points but lie on different components of C'(R), then there is no such
continuous path D(t) from D; to 0 and hence D; ¢ ker(yp).

O

Computation of 7 and m

It remains to compute the number of real connected components of J as well as the

real deficiency of C. From Propositions |3.3.19| and |3.2.9L it is enough to compute

the discriminants of the quadratic factors of the defining polynomial of C. For
that purpose, let C' be a Richelot curve with given quadratic factorization G(x) =
G1(z)G2(x)G3(x) and denote by 41, d2, 03 the discriminants of the quadratic factors
G1(z),Ga(x), G3(x) respectively. Let «;, 8; denote the roots of G;(x).

Consider the dual curve C' with quadratic factorization F(z) = F}(z)Fy(z)F3(z) and
denote by 81, da, 03 the discriminants of F} (z), Fo(x), F3(x) respectively. Henceforth,

addition of indices is performed modulo 3.

Definition 3.3.22. We define the cross-ratio of the four real numbers o, 3;, a5, 55 €

R to be
P (i — o) (Bi — By)
(B aj) (e — By)
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Proposition 3.3.23. The number of real roots of F(x) is given as follows.
Z) Zf 51 € R and 6i+1,5z’+2 ¢ R, i.e. 5i+1 = 5i+2 then

0 €R,  it1,0i42 ¢ R with 641 = 42,
’L’L) if 64, 5i+1 € R then
5i+2 € R and 8i+2 <0& Rii+1 < 0.

Proof. This follows directly from the formal computation of the discriminants 51, 52, 53

which gives

o 4 .
(52- = A—2(Ozi+1 — ai+2)(04i+1 — Bi—i—?)(ﬁi-i-l - Oéi—l—Q)(Bi—i-l - 51’-&-2)7 1= 17 273~
G

Convention

Let C be a Richelot curve with given quadratic factorization G(x) = G1(z)Ga(z)G3(z).
In view of Propositions [3.3.19] [3.3.20] and [3.3.21], in order to compute Ag we need

to understand how the roots of G(x) are distributed on the real line. We use
the following convention to represent real roots of G(x) on the real line: each dot
@ @ & & W W represents a root of G(z) with the following shaping/colouring:
red circles represent the real roots of Gp(z) (respectively Fj(x)), blue diamonds
that of Ga(z) (respectively Fy(z)) and purple stars the real roots of G3(x) (respec-
tively F5(z)). A line between two roots «,  means that the points P = (a,0) and
Q@ = (,0) belong to the same connected component of C'(R). It is understood that
the broken lines on the outside of the roots meet at infinity so that exterior roots

belongs to the same real component.

Remark 3.3.24. 1) The condition on the cross ratio of roots in the second case
of Proposition [3.3.23| can be easily seen from their real picture as it involves their
interlacing on the real line. As an example, if the real roots of Gi(z),Ga2(x) are
distributed as follows @ @ & & or @ & & @ then k12 > 0 so that 53 > 0.
Otherwise, if they are as follows @ ¢ @ & then 2 < 0 so that 53 < 0.

2) The order of |ker(y)| is immediate from the real picture as it suffices to count

the number of same colour/shape roots that are linked by a line.
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Example 3.3.25. Let Gy (z) = 22— 16, Go(z) = 22+ 2+ L and G3(z) = 22 —2z+9
so that we have the following Richelot curve over Q.

C:y*=G(x) = (2* —16) (2> + = + 117)(:132 — 22 +49).

0 Here §; = 64,99 = —16, 03 = —32
so that C has only one real connected
component. Hence C' is not deficient over
. ERN N : R. The real roots of G(z) in Figure
are only that of G1(z) so that they nec-

essarily share the unique real connected

component. The corresponding picture

Figure 3.1: y? = G(x) is the simple one -0 o- .

Therefore the divisor Dy corresponding to the quadratic G (z) is on the real
identity component of J and hence in ker(y). Finally, since dz,03 € R, it follows
that 8y = @g, B3 = @3 so that Dy, D3 € ker(p) and |ker(yp)| = 4.

Example 3.3.26. Let Gi(z) = 1522 — Yz — 32, Gy(z) = 227 — 50z + 32 and

G3(r) = 2% + %m + 16 so that we have the following Richelot curve over Q.

6 19 35 81
2 o — S0y (22% — 50z + 32) (2% + 5T +16).

a2 _ (-
Cry = Gl) =577 = 52 -5

Here 6; = %,52 = 2244,63 = % so that C has three real connected compo-
nents. In particular, C is not deficient over R. Note that the leading coefficient of
G(z) is positive. Computing the real roots of G(z) we obtain the following picture
W o—& 9—0 ¢ . Hence, in this example, none of the divisors defined by the
quadratic polynomials of G(z) share the same real component with the identity of
J. Therefore |ker(p)| = 1.

Remark 3.3.27. The sign of the leading term of G(x) determines how the Weier-
strass points of C are paired on real connected components. As an example, consider
the same polynomial as in Example but change the sign of its leading term
to be negative. The picture becomes w—0 W*—& —¢ .

Computation of \r : Example

As in Example(3.3.25] let G1(z) = 2%—16, Go(z) = 2®+z+1f and G3(z) = 2°—22+9

so that we have the following Richelot curve over Q.

Oy = Gla) = (2% — 16) (22 + o + %)(ﬁ 92 49).
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We have seen that d1,d2,03 € R with §; > 0 and d2, 3 < 0. Hence n(C(R)) =1 so

that by Proposition [3.3.19, n(J(R)) = 1 and by Proposition |3.3.20, mg = 1. From
Proposition [3.3.23| it follows that 81, 62, 05 € R with 81, da, d3 > 0 so that n(C’(R)) =

~

3. Therefore n(J(R)) = 4 and mp = 1. Finally, we found that |ker(y)| = 4 so that

1-1

Ar = (—1)7(357) = 1,

3.4 Computation of local invariants at semistable finite

places v 12

In this section, considering odd finite places, we explain how to extract a criterion
for the semistability of C', and when C' is semistable, the Tamagawa number of J and
the deficiency of C' from the p-adic properties of the roots of the defining polynomial
of C'. Since it will be used in later chapters, we also include how to extract the local
root number of J. The results presented in this section are primarily a summary of
existing results of V. Dokchitser and A. Morgan in [I], T. and V. Dokchitser in [10]
and a joint work with T. and V. Dokchitser and A. Morgan in [14] and [15]. We
refer to the articles for the proofs.

In the latter article, working over a field K with a discrete valuation, we
discuss the semistable types of hyperelliptic curves and introduce the notion of a
cluster picture for those. We also propose a naming convention which extends that of
Namikawa-Ueno for genus 2 curves in [38] that will be used here. In [I4], we discuss
the arithmetic of hyperelliptic curves over local fields of odd residue characteristics
from their cluster pictures. Results of particular interest for us include a criterion
to decide whether a hyperelliptic curve C' is semistable and an explicit description
of the special fibre of its minimal regular model including the action of Galois on
its components. Our computation of deficiency for C' follows from that description.
Table below lists the reduction types of a class of semistable genus 2 curves EL
including the computation of Tamagawa numbers, deficiency and local root numbers.
This table will be used as a reference in later sections when computing invariants
of semistable Richelot curves and Jacobians. We end this section by providing

examples to illustrate the use of these results.

Lthe list is not complete as we are not considering the types 1 x I, and I,, x I,,, in this work. A
complete version of this list can be found in [15].
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Notation

In this section, K will denote a finite extension of Q, for an odd prime p. We write
v(z) for the normalized p-adic valuation of € Q,, 7 for a choice of uniformiser of
K, k for the residue field of K and Gk = Gal(Q,/K). Let C/K be a hyperelliptic

curve of genus g given by
C’:y2:f(x):cH(az—T),
reR

where
RCQp ceK*, deg(f)=2g9+1or2g+2 (#1,2,4).

and write J for its Jacobian.

Cluster pictures

Definition 3.4.28. A cluster of roots s is a non-empty subset of R of the form
s={reR|v(r—z)>d} = RN Disc(zs,d),

with 2z, € Qp,d € Q. We call ds = min, csv(r — r’) the depth of s. The set of
clusters for the roots of f(x) is called the Cluster picture of C.

As a convention, we draw the roots r € R by means of the little symbol e,
and clusters by circling the roots (we do not circle single roots). We indicate the

depth of a cluster at the bottom right of the circle.

Examples
1) Let C : y? = z(x — 1)(z — 2)(z — 3)(z — 4)(z — 5) and choose p = 13. Then
R =1{0,1,2,3,4,5} and the only cluster of roots for C' is R itself. It has depth 0

and is represented by (0000009
2) Let C : y? = x(x — 13)(x — 2)(x — 3)(z — 4)(z — 5) and choose p = 13. Then
R =1{0,13,2,3,4,5} and the cluster picture of C' consists of 2 clusters: R of depth

0 and {0, 13} of depth 1. The Cluster picture of C'is 0.

There is terminology associated to cluster pictures which we will use in this work.

We include a little glossary for future reference.
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Glossary

root cluster of size 1 )

(0 0,000 °

. . . . /9000
parent of s cluster s in which §' is maximal (9 s

even cluster of even size

child of s s’ < s maximal subcluster of s

odd cluster of odd size (009 (00009
iibereven even cluster with only even children [ }

twin cluster of size 2

principal s  |s| > 2 and if |s| = 2¢g + 2
then s is not the union of children
of size 2,2¢g or 1,1,2g or odd,odd

Semistability criterion

Theorem 3.4.29. The curve C/K is semistable if and only if the following hold:
(i) K(R)/K has ramification degree at most 2,
(ii) Every cluster of size > 1 is inertia invariant,

(i1i) Every principal cluster s has ds € Z and vs € 27, where

vs = v(c) + |s|ds + z:'v(z5 —r).
rés

Semistable reduction of genus 2 curves, Tamagawa numbers, deficiency

and local root numbers

Table[3.I]tabulates a class of semistable genus 2 curves by reduction types. Precisely,
we are considering curves of genus 2 given by C/K : y* = G(x), where G(z) has
good reduction mod 7w or has one, two or three double roots, or two triple roots
within which no deeper double roots occur (the latter corresponding to the case of
the Jacobian of C' having good reduction while C' has bad reduction). These cases
essentially cover the semistable cases of C except for the missing cases of having
double roots inside triple roots.

Each type is given using a cluster picture together with its action of Gk, the
Tamagawa number of the corresponding Jacobian, the local deficiency and the local

root number.

31



Table 3.1: Semistable reduction type in genus 2

Notation: n,m,r € Z, and in the last two rows d = n = m mod 2.

In the third column: 7 =2 if 2|n and n =1 if 2¢n,

D = ged(m,n,r); N = nm+ nr + mr.

Type C Cy My Wy
2 ee0 00, 1 ! !
1h oooo% I n 1 -1
1, 0000(00), | n 1 1
+,+

I eo(00);(00) | nm 1 1

I 0009);09), | i ! .

Liim 00(09);(09); ) i 1 L

I, 0009};{09)y ] n ! !

i 00(20);(09), | i 1 1
+

Utme | (09409569;] N ! !

B | === < 2 n,m,r odd

Unmr [%%51) N/Dx D 1 else !
+

Ufne | (@959 @a);] | n+2r 1 -1

} B r odd

Un~n,r [% %]0 " else !
n +

Un~n~n [f 7 %}0 3 1 !
i _ n odd

Ui | @0gEgeey), | 1| {7 |

Ixim 1| (@99),@00),] 1 1 1
~ n odd

1501 (@99)-(299), 1 !
o else
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Convention

This table can be used as follows. Consider a semistable genus 2 curve C/K : y? =
G(z). Denote ¢ € K the leading term of G(x). By the semistability criterion
either v(c) € 27Z or, if v(c) is odd, then C corresponds to the last two rows of the
tableﬂ In the former case we apply a change of variable if necessary to obtain
v(c) = 0. Then reducing G(x) mod 7, we find C' to be in the first block of Table
if G(x) has good reduction; second, third and fourth block if G(z) has one, two
or three double roots mod 7 respectively. Lastly, if G(x) has two triple roots then
the cluster picture of C' corresponds to the last block of Table In each case, it
remains to find the specific row corresponding to C. In a cluster picture, we draw
a line between two clusters when they are permuted by Gg. This action can be
identified from the field of definition of the roots contained in the clusters. Finally,
the sign on top of the clusters are given by Proposition [3.4.30f These signs indicate
the action of G i on the components of the special fibre of the minimal regular model
of C' corresponding to the nodes on the reduced curve given by the twin clusters, or
the action of Gk on the two components with three transversal intersections in the
case of three double roots. A “+7” on the top right corner of a twin means that Gx

“o_»

acts trivially on its corresponding components and a means that it permutes
them. This is the equivalent of having split or non-split multiplicative reduction on
an elliptic curve. Finally, in the last two rows of Table the depths displayed are
“relative depths”, i.e. the valuations of the differences of the roots inside the size

three clusters are n +d and m + d.

Proposition 3.4.30. Let C' be a semistable hyperelliptic curve of genus 2. Let
1, ....,r6 € Q, be the roots of G(z) € K|z] defining C' and ¢ € K be the leading term
of G(z).

i) If C is of type 15 or Ljfnjf (I;ff resp.), let t be a twin cluster in the cluster picture
of C' and choose a root v in t. Then the sign of t is + if and only if

T, = CH(T — 1) € K*2 (F*% resp.),
ri¢t

where F'/K is a quadratic unramified extension.
it) If C is of type Uni’m’r, then C is of type U,

ST,

if and only if c € K*2.

Proof. This is a reformulation of Theorem 5.6 in [14] adapted to the semistable cases

of genus 2 curves. O

2or to one of the missing cases that can be found in Table 9 in [I5]
3See Remark [3.4.31]if the reduction of G(z) is different from that given in Table
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Deficiency of C

It follows from Remark 1 in [32] that C' is deficient at a finite place if and only if
the order of the Gal(k/k)-orbit of each irreducible component of the special fibre of
the minimal regular model of C' is even. In [I4], starting with the cluster picture of
a semistable curve C'/K, we give an explicit description of the special fibre of the
minimal regular model of C' as well as the Galois action on its components. We refer
to the article for the precise statements and proof but we note that this is enough

to recover the deficiency of C' at that place.

Tamagawa numbers for J

Tamagawa numbers for Jacobians of genus 2 curves at a semistable place are com-
puted in [I]. In the last block of Table J has good reduction and hence its

Tamagawa number is 1.

Local root number

The local root numbers for semistable abelian varieties are explicitly given from
their Weil-Deligne representation in [10][Proposition 3.23]. In particular w,(J/K) =
(—1)t, where t is the multiplicity of 1 as an eigenvalue of Frobenius on the toric
part of the Galois representatiorﬁ The Weil-Deligne representation for semistable

Jacobians of hyperelliptic curves of genus g at odd places are computed in [14].

Remark 3.4.31. The cluster picture associated to a hyperelliptic curve C : y? =
f(z) is not canonical. Indeed, applying a Mobius transformation to the roots of
f(x) might change their p-adic configuration and hence the new model of f(z)
would produce a different cluster picture. However, as shown in [I5], these different
pictures share the same equivalence class for which there is a canonical representative
(the only cluster picture such that the maximal cluster is of size 2¢g + 2 and is the
only cluster of size > g + 1, and there are either 0 or 2 clusters of size g + 1). This
representative is called a balanced cluster picture (see Definition 3.37 in [15]).

In particular, two semistable curves

Cr:y*=c H (x—7r), Co:y*=cy H (x—1}),

i=1,.,6 i=1,..,6

such that the cluster pictures of C7 and Cs are equivalent, share the same special
fibre, Tamagawa number, deficiency and root number. For genus 2, Table [3.2] gives
a list of all possible cluster pictures in each class as well as its balanced represen-

tative (orange star cluster pictures are balanced). Strictly speaking, the process of

4when the cluster picture is balanced and the maximal cluster is not iibereven, this amounts to
counting the number of + on top of twins
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rebalancing also takes into consideration the depth of the clusters. We chose not to
display the depths of clusters in Table in order to keep its length reasonable.

Type 2
@araan @0000)
Type I,

(rrae@w) (000@0) (00000) (000000) (00 @000) [o[o@ooo)]] [o@oo
Type I, m

@2@D @B) PEDEY) [0R2@V) (20269) (206 [¢(0@2e)| (2eEEd)
Type Up m.r

(E2e9) (sE269) D)

Type I, X Iy,

(Do) 960 (£rer) (co6e) corer)
o[00e9) ({e2ee9)

Type 1 x I,

e (°0eed) 00E9) (0000®d) (EIED)
©©ee) [+(eev) (ETE) [ofope)

Type 1 x 1

(00090) (000@90) (0(00000)

Table 3.2: Cluster pictures for semistable types of genus 2 curves with balanced
representative

Balanced cluster pictures: example

Let p > 5,n > 0 and consider the curve C'/Q, given by

v = (2 —1)(z = 2)(z = 5+p")(z =5+ 2p")(x — 5+ 3p")(x — 5+ 4p").

The cluster picture associated to C' is %0 (0900), o. Apply the following changes of

variables:
Daop=a+5=C:y?=(z1+4)(x1 —3)(z1 + p")(z1 + 2p™) (21 + 3p")(z1 + 4p")
2) x1 = plwy = O y? = p*(pPaa + 4)(p"xg — 3) (2 + 1) (22 + 2) (23 + 3) (22 + 4)
3) y=p""y1 = C 7 = (P2 + 4)(p"w2 — 3) (22 + 1)(x2 + 2) (23 + 3) (22 + 4)
Jra= = Ciyi =" +40 5 —3) (5 + D55 +2)(55 +3)(5 +4)
) = (dz3 +p")(3xs + p")(zs + 1) (23 + 2) (x5 + 3) (23 + 4),

W

5) y2 = y1ai = C : y3

to find that the new cluster picture for C' is
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Semistability criterion: examples

1) Let C: y? = z(z — p)(x — 2)(x — 3)(z — 4)(x — 5) and choose p > 5. (i) and (ii)
in Theorem [3.4.29| are trivially satisfied. The only principal cluster in the cluster

picture of C' is R and

vr=v(l)+6x0+0=0, (oo

hence C' semistable.
2) Let C : y? = px(x — p)(x — 2)(x — 3)(x — 4)(x — 5) and choose p > 5. This is

similar to our first example, except

vr=v(p)+6x0+0=1, 1‘:“:'Q("o

hence C is not semistable.

3) Let C : y* = z(z —p)(z +p)(z — 1 +p)(z — 1 +p*)(z — 1 4 2p°) and choose p > 5.
(7) and (éi) in Theorem are trivially satisfied. Clusters in the cluster picture
of C are R of depth 1, 51 = {0,p, —p} and 55 = {1 —p, 1 —p? 1 —2p?} both of depth
1. Only s1 and s9 are principal and

v = o) 43X 14023, s —v(l)i3x1i0=3 (C2NCe)]

hence C' is not semistable.
4) Let C : y* = pz(z — p)(@ + p)(z — 1 + p)(z — 1 4+ p*)(z — 1 + 2p*) and choose
p > 5. This is similar to Example 3) except

v m o) 43X 1404 v —v(p)i3x1i0—4 (C2DEe))

hence C is semistable.

Cluster pictures: examples
1) Consider the curve defined over Q13; as

—131 19 35 81
C:y*=f(z) = T(—Baz2 + St ?)(2:152 — 50 + 32)(2* + - T+ 16),
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@1 @1

particular since v(c) = 1, C' is semistable. The line between the two clusters of size

Computing the roots of f(x) gives the following cluster picture 0. In

3 indicates that the roots of f(x) are defined over an unramified extension of Q131
so that their respective clusters are permuted by Frobenius.

2) Let p > 5 and consider the hyperelliptic curve
C:y*=x(x—p*)(z—1)(z—2)(z—3)(z—4).

The reduced curve is C : % = #2(i — 1)(Z — 2)(& — 3)(& — 4) so that the cluster

(0 0 0 00

The special fibre of the minimal regular model of C' consists of a hexagon of P;’s,

picture of C' without signs is

obtained by blowing up the singularity at the node of C'. It follows from Proposition
3.4.30| that if 24 € Q;2 then Gal(Q,/Qp) acts trivially on them (equivalently, both

slopes of the tangents at the node of C are defined over [F,) and the cluster picture

+
is [0 e o0 Sjo.

Otherwise, Gal(Q,/Q,) permutes the components (both slopes are defined over F2)

[o e o ogjo

and the cluster picture is

Computation of )\, : Example

Keeping the same example as in Section consider the following Richelot curve
defined over Q by

17
C:y? = (2 -16)(2® + = + Z)(xQ —2x+9),

and its Richelot dual

R ~131 19 35 81
C:yt= T(—3§c2 + 5Tt 5)(2952 — 50z + 32)(2* + - @ +16).

In order to determine the parity rks(J/Q) using Theorem [3.2.16] we need to compute
Ap for J/Q at each prime p. By first computing both discriminants of C' and C we
find that the odd finite places of bad reduction of C' are p = 3,5,11,13,17,97,1201
and similarly for C with the addition of p = 131. Hence, outside of this set of
primes, A, = 1. For the primes of bad reduction, we compute the cluster pictures
of C and C , and use the results above to compute ¢, m,, ¢, and m,,.

+

For p = 3,17, we find that the cluster picture of C is 0000 (09}, 0.
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o 000 gl

For p = 3 we find the cluster picture of C' to be -1. As in Remark
3.4.31] this is equivalent to the cluster picture 0009

For p = 17, the cluster picture for (g 2000
It follows from Tablethat ¢p=2,my=1and & =1, 1, = 1 so that A, = —1.

hol——+

0.

o+

0.

For p = 5,11,13,97,1201, we find that the cluster picture of C'is 0000 (99), 0

(S

and that of C' is 0000

It follows that ¢, = 2,m, =1 and ¢, =1, 7, = 1 so that A\, = —1.

0.

(000)(000), )

For p = 131, C has good reduction while the cluster picture of C is

It follows that ¢, = 1,m, =1 and ¢, = 1, M, = 2 so that A\, = —1.

3.5 Computation of local invariants at finite places v|2

In the case of places v dividing 2, we take a different approach to control A\,. Indeed,
at these places, it is very difficult to compute the Tamagawa numbers and the
minimality of the Néron differential for all reduction types. Rather, we come back
to the initial definition of A\, and compute

|coker(¢y = J(Ky) = J(Ky))| my(C)

OT'dQ ’]{:67‘(@51) : J(Kv) — J(Kv))| mv(é)

First we note that if the curve C has totally split toric reduction at v then it is
not deficient (see Section } and similarly for C. We therefore construct a family
of curves having totally split toric reduction at v and prove, using a result of A.

Morgan presented in the appendix, that A, = 1 for their Jacobians.

Lemma 3.5.32. Let K/Qq be a finite extension and let C/K be a hyperelliptic

curve of genus 2 given by
C:y* +yh(x) = f(x), with

h(x) = hox?® + hiz + ho,  f(x) = cea® + c52° + can + c32® + can® + c17 + co,

for hi,c; € O, 0<1<6. If
c=ci=ca=hg=0modw, and hi=ho=ci=cg=c5=c3 =1 mod m,

then J has totally split toric reduction at v.
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Proof. This follows from computing partial derivatives of g(x,y) = y*> —yh(z) — f(x)
to find two singularities on C' at the points (0,0) and (1,0). Since g(z,y) = (y+z(x+
1)?)(y +22(x + 1)) mod 7, it follows that the reduction of this chart consists of two
genus 0 components intersecting at the two points (0,0) and (1,0). Computing the
Taylor series of g(x,y) mod 7 around singularities (0,0), (1,0), one finds xy + y? +
higher order terms and y? + (x4 1)y + higher order terms respectively. Considering
the second affine chart by letting x = % and y = ;3 and computing partial derivatives
as above, we find that the point at infinity given by ¢ = 0,v = 1 is singular. As
above, the reduction of this chart is given by two genus 0 curves intersecting at
two points, one of them being the point at infinity. It follows that the reduction
of the model of the curve given by these two charts consists of two P1s intersecting
transversally in the three points (0,0), (1,0) and (t = 0,v = 1). Moreover, Frobenius
acts trivially on the homology of the special fibre and hence the reduction is totally

split toric. O
Corollary 3.5.33. The curve

Cy: P +y(a?+a+2) = fo(z),  fo(z) = 242" —1352* +8212° —44142°+-29882+734

admits a Richelot isogeny and has totally split toric reduction at 2.

Proof. The curve Cs has totally split toric reduction at 2 from Lemma [3.5.32] In
order to show that Cy admits a Richelot isogeny, we perform the following change

of variable over Qo:
1 2
X =u, Y:y—ih(X), h(z) =2° +x + 2,
to obtain
7
Cy:Y? = (X —1)(X +15)(X? - 9X — Z)(X2 —4X +28)

and the existence of a Richelot isogeny follows from the factorization of the right
hand side. O

Proposition 3.5.34. Letn,m,d, k,r € Ok and define the following family of curves
C:y? = f(x) = G1(x)Ga(x)Gs(x), with Gi(z) = x> — (8 + 4n)?,

441
Go(z) = x2+x(—2m—23)+7—2d+14m, G3(x) = 2% 4-2(—8k—18)+105-+8r+56k.
Then the curves in C have totally split toric reduction.

Proof. Follows from performing the change of variable X =x + 7, Y =y + %h(X )
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with h(x) = 22+ 2 +2 to find that reducing mod 7, f(x) = fo(x) so that all curves
C € C have totally split toric reduction by Corollary [3.5.33 O

Corollary 3.5.35. The family C can be given by mean of congruences on coefficients
as follows:
Fy? = (2% — (4t1)?) (2% + tox + t3) (2% + tax + t5),

where
1
t € Og, to=1 mod 2, tg—ZEOmOdQ, ty = -2 mod8, ts5=1 modS8.

Proof. This follows from letting

8 +4 441
t = Zn,tQ:—Qm—23,t3:T—2d+14m,

ty = —8k — 18,t5 = 105 + 8r + 56k.
One recovers n,m,d, k,r € Ok as follows

_t2+23
= 5

t3 1 ty + 18 ts —1
d=—=———55— k= = —13-7k.
573 55—Tm, g r 3 3—7

n = t1—2,

O]

Theorem 3.5.36. Let K/Qy be a finite extension and suppose that C € C is given

by
C:y? = Gi(z)Ga(z)Ga(x),

such that Ga(z), Gs(x) are both irreducible in K. Then A\, =1 for C.

Proof. From Corollary and Proposition all curves C € C have totally
split toric reduction and admit a Richelot isogeny. Therefore, since from Remark
1 in [32], it follows that C' is deficient at a finite place if and only if the order of
the Gal(k/k)-orbit of each irreducible component of the special fibre of the minimal
regular model of C' is even, none of the curves C are deficient over K. Similarly for C
since they have isogenous Jacobians so that C also has totally split toric reduction.
It follows by definition of A, that

|coker($y:d (Ky)—J (Ky))|
A, = (_1)‘"‘12 Ther(Go+d (o) (Kol

Moreover, from Proposition and Remark we have that

|coker(¢y = J(Ky) = J(Ky))| 92K:Qs)]
ker (¢, : J(K,) — J(Ky))| ’

since when Ga(x), Gs(x) are irreducible over K we necessarly have |J(K)[2]| =4 =
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|ker (o).
Therefore A\, = 1. ]

Computation of )\, : Example

It is readily verified that our curve

1
C:y? = (2> -16)(2® + 2 + 17)(902 —2x+9),

belongs to the family F above and that both Ga(x) and G3(x) are irreducible over
Q2. Therefore \a(J) = 1 by Theorem [3.5.36

3.6 Example of computation of the parity of the 2%

Selmer rank
We now compute the parity of the 2°° Selmer rank of the Jacobian of
2 2 2 17, 5
C:y° = (z°—16)(x —|—:c+z)(x —2x+9)

using Theorem [3.2.16] Let S = {3,5,11,13,17,97,1201,131} be the set of odd

primes of bad reduction for C' and C. It follows from the set of examples above that
Ar(J) =1, Ap=1Vp¢ S, N =-1Vpelb.

Therefore
(_1)7‘I€Q(J) -1

i

so that rko(J) is even.
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Chapter 4

2-parity conjecture for C9 x Dy

Jacobilans

4.1 2-parity theorem

In this chapter we prove the 2-parity conjecture for a particular family of semistable

Richelot Jacobians. Namely for these we show
(1)) = w(J),

where w(J) denotes the global root number (see Conjecture [2.3.21)). From the
results of Chapter 3| we are now able to compute the parity of the 2°° Selmer rank
for semistable Richelot Jacobians (with conditions at 2-adic places as in Section
. This is achieved by factorizing (—1)Tk2(J ) as a product of computable local
terms \,. In order to prove the 2-parity conjecture, one would hope to prove that
at each place v, the local term A, equals the local root number w,, so that the
conjecture follows by taking product over all places. However, as suggested by the
proof of the 2-parity conjecture for elliptic curves in [9], these terms do not agree
locally but their discrepancy is given by a product of Hilbert Symbols involving
some specific invariant polynomials in the roots of the defining polynomial of the
curve. The main step of the proof is therefore to find the suitable set of invariants
which, correctly paired in Hilbert Symbols, match the local discrepancy between
Ay and w,. We found such a set under the condition that the Galois group of the
Richelot polynomial of C' is a subgroup of Cy x Dy4. In this case we conjecture the

following.

Conjecture 4.1.1 (Conjecture |4.4.10). Let C/K be a Richelot curve given by

C:y? = f(z), suchthat Gal(f)C Cyx Dy,
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and denote J its Jacobian. Then for all places v of K
M(J) = Ey(J) - wy(J),

for the explicit product of Hilbert Symbols E,(J) given in Definition and

whenever the invariants involved in E, are non-zero.

Definition 4.1.2 (Cy x D4 curve). A Richelot polynomial of the form
G(z) = G1(x)G2(x)Gs(x) € K[z], where Gi(z) =c(z — a1)(x 4+ a1) € K[z]
is called a Cy x Dy polynomialﬂ This factorization is equivalent to
Gal(G(x)) € Cy x Dy C C3 x S3 C Sp.

A Richelot curve given by a Cy x Dy polynomial is called a Cy x Dy curve and its

Jacobian a Cy x D4 Jacobian.

Theorem 4.1.3 (Theorem . Let C/K be a Richelot curve and let J denote
its Jacobian. Suppose the following:

i) C is a Cy X Dy curve,

ii) the cluster picture of C at odd finite places is one of Table

iti) for v |2, C € C as in Section[3.5,

iv) none of the Cy x Dy invariants defined in Definition for C are zero.
Then Conjecture[4.4.10 is true for C' at all places v of K. In particular, in this case

IT ») = ] @),

vEMic veEMyk
hence the 2-parity conjecture holds.

Corollary 4.1.4. Let C' be hyperelliptic curve of genus 2 defined over Q given by

Y/
= o) = (&> —da)gle),  acZ, g(x)e il
such that Gal(g) C Dy and preserves the factorization g(x) = (22 + tox + t3)(2% +
tax + t5). Suppose that
i) for every odd prime p, the reduction of f(x) mod p has no root of multiplicity
>3,

Tt is possible to centre the roots of a quadratic polynomial with a simple change of variable.
Hence a Richelot polynomial can be made into a C3 x D4 by insisting that Gi(z) € K[z] and
performing that change of variable.
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ii) at p = 2, the two quadratics are irreducible over Qg and t; € Qq,i = 2,3,4,5 with
1
to =1 mod 2, tg—ZEO mod 2, ty=-—2mod8, t;=1 modS8.

Then
(—1)*2) = ().

Proof. Cis a Cy x Dy curve (see Definition 4.1.2)), at odd places the cluster picture
of C is one of Table at v | 2, C' € C as in Proposition [3.5.34] and finally because
C € C, none of the Cy x Dy invariants are zero (see Section . O

In the first section, we define the dual curve of a (s x Dy curve and set
up our notation. We then introduce the set of invariants which form the term of
discrepancy E,(J) in the second section. For a lack of a more efficient method
to prove that A\, = E,w, for all places v of K, we proceed with a case by case
analysis. We use the results of Sections Theorem and Section [3.4] to
compute and tabulate \,,w, for infinite places, odd finite places and places above 2
respectively. We also compute F, at all places using the definitions of the invariants
and properties of Hilbert Symbols. The proof of Theorem is then immediate
from these computations as it shows that A\, = FE,w, in all cases. The number
of cases is however quite significant and moreover, the definitions of A, and F, in
terms of invariants make their computations heavy on notation and rather tedious.

Consequently, we chose to place them in separate subsequent chapters for clarity.
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List of notation for this chapter

Gi(x) c(z —ay)(x + o) with o2 € K

Gi(x),i=2,3 (x — )z — Bi)

G(z) G1(x)Ga(z)Gs(x)

L Splitting field of G(x)

c leading term of G(x)

C Cs x Dy curve defined over K with the given factorization
P = G(x) = G1(2)Ga(x)G(a)

J Cy x D4 Jacobian of C

10) Richelot isogeny on J given by the factorization of G(x)

Ly(z) Li(z) = x=[Go(2), Ga(2)] = li(z — A1) (2 — B)

) = K—lg leading term of Ly (z) with u; = s + 2 — ag — (3

Li(x),i=2,3 Li(z) = [Git1(2), Gia(z)] = li(z — Ai)(z — By)

L(x) Ly(z)Lo(x)L3(x)

0= {1005 leading term of L(x)

C dual curve of C defined over K with the given factorization
¥ = L(2) = Li() La(2) La(2)

J Cy x D4 Jacobian of C

di,1=1,2,3 discriminant of G;(z)

Si,i=1,2,3 discriminant of L;(x)

a;, Bi, 1 =1,2,3 roots of G;(x)

Ai, Bi,i=1,2,3 roots of L;(x)

P;,Qi, 1 =1,2,3 Weierstrass points P; = («;,0),Q; = (5;,0)
D;,1=1,2,3 Element of ker(¢), D; = [P;, Qi]

Ny, Ty number of connected components of J(K,) and J(K,) when v | co
My m, = 2 if C' is deficient at v, m, = 1 otherwise

My m, = 2 if C is deficient at v, My, = 1 otherwise

oR map induced by ¢ on J(R)

© restriction of ¢r to the identity component of J(R)

Cy, Cy Tamagawa numbers of J and J at v when v {00

(oo Hilbert Symbol at v

o o a1, 1 in the cluster picture of C' (A;, B; is that of C‘)

0 a2, B2 in the cluster picture of C' (A, By is that of €)

w W as, B3 in the cluster picture of C' (A3, Bs is that of C‘)
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4.2 (5 x Dy Richelot curves and Jacobians

Via the Richelot construction described in Section we form the Cy x Dy dual

curve C of a Cy x Dy curve.

Definition 4.2.5. [Cy x D4 dual curve] The Cy x Dy dual curve of a Cy x Dy curve
is given by
C’ : y2 = L(m) = Ll({L')LQ({L')Lg(.%'),

where

L

Li() As

[Ga(x), Gs(x)],  La(x) = [Gs(x), Gi(x)], Ls(z) = [Gi(x), Ga(z)].
Remark 4.2.6. The definition of the L;(x)s above slightly differs from that of the
Fi(z)s in Definition [2.2.11, We chose the above construction for Co x Dy curves
since it eases the computations performed in the remaining of this thesis. This is
without loss of generality, since as noted in Remark [2.:2.13] both definitions yields
isomorphic curves over K. However, the set {L1(z), La(x), L3(z)} is no longer Galois
stable. Indeed if for o € Gal(K/K), o(Ga(z)) = G3(z), then o(La(z)) = —Ls(z).
This could be fixed by letting
1

La(z) = AG[GQ(x)aGa(x)L La(z) = [Gi(x), Gs(z)],  La(z) = [Gi(2), G2(2)].

We chose not to do so for computational reasons.

Remark 4.2.7. The choice of Gi(x) to be defined over K is of course arbitrary.
However, it follows that for the remaining of this work, the roots of Gp(z) will
be considered as “special” (and so will be their corresponding red circle symbols
@ o in the cluster pictures of C'). Indeed, we broke the symmetry of the quadratic
factorization of G(x) by centering the roots of Gi(z) around 0. The action of
Gal(L/K) on them will be limited compared to that on the roots of Ga(z) and
G3(z) (represented by blue diamond and purple star symbols ¢ & W& ).

4.3 (5 x Dy invariant polynomials

Definition 4.3.8. Let G(x) be a Cy x D4 polynomial over K and £/K its splitting
field. In addition to the leading terms of G(z) and L(z), ¢ and ¢ = {14203, we
associate the following set of Gal(L/K)-invariant polynomials in the roots of G(x):
Iy = 2% (02 + d3),

Iz = (a2 + B2) (3 + B3),

Iy = $(ALL2 — 65 — 63) = (a2 — a3)(B2 — Bs) + (B2 — a3) (a2 — B3),

Iz = 4c%a?,
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Lo = 55 (02 — 83)%,

Ly =16 (azfasfs + of (af + aafly + asBs + (a2 + B2) (B + a3))),

Iz = 4(207 — a3 — 3) (203 — o3 — f33),

Iy = 03 (03 + 53 — 2a3) + 83 (a3 + 53 — 207))

Iy = 6263 = (a2 — Ba)*(az — Bs)?,

Iis = 4(B3 — B2)(az — f2) (a2 — B3) (a2 — a3),

IGO = 4(§3 (a% + 5% - 204%) + 482 (Ot% + 63% - 20‘%)) ’

Iso = 6%52537

Each invariant is of the form I; ;, where ¢ denotes the degree of I; ; in the roots of

G(x) and j indicates the number of this invariant of degree i.

Definition 4.3.9 (Local discrepancy). Let (.,.), denote the Hilbert Symbol at a
place v of IC. For each place v € Mk, let

Hy = (-1, InoIy11u3l60)v, Ho = (I20, —110l44)y, Hs = (1a0,4Is0l43)wv,

Hy = (¢, Ioglaalso)v, Hs = (I23,111)v, He = (145, —lI22121)v,
Hy7 = (144, 2092149143)y, Hg = (Iso, —2Ia11a2160)v, Ho = (112, —I60143)v,

and define

4.4 A conjecture on local discrepancy for C5 x D4 Jaco-

bians

Conjecture 4.4.10 (Local discrepancy conjecture). Let C/K be a Co x Dy curve
and J its Jacobian. Then at all places v of K

Ao(J) = Ey(J) - wo(J),

where Ay is given in Corollary E, in Definition[{.3.9, and w,(J) denotes the

local root number of J, whenever the invariants involved in E, are non-zero.

