

### A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL: <a href="http://wrap.warwick.ac.uk/93324">http://wrap.warwick.ac.uk/93324</a>

### **Copyright and reuse:**

This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: <a href="mailto:wrap@warwick.ac.uk">wrap@warwick.ac.uk</a>



## Parity of ranks of Jacobians of hyperelliptic curves of genus 2

by

Céline Maistret

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Mathematics Institute

September 2017



## Contents

| Acknowledgments iii             |                                                                                                                           |    |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|----|
| Declarations                    |                                                                                                                           |    |
| Abstract                        |                                                                                                                           |    |
| Chapter 1 Introduction 1        |                                                                                                                           |    |
| Chapter 2 Background Material 7 |                                                                                                                           |    |
| 2.1                             | Hyperelliptic curves and their Jacobians                                                                                  | 7  |
|                                 | 2.1.1 Hyperelliptic curves                                                                                                | 7  |
|                                 | 2.1.2 Jacobians of hyperelliptic curves                                                                                   | 8  |
|                                 | 2.1.3 Jacobians of hyperelliptic curves of genus 2                                                                        | 9  |
| 2.2                             | Richelot Isogenies and Richelot Construction                                                                              | 11 |
| 2.3                             | Parity and <i>p</i> -parity conjectures                                                                                   | 14 |
| Chapt                           | er 3 Parity of the $2^{\infty}$ Selmer rank                                                                               | 17 |
| 3.1                             | Introduction                                                                                                              | 17 |
| 3.2                             | Parity of the $2^{\infty}$ Selmer rank of Richelot Jacobians                                                              | 18 |
|                                 | 3.2.1 Parity of the $2^{\infty}$ Selmer rank and isogenies $\ldots$                                                       | 19 |
|                                 | 3.2.2 Local factorization of the parity of the $2^{\infty}$ Selmer rank                                                   | 20 |
| 3.3                             | Computation of local invariants at infinite places                                                                        | 25 |
| 3.4                             | Computation of local invariants at semistable finite places $v \nmid 2$                                                   | 29 |
| 3.5                             | Computation of local invariants at finite places $v 2$                                                                    | 38 |
| 3.6                             | Example of computation of the parity of the $2^{\infty}$ Selmer rank $\ldots$                                             | 41 |
| Chapt                           | er 4 2-parity conjecture for $C_2 \times D_4$ Jacobians                                                                   | 42 |
| 4.1                             | 2-parity theorem                                                                                                          | 42 |
| 4.2                             | $C_2 \times D_4$ Richelot curves and Jacobians                                                                            | 46 |
| 4.3                             | $C_2 \times D_4$ invariant polynomials $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$     | 46 |
| 4.4                             | A conjecture on local discrepancy for $C_2 \times D_4$ Jacobians                                                          | 47 |
| 4.5                             | $C_2 \times D_4$ curves at infinite places $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 48 |

| 4.6    | $C_2 \times D_4$ curves at finite places $v \mid 2 \dots \dots \dots \dots \dots \dots \dots$                                            | 53  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.7    | $C_2 \times D_4$ curves at finite places $v \nmid 2 \dots \dots \dots \dots \dots \dots$                                                 | 53  |
| Chapte | er 5 Richelot isogeny in odd residue characteristic                                                                                      | 87  |
| 5.1    | Introduction                                                                                                                             | 87  |
| 5.2    | Algebraic identities of a $C_2 \times D_4$ Richelot curve                                                                                | 89  |
| 5.3    | Proof of Tables 4.4 to $4.34$                                                                                                            | 91  |
|        | 5.3.1 $C$ is of type 2                                                                                                                   | 91  |
|        | 5.3.2 $C$ is of type $1_{2a}$                                                                                                            | 93  |
|        | 5.3.3 C is of type $I_{2a,2b}$                                                                                                           | 97  |
|        | 5.3.4 $C$ is of type $U_{2a,2b,2n}$                                                                                                      | 115 |
|        | 5.3.5 $C$ is of type $1 \times 1 \dots $ | 125 |
| Chapte | er 6 Proof of local discrepancy conjecture                                                                                               | 130 |
| 6.1    | Introduction                                                                                                                             | 130 |
| 6.2    | Properties of $C_2 \times D_4$ invariants $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                 | 132 |
| 6.3    | Standard properties of Hilbert Symbols                                                                                                   |     |
| 6.4    | Local discrepancy at infinite places                                                                                                     |     |
|        | 6.4.1 $C$ has 0, 1 or 2 real connected components $\ldots \ldots \ldots$                                                                 | 137 |
|        | 6.4.2 C has 3 real connected components                                                                                                  | 140 |
| 6.5    | Local discrepancy at finite places $v \mid 2 \dots \dots \dots \dots \dots \dots$                                                        | 142 |
| 6.6    | Local discrepancy at finite places $v \nmid 2$                                                                                           | 144 |
|        | 6.6.1 $C$ is of type 2                                                                                                                   | 148 |
|        | 6.6.2 $C$ is of type $1_{2a}$                                                                                                            | 149 |
|        | 6.6.3 $C$ is of type $I_{2a,2b}$                                                                                                         | 152 |
|        | 6.6.4 $C$ is of type $U_{2a,2b,2n}$                                                                                                      | 163 |
|        | 6.6.5 $C$ is of type $1 \times 1 \dots $ | 168 |
| Chapte | er 7 Conclusion                                                                                                                          | 174 |
| 7.1    | Forthcoming result                                                                                                                       | 174 |
| 7.2    | Work in progress                                                                                                                         | 174 |
| 7.3    | Obstructions to generalization                                                                                                           | 175 |
| Appen  | ndix A Isogenies between abelian varieties with split totally                                                                            | V   |
| tori   | ic reduction (by Adam Morgan)                                                                                                            | 176 |

## Acknowledgments

I am deeply grateful to Vladimir Dokchitser for his guidance and constant support throughout this project, and for the uncountable meetings that contributed to fashioning this thesis. I am also very thankful to Tim Dokchitser, Vladimir Dokchitser and Adam Morgan for our common project which has been of considerable help and has had a great influence on my work. I thank Adam Morgan for his appendix to this work. I am grateful to John Cremona for his help through many valuable discussions. Lastly, I would like to thank the professors and my fellow PhD students in the department for a dynamic, enjoyable and fruitful work environment, and numerous instructive discussions.

## Declarations

The results presented in this thesis are, to the best of the author's knowledge, entirely new, unless otherwise stated. Section 3.4 in Chapter 3 is a joint work with T. and V. Dokchitser and A. Morgan. The appendix is a work of A. Morgan.

## Abstract

A consequence of the Birch and Swinnerton-Dyer conjecture is that the parity of the rank of abelian varieties is expected to be given by their global root numbers. This is known as the parity conjecture. Assuming the finiteness of the Shafarevich-Tate groups, the parity conjecture is equivalent to the *p*-parity conjecture for all prime p, that is the  $p^{\infty}$  Selmer rank is expected to be given by the global root number.

In this thesis we study the parity of the  $2^{\infty}$  Selmer rank of Jacobians of hyperelliptic curves of genus 2 defined over number fields. This forces us to assume the existence of a Richelot isogeny (the analogue of a 2-isogeny for elliptic curves) to provide an expression for the parity of their  $2^{\infty}$  Selmer rank as a sum of local factors  $\Lambda_v$  modulo 2. Based on a joint work with T. and V. Dokchitser and A. Morgan on arithmetic of hyperelliptic curves over local fields, this makes the parity of the  $2^{\infty}$ Selmer rank of such semistable Jacobians computable in practice.

By introducing a set of polynomial invariants in the roots of the defining polynomials of the underlying curves of a specific family of Jacobians, we provide an expression for the local discrepancy existing between the local factors  $\Lambda_v$  and the local root numbers, and prove the 2-parity conjecture in this case.

One outcome of this result it that, using the theory of regulator constants, one can lift the assumption on the existence of an isogeny and prove the parity conjecture for a class of semistable Jacobians of genus 2 curves assuming finiteness of their Shafarevich-Tate group (see [17]).

## Chapter 1

## Introduction

This thesis studies the parity of ranks of Jacobians of genus 2 curves defined over a number field  $\mathcal{K}$  that admit a Richelot isogeny. Curves of genus 2 can be written as

$$C/\mathcal{K}: y^2 = f(x),$$

where f(x) is a separable polynomial in  $\mathcal{K}[x]$  of degree 6. A Richelot isogeny is the analogue of a 2-isogeny for elliptic curves, and the condition for the Jacobian J of C to admit such an isogeny is that the Galois group of f(x) preserves a factorization into three quadratics. This work involves investigating the arithmetic of such curves and their Jacobians over both local fields and number fields.

By the Mordell-Weil theorem, the group of rational points of an abelian variety A defined over a number field  $\mathcal{K}$  is finitely generated. The main arithmetic invariant of  $A/\mathcal{K}$  is its rank, denoted  $rk(A/\mathcal{K})$  and defined to be the number of generators of infinite order in this group. At present, computing the rank of abelian varieties in general remains an open problem. However, the Birch and Swinnerton-Dyer conjecture, formulated in the 1960's, predicts that the rank of an abelian variety is given by the order of vanishing of its L-function at s = 1.

**Conjecture 1.0.1** (Birch and Swinnerton-Dyer conjecture). Granting analytic continuation of  $L(A/\mathcal{K}, s)$  to the whole of  $\mathbb{C}$ ,

$$rk(A/\mathcal{K}) = ord_{s=1}L(A/\mathcal{K}, s).$$

Now, the conjectural functional equation for the L-function of  $A/\mathcal{K}$  relates  $L(A/\mathcal{K}, s)$  to  $L(A/\mathcal{K}, 2-s)$  in such a way that  $L(A/\mathcal{K}, s)$  is either (essentially) symmetric or anti-symmetric about s = 1. In particular, the sign in the functional equation controls the parity of the order of vanishing of  $L(A/\mathcal{K}, s)$  at s = 1. This yields the "Birch and Swinnerton-Dyer conjecture modulo 2", that is the parity of  $rk(A/\mathcal{K})$  is given by this sign. In addition, it is expected that this sign equals the

global root number  $\omega(A)$  of A, an invariant defined independently of any conjecture. The Birch and Swinnerton-Dyer conjecture modulo 2 then yields the parity conjecture.

Conjecture 1.0.2 (Parity conjecture).

$$(-1)^{rk(A/\mathcal{K})} = \omega(A).$$

One outcome of this work is that if the Shafarevich-Tate group of J is finite, then the parity conjecture holds whenever C is semistable with some extra conditions. In an ongoing work, we use the theory of regulator constants to remove the assumption that J admits a Richelot isogeny. We also expect to be able to remove the extra technical conditions on C.

Assuming finiteness of the Shafarevich-Tate group of A, for each prime p, the rank of  $A/\mathcal{K}$  is equal to its  $p^{\infty}$  Selmer rank, denoted  $rk_p(A/\mathcal{K})$  (the rank expected from knowing all the  $p^n$  Selmer groups for  $n \geq 1$ ). In particular, for all prime p, the parity conjecture is then equivalent to a more accessible conjecture: the p-parity conjecture.

Conjecture 1.0.3 (*p*-parity conjecture).

$$(-1)^{rk_p(A/\mathcal{K})} = \omega(A/\mathcal{K}).$$

The two central results of this thesis are an explicit formula for the parity of the  $2^{\infty}$  Selmer rank (Theorem 3.2.16) and the proof of the 2-parity conjecture for a class of  $C_2 \times D_4$  Jacobians (Corollary 4.4.12). These are Jacobians of curves Csuch that the Galois group of f(x) defining C is a subgroup of  $C_2 \times D_4$ . The latter amounts to the Galois group of f(x) preserving a factorization into three quadratics and fixing one of the quadratic factors.

Principally polarized abelian surfaces are either Jacobians of genus 2 hyperelliptic curves, products of two elliptic curves or Weil restrictions of an elliptic curve defined over a quadratic field extension (see Theorem 3.1. in [18]). In the last two cases, the parity of their rank is given by that of the underlying elliptic curves, which has been thoroughly studied by Monsky, Dokchitser, Dokchitser, Nekovar and Cesnavicius among other contributors. This is why we restrict our attention to Jacobians of genus 2 curves.

Our approach to control the parity of the  $2^{\infty}$  Selmer rank follows that of Cassels and Fisher (see [16][Appendix] and [2]). Assuming finiteness of the Shafarevich-Tate groups of abelian varieties, Cassels-Tate-Milne showed (see [25] §1.7) that both statements in the Birch and Swinnerton-Dyer conjecture are invariant under isogeny. As a result, if the abelian variety considered admits an isogeny, it is sometimes possible to show that its rank is at least one, and more generally to determine its parity

(see §1.3 in [8] for an example using elliptic curves). In particular, the same result can be achieved unconditionally of the finiteness of  $\operatorname{III}(A/\mathcal{K})$  for the  $p^{\infty}$  Selmer rank of abelian varieties admitting a suitable isogeny.

In order to study the  $2^{\infty}$  Selmer rank of Jacobians of genus 2 curves using this approach, the following features associated to a Richelot isogeny make it the right candidate. Similarly to the case of a 2-isogeny on an elliptic curve, a Richelot isogeny splits multiplication by 2 at the level of the Jacobian and its existence can be checked from the Galois group of the polynomial defining the underlying curve. Namely, if  $Gal(f) \subseteq C_2^3 \rtimes S_3$  then J admits a Richelot isogeny. In addition, the codomain  $\hat{J}$  of J is also the Jacobian of a genus 2 curve  $\hat{C}$ , and a model for  $\hat{C}$ is given by the Richelot construction. Since unlike for elliptic curves, we need to distinguish the curve C from its Jacobian J, these features are very relevant for us as our method to study the arithmetic of Jacobians of genus 2 curves is via the study of that of their underlying curves. More precisely, we will express all the arithmetic invariants of J that we study in terms of the polynomial f(x) defining C (see Sections 3.3, 3.4, 3.5).

Considering Jacobians admitting a Richelot isogeny, our first step is to provide a formula that computes the parity of their  $2^{\infty}$  Selmer rank. The main obstacle here is the order of the finite part of their Shafarevich-Tate group. For principally polarized abelian varieties of dimension > 1, this order is either a square or twice a square as pointed out by Poonen and Stoll in [32]. Fortunately, in this article, the authors also provide a way to tell these two cases appart when the variety is a Jacobian. Using their result, we express the parity of  $rk_2(J)$  as the following sum over places v of  $\mathcal{K}$ 

$$rk_2(J/\mathcal{K}) \equiv \sum_v \Lambda_v \mod 2,$$

where  $\Lambda_v$  involves invariants of both J and  $\hat{J}$  such as their Tamagawa numbers and the deficiency of C and  $\hat{C}$  (see Definition 3.2.7).

At odd finite places and for semistable Jacobians, the local factors  $\Lambda_v$  can be computed thanks to a joint work with T. and V. Dokchitser and A. Morgan presented in [14]. For finite places above 2, we take a slightly different approach and use a result of A. Morgan presented in the appendix. While it provides a way to compute the parity of the  $2^{\infty}$  Selmer rank in practice, this formula can also be used to prove theoretical results. In particular, we use it to prove the 2-parity conjecture in this case.

Since the global root number is defined as a product of local root numbers, the 2-parity conjecture now becomes equivalent to the statement

$$\prod_{v} \lambda_{v} = \prod_{v} \omega_{v}, \text{ where } \lambda_{v} = (-1)^{\Lambda_{v}} \text{ and } \prod_{v} \omega_{v}(J/\mathcal{K}) = \omega(J/\mathcal{K}).$$

It does not come as a surprise to find that the local terms  $\lambda_v$  and  $\omega_v$  are not equal in general but differ by a term which vanishes when taking product over all places. This was already the case for elliptic curves and abelian varieties for odd primes. However, it follows that finding the exact expression for this local discrepancy represents the crux in the proof of the 2-parity conjecture.

As suggested by the proof of the 2-parity conjecture for elliptic curves, using a product of Hilbert Symbols involving invariant polynomials in the roots of the defining polynomial of the underlying curve seemed like a possible answer to match the local discrepancy, particularly thanks to the product formula for Hilbert Symbols. Only,  $\lambda_v$  and  $\omega_v$  are sensitive to reduction types and specific Galois actions on the special fibre of J (this is by definition of local root numbers, Tamagawa numbers and deficiency, see Section 3.4). Therefore the sought invariants are expected to respond accordingly to different reduction types. However, in the case of a semistable elliptic curve, there are essentially five cases to consider (excluding infinite places for simplicity): good reduction, split multiplicative and non-split multiplicative reduction, where the last two cases also depend on the particular 2-isogeny chosen. One can then study these cases carefully and find the three invariant polynomials in the roots of the defining polynomial of the elliptic curve that control the local discrepancy (see  $\S7$  in [9]). But for a Jacobian of dimension 2, there are roughly 150 cases to consider, excluding infinite places, which complicate the hunt. We tried several methods and proceeded via trial and error using specific families of genus 2 curves and examining infinite places and finite places alternatively. Eventually, under the condition that the Galois group of f(x) be a subgroup of  $C_2 \times D_4 \subseteq C_2^3 \rtimes S_3$ , we found a set of invariant polynomials  $A_1, ..., A_{17}$  (see Section 4.3) which, paired in Hilbert Symbols to form the local term  $E_v$  as shown below, correctly match the local discrepancy between  $\lambda_v$  and  $\omega_v$  at all infinite places and finite places of semistable reduction (with a specific condition at 2-adic places):

$$E_v = (-1, A_1)(A_2, A_3)(A_4, A_5)(A_6, A_7)(A_8, A_9)(A_{10}, A_{11})(A_{12}, A_{13})(A_{14}, A_{15})(A_{16}, A_{17}).$$

Moreover, the condition  $Gal(f) \subseteq C_2 \times D_4$  was acceptable for us since  $C_2 \times D_4$  is the 2-Sylow subgroup of  $S_6$  which was the requirement for our application toward the parity conjecture (see Chapter 7).