Theorem 4.4.11. Let C/K be a Richelot curve and let J denote its Jacobian.
Suppose the following:

i) Cis a Co X Dy curve,

ii) the cluster picture of C at odd finite places is one of Table

iii) for v |2, C € C as in Section[3.5,

iv) none of the Cy x Dy invariants for C' are zero (see Definitions|4.5.8 and|{.3.9).
Then the local discrepancy conjecture [].4.10 is true for J.
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Corollary 4.4.12. The 2-parity conjecture holds for Jacobians satisfying the con-
ditions of Theorem [{.4.11]

Proof. This is immediate from Theorems 3.2.16|and 4.4.11]since [, Ev =1 by
the product formula for Hilbert Symbols. O

The proof of Theorem consists of a case by case analysis. Starting
with infinite places of K, we consider all possible configurations of the real roots of
G(z) as in Section and compute A, F, and w,. Then considering finite places
v of K such that v | 2, we prove that A\, = F,w, for C' € C. Finally, for odd finite
places v € My, we consider all reduction types for C' at v using cluster pictures as
in Section with all possible Richelot isogenies (equivalently, Co x Dy quadratic
factorization for G(x)) associated to this reduction type. For each case, we compute
Mv, B, and w,. The results are presented in the next sections via a set of tables
and one can readily see that in all cases A\, = E,w, as required. Chapters [b| and |§|

consist of the proofs of the computations presented in the tables.

4.5 (9 x D, curves at infinite places

Lemma 4.5.13. Let C' be a Richelot curve and denote by J its Jacobian. Then
wy =1 for places v of K with Ky ~ R or K ~ C.

Proof. This follows from Lemma 2.1 in [33] since C is of genus 2 so that J is of

dimension 2. O

Theorem 4.5.14. Let C be a Cy X Dy curve and let J be its Jacobian. Then
Conjecture holds for complex places of K.

Proof. At complex places, w, = 1 by Lemma [4.5.13|and E, = 1 trivially. The result
follows since A\, = 1 by Lemma [3.3.1§] O

Lemma 4.5.15. Let C be a Cy x Dy curve given by C : y* = G(z) and let J be
its Jacobian. Then, for real places v of IC, My, By and w, are invariant under the

change of variable x — —x.

Proof. Let ri,..,7¢ be the roots of G(z). Applying the above change of variable
yields r; — —r;, 4 = 1,2,3,4,5,6. It follows from Propositions [3.3.19] [3.3.23], [3.3.20]
and that ), is invariant under this change of variable. w,, is trivially invariant
from Lemma[4.5.13]and so is E, since all Cy x Dy invariants involved in its definition

are of even degrees. O
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Notation

In this section, we fix a real place v € M. For a given Co x Dy curve C, we
wish to compute Agr, Fr. In particular, we need to compute the number of real
connected components of J and .J, the real deficiency of C' and C as well as |ker(y)|.
From Section we know that this is possible once we know the real/complex
configuration of the roots of G(x). We therefore consider all possible configurations
and compute Agr, Fr in each case. The results are tabulated below. Except for Er

whose proof is presented in Section the computations are clear from the results
of Section 3.3

Table convention

In a given table, each row corresponds to a particular configuration of the real /complex
roots of G(x). The first column names the case considered, the second column gives
the configuration of the roots. We used the symmetry between the roots of Ga(x)
and G3(z) (blue diamonds and purple stars in the real picture), and without loss of
generality, always placed the roots of G2(z) on the left of that of G3(z) in the real
pictures. The third, fourth, fifth and sixth columns specify the signs of the leading
terms of G(z) and L(z) as well as the signs of I3 = d1, I44 = 6203, I45 = Aé(ﬂ and
Igo = 5253. The vertical double lines represent the end of the input data. We note
that the double lines do not occur at the same place in all tables. This is because
in some cases, the leading term of L(x) and I45 are part of the input data, while
in some other cases, they are fixed by the real configuration of the roots of G(x).
The next columns after the vertical double lines give the number of real connected
components of J and .J, the order of ker(¢) and the real deficiency of C' and C.
Finally the three last columns list A, Er and wg.

Naming convention

Tables are indexed by real/complex roots configurations. The names start with the
number of complex roots: 6C, 4C, 2C, 6R for 6, 4, 2, complex roots and 6 real roots
respectively. The number indicates different configurations within the same case,
the capital letters A, B vary with the sign of the leading term ¢ of G(z) and the

small letter vary with the sign of other invariants.

Theorem 4.5.16. Let C' be a Cy x Dy curve. Then Conjecture[{.4.10 holds for real

places of K whenever the Cy x Dy invariants involved in E, are non-zero.

Proof. Follows from Tables and [4.3]since in all cases we find \, = E,w,. The
exhaustivity of the cases addressed in these tables follows from Lemma [4.5.15 O
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Table 4.1: G(x) has 6,4,2 complex roots.
Isogeny C(R) c 0 | Inz | Iaa | Iss | Iso n | n| lker(e)| | mr | T | Ar | wr | Er
6C1A 81,02,03 € Reo + | £ | - + + + 1|4 4 1 1 1 1
6C1B 51,62,05 € Reg x|l =]+ +]+]1]4 4 2 [ 1 |a]1]
6C2Aa 51 € Reg, 62 =203 + ] = |+ -] +|l1]1 2 1 1 [-1] 1] -1
6C2Ab 5 € Reo, 02 =03 + |+ | - + + + 101 2 1 1 -1 1 -1
6C2Ac 51 €Rco, 2=203 + |- - |+ |+ | +|1]1 2 1 2 1 1 1
6C2Ba 51 € Reg, 62 =203 || = |+ | =] +]1]1 2 2 1 1 1 1
6C2Bb 51 €Reo, 02=103 — | =+ + ]+ 1] 2 2 11|11
6C2Bc 51 €Rco, 2=203 - = -+ ]+ ]|+ |11 2 2 2 | -1 1| -1
4C1A + ] + |+ |+ |+ |14 4 1 1 1 1 1
—0 02,03 € Reo
4C1B ||+ |+ |+ ] +]1]4 4 1 1 1 1 1
——0 42,03 € Roo
4C2A + | £ - — + + 1|4 4 1 1 1 1 1
*—9 41,03 € R
4C2B . — || = | = |+ ]+ 1]4 4 1 1 1 1 1
— 61,03 e R
4C3a — + | + + + - + 1 1 2 1 1 -1 1 -1
——0 52 = 63
4C3b — + | + + + + + 1 1 2 1 1 -1 1 -1
—0 03 =03
4C3c _ |-+ |+ |+ |+ 1|1 2 1 2 1 1 1
—0 52 = 53
2C1A + | +£] - 2| 4 2 1 1 1 1 1
— W w— 5, <0 R
2C1B — x| - |+ |+ ]|+ 2]4 4 1 1 [-1] 1] -1
—o Ww—w §; <0
2C2A + | £ — + — + 2|2 2 1 1 -1 1 -1
— w0 w*— 5 <0
2C2B - =+ =]+ ] 2]2 2 1 1 | -1] 1] -1
S— o—w §H; <0
2C3A + | + — + + + 214 4 1 1 -1 1 -1
—& W 0— § <0
2C3B - | * - + + + 2|4 2 1 1 1 1 1
— w9 5 <0
204A X + ]+ =+ ]+ 2]4 2 1 1 1 1 1
—0 9 ¢— §35<0
204B || + | =]+ ] +1]2]|4 4 1 1 |-1] 1|1
—0 99 H3<0
2C5A + | £ + - + - 2|2 2 1 1 -1 1 -1
—0 90 99— H3<0
2C5B . -+ | =]+ ] -] 2]2 2 1 1 | -1] 1] -1
—9 00— H3<0
2C6aA ]+ =+ +12]4 4 1 1 | -1] 1] -1
—0 9 o— §3<0
2C6aB - | * + - + + 2|4 2 1 1 1 1 1
—9 90 i3<0
2C6bA + ||+ | = |+ |+ 2]4 4 1 1 | -1] 1] -1
—9 0 99— 53<0
2C6bB - £+ | = |+ ] +]2]4 2 1 1 1 1 1
0 0—9 H3<0
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Table 4.2: G(z) has 6 real roots

Isogeny C(R) c l Ioz | Iua | Ins | Iso | n | 7 | |ker(p)| | me | mr | Az | we | Er
6R1A + 4 | 4 1 1 1 1 1 1
2 00— O W + + + * +
6R1B - | * 41 4 4 1 1 1 1 1
+ + + +
6R2A + | £ + + — + 412 1 1 1 -1 1 -1
2 00— Ww—o W
6R2B - | £ + + - + 412 2 1 1 1 1 1
—0 O— O
6R3A + 4 |4 2 1 1 -1 1 -1
o oo - + + + + +
6R3B - | £ + + + + 414 2 1 1 -1 1 -1
—0 O—w Ww—o
6R4A + | £ + + + — 412 1 1 1 -1 1 -1
2 990 o— W
6R4B - | £ + + + - 412 2 1 1 1 1 1
6R5A + | £ + + — — 411 1 1 1 1 1 1
2 90 W9 W
6R5B - | £ + + — — 411 1 1 1 1 1 1
—9 o0 oW
6R6A + - 4 |2 2 1 1 1 1 1
o - + + + +
6R6B - | * — 41 2 1 1 1 -1 1 -1
—9 oW w9 + + +
6R7A + | £ + + + + 414 2 1 1 -1 1 -1
2 99— o—wr W
6R7B - | £ + + + 4 |4 2 1 1 -1 1 -1
9 9o Ww—w +
6R8aA + | + + + - — 411 1 1 1 1 1 1
2 O 9 W
6R8aB - | + + + — — 411 1 1 1 1 1 1
—9 Ww—0 I
6R8bA — - - 411 1 1 2 -1 1 -1
o —o W + + +
6R8bB - | - + + - - 411 1 1 2 -1 1 -1
—9 W90 o
6R9A + | £ + + + + 411 1 1 1 1 1 1
2 O o— -
6R9B - | * + 411 1 1 1 1 1 1
—o w0 Ww—o + * +
6R10A + | £ + + + - 412 2 1 1 1 1 1
2 99 w0 W
6R10B - | £ + + + — 412 1 1 1 -1 1 -1
—9 O—w o
6R11A + | £ + + - - 4 (11 1 1 1 1 1 1
2 W 90 W
6R11B - | £ + + — - 411 1 1 1 1 1 1
—9 w9 o
6R12A + | £ + + + — 412 1 1 1 -1 1 -1
2 O w0 I
6R12B - | + + + — 412 2 1 1 1 1 1
—9 Ww— —9
6R13A + 4 | 4 4 1 1 1 1 1
o oo o + + + + +
6R13B - | £ + + + + 414 1 1 1 1 1 1
¢ O— w0
6R14A + | £ + + - + 412 2 1 1 1 1 1
2 O— o— o
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Table 4.3: G(z) has 6 real roots

Isogeny C(R) ¢ | £ || TIasg | Iya | Iss | Iso | n | 7 | |ker(o)| | mr | mr | Ar | wr | Er
6R14B - | % + + — + | 4] 2 1 1 1 -1 1 -1
— w9 w0
6R15A + | £ + + + — | 412 1 1 1 -1 1 -1
2 O—w w9 o
6R15B - | + + + - | 4]2 2 1 1 1 1 1
—9o w—r oo
6R16A + 4|4 2 1 1 -1 1 -1
N - + + + + +
6R16B - | % + | 4] 4 2 1 1 -1 1 -1
+ + +
6R17A + | £ + + — + | 4|2 2 1 1 1 1 1
9 0—0 W*—o W
6R17B - | + + — + | 4] 2 1 1 1 -1 1 -1
0 o O
6R18A + | £ + + + + | 4] 4 4 1 1 1 1 1
9 0 Ww—wr &
6R18B - | + + + + | 4] 4 1 1 1 1 1 1
0 o—a WO
6R19A + — | 4] 2 1 1 1 -1 1 -1
9 00— o—wr W + + * +
6R19B - | £ — | 4] 2 2 1 1 1 1 1
0 9—0 Ww—w * * *
6R20A + — - 4|1 1 1 1 1 1 1
- o—r —9o W + + +
6R20B - | + + — — |41 1 1 1 1 1 1
—0 W0 I
6R21A + | £ + + + - | 412 2 1 1 1 1 1
9 oW oW O
6R21B - | % + + + — | 412 1 1 1 -1 1 -1
0 w0 WO
6R22A + 411 1 1 1 1 1 1
o oo w0 @ + + + + +
6R22B - | £ 411 1 1 1 1 1 1
o o o + + + +
6R23aA — 4|1 1 1 1 1 1 1
N - + | + + + +
6R23aB - | + — 411 1 1 1 1 1 1
+ + +
6R23bA — — 411 1 1 2 -1 1 -1
- - + + + +
6R23bB e + + — + | 4|1 1 1 2 -1 1 -1
0 w9 o
6R24A + | £ + + + + | 4] 4 2 1 1 -1 1 -1
9 o w0 O
6R24B - | % + + + + | 4] 4 2 1 1 -1 1 -1
0 Ww—w o—9
6R25A + | £ + + + + | 4] 4 1 1 1 1 1 1
- 99 o—ar W
6R25B - | £ 4|4 4 1 1 1 1 1
© 9 o0—0 W + * + +
6R26A + — 4| 2 1 1 1 -1 1 -1
> "0 o—9 W + + * +
6R26B - | % + + — + | 4] 2 2 1 1 1 1 1
d—W 0—0 O—w
6R27A + | £ + + + + | 4] 4 2 1 1 -1 1 -1
< w0 o &
6R27B - | + + + + | 4] 4 2 1 1 -1 1 -1
U 00 WO
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4.6 (3 x Dy curves at finite places v | 2

In order to use the results of Section we impose the condition that our C x Dy
curves belong to the family C given in Proposition [3.5.34] at 2-adic places.
Theorem [3.5.36| yields A, = 1 in this case. Moreover, F, and w, are as follows.

Lemma 4.6.17. E, = 1 for all curves C € C.
Proof. See Section O
Lemma 4.6.18. w, = 1 for all curves C € C.

Proof. By Corollary [3.5.33] J has split totally toric reduction. The result follows
from [10][Proposition 3.23]. O

Theorem 4.6.19. Conjecture holds for places v | 2 such that C € C.

Proof. Clear from Theorem [3.5.36] and Lemmata [4.6.17} [£.6.18] O

4.7 (3 x Dy curves at finite places v {2

Notation

In this section, we fix a finite place v € My such that v { 2 and denote by K
the completion K, of K at v. We let Ok be the ring of integers of K, choose a
uniformizer 7 and denote by v the corresponding normalized valuation. Let Galg
denote the Galois group of K over K, Frob the Frobenius automorphism and Ix
the inertia subgroup.

For a given Cs x Dy curve C, we wish to compute A,, £, and w,. By Theorem
3.2.16} this means computing Tamagawa numbers at v for J and J, deficiency at
v for C and C, E, and w,. As proven in Chapters |5 and @ this can be done once
we know the cluster picture of C' at v and its Co x Dy factorization together with
some specific local data. We therefore consider all the possible semistable reduction
types of C over the local field K together with each possible Cy x D, factorization

and compute \,, F, and w, in each case. The results are tabulated below.

Table convention

Each table corresponds to a specific reduction type with a specific Cy x D4 factoriza-
tion. In a given table, each row corresponds to a particular Galois action and values
of extra invariants. The first column names the case considered, the second column
gives the corresponding cluster picture for C' (using without loss of generality the
symmetry between the roots of Ga(z) and G3(x), blue diamonds and purple stars),
the Tamagawa number of J and the deficiency for C'. The third, fourth and fifth
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columns specify the valuations of the leading terms of G(z) and L(z) as well as the
valuation of Ag. The last column before the vertical double lines gives conditions
on invariants of C' that determine the Galois action on the cluster pictures of C' and
C. We use the dash symbol “” to mean that the value of a given invariant is not
determined by the case considered. The vertical double lines represent the applica-
tion of the Richelot isogeny. The next column after the vertical double line therefore
gives the balanced representative of the cluster picture of C , the Tamagawa number
of J and the deficiency of C. Finally the three last columns compute Ay, E, and w,.

Tables are indexed by reduction types for C', where for a given type, each
Cy x Dy factorization for G(x) is given a particular number, followed by a letter
which indicates a specific Galois action. Type 2 cases are called GR for Good
Reduction, type 1, cases are called ON for One Node, type Ia, 25 cases TN for Two
Nodes, type Uaqg 2p,2n are called U for Ubereven and types 1 x 1 are called TC for

Two Cusps. The following example illustrates this construction.

Example 4.7.20.

Let C'/K be a Cy x Dy curve with factorization G(z) = G1(x)G2(x)Gs(x) such that
G(x) has 2 double roots mod 7. Following notation in Section possible types
for C are A) 1,73, B) Iy 5, C) I3y, D) Iy o E) Iy, and F) I -y, for some
a,b € %Z (all curves considered are assumed to be semistable; 2a,2b € Z follows
directly from the semistability criterion . First note that Tamagawa numbers
for J, J and deficiency for C' and C depend on the exact type of C. We therefore
have to consider all types and give the conditions on C to differentiate them. In
types A, B,C, D, Galg acts trivially on clusters, while in types E and F, Frob
permutes both clusters (see Table . To distinguish these types one needs to
know the field of definition of the roots of G(x). The signs in the types are given
by the field of definition of the slopes of the tangents at the nodes on the reduced
curve, which can be computed using Proposition [3.4.30!

Now the double roots of G(x) mod 7 can be distributed among the 6 roots of
its 3 quadratic factors. With the restriction that G1(z) € K[x] by construction, this
yields several cases to consider, each of them giving a different reduction type (cluster
picture) for C and therefore different values for \,, B, and w,. All possibilities in
that specific case are listed, defined and computed in Tables [4.9] to

As an example, consider the curve C'/Qy7 : y? = G1(2)Ga2(7)G3(x), with

Gi(x) = (x—17%) (2 +17%), Ga(z) = (£ —34+17%) (2 —3-17°%),G3(z) = (z—1)(z—4).

Here, G(x) has two double roots when reduced modulo 17. These concern the roots
a1, —aj of Gi(x), say t; is the twin cluster around the two red circles, and the roots

ag, By of Go(x), say ta is the twin cluster around the blue diamonds. By Proposition
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3.4.30| the sign of t; is + since T, = 15 mod 17 € ng, and the sign of t; is + since

+ -+
. | ")
Ty, = 16 mod 17 € lef. The cluster picture of C' is [2 6 o, so that
C' is of type I Z i3 (case TN1A in Table H below). It follows from the Richelot

construction that

1
~2013111186232305

Ly (x) 2? + 11652444744595122 — 2913111186148784,

Lo(z) = 522 — 1670502 + 417605, Ls(z) = —62° — 11652444742924622 — 501126,

¥ ¥
. . AL oW a’ ° 0}
Computing the roots of L(z), we find that the cluster picture of C'is [4 .12 o,
so that C is of type I; éj;. Using Table it is now possible to compute A, and w,,.

Moreover, from the cluster picture of C' and the local data associated to this case,
ie. v(Ag) =0,Ty,, Ta, € K*2, one can compute E, (see Case TN1A in Chapter |§|

for the computation).

Theorem 4.7.21. Let C' be a Cy X Dy curve and v a place of K of odd residue
characteristic. If the cluster picture of C is one of Table[3.]], then Conjecture[{.4.10

holds for C' at v whenever the Cy X Dy invariants involved in E, are non-zero.

Proof. Follows since Tables to list all possible cases for Cy x D4 curves with

the required cluster pictures and since in all cases we find \, = E,wy. O]

95



90 PO Ww

T} g L] =T pue T|g Ji g = T UOEION

E”@E mﬁ”«@@ ‘_HHQS “‘_H”wwb
A _ _ '@ 4 ANV d = 0
A1) 1| A1) (w ¢ o)(m e e oM P e @ iz 0 Freeee | DD
[="w ‘1="%9 [="w ‘1="%
o o4 ANV 4= 0
|1 | (E9Eee) | ews | e | OS] 0 | EEeees) | amo
.—“HQE BHHD\Q ﬁ”@g RHHQU
] 1| wEeeeq o | g,l) o | mEeeed | vim
7)a
ag | am | ay o) L1g-w) | (Rv)a AAWWa W (@)a o) AuaSosT

THD ‘¢ 9d4y Jo st ) F'F 9[qR],

56



T RT =

z
o)

pue g pg=2

‘(¢g — o) (80 — T0)(Tg — o) (T — T0)o = " uo1yRION

(0. oo wa|

I="%w ‘pg="%
4= -
(1) | T | we(1") M P | T me i mW 0 Tereelee | amo
1= "W “@ﬂua@ [=%w ‘pg="
(S S R it (o7 BN @=L lereelee | 0INO
(v e o] |e7(x ¢) o (¢) 4 = :
DE ¢ — @@ M — DS n@N — @U
(1) | T | wg(T7) reeo os.mau xdP| 0 MMW w MW 0 Tereeeo) dINO
[="w ‘op="179 [="w ‘ng="m9
0 D = D,
T || T T ceoe Maw xM3| 0 MMW m mw 0 OT re fau VINO
a
anr am, ay o) oy AUNQV; AAWWQW (2)a o) Auo8osT

INO 72T 2d4) jo st ) ¢y d[qR],

57



Tl I=rpue rlgyg=2
‘(¢g — o) (0 — 2o)(To 4 o) (To — To)o = “OF :uoIyeIoN

="

[a QoW \i]o

I ="w [=%w ‘pg=""
0 » . —
W) | 1) | [T s | @ | g of| 0| Tereed | amo
=wu  pp =% I="%U ‘ngz="%
— 0 >
I="w ‘g="% =% ‘ng="%
oz(17) | T | wg(17) OT ee o@maw xMB |0 @ ow 0 OT e owau geNO
I[="w "yp="7 =" ‘ng="m
D — o] »
1] T OT eee Mau o3| 0 @ 0= 0 T e o+au VZNO
anr am, ay D @ Amﬁva AMWWMW (@)a o) Auo3osT

CNO ‘e1 0d4y Jo st O 197 9[qR,

o8



TR I =T PpURIZ =2
‘(¢g — @0)(%g — @0)(To + &o) (o — To)o = P uoreION

=% ‘g="%

oxM P 0 @ 0 OT ¢e owaw deNo

—~
Q\
~—
=)
Il

[a 009 '}0

IT="%W ‘vg="%

— 0 >
wr Aﬁmﬂva ?Nv;w (0)a o) AuaBos]
(7)o

eNO ‘P21 0dAy Jo ST ) L% 9lqe],

99



TlgR T =T PpURIZIIG=2
‘(¢g — o) (80 — o) (%g — o) oog = 'O :uorpejoN

— Q (n — @
[="w =% [="w ‘g="m5

. . ~
R ) oMB |0 @0 w 0 lemeelee) | amo

(09,0 owa|

— iy —
I=% ‘D=9 1="%w ‘ng="%

eee om@w ox M D 0 ANVQWW 0 oTaA)oﬂaw VENO

T
9) L | (Bv)e SVJ (2)a 0) AuoBosy

PNO ‘72T 2d4y Jo st ) 18 9[qR],

60



TiepI=rpwelgyg=2
‘(£ — @) (80 — To)(To + @0)(To — &0)o = O ‘(& — To)(80 — T0) (4 — o) (20 — To)o = ™ uoreioN
ﬁ”@E nwnzxm ﬁ”@g AQ)NNWHQU

o) D ¢ _ 1 |
o) | T | g0 T o (® o) ‘Naw xM PP | 0 (%) omW 0 T vniee)” u dINL

TR e I=% ‘qgug ="

z(1°) T | 14ge(T) OT ogma cwau ax M P e 2 0 (@) 0 IW 0 OT rlee Mau o

= w g3 = I="w ‘qgvg ="

0 D ¢ _ O — |
wg(17) T | pog(T0) ﬁﬁ oma \m.u ax 2 gx ’ (e) 0 W ’ Tp ﬁm = u o

3. o) w,

[—"w ‘ol =% [="w ‘qop="

I I T leemei®e) | oaswmis| o (2) 0 U 0| o) | v

Ir)a

INL ‘e od4y Jo st 1) :6'F 9[qRL,

61



[a b ' 'JO

(#g — o) (50 — @0) (I + @0) (v — @0

Tl I=zpue rlgyg=2
“r (&g — o) (80 — o) (Tg — )(%0 — To)o = O uorpejoN

H”;E :V”;@ HH@E KWWWWH;U
- _ i Qg 4 vg ¢ d— [ P >
qetvoe(T7) | T | ggrog(T7) ¢“(® ) |o"(m ¢] ox M PoxdM P | 0<4g (z) 4= 0 srfee)lce HINL
=" ‘pg="2 I ="w ‘qgg ="
o, p o . d— [0 q — o
g (1°) T | rge(T) AﬁB ° +a oM P gD | 0< 4 () 4= 0 T a\a +Bu DINL
T="w ‘8="72 [ ="w ‘qgpg ="
9. Yoy ¢ A= 9 D
1) | T | o) ﬁ NEONC ag s o< | L 0 | Tealee o) | ana
I="w ‘qv91 =" [="w ‘qop="2
0 4 e d— (0] »
ro ] Toja Twa: P33 05| L 0 | erleoEe) | an
INa
any am, ay 0 wor Ty Awﬂva AAWW; W (@)a o) Auo30osT

INL ‘%781 od&y jo st 9 :0T'F O[qBL

62



Tlgpr=zpuwe g =2
‘(2g — €0)(To — €0)(To 4 €0)(To — )2 = *vf (fg — o) (0 — o) (To 4 To)(To — To)o = P uolpejoN

I="w ‘z="%9 I="w ‘vg="%
0
T e . - 0 eNL
w1 | 1| w1 PTG TP 0 | @el)
=" ‘pp="7%
0
T e . — = aeN.L
Cle| v | e | o | el o
Oo =% ‘=%
0
° ! ” h 0 DTNL
@ @m%em:uv T @m+@m:|v L2 ﬁalwa ma ox M = ex w ex M w 0 Amv 0 WW
T="w ‘=79 I =" ‘qgpg ="
0 . .
! " “ ee ee deNL
(1) | 17| rawg(17) v (e o) (x o) M3 | M3 MP | 0 @ o mW 0 ® Te e
I="w ‘="
n 0 ; P
I I I xM3 | M2 M| 0 @ 0 mW 0 ce'my) (oe VENL
1 1 €0 ¢TO AUQVQ ?Nv@ AUVS\ o) %Q@WOWH
agy am, ay @ NA g— v& 7o ) Qva

NI, ‘%€Per od4y Jo st ) TT°¥ 9[qRl,

63



Tl I=2pue T|gyg=2
‘(2g — €0)(To — €0)(To 4 €0)(To — o) = 0 (fg — o) (0 — &o)(To 4 To)(To — To)o = P uolyejoON

T+a="w ‘g="2 I="w ‘pg="5
v | 1| ) || e oH %‘Naa ox M P - 1 @ MW 0 FENL
THe="w pp=19 I="w ‘vg="m
@ || ) | [FEHES) | e - 7 | gath] o | eEmEe) | e
o I="w ‘p=%9 =‘tw  ‘qgrg = "

o 0

@ aoe(17) | T | qzaog(17)

(e (e o) kﬁos.,maa M3 | xMP P | T @ .\NW 0 | lee@m®(ee) | Henw

1="w d = 1=%u deN —ay

8 J
y » d— .
am' Z.Bg x> exM D gx M P 4C @) gMW 0 Te om@ e ¢) DINL

0

og(17) T | rroe(T0)

T="w ‘91 =% T="%%w ‘goy="%
O y . d— [v a
1 1 1 w{e e &Bg M3 | M2 03| g @ ng 0 co@m oo | don
¢ (T)a
anr am, ay o) m?mljxv gt Amﬁva Qv; Auva o) AuoFos|

NI ‘%P2 odAy Jo st ) g1 O[qR.l,

64



TR I =T pURIG =12
‘(¢ — o) (0 — 20)(To 4 o) (To — To)o = P ‘(&g — o) (o — To)(%g — To) (%0 — To)o = P uo1RION

[a b Q ‘JO

I="w ‘g="2 [="w ‘qgog ="

o) | e meice) | vEadE| o @0 b 0 | Tre®e) @) | asnz
IT=% ‘Dy="%

14q(17) xMB M2 0 @ o MW 0 Tee(we Haw DENLL
I ="w ‘qgpg="

e M3 B |0 @0 B 0 | Trefme)@e) | aen
I="%% ‘qvy ="

I M 33| 0 @0 MW 0 | Treme) e | venr

¥ 0 “rtr | (2v)a Amwwﬁ (2)a 0 Audgos]

eNLI, ‘%Per odAy Jo ST ) €T°F O[qRT,

65



(% — to)(50 — 1) (7 — W) ooz = 17

Thzpi=xzpuR|gNg=72T
‘(2g — €0) (2o — €0)(To 4 €0)(To — €0)2 = P :uoryejoN

[@a b ° 0}0

I="w ‘g="2 [ =fw ‘gg ="
0 D, ¢ - 0 D,
aioz(T) | T | quog(T) T 50D m@w xMP P |0 @ 0= 0 T e fee |@w arNL
=" ‘qop="7 =" ‘pp="1%
D, < f — 0 o
J1) || () Te e e imn) M B> | 0 @o=/| © [eefee ®®| | oL
=" ‘qg="2 I="w ‘qgrg ="
0 D 4 ¢ — 0y »
w@ | T ) | Te O I®S] | porswart| 0 | Zp) o | Teeleo ®H | ana
1="w ‘gop="
I I T m e’{e o @w x M2 2 | 0 @ ow 0 VINL
T
g am ay 1o, oy ctor Awmﬂva AAWWNW (@)a o) Auogos|

PN “9€7er odAy Jo St ) FT°F O[qRl,

66



oL me)en

xlgpi=zpuez|gpg=21

(g — #0) (%0 — &0) (1o + #0) (o — £0)o = " ‘(fg — W0)(¥0 — 0)(%g — o) ogo = " uoHeIoN
HH;< d@”;@ ﬂH;S :WHQU
) \ i ﬁ _ 0 D,
go(17) | T | g1o(17) G aD) M PP |0 @0 mw 0 T e (e w)(ee L ASNL
HH;E Q@Ham ﬁH;S :Bﬂ”;b
) W _ ﬁ _ 0 @..
() | T ) | (eelERiEe) | orpeora | o ()0 L IS CURCO/
ﬂ”:\&& FQ@”:@ MHQE nmwﬁnao
0 z _ ! i
P B oeF a0) 3| o @0 MW 0 wefen)(ee) | asmu
I=w ‘=15 =" ‘gy="m
0 z ¢ _ ! ;
H M H A) QH@ Bw NXVN ) NX»M\N =) O ANV O mw O h’ O“..A, +'.0 Ow <@Z,H
T
- N sor oy (29)a AAWWMW (0)a ) Kuogosy

SN.L SN"GN.N. @Q\mp Jo st ) GT'¥ 9lqel,

67



TR I =T PpURIGI =12
‘(¢g — To—)(2g — To—) (%o — To—)Toog— = ™ ‘(¢ — o) (%g — ) (¢0 — o) Twog = " :uoryejoN

H — QE n@ J— @@ ﬂ — QS AN p— DD
(1) | T | W(1) oM P —= 0 @ o WW 0 AINL
1| T ox 3 B - 0 @ ou 0 a9NL
'0
s> . _
m aro(T) | T | g4o(T7) exM D | xM P M P 0 @0 mW 0 DINLL
o(T7) | 17 | 140(1°) ex M2 | xMDxMP 0 @0 mw 0 AINL
[="w ‘="
— 0 >
I I I exd 3 | exd M3 | 0 @) 0 mw 0 E VINL
Q a a €Y T To— ¢ 1o 19 AHNv® AuoS
4 || 2 (fV—?y) L' | (v Gaf | ©° D 30T

ON.I, ‘%72 odAy Jo ST ) :9T°F O[qRT,

68



(D—qvg)pb=q ‘Tlgni=TpuwRIgNT=71
‘(!0 — &g) (2o — Tg) (1o + &) (o — &gf)o = “ ‘(8¢ — @0)(%g — @) (1o 4 o) (T — To)o = B uor3ejoN

(ow), (o), 00

T+p+q="w \
e . T="w ‘qgrg ="
(1) (1) ¢ amm= B 0 )
Q+v 1- T Q+v 1- T o o) mwi > vaN nmxv& e HW 0 qQ>"
H@ga (® ¢) aw (@ o= AINI
I+P+q="w ‘pg="% T=% ‘qog="
o~ F 0
e+eﬁuv 1- H+e+eﬁuv ex M w ex M w ex M 2 bg Amv 0 HW 0 q9>"
- OLNL
T="% ‘g="2 T="% ‘qug="
0 D, D, ¢ O
o0 | | ) | [FEOESES) | oxd |ewsear| | 2o 0>
+ - dLNL
T="w gy =% IT=% ‘o ="
I I 3 | X33 | g @ uow 0 9>
¢)0= VINL
Q, Q a t e e eg ¢ 19 Aﬂwvg Auo8
q | m Y 0] (e —%V) L (Zv)a (7)a (@)a o) w50S]

LNLT, “987er od£y Jo ST ) LT O[qRl,

69



Cw. G0

Tl I=Tpue Tlgyg=2
10 — 20)2 = P :uorjejoN

(#0 — 7)) (T — 7g) (10 + Tf) (W0 — Tgl)o = %, (g — T)(Tg — o) (0 + To)(
T

._H — ;E ?UIN — D@ — QS FBIN — PU
¢}
N o P —- vz @@& 0 LN
() | 1- R h (@0
oe(17) | T | g (1) ax M 3 —'= 0% @o=f] 0 HINL
“ (@0
T T T xMD | xMP e MP| 1T (2) 0= 0 DLNL
3 1 B F (¢) o
og(1) | 17| re(10) M P | ex M2 P | @o=(| © AINL
F (¢) o
T 1 1 exM 2 exM D gxM 2 e @) 0= 0 HINL
a, a, a 27 —7C eg 1 <o D Aﬂwvg Auog
q | m X 2 (P —%V) L (Zv)a Gaf | O o) waB0s]

LNLT, “Peer od4y Jo st ) QT°F O[qRT,

70



Thgpli=spuezlgpg=2
‘(B0 — 2g) (%0 — ggf) (o + o) (o — &) = 6, ‘(Eg — @0)(%g — @0)(T0 + Zo)(To — Zo)o = “ ‘uoneioN

T+4="%% ‘ng="%9 I=% ‘vg=%
LI
A17) T A17) exM P —= 0<d @) 4 nw 0 NZNL
g 4 4T ¢) 4=
I1="%u ‘ng="%
d— 0 D L7
og(19) | T | 140g(T7) ex M e 0<4 @ < HW 0 E NN
g + g =
¢ 4=
1 1 x| MDD | 0<u A?L 0 TNL
g + 4T ¢) 4=
¢ 4=
T | r4atog(1) M P | MM P | 0< @a=f| 0 SMINL
D, + AT 4 =
d—
I I I x| x| 0< :gnw 0 [LNL
Dy + g ¢) L=
Q, aQ a f e 4 % 1 «2o D AﬁNvé Auo8
a m ¥ 2 (P4 =) L (Zv)a Gaf | D waB0s]

LN, “Pemer od4y Jo st ) 6T°F ORI,

71



(D—qvg)pob=q ‘zlgpi=zpuezlgpg=2

(09, (0o ww|

Am@ — UOlX@Q — ﬂdlxmd — ﬂdlvﬁooml = TQIrH Am% — SQX@Q — CQXNQ — SQVGQQN = :orH TUOTIRION

=" ‘q-d/or="2 [="w ‘F="5

wolB) | T | gn(@) | PEHEY ) | w3 |aaBead| | g QM 0| TrrleoTee) | o>n
I+p+q="w ‘vg="2 =% ‘pp="o

g+o(17) | T | 14qsn(T7) Oﬁ%\ra@@gw ex M P ex M P gx 3 D be @) 0 MW 0 WwVZ@

_ = L
T=" ‘9g="2 1="w ‘=15

I I- I- oﬁﬁ@gw oxM P | oMM B | 1T MW 0 q>n
1="w ‘gp=" [="u oy ="

T T T cﬁ%@aa saw oxM 2 oxM > Amxk ) Dy, MW 0 Q>0

" (@) o= VENL

@ “m @ 15 (Tg—1y) To—r ¢To (2v)a (17)a (@)a AuoSos

q ¥ C (g ="y LML v 3)a 0 ST

SNLT, ‘9ePTr od£y Jo ST ) :0T'F OIqRIL

72



(0—qvg)pob=q ‘vlgpli=zpuRzTlgRC=2

“(6g — To—) (80 — To—) (%0 — o—)Toog— = "~ ‘(¢ — 0)(¢0 — 10)(2g — o) loog = 'O :uorpejoN
T="w ‘g="2 I="w ‘g="%2
ox P - vz @ o u 0 IN.T
T="w ‘pp="29 I="w ‘pg="5
0 D D, ¢ - 0 D D,
9o | ez | = | g T o | o) | e
HHpﬁt\ 5&”;@ ﬁ”@g Jm”pU

ruee wau ex M 2 ex M P oM P ng @) 0 0 OT» !wa wau DHEN.L

(2. Co),wu)

D, ¢ - 0 D D,
sxEoed) | owd |eadend| e | o b oo | a9 @) | s

OT aﬂa Hau exM 2 exM 2 gx 3 3 Dg @ 0 WW 0 OT aﬂa Hau HSNLL

I7)n .
0 g -1) AR/ (2v)a va (@)a 0 AuoBosy

SN.L "SNFGNN @Q\mp Jo st ) I¢'¥ o9l

73



(0—qug)pob=q ‘vlgpli=TpuRzzRg=2

‘(¢g — To—) (0 — To—) (%0 — To—)Toog— = ™~ (¢ — ™)(f0 — o)(eg — ™) Toog = 'V :uorpejoN
ﬂ — Z\S BN p— PU

t&l

AT () M P - 0<d @) 4 HW 0 NSN.L
g + 4T ¢) 4=
¢ L=

T |1 I- ex M 2 —= 0< :bnw 0 INSNLL
g + g ¢) 4=
¢ d—

I I I xMD | oxMPxMP| 0<4 @) = 0 TSNLL
D + AT ¢) 4=

I+4=""% ‘pg="79

«&I

A1) | T ] 1) xM P | M2 P | 0<4 () 4 nw 0 MSNLL
DT + I =
d—

1 1 1 exM D | ox M2 M| 0<4 :&uw 0 [SNLL
g + g ¢) 4=

Q, a 2 Tag—1 To—  ¢To 9] Aﬁwvg - \m m
g || 2 ('g=17) L | (v Gaf | O 0 ua30S]

SNLI 7% od4y jo st ) gy A1qRL

74



SIMIDI)0 T = P ‘PPO dIe Ug ‘qg ‘Vg JL § = P “uqy + uny + quy = N ‘(ug ‘qg ‘vg)pob = a
‘g LT =T pue I|g Ji g = T :UORION

. 09, Gw)]