Lastly, having produced these invariants experimentally, it remained to prove that they indeed match the discrepancy at all places in order to claim that the 2-parity conjecture holds for this family. Unfortunately at the moment, the "conceptual" meaning of these invariants is still mysterious. We therefore found the algebraic relations that they satisfy in order to, using a case by case analysis, compute and compare the local factor, local discrepancy and local root number at each place and for each reduction type. The exhaustivity of our list of cases and the fact that we found the product of local factor and Hilbert Symbols to be equal to the local root number in each case, constitutes our proof of the 2-parity conjecture.

This work is presented as follows. In Chapter 2, we start by recalling some background material on hyperelliptic curves and their Jacobians. After recalling the definition of Richelot isogenies and the Richelot construction, we give an overview of the *p*-parity and parity conjectures followed by a summary of the known cases.

The first part of Chapter 3 then relates the parity of the  $2^{\infty}$  Selmer rank to the existence of an isogeny and provides a local factorization for the  $2^{\infty}$  Selmer rank of the Jacobian of a genus 2 curve admitting a Richelot isogeny. In its second part, Chapter 3 presents how to express each local factor in terms of the polynomial defining the underlying curve, considering infinite places, odd finite places and finite places above 2. Each computation is illustrated by an example and, combining all local computations, this chapter ends by providing an example of the computation of the parity of the  $2^{\infty}$  Selmer rank for an explicit Jacobian.

In Chapter 4, we introduce the specific family of  $C_2 \times D_4$  Jacobians and define the invariants that form the term of local discrepancy. We then tabulate the local computations at each place and for each reduction type that compose our proof of the 2-parity for  $C_2 \times D_4$  Jacobians.

Chapters 5 and 6 provide a detailed proof of these local computations. Chapter 5 addresses the computation of each local factor and root number while Chapter 6 deals with the computation of the local discrepancy in each case.

Chapter 7 concludes this work and is followed by an appendix containing a result of A. Morgan concerning isogenies between abelian varieties with split totally toric reduction which is used in Chapter 5 when considering computations at finite places above 2.

### Notation

The following notation will be used throughout the entire thesis.

| $\mathcal{K}$            | number field                                |
|--------------------------|---------------------------------------------|
| $\overline{\mathcal{K}}$ | algebraic closure of $\mathcal{K}$          |
| $M_{\mathcal{K}}$        | set of places of $\mathcal{K}$              |
| v                        | a place in $M_{\mathcal{K}}$                |
| $\mathcal{K}_v$          | completion of $\mathcal{K}$ at $v$          |
| p                        | a prime in $\mathbb{Q}$                     |
| K                        | finite extension of $\mathbb{Q}_p$          |
| $\mathcal{O}_K$          | ring of integers of $K$                     |
| $\overline{K}$           | algebraic closure of $K$                    |
| $K^{nr}$                 | maximal unramified extenstion of ${\cal K}$ |
| $\pi$                    | uniformizer of $K$                          |
| v                        | normalized valuation of $K$                 |
| k                        | residue field of $K$                        |
| $\bar{k}$                | algebraic closure of $k$                    |
|                          |                                             |

Some sections introduce a large number of new definitions and conventions. For clarity, each introduction of chapters is followed by the list of specific notations used in the chapter.

## Chapter 2

## **Background Material**

### 2.1 Hyperelliptic curves and their Jacobians

#### 2.1.1 Hyperelliptic curves

By a hyperelliptic curve C over a number field  $\mathcal{K}$  given by  $C/\mathcal{K} : y^2 = f(x)$  of genus g, where  $f(x) \in \mathcal{K}[x]$  is of degree 2g + 1 or 2g + 2 with no multiple roots, we mean the pair of affine patches

$$U_x: y^2 = f(x), \qquad U_t: v^2 = t^{2g+2}f(\frac{1}{t}),$$

glued together along the maps  $x = \frac{1}{t}$  and  $y = \frac{v}{t^{g+1}}$ . We refer to the *points at infinity* (i.e.  $C \setminus U_x$ ) for the points with t = 0 on  $U_t$ . Explicitly, denoting  $c \in \mathcal{K}^{\times}$  the leading term of f(x), if f(x) is of degree 2g + 1 then

$$U_x: y^2 = c \prod_{i=1}^{2g+1} (x - r_i), \qquad U_t: v^2 = tc \prod_{i=1}^{2g+1} (tr_i - 1)$$

and we denote  $P_{\infty} = (0, 1)$  the only point on C' with t = 0. Otherwise if f(x) is of degree 2g + 2 then

$$U_x: y^2 = c \prod_{i=1}^{2g+2} (x - r_i), \qquad U_t: v^2 = c \prod_{i=1}^{2g+2} (tr_i - 1)$$

and we denote  $P_{\infty}^{\pm} = (0, \pm \sqrt{c})$  the two points on  $U_t$  with t = 0. We refer to [35] for an introduction to the arithmetic of Hyperelliptic curves.

#### 2.1.2 Jacobians of hyperelliptic curves

Let C be a hyperelliptic curve of genus g defined over  $\mathcal{K}$  by

$$C: y^2 = f(x)$$

where  $f(x) \in \mathcal{K}[x]$  is a polynomial of degree 2g + 1 or 2g + 2 with no multiple root.

**Definition 2.1.1** (Hyperelliptic involution). Let  $P = (x_P, y_P)$  be a point on  $C(\overline{\mathcal{K}})$ . We call  $\overline{P} = (x_P, -y_P)$  its conjugate under the hyperelliptic involution.

**Definition 2.1.2** (Divisors). A divisor D on C is a formal sum

$$\sum_{P \in C} n_P P,$$

where  $n_P \in \mathbb{Z}$  and  $n_P = 0$  for all but finitely many points  $P \in C(\overline{\mathcal{K}})$ . The integer  $n_P$  is called the *multiplicity* of P in D and  $deg(D) = \sum_{P \in C} n_P$  denotes the *degree* of D.

Divisors of a curve C are elements of the free abelian group on the set of points  $P \in C(\overline{\mathcal{K}})$ . We denote Div(C) the group of divisors on C.

Definition 2.1.3 (Rational divisors). A divisor

$$D = \sum_{P \in C(\mathcal{F})} n_p P,$$

for some finite Galois extension  $\mathcal{F}/\mathcal{K}$ , is said to be  $\mathcal{K}$ -rational or defined over  $\mathcal{K}$  if

$$D^{\sigma} = D$$
 for all  $\sigma \in Gal(\mathcal{F}/\mathcal{K})$ .

**Definition 2.1.4** (Principal Divisors). Let f be a non zero rational function on C. Define the divisor of f

$$[f] = \sum_{P \in C} ord_P(f)P,$$

where the multiplicity of P in [f] is given by the order of vanishing of f at P in terms of a local uniformizer. Divisors given by a function f on C are called *principal divisors* and we denote by Princ(C) the subgroup of principal divisors. As a rational function, f has as many zeroes as it has poles. Consequently, principal divisors have degree 0.

Definition 2.1.5 (Picard group). The *Picard group* is defined to be

$$Pic(C) = Div(C)/Princ(C).$$

In particular, two divisors differing by a principal divisor are in the same divisor class and are said to be linearly equivalent. The Picard group inherits a notion of degree from Div(C) and we denote by  $Pic^{j}(C)$  the set of elements of Pic(C) of degree j.

**Definition 2.1.6** (Jacobian of C). The Jacobian of C is defined as

$$J = Pic^0(C).$$

Points on J are classes of divisors of degree 0 on C.

**Theorem 2.1.7** ([26], Theorem 1.1, Proposition 2.1). The Jacobian of a curve of genus g is an abelian variety of dimension g.

**Theorem 2.1.8** (Mordell-Weil). The group of  $\mathcal{K}$ -rational points of J is finitely generated. Hence

$$J(\mathcal{K}) \simeq \mathbb{Z}^{rk(J/\mathcal{K})} \oplus J(\mathcal{K})_{tors}$$

where  $rk(J/\mathcal{K}) < \infty$  is called the rank of  $J/\mathcal{K}$  and the group of torsion  $J(\mathcal{K})_{tors}$  is finite.

Our main goal is to compute the parity of  $rk(J/\mathcal{K})$  in the case of Jacobians of dimension 2. Our approach involves the use of an isogeny on J whose kernel is composed of 2-torsion elements. We therefore review briefly how to construct 2-torsion points on J from the roots of the defining polynomial of C. For a detailed exposition on torsion elements on Jacobians of genus 2 curves we refer to [5], Chapter 8.

#### 2.1.3 Jacobians of hyperelliptic curves of genus 2

Let C be a hyperelliptic curve of genus 2 defined over  $\mathcal{K}$  by

$$C: y^2 = f(x),$$

where  $f(x) \in \mathcal{K}[x]$  is a polynomial of degree  $6^1$  with no multiple root.

### **Points on** $C(\overline{\mathcal{K}})$ and $J(\overline{\mathcal{K}})$

A point  $D \in J(\overline{\mathcal{K}})$  can be given as a divisor on C of the form

$$D = P + Q - P_{\infty}^+ - P_{\infty}^-,$$

<sup>&</sup>lt;sup>1</sup>If C is defined by a polynomial of degree 5, it is always possible after a change of variable, to consider a model for C with a defining polynomial of degree 6

for some  $P, Q \in C(\overline{\mathcal{K}})$  and where  $P_{\infty}^+, P_{\infty}^-$  denote the two points at infinity of C. We will use the notation D = [P, Q] to denote the point D on  $J(\overline{\mathcal{K}})$ . Note that a point  $P \in C(\overline{\mathcal{K}})$  and its image  $\overline{P}$  through the hyperelliptic involution are the points of intersection of a vertical line and f(x). In particular, the principal divisor  $D = [P, \overline{P}]$  can be chosen as a representative for the class of  $0 \in J(\overline{\mathcal{K}})$ .

#### Addition on J

Choose four points P, P', Q, Q' in general position on  $C(\overline{\mathcal{K}})$ . Then there exists a curve y = p(x), where p(x) is a polynomial of degree 3, passing through P, P', Q, Q' and intersecting C in two more points S, S' (see Figure 2.1).



The principal divisor

$$[y-p(x)] = P + P' + Q + Q' + S + S' - 3P_{\infty}^{+} - 3P_{\infty}^{-}$$

yields

$$[P, P'] + [Q, Q'] = -[S, S'].$$

Since [S, R] = [S', R'] = 0, we obtain

$$[P, P'] + [Q, Q'] = [R, R'].$$

Figure 2.1:  $y^2 = f(x)$  and y = p(x)

This prompts the following Lemma.

**Lemma 2.1.9.** Each non zero element of  $J(\overline{\mathcal{K}})[2]$  may be uniquely represented by the following pairs of points of  $C(\overline{\mathcal{K}})$ . Let  $x_1, ..., x_6 \in \overline{\mathcal{K}}$  be the roots of f(x), then

$$J(\overline{\mathcal{K}})[2] = \{ [T_i, T_k], i \neq k \} \cup \{0\}, \qquad T_i = (x_i, 0) \in C(\overline{\mathcal{K}}).$$

Proof. See [5], §8.1 and proof of Lemma 8.1.3. in [34].

The sequent sections and results rely on the existence of an isogeny on J whose kernel is a subgroup of  $J(\overline{\mathcal{K}})[2]$ . Using this last Lemma, we conveniently avoid considering an algebraic model for J and simply define its 2-torsion elements from the roots of the defining polynomial of its underlying curve C. Moreover as shown in Chapter 3, this identification allows us to study the local arithmetic of J from that of C.

### 2.2 Richelot Isogenies and Richelot Construction

We recall here the notion of a Richelot isogeny. Defined for Jacobians of genus 2 curves, they split multiplication by 2 at the level of the Jacobian. Their codomain is the Jacobian of a curve, a model of which is conveniently given by the Richelot construction. Similarly to the case of elliptic curves, their kernel consists of a subgroup of 2-torsion and we show using Lemma 2.1.9 how to guarantee the existence of such an isogeny from the Galois group of the defining polynomial of the underlying curve. Our exposition follows that of [4] to which we refer for the proofs. Other expositions of Richelot isogenies can be found in [5] and [34].

#### **Richelot and Richelot dual polynomials**

**Definition 2.2.10.** 1) Given two polynomials  $P(x), Q(x) \in \mathcal{K}[x]$  of degree at most 2, we define the *Richelot operator* [,] by

$$[P(x), Q(x)] = P'(x)Q(x) - Q'(x)P(x),$$

where ' refers to the differentiation with respect to x. 2) We say that a polynomial  $G(x) \in \mathcal{K}[x]$  of degree 5 or 6 is a *Richelot polynomial* over  $\mathcal{K}$  if we can fix a factorization

$$G(x) = G_1(x)G_2(x)G_3(x),$$

where for i = 1, 2, 3, the polynomials  $G_i(x)$  are of degree at most 2, defined over  $\overline{\mathcal{K}}$  individually and over  $\mathcal{K}$  as a set<sup>2</sup>.

3) If G(x) is a Richelot polynomial over  $\mathcal{K}$ , write

$$G_i(x) = g_{i2}x^2 + g_{i1}x + g_{i0} = g_i(x - \alpha_i)(x - \beta_i), \quad i = 1, 2, 3,$$

for its factorization over  $\overline{\mathcal{K}}$  and define

$$\Delta_G = \det\left((g_{ij})_{0 \le i,j \le 2}\right).$$

**Definition 2.2.11.** 1) To a Richelot polynomial G(x) with fixed factorization  $G(x) = G_1(x)G_2(x)G_3(x)$  such that  $\Delta_G \neq 0$ , we associate its *Richelot dual polynomial* F(x) given by

$$F(x) = \prod_{i=1}^{3} F_i(x), \text{ with } F_i(x) = \frac{1}{\Delta_G} [G_{i+1}(x), G_{i+2}(x)],$$

<sup>&</sup>lt;sup>2</sup>i.e. the set  $\{G_i(x), i = 1, 2, 3\}$  is preserved by the action of  $Gal(\overline{\mathcal{K}}/\mathcal{K})$ 

where addition of indices is performed modulo 3. Note that by construction, F(x) is a Richelot polynomial over  $\mathcal{K}$  with given factorization  $F_1(x)F_2(x)F_3(x)$ . 2) Write

$$F_i(x) = f_{i2}x^2 + f_{i1}x + f_{i0} = f_i(x - A_i)(x - B_i), \quad i = 1, 2, 3,$$

for the factorization of F(x) over  $\overline{\mathcal{K}}$  and define

$$\Delta_F = \det((f_{ij})_{0 < i,j < 2}).$$

We will keep the above notation for the roots of  $G_i(x)$  and  $F_i(x)$  throughout the entire thesis. The quantity  $\Delta_G$  is essential to the Richelot construction due to the following definitions. We also note that although  $\Delta_G$  might not be defined over  $\mathcal{K}$ , its square  $\Delta_G^2$  is.

#### **Richelot and Richelot dual curves**

**Definition 2.2.12.** 1. We say that a hyperelliptic curve  $C/\mathcal{K}$  of genus 2 is a *Richelot curve over*  $\mathcal{K}$  if it is given by

 $C: y^2 = G(x)$ , together with the factorization  $G(x) = G_1(x)G_2(x)G_3(x)$ 

as a Richelot polynomial over  $\mathcal{K}$  such that  $\Delta_G \neq 0$ .

2. To a Richelot curve  $C/\mathcal{K}$ , we associate its Richelot dual curve  $\hat{C}/\mathcal{K}$  given by

$$\hat{C}: \Delta_G^2 y^2 = F(x),$$

where F(x) is the Richelot dual polynomial of G(x) with respect to the given factorization.

**Remark 2.2.13** (Richelot dual polynomial). Our definition of the Richelot dual polynomial differs from that of [5] and [34] but agrees with that of [4]. This is because we insist that  $F(x) = F_1(x)F_2(x)F_3(x)$  be a Richelot polynomial, that is, the set  $\{F_1(x), F_2(x), F_3(x)\}$  be Galois stable. However, this has no incidence on the definition of the dual curve  $\hat{C}$  as the following change of variable  $x \mapsto x$ ,  $y \mapsto \frac{y}{\Delta_G^2}$ is an isomorphism over  $\mathcal{K}$  between our curve  $\hat{C}$  and that given in [5].

**Remark 2.2.14** (Galois group of Richelot polynomials). Let  $G(x) \in \mathcal{K}[x]$  a polynomial of degree 5 or 6. Denote by  $\mathcal{K}_G$  its splitting field. Then the conditions for G(x) to be a Richelot polynomial over  $\mathcal{K}$  (and hence for C to be a Richelot curve) can be rephrased as

$$Gal(\mathcal{K}_G/\mathcal{K}) \subseteq C_2^3 \rtimes S_3 \subset S_6,$$

where the three copies of  $C_2$  are given by the permutations of roots of quadratic factors  $G_i(x)$ , themselves acted upon by  $S_3$ .