¢ 1+ 0z = "w
[="w ‘g="2
Uqz Qg ke 0 NQN ="
og(T7) | T | 1og(T) \ﬁ (¢ )= o) aw M P | e P 0 0 0 w@g aw ari
T="w ‘D83+qp="2 [="w "0y +qg="
vl o | [Eomo®e) | ext |wwz| o | U} |0 | [EREOEY | om
T="w §="2 p="w ‘q-d/N="
WO | T @) | [ me ) | s |y B| 0 Vo | TERE9 ) | an
H”@E nZﬁHQM H”QS n2”§0
R ECO R ORI - R " & 0 | [e® e @9l | v
Q a a 19} Aﬁwva
el m % 0 NQM\:\V b} ( mﬂvs () (@)a o) Aua30s]

I[N ““E9Ee) odAy Jo St ) 1egY OqeL

75



OSIMIDYIO T =P ‘PPOOIR U‘QD JI g =P ‘UQ+ uD + gD = N ‘(U‘Q‘D)pob = (T
‘T }g i1 =T pue Tg g =T UOJRION

HuTQH@E [ H;w — “@NHQU
0 4 z 0, D, D
1) | 1 | ) | PEeteeiEe)] | ord |t | o NW 0 | (o) ®o{ee) | an
I="%w ‘ug+n="% [=""w ‘uy+og="2
| v | fEeieoiee) || ou? | wrs| o & 0 | [®e melee) | om
p="w ‘q-a/N=" [=% ‘p="5
] ) | fERiediEe) | aars | nE | o & 0o | (B9 ®9 Ce)| aen
I="w ‘N=79 [="w ‘Ny="
I I I Hw@ ma maq ox M D | g D 0 WW 0 ven
| em % 0) €029 2 (2v)a AMWWN (@)a Io) AuoBos]

TN ‘¥eevT) odLy Jo St ) FEF ORI,

76



G2.Gw 69

T OSIMIYYO [ =p ‘Ppodre v —qvg Jrg=p ‘(v —qvg)pab = q
‘OSIMIOYJ0 [ = P ‘PPO oIk Ug ‘qg Vg JL g = P ‘uqy + uvy + qvy = N (ug ‘qg ‘vg)pob =
‘g Ji =T pue Tgig =2 D= ] :UOHRION

p="w ‘d-d/N=" p="w ‘q@-d/N="%
Of u )\\C \(\C O 9 Uy \I/E\
grotuz(T) | T | qrotug(1-) @MQB “ a aw exM D | oM P ve (¢) HW 0 ha Qa 'u 1>
- = - daen
I="w ‘N=% =% ‘N=%

[0 u D, Dy

ol | PEe TR ®Y) | | s | oo 0>
" () 0= ven

T
any am, ay o) €0 ‘T0 ) A,wﬂvp AAWWMW (@)a o) AuaBos]

e ‘wewre) odLy Jo ST ) Qg ORI,

77



"OSIMIDJO [ = p ‘PPO 9IR UF ‘DZ JL G = P ‘UDY + PV =N ‘(ug ‘vg)pab = 0
‘r}g i1 =T Ppue g g =T UOJRION

I = “w‘vg(uy +vg) = "2

p="w ‘ng="%

. Gw. 6.,

g) 0= " . .
sm...:m:uv 1- H+am+:mguv mXV& w NXV& w Dg MNW 0 mw 0 \ﬁ 8 :q AdeN
=" ‘(up+vg)vg =" =% ‘up+vg="5
0 ug 4, Dy N O =
w0 | 1| @) | e e TR W) | paid|pi| % MNW . nw 0 aen
T = “w(uy +vg)ng =
0 ug 4, Dy N D =
() |1 W) ee ) e) || 3| 2| MNW . Q 0 asn
=% ‘N=%
0 PP ug+n, Az Dy w w n ANV O =
I I ! o) ®e) | 50> | o z @o=1f|© oen
any am, ay o) €0 ‘Tp 5 wdva AMWWMW (@)a o) Auo30sT

e ‘¥e'9evT) odAy Jo St ) 97 ORI,

78



"9SIMISY0 T = P ‘ppo

ore ug ‘g JL g = p ‘ung + oy = N ‘(ug ‘vg)pob =
T} g Jl 1 =2 pue x|g g =T UOHRION

(. G, G,

1= “w'(up + vg)vg = 2 p="w ‘vg="2
U ug -+ Y d— 0 u, D D,
vg+ug(17) | 17 | p4ogrug(17) Ti.au Tra: ex P | oxM P oML (@) HW 0 ha (v e)(= Ou ren
4z + g = -
I=""w ‘(up+og)vg =
Of 4 e R d—
L ol T B | G G0 G S S SR I H o i£n
4g + g =
T = w(uy + vg)vg = %2
9 A U D 4 Dy d—
M) | T (o) Tﬂ: x| M P| 0<u @ 4 |W 0 HEN
g —+ Dg, -
=" ‘N=%
i ‘S 4=
1 1 1 Tmﬁau T': ex M3 | M3 | 0< @ 4 L 0 DEN
Ag, + D, -
T
a am ay o) €0 ‘% ) Awdv@ AAWWMW (@)a o) Auo8os]

e ‘¥T9evT) odLy Jo St ) )7 ORI,

79



(0 —qvg)pob = ( ‘uqy + uvy +qoy = N ‘(ug ‘g ‘vg)pIb = q
T} g Jl 1 =2 pue x|g g =T UOHRION

(9. o9, Gw.|

ﬁHpE “QQ\ZHQQ HH;S H(N.Q\ZH;U
0 u )\e \./l\s - oy, \/MN\
Q+d+ﬁm:|v T e+d+:m:|v h%la@ o a au exd 2 | oxMd ? be @) 0 |W 0 h@ n~a au q V%
- - - av
I=% ‘N=% T=% ‘N=%D
0 u 12 D, - 0 u, Dy
o] | FERTEY R ez 2| | )| 0 | [EREI TS | 0>
- vy
)a
anr “m ay 0) ‘T 2 (2v)a AAWW@W (@)a o) AuoSosT

P ME9ee) odAy Jo ST D) 18gF OIqRL

80



ung + oy = N ‘(ug ‘vg)pob = (0
T} g L] =T pue Tg g =T UOJEION
[="w ‘vg="79 I+ug="w ‘pg="m5

)| T | ) | (ee e o) | n? | B | e @0 0 | [E® e | wn

=" ‘(up+ng)g="2 I="w ‘up+og=""

1- 1- oﬁ’ L 8 :N+M' waw ox A w oxM 2 De ANV 0 IW 0 Mﬁ:@ agu qrn

T="w p=1 1="w ‘q-a/N="

——
D

U] ow() | (ee (e (ee) | o3| 2| w @ o 0 | [E® oo | an

[="w N="%9 [="w N="

. . I oﬁ’ » :T.Ma Haw ex M D | gx M 2 Dy, ANV 0= 0 Mﬁ:@ ca eaw orn

am am, 5« @ N% ;% ) Aquva Amww® W on© Q %Q@WOmH

P ‘4eevT) odLy Jo ST ) 6T ORI,

81



ung + p = N (ug ‘vg)pob = q
‘g LT = pue I|g Ji g = T UORION

(62, 9, Gra],

1=% ‘Dg="% [ +ug="w
A v A v oﬁs ug+o, A D W w d— ?GN =%
ug\I7) | T~ ug\ T~ T OOQ T 50@ M M 0<4 _ 0 9 o B [§728)
N e L] | o? | o2 | 0301 @)= (9 ©o 9
[="w ‘(uyp+ng)g="2 [="w ‘up+vg="
9y ug+v, 4 D, 4— 0 U D D,
! 1- 1- ﬁﬁ! m++aw Tfa@ exM P | x| 0<4 () + HW 0 +ﬁ @ gw 7N
Ag + D, =
._H”DE “w”;@ ._HI_I\Q\N”@S
(1) (1) ﬁ e 4 . a-a/N="
)| T I- T .oL a.o.g M3 | oM 0<: |W 0 | o Erenk HVN
e e - = ¢ e £g + 1 (2) = ‘ﬁ RO aw
I="w ‘N=% IT="w ‘N=%9
o ug+o, 4 D 4= 0y, Dy D
1 1 1 ?& m++au T+aﬁ exM 2 | exM 3| 0< @) gHW 0 %@ (¢ aw orn
Ag + D, =
[
ang am, ay 0 2 ‘19 ) Abmqvp AAWWMW (@)a o) Auo30sT

P (4C9CvT) odLy Jo ST ) 10T O[qRT,

82



o)

T="w ‘1="% L
- (@)a— o 0 -
clfn] ey | - (e | R} - @eees| [ERgEed) | o
Ma
g | o | o 0 Ga-w) |G| (0 el e 0 frososy

IDL ‘T X 1 0d4) jo st O :1¢F 9[qRL

83



(=Dl

I+o="w ‘T=% [+o="w ‘T=%
Os D 2)— os D
tir]r| (Erefeee) cap | e | O s @r= | (EE9fes) | mon
I="w ‘T="% [="w T="%
cs 2)— 0 D
Lot ‘(Frolee) srs | G | Mov; w3 | @a=v=| [@Exefees) | veor
I7)a
g | o | oy 0 (g-w) | Goa | 0 e | e o fiwoFosy

COL ‘T X T 9d&y Jo st ) 1ge'F O[qRL,

84



85

[=w =% [fp="w T1="%
2)a—ngz—(In)a - -
()| 1 ]a0) | EEeeed - | @ | O vs | @e= | (Eeogmes) | mor
T=% ‘7= I=% ‘1T=%
2)a—ng—(In)a > -
Cl) wreeoo - | @ | O s @o= | [EeoEes) | asmu
T+a="%w ‘1=% [="w ‘1=%
%\J ” 4—(2)a—q— o -
- - 9 [ q
A TeRmLS vt e+ ()40l T,Tsmi%w 2| B 9=0= DX Seol
1="w ‘1="% [="w ‘1=%
5= - 4—(2)a—q— o -
q — — q
Cla FEOres) | s | o<t | TN} ews | @esrs | ([BEIEEY) | gan
IT=% ‘1=% [="w ‘1=%
z 2)a— o >
vl 1| Eseeco - | @arero e s | @ezo=| TEegmes) | o>o
q—0g VEOL
1a
| | oY 2 1a=1v) (Zv)a ( AWWL to ()a o Auogosy

€O ‘T X T 9d4A} Jo st ) :€¢F 9[qR],



L+e:|v T iémﬂuv ex M w 0< A v 1 HW ex M m ANV D= ¢ e u’ ¢ e 1€0L
(4+(2)a+07)g o) 4=
I (1) 3 0< 4 &\AUVQ\SNA\M:M\VMW Nxxw (g)p= HEDL
(44 (2)a+0g)g o) 4=
1| J(1) oM P 0 < TET&&@D exM 3| (e) v = DEDL
(44 (2)a+07)g o) 4=
=" ‘T=%
. . . :gasaﬁ = e 0< 4 s\gz\smmmﬁwvw@ x| (g)n= CISONE
(4+(@)a+07)g o) 4=
g am, ay o) NmﬁM\:\v AUNQV: AMWWM W To on a 0 %ﬁowomﬁ

€DL ‘T x T 9d&y Jo st ) ey 9lqRL

86



Chapter 5

Richelot isogeny in odd residue

characteristic

5.1 Introduction

In this chapter, we prove the results presented in Tables to Each of these
tables takes a cluster picture for C' with extra local data as an input and displays the
cluster picture of C' together with the Tamagawa numbers of J and J, the deficiency
of C and C as well as A, and w, as an output (it also displays E, which is treated
in Chapter [6). Table in Section computes Tamagawa numbers, deficiency
and root numbers for semistable curves (Jacobians) of genus 2 from their cluster
pictures. Therefore it remains to compute the cluster picture of C to obtain A, in
each case. As introduced in Section[2.2] the Richelot construction is entirely explicit.
In particular, we can compute the valuations of differences of the roots of C, and
hence the cluster picture of C, from the valuations of the differences of the roots of
G(x) (that is from the cluster picture of C). We first present the properties of the
Richelot construction that allow us to do such computations before presenting all

computations case by case.
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List of notation for this chapter

Henceforth addition of indices is performed modulo 3.

<>

5, i=1,2,3

6ii=1,2,3

aiaBia 1= 17273
A’iuBiv 1= 17273

T=y
rT=0Y
xT=0Yy
Frob
Ik
o o
9
w W

local field with odd residue characteristic
uniformiser of K
normalized valuation of K
c(z —a1)(x + o) with o2 € K
(x —ai)(z — Bi)
G1(x)Ga(z)Gs(x)
Splitting field of G(x)
leading term of G(x)
Cy x Dy curve defined over K with the given factorization
y* = G(x) = Gi(2)Ga(2)Gs5(2)
Jacobian of C'
Richelot isogeny on J given by the factorization of G(z)
Li(z) = x=[Ga(2), Ga(2)] = li(z — A1) (z — By)
leading term of Li(x) with u; = ag + B2 — a3 — (3
Li(z) = [Git1(2), Gia(x)] = li(z — Ai)(z — By)
Li(z)Lo(x)L3(x)
leading term of L(x)
Cy x Dy dual curve of C' defined over K by
y* = L(z) = Li(z) L2(2) Ls(2)
Jacobian of C
discriminant of G;(z), 61 = 4c2a?, 65 = (ag — B2)?,03 = (a3 — b3)?
discriminant of L;(x), & = (2(A; — B;)?
roots of G;(x)
roots of L;(x)
xr =y mod 7
T = yz where z is a square element in K*
x = yz where z is a square element in K*
Frobenius automorphism in Gal(K /K)
inertia subgroup of Gal(K /K)
a1, 1 in the cluster picture of C' (A;, B; is that of C‘)
a, B2 in the cluster picture of C' (Ag, By is that of C’)
as, B3 in the cluster picture of C' (A3, Bs is that of C‘)
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5.2 Algebraic identities of a (5 x D, Richelot curve

Proposition 5.2.1. Let G(z) be a Co x Dy polynomial and L(x) the defining poly-
nomial of its associated Cy X Dy dual curve as in Definition[{.2.5. Then fori = 2,3,

— %(ag — B3) (a2 — a3)(B2 — az)(B2 — B3),
.

i) 8; = 02(A; — By)? = 4 (a1 — Bivo)(@iv1 — ia)(Bit1 — air2)(Bis1 — Bir2),

and the discriminants of G(x) and L(x) are given by

1

ZZZ) DZSC(G(QE)) = 2?515253512522532,

) Disc(L(x)) = AZ20626262610203.
Proof. Follow from direct computations. O

Proposition 5.2.2. Let G(x), L(x) € K[x] be as in Proposition above. Then
applying the Cy x Dy construction to L(x) as in Deﬁm’tion gives

H(z) = HHZ-(:U), Hi(z) = —2AqGi(x), i=1,2,3.

In particular H(z) = —8A%LG ().
Proof. Clear from computation. O

Corollary 5.2.3. The discriminants 01, 92,03 associated to the Richelot factoriza-
tion of G(x) satisfy fori = 2,3

AGoL = Mg (a1 — Br)?
= (303(As — B3)(A2 — A3)(Bz — Bs)(B2 — B)
AES; = Ao — Bi)°
=02 102, 5(Ais1 — Bipo)(Air1 — Aiy2)(Bis1 — Bito)(Biy1 — Bito).
Proof. 1t follows from Proposition that for ¢ = 1,2,3, the discriminants of

H;(X) are equal to 4A%d;. Now the result follows from applying Proposition
to L(z) and H(x). O

Proposition 5.2.4. The Cy x Dy dual curve ofé' is isomorphic to C and is given
by

Q))
Ny
[N}
Il
o
Q
2
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Proof. We have that C' : y? = L(x). It suffices to apply the Richelot construction

to L(x) = Ly(x)Le(x)L3(x) to get

[L1(2), L2(2)] = —2G3(x), [L1(2), Ls(x)] = —2Ga(z), [La2(2), L3(x)] = —2A6G1(2),
and A;, = —2A¢. Now, by definition C' : Ap 42 = —8AgG(x), so that C' : y? =
4G(x), as required. O

The following results follow either by definition, direct computations or prop-

erties given above.

Proposition 5.2.5. Keeping notation for the roots of G(x) and L(x) as in Section
we have

1. 61 =4c%a3, 6= (g — B2)? 83 = (a3 —B3)%

2. Ag = —c(ad(ag + B2 — ag — Bs) + aaBa(as + B3)
+azf3(—ae — f2)),

5.0 =xL = %f’%, by =c(az + f3), {3=c(—az— Pa),
4. 01 =03(A - By)? = Aizc(oéz —az)(ag — B3)(B2 — a3) (B2 — B3),
5. 0y = (3(Ay — Bo)? = 4c® (a3 — ay) (a3 + 1) (B3 — 1) (B3 + 1),
6. 03 = (3(As — B3)? = 4 (a1 — az)(on — Bo)(—a1 — an)(—a1 — Ba),
7. A%6 = (303(Ay — A3) (A2 — B3)(Bs — A3)(By — Bs),
8. 0y = (303(A3 — A1)(As — By)(Bs — A1)(Bs — By),
9. 63 = (33(A1 — A3)(Ay — Ba)(By — A2)(By — Ba).

10. Disc(G(x)) = 5661020366, 65,

11. Disc(L(z)) = AL036363610903,

12. cuy + 49+ 03 =0.

Remark 5.2.6. Ag # 0 by definition of a Richelot curve (see Definition [2.2.12)),

We will use extensively Proposition [5.2.5]in the proofs below. Therefore we will use
P.k to refer to Propostion k.
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5.3 Proof of Tables [4.4] to [4.34]

Remark 5.3.7. 1) In the following proofs, we do not include formal computations
that can be readily verified using a computer algebra. All of these computations
have been performed using Maple and can be made available if needed.

2) In the cluster pictures displayed in the following section, we denote the depth

of a cluster relatively to that of its parent. For instance, in the cluster picture

olow Gow), }
[ “Uniny | we have v(ap—pF1) = v(ar—az) = v(ag—P2) = vl —asz) =

v(ar — fB3) = ng, v(ae — f1) = v(ag — B2) = v(ag — B3) = v(az — 1) = v(ag — f2) =
v(az — f3) = n1 +ng and v(B1 — B2) = v(B1 — B3) = v(B2 — B3) = 2r + N1 + na.

Lemma 5.3.8. If C is of type 2, 1,,, Iop or Ugpr as in Table then v(c) € 27Z.
Proof. Clear from the semistability criterion [3.4.29 O

Corollary 5.3.9. If C is type 2, 1,, Iop or Uypn as in Table then without

loss of generality v(c) = 0. If C is of type 1 X nim 1 then without loss of generality
2

v(c) =0 orv(c) =1.

Proof. The first case follows from Lemma If C is of type 1 x ngm 1 then by

semistability criterion v(c) =n =m mod 2. O

5.3.1 (' is of type 2

Lemma 5.3.10. Suppose that C is of type 2, i.e. its given Weiertrass model has
unit discriminant. Then the same hold for C if and only if v(AZ) = 0.

Proof. By Corollary we have v(c) = 0. Since C' is of type 2 we have that
v(Disc(G(x)) =0, and by P.10

~

v(8) =0, Vi=1,2,3, v(A%d)=0(d)=v(d3)=0.

It follows from P.11 that v(Disc(L(z)) = 0 if and only if v(A%) = 0. In particular,

C has good reduction if and only if v(AZ) = 0. O

Proof of Table [4.4]

By Corollary we have v(c) = 0. We note that since J has good reduction, it
follows that J also has good reduction. Therefore, if C' has bad reduction, it is of

type 1 x,, 1 or 1x,1 for some n # 0.
Case GR1A. Here v(A%) = 0, therefore C is of type 2 by Lemma [5.3.10, From
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P.4, P.5 and P.6 we have v(A; — B1)? = —2v(Ag) — 2v(f1) = —2v(u1),
v(Ay — By)? = —20(fy), v(Az — B3)? = —2v({3),
and P.7, P.8 and P.9 give
v((Ay—A3)(As—B3)(By—As3)(Ba—B3)) = 20(Ag)—2v(fa) —2v(l3) = 20(ly)—2v({3),

v((As — A1)(Asz — B1)(Bs — A1)(Bs — B1)) = —2v(1) — 2v({3) = —2v(u1) — 2v(3),
’U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl — BQ)) = —21}(61) — 2’[}(62) = —21)(2,61) — 21}(62).

If v(¢) = 0 then the cluster picture of L(z) is the balanced one given in Table
Otherwise if v(¢) # 0 then v(¢;) = 0 for some i = 1,2,3, for otherwise P.2 and
P.12 would yield v(A%) > 0. Assume without loss of generality that v(¢;) = n # 0.
Then n € 2Z by semistability criterion and the cluster picture for L(x) is

ICRE XS 8 L . . :
" —-n, which is equivalent to the claimed balanced cluster picture as

shown in Table 3.2
Cases GR1B/GRI1C. Since v(A%) = 2r > 0, C has bad reduction by Lemma

5.3.10f From P.4, P.5 and P.6 we have v(A4; — B1)? = —2v(Ag) —2v(f1) = —2v(uy),

v(Ay — By)? = —20(fy), v(As — Bs)? = —2v((s),
and P.7, P.8 and P.9 give
v((Ag—As)(Ay—Bs)(By—As)(By—Bs)) = 20(Ag)—2v(f)—20((s) = 2r—2v(ly)—2v(Ls),
v((As— Ay)(As— By)(Bs— A1)(Bs— By)) = —2v(fy) — 2v(fs) = 2r — 2v(uy) — 20(Ls),

0((A1 — Ag) (A1 — Bo)(B1 — A3)(B1 — Ba)) = —20(t1) — 20(l2) = 2r — 20(uy) — 20(La).

If v(uy) = v(fy) = v(f3) = 0 then the cluster picture for C' is that of Table
Otherwise, if v(u;) = n; > 0 then by P.2 and P.12, we have v(f3) = v(¢3), say

[obrEew) )
—n+nq

v(f2) = n. We obtain the following cluster picture for C

-ny ,

which is equivalent to the claimed balanced cluster picture as shown in Table
Similarly if v(¢3),v(¢3) > 0.
Frobenius action. If (4; — B;)? ¢ K*?, then Frob permutes A; and B; and hence

permutes both clusters yielding the required automorphism.
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5.3.2 C( is of type 1,5,
Proof of Table [4.5]

Case ON1A/B. Here v(A%) = 0, and

v(d1) = 2a,v(d2) = 0,v(d3) = 0,v(61) = 0,v(d2) = 0,v(d3) = 0,
so that P.4, P.5 and P.6 yield
v(A; — B1)? = —20(¢1), v(Ay — By)? = —20(fy), wv(As — Bs)? = —2u({3),
and P.7, P.8 and P.9 give
v((Ag — A3)(As — B3)(By — A3)(B2 — B3)) = 2a — 2v(l2) — 2v({3),
v((As — A1)(As — B1)(Bs — A1)(Bs — By)) = —2v({1) — 2v(3),

V(A1 — A3) (A1 — Bo)(By — As)(By — Ba)) = —2v(t1) — 2v((s).

If v(¢1) = v(le) = v(¢3) = 0 then without loss of generality, let v(As — Az)=2a
so that the cluster picture of C' is that of Table for ON1A/B. Otherwise, since
v(AZ) =0, either v(¢1) =n > 0 and v(f2) = v(f3) = 0 or without loss of generality,
v(lg) = n > 0 and v(¢1) = v(f3) = 0. Then in the first case, one readily verifies

(G209

And similarly, in the second case if v(f2) = n > 0 then the cluster picture for C

[G.e e o)y

1S

using the valuations above that the cluster picture for C is

.

—n. In both cases, these cluster pictures are in the equivalence

class of [2‘10 °° *}

Case ON1C/D. Here v(A%) = 2r > 0 so that v(¢1) = v(u1) — r, and

0 as required.

v(61) = 20, v(82) = 0,0(33) = 0,v(81) = 0,v(82) = 0,v(3) =0,
so that P.4, P.5 and P.6 yield
v(A; — Bl)2 = —2v(uy), v(A2— 32)2 = —2v(l2), wv(As— 33)2 = —2u({3),
P.7, P.8 and P.9 give

U((AQ — Ag)(AQ — Bg)(BQ — Ag)(BQ — Bg)) =2a+ 2r — 2’0((2) — 2’1)(63),
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v((As — A1) (As — By)(Bs — A1)(Bs — By)) = 2r — 2v(u1) — 2v(f3),
’U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl — BQ)) =2r — QU(Ul) — 20(52).

If v(uy) = v(fa2) = v(¢3) = 0 then without loss of generality, let v(As — A3)=2a so
that the cluster picture of C is that of Table for ON1C/D. Otherwise, note that
since v(A%) > 0, we have v(uy),v(f2),v(¢3) > 0 (for otherwise, this forces others
double roots mod 7 a contradiction to the cluster picture of C').

Write v(uy) = ni,v(ly) = n2,v(f3) = n3. Assume that ny < ng, then r = n; = ng

{\i{)‘? °2a QJ + }
—no+ns3 3.

Assume that ng < no, then r = ny = ng and the cluster picture for Cis

opo (B3 |
—n3TN2 ) p,.

and the cluster picture for Cis

~

Assume that ng = no and » = ny = nz. Then the cluster picture for C' is
p

\0 ‘ ° °2a 27‘}”2.

Assume that ng3 = ny and ny > ng = r. Then the cluster picture for C is

;
foo (B
T —ng+nq —nq.

-

[=nl)
In all cases, the cluster pictures obtained are in the equivalence class of " o

as required.
Frobenius action. By Proposition [3.4.30] the reduction at the node at « is split
if and only if T,,, = c(a1 — ag)(a1 — B2) (a1 — as)(ay — B3) =p 1.

Proof of Table [4.6]

Case ON2A/B. Here v(A%) = 0, and

~ ~ ~

v(01) = 0,v(d2) = 2a,v(d3) = 0,v(d1) = 0,v(d2) = 0,v(d3) =0,
so that P.4, P.5 and P.6 yield
v(A; — B1)? = —20(f1), v(Ay — Bo)? = —20(ly), w(Az — B3)? = —2v({3),
and P.7, P.8 and P.9 give

’U((Ag — A3)(A2 — Bg)(BQ — Ag)(BQ — Bg)) = —2U(€2) — 2U(€3),
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v((A3 — A1) (As — By)(Bs — A1)(Bs — B1)) = 2a — 2v(f1) — 2v(f3),
’U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl — BQ)) = *22}(61) — 2U(€2).

If v(¢1) = v(le) = v(¢3) = 0 then without loss of generality, let v(As — A1)=2a
so that the cluster picture of C is that of Table for ON2A /B. Otherwise, since
v(AZ) =0, either v(¢1) =n > 0 and v(f2) = v(f3) = 0 or without loss of generality,
v(ly) =n > 0 and v(¢1) = v(¢3) = 0. Then in the first case, one readily verifies

[%,. R g}

And similarly, in the second case if v(f3) = n > 0 then the cluster picture for C

[y | N
" )-n. In both cases, these cluster pictures are in the equivalence
class of [2“0 v w}

Case ON2C/D. Here v(A%) = 2r > 0 so that v(¢1) = v(u1) — r, and

using the valuations above that the cluster picture for Cis

is

0 as required.

~ ~ ~

v(01) = 0,v(d2) = 2a,v(d3) = 0,v(d1) = 0,v(d2) = 0,v(d3) =0,
so that P.4, P.5 and P.6 yield
v(A; — B1)? = —20(u1), v(Ay — B)? = —2u(fy), wv(As — B3)? = —2u(f3),
P.7, P.8 and P.9 give
v((A2 — A3)(A2 — B3)(Ba — As3) (B2 — Bs)) = 2r — 2v(l2) — 2v(l3),

’U((Ag — Al)(Ag — Bl)(Bg - Al)(Bg - Bl)) = 2a + 2r — 2U(U1) - 2U(€3),
U((Al — AQ)(Al - BQ)(Bl — AQ)(Bl - Bg)) =2r — 2U(u1) — 2U(€2).

If v(u1) = v(l2) = v(¢3) = 0 then without loss of generality, let v(As — Aj)=2a so
that the cluster picture of C' is that of Table for ON2C/D. Otherwise, note that
since v(A%) > 0, we have v(u1),v(f2),v(¢3) > 0 (for otherwise, this forces others
double roots mod 7 a contradiction to the cluster picture of C').

Write v(u1) = ni,v(l2) = n2,v(f3) = n3. Assume that ny < ng, then r = ny; = no

{‘{00 02{1 QT} + }
—n2tn3) .

Assume that ng < ns, then r = ny = n3 and the cluster picture for Cis

e foaml) |
—n3tna ),

and the cluster picture for Cis
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Assume that ng = ny and » = ny = nsg. Then the cluster picture for C is

,
SNco)
.

Assume that n3 = no and n; > ng = r. Then the cluster picture for C is

:
foopBw))
L T —ng+nq —nq.

In all cases the cluster pictures obtained are in the equivalence class of

(R
r o as required.

Frobenius action. By Proposition the reduction at the node at as is split
if and only if T,, = c¢(a2 — a1) (a2 + a1)(ae — asz)(ag — B3) =0 1.

—ng.

Proof of Table [4.7]

Case ON3A/B. Computing ¢; we find that v(¢1) = 0 with v(A%) = 0. From the
definition of the isogeny, either ao, 82, a3, 83 € K or Frob permutes §o and d3 so

that Frob(ag) = as, Frob(as) = as and similarly for (2, 83

~ ~ ~

v(81) = 0,0(82) = 0,0(83) = 0,v(61) = a,v(d2) = 0,v(d3) = 0,
so that P.4, P.5 and P.6 yield
v(A1 — B1)? =a, v(As— B2)? = —2v(fs), v(As— Bs)? = —2v(l3),
and P.7, P.8 and P.9 give
v((A2 — A3)(Az — Bs)(Ba — A3)(Bz — Bs)) = —2v(l2) — 2v((3),
v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = —2v(l3),
(Al — Ag)(Ay — Ba)(B1 — Ag)(B1 — By)) = —2u(fy).

It follows that v(A; — B1) = § and if v(f2) = v(¢£3) = 0 then the cluster picture of

C is that of Table [4.7 for ON3A/B. Otherwise, if v(f3) = ny > 0 then v(f3) = 0.
Indeed, by definition of {9 we have 3 = —aq. By definition of /3, if v(¢3) > 0 then

B2 = —aw, a contradiction since 3 Z 2. Therefore we obtain the following cluster

oo wsls] [Eyoony

or

-n. In both cases, these cluster

pictures are in the equivalence class of [%Q A ‘]

Frobenius action. By Proposition the reduction at the node at as is split

picture for C'

0 as required.
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if and only if T,, = c(ae — a1)(ag + a1)(ag — B2)(ae — B3) =0 1.

Proof of Table 4.8

Case ON4A/B. Computing ¢; we find that v(A%) = 0. From the definition of
the isogeny, aq, e, B2 € K v(ag — ag) = a € Z and

~ ~ ~

v(01) = 0,v(d2) = 0,v(d3) = 0,v(01) = 0,v(d2) = 0,v(d3) = a,
so that P.4, P.5 and P.6 yield
v(A; — B1)? = —20(f1), v(Ay — By)? = —20(fy), v(As — B3)? = a — 2u(l3),
and P.7, P.8 and P.9 give
v((A2 — A3)(A2 — B3) (B2 — A3)(B2 — Bs)) = —2v(l2) — 20({3),

v((As — A1) (As — B)(Bs — A1)(Bs — B1)) = —2v(f1) — 20(l3),
’U((Al — AQ)(Al - BQ)(Bl - AQ)(Bl - Bg)) = —2U(€1) - 2U(€2).

It follows that v(A3 — B3) = § and if v({1) = v(f2) = v(f3) = 0 then the cluster
picture of C' is that of Table 4.8/ for ON4A /B. Otherwise, since v(Ag) = 0 it follows
from Lemma 5, that either v(¢1) = n > 0 and v(f2) = v(¢3) = 0 or without

loss of generality, v(¢2) = n > 0 and v(¢1) = v(¢3) = 0. Therefore we obtain
Gl G,

both cases, these cluster pictures are in the equivalence class of [@% °ov9 QJ

the following cluster picture for C: —n OT

0 as

required.
Frobenius action. By Proposition the reduction at the node at a; is split
if and only if T,,, = 2cai(a; — B2)(a1 — as3)(ay — B3) =g 1.

5.3.3 C( is of type Iy, 2%
Proof of Tables [4.9] and [4.10]

By definition of the isogeny we have

v(61) = 2a,v(d2) = 2b,v(d3) = 0,v(61) = 0,v(d2) = 0, v(d3) = 0,

a1 =0 # ag, as, f3. This yields v(¢3) = 0 since 3 = —2casy.
Case TN1A/B/C/D. Here v(Ag) = 0.
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From P.4, P.5 and P.6 we have
v(A — B1)2 = —2v(f1), v(A2— 32)2 = —2vu(l2), v(As— 33)2 =0,
and P.7, P.8 and P.9 give
v((Ag — A3)(A2 — B3)(Ba — As3) (B2 — Bs)) = 2a — 2v({2),

’U((Ag — Al)(A3 — Bl)(Bg — Al)(Bg — Bl)) = 2b — 2U(£1),
U((Al - AQ)(Al - BQ)(Bl - AQ)(Bl - BQ)) = —2?}(61) - 2?)(62).

If v(¢1) = v(¢2) = 0 then without loss of generality, let v(As — A3) = 2a and
(A;—Bs) = 2bso that the cluster picture of €' is that of Table for TN1A/B/C/D.
Otherwise, since v(A%) = 0, either v({1) =n > 0 and v(f2) = 0 or v(l2) =n >0

and v(¢1) = 0. Then in the first case, one readily verifies using the valuations above

oW -a’ |0
[2 2 J—n. And similarly, in the second
. [Cnewe))

case if v(f2) = n > 0 then the cluster picture for C' is

that the cluster picture for C is

—n. In both

[22b° ‘)]

cases, these cluster pictures are in the equivalence class of 0 as

required.
Case TN1E/F/G/H. Here v(Ag) = r > 0 so that v(¢1) = v(u1) — r. Note that

here vy = 0 # a9 = 2 mod 7. In particular, computing ¢, f3,u1, one finds that
(5 = —2c¢B; and hence v(f3) = 0. Since v(A%) > 0 we find that if v(¢2) > 0 or
equivalently v(u;) > 0 then ag = 0 mod 7 a contradiction to the cluster picture of
C'. Hence v(uy) = v(f3) = 0.

From P.4, P.5 and P.6 we have

v(A; —B1)? =0, v(Ay—By)? =0, wv(A3— B3)>=0,
and P.7, P.8 and P.9 give
'U((AQ — Ag)(AQ — Bg)(BQ — Ag)(BQ — Bg)) =2r + 2&,

v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = 2r + 20,
’U((Al — AQ)(Al — Bg)(Bl — AQ)(Bl — Bg)) = 2r.

Thus without loss of generality, let v(As — Ag) = 2a +r and (A; — B3) =2b+ 1 so
that the cluster picture of C is that of Table [4.9 for TN1E/F/G /H.
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Frobenius action. By Proposition [3.4.30] the reduction at the node at aq is split if
and only if T,,, = ¢(a1 —a2)(a1—p2)(a1 —a3)(a1 —B3) =0 1 and the reduction at the
node at ag is split if and only if T, = c¢(a2 — a1) (a2 + 1) (a2 — a3) (a2 — B3) =0 1.
It follows that C'is of type I7;", 13715713 in TN1A/B/C/D respectively.
Similarly for C, using Proposition at the nodes Ay and A, one finds that C
is of type I;;’;b, I;a;bvlgz{,;w[z;’,;b in TN1A/B/C/D respectively. Finally, since G(z)
is a Uy x D4 polynomial, we have that §; € K so that F'rob does not permute any

clusters in the cluster picture of C' and similarly for C.

Proof of Tables [4.11] and 4.12]

By definition of the isogeny

~ ~

v(61) = 0,0(d2) = 2a,v(d3) = 2b,v(d1) = 0,v(d3) = 0, v(d3) = 0.

Reducing invariants, we find that u; =g (a3 — (2)? so that v(u1) = 0.
Case TN2A /B/C/D/E. Here v(Ag) = 0 hence v(¢1) = 0.

From P.4, P.5 and P.6 we have

U(Al — 31)2 = 0, ’U(Ag — 32)2 = —211(52), ’U(Ag — 33)2 = —2’0(£3),
and P.7, P.8 and P.9 give
v((A2 — A3)(Ag — B3) (B2 — A3)(B2 — Bs)) = —2v({f2) — 2v({3),

’U((Ag — Al)(Ag — Bl)(Bg, — Al)(Bg — Bl)) = 2a — 21)(@3),
v((A1 — A2) (A1 — Bo)(By — As)(By — Bs)) = 2b — 2u(Ly).

If v(¢3) = v(¢3) = 0 then without loss of generality, let v(A; — A3) = 2a and (A; —
Ay) = 2b so that the cluster picture of C'is that of Table for TN2A/B/C/D/E.

Otherwise, computing fo and /3 and reducing mod 7 we find that /o = 2ca3 and
U3 = —2¢f. It follows from the isogeny that as # [ therefore either v(¢2) > 0 and

v(¢3) = 0 or conversely v(¢3) > 0 and v(¢2) = 0. In the first case, one readily verifies

C2.Com)

.G
(..o 9]0 %]

using the valuations above that the cluster picture for Cis

And similarly, in the second case, the cluster picture for C is

In both cases, these cluster pictures are in the equivalence class of

as required.
Case TN2E/F/G/H. Here v(Ag) = r > 0 hence v(¢1) = —r. Computing ¢y
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and f3 and reducing mod 7 we find that /o = 2cas and ¢35 = —2cf2. But since

v(Ag) = r > 0, we also have a? = a3f2. It follows from the cluster picture of C

that aq # 0 so that v({3) = v(f3) = 0.
From P.4, P.5 and P.6 we have

U(Al — Bl)2 = 0, ’U(Ag — 32)2 = 0, ’U(Ag — 33)2 = 0,
and P.7, P.8 and P.9 give
v((Ag — A3)(Ay — B3)(By — A3)(B2 — Bs)) = 2r,

’U((Ag — Al)(Ag — Bl)(Bg — Al)(Bg, — Bl)) =2r+ 2(1,

U((Al — Ag)(Al - Bz)(Bl — AQ)(Bl — Bg)) = 2r + 2b.
Thus without loss of generality, let v(A; — Ag) = 2a+r and (A; — Ag) =2b+ 7 so
that the cluster picture of C' is that of Table for TN2F/G/H/1/J.
Frobenius action. By Proposition the reduction at the node at as is split

if and only if T,,, = c¢(ae — a1) (e + 1) (ag — ag)(az — f3) = 1 and the reduction at

the node at a3 is split if and only if T, = c(ag—aq)(as+a1)(as—az)(as—F2) =0 1.
It follows that C is of type I;a’”;b, IQ_CL’;b,IQ_aEb in TN1A/B/C respectively. Similarly
for C, using Proposition at the nodes A1 and Bj, one finds that C is of type
IL’L’, IL’Ib,I;a’;b in TN1A/B/C respectively. Computing (A; — B1)? and reducing
mod 7 one finds that (A; — B1)? = (a3 — B2)? so that (A; — B;)? € K*2 in these
3 cases.