**Proposition 2.2.15.** Let  $C/\mathcal{K}$  be a Richelot curve with fixed quadratic factorization  $G(x) = G_1(x)G_2(x)G_3(x)$ . Let J be its Jacobian. Keeping notation as in Definition 2.2.11, for each pair of points  $(P_i, Q_i) \in C(\overline{\mathcal{K}})^2$ , with  $P_i = (\alpha_i, 0), Q_i = (\beta_i, 0), i = 1, 2, 3$ , consider the associated 2-torsion elements of  $J(\overline{\mathcal{K}})$ 

$$D_i = [P_i, Q_i] \in J(\overline{\mathcal{K}})[2].$$

Then

i) the subgroup H = {0, D<sub>1</sub>, D<sub>2</sub>, D<sub>3</sub>} ⊂ J(K)[2] is defined over K,
ii) H is a maximal isotropic subgroup of J(K)[2] with respect to the 2-Weil pairing.

*Proof.* (i) Follows from the definition of a Richelot polynomial.

(ii) A subgroup H of  $J(\mathcal{K})[2]$  is maximal isotropic with respect to the 2-Weil pairing if and only if it is composed of 2-torsion points of J given by two distinct Weierstrass points of C (see [34] Lemma 8.1.4). The result follows from the definition of  $D_1, D_2, D_3$  and the fact that C being a hyperelliptic curve implies that the  $G_i(x)s$ are necessarily coprime.

#### **Richelot** isogenies

**Definition 2.2.16.** Let  $C/\mathcal{K}$  be a Richelot curve with fixed quadratic factorization  $G(x) = G_1(x)G_2(x)G_3(x)$ . Let J be its Jacobian. Consider the 2-torsion points of  $J(\overline{\mathcal{K}})$  defined by the quadratic factorization of G(x)

$$D_i = [P_i, Q_i] \in J(\overline{\mathcal{K}})[2],$$

where  $P_i = (\alpha_i, 0), Q_i = (\beta_i, 0), i = 1, 2, 3$  as in Definition 2.2.11. Then the isogeny over  $\mathcal{K}$  for J whose kernel is the subgroup  $H = \{0, D_1, D_2, D_3\} \subseteq J(\mathcal{K})[2]$  is called a Richelot isogeny.

We say that a Jacobian admits a Richelot isogeny over  $\mathcal{K}$  if its underlying curve is a Richelot curve over  $\mathcal{K}$ .

**Theorem 2.2.17.** Let  $C/\mathcal{K}$  be a Richelot curve with fixed factorization  $G(x) = G_1(x)G_2(x)G_3(x)$  for its Richelot polynomial. Let  $\hat{C}/\mathcal{K}$  be its Richelot dual curve and let  $\phi$  denote the associated Richelot isogeny on J. Then

$$\phi: J \to \hat{J},$$

where  $\hat{J}$  is the Jacobian of  $\hat{C}$  and, denoting  $\phi^t$  the dual isogeny of  $\phi$ , we have  $\phi \circ \phi^t$  is multiplication by 2.

*Proof.* This is Definition 8.4.10, Corollary 8.4.9 and Theorem 8.4.11 of [34].  $\Box$ 

### 2.3 Parity and *p*-parity conjectures

We refer to [8] for an overview of the parity and *p*-parity conjectures for elliptic curves and present here a review of the situation for abelian varieties. Complementary references include [36] and [37]. Let  $A/\mathcal{K}$  be an abelian variety over a number field. By the Mordell-Weil theorem, the group of rational points  $A(\mathcal{K})$  of A is finitely generated, so that

$$A(\mathcal{K}) \simeq \mathbb{Z}^{rk(A/\mathcal{K})} \oplus A(\mathcal{K})_{tors},$$

where  $rk(A/\mathcal{K}) < \infty$  is called the *rank* of  $A/\mathcal{K}$  and the group of torsion  $A(\mathcal{K})_{tors}$  is finite. The rank of A is predicted by the following conjecture.

**Conjecture 2.3.18** (Birch and Swinnerton-Dyer [3], Tate [36]). Granting analytic continuation of the L-function of  $A/\mathcal{K}$  to  $\mathbb{C}$ ,

$$rk(A/\mathcal{K}) = ord_{s=1}L(A/\mathcal{K}, s),$$

where  $ord_{s=1}$  denotes the order of vanishing of  $L(A/\mathcal{K}, s)$  at s = 1.

Once the analytic continuation of the *L*-function of  $A/\mathcal{K}$  to  $\mathbb{C}$  is assumed, it is also predicted that the completed *L*-function of  $A/\mathcal{K}$  satisfies the following functional equation.

#### Conjecture 2.3.19.

$$L^*(A/\mathcal{K}, s) = W(A) \ L^*(A/\mathcal{K}, 2-s), \quad W(A) \in \{\pm 1\}.$$

A direct consequence of this functional equation is that the parity of the order of vanishing of  $L(A/\mathcal{K}, s)$  at s = 1 is given by the sign W(A), i.e.

$$(-1)^{ord_{s=1}L(A/\mathcal{K},s)} = W(A).$$

Therefore, combining with the prediction on the rank of  $A/\mathcal{K}$  given by the Birch and Swinnerton-Dyer conjecture, we obtain the following prediction for the parity of  $rk(A/\mathcal{K})$ .

Conjecture 2.3.20 (Birch and Swinnerton Dyer Modulo 2).

$$(-1)^{rk(A/\mathcal{K})} = W(A).$$

Moreover, it is known for elliptic curves in some cases that the sign in the functional equation above equals the global root number of the curve. In general, this fact remains a conjecture.

**Conjecture 2.3.21.** The sign W(A) in the conjectural functional equation of  $L^*(A/\mathcal{K})$  is equal to the global root number  $\omega(A)$  of A:

$$W(A) = \omega(A) = \prod_{v} \omega_v(A),$$

where  $\omega_v(A)$  denotes the local root number of A at the place v of  $M_{\mathcal{K}}$ .

This justifies the prediction on the parity of  $rk(A/\mathcal{K})$  given by the parity conjecture.

**Conjecture 2.3.22** (Parity conjecture). *The parity of the rank of an abelian variety is given by its global root number:* 

$$(-1)^{rk(A/\mathcal{K})} = \omega(A).$$

**Definition 2.3.23** ( $p^{\infty}$  Selmer rank). Recall that for each prime p, the p-primary part of  $\operatorname{III}(A/\mathcal{K})$  can be written as

$$\operatorname{III}[p^{\infty}] = (\mathbb{Q}_p/\mathbb{Z}_p)^{\delta_p} \times \operatorname{III}_0[p^{\infty}], \quad |\operatorname{III}_0[p^{\infty}]| < \infty.$$

We define the  $p^{\infty}$  Selmer rank of  $A/\mathcal{K}$  to be

$$rk_p(A/\mathcal{K}) = rk(A/\mathcal{K}) + \delta_p.$$

In particular, assuming that  $\operatorname{III}(A/\mathcal{K})$  is finite, the rank of A/K equals its  $p^{\infty}$  Selmer rank for all primes p. This yields the p-parity conjecture.

Conjecture 2.3.24 (*p*-parity conjecture).

$$(-1)^{rk_p(A/\mathcal{K})} = \omega(A).$$

Thanks to the work of Monsky, Nekovar, Dokchitser, Dokchitser, Cesnavicius, Coates, Fukaya, Kato, Sujatha, Kramer, Tunnell and Morgan among other contributors, on the *p*-parity conjecture, the following cases of the parity conjecture have been proven:

- 1. for elliptic curves  $E/\mathbb{Q}$  assuming  $\operatorname{III}(E)[p^{\infty}]$  finite for some p (see [27] for p = 2, [29], [21], [11] for odd primes),
- 2. for elliptic curves  $E/\mathcal{K}$ , where  $\mathcal{K}$  is a totally real field, assuming  $\operatorname{III}(E)[p^{\infty}]$  finite for some p and mild constraints (see [30] and [12]),

- 3. for elliptic curves  $E/\mathcal{K}$  admitting a *p*-isogeny, assuming  $\operatorname{III}(E)[p^{\infty}]$  finite (see [9] and [6]),
- 4. for elliptic curves  $E/\mathcal{K}(\sqrt{d})$ , E defined over  $\mathcal{K}, d \in \mathcal{K}^{\times} \setminus \mathcal{K}^{\times 2}$ ,  $\operatorname{III}(E/\mathcal{K}(\sqrt{d}))[2^{\infty}]$  finite (see [23], [22] and [12]),
- 5. for elliptic curves  $E/\mathcal{K}$  assuming  $\operatorname{III}(E/F)[2^{\infty}], \operatorname{III}(E/F)[3^{\infty}]$  finite, where  $F = \mathcal{K}(E[2])$  (see [11] and [12]),
- 6. for Jacobian varieties  $A/\mathcal{K}(\sqrt{d})$ , A = Jac(C), C semistable hyperelliptic curve over  $\mathcal{K}, d \in \mathcal{K}^{\times} \setminus \mathcal{K}^{\times 2}$ ,  $\mathrm{III}(A/\mathcal{K}(\sqrt{d}))[2^{\infty}]$  finite, and mild constraints (see [28]),
- 7. for principally polarized abelian varieties  $A/\mathcal{K}$  admitting an isogeny  $\Phi : A \to A'$  s.t.  $\Phi^* \Phi = [p]$ , assuming  $\operatorname{III}(A)[p^{\infty}]$  finite, p odd and mild constraints (see [7]).

One of the main motivation for this work was the proof of the fifth case. It relies on the fact that the 2-parity conjecture holds for elliptic curves over  $\mathcal{K}(E[2])$ , and make use of the theory of regulator constants to prove a result on the parity of the rank of  $E/\mathcal{K}$ . The same method can be applied to Jacobians of dimension 2 but first, it is crucial to prove the 2-parity conjecture for those.

## Chapter 3

## Parity of the $2^{\infty}$ Selmer rank

### 3.1 Introduction

In this chapter we develop an explicit formula for the parity of the  $2^{\infty}$  Selmer rank of Jacobians of genus 2 curves admitting a Richelot isogeny. The first section explains how to use the existence of a Richelot isogeny to express the parity of the  $2^{\infty}$  Selmer rank in terms of local factors as follows.

**Theorem 3.1.1** (Theorem 3.2.16). Let  $C/\mathcal{K}$  be a hyperelliptic curve of genus 2 such that its Jacobian J admits a Richelot isogeny  $\phi$ . Denote by  $\hat{C}$  and  $\hat{J}$  the corresponding curve and isogenous Jacobian. Denote  $\omega_v^o$ ,  $\hat{\omega}_v^o$  the Néron exterior forms at the place v of  $\mathcal{K}$  for J and  $\hat{J}$  respectively. Then

$$rk_2(J/\mathcal{K}) \equiv \sum_{v \in M_\mathcal{K}} \Lambda_v \mod 2$$
 with

$$\Lambda_{v} = ord_{2} \left( \frac{\hat{n} \cdot m_{v}}{|ker(\varphi)| \cdot n \cdot \hat{m}_{v}} \right) \ for \ v \mid \infty, \quad \Lambda_{v \nmid \infty} = ord_{2} \left( \frac{c_{v} \cdot m_{v}}{\hat{c}_{v} \cdot \hat{m}_{v}} \Big| \frac{\phi^{*} \hat{\omega}_{v}^{o}}{\omega_{v}^{o}} \Big|_{v} \right) \ for \ v \nmid \infty,$$

where n,  $\hat{n}$  are the number of  $\mathcal{K}_v$ -connected components of J and  $\hat{J}$ ,  $\varphi$  is the restriction of  $\phi$  to the identity component of  $J(\mathcal{K}_v)$ ,  $c_v$  and  $\hat{c}_v$  the Tamagawa numbers of J and  $\hat{J}$ , and  $m_v = 2$  if C is deficient at v (see Definition 3.2.7),  $m_v = 1$  otherwise, and similarly for  $\hat{m}_v$ .

In the second section, we describe how to express the invariants involved in Theorem 3.2.16 above in terms of the polynomial defining C, when the given Jacobian is semistable. Part of this work is joint with T. and V. Dokchitser and A. Morgan and is presented in the articles [15] and [14]. We only provide here a summary of the results needed and refer to the articles for the proofs. It follows that the parity of the  $2^{\infty}$  Selmer rank is computable in this case and an example of such a computation is given in the last section.

#### List of notation for this chapter

| C                                | Richelot curve defined over $\mathcal{K}$ with the given factorization                                 |
|----------------------------------|--------------------------------------------------------------------------------------------------------|
|                                  | $y^2 = G(x) = G_1(x)G_2(x)G_3(x)$                                                                      |
| С                                | leading term of $G(x)$                                                                                 |
| J                                | Jacobian of $C$ admitting a Richelot isogeny $\phi$                                                    |
| $\hat{C}$                        | Richelot dual curve defined over $\mathcal{K}$ by                                                      |
|                                  | $\Delta_G^2 y^2 = F(x) = F_1(x) F_2(x) F_3(x)$ (see Section 2.2)                                       |
| $\ell$                           | leading term of $F(x)$                                                                                 |
| $\hat{J}$                        | Jacobian of $\hat{C}$                                                                                  |
| $\delta_i,  i = 1, 2, 3$         | discriminant of $G_i(x)$                                                                               |
| $\hat{\delta}_i, i=1,2,3$        | discriminant of $F_i(x)$                                                                               |
| $\alpha_i, \beta_i, i = 1, 2, 3$ | roots of $G_i(x)$                                                                                      |
| $A_i, B_i, i = 1, 2, 3$          | roots of $F_i(x)$                                                                                      |
| $P_i, Q_i,  i=1,2,3$             | Weierstrass points $P_i = (\alpha_i, 0), Q_i = (\beta_i, 0)$                                           |
| $D_i, i = 1, 2, 3$               | $D_i = [P_i, Q_i] \in ker(\phi),$                                                                      |
| $n_v, \hat{n}_v,$                | number of connected components of $J(\mathcal{K}_v)$ and $\hat{J}(\mathcal{K}_v)$ when $v \mid \infty$ |
| $m_v$                            | $m_v = 2$ if C is deficient at $v, m_v = 1$ otherwise (see Definition 3.2.7)                           |
| $\phi_{\mathbb{R}}$              | map induced by $\phi$ on $J(\mathcal{K}_v)$ when $\mathcal{K}_v \cong \mathbb{R}$                      |
| arphi                            | restriction of $\phi_{\mathbb{R}}$ to the identity component of $J(K_v)$ when $K_v \cong \mathbb{R}$   |
| $c_v, \hat{c}_v$                 | Tamagawa numbers of J and $\hat{J}$ at v when $v \nmid \infty$                                         |
| $\hat{\omega}$                   | a fixed choice of a non-zero exterior form for $\hat{J}$                                               |
| ω                                | the pullback of $\hat{\omega}$ through $\phi$ : $\omega = \phi^* \hat{\omega}$                         |

### **3.2** Parity of the $2^{\infty}$ Selmer rank of Richelot Jacobians

Recall that for an elliptic curve  $E/\mathcal{K}$  with an isogeny  $\phi$  of degree p over  $\mathcal{K}$ , one can express the parity of its  $p^{\infty}$  Selmer rank  $(-1)^{rk_p(E/\mathcal{K})}$  as the product of power of p in

$$\frac{|coker(\phi_v : E(\mathcal{K}_v) \to E(\mathcal{K}_v))|}{|ker(\phi_v : E(\mathcal{K}_v) \to E(\mathcal{K}_v))|}$$

for all places v of  $\mathcal{K}$  as shown in [16][Appendix]. In [11] and [7], Dokchitser-Dokchitser and Coates-Fukaya-Kato-Sujatha gave generalizations of the above to abelian varieties. In the latter, the authors prove that, for odd primes p and under mild restrictions at places v dividing p, the p-parity conjecture holds for principally polarized abelian varieties A admitting a suitable isogeny. When p = 2 however, the key problem to extend their result is that the order of III(A) could be twice a square. In [32], Poonen and Stoll provide a way to compute whether the order of the Shafarevich-Tate group of Jacobians is a square or twice a square in terms of local invariants. This is why the use of Richelot isogenies on the Jacobians J that we study is crucial. Since it guarantees that the codomain of J is also a Jacobian, it let us control the parity of the  $2^{\infty}$  Selmer rank in this case.

In this section, we recall how to express the parity of the  $2^{\infty}$  Selmer rank of an abelian variety of dimension g admitting an isogeny of degree  $2^{g}$  to then provide a formula for the parity of their  $2^{\infty}$  Selmer rank.

#### **3.2.1** Parity of the $2^{\infty}$ Selmer rank and isogenies

Let A, B be abelian varieties over  $\mathcal{K}$ . Recall the following definitions and results presented in [11] (Section 4.1) concerning the isogeny invariance of the BSD-quotient for Selmer groups.

**Definition 3.2.2.** For an isogeny  $\phi : A \to B$  over  $\mathcal{K}$ , let

$$Q(\phi) = |coker(\phi: A(\mathcal{K})/A(\mathcal{K})_{tors} \to B(\mathcal{K})/B(\mathcal{K})_{tors})| \times |ker(\phi: \amalg(A)_{div} \to \amalg(B)_{div})| + |ker(\phi: \amalg(A)_{div} \to \amalg(A)_{div})| + |ker(h)_{div} \to \amalg(A)_{div} \to \amalg(A)_{d$$

where  $III(A)_{div}$  denotes the divisible part of III(A).

**Lemma 3.2.3.**  $Q(\phi)$  as defined above satisfies the following properties:

- 1. If  $\phi: A \to B$  and  $\phi': B \to C$  are isogenies then  $Q(\phi'\phi) = Q(\phi')Q(\phi)$ ,
- 2. If  $\phi: A \to A$  is multiplication by p then  $Q(\phi) = p^{rk_p(A/\mathcal{K})}$ .