In TN2D/E, Frob permutes do and d3 (by semistability criterion, Ix acts
trivially on clusters of size > 1). It follows that Ty,,Ta, € K(62) € K™. For
TN2D, we let Ty,,Ta, € K(J2)*? so that C is of type I -, . For TN2E, we let
Ty Ty & K(62)*% so that C is of type Iy, -,,. Since (41 — B1)? = (a3 — ($2)?, it
follows that (A; — B1)? ¢ K*? in both cases. Finally, using Proposition at
the nodes A; and B; one finds that T4, and Tp, are congruent to T,,, T, mod 7.
Therefore C is of types IL~ 10 and I, -, respectively.

Cases TN2F/G/H are similar to TN2A/B/C. However, cases TN2I/J are

different since (' is deficient for v if 7 is odd.

Proof of Table [4.13]

Case TN3A/B/C/D. By definition of the isogeny

v(61) = 2a,v(d2) = 0,v(83) = 0,v(61) = b, v(ds) = 0,v(83) = 0,

100



a1 =0 # ag, B2, a3 and ao, B2, as, B3 € K™ so that b € Z. Reducing invariants, we
find that

—1
Ag=-a3(Ba—Bs), = o Uy =clag + f3), 3= —claz+ PBa),
3

so that v(Ag) = v(¢1) = 0 and if v(¢2) > 0 (v(¢3) > 0 respectively) then v(¢3) =0
(v(f2) = 0 respectively).
From P.4, P.5 and P.6 we have

v(A; — B1)? =b, v(As— Bo)* = —2v(ly), wv(As— B3)* = —2uv(¢3),
and P.7, P.8 and P.9 give
v((Ay — Az)(Ag — B3)(By — A3)(Ba — Bz)) = 2a — 2v(l2) — 2v0(f3),
v((As — A1) (A3 — B1)(Bs — A1)(Bs — B1)) = 0 — 2u({3),

'U((Al — Ag)(Al — BQ)(Bl — Ag)(Bl — Bg)) =0- 2’[)(62).

If v(fy) = v(f3) = 0 then without loss of generality, let v(As — A3) = 2a so
that the cluster picture of C' is that of Table for TN3A/B/C/D. Otherwise,
if v(ly) = n > 0 and v(f3) = 0 or conversely v(f3) = n > 0 and v(¢2) 0

one readily verifies using the valuations above that the cluster picture for C' is

[ GaLa)s)

—n. And similarly, in the second case, the cluster picture for C

CoiGw.oly
{ 2 2 ) ). Tn both cases, these cluster pictures are in the equivalence

class of [% 2“0 ‘}

Frobenius action. By Proposition [3.4.30, the reduction at the node at «; is split
if and only if T, = ¢(a1 —ag) (a1 — 52) (a1 — as) (a1 — B3) =g 1 and the reduction at

is

0 as required.

the node at «y is split if and only if T, = c(ag—aq)(ae+a1)(ag—as3)(ae—LB3) =0 1.
It follows that C is of type I;;’;b, I;a’;rb, I;a’;b, Iy, o in TN3A/B/C/D respectively.
Similarly for C, using Proposition at the nodes A; and As, one finds that
the reduction at the node at A; is split if and only if ¢(A; — Ag)(A1 — Ba)(A;1 —
A3)(Ay — Bs) = T,, =0 1. Finally, the reduction at the node at As is split if and
only if ¢(Ay — A1)(Ay — By)(Ag — As)(Ag — Bs) = T, =0 1. Therefore C is of
type Iivs Tpaas Iyias 1pia in TN3A/B/C/D respectively. Finally, since G(x) is
a Co x D4 polynomial, we have that d; € K so that Frob does not permute any

clusters in the cluster picture of C' and similarly for C.
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Proof of Table [4.14]

Case TN4A /B/C/D. By definition of the isogeny

v(61) = 0,v(d2) = 0,v(d3) = 2a,v(6;) = 0,v(d2) = 0,v(d3) = b,
a1, g, B2 € K so that b € Z. Reducing invariants, we find that
Ag =clar —az)*(a1 + B2), ui =a1+Ps—2as, fly=2cas, l3=—c(ar+Ba),

so that v(Ag) = v(f3) = 0 and v(¢1) = v(uy). Moreover, by Lemma [6.2.2|5., if
v(£1) > 0 (v(f2) > 0 respectively) then v(f2) =0 (
From P.4, P.5 and P.6 we have

v(£1) = 0 respectively).

v(A; — B1)? = —2u(f1), v(Az — B2)* = —2v(f2), wv(As— B3)* =0,
and P.7, P.8 and P.9 give
v((Az — A3)(Az — B3)(By — A3)(By — Bs)) = —2u(la),
v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = —2v((1),

U((Al — AQ)(Al — B2)(B1 — A2)(B1 — Bg)) = 2a — QU(fl) - 2’[)([2).

If v(f1) = v(f2) = 0 then without loss of generality, let v(A; — As) = 2a so
that the cluster picture of C' is that of Table for TN4A/B/C/D. Otherwise,
if v(f1) = n > 0 and v(f2) = 0 or conversely v(f2 = n) > 0 and v(¢;) = 0

one readily verifies using the valuations above that the cluster picture for C is

G, Go.0s) :
[ 2 2 n ) n. And similarly, in the second case, the cluster picture for C
E=1ony
9,0 Q} .
class of [@% 2“ b as required.

Frobenius action. By Proposition [3.4.30, the reduction at the node at a3 is split
if and only if T, = c(ag — a1)(as + a1)(as — az)(as — f2) =0 1 and the reduction

—-n. In both cases, these cluster pictures are in the equivalence

at the node at ay is split if and only if T, = 2caq (a1 — f2) (a1 — as) (a1 — f3) =0 1.
It follows that C'is of type I35, I3 Iog gy Tog 2, in TN4A/B/C/D respectively.
Similarly for C, using Proposition at the nodes Az and Aj, one finds that
the reduction at the node at A; is split if and only if ¢(As — A1)(As — B1)(As —
A2)(As — By) = T,, =p 1. Finally, the reduction at the node at A; is split if and
only if £(A; — B1)(A; — By)(A; — A3)(A; — Bs) = Ta, =0 1. Therefore C is of type
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Liaas Iyias Tnia» Ipaa in TNAA/B/C/D respectively.

Proof of Table [4.15|

Case TN5A /B/C/D. By definition of the isogeny

v(61) = 0,0(6) = 0,v(d3) = 0,v(01) = b,v(d3) = 0,v(d3) = a,
a1, a9, Bo,as, B3 € K so that a,b € Z. Reducing invariants, we find that
v(Ag) =0, ly=clas+P3), {3=—clas+ as),

In particular, v(¢3) = 0.
From P.4, P.5 and P.6 we have

’U(Al — 31)2 = b, ’U(AQ — 32)2 = *2’0((2), U(Ag — 33)2 =a— 21)(63),
and P.7, P.8 and P.9 give
'U((AQ — A3)(A2 — Bg)(BQ — Ag)(BQ — B3)) = 21)(62) — 2’0(63),

v((Ag — Al)(Ag - Bl)(Bg — Al)(Bg — Bl)> = —2?)(53),
v((A1 — A2)(A1 — Bo)(By — As)(By — Bs)) = 2v(Ls).

If v(¢2) = 0 then v(A; — By) = % and v(A3 — B3) = § so that the cluster picture
of C' is that of Table for TN5A/B/C/D. Otherwise, if v(f2) = n > 0 then

one readily verifies using the valuations above that the cluster picture for C is

[[% (3 w), "l‘?}

required.
Frobenius action. By Proposition [3.4.30, the reduction at the node at «; is split
if and only if T, = 2aq (a1 — B2)(a1 — a3)(a1 — B3) =0 1 and the reduction at the

o)y wyo o]

—n, which is in the equivalence class of [

node at a3 is split if and only if Ty, = c(ag —aq)(as + a1)(as — az)(as — B3) =0 1.
It follows that C is of type I;fl’f, I;;r, I;’l’:, I,; in TN5A/B/C/D respectively.
Similarly for C, using Proposition at the nodes A; and As, one finds that
the reduction at the node at A; is split if and only if ¢(A; — A2)(A1 — B2)(A;1 —
As3)(Ay — Bs) = T,, =0 1. Finally, the reduction at the node at As is split if and
only if /(A3 — A1)(As — B1)(As — Ag)(As — By) = T, =0 1. Therefore C is of type
Lot 0t L, 1, in TNSA/B/C/D respectively.

ba * “ba ’ “ba
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Proof of Table [4.16]

Case TN6A /B/C/D/E. By definition of the isogeny

~ ~ ~

v(61) = 0,v(d2) = 0,v(d3) = 0,v(d1) = 0,v(d2) = b,v(d3) = a,

a1, g, B2, as, B3 € K™ for otherwise Ix would permute both clusters, a contradic-
tion to the semistability criterion Hence a,b € Z. Reducing invariants, we
find that

v(Ag) =v(ly) =v(f3) = 0.

In particular, we have v(¢1) = v(u1).
From P.4, P.5 and P.6 we have

U(Al — 31)2 = —2U(U1), U(Az — 32)2 = b, U(Ag — 33)2 = a,
and P.7, P.8 and P.9 give
v((A2 — A3)(A2 — Bs)(B2 — A3)(B2 — Bs)) = 0,

v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = —2v(u1),
U((A1 — AQ)(Al — BQ)(Bl — Ag)(Bl — Bg)) = 21)(711).

If v(u1) = 0 then v(Ay — By) = & and v(A3 — B3) = % so that the cluster picture

of C is that of Table for TN6A/B/C/D/E. Otherwise, if v(u1) = n > 0 then

one readily verifies using the valuations above that the cluster picture for C is

== e

required.

0 as

-n, which is in the equivalence class of

Frobenius action. Computing roots and invariants and reducing mod 7 we see
that (42— A3)? =g of. Tt follows that Frob acts trivially on clusters for TN6A/B/C,
while permuting them for TN6D/E. By Proposition the reduction at the
node at «; is split if and only if T,,, = 2cai(a1 — as)(ar — f2)(an — B3) =0 1

and the reduction at the node at —ay is split if and only if 7", = —2cay(—aq —
ag)(—aq — B2)(—ag — B3) =p 1. Tt follows that C' is of type I;;’;rb, IQ_Q’;b, Ly, o in
TN6A/B/C respectively. Similarly for C, using Proposition at the nodes
As and As, one finds that the reduction at the node at As is split if and only if
Ty, =0(As—A1)(As—B1)(As— As) (A3 — By) = Ty, =g 1. Finally, the reduction at
the node at A is split if and only if T4, = ¢(As— A1)(A2— B1) (A2 — A3)(Aa— Bs) =
T_o, =0 1. Therefore C is of type I;f;f, I;;f, Ia_,é_ in TN6A/B/C respectively.

For TN6D/E we have a? ¢ K*2 and hence since (Ay — A3)? =g o2, it follows
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that Frob permutes both clusters in the cluster picture of C. For TN6D, we let
Toys T-ay € K(62)*? = K(03)*% so that C is of type I -,,. Moreover as noted above,
since T, =0 Ty, and Ty, =0 T—,,, it follows that C is of type I(;ta. Similarly, for
TNG6E, so that C is of type I, -,, and I_-,.

a” 2a

Proof of Tables and
By definition of the isogeny

v(81) = 0,v(82) = 0,v(d3) = 0,v(01) = a + b,v(d2) = 0,v(d3) = 0,
Without loss of generality, assume a < b. Write
s = ag + asm®, B3 = PBo +bsw’, a3, bs € (’)%.
By definition of Ag, 1, £, 3 we have
Ag = cr” (%(52 — a1)(B2 + a1) + bym’*(oy — 1) (a2 + 1) + agbsm (a2 + 52)) ;

u; = —asmw® — b371’b, by = 0(042 + B2 + asm® + bgﬂb), l3 = —0(052 + 62)

It follows that if a < b then v(Ag) = a, wv(u1) = a. In particular, v(¢;) = 0 and
v(l) € 2.
If a = b then

Ag = crm® (a3(B2 — a1)(B2 + a1) + bz(az — aq) (a2 + a1) + azbsm®(az + B2)),

Uy = —Wa(ag + bg), ly = C(Oéz + P2 + 7Ta(a3 + bg)), l3 = —C(Oéz + Bg)

Therefore
v(Ag) =a+r, r=wv(a3(B2— a1)(B2+ a1)+bz(az — a1)(az + a1) + agbsm®(az + 52)),

v(up) =a+n1, ng=wv(asz+ bs),
v(ly) = v(ag + P2 + 7 (az + b3)), v(l3) =v(az+ F2).

In particular, v(¢1) =ny —r.
Case TN7A/B/C/D : Here we let a < b so that v(Ag) = a, v(u;) = a and
v(f1) = 0. v(f2) = 0 if v(f3) = 0 or v(¢2) > min{a,v(¢3)} and by semistability

criterion (3.4.29, we have v({) € 2Z.
From P.4, P.5 and P.6 we have

(A —B1)?> =a+b—2v(Ag) —2v(t1) =a+b—2a=>b—a,
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v(Ag — 32)2 = —20(ly), v(As— 33)2 = —2v(l3),

and P.7, P.8 and P.9 give
v((Aa—A3)(As—DB3)(By—A3)(Ba—B3)) = 2v(Ag)—2v(le)—2v(l3) = 2a—2v(l2)—2v({3),

’U((Ag — Al)(Ag — Bl)(Bg — Al)(Bg — Bl)) = —20(51) — 21}(53) = —211(63),
’U((Al — AQ)(Al - BQ)(Bl — AQ)(Bl - Bg)) == —2U(£1) - 21}(52) = —21)(52)‘

If v(¢3) = v(f3) = 0 then we have, without loss of generality, let v(Ay — A3) =
v(By — B3) = a and v(A; — By) = %% so that the cluster picture of C' is that of
Table for TN7A/B/C/D. Otherwise,

if v(f3) = n3 > 0 with n3 > a, then v(f2) = a and the cluster picture for C

==l

1S

—a-+n

If v(¢3) = ng > 0 with ng < a, then v(¢3) = v(¢3) and the cluster picture for

Cis [ bTal“”J

If v(l3) = n3 > 0 with ng = a, then if v(¢3) = v(f3) = a, the cluster picture

. [ b—Talo w}

for C'is

=)

—ng.

~a, and if v(l2) > v(¢3) = a, the cluster picture for

—a-+n

Cis

All are in the equivalence class of [“ bb?‘

Frobenius action. By Proposition [3.4.30] the reduction at the node at «y is split
if and only if T,,, = ¢(a2 — a1) (2 +a1) (e — f2) (a2 — f3) =0 1 and the reduction at
the node at (3 is split if and only if T, = c¢(B2—a1)(B2+ 1) (f2—a2) (B2 —a3) =0 1.
It follows that C'is of type I, 5y, Iog by T3n 2y Iog05 i TNTA/B/C/D respectively.

Now computing invariants, one finds that (As — B2)? =0 (ag + 82)?Ta, s,
Here (oo + f2)? € K*2, it follows that (Ay — By)? € K*2 for TN7A/D and (A; —
Bs)? ¢ K*2 for TNTB/C. Also, using Proposition one finds that C is of
type Ut (U~ respectively) if £ € K*? (£ ¢ K*2 respectively). Computing ¢ yields
0 =g (B2 — a1)(B2 + a1)(as + B2)? = Ts,. Therefore £ € K*? for TN7A/B and
¢ ¢ K>2 for TN7C/D. This yields that C is of type Uy, 5, ,_, for TNTA, Ut
for TN7B, U2_a;2a1b_a for TN7C, U2—a,2a,b—a for TN7D.

]0 as required.

Remark 5.3.11. Since as = a3 and (B2 = (3, it follows that 2a odd < 2b odd.

Tamagawa numbers and deficiency : ), is clear for computations of Tamagawa
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numbers and deficiency given in Table except for TN7C/D.Therefore, for TN7C

we have
(_1)0rd2(‘%) =14 b=1mod 2, (—1)Ord2(%) =1<b—a=1mod 2,

which yields that A, = —1 if and only if b = @ mod 2 as required.

For TN7D we use the following lemma.
Lemma 5.3.12.

1. Fora,beZ. Ifb— a is odd then d = ged(2a,b — a) is odd and %b s even. If

b— a is even then d is even and % s even.

2. For a,b € %Z with 2a,2b odd. If b — a odd then d = gcd(2a,b — a) is odd and

%‘Lb 1s odd. If b — a even then d is odd and %‘Lb s odd.

Proof. 1)The first claim is clear. If b— a is even with a, b odd then 2 divides exactly
once 2a, and hence d. On the other hand, 4 divides exactly once 4ab so that %"b is
even. Finally if b— a is even with a, b even write a = 2"a’ and b = 2™V with n < m.
Then 2" divides exactly d and 4ab = 2"T™+24/b so that %b is even.

2) This is clear since 4ab is odd and d is odd. O

Hence, if a,b € Z then ¢, = 4, m,=1 and
if b — a is even then ¢, = 4 and m, =1,

if b — a is odd, then , é, = 2 and m,, = 2. Therefore in this case

my

(1) 2E) = 1o b—a=0mod 2, (—1)"?G) =1 b—a=0mod 2.
Ifa,b e %Z then ¢, = 1, my,=1 and

if b — a is even then ¢, = 1 and m, =1,

if b — a is odd, then , é, = 1 and m, = 2. Therefore in this case
() PE) =1, ()T =16 b—a=0mod 2

Therefore, A\, = 1 if and only if 2a = b — a mod 2, equivalently if b — a = 0 mod 2

as required.

Case TNTE/F/G/H/I : Here a = b but we let v(A¢g) = 2a so that v(¢1) = ny.
Also, v(¢3) = 0 if v(¢3) = 0 or v(f2) > min{a,v(f3)} and by semistability criterion
we have v({) € 2Z. Recall that in this case

Ag = cr® (a3(B2 — a1) (B2 + a1) + bz(az — o) (a2 + a1) + azbsm®(az + B2)),

up = —m%(ag 4+ b3), Lo =clas+ P2+ 7% a3z +bs)), {3=—clag+ [2).
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Therefore
v(Ag) =a wv(az(f2 —a1)(B2+ a1) + b3(ae — 1) (a2 + 1) + azbsm (a2 + B2)) = 0,

v(u1) =a+n1, nip=wo(as+bs),
v(ly) = v(ag + P2 + 1 (az + b3)), v(l3) = v(az + B2).

In particular, v(¢1) = ny.
From P.4, P.5 and P.6 we have

v(A; — B1)? = 2a — 20(Ag) — 2v(fy) = 2a — 2a — 2ny = —2n,,

’U(AQ — BQ)Q = —2U(£2), U(Ag - 33)2 = —2U(€3),

and P.7, P.8 and P.9 give
'U((A2—A3)(AQ—B3)(B2—A3)(BQ—33)) = 2U(Ag)—2v(€2)—2v(€3) = 2&—2@(@2)—21](63),

U((Ag — Al)(Ag — Bl)(Bg — Al)(Bg — Bl)) = —21}([1) — 21}(&3) = —2711 — 21)(&3),
U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl — Bg)) = —21}(61) — 21}(62) = —2?7,1 — 2U(£2).

If ny = v(f2) = v(¢3) = 0 then, without loss of generality, let v(As — A3) = v(By —
Bs) = a so that the cluster picture of C' is that of Table for TN7TE/F/G/H/IL
Otherwise, assume that n;=0 then

if v(¢3) = n3 > 0 with n3 > a, then v(f2) = a and the cluster picture for C

==

a
—a+ng —ng.

is

If v(f3) = n3 > 0 with ng < a, then v(¢3) = v(¢3) and the cluster picture for

N (ETDIEo
1s "3

3
—n3.

If v(l3) = n3 > 0 with n3 = a, then if v(¢3) = v(f3) = a, the cluster picture

A aOOQ'

for C is

=3

Finally, if ny > 0 then since v(Ag) = a we have v(f2) = v(¢3) = 0 and the

. [GmE=s)
ny

cluster picture of C is

o, and if v(fy) > v(f3) = a, the cluster picture for C is

—nq.
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All are in the equivalence class of [" “ ° o}

Frobenius action. By Proposition the reduction at the node at « is split
if and only if T}, = c(aa — 1) (a2 +a1)(ag — B2) (e — 3) =g 1 and the reduction at
the node at (2 is split if and only if Tg, = ¢(B2 — a1 )(B2+a1) (B2 —a2)(fe—a3) =0 1.
It follows that C' is of type I;;fga, IQ_a’;a, Iy, 5 iIn TNTE /F /G respectively.

Now computing invariants, one finds that 52 =0 53 =0 Tu,Tp,. It follows
that 0,05 € K*2 for TNTF and 62, 05 ¢ K*? for TN7E/G. Similarly for C, using
Proposition at the nodes A, and Ap, one finds that the reduction at the node
at Aj is split multiplicative if and only if T4, = ¢(As — A1)(A2 — B1)(Az — Ba) (A2 —
Bs) =g 1. Finally, the reduction at the node at Bs is split multiplicative if and
only if Tp, = ¢(Bs — A1)(By — B1)(B2 — A2)(B2 — A3) =g 1. However, computing
Ta,,Tp, we have that T4,Tp, =n d2 = 63. Therefore C is of type I;ra”ga, I;a’jga,

Iy 5, in TNTE/F /G respectively.

0 as required.

Remark 5.3.13. It could be argued that for TN7G, since 74,1, =0 02 = 03 = 1,
we could have Ta,, Tg, € K*2. However, this is not possible since the order of Frob
on the components of both special fibers of C' and C' is preserved (e.g. because it can
be read of the local factor of the L-function). That is, for TN7E, Frob acts trivially
on the components of the special fiber of C, therefore its action is also trivial on
that of C. Similarly, for TN7G, F'rob has order 2 on both 2a-gone of the special
fiber of C'. It follows that F'rob has order 2 on both 2a-gone of the special fiber of
C and hence that C is of type Iy, oq-

Finally, for TN7H : Let t£,,t_,, (respectively tb: ,t3,) denote the square roots
of Ty, (resp. Tp,); ie. (t1,)* = (t5,)? = Ta,. Since C'is of type I;;’;a, it follows that
Frob has order 2 on t, tEQ. Hence, without loss of generality, let Frob(t},) = tEQ,

Frob(ty,) = (t%,) and Frob(ty,) = tg,, Frob(ty) = (t,). Since, as above
CMQ = CM3 =0 Ta2T52,

2 2 Q2 ﬁg a2 ﬁl ’

with Frob(tf,t5 ) = tf,t5 , it follows that t1, ¢} € K* and dfy,dl3 € K**.

Also, using P.8 we have that §, = 4€%£§(A3—Al)(Ag—Bl)(Bg—Al)(Bg—Bl).
Write aig = asm®+ag and 3 = bym?+ 2, then either Frob(ag) = B2 and Frob(as) =
B3 in which case Frob(as) = bs, Frob(bs) = a3 or Frob(az) = 3 and Frob(as) = 2
in which case Frob(az) = —bs, Frob(bs) = —as. In both cases, dy =g T4,TB,, with
Ta,, T, € K. Since dy = d3 ¢ K*? it follows that, without loss of generality,

Ta, € K*% and Tp, ¢ K*2. Therefore, C is of type IQ_a’Ea as required.
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For TNTF : Here Frob has order 4 on tf,, hence we have Frob(t,) =t} ,
Frob(ty)) = tg,, Frob(ty,) = tg,, Frob(tz) = t3,. It follows that Frob(tf,t}) =
thtay so that thth ¢ K and by = 03 = Tn,Ts, = (t§2t22)2 ¢ K*2. Tt follows
that Frob(Ta,) = Tp, and using P.8 as above we have 14,75, =g 62 = 03 ¢ K*2.
Writing Ta,Th, = (ta,)%(tB,)? = (ta,tp,)?, it follows that t4,tp, ¢ K and therefore
C is of type I,, A

b
a”2a°

Case TN7J/K/L/M/N : Here a = b but we let v(Ag) = a + r > a. Recall that

Ag = cn®(a3(B2 — a1)(B2 + a1) + bz(az — a1)(az + a1) + agbsm®(az + 52)) ,

Uy = —77“(@3 + bg), by = C(Oég + B2 + 7Ta(a3 + bg)), f3 = —C(Oég + ,32)

In particular, v(¢1) = a + ny — r where v(as + b3) = n1. Note that since v(Ag) > a
we have a3(f2—a1)(f2+a1) = —bg(aa—a1)(az+a1). Now if v(f3) > 0orv(uy) > a
this yields another congruence between roots, contradicting the cluster picture of
C'. Therefore v(¢3) = v(l2) = ny = 0.

From P.4, P.5 and P.6 we have

v(A; — B1)? = 2a — 2v(Ag) — 2v(t) =2a — 2(a + 1) — 2(—r) =0,

U(AQ - B2)2 = 0, U(Ag — 33)2 = 0,

and P.7, P.8 and P.9 give
v((Ag — A3)(Agy — B3)(By — A3)(Bay — B3)) = 2v(Ag) — 2v(l) — 2v(l3) = 2(a + 1),

v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = —2v({1) — 2v(43) = 2r,

v((A] — A2)(A1 — B2)(B1 — A2)(B1 — Ba)) = —2v(l1) — 2v(f2) = 2r.

==

Frobenius action, Tamagawa numbers and deficiency. Follows from the pre-

Thus we have the following cluster picture o as required.

vious case, except for TN7K /N where deficiency is different but readily computable
from Table B.1}

Proof of Tables and
By definition of the isogeny

~ ~ ~

v(01) = 0,v(d2) = 0,v(d3) = 0,v(01) = 0,v(d2) = 0,v(d3) = a + b,
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Since G(z) is a Cy x Dy polynomial, we have §; € K, therefore ai,ag, Sy € K™
for otherwise Ix would permute both clusters, a contradiction to the semistability

criterion |3.4.29] Hence a,b € Z. Without loss of generality, assume a < b. Write
as = aq + asm®,  Bo = —ai +ba®, ag,bs € (’)%.
By definition of Ag, 1, s, £3 we have
Ag = en®(ag(on + az)(ar + B3) 4+ bar® (a1 — a3) (a1 — B3) — asbem’ (a3 + B3)),

up = aom® + bor’ — g — B3, L2 =claz + B3), L3 = —c(aam® + bor”).

It follows that if a < b then v(Ag) =a, wu; = an® — a3 —Fs, v(l3) =a.
If a = b then

Ag = er®(az(a1 + a3)(aq + 53) + ba(ar — ag) (a1 — [3) — agbem® (a3 + B3)),

U1 :ﬂ“(a2+b2)—a3—[5’3, l :c(a3+[5’3), {3 = —Cﬂ'a(ag—i-bg).

Therefore
v(Ag) =a+r, r=v(az(ag + as)(ar + B3) + ba(a1 — az)(a1 — B3) — agbam®(a3 + 53)) ,

v(ls) =a+rs, r3=uv(ag+ be),
v(uy) = v(n%(ag + b2) + a3 + B3), v(la) =v(as + B3).

In particular, v(¢1) = v(u1) —a —r.

Case TN8A /B/C/D : Here we let a < bso that v(Ag) = a, v(f3) = aand v(¢{;) =
v(up) —a. v(uy) = 0 if v(¢y) = 0 or v(uy) > min{a,v(f2)} and by semistability
criterion we have v(¢) € 2Z. From P.4, P.5 and P.6 we have

v(A; — B1)? = —20(Ag) — 20(£1) = —2a — 2v(u1) 4 2a = —2v(uy),

’U(AQ — Bg)z = —2U(€2), ’U(Ag — 33)2 =a+b-— 21)(£3) =a+b—2a=0b— a,

and P.7, P.8 and P.9 give
'U((AQ — Ag)(AQ — Bg)(BQ — Ag)(BQ — B3)) = QU(A(;) — 21)(52) — 22)@3)

= 2a — 2v(l3) — 2a = —2v({a),
U((Ag—Al)(Ag—Bl)(Bg—Al)(Bg—B1)) = —21)(51)—21)(53) = —QU(U1)+2Q—2(1 = —2U(U1),

’U((Al*AQ)(Al*BQ)(Bl*AQ)(Bl*BQ)) = *20([1)*21}(€2) = 720(u1)+2a721}(€2).
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If v(¢3) = 0 then v(u;) = 0 and we have, without loss of generality, let v(A; — A2) =

v(B1 — Bs) = a and v(As — Bs) = %5 so that the cluster picture of C is that of

Table for TN8A/B/C/D. Otherwise,
if v(ly) = ng > 0 with ng > a, then v(u;) = a and the cluster picture for C

(==t

If v(¢3) = ny > 0 with ny < a, then v(u;) = v(¢2) and the cluster picture for

Cis [M @TLM‘”J

If v(¢3) = ng > 0 with ng = a, then if v(uy) = v(¢2) = a, the cluster picture

o 8Dz o],

for C is

E=2. ),

—a+n

1S

—ng.

, and if v(u1) > v(f2) = a, the cluster picture for

Cis

All are in the equivalence class of [

0 as required.
Frobenius action. By Proposition [3.4.30] the reduction at the node at «q is split if
and only if T,,, = 2ca; (a1 —B2) (a1 —a3)(a1—F3) =0 1 and the reduction at the node

at —ay is split if and only if T_,, = —2cai(—a1 — a2)(—a1 — a3)(—a1 — f3) =0 1.
It follows that C'is of type Iy, 5y, Iog 4y Tog 2 I5q25 i TN8A/B/C/D respectively.

Now computing invariants, one finds that (A; — B1)? =0 (a3 + 83)* T, T-a, -
Here (a3 + £3)? € K*2, it follows that (A} — B;y)? € K*? for TNSA/D and (A; —
B1)? ¢ K*? for TN8B/C. Also, using Proposition one finds that C is of
type Ut (U~ respectively) if £ € K*? (£ ¢ K*2 respectively). Computing ¢ yields
¢ =0 c(ag + B3)(a1 + a3) = T_q,. Therefore ¢ € K*2 for TNSA/B and ¢ ¢ K*? for

TNSC/D. This yields that C is of type Uy, 5, ,_, for TNSA, U\, , . for TN8B,
Usu2ab—a for TNSC, Usy2a.b—a for TNSD.

Tamagawa numbers and deficiency:

Ay is clear for computations of Tamagawa numbers and deficiency given in

Table except for TN8D. Here D = gcd(2a,b — a) with 2a € 2Z. Hence D
b — a mod 2. It follows that if b — a is odd, then % is even so that ¢, = 2,

Otherwise, % is even and D is even, hence ¢, = 4. Therefore A\, = (—1)

Case TN8E/F/G/H/I : Here a = b but we let v(Ag) = 2a. Recall that if a = b

b—a

Ag = cen(az(ar + az) (o + B3) + ba(on — a3) (a1 — f3) — azbam® (a3 + B3)),

up =% ag +b2) —ag — 3, Lo =claz+ P3), {f3=—cn(az+ ba).
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Therefore
v(Ag) = a+r, r=v(az(a1 + a3)(ar + B3) + ba(a1 — a3) (a1 — f3) — agbam® (s + 53)) ,

1)(53) =a-+mn3, Tr3= ’U(ag + b2),
v(u1) = v(r%(ag + b)) + az + B3), v(le) = v(az + B3).

In particular, we set 7 = 0 so that v({;) = v(u1) —a and v(u;) = 0 if v(¢2) = 0,
otherwise if v(f3) = ngy > 0, then v(u1) > min{ng,a}. By semistability criterion
3.4.29] we have v(¢) € 2Z. From P.4, P.5 and P.6 we have

v(A; — B1)? = —20(Ag) — 20(£1) = —2a — 2v(u1) 4 2a + 2r = —2v(uy),

’U(AQ — 32)2 = —21)(62), U(Ag — Bg)2 =2a — 2a — 277,3 = —2713,

and P.7, P.8 and P.9 give
U((Az—A3)(AQ—Bg)(BQ—Ag)(BQ—Bg)) = 27)(AG)—2'U(€2)—2'U(£3) = —211(62)—2713,

’U((Ag — Al)(Ag - Bl)(B3 - Al)(Bg — Bl>) = —21)(@1) — 21)(@3) = —2?)(711) — 277,3,
U((Al—Ag)(Al—Bg)(Bl—Ag)(Bl—BQ)) = —21}(51)—20(62) = —2@(u1)+2a—2v(€2).

If ng = v(f2) = v(u1) = 0 then we have, without loss of generality, let v(A; —
Ay) = v(By — By) = a so that the cluster picture of C is that of Table for
TN8E/F/G/H/I. Otherwise, assume that n3 = 0, then

if v(f3) = ng > 0 with ng > a, then v(u;) = a and the cluster picture for C

{yww J
2)—ns.

is —atn

If v(¢3) = ny > 0 with ny < a, then v(u;) = v(¢2) and the cluster picture for

o uE2eE)
18 "2

2
—ng.

If v(¢3) = ng > 0 with ng = a, then if v(uy) = v(¢2) = a, the cluster picture

(OSSR

for C' is e, and if v(u1) > v(fs) = a, the cluster picture for C is
=
a —a+ng —ngy.

Finally, if ng > 0 then since v(Ag) = a we have v(u1) = v(f2) = 0 and the

(oY
n3

cluster picture of C is —ng.
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. . QP 00 W \i} .
All are in the equivalence class of [“ “ o as required.

Frobenius action. By Proposition the reduction at the node at a; is split if
and only if T,,, = 2ca; (a1 —f2)(a1—as) (a1 —fF3) = 1 and the reduction at the node

at —aq is split if and only if T, = —2ca;(—a1 — az)(—a1 — a3)(—a; — B3) =0 1.
It follows that C is of type I5,3,, I, 5., 15,5, in TNSE/F/G respectively.

Now computing invariants, one finds that (A; — B1)? =g Tu, T a,. It follows
that (A; — By)? € K*2 for TNSF and (A4 — By)? ¢ K*? for TNSE/G. Similarly for
C, using Proposition at the nodes A; and B, one finds that the reduction
at the node at A; is split if and only if T4, = (A1 — B1)(A1 — Ba)(A1 — A3) (A1 —
Bs) =g 1. Finally, the reduction at the node at Bj is split if and only if T, =
0(B1—A1)(B1—A2)(B1—A3)(B1—Bs) =g 1. However, computing T'4,, T, we have
that T4, Tp, =g 62 = J2. Therefore C is of type Iy, 5., by, Iog 2, in TNSE/F/G
respectively. We note that the same remark as in Remark can be done about
TNS8G. Finally, for TN8H/I, the proof follows directly from that of TN7H/I.

Case TN8J/K/L/M/N : Here a = b but we let v(Ag) = a + r > a. Recall that

Ag = Cﬂ'a(ag(al + ag)(a1 + ,53) + bQ(Oq — ag)(a1 — 53) — agbgﬂ'a(ag, + 53)),

Uy = 7Ta(a2 + bg) —ag— B3, o= C(Oég + ﬂg), l3 = —cwa(ag + bg).

In particular, v(¢;) = v(u1) —a —r, v(¢3) = a + r3, where v(as + b3) = r3. Note
that since v(Ag) > a we have as(a1 + a3)(aq + 83) = —be(a1 — a3)(a1 — B3). Now
if v(f2) > 0 or r3 > 0 this yields another congruence between roots, contradicting

the cluster picture of C'. Therefore r3 = v(f2) = v(u1) = 0.

From P.4, P.5 and P.6 we have
v(A; — B1)? = —20(Ag) — 20(fy) = —2a — 2r — 2v(uy) + 2a + 2r = 0,

v(Ay — By)? = —0, w(A3 — B3)? =2a —2a —2r3 =0,

and P.7, P.8 and P.9 give
’U((AQ — Ag)(AQ — Bg)(BQ — Ag)(BQ — Bd)) = 2U(Ag) — 2’1)(162) — 2’1)([3) = 2’/’,

v((As — A1)(As — B1)(Bs — A1)(Bs — By)) = —2v(¢1) — 2v(l3) = 2r,

’U((Al — A2)(A1 — BQ)(Bl — Ag)(Bl — Bg)) = *2’()(61) — 2’0((2) = 2r.

[Eow) Eo

]Jo as required.

Thus we have the following cluster picture
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The Frobenius action, Tamagawa numbers and deficiency follows from the previous

case, except for TN8K /N where deficiency is different but readily computable from
Table [3.1]

5.3.4 (' is of type Uy, 221

Proof of Tables [4.23]

Case U1A/B/C/D: By definition of the isogeny

~ ~

v(61) = 2a,v(63) = 2b,v(d3) = 2n, v(61) = 0,v(d2) = 0,v(d3) = 0,
By definition of Aq, ¢1,f2, 3 we have
Ag = —2canaz(az —a3), uy =2(ag —a3z), {2 =2ca3, {3=—2cas,

and ¢ =g c. Since G(z) is a Cy X D4 polynomial, we have a1 = 0 # ag # ag so that
v(Ag) =v(u1) = v(le) =v(l3) = 0. From P.4, P.5 and P.6 we have

v(A] — B1)? = —20(Ag) — 20(01) =0, w(Ay — By)? = —2u(fy) =0,

(A3 — B3)® = —2u(f3) = 0,

and P.7, P.8 and P.9 give
U((AQ — A3)(A2 — Bg)(BQ — Ag)(BQ — Bg)) = 2a + 2’1}(Ag) — 21}(62) — 21}(53) = 2a,

U((Ag — Al)(Ag — Bl)(Bg — Al)(Bg — Bl)) =2b— 2U(€1) — 2U(£3) == Qb,
’U((Al - AQ)(Al - Bg)(Bl - Ag)(Bl - BQ)) =2n — 21}(61) - 2U(£2) = 2n.
It follows that, without loss of generality, v(As — A3) = 2a, v(A; — B3) = 2b
and v(B; — A2) = 2n so that the cluster picture of C is that of Table for
UlA/B/C/D.

Frobenius action. Since G(z) is a Co X D4 polynomial, we have §; € K, therefore

either 99,03 € K or Frob swaps d2,03. In particular in that case, b = n € Z
(otherwise Ix swaps the two clusters in the cluster picture of C' which contradicts
the semistability criterion .

By Proposition C is of type U™ if and only if ¢ € K*2. Since ¢ =g c,
it follows that C is of type U' whenever C' is. Moreover, computing Ay, By, one
finds that (A; — B1)? = (ag — a3)?. It follows that C is of type U;;QMW Usa.ob.2n
U2—Z,2b~2b7 Usqopap for U1A/B/C/D respectively and that C is of type Uitz74b,4n’
Uja.aban UL74b~4b, Ug.ap-4p for ULA/B/C/D respectively.

Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and A,
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are clear from Table [3.I] except for UIB. Here N = 4ab + 4an + 4bn and D =
gcd(2a,2b,2n). We have the following :

if 2a,2b,2n are odd, then N is odd, D is odd and % is odd so that ¢, = 1 and
My = 2,

if 2a,2b,2n are even, then N is even, D is even and % is even so that ¢, = 4 and
my =1,

if one of 2a,2b,2n is odd, then N is even, D is odd and % is even so that ¢, = 2
and m, =1,

if two of 2a, 2b,2n are odd, then NN is odd, D is odd and % is odd so that ¢, = 1
and m, = 1. It then follows that A\, = —1 if and only if one or three of 2a, 2b,2n is

odd, which is the same as N is odd.

Proof of Tables [4.24]

Case U2A /B/C/D: By definition of the isogeny

’U(dl) - 07”(52) - 07U(53) = O,U((SAl) - n,U((§2) - b,’U((Sg) =a,
By definition of Aq, ¢1,f2, 3 we have
Ag =2aic(ar — Bo)(a1 + B2), w1 =2a1, fly=—c(ar — fa2),

and 03 = —c(ag + B2), ¢ = c. Since oy # 0, we have v(Ag) = v(u1) = v(l2) =
v(¢3) = 0. From P.4, P.5 and P.6 we have

U(Al — 31)2 =n— 2’0(Ag) — 21}(61) =n, ’U(AQ — 32)2 =b— 2@(52) = b,

v(Az — B3)? = 2a — 2v(l3) = a,

and P.7, P.8 and P.9 give
’U((AQ — A3)(A2 — B3)(B2 — A3)(B2 — Bg)) = —2U(Ag) — 2U(£2) — 2U(£3) = 0,

v((Az — A1)(Az — B1)(Bs — A1)(B3 — B1)) = —2v(l1) — 2u(l3) = 0,
U((Al — Ag)(Al — BQ)(Bl — AQ)(Bl — Bg)) = —2’[}(£1) — 2’[)(£2) =0.

It follows that v(A; — By) = 2, v(As — By) = & and v(As — Bs) = & so that the
cluster picture of C' is that of Table for U2A/B/C/D.

Frobenius action. Since G(x) is a Cy x D4 polynomial, we have either §; € K*?
and 62,03 € K or 6; ¢ K*? and 83,63 ¢ K. In particular in both case, a,b,n € Z

(otherwise Ix swaps the two clusters in the cluster picture of C' which contradicts

the semistability criterion (3.4.29)).
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By Proposition C is of type U™ if and only if ¢ € K*2. It follows
that C is of type U;;}Qb’%, Usa 2,20 U;;Qb?b, Usq 2025 for U2A/B/C/D respectively.
Moreover, since d = (a1 — 32)% and 63 = (o + (2)? and £ =g ¢, it follows that
C is of type Ut whenever C is so that C is of type U:b,m U;b,m U;,_b”b’ U;b~b for
U2A/B/C/D respectively.

Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and A, are
clear from Table except for U2B. Here N = ab+ an + bn and D = ged(a, b, n).
We have the following :

if a,b,n are odd, then N is odd, D is odd and % is odd so that ¢, = 1 and m, = 2,

if a,b,n are even, then N is even, D is even and % is even so that ¢, = 4 and

my =1,
if one of a,b,n is odd, then NN is even, D is odd and % is even so that ¢, = 2 and
my =1,
if two of a,b,n are odd, then N is odd, D is odd and % is odd so that ¢, = 1 and
my, = 1. It then follows that A\, = —1 if and only if one or three of a,b,n is odd,

which is the same as N is odd.

Proof of Tables and
By definition of the isogeny

~

v(81) = 2n,v(82) = 0,v(83) = 0,v(81) = a + b, v(da) = 0,v(d3) = 0,

where 2a, 2b,2n € Z.
Write

a1 = a7, az=ag+azn®, B3 = P2+ bnl,

for some aq,as,bs € (’)%. By definition of Ag, 1, £2, {3 we have
Ag = cr” <GS(52 —a1)(B2 + 1) + b3m" Yz — a1)(ag + 1) + azbam’(ao + 52)) )

uy = 7 (az + b3, ly = c(n%(az + b3m’ ") + ag + B2), L3 = —c(ag + Ba).

Case U3A/B: Here a < b hence

Ag = cn® (a3(B2 — a1)(B2 + 1)) + o(7?),

up =%z +o(n”), Lo =g+ P2+ o(n?), l3=—clag+ f2).
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Therefore v(u1) = v(Ag) = a so that v(¢1) = 0 and v({2) = v({3).
From P.4, P.5 and P.6 we have

(A —B1)?> =a+b—2v(Ag) —2v(t1) =b—a, v(Ay — Ba)* = —2v(ly),

U(Ag — 33)2 = *21}(53),

and P.7, P.8 and P.9 give
’U((AQ — Ag)(AQ — Bg)(BQ — Ag)(BQ — Bg)) =2n+ 2U(Ag) — 2U(€2) — 2U(£3)

=2n+ 2a — 2v(l3) — 2v(43),
v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = —2v({1) — 2v0(l3) = —2v({3),
’U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl - BQ)) = —QU(EI) — 2U(£2) = —21}(62).

Assume that v(fs) = v(¢3) = 0. It follows that v(4; — By) = 5% and without loss
of generality v(As — A3) = a and v(B2 — B3) = a + 2n so that the cluster picture of
C is that of Table for U3A/B. On the other hand,

if v(¢3) = ns > a then v(fy) = a and the cluster picture for C is

—a+n

If v(f3) = n3 < a and v(f2) = nz and the cluster picture for C' is

[[bga a+2na—n ]

3
—n3.

If v(f3) = a and v(fy) = ny > ng then the cluster picture for C' is

[[TJ*} ) }
—n3tne ) ..

[a a+2n F)_TGJO’

Frobenius action. First note that since G(x) is a Co x D4 polynomial, if dy, 03 ¢ K
then 2a is odd if and only if 2b is odd. By Proposition [3.4.30, C is of type U™ if

and only if ¢ € K*2. It follows that C is of type UZL 9pons Usa.opon for USA/B

respectively. Moreover, since £ = c(az + 2)?3 + o(), it follows from the cluster

picture of C that C is of type UT whenever C is so that C is of type UZL Yatdn.b—as

Usa 2a+4n.b—a for USA/B respectively.

Tamagawa numbers and deficiency : Tamagawa numbers, deficiency and A,
are clear from Table [3.I] except for U4B. Here N = 4ab + 4an + 4bn and D =

gcd(2a,2b,2n), D = ged(2a,b — a). We have either i) 2a, 2b, 2n are odd; or ii) 2a, 2b

are odd and 2n is even; or iii) 2a,2b are even and 2n is odd; or iv) 2a,2b,2n are

All are in the equivalence class of as required.
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even.

i) N is odd, D is odd and % is odd so that ¢, = 1 and m, = 1; D is odd so that
¢y, = 1 and m, = 2 if and only if b — a is odd.

ii) N is odd, D is odd and % is odd so that ¢, = 1 and m, = 2; D is odd so that
¢y, = 1 and m, = 2 if and only if b — a is odd.

iii) N is even, D is odd and % is even so that ¢, = 2 and m, = 1; D is even if and
only if b — a is even so that ¢, = 4 if and only if b — a is even, and 1, = 1.

iv) N is even, D is even and % is even so that ¢, = 4 and m, = 1; D is even if and
only if b — a is even so that ¢, = 4 if and only if b — a is even, and 1, = 1.

It follows that A, = 1 if and only if 2n = b—a mod 2, equivalently, A, = (—1)?n+b+e
as required.

Case U3C/D/E/F: Here a = b but we let v(Ag) = a hence

Ag = cn® (ag(ﬂg — 041)(52 + Ozl) + bg(ozg — Ozl)(ag + a1) + a3b37rb(oz2 + 62)) s

up = m(ag +b3), lo=c(r(az+b3))+az+ f2), {3=—clas+ Pa).

Write v(as + b3) = n1 so that v(¢1) = n; and note that since v(Ag) = a, we have
either n; = 0 and v(¢3) > v(¢3), or ny > 0 and v(¢2) = v(¢3) = 0.
From P.4, P.5 and P.6 we have

’U(Al — 31)2 = 2a — 2U(Ag) — 22)(51) = —2711, U(AQ — 32)2 = —22)(52),

U(Ag — Bg)2 = —21)(63),

and P.7, P.8 and P.9 give
’U((AQ — A3)(AQ — B3)(BQ — Ag)(BQ — Bg)) =2n+ QU(Ag) — 21)(52) — 21)(£3)

=2n+ 2a — 2v(ly) — 2v(l3),
U((A3 — Al)(Ag — Bl)(Bg — Al)(Bg — Bl)) = —2U(€1) — 211(63) = —2n1 — 21)(53),
U((Al — AQ)(Al — BQ)(Bl - AQ)(Bl — BQ)) = —21)(61) — 2U(€2) = —2’/11 - 21}(52)

Assume that ny = v(fe) = v(f3) = 0. It follows that v(A; — B1) = 0 and without
loss of generality v(As — A3) = a and v(By — B3) = a+2n so that the cluster picture
of C' is that of Table for U3C/D/E/F. On the other hand, assume that n; =0
then

if v(¢3) = ns > a then v(fy) = a and the cluster picture for C is

=

—a+ng —ng
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If v(f3) = n3 < a and v(f2) = ng and the cluster picture for C' is

CeEelen)

3
—n3.

If v(f3) = a and v(fy) = ny > ng then the cluster picture for C' is

{[0 °a+2n Q}' }
ns3 5 .

—ng+n

[a a+2n ° 0}0

All are in the equivalence class of , as required.

Frobenius action.
For U3C/D, by Proposition [3.4.30}, C'is of type U™ if and only if c € K*2. It
. + — + —
follows that C' is of type Uy, 9y 9,5 Usgopons Usaraa.2ns U,, Sa.2m for U3C/D/E/F
respectively. Also, for U3C/D, given the cluster picture of C' we have either,

a9, B, 3,83 € K or I permutes ag and a3 as well as So and [3. In particular
Ik (82) = 63 and by Hensel’s lemma, 2, 63, a2, 35 € K*2. Moreover, (As — By)? €
K*? and by Proposition we find that the reduction of C at the node A is split
if and only if T, = £(As — A1) (As — By)(As — By)? € K*2. Similarly, the reduction
of C' at the node By is split if and only if T, = £(By — A;)(Ba — B1)(By — A3)? €
K*2. Now, computing Ta,,Tp,, one finds that T4, € K*? & cdy € K*? and
Tp, € K*? & ¢ € K*2. Therefore C is of type I;_a:_ga—i-4n and Iy, 9,4, for USC/D
respectively. Finally, for USE/F, we have that 3,53 ¢ K*? so that C is of type
IQ_a’;“a 4p, and I;;’Ea 4, Tespectively.

Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and A, are
clear from Table except for U3D/H. Here N = 4a® + 8an so that N is odd if
and only if 2a is odd, and D = ged(2a,2n). We have either i) 2a,2n are odd; or ii)
2a is odd and 2n is even; or iii) 2a is even and 2n is odd; or iv) 2a,2n are even.

i) N is odd, D is odd and % is odd so that ¢, =1 and m, = 2; é, = 1 and m, = 1.
ii) N is odd, D is odd and % is odd so that ¢, =1 and m, = 1; é, = 1 and m, = 1.

iii) N is even, D is odd and % is even so that ¢, = 2 and m, = 1; ¢, = 4 and

my, = 1.

iv) N is even, D is even and % is even so that ¢, = 4 and m, = 1; ¢, = 4 and
My, = 1.

It follows that A\, = 1 if and only if 2n = 0 mod 2, equivalently, A, = (—=1)?" as
required.

Case U3G/H/I/J: Here a = b and we let v(Ag) = a + r > a hence

Ag = cr” (a3(52 — 1) (B2 + 1) + bs(ag — a1)(ag + ay) + agbam’(ag + 52)) )

up = 7%az +b3), Llo=c(n(az+b3)+ o+ f2), L3=—clag+ Ba).
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Write v(as + b3) = np so that v(¢;) = n; —r and v(f2) > v(¢3). Note that since
v(Ag) > a we have ag(B2 — a1) (B2 + 1) = —bs(ag — aq)(as +a1). Now if v(3) > 0
or v(u1) > a this yields another congruence between roots, contradicting the cluster
picture of C'. Therefore v({3) = v(f2) = n1 = 0.

From P.4, P.5 and P.6 we have
v(A; — B1)? = 2a — 20(Ag) — 2v(f1) =0, v(As — By)* =0,

v(Az — B3)? = -0,
and P.7, P.8 and P.9 give
’U((AQ*A;})(AQ*Bg)(BQ*Ag)(BQ*Bg)) = 27’L+2U(Ag)*2’0(f2)*27}(£3) = 2n+2a+2r,
o((As — A1)(As — B)(Bs — Ay)(Bs — By)) = —20(61) — 20(Ls) = 2r,

’U((Al — Ag)(Al — Bg)(Bl — AQ)(Bl — BQ)) = —2’()(61) — 2’0(62) = 2r.

Thus the cluster picture of C' is that of Table for U3G/H/1/J.
Frobenius action. Follows directly from cases U3C/D/E/F.

Proof of Tables and

By definition of the isogeny
U<61) = 07U(62) = 07?}(53) = 2”7 U((SAI) = 071}(52) = 07 /U((SA?)) =a+ b7

where a,b,2n € Z (since G(x) is a Co x Dy polynomial 0; € K, and if a,b ¢ Z, Ik
permutes both clusters, a contradiction to the semistability criterion |3.4.29)).
Write

b
ay = aj +agn?, Po=—ai+be’, [z =g+ b3,

for some as, bo, b3 € O%. By definition of Ag, ¢1, 2, 3 we have
Ag = en®ag(ay + a3)? + agbsm (a1 + a3) + bam® "%y — az)?

_b2b37rb7a+n (

o] —az) — 2asbocsm? — a2b2b37'['b+n),

up = 7% (ag + bgﬂ'b_a) —2a3 —bs", by = c(2a3+bs7™)), {l3 = —cn®(az+ bgﬂ'b_a).

Case U4A /B: Here a < b hence

Ag = en®(ag(aq + a3)2) + o(m),
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up = —2a3 — by + o(n?), {l2 = c(2az + bsm")), {3 = —cn®(az) + o(7?).
Therefore v(¢3) = v(Ag) = a and v(u;) > min{v(l2),a}.
From P.4, P.5 and P.6 we have

v(A1—B1)? = —20(Ag)—2v(f1) = —2a—2v(u1)+2a = —2v(u1), v(As—Bs)? = —2v(fs),

v(A3 — B3)? =a+b—2v(l3) =b—a,

and P.7, P.8 and P.9 give
U((A2 — A3)(A2 — B3)(B2 — A3)(BQ — Bg)) = 2U(Ag) — 2’[)((2) — 2’0((3) = —2U(€2),

v((As — A1)(A3 — B1)(Bs — A1)(Bs — B1)) = —2v({1) — 2v(l3) = —2v(u1),
’U((Al—Ag)(Al—BQ)(Bl—AQ)(Bl—BQ)) = 2n—2v(€1)—211(£2) = 2%4—2&—2’0(’&1)—21}(62).

Assume that v(u1) = v(fs) = 0. It follows that v(A3 — Bs) = %5% and without loss
of generality v(A; — A2) = a and v(B; — B2) = a+ 2n so that the cluster picture of
C is that of Table for U4A/B. On the other hand,

if v(f3) = ng > a then v(u1) = a and the cluster picture for C' is

—a+n

if v(f3) = ny < a and v(u;) = ny and the cluster picture for C is

[[@bga a+2n]na—n2}

if v(f2) = a and v(u1) = ny > ny then the cluster picture for C is

—ng+n

—ng,

[o (@9 \i\ib—Tal’

Frobenius action. First note that since G(x) is a Cy x D4 polynomial, a,b € Z for
otherwise I would permute o and as a contradiction. By Proposition C
is of type U™ if and only if ¢ € K*2. It follows that C is of type UQ—Z,2b,2n’ Usa2b.9n
for U4A /B respectively. Moreover, since £ =g cad(a + a3)? + o(r), it follows from

All are in the equivalence class of as required.

the cluster picture of C' that C' is of type U" whenever C is so that C is of type
U2J;,2a+4n,b—a7 Usa2a+4n.p—a fOT U4A /B respectively.

Tamagawa numbers and deficiency : Tamagawa numbers, deficiency and A,
are clear from Table [3.1] except for U4B. Here 2a,2b € 2Z, N = 4ab + 4an + 4bn
and D = ged(2a,2b,2n). It follows that m, = m, = 1 and that ¢, = 2 if 2n is odd,

¢y, = 4 otherwise. Similarly, ¢, = 2 if b — a is odd, ¢é, = 4 otherwise. It follows that
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2n+b+a

Ay = 1 if and only if 2n = b — a mod 2, equivalently, A, = (—1) as required.

Case U4C/D/E/F: Here a = b but we let v(Ag) = a hence

Ag = en(az(ar + a3)® + azbsm™ (o1 + a3) + ba(a1 — as)?

—bgbg?rn<0z1 — Ckg) — 20,2()20&37('1) — agbgbgﬁa+n),

Uy = 7Ta(a2 + bz) — 23 — b, o = c(2a3 + bgﬂn)), l3 = —cw“(ag + bz).

Write v(az 4+ b2) = n3 so that v(¢3) = a + ng and note that since v(Ag) = a, we
have either n3 = 0 and v(u1) > v(¢3), or n3 > 0 and v(u1) = v(¢2) = 0.
From P.4, P.5 and P.6 we have

U(A1 — 31)2 = —2U(Ag) — 2’1)(51) = —22)(711), 'U(AQ — 32)2 = —21)(62),

U(A3 — Bg)2 =a+b— 2?)(53) = —ns,

and P.7, P.8 and P.9 give
’U((AQ-A;J,)(AQ-Bg)(BQ—A3)(Bg—B3)) = QU(AG)—2U<£2)—2U(£3) = —21)(62)—2713,

’U((Ag — Al)(Ag — Bl)(Bg - Al)(Bg, — Bl>) = —21}(€1> — 21)(£3> = —2?)(’11,1) — 2713,
'U((Al—AQ)(Al—BQ)(Bl—AQ)(Bl—BQ)) = —21)(51)—21)(52) = 2714—2(1—21)(’11,1)—21)(52).

Assume that v(u1) = v(f2) = v(¢3) = 0. It follows that v(As — B3) = 0 and without
loss of generality v(A; — A2) = a and v(B1 — B2) = a+2n so that the cluster picture
of C' is that of Table for U4C/D/E/F. On the other hand, assume that nz =0
then

if v(f3) = ng > a then v(uy) = a and the cluster picture for C is

.
[w wo o) 0]0 J
2) g,

R —a+n

if v(2) = no < a and v(u1) = ng and the cluster picture for Cis

,
.

if v(f2) = a and v(u1) = ny > a then the cluster picture for C' is

;
oot

U —a+ny

—ng,

[a a+2n ol i}o

All are in the equivalence class of , as required.

Frobenius action.
By Proposition [3.4.30, C' is of type U™ if and only if ¢ € K*2. It follows
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that C'is of type Uy, 5, 5,00 Ua 26,20 Usa=2a.2n7 Usgsg g, f0F U4C/D/E/F respectively.
Also, for U4C/D, given the cluster picture of C' we have ajaq, 52 € K and 3 = as,
hence 41, 9, a% € K*2. Moreover, by Proposition we find that the reduction
of C at the node A, is split if and only if Ty, = £(A; — B1)(A; — By) (A1 — A3)(A; —
B3) € K*2. Similarly, the reduction of C at the node B is split if and only if
Tg, = {(B1 — A1)(By — As)(B1 — A3)(B; — B3) € K*2. Now, computing T4,, T5,,
one finds that Ta, € K*? & caldy € K*? and Tp, € K*? < ¢ € K*2. Therefore
C is of type I;a’;a van and Ip; o, .y, for UAC/D respectively. Finally, for U4E/F,
we have that 61,82 ¢ K*? so that C is of type 12717,—5a+4n and IZJFQ’EH% respectively.
Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and A, are
clear from Table since 2a € 27Z.

Case U4G/H/1/J: Here a = b and we let v(Ag) = a + r > a hence

Ag = en®(ag(oq + a3)? + agbsm™ (a1 4 a3) 4 ba(ag — az)?

—bgb37‘(n(041 — 063) — 2a25204371'b — a252b37'(a+n),
Uy = 7ra(a2 + bg) —2ai3 — by, fy = c(2a3 + bgﬂn)), l3 = —Cﬁa(ag + bg).

Write v(ag + b2) = 73 so that v(f3) = a + r3. Note that since v(Ag) > a we have
az(aq +asz)(ag + 83) = —be(a; —ag)(ag — f3). Now if v(f2) > 0 or r3 > 0 this yields
another congruence between roots, contradicting the cluster picture of C'. Therefore
r3 =v(l2) = v(ug) = 0.

From P.4, P.5 and P.6 we have
v(A1 — B1)? = 20(Ag) —20(61) =0, v(Ay — B2)* =0,

v(Az — B3)* =0,

and P.7, P.8 and P.9 give
v((Ag — A3)(Agy — B3)(By — As3)(Ba — B3)) = 2n + 2v(Ag) — 2v({y) — 2v(l3) = 2r,
v((As — A1)(As — B1)(Bs — A1) (B3 — By)) = —2v({1) — 2v(l3) = 2r,

’U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl — Bg)) = —2U(£1) — 2’[)(52) =2n + 2a + 2r.

Thus the cluster picture of C' is that of Table for U4G/H/1/J.
Frobenius action. Follows directly from cases U4C/D/E/F.

Tamagawa numbers and deficiency: Follows directly from cases U4C/D/E/F.
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5.3.5 Cisoftypelx1

Proof of Tables [4.31}, [4.32}, |4.33|

Since C' is if type 1 x 1 or 1x1, it follows from the semistability criterion [3.4.29| that
v(c) =a = b mod 2.
Case TC1. Since 1 = —aq, it follows that a1 = 51 = a2 = 0 # (2 = a3 =

B3 mod w. Reducing invariants we find

{=2cmod m, /= mod w, {9 =2cfy mod w, Ff3= —cfB mod T,

cﬂ%

Ag = cﬁg mod T,

hence v(Ag) = v(c) = v(¢). Now
v(61) = 2a + 2¢,v(82) = 0,v(d3) = 2b,v(61) = 2b — 2¢, v(02) = 2¢,v(d3) = 2a + 2¢,
so that P.4, P.5 and P.6 yield
v(A; — B1)? =2b, v(As— By)? =0, wv(As— B3)? = 2a,
and P.7, P.8 and P.9 give
v((Ag — A3)(As — Bs)(By — As)(By — Bs)) = 2a,

v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) =0,
’U((Al — Ag)(Al — BQ)(Bl — AQ)(Bl — BQ)) = 2b,

from which we obtain the cluster picture for C.

Frobenius action. If Frob swaps ag and 2 then by the cluster configuration, it

must swap d; and d3. This is a contradiction since G(z) is a Cy x D4 polynomial.
Similarly for L(x) so that the action of Frob on the cluster picture follows.
Cases TC2A/B. Since 81 = —ay, it follows that a; # 0 mod 7. Reducing invari-

ants we find

=2cmod 7, {1 =_—5modn, [l2=-2ca;modmn, [3=—2ca; modm,
2cay
_ 3 42 2 o 1
Ag =8caj mod w, 01 =4c’aj mod 7, 01 = 5 mod ,
cay

and the valuations and Frobenius action of clusters follow.

Since

v(61) = 2v(c), wv(d2) =2a, wv(d3)=2b,
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v(81) = —2v(c), v(d2) = 20+ 2v(c), v(d3) = 2a + 2v(c),

P.4, P.5 and P.6 yield
v(A; — B1)> =0, v(Ay— By)?>=2b, wv(A3— B3)? = 2a,
and P.7, P.8 and P.9 give
v((Az — A3)(A2 — Bs)(B2 — A3) (B2 — B3)) =0,

'U((Ag — Al)(Ag — Bl)(B3 — Al)(B3 — Bl)) = 2&,
’U((Al — AQ)(Al — BQ)(Bl — AQ)(Bl — Bg)) = 2b,

from which we obtain the cluster picture for C.

Cases TC3. Since 1 = —ay, it follows that oy Z 0 mod 7. Write
oy = a1 +aom®, a3 =ai +a37®, Po=—a1+ bzﬂb, B3 = —aq + bgﬂ'b,

where a9, ag, ba, b3 € (’)lx—(. It follows that d; = 4c?a? mod 7, Jy = 3 = 4a? mod 7,50
that v(d1) = 2v(c), wv(d2) =v(d3) =0 and

v((fl) =a+b-2v(Ag), 0(52) =2v(c)+a—+b, v(ci;) =2v(c)+a—+b,
and

Uy = TI'a(CLQ — a3) + Wb(bg — b3), ly = c(a37r“ + b37Tb), b3 = —C(agﬂ'a + bgﬂ'b),

Ag = e Tt (2041(0,2173 — a3b2) + a2a37ra(bg - bQ) + bgbgﬂb(ag — CLQ)) ,

Case TC3A. Here a < b and v(Ag) = v(c) + a + b. Therefore
v(l) =—=b—wv(c), v(la)=a+wv(c), v(l3)=a+v(c),
P.4, P.5 and P.6 yield
v(A; — B1)? =a+b—20(Ag) — 20(f1) =b—a,

v(Ay—B3)? = a+b+2v(c)—2v(ly) = b—a, v(Az—B3)? = a+b+2v(c)—2v(f3) = b—a,

and P.7, P.8 and P.9 give
’U((AQ—Ag)(AQ—Bg)(BQ—Ag)(BQ—Bg)) = QU(AG‘)—F2U(C)—2’U(€2)—2U(£3) = 2b—2a,

U((Ag — Al)(Ag — Bl)(Bg — Al)(Bg — Bl)) = —2’U(€1) — 2U(€3) =2b— 2&,
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V(A1 — A3) (A1 — Bo)(By — A2)(By — Ba)) = —2v(t1) — 20(f2) = 2b — 2a.

Hence the cluster picture for C is that of the isogeny TC3A.
Case TC3B/C. Here a < b and v(Ag) = v(c) + a+ b+ r, with r > 0. Therefore

v(l) =—=b—v(c)—r, v(le)=a+uv(c), v(ls)=a-+v(c),
P.4, P.5 and P.6 yield
v(A; — B1)?> =a+b—2v(Ag) —2v(t1) =b—a,
v(Ay—Bo)? = a+b+2v(c)—2v(ly) = b—a, v(Az—Bs3)? = a+b+2v(c)—2v(l3) = b—a,
and P.7, P.8 and P.9 give
v((A2—A3)(A2—Bs) (B2 —A3)(B2—Bs)) = 20(Ag)+2v(c) —2v(l2) —2v(l3) = 2b—2a+2r,
v((As — A1)(As — B1)(Bs — A1)(Bs — B1)) = —2v(l1) — 2v({3) = 2r + 2b — 2a,

U((Al - Az)(Al - BQ)(Bl - AQ)(Bl - Bg)) == —2U(€1) - 2’[1(82) =2r -+ 2b — 2a.

Hence the cluster picture for C is that of the isogeny TC3B /C.

Frobenius action. Given the cluster picture for C, it follows that Frob permutes
both clusters if and only if (A; — By)? ¢ K*2.

Case TC3D/E/F/G/H/I. Here a = b so that

up =7"(ag —ag + by —b3), Ly =cn(az+0b3), fl3=—cn(ag+ b2),

Ag = em?e (2041(0,2173 — CL3b2) + 7Ta<a2a3(bg — bg) + bzbg(ag, — CLQ)) .

Let ny = v(ag — ag + by — b3),n2 = v(az + b3),n3 = v(az + ba) so that v(u;) =
a+ni,v(l2) =a+ng,v(l3) =a+ns.
Case TC3D/E. Here we set v(Ag) = v(c) 4+ 2a. Therefore

v(l1) =n1 —a—wv(c), vla) =n2+a+wv(c), v(ls)=ns+a+v(c),

and since v(Ag) = v(c) = 2a, it follows that if n; > 0 then n;y1 = njpo = 0 for
i =1,2,3 and where addition of indices is performed modulo 3.
P.4, P.5 and P.6 yield

U(Al — 31)2 = 2a — 2U(Ag) — 21}(51) = —2711,

v(As—Bo)? = 2a+2v(c)—2v(ly) = —2ny, v(A3—B3)? = 2a+2v(c)—2v({3) = —2ng,
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and P.7, P.8 and P.9 give
'U((AQ—A3)(AQ—Bg)(BQ—AQ])(BQ—B?))) = QU(AG)+2’U(C)—21)(52)—21)@3) = —277,2—277,3,

'U((Ag - Al)(Ag — Bl)(B3 — Al)(Bg — Bl)) = —21)(@1) — 21)(63) = —27L1 — 2n3,
U((A1 — AQ)(Al — Bz)(Bl — AQ)(Bl — BQ)) = —2’1)@1) — 2’1)(52) = —2711 — 277,2.

If n1 = no = ng = 0 then the cluster picture for C is that of the isogenies TC3D/E.

Otherwise, without loss of generality, let n; > 0. As noted above this implies

. 5. |90 OO WwW J
ng = n3 = 0 so that the cluster picture for C is [ a1
the equivalence class of (& @ ¢ < W as required.

Case TC3F/G/H/I. Here a = b and v(Ag) = v(c) +a+ b+ r, with r > 0.
Therefore

—n1, Wwhich is in

v(lh) =n1—a—v(c)—r, v(ls) =n2+a+v(c), v(ls)=n3+a+v(c),

P.4, P.5 and P.6 yield
v(A; — B1)? = 2a — 2u(Ag) — 2v(f) = —2n.,

v(A2—DB3)? = 2a+2v(c)—2v(ly) = —2n9, v(A3—Bs3)? = 2a+2v(c)—2v(f3) = —2na3,
and P.7, P.8 and P.9 give
v((A—A3)(As—B3)(Ba—A3)(B2a—Bs3)) = 2v(Ag)+2v(c)—2v(ly)—2v({l3) = 2r—2ny—2na,
v((As — A1)(As — B1)(B3s — A1)(Bs — By)) = —2v({1) — 2v(l3) = 2r — 2ny — 2ng,
v((A] — A2)(A1 — B2)(B1 — A2)(B1 — Ba)) = —2v(l1) — 2v(l2) = 2r — 2ng — 2na.

If ny = ny = ng = 0 then the cluster picture for C is that of the isogenies
TC3F/G/H/IL
Otherwise, if n; > 0 then n;y1 = n;4o for ¢ = 1,2,3 and where addition on indices

is performed modulo 3. Assume first that n;11 = n;4o = 0 and without loss of

 [ooaGom] |
generality, let ¢ = 1. Then the cluster picture of C'is [ =
ofosGowm] |

"2t ) 5. In both cases,
Covesw)

—n1. Flnally

if ng = ng > 0 the cluster picture of C is

0 as re-

the cluster pictures are in the same equivalence class of

quired.
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Frobenius action. Given the cluster pictures for C' and C, it follows that Frob
permutes clusters if and only if 6; ¢ K*2, (A1 — B1)? ¢ K*? respectively.
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Chapter 6

Proof of local discrepancy

conjecture

6.1 Introduction

In this chapter we compute the term of local discrepancy FE, associated to a Cy X Dy
curve and prove the last columns of Tables [4.1] to Recall from Definition [4.3.9]
that, in addition to the leading terms of G(z) and L(x), ¢ and ¢ = (1l9l3, we
associated the following Cy x Dy polynomial invariants to G(x)

Iy = 2% (52 +53) ,

I = (a2 + B2)(as + B3),

Lo = 2(AZE2 — 65 — 03) = (a2 — a3)(B2 — B3) + (B2 — a3) (a2 — B3),

I3 = 40204%,

Lo = 5 (62 — 03),

In = 16 (azfB2a383 + of (af + azf + a3fs + (a2 + B2)(Bs + as))),

Iz = 4207 — a3 — (3)(20F — a3 — f3),

Lis = 6 (o} + B3 — 202) + 03 (a3 + B3 — 2a3) ,

Iyy = 6203 = (ap — B2)* (3 — B3)?,

Iis = AZ01 = 4(Bs — B2) (a3 — Ba)(ag — B3)(aa — az3),

Igo = 403 (03 + B3 — 2a7) + 469 (03 + B3 — 2a7),

Iso = %45253,

and for each place v of K, we defined the following Hilbert symbols at v
Hy = (=1, Isoln lu3le0), Hao = (I20, —lsolaa), Hsz = (a0, I60143),

Hy = (¢, I231ualgo), Hs = (I23,141), He = (lus, —lI22121),

Hy = (144, 2090142143), Hg = (Igo, —21u1la2l60), Ho = (ls2, —I60l43),
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and formed the following product

Throughout the entire chapter, we assume that none of the I; ;, ¢ and ¢ are zero.
In Sections 4.5 we claimed that F, correctly matches the local discrepancy
between the local factors A, and the local root numbers w,. In this chapter, we
explicitly compute FE, for each case and prove the claim.

We first derive a few properties of the Cs x Dy invariants involved that will prove
essential in the computations of F,. We also include a few properties concerning

Hilbert Symbols at finite places.

List of notation for this chapter

K local field of odd residue characteristic
Ok ring of integers of K
K" maximal unramified extension
k residue field
T uniformiser of K
v normalized valuation on K
(+.) Hilbert Symbol at v
c leading term of G(x)
0 = K—g leading term of Lj(x)

with u1 = as + P2 — a3z — 33
0= 010x05 leading term of L(x)
0;,1=1,2,3 discriminant of G;(x)
5:1 discriminant of ALGLl(:I:)
0i, 1 =2,3 discriminant of L;(x)

ai, B, 1 =1,2,3  roots of G;(x)
Ai, Bi,i=1,2,3 roots of L;(x)

T=y =y mod 7

T=Qy & = yz where z is a square element in K and z,y,z € O
r=ny xr = yz where z is a square element in K

Frob Frobenius automorphism in Gal(K /K)

Iy inertia subgroup of Gal(K /K)
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6.2 Properties of (5 x D, invariants

We derive a series of Lemmata concerning interesting properties of Cy x Dy invari-

ants. When readily verifiable by simple computations, the proofs are omitted.
Lemma 6.2.1.

1. 13, = %61—44 + Lo,

2. Iy = —C%Egﬁg hence ¢ = —c?l1 15,

3. Let Agz = (g — a3)(B2 — B3), Baz = (B2 — as)(az — B3),
so that I45 = 4A23323 and 122 = A23 + ng.
Then 1222 = Iy5 + Iyq and Iyo = %u% — %(52 + 53),

2
4. Lo = g4 J3y, for some Jyo € K

5. Let Agip = 8(aa + a1)(f2 + 1) (s + a1)(B3 + 1),
A41m = 8(042 — 041)(52 — Oq)(ag — 041)(63 — 041). Then
Iy = Agip + Asim and Izo = Ag1pAsim. Moreover

I3, = 16130 + 16203 J3 = 1615 + %IggJZl, for some Jy1 € K

6. Let Aoy = (g — an) (a2 + 1) + (B2 — a1) (B2 + 1),
Az = (a3 — o) (a3 + a1) + (B3 — 1) (B3 + o1). Then
(a) Lo =442 A3,
(b) Iso = % (d2A51 + d3A21),
(c) Iyz = 02A21 + 03A31.
(d) A3 =% + 8502 + B2)?,
(e) A3 = i% + 03(3 + B3)?,

7. I3y — Iyolyy = w3 JZs, for some Jy3 € K.
8. 1%, — 16149150 = u2J2), for some Jgo € K.

9. 4cAqul = C2I45 + ’UJ%IQ?, — 402(04252 — Oz3ﬁ3)2.

02A21—03A
10. Jy3 = 2 21u13 31

4 59A31—03A
1] J602072 2 31u13 21

Asip—Aaim
12. Jy = =R
Proof. 1. 2. 3. are clear from computations.

_ (a—Ba—az+P3)(az—B2+a3—P3)
4 Jwo = (a2+B2—a3—P3) :

5. Ju = af (g + B2+ az + B3) + aaBa(as + B3) + asBs(as + B2).
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6. is clear from computation.

7. Jig = —al—pi+ad+pi—102agBy—20%a? —282aF 4402 a3 B3 +2a0 B3 —203 B3 20385 4203 fo+203a? +283a 1+2ﬁ3a3—252a2
ag+pBa—az—pB3
8. Jeo = __ a}Bi—3a}B3+adp+alpl—aipi+iaalfl—satai+3aTpi+3a3at —4afad s —agsi+afal—afal— 0‘132
’ ag+pa—az—pB3

Note that all the denominators are u1, and hence non-zero as otherwise uy = 1 =
{=0. ]

Lemma 6.2.2. All the following expressions are equivalent ways to define Ag.

¢((o1 + B2) (1 — ) (2 4 B2 — ag — B3) + (a2 + B2) (a2 — as) (az — B3)),

((
c((a1+82) (a1 —PB2) (aa—a3)+(B3—f2) (B2 — a1) (a3 — a2) + (a2 + 1) (az — a1)) ),
c((a1+Ba) (o1 — B2)(ag — a3) + (B3 — B2) (az(as — fa) + (faas — o)) ),
(

4. Ag = c((artaz)(az—ar)(Bs—ar)+(Ba—ar) ((cn — Bs) (a2 — as) + (a3 + a1) (a1 — az)) ).

5. AG = c(a%ul — 0525262 — 043,3363).

6.3 Standard properties of Hilbert Symbols

For convenience we recall some basic properties of Hilbert symbols. First recall that

(A,B) =1if A or B is a square and whenever A, B are both units for odd places.
Lemma 6.3.3. Let A,B,C € K*. Then

1. (A+ B,—AB) = (A, B),

2. (A,1—A)=(4,-A) =

3. (A,B)(-A,-C)(B,-C)=1ifA+B+C=0.

Lemma 6.3.4. Let K be a finite extension of Q, for an odd prime p. Let A,B,C €
K> such that A> = B+ C. Write A = uan®, B = ugn®, C = ucn®, where
ua,up,uc € O and a,b,c € Z.Then

1. if v(A2) > v(B) = v(C) then (A,—BC) = 1,

2. if v(B) > v(A2) = v(C) then (A,—BC) = (A, —B),

3. if v(C) > v(A2) = v(B) then (A, —BC) = (A,—C),

4. if v(A2) = v(B) = v(C) then (A,—BC) = (A, —uguc).