**Theorem 3.2.4.** Let  $A, B/\mathcal{K}$  be abelian varieties given with exterior forms  $\omega_A, \omega_B$ . Suppose  $\phi : A \to B$  is an isogeny and  $\phi^t : B^t \to A^t$  its dual. Let  $\coprod_0(A/\mathcal{K})$  be  $\coprod(A/\mathcal{K})$  modulo its divisible part and

$$\Omega_A = \prod_{v \mid \infty_{real}} \int_{A(\mathcal{K}_v)} |\omega_A| \prod_{v \mid \infty_{complex}} \int_{A(\mathcal{K}_v)} |\omega_A \wedge \bar{\omega}_A|.$$

For two exterior forms  $\omega_1, \omega_2$ , writing  $\frac{\omega_1}{\omega_2} = \lambda \in \mathcal{K}$  whenever  $\omega_1 = \lambda \omega_2$ , set

$$C(A/\mathcal{K}) = \prod_{v \nmid \infty} c_v |\frac{\omega}{\omega_v^o}|_v,$$

where  $c_v$  and  $\omega_v^o$  are respectively the local Tamagawa number and the Néron exterior form at a finite place v of  $\mathcal{K}$ , and similarly for B, then:

$$\frac{|B(\mathcal{K})_{tors}||B^{t}(\mathcal{K})_{tors}|C(A/\mathcal{K})\Omega_{A}}{|A(\mathcal{K})_{tors}||A^{t}(\mathcal{K})_{tors}|C(B/\mathcal{K})\Omega_{B}}\prod_{p|deg\phi}\frac{|\mathrm{III}_{0}(A)[p^{\infty}]|}{|\mathrm{III}_{0}(B)[p^{\infty}]|}=\frac{Q(\phi^{t})}{Q(\phi)}$$

**Lemma 3.2.5.** Let  $A/\mathcal{K}$  be a principally polarized abelian variety admitting an isogeny  $\phi : A \to \hat{A}$  so that  $\hat{A}$  is principally polarized. Write  $\phi^t$  for the dual of  $\phi$  and suppose that  $\phi \phi^t = [p]$ . Then, keeping notation as in Theorem 3.2.4,

$$(-1)^{rk_p(A)} = \lambda(A), \quad \text{where } \lambda(A) = (-1)^{ord_p \left(\frac{C(A)\Omega_A}{C(\hat{A})\Omega_{\hat{A}}} \prod_{p \mid \deg \phi} \frac{|\amalg_0(A)[p^{\infty}]|}{|\amalg_0(\hat{A})[p^{\infty}]|}\right)}.$$

Proof. Using properties 1 and 2 of Lemma 3.2.3 we have

$$\frac{Q(\phi^t)}{Q(\phi)} = \frac{Q(\phi^t)Q(\phi)}{Q(\phi)^2} = \frac{Q(\phi^t\phi)}{Q(\phi)^2} = \frac{p^{rk_p(A)}}{Q(\phi)^2}.$$

Hence by Theorem 2.23. this yields

$$\frac{p^{rk_p(A)}}{Q(\phi)^2} = \frac{|\hat{A}_{tors}||\hat{A}_{tors}^t|C(A)\Omega_A}{|A_{tors}||A_{tors}^t|C(\hat{A})\Omega_{\hat{A}}} \prod_{p|dea\phi} \frac{|\mathrm{III}_0(A)[p^{\infty}]|}{|\mathrm{III}_0(\hat{A})[p^{\infty}]|}.$$

The result follows since  $|\hat{A}_{tors}| = |\hat{A}_{tors}^t|$  and  $|A_{tors}| = |A_{tors}^t|$ .

The conditions required by Lemma 3.2.5 are satisfied by Jacobians of genus 2 curves admitting a Richelot isogeny. Richelot isogenies are such that their codomain is the Jacobian of a genus 2 curve, a model of which is given explicitly (see Section 2.2). In particular, Richelot isogenies have principally polarized codomains and are of degree 4. It therefore follows from Lemma 3.2.5 that the parity of the  $2^{\infty}$  Selmer rank of a Jacobian admitting a Richelot isogeny can be expressed as follows.

**Theorem 3.2.6.** Let A/K be the Jacobian of a genus 2 curve admitting a Richelot isogeny. Then

$$(-1)^{rk_2(A)} = \lambda(A), \quad \text{where } \lambda(A) = (-1)^{ord_2\left(\frac{C(A)\Omega_A}{C(\hat{A})\Omega_{\hat{A}}} | \underbrace{\text{III}_0(A)[2^{\infty}]}_{| III_0(\hat{A})[2^{\infty}]|}\right)}.$$

*Proof.* Follows from Lemma 3.2.5 and by definition of Richelot isogenies (see Theorem 2.2.17).  $\Box$ 

### **3.2.2** Local factorization of the parity of the $2^{\infty}$ Selmer rank

Let  $J/\mathcal{K}$  be a Jacobian admitting a Richelot isogeny and denote by  $\hat{J}$  its codomain. Then by Theorem 3.2.6 we have

$$(-1)^{rk_2(J)} = \lambda(J), \quad \text{where } \lambda(J) = (-1)^{ord_2\left(\frac{C(J)\Omega_J}{C(J)\Omega_J} \frac{|\text{III}_0(J)[2^{\infty}]|}{|\text{III}_0(J)[2^{\infty}]|}\right)}.$$

We now wish to express  $\lambda(J)$  as a product of local terms. Note that Theorem 3.2.4 already gives a partial result by defining  $C(J)\Omega_J$  and  $C(\hat{J})\Omega_{\hat{J}}$  in this way. Using a

results of Poonen and Stoll presented in [32], we factor the term  $\frac{|III_0(J)[2^{\infty}]|}{|III_0(\hat{J})[2^{\infty}]|}$  in  $\lambda(J)$  as a product of local factors. We then refine the formula obtained for  $\lambda(J)$  using local invariants of both J and  $\hat{J}$  as well as their underlying curves C and  $\hat{C}$ .

#### Odd Jacobians and deficient places

Recall that for an abelian variety  $A/\mathcal{K}$ ,  $\operatorname{III}(A/\mathcal{K})[p^{\infty}]$  is of the form  $(\mathbb{Q}_p/\mathbb{Z}_p)^{\delta_p} \times \operatorname{III}_0(A/\mathcal{K})[p^{\infty}]$  where  $\operatorname{III}_0(A/\mathcal{K})[p^{\infty}]$  is a finite *p*-group (see e.g. [8]). A consequence of the Cassels-Tate pairing for elliptic curves  $E/\mathcal{K}$  is that  $\operatorname{III}_0(E/\mathcal{K})[p^{\infty}]$  is of square order. For general principally polarized abelian varieties however, its order could be twice a square.

In particular, a Jacobian J of a curve is said to be odd if the finite part of III(J) has order twice a square, is said to be even otherwise. Thanks to a result of Poonen and Stoll in [32] it is possible to know whether J is odd or even by studying the deficiency of its underlying curve.

**Definition 3.2.7.** If C is a curve of genus g over a local field  $\mathcal{K}_v$ , we say that C is deficient if it has no  $\mathcal{K}_v$ -rational divisor of degree g - 1.

If C is a curve of genus g over a global field  $\mathcal{K}$ , then a place v of  $\mathcal{K}$  is called deficient if  $C/\mathcal{K}_v$  is deficient.

**Remark 3.2.8.** For genus 2 curves, this is equivalent to saying that C does not have a  $\mathcal{L}$ -rational point in any extension  $\mathcal{L}/\mathcal{K}$  of odd degree.

**Definition 3.2.9.** For a curve C and a local field  $\mathcal{K}_v$  as above, we define

$$m_v(C) = \begin{cases} 2 & \text{if } v \text{ is deficient for } C, \\ 1 & \text{otherwise.} \end{cases}$$

**Theorem 3.2.10.** [32][Corollaries 9, 12]

If N is the number of deficient places of C then  $|III_0(J/\mathcal{K})| = 2^N \cdot r = \prod_v m_v \cdot r$ , where r is a square integer.

This prompts the following factorization for  $\lambda(J)$ .

**Lemma 3.2.11.** Let  $J/\mathcal{K}$  be a Jacobian admitting a Richelot isogeny  $\phi$  over  $\mathcal{K}$  and denote by  $\hat{J}$  its codomain. Then

$$\lambda(J) = (-1)^{ord_2\left(\frac{C(J)\Omega_J}{C(\hat{J})\Omega_{\hat{J}}}\right)} \prod_{v \in M_{\mathcal{K}}} (-1)^{ord_2\left(\frac{m_v(C)}{m_v(\hat{C})}\right)}.$$

Proof. This follows from Definition 3.2.9, Theorems 3.2.6 and 3.2.10 as they yield

$$\frac{|\mathrm{III}_0(J)[2^\infty]|}{|\mathrm{III}_0(\hat{J})[2^\infty]|} = \prod_{v \in M_{\mathcal{K}}} \frac{m_v(C)}{m_v(\hat{C})} r, \quad r \in \mathbb{Q}^{\times 2}$$

#### Infinite places

**Definition 3.2.12.** Let  $J/\mathcal{K}$  be a Jacobian admitting a Richelot isogeny  $\phi$  over  $\mathcal{K}$ . For  $v \in M_{\mathcal{K}}$  such that  $v \mid \infty$ , we let  $\phi_v$  denote the map induced by  $\phi$  on  $J(\mathcal{K}_v)$  and define

$$\varphi: J(\mathcal{K}_v)^0 \to \hat{J}(\mathcal{K}_v)^0,$$

the restriction of the map  $\phi_v$  to the identity component  $J(\mathcal{K}_v)^0$  of  $J(\mathcal{K}_v)$ .