Proof. 1. Since v(A?) > v(B) = v(C), we have b = ¢ and ug + uc = u,7" for
some u, € OF and n € Zsg. Hence (4, —BC) = (A, —n?upuc) = (A, —upuc) =
(A, = (upm™ — uc)uc) = (A,ud) = 1.

2. We have C' = u472 — upn® and 2a < b since v(B) > v(A2%) = v(C). Hence
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(A, —BC) = (A, —B)(A, u47* — upn®) = (A, —B)(A, 72*(u] — upn®~2))

= (A, —B)(A,v%) = (A,—B).

3. Follows from ii).

4. Here b = ¢ as v(A?) = v(B) = v(C). Hence (A,—BC) = (A, —upucn®) =
(A, —UBUC). ]

6.4 Local discrepancy at infinite places

This section computes E, at real places and proves the last columns of Tables
and Since for two real numbers a,b € R we have (a,b) = —1 if and only
if a,b € R, we are primally interested here in the signs of all invariants involved
in Eg. These signs are sometimes obvious from the definitions of the invariants
and the configuration of the real roots considered. When this is the case, the sign
appears in Tables and On the other hand, when the signs can vary, its
corresponding entry is left blank and we use the properties of the Cs x Dy invariants
in Section to prove that Eg gives the required result. This is done case by case

in the second part of this section.
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Table 6.1: Sign of Cy x Dy invariants over R
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Table 6.2: Sign of Cy x Dy invariants over R

Er

Iso

143

142

141
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6R1A
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6R2A
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6R3A
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6R4A
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6R5A

6R5B

6R6A
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6R8aA
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6R8bA
6R8bB
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6R9B

6R10A
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6R11A

6R11B
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Table 6.3: Sign of Cy x Dy invariants over R

Isogeny | Isa | I23 | Iso | las | lao | 20 | I21 | f22 | Ian | la2 | Ia3 | 6o c 4 Er
6R13A + + + + + + + + + - - + 1
6R13B + + + + + + + + + - - - 1
6R14A + + + — + + + + - — + 1
6R14B + + + + + + + - - - -1
6R15A + + - + + + - + + + | + -1
6R158B + + - + + + - + + + - 1
6R16A + + + + + + + - + + + | + -1
6R16B + + + + + + + - + + + - -1
6R17A + + + - + + - + + + | + 1
6R17B + + + - + + - + + + - -1
6R18A + + + + + + - - + + + | + 1
6R18B + + + + + + - - + + + - 1
6R19A + + - + + + + + -1
6R19B + + - + + + + - 1
6R20A + + - - + + + 1
6R20B + + — - + + - 1
6R21A + + - + + + - + - - + 1
6R21B + + - + + + - + - - — -1
6R22A + + + + + + + - + 1
6R22B + + + + + + + — - 1
6R23aA | + + + - + + - - + | + 1
6R23aB + + + - + + - - - | + 1
6R23bA | + + + - + + - - + | = -1
6R23cB + + + - + + - — - =1 -1
6R24A + + + + + + - - + -1
6R24B + + + + + + - - - - -1
6R25A + + + + + + + + + + + | + 1
6R25B + + + + + + + + + + + - 1
6R26A + + + - + + + + + + + | + -1
6R26B + + + - + + + + + + + - 1
6R27A + + + + + + + - + + + + | + -1
6R27B + + + + + + + - + + + + - -1

6.4.1 C has 0, 1 or 2 real connected components

Proof of Table [4.1]

Cases 6C1A /B. Iy > 0 follows from the expression of 22 given in Lemma

Hence

Er = (=1, I11143160)(—1)(c, =1) (=1, 141) (La2, —L60143)
= —(c, =1)(—1u2, I6o)(— L2, 143) ({42, —1).

Hence if Ijo < 0 then Er = (¢, —1) =
Lemma [6.2.1][6] (a), we have Ay, A3; > 0 or Agi, Ag; < 0. Assume the former, then

sign(c) and we are done. Otherwise from
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Igo = 69 A31 + 6341 > 0 and Iy = 6y Ay + 63431 < 0 which yields Eg = (¢, —1).
Finally if As1, A1 < 0 then Iy = 82431 + 03421 < 0 and Iy3 = 62Aa1 + 03431 > 0
thus Er = (¢, —1) as required.

Cases 6C2Aa/b/c and 6C2Ba/b/c. Iy = (ag+ [2)(as + f3) = (ag + P2)(az +
B2) = (g + B2)[? > 0 and Iy = Ao Agy = |A91]? > 0. Tt follows that

ER = (—1, IQQ)(—I, 6)(—1, C)(I45, —IQQE).

We wish to prove that if Iy5 > 0 then Eg =-sign(fc), and if I;5 < 0 then Egx =-
sign(c). Assume the latter, then Fr = —(¢,—1) = -sign(c) proving the result.
Finally assume that Iy5 > 0. By Lemma [6.2.1[[3] it follows that Is2 < 0. Therefore
in this case, Fr = —(—1,¢)(¢, —1) = —sign(fc) as required.

Cases 4C1A/B. Iy > 0 and I4; > 0 follow from ay = ,8_2, g = 6_3 and Lemmata
and This yields Egp = —(Is3, —I12)(To0, —I42)(Lag, —1). If Igo <
0 then Eg = 1 and we are done. Otherwise from Lemma [6.2.1)6|(a), we have
A1, A3z1 > 0 or Asy, A31 < 0. Assume the former, then Igy = 89 A1 + 83451 > 0
and Iy3 = oA + d3A31 < 0 which yields Egx = 1. Finally if As1, A31 < 0 then
Igo = 02 A31 + 03491 < 0 and Iy3 = 8241 + d3A31 > 0 so that Eg = 1 as required.
Cases 4C2A /B. Here

Er = (—1,Is2141143160) (141, —1)(—1, Iaol42143) (L2, —I60143)

= (142, Is0143) (160, —1)

and 43 < 0 and o > 0. From Lemma we have As; > 0. Hence from Lemma
6.2.1}l6| (a) and (b), if I4o > 0 then As; > 0 and Igp > 0 so that Eg = 1 as required.
On the other hand, if Iy < 0 then A3; < 0 and I43 > 0 from Lemma (c)
Therefore Fg = 1 proving the result.

Cases 4C3a/b/c. Iy > 0, I2 > 0 and I4; > 0 follow from ap = a3, f2 = B3 and

Lemmata and 6l This yields

Er = (=1, I22)(—1,0) (145, —¥122).

We wish to prove that if I;5 < 0 then Eg = —1 and if Iy5 > 0 then Fr = —sign(¥).
This is clear if If Ij5 < 0. On the other hand, if I;5 > 0 then by lemma [6.2.1)[3] we
have Iy < 0, therefore Eg = —(—1,¢) proving the result.

Cases 2C1/2/3. By definition of I3 we have I42 > 0 since a2 < 0. Hence

Egr = (—1,¢)(I22, —145)(1s3, —1) (Lo, —1)(La5, —CI21).

Now it follows from Lemma/|6.2.1|6} (a),(b) and (c) that (143, —1)(Ig0, —1) = 1. There-
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fore it remains to compute (—1, ¢)(lag, —1I45) (145, —C121).

Cases 2C1A/B. Here 145 > 0 and I22 > 0 hence Er =sign(c), as required.

Cases 2C2A/B. Here Iy5 < 0 hence Er = —(—1,¢)(—1,012). Lemma
yields Fgr = —(—1,¢)(— ,—K—é) = (cu1Ag, —1) since uj, Ag € R. Tt follows from
Lemma that cu;Ag < 0 since o3, Iy5 < 0 and aw, B2, ag, f3 € R. Therefore
Er = —1 as required.

Case 2C3A/B. Here Iy5 > 0 and Iy < 0 hence Eg =-sign(c), as required.

Cases 2C4/5/6. In this cases we have

Er = (142, —143160)(I80, —La11a2160)(c, —Is0)(—1, Ia1160) (—1, I42).

Cases 2C4A /B. Here Igy > 0 therefore 83 > 0 and

Er = (142, —143160)(c, —1)(—1, Is1160) (—1, I42).

Using Lemma (a), we have that As; > 0 hence if Iy > 0 then Igg > 0. On
the other hand, if I4o < 0 then I43 > 0; both cases yield Er = (I41,—1)(c,—1).
Now from the expression given in Lemma we have that I4ip, I41m > 0 hence
Er = (—1,¢) as required.

Cases 2C5A /B. Here Igy < 0 hence 83 < 0 and

Er = — (142, —I43160).

If Iy > 0 then Fg = —1 and we are done. Otherwise, from Lemma (a),
either As1 > 0,431 < 0 or Aoy < 0,A31 > 0. In the former case we have Iy3 < 0
and Igg > 0, while in the latter case we have I3 > 0 and Igyp < 0. In both cases
—(1a2, —I43150) = —1 as required.

Cases 2C6aA /B. Here Igy > 0 therefore 5}, > 0 and

Er = (Ly2, —143160)(c, —=1)(—=1, Iy1160) (—1, I42).

From Lemma we have that Ay1p, Agim > 0 for 2C6aA and 2C6aB hence
I;; > 0. Using Lemma (a), we have that As; < 0 hence if Iy > 0 then
As; < 0 and Igg < 0. On the other hand, if I45 < 0 then A3; > 0 and I43 < 0. In
both cases this yields EFg = —(—1, ¢) as required.

Cases 2C6bA /B. This is similar as for 2C6aA /B except that from Lemma
we have that A41p, A41m < 0 and hence I4; < 0. Using Lemma (a), we have
that As; > 0 hence if Iy5 > 0 then A3; > 0 and Igg > 0. On the other hand, if
I;5 < 0 then A3; < 0 and Iy3 > 0. In both cases this yields Fg = —(—1,¢) as

required.
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6.4.2 ( has 3 real connected components
Proof of Tables 4.2] and [4.3]

From now on, all roots of G(z) are real therefore I44, I3, I2g, I49 > 0 and

E, = (-1, Ioals1143160) (¢, Is0) (La5, —CI22121) (180, —2141142160) (142, —L60143).

Cases 6R1A/B. Er = 1. Clear.
Cases 6R2A/B. Er = (—1,—¢) = (—1,c)(—1,A—cGu1). The result follows since

%ul < 0 from Lemma

Cases 6R3A/B. Er = —1. Clear.

Case 6R4A/B. Er = —(c,—1)(142, I43160)(—1, I43). From Lemma (a) and
by definition of 6R4, we have that As; > 0 hence if I4o > 0 then I3; > 0 and I43 > 0;
whereas if 45 < 0 then I; < 0 and Igg > 0. Both case yield (142, I43160)(—1,I43) = 1
so that Fr = —c(, —1) as required.

Cases 6R5A /B. Er = —(—1,—lI5)(la2, —I43l60)(—1, I42)(—1, I43) (¢, —1). By
definition of 6R5, we have d3 < 0 and by Lemma (a), we have As; > 0.
Hence if 145 > 0 then I43 > 0. On the other hand, if I4o < 0 then Iy < 0. Both
cases yield EFr = —(—1,—lIs1)(c,—1) = —(—1,A—0Gu1). The result follows since
A—ccul < 0 from Lemma

Cases 6R6A /B. Er = (ly2, —I43l60)(—1, L42)(—1, I43)(c, —1). By definition of
6R6, we have 83 < 0 and by Lemma (a), we have A3; > 0. Hence if Iy > 0
then Iy3 > 0. On the other hand, if Iy < 0 then Igg > 0. Both cases yield
Er = (¢,—1) as required.

Cases 6R7A /B. Er = —1. Clear.

Cases 6R8aA /B and 6R8bA/B. Iy > 0 follows from 0 < B2 — a1 < ag + fo
and 0 < B3 — a1 < ag + (3. Therefore

Er = (=1, —0I21)(1a2, —Iu3l60)(—1, In31ep)-

By definition of 6R8, we have 52, 63 < 0 hence by Lemma if Ijo < 0 then
Er = (—1,¢) and we are done. Otherwise, if Iyo > 0 with Aay, A3y > 0 then Iy3 > 0
and Igg < 0. On the other hand, if I4o > 0 with As1, A3 < 0 then I4y3 < 0 and
Isp > 0. This yields Egr = —(—1, —¢I21) = (—1,¢) as required.

Cases 6R9A/B. Er = —(Iy2,—I43l60)(—1, I43160). By definition of 6RIB, we
have 52, 53 < 0 hence by Lemma if Iy9 < 0 then Er = 1 and we are done.
Otherwise, if Iyo > 0 with As1, A3 > 0 then Iy3 > 0 and Igg < 0. On the other
hand, if Iy > 0 with As1, A3; < 0 then Iy3 < 0 and I > 0. Both cases yield
Er =1 as required.

Cases 6R10A/B. Er = —(—1,143)(la2, I43160)(c, —1). By definition of 6R10, we
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have 52 < 0,53 > 0 and As; < 0. Therefore, by Lemma @ if Iyo > 0 then
I43 < 0 and Eg = (¢,—1) and we are done. Otherwise, if Iy2 < 0 then As; > 0 and
Isp < 0 so that Eg = (¢, —1) as required.

Cases 6R11A/B. Egp = —(—1,—{I2)(142, —143l60)(—1, I42)(—1, I43)(c, —1). By
definition of 6R11, we have d3 < 0 and by Lemma (a), we have Agz; < 0.
Hence if I4o > 0 then I43 < 0. On the other hand, if Iyo < 0 then Igy < O.
Both cases yield EFr = (=1, —lI91)(c,—1) = (-1, A—ful). The result follows since
%ul > 0 from Lemma

Cases 6R12A/B. Egr = (—1,143)(1s2, 143160)(c, —1). By definition of 6R12, we
have &y > 0,53 < 0 and Asz; < 0. Therefore, by Lemma if Iyo > 0 then
I;3 < 0 and Egr = —(¢,—1) and we are done. Otherwise, if Iyo < 0 then Ay > 0

and Igo < 0 so that Er = —(c, —1) as required.

Cases 6R13A /B . Eg = 1. Clear.

Cases 6R14A /B. Egr = (—1,—VIy) = (—l,c)(—l,A—CGul). Since A—ful > 0 from
Lemma we have Eg = (¢, —1) as required.

Cases 6R15A /B. Ep = (ly2, —I43160)(—1,142)(—1, I43)(c, —1). By definition of
6R15, we have 53 < 0 and by Lemma (a), we have Asz; < 0. Hence if Iyo > 0
then I3 < 0. On the other hand, if Iyo < 0 then Isyp < 0. Both cases yield
Er = —(c,—1) as required.

Cases 6R16A /B. Er = —(—1, I43150) (142, [43160). By definition of 6R16, we have
140, 143, Igg > 0. Therefore Er = —1 as required.

Cases 6R17A/B. Eg = —(—1,—{I») = —(~1,¢)(~1,%%u;). Since 2¢u; < 0
from Lemma we have Egx = (¢, —1) as required.

Cases 6R18A /B. Ep = 1. Clear.

Cases 6R19A /B. Er = —(—1,143)(142, I43160)(c, —1). By definition of 6R19, we
have 52 > 0,53 < 0 and A3y > 0. Therefore, by Lemma if Iy > 0 then
Iis > 0 and Eg = —(¢,—1) and we are done. Otherwise, if Iyo < 0 then Ay < 0

and Igp > 0 so that Eg = —(c,—1) as required.

Cases 6R20A /B. Egp = —(—1, I43)(142, I13160)(c, —1)(—1, —£I2;1). By definition of
6R20, we have by < 0,53 > 0 and As; > 0. Therefore, by Lemma E if Iy >0
then Iy3 > 0 and Egx = —(¢, —1)(—1, —¥¢I31). Otherwise, if I4o < 0 then Az} < 0
and Iy > 0 so that Eg = —(¢, —1)(—1, —¢I51). Using that £ = —c2¢1 51, this yields
Egr = —(—1,¢l1). Moreover, {1 = X—; with u1 = ag + B2 — a3z — (3. By definition of
6R20 we have that ay — a3 < 0 since |ag| > |ag|. Also, B2 — 3 < 0, hence u; < 0.
Using Lemma [6.2.2]2, we have that cAg > 0 if

|(B2 — a1)(az — az)| > [(a2 + a1)(az — a1)].
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But |82 — 1| > | — 2a1|, hence it suffices to prove that
‘ — 20[1”&3 — 042‘ > ’a2 + OélHOég — 041’

with g < a1 < ag < —ap3 = f1. Let g = as+b,a3 = as+b+e, 51 =as+b+te+d,
with b,e,d > 0. Then f1—a1 = e+d,az3—ag = b+e,as— 51 = —b—e—d,az—ay = e.
Hence | — 2aq ||asz — ag| = €2 + be + ed + bd and |az + a||ag — a1 = eb + €2 + ed.
The result follows since bd > 0.

Thus cAg > 0 and ¢/ < 0 so that Er = 1.
Cases 6R21A/B. Ep = (ly2, —I43l60)(—1,142)(—1, I43)(c, —1). By definition of
6R21, we have 83 < 0 and by Lemma @ (a), we have As; > 0. Hence if I35 > 0
then I;3 > 0. On the other hand, if I4o < 0 then Isy > 0. Both cases yield
Er = (¢,—1) as required.
Cases 6R22A /B. Er = —(Iy2, —I43160)(—1, I43160). By definition of 6R22, we
have 52, 85 < 0 hence by Lemma @ if Iys < 0 then Fgr = 1 and we are done.
Otherwise, if Iyo > 0 with Aoy, Az > 0 then Iy3 > 0 and Igg < 0. On the other
hand, if I4o > 0 with A9y, A31 < 0 then I43 < 0 and Igy > 0. Both cases yield
Er =1 as required.
Cases 6R23aA /B and 6R23bA /B. I3 > 0 follows from ag + 82 < B2 — a1 <0
and 0 < (3 —a1 < asz + (3. Er = —(—1,—0Is1)(La2, —143l60)(—1, I43150). By
definition of 6R23, we have 52,53 < 0 hence by Lemma if Iy < 0 then
Er = (—1,—l15;) = (—1,¢) and we are done. Otherwise, if I;o > 0 with Aa;, A3; >0
then I3 > 0 and Igg < 0. On the other hand, if I;o > 0 with Ay, A3; < 0 then
I43 < 0 and Igp > 0. Both cases yield Eg = (=1, —¢I21) = (—1,¢) as required.
Cases 6R24A /B . Ep = —1. Clear.
Cases 6R25A /B. Er = (—1, I43160) (12, I4310). By definition of 6R25, we have
140, 143, Igp > 0 hence Er = 1 as required.
Cases 6R26A/B. Er = (—1,—(I3) = (—1,c)(—1,A—fu1). Since A—ful < 0 from
Lemma we have Egr = — (¢, —1) as required.
Cases 6R27A /B . Eg = —1. Clear.

6.5 Local discrepancy at finite places v | 2

Fix a 2-adic place v of K. Recall from Section that we required our Cy X Dy
curve to belong to the family C given by

C:y? = f(z) = Gi(2)Ga2(2)G3 (),

Gi(z) = (2® — (8 + 4n)?),
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441
Gy(z) = (22 + z(—2m — 23) + -~ 2d + 14m),
Gs(z) = (22 + x(—8k — 18) + 105 + 8 + 56k),

for n,m,d, k,r € Og.
We wish to prove that E, = 1 for curves C' € C as claimed in Lemma Recall
the following results on Hilbert Symbols (see [9][Lemma 15]).

Lemma 6.5.5. Let F//Q, be a finite extension. Then
(1) 1 +4z,y) =1 ifv(z) >0 and y € F*,
(2) (1+4z,y) =1 ifp=2,v(x) =0 and y € OF,

Let C be a Cy x Dy curve such that C € C and consider the model for such

curves given above. Computing its corresponding C5 x D, invariants one finds that
I45 =0 1 mod 16, Iy =g 1,

Iso =14+ 4t, Iy =n (1 + 4t/), 14 =1 (1 + 475”),

with v(t),v(t'),v(t") > 0, so that by Lemma we have

E, = (—1,Ix2143160) (120, —114) (114, 2122143).
Moreover

1
I = 3 + 4d mod 8 =g (2 4 16d) mod 32 =n 2(1 + 84d),

1
Igo = 5 +4(d + m?) mod 8 =q (2 + 16(d +m?)) mod 32 =g 2(1 + 8(d + m?)),
so that
(=1, In2le0) = (144, 2122) = 1.
We therefore have that
E, = (I20, —144) (143, —114)

and we show that E, = 1.
By definition we have Iyq = 6203, Iog = 55 (62 +03) and Iyg = —02A91 — 3431
with A91 A3 = Iy = O and A21,A31 € K since GQ(.’E),G;;(.’E) € K[l‘] Replacing

invariants by their expression above and using twice Lemma [6.3.3| we have

1
E, = (5(52 + 83), —0203)(—02A21 — 63A31, —0203),

1

= (g5, —0203) (92, 03) (— 02 Ao, —d3A431)-
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But Ay =g As1, hence we can replace occurrences of A3y by As; and obtain after

simplification
Agy

Ev == (—5253, —?) =1

since —2A451 = 1 mod 8.

6.6 Local discrepancy at finite places v 12

Recall that we consider a Cy x Dy curve C : y? = G1(x)G2(z)G3(x) such that its
cluster picture at places v 1 2 of K is one of Table In particular, the roots
of Gi(x),Ga(x), G3(x) are integral and hence all the I; j, 8,01, Ag, uq, lo, 03 are
integral (the only potentially non-integral invariant is ¢; = X—lc) Also, it follows
from the definition of the invariants that without loss of generality, we may assume
v(c) = 0 or v(c) = 1. In this section, since v 1 2, we extensively use Hensel’s Lemma

to claim that z € K*2 if and only if 2 reduces to a non zero square element in k.

Lemma 6.6.6. If v(As1),v(A31) > 0 and v(Igp) = v(I44) = 0 then Iyg € K*? &
Iy € K*2.

Proof. Since v(Igg) = v(ly4) = 0 and Igy =p 8905 and Iy =0 0203, it follows
that v(82) = v(d3) = v(ds) = v(d3) = 0. From Lemma (c),(d), we have
8o =0 —63(a3 + B3)? and 53 =0 —62(ca + B2)%. Hence Igy =g 8203 =0 820313 =n
0203 =0 144 and the result follows. O

Lemma 6.6.7. Ifv(As1) # v(Asy) then Agq, A3y € K and moreover 52,53,52,53,u1 €
K.

Proof. Since the action of o € Gal(K/K) preserves distances between the roots, it
follows that o(Ag1) # Asp in this case. Therefore o(As) = A2; and 0(A31) = As;
which implies that o(q;) = a; or o(«a;) = f; for i=2,3. In particular, it follows that
o fixes 09, 53,5}, 53,111. O

From this point onwards, our results concern computations of Hilbert Sym-
bols. We give an extra detailed proof for the first Lemma. For the remaining of this
section, the reader might find helpful to keep the list of notation for this chapter, the
list of invariants I; j;, Lemma and the properties of Hilbert Symbols of Section
[6.3 at hand.

Lemma 6.6.8. va(f44) = 1)([80) = 1)([42) = 0 then (143, —[40[42[44) = ([607 _140142180) =
1.

Proof. Write S3; = I2, — Lialua, S5, = 12, — 1614215 as given in Lemmata
and g If ’U(IZ?)) > 1}(142[44) = U(ng)’) then (143,—14()[42[44) =1 by Lemma
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6.3.41. If v(I}) = v(ls2lys) = v(SZ3) = 0 then (I3, —Isolsalss) = 1 trivially.
Else, if v(S%;) > v(I%;) = v(lyalss) = 0 then (I3, —S33lu2las) = (Is3,—S33) by
Lemma 3. In particular since S3; = u2S? =g Iy where S € K and since
v(Iy3) = 0, we have (I43,—S%;) = (143, —u?). Now, here v(I44) = v(I3p) = 0 so that
a9 Z Po #£ ag % (B3 and hence inertia acts trivially on these roots. In particular,
v(u1) € Z so that v(u?) € 2Z. Hence (I43,—u?) = 1. The proof is similar for
(Iso, —Iaol42150).

O

Lemma 6.6.9. If v(l4) = v(Ig9) = 0 then

H = (143, —Ia01a2144) (I60, —La0la2150) (142, —Ig0laa) = 1.

In particular, this holds when C is of type 2.

Proof. Note that since v(Iy4) = v(Igp) = 0, ag # P2 # a3 # (3 and hence inertia
acts trivially on these roots so that v(u?),v(I4) € 2Z and v(As),v(As1) € Z.

1) First assume that v(Is2) = 0. Then (Iy2,—Igplsa) = 1 trivially since
v(Ls2) = v(1s4) = v(I3p) = 0 and the result follows from Lemma [6.6.8]

2) Now let v(Is2) > 0 with v(A21) > v(As1) > 0. Then by Lemma [6.6.7], we
have do,83 € K* and I;0 € K? by Lemma Also, from Lemma [6.2.1}6(b)
and (c) we have Igo =g 09 A5 + 03491 and Iy3 = 9 Aoy + d3A51. Hence
(Ius, —TaoLu2 Ina) (Tso, —LuoTuoIs0) = (93As1, —I1214a) (02 As1, —LuaTso) in this case. Us-
ing Lemma (a) and replacing in H yields

H = (03431, — Ap1 A310203) (6231, — Aoy Az10903) (Ag1 Az, —02030203),

which, once simplified using the multiplicativity property of Hilbert Symbols yields
H = (A1, —0203)(Asz1, —0203). Since v(Ay1) > 0, it follows from Lemma (d)
that 5}, = —0d9 so that —5253 € K*? and (Ayy, —5253) = 1. Lastly, If v(A43;) =0
then (Asq, —5253) =1 trivially and we are done, otherwise by Lemma (e), it
follows that dy = —d3 so that —d2d3 € K*2 and (Asq, —5253) = 1.

3) Lastly, let v(I42) > 0 with v(Aa1) = v(Asz1) > 0. Then v(I42) € 2Z and by
Lemma we have (149, —I3pl44) = 1 so that

H = (143, —Ia0la2144) (I60, —1a0142130).

It follows from Lemma [6.2.1]i6|(b) and (c) that v(l43),v(Ig0) > v(A21) = v(A31),

and hence by Lemma [6.2.1]j6] (a) we have v(I42) < v(I3,),v(I%).
i) If v(l2) = v(I%) = v(1&). Write 1o = 7°"Uss for some n € Zso and

Uspe € K*. By Lemmata and [6.2. 18] if v(u?J%) = v(u}JZ) = v(IZ;) then
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using Lemma 4 it follows that (143, —140]42144) = (143, —U%U42_[44) and that
(1607 _I4OI42180) = (1607 —U%Uzgfgo). Since ’U(I43) = 'U(IG(]), thiS yields

H = (143, 144) (160, I30),

and the result follows from Lemma On the other hand, if v(u?J%;) > v(I%)
then by Lemma 2 we have that

(Iiz, —Laolsolss) = (Lsz, —ul).

If in addition, v(u2JZ,) > v(IZ,) then by the same Lemma we have

(Zso, —Lsol42Is0) = (Igo, —u3),
so that
(Iuz, —La0142144) (L60, —La0la21s0) = 1,

since v(Iy3) = v(Lgo).
Finally, if v(u?J%;) > v(I%) and v(u?J3,) = v(IZ,) then writing u? = 72U2
for some b € Z and U; € (’)%, and using Lemma 2 and 4, this yields

(Iuz, —LioLuoua) = (I3, —U?),  (Iso, —LaolsaIs0) = (Iso, —UtUsalso).

Hence
H = (I3, —U})(Is0, —UfUsaIs0) = (Iso, UsaIso).

Write Ag; = 7%Us; and Az; = 7%Us; for some a € Z and U, Us; € (9%. Us-
ing Lemma we have that u2J2; = (62421 — d3A431)? and since v((J2A2; —
63A431)?%) > v(13;), it follows that v(62Us1 — 63U31) > 0. In particular 62U = d3Us31.
By Lemma [6.2.1][6] 1 we can write Uyo = Us1Us; so that

UsalIso = Uz Uz 0205,

Also, by Lemma [6.2.1}§6(d) and (e) we have

. 5:
c% = —Sa(ag + B2)?, c% = —03(az + B3)%

It follows that
UsaIso = Uy Us10203 = U Uz 0283((r2 + B2) (a3 + B3))?

=0 U21U31(5253 = U221(5§ =0 1.
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The last congruence follows from the fact that Us109 € k, therefore Usolgg =g 1 and
(Is0, UsaIgo) = 1. The proof is similar if v(udJZ,) > v(13,) and v(uiJiy) = v(I33).

i) If v(I42) = v(I};) < v(1,) then by Lemmata and [6.3.4] -1 we have
(1607 _140142180) =1 so that H = (143, —140[42144). USlng Lemma “3, we have

H = (6221 + 03431, —I10A21 A310203) = (7*(02Ua1 + 63U31), —UEUa1Usz18203).
Also, since U(I423) = v(Iy2) it follows that v(d2Us; + d3Us31) = 0 so that
H = (1%, —U? Uy Us16263),

Now, by Lemma/6.2.1/l6|(d) and (e) we have 6 =g —03(ag+33)? and 3 =5 —da(cva+
B2)2. Also, since v(I%;) < v(IZ)), using Lemma 6L (b) we have

Iso =0 02431 4 03As1 = 1%(6oUsy + 63Ua1),  and v(02Usy 4 03Us1) > 0

so that (§2U31 = —(§3U21. Therefore U21U31(§2<§3 =0 —U221(§32 =0 U215 (Oéz + ﬁz) .
Hence
H = (7%, UU305(az + B2)").

If ag, B, 3, 83 € K then URU363(an + B2)* € K*? and we are done. Otherwise
U, U2 ¢ K*? but their product is a square element in K hence H = 1. The proof
is similar if v(Iy2) = v(I3) < v(I3;).

iii) If v(Iy2) < v(IZ,),v(I%;) then since by Lemmata [6.2.1][7] and [6.2.1][§] we
have I3 = Iyolyy + Iyl for some I € K*? and IZ, = 16I42[80 + Iygl’ for some
I' € K*2| it follows from Lemma[6.3.4/1. that H = 1.

U

Proposition 6.6.10. Suppose that as, B2, as, B3 € K™ and
i) v(AZ) = v(Ia3) = v(c) = v(Iy5) = 0 and v(u}) > 0; or
i) v(u1),v(l23) # 0 and v(c) = v(ls5) = 0. Then

02145 = 402(a252 — a353)2 and (fl,u%L;g,) =1.

Proof. Tt follows from Lemma [6.2.1l9| that c¢*I;5 = 402(a2ﬁ2 — a3f33)? in this case.
i) Recall that u; = ag + B2 — a3 — fB3 and {1 = A . Write u; = 7% with
c1 € (’)%, a € 7Z since we assumed o, fo, a3, 3 € K™. We have
ﬂ“cl

(4171&[45):(?@7 ¢t ly5) = (7%, cilys),

since v(Ag) = v(lys) = 0. If uy ¢ K then (agBe — a3fB3)?,c? ¢ K*? so that
c(aofs — azB3)? € K*? and hence cflys € K*2. Conversely, if uy € K then
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(2B — azBs)? € K*? and 25 € K*2.

i) Write u1 = 7%y, Ag = mlug with ¢y, uq € (’)%. We have a € Z since we
assumed s, B9, a3, B3 € K™, from which it follows that b € Z since £; = K—g € K.
If ¢y ¢ K(equivalently uy ¢ K, as {1 € K), then (agfB2 — asf3) ¢ K™ hence
Iis ¢ K*? and 0%145 € K*2. Conversely, if ¢; € K* then (aaf2 — asf3)? € K*?
and Iy5,c2, 25 € K*2,

Now (4L, utlys) = (ﬂa_b%7ﬂ2ac%j45) = (m%7%, ¢2I45) = 1 as required.

6.6.1 ( is of type 2

Lemma 6.6.11. If C has good reduction then I acts trivially on J[2] which implies

a17a27/827a3763 € K".

Proof. This follows from Neron-Ogg-Shafarevich Theorem and the characterization
of J[2] in terms of a1, ag, B2, a3, B3 of Lemma O

Proof of Table [4.4]

Since C' is of type 2, it follows that v([23) = v(ls5) = v(laa) = v(Igp) = 0. Recall
that either v(¢) = 0 or v(c¢) = 1 so by semistability criterion v(c) = 0.
Moreover a1, as, B2, as, B3 € K™ so that valuations of invariants are integers.

Using Lemmata [6.2.1][5] [6.2.1][3| and [6.2.1][1] and since v(I49) € 2Z by Lemma
we have that (141, —I23lg0) = (I22, —I45144) = (120, —I40144) = 1 by Lemma
[6.3.41. Also, (2,114) = (—2,Ig9) = 1 since v {2 and

(Lu3, —Lsola214a) (T60, —Laola2l30) (12, —Isolaa) = 1
by Lemma [6.6.9] Therefore using definitions of invariants and simplifying gives
Ey = (€, 130) (115, —121) = ({1, (A1 — B1)?)(uf, Lal3).

Case GR1A. If v(Agly) = 0 then E, = (fols,u?). If v(lal3) = 0 we are done.

Otherwise, if v(fy) # v({3) then a9, B2,a3,3 € K and u3 € K*? so that E, = 1.
On the other hand, if v(¢3) = v(¢3) then v(¢al3) € 2Z and E, = 1.

If v(Agli) > 0 then since v(Agli) = u1 = ag + P2 — a3 — B3 we have that
v(u?) € 2Z. Also recall that v(f) = v(¢1) + v(fa) 4+ v(f3) so that v({1) € 27Z since
by semistability criterion we have v(¢) € 2Z. Therefore (u2,l203) = 1 and
E, = ({1,(A; — B1)?) = 1.

If v(lol3) > 0 then by definition of Ag and since v(Ag) = 0, it follows that
v(Agl) = 0. If v(ly) = v(l3) then v(l2l3) € 2Z and E, = 1. Lastly, if v(¢3) # v(¥3)
then u; = Agly € K so that u% e K*2and E, = 1.

148



Cases GR1B/GR1C. Assume first that v(Agf1) = 0. If v(¢2f3) = 0 then E, =
(01, (A1 — B1)?). If v(f2f3) > 0 with v(fy) # v(f3) then Agl; € K. On the other
hand, if v(f3) = v(f3) then v(faf3) € 2Z. In both cases, E, = ({1, (A1 — B1)?).

Assume now that v(Agf1) > 0. Then since v(Agl1) = uy, as above we
have v(u?) € 2Z. Now, if v(fs) = v(¢3) then v(fal3) € 2Z and (u?,lols) = 1.
Otherwise u; € K and u? € K? so that (u?,f2f3) = 1. In both cases we have
E, = ({1, (A1 — B1)?). The result follows since in this case v({1) = r mod 2.

6.6.2 ( is of type 1y,
Proof of Tables and

Cases ON1. From the definition of the isogeny, we have
v(la3) = 2a, wv(c)=v(lys) =v(Ig0) = v(Igq) = 0.

Also, ag # By # az # (3 #Z 0 so that inertia acts trivially on these roots and hence
ag, B2, a3, B3 € K*™. We have (c,Igolsa)=1. Making repetitive use of Lemma
[6.3.41, it follows from Lemma that v(Is9) = 0 since v(Iy4) = 0 so that
(I20, —L44140) = (120, —140), since v(Iy5) = v(I44) = 0, it follows from Lemma
that (Ioo, —Is5Ia4) = 1, since v(d1) > v(Igo) = 0, it follows from Lemmal6.2.1][f| that
v(I41) = 0 and hence (141, —I23l30) = (141, —1I23). Therefore E, = (Is3,cly)Hi Ho,
with

Hy = (140, 1200) (145, 121), Ho = (1s2, —I4alg0) (143, —La0la2144)(L60, —Ia0142130).

From Lemmal[6.6.9 we have that Hy = 1. We show that H; = 1. By Lemmal[6.2.1][]
we have I49 =p u%, where u1 = as + B2 — a3 — B3 so that /1 = K—é =g Agui. Using
this notation, we have Hy = (Aguq, u3ly5)(lal3, u?).

Cases ON1A/B. Here v(Ag) = 0 hence Hy = (Agui, uslys)(als, u?).

If v(u;) = 0 then Hy = (fa2l3,u?). If v(f3) # v(¢3) then Frob(az) = s
or Frob(az) = B2 and similarly for az. In particular u; € K and u? € OF?; if
v(l2) = v(l3) then v(l2l3) € 2Z

If v(ug) > 0, since v(Ag) = 0, v(¢3) = 0 or v(¢3) = 0 or both from Lemma
[6.2.2]5. But also since u; = f5 + f3, we must have v(fs) = v(¢3) = 0. Moreover
v(u?) € 27 since ag, B2, as,B3 € K*™. Hence H; = (Agui,utlss). The result
follows from Proposition [6.6.10]2.

Cases ON1C/D. Here v(Ag) =r > 0. Since {1 = x- € K, it follows that r € Z
and as above we have Hy = (Aguy, uilys).

The result follows from Proposition [6.6.10}2.

Therefore E, = (I23,cly1). By definition of I4; we have that cly; =g T, so
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that E, = 1 for ON1A/C and E, = (—1)2? for ON1B/D as claimed.
Cases ON2. From the definition of the isogeny, we have

v(l4q) = 2a, v(c) =v(l23) =v(Igo) = v(Iy5) =0,
Therefore (¢, I23130)=1. Reducing invariants mod 7 yields
Ing =0 2(az — B3)%, Lo=n0ljh=nl, Is=p0((a—a3)(az—p3))* =0l

and v(ly) = 0. It follows that (I45,—¢I21) = 1 and from Lemma that
(I20, —I44149) = (120, —144), with v(I39) = 0. Making repetitive use of Lemmam
since v(Iy5) = 0, it follows from Lemma that (Iso, —Is5l44) = (I22, —I44)
with v(l22) = 0; since v(l23) = v(Igg) = 0, it follows from Lemma that
(I41, —I23Ig9) = 1. From the definition of the isogeny we have that d2,d3 € K so
that using the definition of I4o in Lemma (a) we have Iy9 = 4491 A3 with
A2, Azr € K and v(Az1) = 0. Using this notation, we have F, = (144, —clo2A21)H,
with
H = (144, —2I20A31143)(— 142, —L43160) (150, L12160)-

We show that H = 1. Recall from Lemma [6.2.1)6| (b) and (c) that I43 = d2A21 +
d3As1 and Tgo = 02A31 + 03A1.

If v(I31) = 0 then v(Iy3) = 0 and (Iso, —l42I30) = 1 by Lemmata and
It follows that

H = (g, —2I0A51143) = (Lua, 405 — B3)"(=0f — B3 + 209)%) = 1.
If v(I31) > 0 then using definitions of invariants we obtain
H = (6203, 03 A31143) (A21 As1, —0203) (143, — A21 As1 ) (93 A21, —Az1 A316203),
after reorganizing and simplifying we have
= (02,03 A31143)(Asz1, A21143) (143, —03A21).
Now since Iy3 — 02 A21 — d3A431 = 0 it follows from Lemma [6.3.3]3 that
(143, —02A21)(— 143, 03A31) (=62 A21,03A431) = 1.

Hence

(143, —A2103) (02, 03)(As1, A21) (143, 62) (143, A31)(d2, A31)

= (02, 03A31143)(A31, Ao1143)(La3, —03A21) =1
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as required. Therefore E, = (l44, —cl22A21) and since —clao A9 =0 Ty, it follows
that E, = 1 for ON2A/C and E, = (—1)?* for ON2B/D.

Cases ON3. From the definition of the isogeny, we have
v(lys) = a, v(c) =v(l23) =v(Iso) = v(aa) = 0,
Therefore (¢, I231g0114)=1. Reducing invariants mod 7 yields

6 =0 c(ag — ag)(a1 + ) Iio =0 (B2 — B3)?,

so that v(¢1) = 0 and v(ly) € 2Z. Also from Lemma we have that
v(l22) = 0 and using Lemma since v(I23) = v(Igp) = 0, it follows from
Lemma [6.2. 1] that (141, —I23Is0) = 1, similarly since v(Iy4) = 0 and v(Iy9) € 2Z
we have (Iag, —I40144) = 1. Moreover since v(Iy9) € 27Z,

(143, —La0142144) (I60, —Ia0La2180) (La2, —Ig0l1a) =1

by Lemma This yields E, = (140, ¢)(145,¢121122). We show that (I4,/¢) =
1. Clearly, if v(f2¢3) = 0 we are done. Otherwise, if v(f2) > 0 then v(f3) = 0.
Indeed, by definition of ¢5 that yields 83 = —ay. By definition of /3, if v(¢3) > 0
then 85 = —as, a contradiction since B3 # B2. Now either as, 82, a3, 83 € K and
Iy € K*? and (I40,¢) = 1, or from the definition of the isogeny, the roots o and
ag are permuted, similarly for 85 and f3. In particular ¢ and —f3 are permuted,
a contradiction since their valuation is different. Therefore F, = (Iy5,¢I21122) and
since (121122 =0 Thyay, it follows that E, = 1 for ON3A and E, = (—1)® for ON3B

as required.

Cases ON4. From the definition of the isogeny, we have
’U(Ig()) =a, U(C) = 1)([23) = 1)([45) = 1}([44) = 0,

and ai,a9,8y € K. Therefore (c, I23l44)=1 and since Iy =g (a2 + ag — ag —
B3)? it follows that v(Iy0) € K*? and (I40,¢Is0ls3) = 1. Computing Ag we find
that v(Ag) = 0. Also from Lemma we have that v(Iz) = 0 so that and
using Lemma we have (Iyg, —I44l40) = 1. Similarly, from Lemma
we have that (Iag, —I44l45) = 1; and from Lemma we have that v(I41) =0
and (141, —I23lsp) = (141, Ig0). Moreover, by definitions of the invariants we have
(Iy5, —0I21) = (I45,¢1). Recall that u; = as + 2 — a3 — B3 so that ¢; = K—lc. Then,
since v(Ag) = 0, (I45,41) = 1 if v(u1) = 0. Otherwise by Lemma [0} 1 we have that
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(145,51) = 1. This yields
E, = (Ig0, —2cly1142160) (143, —Ia2144) ({60, —1a2)(La2, —14a).

From the definition of the isogeny we have that do, 3, 89,05 € K so that using the
definition of I49 in Lemma (a) we have Iy9 = 4451 A3, with Ao, Az € K,
Iso = 02A31 + 03491 and Iy = d9Ag; + 63A43,. Note that v(d2) = v(d3) = v((fg) =
v(Az1) = 0.

If v(As31) = 0 then v(I42) = 0 so that (42, —I44) = 1 and by Lemmatam

and we have (143, —142144) =1. AISO, in this case _[60 = (§2A31 and U(Iﬁo) = 0,
hence (Ig9, —I42) = 1. This yields

E, = (Iso, —2cIy1 Ag1 A3102 A1) = (Iso, —2¢ls1 Ag162).

On the other hand, if v(As1) > 0 then I43 = d2 A2 and using this notation

and the definitions of invariants and simplifying, we have
Ey = (0203, Ig0) (02, As1 ) (03, —2cI41 Az Asy)
(62 A21, — A21A310203) (I60, —A21A31)(Asz1, —0203).
Since Igo — 02431 — 035421 = 0 it follows from Lemma 3 that
(To0, —02A31)(—I60, 03 A1) (—02 A1, 03A21) = 1,

which yields
(Iso,0203) = (Is0, —Az1 Az1) (63421, 62 A31).

Using this expression for (I, 5253) in E, and simplifying again gives
B, = (83, —2¢cl41 A2102) (Az1, —0233).

By Lemma .(e), since if v(As;) > 0 then we have dy = —d3. Hence E, =
(53, —2cI41A21(§2) as in the previous case.

Since —2cI41A21(§2 =0 Toyay, it follows that £, = 1 for ON4A and E, =
(—1)® for ON4B as required.

6.6.3 C is of type I, 9
Proof of Tables [4.9] to [4.22

Cases TN1. From the definition of the isogeny we see that v(l23) = 2a and v(ly4) =
2b with v(d2) = 2b # v(d3) = 0. Hence d2, 03 € K and 52, 53, As1, A31 € K. Reducing
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invariants yields
Iis=n0ds=nd3=0lw=01, Iwn=020, In=n02a—F)(a—a3),

— 2 — 2 2
A21 =0 2042, A31 =g O3 + 53.

It follows that E,, = (123, 0141)(144, CIQQAQl)H, where H = (]44, 2[20[42]43)(—]42, _143160)-
We show that H = 1.
If v(As1) = 0 then by Lemma [6.2.1)7] v(I43) = 0 and I43 = d3As; so that

H = (Iy4,62A%)) (I, — A91 A1) = (02431 + 03401, — Az Az1).
Using Lemma 1 and since 89,83 € K2, this gives
= (02A31 + 0391, —Agy A310203) = 1.

If v(A31) > 0 then Ig =p 0349, and 93 = —0s =g —1 from Lemma
6.2.1/6l (e), so that

H = (=62, —A31143)(A21 A31, —I43A21) (143A21, —1).
But since I43 = §oAs1 + d3A31, it follows from Lemma, 3 that
1 = (143, —62A21)(—143,03A31)(—02A21, 03A31)

= (Lu3, —02A21)(—143, —As31)(—062A21, —Az1) = H,

proving the result.

Therefore E, = (Ia3,cly1)(14q, claaAs1). Now clyy =g Ta, and clae A2 =n
T, It follows that E, = 1 for TN1A/E, E, = (—1)?¢ for TN1B/F, E, = (1) for
TN1C/G and E, = (—1)2¢+2 for TN1D/H as required.

Cases TN2. From the definition of the isogeny we see that v(la3) = v(ly5) =
v(Izo) = 0 and v(Iy) = 2a + 2b. Write 2 = ag + aon® and B3 = az + azn?,
as,as € (’)%. We have

— 2.2 _2a+2b — — 2 _ 2
I44 = A9Qa3T at s I45 =0 1 I40 =[O Uy =0 (042 — 043) s

2 2b)

Ino =p 2(a37%" + a3m 2

;I =p 2(ag — a3)”,
Iy9 = 4A51A31 =0 (a2—al)(a2+a1)(043—041)(053+051)7 I3 = a%wQaAm—Fa%ﬂszgl.
It follows that v([22) = v(ls2) = 0. Also by Lemma and using Lemma [6.3.4]
we have that (141, _123180) = 1, and by Lemma @ we have (1607 _140142180) B
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1. ThiS yields FE, = (IQQ, —140]44)(143, —140]42144)(144, 26]22[42)(6, 140).
Cases TN2A/B/C/F /G /H: Here ay, a3 € K, therefore

2_2b

2042 o _ _ 2 2
=2t Is=Ipw=nl, In=n2, Iy=p?2a37"+a37™),

T4y

A9 =2(ag—aq)(ag+ay), Aszi =2(az—aq)(ag+ar), Iz = agﬂ'QaAera%W%Agl.

Hence E, = (120, —144) (43, —L42144) (144, 2cI22143).
If a < b then Iyy =g 272% and 143 =1 72%As; so that

Ev — (27_(_2(17 _7_‘_2a+2b)(A21ﬂ_2a’ —A21A317T2a+2b)(ﬂ'2a+2b,CA21A31).

Simplifying yields E, = (72%,2cA)(7??,2cA31). Now the results follows since we
have T, =0 2cAs; and T, =0 2¢Asz;. Therefore E, = 1 for TN2A/F, E, = (—1)%*
for TN2B/G and E, = (—1)2¢+2 for TN2C/H as required.

If a = b then I4 € K2 so that E, = (I, —1)(I43, —I42) with

Iy = 7r2“(a§ + a%) and I3 = 7T2a(a%A21 + a%Agl)

hence
EU = (7‘(‘20', A21A31)(CL§ + a%, —1)(&%1421 + CL%Agl, —A21A31).

Now (a3 +a3, —1) = (a3 +a3, —a3a3) = 1 and (a3A21 +a3As1, —A21A31) = (a3 A2 +
a%Agl, —a%a%AzlAgl) =1 by Lemmam therefore £, = (2%, Ag1 As1).

For TN2A (respectively TN2C), we have Ty, = c(aa — 1) (a2 +a1), Ty =0
claz—aq)(az+ar) € K*2(¢ K*? respectively) so that (in both cases) (aa—a1)(ag+
a1) € K*2 & (a3 — a1)(az + ay) € K*2. Tt follows that Ao A3; € K*? and hence
E, = 1 which proves the result.

For TN2B, we have Ty, =0 c(as — a1)(ag + a1) ¢ K*2,T,, =g v(ag —
a1)(as + a1) € K*% so that Ay A3 ¢ K*2 and E, = (—1)?* as required.

Cases TN2D/E/I/J: Here a = b and Frob swaps 02 and d3 and hence ag, 52, as, O3 ¢
K. Without loss of generality, let Frob(az) = as so that Frob(f2) = 3. By Lemma
we have v(l40) € 2Z since v(u;) = 0. Also, since a = b we have v(Iy4) € 2Z

and as above

— 2 2 2 — .2 2 2 _ 2 2
Iygy=7 a(a2 + a3), Iis=mn a(G2A21 + CL3A31), 144 =0 aja3

This yields E, = (120, —L40144) (143, —La0ls2144) (¢, 110).

If 2a € 2Z, since v(I42) = 0, it follows from Lemmal6.2.1|[7|that (143, —La0l4214a) =
1. Hence E, = (7%%(a3+a3), —Lia3a3) (¢, I10). Simplifying using Lemma which
gives (a3 + a3, —a3a?) = (a3, a3) as above, yields E, = (¢, Iy9). Now, £ = {1{2(5 with

{ = %,EQ =0 2cas,l3 =0 —2cas. It follows that v(f2) = v(¢3) = 0 and that
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v(¢1) = 0 for TND/E while v(¢;) = —r for TNI/J.
Therefore E, = (f1,u?). For TN2D/E, v(¢;) = 0 and E, = 1. For TN2I/J,
v(l1) = —r so that E, = (—1)" since u? ¢ K*? as required.

If 2a is odd then using the above expression for the invariants yields
FE, = (7‘1’2&(&% + a%), —140[44)(71'2&(&%1421 + (l%Agl), —140]42144)(4, 140)

= (¢, Io) (7%, I3y 13, I12) Hy Ho,

where
Hy = (a3 + a3, —Iyolus), Ho = (a3A21 + a3Az1, —Liolsalss).

If v(a3 + a3) > 0 then v(ly) > v(Iy) = v(ly) by Lemma Therefore
H; = 1 by Lemma Similarly for Hy since if v(a3Aa; + a3A431) > 0 then
v(I43) > v(I42144) so that Hy = 1 by Lemma

Therefore E, = (722, I12) (¢, I10).

Recall from Proposition that Ty, = c(ag — ag)(ag — B3) (a2 —aq) (s +
a1) and Ty, = c(asz — az)(as — f2)(as — a1)(as + a1). In particular in these cases,
Frob(Ta,) = Th, and Frob(Ts,) = Ty,. Moreover,

ToyTos = 02(a2 — a3)4(a2 —ag)(ae + a1)(ag — ar)(ag + aq)

so that To,To, =0 la2.

Now, let t@ and t§3 denote the square roots of Ty, ,T,, respectively. By
definition of TN2D/I, we have without loss of generality Frob(t},) = tf, and
Frob(tf,) = tl,. Therefore To,Tn, = (t1,t,)? € OF%, and hence Ij» € OF*. On
the other hand, by definition of TN2E/J, we have Frob(t},) = tf,, Frob(tl,) =t,,,
Frob(t,,) = t,, and Frob(ty,) = tf,. It follows that T, Tn, = (t5,t5)? ¢ OF2,
and hence Iy2 ¢ (’)[Xf.

This yields E, = (72%,143) = 1 for TN2D, E, = (7% I;3) = (—1)2* for

TN2E, B, = (722, I12)({, Is0) = (—=1)" for TN2I, and E, = (72, 142)(¢, Is0) =
(—=1)2e+7 for TN2J as required.
Cases TN3. From the definition of the isogeny we see that v(I23) = 2a,v(Iy5) = b
and v(l4a) = v(Igp) = 0. Also since v(ag — ag) # v(f2 — f3) and P2 # [3, it follows
that ag, 82, a3, 3 € K (since otherwise I would permutes as and g while Frob
would permute B2 and (3, a contradiction). In particular b € Z, A9, A3 € K and
da, 03, 52, 03 € K*2, Reducing invariants yields

Iys =0 Iyo =0 Iso =0 1,

4 =n _71, Ing = —(ag — B3) (a3 — B2), Ia1 =p B2fs,
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so that v(¢1) = v(l22) = v(I41) = 0. Now from Lemma and using Lemma
we have that (120, —140[44) = 1. Therefore EU = (123,6141)(145, —€122121)H,
where H = (—1I49, —143)(—142,Isp). We show that H = 1. Using definitions of

invariants and since As1, A31 € K and 4o, 3, 52, 53 € K*2, we can rewrite H as
= (—Ag1 Azy, — A2y — A3103)(—A21Az1, A2103 + A3102)

= (7A21A3152537 7142152 - A3153)(*A21A31(§2(§3, A21(§3 + A31(§2)-

Using Lemma, 1 we have H = (Ag109, A3153)(A21(§3, A31(§2) = 1.

Therefore E, = (Ia3,cly1)(las, —€I22121). Since ¢ = (10303 and Iy = —lal3, we
have E, = (Ia3,cl41)(Is5,01122). Noting that clyy =g Ty, and £l =g Ta,, we
obtain that E, = 1 for TN3A, E, = (—1)2¢ for TN3B, E, = (—1)° for TN3C and
E, = (—1)2¢* for TN3D as required.

Cases TN4. From the definition of the isogeny we see that v(Iy) = v(d3) = 2a,
v(Igo) = ’U((ig) =band v(l23) = v(ly5) = 0. Also ay, a9, f2 € K. In particular b € Z
and 99, d3, 52, 55 € K*2. Reducing invariants yields

Is=plis=n0lw=nl Ixw=02 Ix=02(as—oa)(as—p5G2),

In =pai(on + f2), L2 =p 2(a1 — B2)(a1 + B2) (a1 — asg)(a1 + B3),
Iiz =g — (a1 + B2) (a1 — B2),  Ieo =0 —2(o1 — a3)(aq + a3).

Therefore E, = (Iy4,2cla0lz2142143) (150, —2cIy1142160). Replacing invariants with

their values above and clearing squares in K yields

E, = (I, c(az — B2)(oq + B3))(Is0, 2cai (a1 — B2)).

Noting that c¢(as — B2)(a1 + 83) =0 T, and 2cay (a1 — B2) =0 Ta,, we obtain that
E, = 1for TN4A, E, = (—1)2® for TN4B, E, = (—1)° for TN4C and E, = (—1)2+?
for TN4D as required.

Cases TN5. From the definition of the isogeny we see that v(Iy5) = b, v(Igg) =
v(é},) = a and v(l23) = v(Iy) = 0. Also aj, a9, f2,a3,03 € K. In particular
a,b € Z, As1, A1 € K and Iy, 82,03, 02, 03 € K*2. Reducing invariants yields

Iy=plu=nlw=0l, In=0a(a+pBs), A =0(az+ar)(az—a).
Using Lemma it follows from Lemma that (Iog, —I40l44) = 1. Therefore
Ey = (145, —121122) (180, —2¢ls1142160) (—1a2, —I13160).

If v(I31) = 0 then by Lemma [6.2.1]6| (a), we have v(l42) = 0 and Lemmata
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6.2.1)|7| and yields (a3, —Is2l44) = 0. Also, by Lemma [6.2.1}}6|(b), we have

160 = 521431 so that
By = (Iys, — 0Ty Ing) (I, —2¢I4y Aoy A2 65) (— Az Azy, 02 A31)

B, = (Ii5, —0To1 Ioz)(Iso, —2cIy A2162).

If v(As31) > 0 then by Lemma [6.2.1))6|(c) we have Iy3 = d2A91 =g A9 and
52 = —1. Therefore

B, = (Ius, —Ix1 Ing) (Iso, —2¢I41 A9102) H,  H = (Igo, 69 A31I0)(— A1 Az1, — Ag1 Ip).

We show that H = 1. From Lemmal|6.2.106l(b) we have that Igy—d2A3; — 9341 = 0,
therefore using Lemma [6.3.3]3 we have

(Is0, —02A31)(—Ig0, 03A21 ) (=2 Az1, 03 A01) = (Iso, Az1)(—Is0, 03421 ) (As1, 03491) = 1

Now H can be re written as follows H = (53, 52A31I60)(—A21A31, —As11g0), and we
see that H = (Iso, A31)(—Is0, 03A21)(As1, 03 421) = 1.

Therefore in both case we have E, = (145, —¢I21122)(Ig0, —20[41A21(§2). Not-
ing that —fIs11s2 =g Ty, and —20[41142152 =0 T,,, we obtain that E, = 1 for
TN5A, E, = (—1)¢ for TN5B, E, = (—1)® for TN5C and E, = (—1)*** for TN5D
as required.

Cases TN6. From the definition of the isogeny we see that v(Igp) = a + b and
v(lys) = v(l23) = v(l4q) = 0.

Cases TN6A /B/C. Here ay, a9, B2, a3, 83 € K. In particular a,b € Z, Aay, As1 €
K and Iy, 53,082,053 € K*2. By Lemma we have that v(Iy) = 0 and
Lemma yields (Iz9,—1I40l44) = 1. Also, Lemma yields v(l22) = 0
so that (Iaa, —I44l45) = 1. Similarly, Lemma gives v(ly3) = 0 so that
(I3, —140l42144) = 1. Finally, we have v(¢3) = v(¢3) = 0. Reducing invariants

yields
A1 =0 — (a1 — B2)(a1 + B2), Az =0 —(oq — B3) (o + B3),

Iis = 201 (B2 — B3) (o + B2) (a1 — B3)
so that v(ls2) = 0 by Lemma [6.2.1)6| (a). Therefore
E, = (Ius, —0I21)(Is0, —2¢la1 1s2160) (—1La2, I6o) (—1, I41).

Recall that ¢ = £1€2£3 and 121 = —€2£3. It follows that <I45, —5121) = (I45,£1). Recall
that u; = ag + B2 — a3 — B3 so that £ = A%' In particular, we have v(Ag) = 0 and
up = 2aq + B2 — PB3. If v(ur) = 0 then (I45,¢1) = 1. On the other hand, if v(u;) > 0
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then by Lemma@ we have Iy5 =0 1. Hence (I45,¢1) = 1 and
Ey = (Is0, —2cla1142160)(— 142, I6o) (—1, Ia1).

If a < b, by Lemma|6.2.16| (b) we have Iy = d3As1. Moreover, using Lemma
we can write Iy1 = 2uem®(aq — B2)(on — az)(oq — B3) for some u, € OF.

Replacing invariants by their value and simplifying yields
E, = (6203, —uqm® (o — f2) (1 — az) (a1 — B3) Ag1 A3103Aay ) (A1 Azy, 03 A91 ) (722, —1)

= (7%, c(ar — ) (a1 — B3))(n”, (e + B2) (a1 + B3)).

Noting that T,,, =n c(a1 — f2)(a1 — 83) and T—n, =0 (a1 + B2) (a1 + 53), we obtain
that £, = 1 for TN6A, E, = (—1)% for TN6B and E, = (—1)*** for TN6C as
required.

If a = b then U(Igo) € 27 and EU = (ISOaI41[60)(I607 —142)(141,—1). Using

the definitions of invariants in Lemmata [6.2.1/l6| (a), and since Igg = 0203, we

may write
Iso = ugupm®ai(ar — B3) (a1 + B3) (o1 — Ba)(ar + Bo)

= uqupm 0t Agy Az,
Iy = arm®((up(on + B2) (o1 + B3) + ua(ar — f2) (a1 — f3)),
Igo = =207 (ua(ar — B2)?*(a + B2)? + up(cr — B3)* (a1 — Ba)?),

for some u,,up € Of. Hence replacing invariants by their values and simplifying

using Lemma [6.3.3] gives
(7%, Ag1 A1) (ua(ar — B2)*(a + B2)? + up(cr — B3)* (a1 — Ba2)?, —uaus)

((up(a1+B2) (a1 +B3)+ua (1 —FB2) (a1—PB3)), —uqup(a1—pF3)(a1+583) (a1 —F2) (a1+52))
= <7Ta, A21A31).

Noting that Aoy Asy =0 Ta,T-q,, it follows that E, = 1 for TN6A, E, = (—1)® for
TN6B and E, = (—1)2% = 1 for TN6C as required.

Cases TN6D/E. Here ajag, f2,a3,03 ¢ K and a = b. However, by semistability
criterion [3.4.29] we have that a1, g, B2, a3, 83 € K™ so that v(ls) € 2Z. Therefore,
repeating the same arguments as above we have (log, —I40l44) = 1, (I22, —I44145) = 1
and (Iy3, —I40l42144) = 1. This yields

E, = (140, 4) (145, —lI21)(La1, —I23180) (I60, —L10142130).
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Using notation for ¢; as above, and since v(f2) = v(f3) = 0, we can simplify
(I40,0)(I45, —lI21) into (u?,u1)(Iys,u1) = (uilys,u1). Now, if v(u;) = 0 then
(u2145,u1) = 1. Otherwise, by Lemma we have I5 ¢ K*2. But u? ¢ K*2,
hence u?ly5 € K*? and (u?l45,u1) = 1. It follows that E, = (141, —I23180)(Ie0, —L10142150)-
Using the notation for Igg, 141, Igo set up above, using Lemma [6.3.3] and simplifying

we have

E, = (7" (up(a1 + B2)(a1 + B3) + ug(ar — B2)(a1 — B3)), —afuqupas Asg Azy)

(" (uq (a1 — B2)?(a + B2)® + up(an — B3)*(an — B2)?), —L1o A1 Agiuqupai Aoy Asy)
= (7%, Ag1 A31) (7, afly0) = (7%, Ao1 Az1) (7%, du?) = 1,

since uy, af ¢ K*2. Therefore E, = (7%, Ag; Az1).

Recall that As1 A3y =g Ty, T-q,. In particular in these cases, Frob(T,,) =
T_o, and Frob(T_n,) = T,,. Now, let ti and tj_Ea1 denote the square roots of
To,, T, respectively. By definition of TN6D, we have without loss of general-
ity Frob(tf) = t*,, and Frob(t*, ) = tf . Therefore To, T o, = (t5 t7, )% €
(’)fg, and hence Iy € (’)fg. On the other hand, by definition of TN6E, we have
Frob(tf) = t*,,, Frob(tt,,) = tg,, Frob(ty,) = t-,, and Frob(t_,, ) =t} . It

follows that To, T—q, = (t5,t1,,)? ¢ OF*, and hence I;2 ¢ O,

a1l—aq
This yields E, = (7%, I42) = 1 for TN6D, E, = (7%, I12) = (—1)® for TN2E

as required.

Cases TN7. From the definition of the isogeny we see that v(ly5) = a + b and
v(Ig0) = v(I23) = v(I44) = 0.

Write ag = azm®+ g and B3 = bsm? + Bo, with 2a,2b € Z and u; = ag+ B2 — a3 — f3
so that ¢; = K—IG. We have

Ag = c(azm®(Br — a1)(B2 + a1) + bsw’ (a2 — a1)(as + a1) + azbsm P (as + B2)),

0 = —(agm+b37’), Doy = (ap+f2)?, 62=03, Lu=05, =03 Iso= 522,

Lis = 4agbsm* P (ag—Ba—bsn’) (Ba—p—asm®), Iyo =002, Ipp = —62, Iio =0 uj,

I = 2((e1 +a2)? (a1 +52)? + (s —a1)? (B —a1)?),  Iug = 202A21, Igo = 202401,
Ag = Az = (e —ar) (a2 +a1) + (Bo — a1)(Bo + 1), Luo =0 A3y,

so that

Ey, = (140, €1I20)(1s5, —I220121 ) (141, —I23180) (La2, —La4130) (143, —La0la2144) (160, —La0142180)

and (141, —I23l39) = 1 by Lemmata |6.3.4] and |6.2.1 since v(Iy1) > 0 = v(Igo).
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Therefore

Ey = (140, I20) (145, —I220121) (1a2, —I4a130) (143, —La0l42144) (L0, —1s0142150)

Replacing invariants by their reduced expression above gives
~ 2 ~ o2
Ey, = (u},082) (115, 62 (ca+52)?) (A3, =030 ) (209 A2, —us A3,62)(200 o1, —ud A21057).

By definition of the isogeny, either ag, 32, a3, 83 € K and (ag + 2)%, A3, € K*2,
or ag, B, a3, Pz ¢ K but Frob(as + B2) = (g + B2) or Frob(as + f2) = (ag + 53).
Either way, (ag + 32)2, A2, € k2 and hence (az + B2)?, A3, € K*2. Therefore E,

simplifies to
(u2,085)(Ius, 620) (202 Ag1, —ud) (202 A1, —u?) = (u2,€82)(Lss, 620) (82, u?) (82, ud).
Now since I45 = u?(A; — By)? it follows that E, =
(uF,£82) (uF (A1 — B1)?, 62) (8o, u7) (0a, u7) = (A1 — B1)?, 62£) (52, uF) (92, ui).

Cases TN7A/B/C/D. Here v(u?) = 2a, v(A; — B1)?> = b—a and ay, 32 are fixed
by Frobenius so that 6, € K*2. Therefore E, = ((A; — B1)?, 020)(6, u?). Note that
by the semistability criterion v(l) € 2.

TNTA. Since 65 =n To, T3, =0 1, we have that ( Ag, u%) =1.

Now £y = (S(%I?Z)f)(&%z_%l); =0 Tp, =0 1. Hence ((i41 — B1)%,60) =1and E, = 1.
TN7B. Since 02 = T,,Tp, € K*2, we have that (02,u?) = (—1)%2.

Now {6y = % = T, = 0. Hence ((41 — B1)%,82¢) = 1. Hence
E, = (-1)%,

TN7C. Since 0y = T, Tp, ¢ K*2, we have that (9, u?) = (—1)22.

Now (6, = (exttalfa-fol. = 7y ¢ |2 Hence (A1 — B1)%,00) =1 & b—a is
even. Therefore £, = 1 < 2a = b—a mod 2, equivalently F, = 1 < a+b = 0 mod 2.
TN7D. Since 6y = T, T, =0 1, we have that (52, u?) = 1.

Now (6, = (exEoala-fols — 7y ¢ |2 Hence (A1 — B1)%,026) = 1 & b—a is
even. Hence F, = 1< a+ b =0 mod 2.

Cases TN7E/F/G. Here v(A; — B1)? = 0 and ag, 32 are fixed by Frobenius so
that dy € K*2. Let v(u1) = a+71 > a as in the proof of Tablein Sectionm
By definition, we have v({) = v(¢1) 4+ v(f2) + v(¢3) and by the semistability criterion
v(f) € 2Z. Here v(¢1) = r1. Either r1 = 0 and v(¥) = v(f3) + v(l3) € 27Z
or 11 > 0 and v(fy) = v(f3) = 0 so that r; € 2Z. Therefore E, = (d,u?) and
v(u1) =a+r; =a mod 2.

TN7E. Since 6y =0 T, T3, =0 1, we have that E, = (32, u3) = 1.

TNT7F. Since 0y = To,Tp, ¢ K*2, we have that E, = (62,u]) = 1 < 2a = 0 mod 2.
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TN7G. Since 0y = Ty, T3, € K*2, we have that E, = (9, u3) = 1.

Cases TN7TH/I. Here v(A; — B1)? = 0 and ag, 32 are not fixed by Frobenius,
hence o ¢ K*2. Let v(u1) = a + 71 > a, as for the cases TNTE/F/G, we have
v(uy) = a+r; = a mod 2. Tt follows that E, = (8, u2)(da, u2) with (0z,u?) = 1 &
2a = 0 mod 2.

TNT7H. Following the proof of Table in Section we see that 0y € K*2
and hence E, = (8, u?)(02, u2) = (63, u2) = 1 & 2a = 0 mod 2.

TNTI. Following the proof of Table in Section we see that 6o ¢ K*2 and
hence B, = (02, u2) (6, u?) = (82,u?)? = 1.

Cases TN7J/K/L/M/N: Here v(A;—B1)? = 0and v(Ag) = 2r > 2a ,v(u1) = a
so that v(¢1) = —r and v(f2) = v(f3) = 0 as in Section [5.3.3] Therefore E, =
((A; — B1)%,0) (69, u2)(d,u2). Note that from the cluster picture of C' we see that
(Al — B2 € KX2 & (Ay— By)2 € KX2 & §y € K*2.

TN7J/L. Here (A; — By)?, 89,05 € K*2. Hence E, = 1.

TN7K. Here 6, € K*2 and (4;—Bj)?, 65 ¢ K*2 hence E, = ((A1—B1)%,0)(82,u3),
with ((A; — B1)%,¢) =1 < r=0mod 2 and (d,u?) =1 < 2a = 0 mod 2. There-
fore E, =14 2a+r =0 mod 2.

TN7M. Here 8, ¢ K*2 and (A} — B1)%, 0y € K*2 hence E, = (02,u2) =1 < 2a =
0 mod 2.

TN7N. Here (A; — B1)2, 8,05 ¢ K*2 hence E, = ((A1 — B1)2,£)(82,u2) (6, u2) =
(A1 — B1)2%,0)(62,u2)? =1 < r = 0 mod 2.

Cases TN8. From the definition of the isogeny we see that v(Igp) = a + b and
v(lys) = v(l23) = v(l4a) = 0.

Write ap = a1 + aom®, fo = —aq + baw®, a9, by € (’)%, with a,b € Z (since oth-
erwise I would permute both clusters in the cluster picture of C', which contradicts
the semistability criterion. In particular, v(u;) € Z and Aay, As1, Aaip, Agim €
K. Let u; = ag + B2 — ag — B3 so that /1 = X—g. We have

Ag = en(ag(oq + a3)(aq + B3) + bam? ™o — a3) (o — B3) — asbam® (a3 + fB3)),
Uy = aom® + bow’ — a3z — B3, Llo = c(az + f3), L3 = —c(agm® + bym®),
Iss =0 09 = a%, Iy =p a%(sg, Iso =n —a%agbgw‘”b + 0(7ra+b),
I = (aom® 4 bom®) (s + B3), Aoi = 2ay(agm® — bon®) + o(7®),  Iyo =p u3,
Ly = anbor’(an + as)(on + B3),  Laim = —aragm®(ar — as)(on — fs),

To, = c(201)* (01 — a3)(a1 — B3),  T-oy = c(2a1)*(—a1 — a3)(—a1 — B3),

I45 = (fg =0 Ta1T—a1~
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Using Lemma and Lemmata [6.2.1][3| and [6.2.1][1] we have (Ia9, —I41) =
(I29, —Iy4l45) = 1. After simplification, this yields

E, = (=1, 1s1143160) (I23, I11) (La5, —C121) (1ua, 1s2143) (Iso, —2¢Is1 Laaleo) (1a2, —I0143)
= (—1, 141 A21) (123, I41) (145, —€I21) (130, —2cls1 A21) H, where
H = (=1, Ii3160) (6203, Aoy Az1143) (6302, As1160)(Aa1, TeoLaz) (As1, —Teolaz) = 1,

We show that H = 1. Since I43 = 09 A1 +33A31 and Igg = (§2A31 +(§3A21, regrouping
and using Lemma we obtain

E, = (Iu3, —0203A91 A31) (Ig0, —0203 A1 Az ) (5203, Aoy Az1 ) (Azy, 203)

= (62A21a 53A31)(52A3h 53A21)(52633 A21A31)(A31, 5253)7

which gives E, = (As1,—03) after simplification. We are done by noting that if
v(Asy) > 0 then 8 =g —d3 by Lemma (e)7 so that in this case, —d3 is a
square. Therefore H = 1.

We also show that if @ = b then v(Igg) € 2Z and (—1, I41 A21)(Isp, —2clq1 A21) =
1. We have (=1, I41 A21)(Ig0, —2¢l41 A21) = (=1, 141 A21)(Ig0, [41 A21), with

Iy = arm®(ba(ar + az) (a1 + B3) — ag(a1 — a3)(oq — B3)), A2 =217 (az — ba).
Now using Lemma [6.3.3]
(I, —Iso) = (a1m®, agb) (ba(ay + a3) (a1 + B3) — ag(on — as)(ay — B3), agbada)

= (0417'('(1, agbg)(bg(al + Oé3)(041 + ,33), ag(Oq — Oég)(Oq — 53)) = (Oélﬂ'a, a2b2).

Similarly,
(AQl, —Igg) = (20417T“(a2 — bg), agbg) = (20&171'(1, agbg).

Therefore (141 A21, —Ig0) = 1.

Cases TN8A/D/E/F/G/J/L. Here of = I3 = 6 = Iy5 = 82 =0 1, hence
E, = (—1,141A21)(Igo, —2cl41 A2y).

Cases TN8A /D. Here a < b, hence

Ao = 201a9m?, Iy = —ajaem®(a1 — asz) (o — B3),

so that
E, = (—1,141A21)(Is0, —2cl41 A1) = (Is0, —2¢l41 A21).

We have —2¢141 A9 =g T, so that E, =1 for TN8A, and E, = (—1)““’ for TNS8D.
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Cases TNS8E/F/G/J/L. Here a = b hence E, = 1 for TNS8E/F/G/J/L.
Cases TN8B/C/F/K. Here o =g I3 = 0y =g 1 but Ty, Ty, Ius, 02 #0 1.

Hence

E, = (—1,1451A21) (145, —0121) (10, —2¢l41 A21).

Recall that £ = €100, Iy = —fol3 and ¢; = K—é so that hence (Iy5,—0l21) =
(145, A“—é)

Cases TN8B/C. Here a < b, u; = —a3z — 3 + o(n?),v(Ag) = a so that
(Iys, —CI21) = (Lys,u1m®) = (Iy5,u1)(y5,7*), since uy € K. Also note that if
v(u1) > 0 then Is € K*? hence (Iy5, —fIs1) = (I45, 7). It follows that

Ev — (_17I41A21)(1807Ta1)(14577ra) = (I8O7Ta1)(Ta1Tfa1a7ra) = (ﬂ-a—"_b)T*al)-

Therefore, E, = 1 for TN8B and E, = (—1)%? for TN8C as required.

Cases TNS8F. Here a = b but v(Ag) = 2a. It follows directly from the TN8B/C
cases that £, = 1.

Cases TN8K. Here a = b and v(Ag) = 2a + 2r, with » > 0. We have E, =
(Is5, A-) = (45, m77) (145, u1). As in Section we have v(u;) = a. Therefore,
Ey = (115, 35) = (Iy5, 7F") (145, ) = (Iy5,7"), and E, = (—1)" for TN8K.

Cases TN8H /M. Here 145 = 02 =0 1 and a? = I3, #Z0 1 so that

E, = (123, 141).

Using Lemma and Lemma we have that E, = 1 since v(Igg) € 2Z.
Cases TNS8I/N. Here o? =g Io3, 145,70 1 and v(Ag) = a so that

E, = (123, 141) (145, —lI21).

as in the cases of TN8B/C and TNS8K, it follows that E, = (145, —¢I21) = (145, A“—g)
and E, =1 for TN8I but E, = (—1)" for TN8N as required.

6.6.4 (' is of type Uy 2v.2n
Proof of Tables [4.23] to [4.30]

Cases Ul. From the definition of the isogeny we see that v(Ila3) = 2a, v(Iy4) =
2b+2n and v(I45) = v(Igp) = 0. By semistability criterion |3.4.29} we have v(c) = 0.
Let u1 = ag + B2 — ag — (3 sothatﬁlzg—é.

Computing invariants and reducing mod 7 we find that

2 _ 2 _ _
ui =p (o —a3)?, 01 =0 —cagag, I =g asas,
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Iso =0 Ls=nIn=0lp=0l, Ip=n2a—as)?

A21 =0 20[%, A31 =0 20[%
Using Lemma and Lemma [6.2.1}{8) we have (Igp, —I10l42130) = 1. After sim-
plification, this yields

E, = (—1,143) (120, —I10144) (110, clu3)(c, Io3144) (144, 2122143).

Cases ULA/B. Here 62,03 € K and 2a,2b,2n € Z. In particular, Iy € K*?,
122 =0 Agl =0 A31 =0 2. Therefore E, = (143, —1)([20, —144)(144,143)(0, 123144).
Write B2 = ag + asn®, B3 = az + az7™. If b < n we have

Ioo =0 2a37% + o(7?®),  Liz =0 a37% + o(7?),

so that (I3, —1)(Ing, —Iag)(Iag, I13) = (w20, —1)(2n%0, —g2bH2n) (20420 726y — 1,
On the other hand, if b = n then v(l44) € 2Z and it follows from Lemmata
and using Lemma that (I3, —I44) = (I20, —I44) = 1. Therefore E, =
(¢, I23144).

For U1A, we have ¢ € K*2 hence E, = 1. For U1B, we have ¢ ¢ K*? hence B, = —1
if and only if one or three of 2a, 2b, 2n are odd. Equivalently, F, = —1 if and only
if 4ab + 4ac + 4bn is odd as required.

Cases U1C/D. Here 6,03 ¢ K. In particular, Iss, I4g ¢ K*2 but v(Iy),v(I40) €
27. Therefore (122, 144) = 1 and by Lemmataand using Lemmam
we have that (143, —I10144) = (I20, —I10144) = 1. Therefore E, = (¢, Is3) and E, =1
for U1C, while F, = —1 if 2a is odd, E, = 1 otherwise for U1D as required.

Cases U2. From the definition of the isogeny we see that v(Iy5) = n, v(Igy) = a+b
and v(I23) = v(lsa) = 0. By semistability criterion we may assume that
v(c) = 0. Let u3 = ag + B2 — as — P3 so that {1 = K—g.

Computing invariants and reducing mod 7 we find that

ui =2a1, 1 =gclag — B)(er + Ba), In =n —(a1— B2)(a1 + B2),

Ip =0 —Is1, Iyo=0d1, Ax=0A3, lp=nlu=0ol
Write g = a1 + apm®, az = —oq + asw®, 3 = o + bsw™. Then

3 b o 2 _a+b
02 =0 —2a3m’a1 A9y, O3 =0 2aam a1 A9, Igo =0 —agazaiT T,

I =0 araan’(aq + B2)? — araan® (B2 — an)?.
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Using Lemma [6.3.4] and Lemmata [6.2.1][T} [6.2.1][7} we have
(120, —Ls014a) = (La3, —La0laals2) = 1.

Also since Iso =g —I21 and £ = ¢, we have (Iy5, —lIo1122) = (Iu5,0) = (I45,¢).
After simplification, this yields E, = (¢, Isols5)(Ig0, —2141160) (141, —I23) (L0, —I40)-
Cases U2A/B. Here I3 € K*? and 83,03 € K. In particular, I;o € K*? and
E, = (¢, Isolss)(Ig0, —2141160) (141160, —1).

If a < bwe have Igo =0 2a301 7, I3 =0 —araam®(Ba—aq)?, so that —2141 Igo =0 1
and (Iso, —2L41 Ig0) (L1 Ig0, —1) = 1.

On the other hand, if a = b then v(Igy) € 2Z and it follows from Lemmata 3|
and using Lemma that (141, —Ig0) = (Ie0, —Ig0) = 1. Therefore E, =
(¢, 145130).

For U2A, we have ¢ € K*? hence E, = 1. For U2B, we have ¢ ¢ K*2 hence
FE, = —1 if and only if one or three of a,b,n are odd. Equivalently, E, = —1 if and

only if ab + an + bn is odd as required.
Cases U2C/D. Here I3 ¢ K*?, 53,65 ¢ K and a = b so that v(Ig) € 2Z.
We have EU = (C, 180145)(1807 _2141]60)(1417 _123)(160, —140). By Lemmata g

and using Lemma we have that (141, _140180) = (160, _140180) = 1.
Therefore E, = (¢, I45) and E, = 1 for U2C, while E, = —1 if n is odd, E, = 1

otherwise for U2D as required.

Cases U3. From the definition of the isogeny we see that v(ly5) = a+b, v(l23) = 2n
and v(Isg) = v(lsa) = 0. By semistability criterion [3.4.29) we may assume that
v(c) = 0. Let u; = ag + B2 — az — P so that {1 = X—IG. Write

a1 = a1, az=ag+azm®, Bz =Pa+bsm’,  up=ag+ e —az— B,
for some aq, ag, bg € (’)%, so that ¢ = K—é. By definition of Ag, £1, ¥, 3 we have
Ag = cr® <G3(52 —a1)(B2 + a1) + b3’ ag — a1)(ag + a1) + azbsm(ag + 52)) ,

up = 7%(ag + bgﬂ'b_“), ly = c(m%(ag + b37rb_“) +ag + B2), U3 =—c(az+ B2).

Reducing invariants mod 7,
Iy =n1l, dy=63=nlp, Iluu=pl, In=-i,

6o = &5 =0y 1, Isp=pn1l, I =d mod T,
Iis = 2(a5 + 83)02,  Ieo =0 2(a3 +B3), Lz =01,

so that I43160 = 52. Therefore EU = (120,140)(0, 123)(140,£I60[43)(I45,—f[gg). Re-
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placing invariants by their reduction mod 7 and since Iy =g u3, df1 = 2(A;—B1)?,
this yields
Ey = (uf, 62)(c, Ias) (ui, 62) (u, €) (ui (A1 — B1)?, £53)

= (¢, Io3) (uf, 62) (A1 — B1)*,0)((A1 — B1)?, b2).

We have

I45 =0 —a3637ra+b + O(7Ta+b), 123 = a%ﬂ%.

Now if @ < b then ¢ =g c. Otherwise, if a = b then v(A; — By) = 0 and (A; — B1)? €
K*? so that E, = (c, I3)(u3, 82).

Cases U3A. Here a < b, ¢c € K*? and 63 € K*? hence ¢ € K*? and E, = 1.
Cases U3B. Here a < b, ¢ ¢ K*? and do € K*? hence £ ¢ K*? and E, =
(¢, I23)((A1 — Bu)?,£) = (—1)*t0+2n,

Cases U3C/G. Here a = b, c € K*? and 6 € K*% and E, = (¢, Io3)(u?,82) = 1.
Cases U3D/H. Here a = b, c ¢ K*? and 0y € K*? and E, = (c, I3) = (—1)?".
Cases U3BE/I. Here a = b, c € K*? and 0y ¢ K*? and E, = (u?,82) = (—1)%2

Cases U3F/J. Here a = b, c ¢ K*? and 0y ¢ K*? and E, = (c, Io3)(u2,89) =
(_1)2n+2a‘

Cases U4. From the definition of the isogeny we see that v(Igg) = a+b, v(I44) = 2n
and v(Iy5) = v(l23) = 0. By semistability criterion [3.4.29, we have v(c) = 0. Let
u1 = ag + B2 — oz — B3 so that ¢ = X—g. Write

as = a1 +am®, Po=—oq+bor’, By=az+bym", u;=as+ P —az— P,
for some as, by, by € (’)%, so that /1 = X—g. By definition of Ag, 1, £, {3 we have

Ag = en®ag(ay + a3)? + agbsm™ (a1 + a3) + bam® "oy — a3)?

b—a+n( b—l—n),

—bgbgﬂ' a1 — Oég) — 2&2()20[37Tb — a2b2b37r
Uy = 7r“(a2 +bg7rb_a) —2a3 — bgﬂn, fy = c(2a3 +bg7rn)), l3 = —Cﬂa(az —I—bgﬂ'b_a).

Reducing invariants mod 7,
(52 = 123 =0 Oz%, IQQ =0 204%, (§2 = (a1 — 053)2(041 + 043)2 = 145 =0 1,

Inp = Isp = Az1 = —2(a1 — a3)(o +a3), Iso =01,
Ao = a27ra(2041 + a27ra) + b27rb(—2041 + bQ']Tb),

Iy = 8b27rb(2a1 + CLQ?Ta)(ag + 041)(53 + 041) + 8ag7r“(—2a1 + bgﬂ'b)(oz;g — 041)(/33 — al).
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It follows that
E, = (=1, 141143) (120, 144)(g, Laa1s0) (141, dg1) (L4, 2122 142143) (130, —2141142160) (142, —L60143).

Cases U4A /B: Here a < b, Is3 = d2 = a% € K*2 therefore Iy = 2 and

E, = (¢, Inalgo)H, H = (—1,141143)(Laa, Ir2142143) (150, —2141142160)(1a2, —I60143).

We show that H = 1. Since a < b we have A1 = 2a1a9m® and Iy = —asoqw®. It
follows that

E = (—1,I41143) (03, A% Ao1 I13) (Iso, A3y A3)) (A21 Asy, —Asz1 143)

= (—1, 141143) (93, A21143) (A21 Az1, —Az1143)
= (—1, A2162143) (03, A2102143) (A2162, —As1143) (143, A31)
= (143, —A3103)(A2102, 03A31)(A2102, I43) =1,

by Lemma since Iy3 = 02491 + d3A31. Hence E, = (¢, I44l5p). As required,
we obtain that E, = 1 for U4A, since ¢ € K*? and E, = (—1)%+"*+27 for U4B since
c¢ K*2,

Cases U4C/D/G/H. Here a = b, 63 = Io3 =0 a3 € K*? so that

E = (—Is0, I11142) (143, —1) ({44, I22142143) (142, I60143)-
Now v(Igg) € 27 so that if we let Igg = —m2%agba (a1 — a3)? (a1 + a3)?, we have
(—Iso, IsLsz) = (azba, az — ba)(asgbs, ba(ay + a3)® — az(az — a1)?) =1
by Lemma since (a3 + a1)?, (a3 — a1)? € K*2. Therefore
Ey = (¢, Inadso)(—1, 143)(1aa, I2a42143) (142, —I60143),

with
(143, —03A31) (143, A2102) (92421, 03A31) = 1,

by Lemma since Iy3 = 02421 + 03A31 as above. It follows that E, = (¢, [44)
and E, = 1 for U4C/G as ¢ € K*? and E, = (—1)?" for U4D/H since ¢ ¢ K*? as
required.

Cases U4E/F/1/J. Here a = b, 63 = I3 = o ¢ K*2. Hence E, = (c, I44) H1 Ha,
with

Hy = (=180, 141 A21) (92, A1) (141, I23),
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Hy = (143, —02A21)(143,03A31)(03, A2102)(A21, Az1).

On one hand, we can write H2 as H2 == (143, *(52A21)(I43,(53A31)((53A31,A21(52), SO
that Ho = 1 by Lemma since I43 — 99 A1 — 03431 = 0. On the other hand,

using the expressions for Igg, I41 and As; given above, we have
Hl = (agbza%, 20[%((12 — bz)(bg(ag + a1)2 — ag(ag — 011)2))

= (agbga%,a%(ag — bg))(agbga%, a%(bg(ag + a1)2 —az(ag — a1)2)) =1

by Lemma It follows that E, = (c, I14) so that E, = 1 for U4E/I as c € K*?
and B, = (—=1)*" for U4F/J, as ¢ ¢ K*2.

6.6.5 C(Cisoftypelx1

Proof of Tables [4.37] to 4.34]

Case TC1. By definition of the isogeny and since J has good reduction, we have
as, B2 € K and ai,a3,83 € K™ by Lemma In particular a,b € Z and
a =b=v(c) mod 2 by semistability criterion[3.4.29] Also, since 1 = —oy it follows
that ay = ag =0 # 2 = a3 = 3. Reducing invariants mod 7 yields

Ioo = Io1 =g L2 =0 leo =0 2, Iy =0 I3 =0 1,{ =p 2c,
so that
By = (=1, Isa141) (14, 2¢l22) (123, cla1) (1u5, —cl22)(Is0, —2¢l41).
Since the following valuations are even,
v(Iag) = 2a, wv(ly5) =2b, wv(lya) =2b, v(Ig) = 2a,

E, = (Io2, —Iaa145)(1s1, —I23130) (¢, L1ala5123130).

Write a1 = a17®, ag = a1 + aen®, a3 = PBo + azw’, B3 = Bo + by, with
ai,az, a3, by € O,,. We have

Iy = ﬂgﬂ'b(ag + bg) + O(T('b), Iy = 7Ta,82(a1 + az) + O(?Ta),

I44 =0 (a3 — b3)2 + O(ﬂ'b), I45 =0 —a3b3 + 0(1) =N —a3bg,
ISO =0 —a2(2a1 + CLQ) + O(T('b), Ig3 =0 a%.
Now if v(Ia2) > b, then by Lemma and using Lemma we have that

(IQQ, —144145) = 1. Also in this case a3 = —bs so that Iy4145 =0 1 and (C, 144145) =1.
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Similarly if v(l41) > a then by Lemma and using Lemma we have
that (141, —1I23lgg) = 1. Also, in this case a; = —ag so that Iy3lsg =g 1 and
(¢, I23l30) = 1. Finally assume that v(la2) = b,v(Iy1) = a. If @ = 0 mod 2 then
since a = b = v(c) mod 2, we are done. Otherwise assume a = b = v(c) = 1 mod 2.
Then rewriting

E, = (cly, I44145)(clyr, I23180) (122141, —1),

it is clear that F, = 1.

Case TC2. By definition of the isogeny and since J has good reduction, we have
a1, e, B2, a3,83 € K™ by Lemma [6.6.11} In particular a,b € Z and a = b =
v(c) mod 2 by semistability criterion [3.4.29] and v(I44) = v(Igg) = 2(a + b) € 27Z.

Reducing invariants mod = yields
{=2c, Ix3=q a%, (A — Bl)2 =0 a%, I =0 —a%, Iy =0 Qa%,f45 = 1.
Also by Lemma Iy =0 u% so that Iy =g a%. Therefore
By = (In, —ailso)(Iu3, —ailaals) (Ieo, —oi Isoluz) (Io, —tlas)(c, Lualso) (Laz, —La4Is0).
Let ag, bs, a3, by € O, and write
g = ay +aon®, B =oq + by, a3 = —oq +asn’, Py = —aq + azn’,

so that
Lo =0 —Oz%ﬂa+bU4g with Uy = (a3 + b3)(a2 + bg),

Iy = 7T2a+2bU44 with Uy = (a2 - bg)z(ag — b3)2,
Iso =0 7T2a+2bU80 with Ugy = asboasbs.

If a < b then a; € K* since otherwise Frob(a;) = —a1, a contradiction to the

definition of the isogeny since a # b. Therefore we have
120 =0 2(&2 — b2)2 + O(7T2a), I41 =0 2a2b2 + 0(7T2a),

143 =0 27r“a1(a2 + bg)((ZQ — b2)2 + O(ﬂga), Iso =0 27r“a1a2b2(a2 + bg) + O(7T3a).

It follows that (141, —aflgg) = (I20, —a314) = 1 and since v(c) = a mod 2 we can

rewrite
E, = (7Ta, 122124130)(2a1 (az + bz)(az — b2)2, (CLQ — b2)2(a3 — b3)2(a2 + bg)(ag, + bg))

(2a1a2b2(a2+b2), agbgagbg(ag—i-bg)(a3+b3))(—(a2+bg)(a3+b3), —agbgagbg(ag—bg)Q(ag—bg)z).
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Since v((az — b2)?(a3z — b3)?) = 1, simplifying yields

E, = (OLQ + bo, —agbz(ag — b2)2)(a3 + b3, —agbg(ag — b3)2).

Finally, assume that v(az+bs) > 0, then ag = —by so that —asbe(ag—b2)? = a% =1

and similarly for (a3 + b3). Therefore E, = 1.
If a = b then

120 =0 2(&2 — b2)2 =+ 2(@3 — b3)2, =5 206%[]41 + 0(7T2a) with Uy = (a2b2 +a3b3),

iz =0 2007 Uss + o(7**) with Uss = (az + b2)(a2 — b2)* — (as + bs)(as — b3)?,
Iﬁo =0 204:1%7TaU60 + 0(7T3a) with U60 = (GQbQ(ag + bg) — a3b3(a3 =+ bg))

If v(2(ag — be)? +2(a3 — b3)?) > 0 then v(Iy) > 2a and v(I12,) > v(I44) hence
20

by Lemmata and we have (I, —a3Us) = 1. Similarly, if v(Usy) > 0
then v(I41) > 2a and v(I%)) > v(Ig), therefore by Lemmata |6.2.1 and [6.3.4] we

have (141, —a?Igy) = 1. Hence replacing invariants and simplifying yields
1

E, = (201U, UsaUs2) (2057 Uso, UsoUa2) (7%, UsaUso) (— i Us2, —UsaUsp).
Factoring out 7@ we have (7%, U, ULUZ,) = 1, hence simplifying gives
Ey = (Uss, UsaUs2)(Uso, UgoUs2) (Usz, —UsaUsgp).

If @y € K then by definition of the isogeny d9,d3 € K and using Lemma 1 we

have
(Usz, UsaUs2) = ((ag + b2)(ag — b2)?, (a3 + b3)(az — b3)?),

(Uso, UsoUs2) = (agba(ag + ba), azbs(as + b3))
(Usz, —Us4Ug) = (a2 + bz, —Us4Usp) (a3 + bz, —Us4Ugo).
Factoring out and simplifying gives

E, = (ag + ba, —agba(az — b2)?)(az + b3, —azbs(az — b3)?).

Now if v(ag + bz) > 0 then ag = —by and —agbs(ag — b2)? = 4ai = 1, similarly if
v(az + b3) > 0. Hence E,=1.

If a; ¢ K then by definition of the isogeny 62,93 € K and F'rob((az+b2)) = (a3+bs3)
it follows that v(Uj2) € 2Z hence

E, = (Uss, UsoUsa)(Uso, Us2Us).
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If v(Uy3) > 0 then (ag — b2)%(ag + ba) = (a3 — b3)?(a3 + b3), therefore UypUyy =
(ag — ba)*(ag + bo)? so that UgplUy € K*2.

If v(Ugo) > 0 then asbo(as+bs) = azbz(az+b3), therefore UsoUs = (azbs)?(as+
b2)? so that UgpUs € K*2. Both cases yield E, = 1.

Case TC3. By definition of the isogeny and since J has good reduction, we have
i, a9, B, a3, B3 € K™ from Lemma and a1 # 0. In particular a,b € Z and
a = b= v(c) mod 2 by semistability criterion Here v(I3) = v(l44) = 0 and
v(Iy5) = a+b € 2Z,v(Ig)) = 2a + 2b € 2Z. Reducing invariants mod 7 yields

Is =0 a%, Iyu=g1, Iy= 04%, Iy = —a%.
Hence
E, = (=1, 141143160) (140, (120143160) (1a5, —C121122)(cla1, 123) (180, cla1La2l60) (142, —I43160).
Let a9, b9, a3,b3 € O% and write
as = a1 + aa®,  PBo = —aq +bor®, as = a1 +asn®, By = —aq + by’

This yields
Iis =0 —a27%TUy5, with Uys = (ag — a3)(by — bs),

Iso =0 7T2a+2bU80 with Ugy = asboasbs.

Cases TC3A /B/C. Here a < b, o; € K hence

By = (Is5,0101) (1o, O)H, H = (=1, In1143160) (110, I43160) (Is0, cla11a2160) (112, —1a3160)-
We show that H = 1. Computing invariants we find
Isy = a2a37r2a + 0(7T2a), 140 =p Wza(ag - CL3)2 + O(7T2a),

141 =0 27T2aa2a3, 19 =g 7T2aa2a3,
143 =p 20&171’“(@2 + ag) + 0(71-“), Iso =0 7Ta+b(—2a17ra(a%b2 + a§b3)) + 0(71'2a+b).

Hence (1431607 —140142) = (—(a2+a3)(a§b2+a§b3), —(ag—a3)2a2a3), and (141, —Igo) =
(—1Iso,Is2) = 1 since v(Iy1),v(I42),v(Iso) € 2Z. Similarly (Isg,clgy) = (adbs +
a%bg, agbgagbg). Simplifying yields

H = (a3ba + a3bs, — (a2 — as)®a3a3babs)(az + a3, —(az — as)’azas).
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i) If ag,as, bz, b3 € K then (az — a3)? € K*? and by Lemma we have
H = (a%bg,agbg)(ag,ag) =1.

ii) If Frob permutes as and a3 as well as by and b3, then (ag — a3)? ¢ K*2. If
as + ag and a%bg + a%bg are units then H = 1. Otherwise, if v(ag + az) > 0 then
as = —ag so that —asag(as — az)? = 4a‘21 hence —asag(as — az)? € K2 and H = 1.
Finally, if v(a3by + a%bg) > 0, then a3by = *agbg so that *a%bQCLgbg =p b3. In
particular —a3bea3bs ¢ K2 since Frob(by) = bs, thus —a3baa3bs(as — a3)? € K2 (as
(a2 —a3)? ¢ K2) and H = 1. Hence E, = (I40, ) (145, 121).

Now, ¢ = —c?*¢11I51 = —{1151 so that ¢Iy; =g —{¢1. Therefore

E, = ((ag — a3)?, —l11n)(—(az — as)(bs — bs), —t1) = (£1, —(az — a3)* (b2 — b3)),

since I91 and (ag — a3) are units in K. For isogeny TC3A, we have v(¢1) € 2Z hence
E, =1 as required.

Finally, computing (A; — B1)? in this case, one finds

az — agz)(ba — b3)
(a2 — a3)?

(Al . Bl)Z =0 _( —{—O(ﬂ'aer),

hence (A1 — B1)? =0 —(az — a3)®(by — b3). It follows that since (A; — B1)? € K?

in isogeny TC3B, E, = 1. Finally, (4; — B1)? ¢ K*? in isogeny TC3C, and
v(£1) = r mod 2, therefore E, = (—1)" as required.

Cases TC3D/E/F/G/H/I Herea =band E,, = (145, 6121)(1407 —€120[22)(CI41, IQ3)H,
with

H = (-1, In1143160) (110, 113160) (180, cla11a2160) (142, —I43160).

We show that H = 1. Computing invariants, we find
Iy =0 (a2 + b2)(az + b3), Iso =0 (a2 + by — az — b3)?,

141 =0 20&%(&26@ + bgbg) + 0(7T2a), I =0 a%(ag — bg)(ag — b3) + 0(7T2a),
Iz =0 2037°Uss + o(n®) with Uyz = (ag — by + a3 — b)),
Iso =0 =201 Ugo + 0(7r3a) with Usg = agba(az — b2) + azbs(as — bs).

Also note that v(Iy) € 2Z hence (a2, —I40) = 1.

Note that since either g, 82, 3,83 € K or Frob(as — by) = (as — b3), we have
that v(Is2) € 2Z. Using Lemma and simplifying gives (I41, —1Ig0) = (agas +
babs, —agbaasbs) = 1, since if v(Iy1) > 0 then agas = —bobs so that —agbrazbs =
(aza3)? =g 1. Also (I3, —Is0ls2) = (Uss, —UsoUs2) = 1 since if v(Uy3) > 0 then
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v(Iy3) > a thus v(I3;) > v(I42l44) and the result follows from Lemma Oth-
erwise if v(Usz) = 0 then the result follows since v(Us2),v(Uso) € 27Z. Similarly,
(Ita, Iso) = 1. Finally, (Igo, —LioLuzso) = (Uso, —UoUseUso) = 1 since if v(Ugg) > 0
then v(Igp) > 3a thus v(I2)) > 6a = v(Is2lsy) hence (Usy, —UsUs2Uso) = 1 by
Lemma[6.3.4] Otherwise, if v(Uso) = 0 then the result follows since v(Us2), v(Usg) €
27.

Therefore when a = b, H =1 and E, = (145, (121)(110, —C120122)(cl41, I23).

Cases TC3D/F/G. Here oy € K so that E, = (I45,0121)(140,¢). As above, we
have, ¢ = —c?0115 = —1121 so that £Iy; =0 —¢;. Recall that Iy; = —f2¢5. Hence
E, = (—(az — a3)(by — b3), —£1)((az + by — az — b3)?, £1£2¢3). Moreover, computing
the roots of Ly (z), we find

— (a2 — ag)(b2 — b3)
(ag + by — a3z — b3)2

(A; — B1)? = =0 —(ag — a3)(ba — b3)(az + bz — az — b3)?,
so that E, = ((A1 — B1)?,41)((ag + by — az — b3)?, —(ag + b2) (a3 + b3)).

For TC3D, we have v({1) = v(u1) —2a—v(c). If v(uy) > 0 then ag+by = az+bs and
hence v(¢3) = v(¢3) = 0 (see Proof of Table in Section [5.3.5)). Moreover, in this
case, 2v(uy) € 27Z and ag — a3 = —bg + bz. It follows that E, = ((by — b3)*, uy) = 1.
Finally, if v(u;) = 0 then ((4; — B1)%,41) = 1. If ag, B2, a3, 3 € K then u? € K*?
and E, = 1. Otherwise Frob(az) = as and Frob(as) = ag and similarly for fs, £,
so that Frob({g) = —f3. Therefore v(I3;) € 2Z and E, = (u?, —I3) = 1.

For TC3F, we have (A1 — B1)? € K*2 hence E, = ((ag + by — a3 — b3)?, —(az +
ba)(a3 + b3)). If v(ag + bg) = v(ag + b3) = 0 then E, = 1 as v(u1)? € 2Z and we
are done. Otherwise either as, fa, 3,83 € K and u? € K*? and we are done; or
Frob(fa) = —f3 andv(az + ba) = v(as + b3) so that v(ag + ba)(az + b3)) € 2Z and
E, =1 as required.

For TC3G, we have (A; — B1)? ¢ K*2. Now by definition of Ag,uy, f2, 3 (see Proof
of Table in Section , we have v({2) = v(l3) when v(Ag) > 2a. Therefore,
since v(u1)? € 2Z we have E, = ((A; — By)?,¢1). Moreover, by semistabilty criterion
we have that v(¢) = r mod 2. It follows that v(u;) = v(c) mod 2 and hence
that v(¢1) = r mod 2. Thus E, = (—1)" as required.

Cases TC3E/H/I. Here a; € K so that E, = (145, —0I21122) (140, ¢)(cla1, I23).
Using Lemmata and we have that (I1,l23) = (L0, I20) = 1.
Moreover replacing invariants by their reduced values as above yields

Ey = (110, 0)(c, Is3) (145, La? I3 ) Since Io3 =n o it follows that B, = (I45, (121) (140, £) (a3, ¢).
The behaviour of the first two Hilbert Symbols is given in the cases of TC3D/F/G.
Hence since v(c) = a mod 2, if follows that E, = (—1)* for TC3E/H, and E, =
(—1)**" for TC3I as required.
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Chapter 7

Conclusion

7.1 Forthcoming result

The result on the 2-parity conjecture presented in Theorem [4.4.11|is used in a joint
work with Vladimir Dokchitser in [I7]. Combined with the theory of regulator
constants of [10], [I1], it yields the following result on the parity conjecture in this

setting.

Theorem 7.1.1. Let C/K be a hyperelliptic curve of genus 2 over a number field
given by
C:y’ = f(),

and satisfying the conditions of Theorem |4.4.11 Let J denote its Jacobian, Ky the
splitting field of f(x) and assume that IIL(J/ICs)[p™>] is finite for p = 2,3,5. Then
the parity conjecture holds for J/K.

Remark 7.1.2. If £ C £ C Ky is an intermediate field with [KCf : £] a power
of 2 then Gal(Ky/L) C Cy x Dy, as the latter is the Sylow 2-subgroup of Sg. In
particular C'/L is a Cy x Dy curve. Thus Theorem shows that the parity
conjecture holds over all such fields £. Combined with the theory of regulator

constants, this is sufficient to deduce that the parity conjecture holds over K.

7.2 Work in progress

We are currently working on improving Theorem and hence Theorem
by removing some extra conditions. Namely, the following are work in progress:

i) proving the local discrepancy conjecture when the reduction at finite odd
places of the polynomial defining C' has double roots inside two triple roots,

ii) showing that the term of the local discrepancy E, is stable under the change of

variables performed to balance a cluster picture as in [15][Definition 3.41],
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iii) controlling the term of the local discrepancy E, when some Cy x Dy invariants
vanish,
iv) weakening the conditions at 2-adic places.

By proving i), we would prove the 2-parity conjecture for curves C' with
semistable balanced cluster picture. Adding ii) would then remove the balanced
condition so that all semistable cluster pictures at odd finite places could be con-
sidered. Finally showing iii) would release the extra condition on non-vanishing of

Cy x D4 invariants.

7.3 Obstructions to generalization

As mentioned in Section [3:2.1] the parity of the 2°° Selmer rank of a principally
polarized abelian variety admitting an isogeny through which multiplication by 2
factors, is given by Lemma [3.2.5] However, in order to express this parity as a sum
of local terms, one needs to control the order of their Shafarevic-Tate group (up to
squares). This is achievable using a result of Poonen and Stoll in [32], whenever
both the variety and the codomain of the isogeny are Jacobians. This was true in
our case thanks to the property of a Richelot isogeny. In higher dimension, it is not
clear how to get a hold of the order of the Shafarevich-Tate group up to squares since
the codomain of the isogeny may be a principally polarized abelian variety that is
not a Jacobian. Furthermore, even if it were the case, curves of genus g > 2 are not
necessarily hyperelliptic so that we cannot explicitly control their local invariants as
we have done here. And finally, even if they were hyperelliptic, finding the term of
local discrepancy in order to prove the 2-parity conjecture in this case seems rather
optimistic, unless a better conceptual understanding of the invariants involved is

achieved.
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Appendix A

Isogenies between abelian
varieties with split totally toric

reduction (by Adam Morgan)

Preliminaries

Definition A.0.1. Let A and B be abelian groups and f : A — B a homomorphism

with finite kernel and cokernel. Then we define

2(f) = |coker(f)[/|ker(f)]-

Lemma A.0.2. We have the following properties of z:

(i) Let A be a finite abelian group and f : A — A a homomorphism. Then
() =1,

(ii) Suppose we have a commutative diagram of abelian groups

0 Ay As As 0

e

0 B By Bs 0

whose rows are exact. Suppose further that fi, fo and fs all have finite kernel
and cokernel. Then z(f2) = z(f1)z(f3).

(iii) Let A be an abelian group, let A = Ay 2 A1 D Ay D ... be a filtration on
A with finite quotients and let f : A — A be a homomorphism having finite
kernel and cokernel. Suppose further that f respects the filtration and that for
each n the induced maps f, : An — A, have finite kernel and cokernel. Then
we have z(f) = z(fn) for alln > 0.
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Proof. (i). The first isomorphism theorem gives A/ker(A) = im(A), with each of

A, ker(A) and im(A) finite by assumption. In particular, we have
Al = lim(A)][ker(A)]

from which the result follows immediately.
(ii). Apply the snake lemma to the commutative diagram in the statement.

(iii). For each m > 0, apply parts (i) and (ii) to the commutative diagram

0 An+1 Ay An/An+1 —0

lfnu lfn lf_n

0 An+1 Ay An/An+1 —0

(the top and bottom rows induced by the natural inclusion A, 1 C A, and the map
fn being induced by f,). O

The multiplicative group

Let K be a finite extension of Q, for some prime p, let ¢ > 1 and let M = (m; ;) €
Maty(Z) be a full rank matrix. Write fas : K*9 — K9 for the map

g
x = (z;) — xM = Hw;n” .
j=1

Lemma A.0.3. Write fx for the restriction of far to a map K*9 — K*9. Then

we have
_|det(M)]

2(frx) = m7

where here | - | denotes the usual normalised abolute value on K (sending a uni-
formiser wr for K to |k|~! where k is the residue field of K) and |- | denotes the

usual archimedean absolute value on Z.

Proof. Write f; for the map Oz — O induced by f. Let vx denote the nor-

malised valuation on K. We have a commutative diagram with exact rows

0 08 K*9 579 — >0
ifo fr fx
0 038 )G/ p— )

where the map fx : Z9 — 79 induced by f is just left multiplication by the ma-
trix M. Considering the Smith Normal Form of M over Z gives |coker(fx)| =
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|det(M)| and since M has full rank, ker(fx) = 0. By ii) we now have
2(fx) = |det(M)|z(fo). Consider the filtration

O;{g D (1+7x0k)? 2D (1 —|—7T%(0K)g 2.

which is preserved by fx and has each successive quotient finite. Write f, for the
induced map on (1 + 7Ok )?. Then [A.0.2(iii) gives z(fy) = z(f,) for each n > 1.

Taking n > 1 sufficiently large, the formal logarithm gives an isomorpism
(1+7%0K)9 — OY.

Since fy, is induced by the matrix M € Maty(Z), the map f,, gets transported under
this isomorphism to left multiplication by the matrix M on O%. Considering the
Smith Normal Form of M over Ok and again using the fact that M has full rank
over Z this gives z(f,) = |det(M)|x" which completes the proof. O

Abelian varieties

Let K be a finite extension of Q, and A/K an abelian variety. Let ¢ : A — B be
an isogeny.

Suppose that A/K has split totally toric reduction. Then the same is true
also of B. We have an isomorphism of G := Gal(K /K)-modules

A(K) = K9 /A

for some lattice Ay C K*9 (see [31), Section 5.3] for a review of the uniformisation
of abelian varieties with split totally toric reduction and the definition of a lattice
inside K*9). The same is true for B with some lattice Ap C K*9. Note that the
induced Galois action on A4 and Ap are trivial.

By [20, Theorem 3], there is a matrix M(¢$) € Mat,y(Z) such that the isogeny
¢ : A — B is induced by the map x — x™(®) on K*9 and M(¢) sends A into
Ap. We write ¢, for the induced map A4 — Ap of free Z-modules of rank ¢g. In

summary, we have a G g-equivariant commutative diagram

0 Ay K*9 AK)——=0 (A.0.4)
\LQSA lfM(dﬂ i¢>
0 Ap K*9 B(K) ——=0

with exact rows. Since H'(K,A4) = 0 = H'(K,Ap) (Gk is profinite whilst both
A4 and Ap are torsion free with trivial action) we have the same diagram with
A(K) (resp. B(K)) replaced by A(K) (resp. B(K)) and K*9 replaced by K*9.
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We note that the isogeny ¢ determines the matrix M (¢). Indeed, since A4
and Ap are lattices, (’)Eg C K*9 injects into K*9/A4 (resp. K*9/Ag). Now since
the maps = — ™ for n € Z are all distinct as endomorphisms of (’);{g (consider

their kernels), the same is true for that maps x — x* for all M € Maty(Z) as

xXg

endomorphisms of O 7 from which the claim follows.

Lemma A.0.5. Write ¢ for the map A(K) — B(K) on K-points induced by ¢.

The we have

|A[g] 1 AR ) |det(M))

deg(¢)|det(M)|k
(Here A(K)qg denotes the points in A(K) reducing to the identity component of the
Neron model of A/K ).

2(¢K) =

Proof. Consider first the diagram Applying we obtain

2(fug)) = 2(di)2(dA) (A.0.6)

where here ¢z denotes the map A(K) — B(K) on K-points induced by ¢. Now
¢ is surjective on K-points and |ker(¢g)| = deg(¢) by definition. In particular,
2(¢r) = deg(¢p)~1. Next, let M(¢)® denote the adjugate matrix of M(¢), so that
M(p)M(¢)* = det(M(¢)) = M(¢)*M(¢). Now for any 0 # n € Z, multiplication
by n is surjective on K*9. In particular, since M(¢) has non-zero determinant we
see that fy(g) is surjective. Thus z(fa(g)) = ]ker(fM(¢))|_1. Note also that with
n = det(M(¢)) we have ker(far(g)) C pih S K*9.
We now have from [A.0.6] that

~ deg(9)
00 = er |

Let A/Og denote the Neron model of A/K and let A°/Of denote the iden-
tity component of A. Since A is assumed to have semistable reduction over K, the
formation of A° commutes with base-change to any finite exctension L/K (though

the same need not be true of the full Neron model). We have a commutative square

0 K*9/A (A.0.7)
A(Og) — A(K).

where both vertical arrows are isomorphisms and the horizontal arrows are injections
(see [31, Figure 1] and the surrounding discussion).

The observation that ker(fr(g)) € pi shows that ker(farg)) = ker(fa(e) |O;<?g)
which by the above diagram is equal to A(K)o[¢] = A[¢] N A(K)o.
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‘We conclude that

deg(9)

00 = TAT A ARl

(A.0.8)

We now turn to the commutative diagram over K rather than K.

(ii) gives

2(fare)| i)
2(p) = ——————.
(#x) z(¢n)
Combining this with [A.0.8] and [A.0.3| gives the result. O

The main result

Suppose now that A is principally polarised with fixed principal polarisation A\ de-
fined over K, and suppose that the isogeny ¢ : A — B is such that the kernel of ¢
is a maximal isotropic subspace of A[2] with respect to the Weil pairing associated
to A. Note that in particular this forces deg(¢) = 29. In particular, B is principally
polarised also and the dual isogeny ¢V : B — A is such that ¢¢" = [2] = ¢V ¢ (see,
for example, [24, Proposition 16.8]). Let M(¢") be the matrix associated to ¢V.
Then we have M (¢)M(¢Y) = 2 = M(¢¥)M(¢). In particular, the determinant of
M (¢) is & a power of 2. As before, A(K ) denotes the points in A(K) reducing to
the identity component of the Neron model of A/K

Proposition A.0.9. Write ¢ for the map A(K) — B(K) on K-points induced by
¢. Then we have

|A[¢INA(K)o|?
2(¢K) = . P2
- A i K Qg 42
| [dﬂﬂA(f;)IOI 2 p=2.
In particular,
g (mod 2) p > 2

ordaz(dx) = )
g+ [K : QaJords| A[¢] N A(K)o| (mod 2) p=2.

Proof. As observed previously, the assumption on ¢ mean that the determinant of

M(¢) is a power of 2. In particular, we have

1 p>2
|det (M) |k =

1 _
[det(M (¢))[K722] p=2

Thus in light of (and the fact that, as remarked previously, deg(¢) = 29), it
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suffices to show that we have

|det(M(¢))] = |A[¢] N A(K)o-

Now A[¢] N A(K)g is the kernel of the map x ~— xM(@) on OF. Since
M (¢V)M(¢) = 2, this is contained in p§. Writing pJ additively, the map x + xM(¢)
on p is just left multiplication by the reduction modulo 2 of the matrix M(¢).
Denote this matrix by M. Then |A[¢] N A(K)o| is just the size of the kernel of
M : F§ — 9.

Write M(¢) = UDV where U,V € GLy(Z) and D € Mat,(Z) is diagonal
(i.e. write M(¢) in Smith Normal form). Now M (¢)M(¢") is twice the identity
matrix. Thus

2Vt = M(¢V)UD.

In particular, each coefficient of M(¢")UD is divisible by 2, yet 2M(¢V)UD has
determinant 1. If one of the entries of D were divisible by 4 then 2 would divide each
entry of some row of the integral matrix %M (¢V)UD, and hence its determinant,
a contradiction. We deduce that each entry of D is divisible by 2 at most once.
On the other hand, the determinant of M (¢) is a power of 2 (it divides 29) so we
deduce that each entry on the diagonal of D is in the set {41, 4+2}. Noting that U
and V are both invertible modulo 2, we see that the number of £2’s appearing on
the diagonal of D is equal to the Fo-dimension of the kernel of M. In particular, we
deduce that

[A[g] N A(K)o| = 20me: ker@) — |det(M (¢))|
as desired. n

Remark A.0.10. Under the isomorphism A(K)y = ;(g, the subgroup A(K); of
points reducing to the identity corresponds to (1 + mxOk)9. In particular, if p = 2
then pd lies in (1 + mxOk)? and so, when p = 2, we may replace |A[¢] N A(K)o|
with the quantity |Af¢] N A(K)1|.

Remark A.0.11. Note that in the setup above, A(K)o[2] corresponds to {£1}9
sitting inside (’);{g C K*9 and is fixed by the action of Gal(K/K). In particular,
A(K)o[2] = A(K)o[2]. Suppose we have |A(K)[2]| = 29. Then we must necessarily
have A(K)[2] = A(K)p[2]. In particular, under this assumption, we have A[@] N

A(K)o = A(K)[g].
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