**Lemma 3.2.13.** Let  $J/\mathcal{K}$  be a Jacobian admitting a Richelot isogeny  $\phi$  over  $\mathcal{K}$ . Let  $\hat{\omega}$  be a choice of exterior form for  $\hat{J}$  and choose  $\omega = \phi^* \hat{\omega}$  as an exterior form for J. Keeping notation as in Theorem 3.2.4, we have

$$\frac{\Omega_J}{\Omega_{\hat{J}}} = \prod_{v \mid \infty} \frac{n(J(\mathcal{K}_v))}{|ker(\varphi)|n(J(\mathcal{K}_v))},$$

where  $n(J(\mathcal{K}_v))$  and  $n(\hat{J}(\mathcal{K}_v))$  denote the number of connected components of  $J(\mathcal{K}_v)$ and  $\hat{J}(\mathcal{K}_v)$  respectively.

*Proof.* As in Lemma 7.4 in [13], we have

$$\begin{split} \frac{\Omega_J}{\Omega_{\hat{J}}} &= \prod_{v \mid \infty} \frac{|ker(\phi : J(\mathcal{K}_v) \to \hat{J}(\mathcal{K}_v))|}{|coker(\phi : J(\mathcal{K}_v) \to \hat{J}(\mathcal{K}_v))|} \Big| \frac{\omega}{\phi^* \hat{\omega}} \Big|_v \\ &= \prod_{v \mid \infty} \frac{|ker(\phi : J(\mathcal{K}_v) \to \hat{J}(\mathcal{K}_v))|}{|coker(\phi : J(\mathcal{K}_v) \to \hat{J}(\mathcal{K}_v))|}, \end{split}$$

by our choice of exterior forms. Now, denote  $\psi : J(\mathcal{K}_v)/J(\mathcal{K}_v)^0 \to \hat{J}(\mathcal{K}_v)/\hat{J}(\mathcal{K}_v)^0$ the map induced by  $\phi_v$  on  $J(\mathcal{K}_v)/J(\mathcal{K}_v)^0$  and consider the following morphism of short exact sequences.



As a consequence of  $\phi$  having finite kernel and cokernel, and by the Snake Lemma we have

$$\frac{|ker(\varphi)||ker(\psi)||coker(\phi_v)|}{|ker(\phi_v)||coker(\varphi)||coker(\psi)|} = 1, \text{ and hence } \frac{|coker(\phi_v)|}{|ker(\phi_v)|} = \frac{|coker(\varphi)||coker(\psi)|}{|ker(\varphi)||ker(\psi)|}.$$

Now denoting  $n(J(\mathcal{K}_v)) = |J(\mathcal{K}_v)/J(\mathcal{K}_v)^0|$  and  $n(\hat{J}(\mathcal{K}_v)) = |\hat{J}(\mathcal{K}_v)/\hat{J}(\mathcal{K}_v)^0|$  the number of connected components of  $J(\mathcal{K}_v)$  and  $\hat{J}(\mathcal{K}_v)$  respectively, the third column yields :

$$\frac{|ker(\psi)|n(\hat{J}(\mathcal{K}_v))|}{n(J(\mathcal{K}_v))|coker(\psi)|} = 1.$$

Hence

$$\frac{|coker(\phi_v)|}{|ker(\phi_v)|} = \frac{|coker(\varphi)|n(J(\mathcal{K}_v))}{|ker(\varphi)|n(J(\mathcal{K}_v))}$$

The result follows since  $\operatorname{Im}(\varphi)$  is both open and closed in  $\hat{J}(\mathcal{K}_v)^0$  therefore  $\varphi$  is surjective.

#### **Finite places**

Let v be a finite place of  $\mathcal{K}$ ,  $\hat{\omega}$  be a choice of exterior form for  $\hat{J}$  and choose  $\omega = \phi^* \hat{\omega}$ as an exterior form for J. Denote  $\omega_v^o$  and  $\hat{\omega}_v^o$  their associated Néron exterior form at v. For two exterior forms  $\omega_1, \omega_2$ , write  $\frac{\omega_1}{\omega_2} = \lambda \in \mathcal{K}$  whenever  $\omega_1 = \lambda \omega_2$ .

Lemma 3.2.14. For the choices of exterior form as above

$$|\frac{\omega}{\omega_v^o}|_v|\frac{\hat{\omega}_v^o}{\hat{\omega}}|_v = |\frac{\phi^*\hat{\omega}_v^o}{\omega_v^o}|_v.$$

*Proof.* There exists  $r \in \mathcal{K}$  such that  $\hat{\omega}_v^o = r\hat{\omega}$ , hence

$$|\frac{\omega}{\omega_v^o}|_v|\frac{\hat{\omega}_v^o}{\hat{\omega}}|_v = |r|_v|\frac{\phi^*\hat{\omega}}{\omega_v^o}|_v = |r|_v\frac{|\phi^*\frac{1}{r}\hat{\omega}_v^o|_v}{|\omega_v^o|_v} = |\frac{\phi^*\hat{\omega}_v^o}{\omega_v^o}|_v.$$

**Lemma 3.2.15.** Let  $J/\mathcal{K}$  be a Jacobian admitting a Richelot isogeny  $\phi$  over  $\mathcal{K}$  and denote  $\hat{J}$  its codomain. Fix  $\hat{\omega}$  as a choice of exterior form for  $\hat{J}$  and choose  $\omega = \phi^* \hat{\omega}$  as an exterior form for J. Then keeping notation as in Theorem 3.2.4,

$$\frac{C(J)}{C(\hat{J})} = \prod_{v \nmid \infty} \frac{c_v}{\hat{c}_v} \big| \frac{\phi^* \hat{\omega}_v^o}{\omega_v^o} \big|_v,$$

where  $c_v$  and  $\hat{c}_v$  denote the Tamagawa numbers of J and  $\hat{J}$  at the finite place  $v \in M_{\mathcal{K}}$ .

Using Theorem 3.2.6 together with Lemmata 3.2.11, 3.2.13 and 3.2.15, we obtain the following factorization for the parity of the  $2^{\infty}$  Selmer rank of Jacobians admitting a Richelot isogeny.

**Theorem 3.2.16.** Let  $C/\mathcal{K}$  be a hyperelliptic curve of genus 2 such that its Jacobian J admits a Richelot isogeny  $\phi$ . Denote by  $\hat{C}$  and  $\hat{J}$  the corresponding curve and isogenous Jacobian. Denote  $\hat{\omega}_v^o$ ,  $\omega_v^o$  the Néron exterior forms at the place v of  $\mathcal{K}$  for J and  $\hat{J}$  respectively. Then

$$rk_2(J/\mathcal{K}) \equiv \sum_{v \in M_\mathcal{K}} \Lambda_v \mod 2,$$

with

$$\Lambda_{v} = \begin{cases} ord_{2}(\frac{\hat{n} \cdot m_{v}}{|ker(\varphi)|n \cdot \hat{m}_{v}}) \text{ for } v \mid \infty, \\ ord_{2}(\frac{c_{v} \cdot m_{v}}{\hat{c}_{v} \cdot \hat{m}_{v}}) \text{ for } v \nmid 2\infty, \\ ord_{2}(\frac{c_{v} \cdot m_{v}}{\hat{c}_{v} \cdot \hat{m}_{v}}|\frac{\phi^{*}\hat{\omega}_{v}^{o}}{\omega_{v}^{o}}|_{v}) \text{ for } v \mid 2, \end{cases}$$

where n,  $\hat{n}$  are the number of  $\mathcal{K}_v$ -connected components of J and  $\hat{J}$ ,  $\varphi$  is the restriction of  $\phi$  to the identity component of  $J(\mathcal{K}_v)$ ,  $c_v$  and  $\hat{c}_v$  the Tamagawa numbers of J and  $\hat{J}$ , and  $m_v = 2$  if C is deficient at v, m = 1 otherwise, and similarly for  $\hat{m}_v$ .

*Proof.* This is clear from previous Lemmata and since  $ord_2(|a|_v) = 1$  for all places  $v \nmid 2$  and all  $a \in \mathcal{K}$ .

**Corollary 3.2.17.** Let  $C/\mathcal{K}$  be a hyperelliptic curve of genus 2 such that its Jacobian J admits a Richelot isogeny  $\phi$ . Denote by  $\hat{C}$  and  $\hat{J}$  the corresponding curve and isogenous Jacobian. Using notation as in Theorem 3.2.16, we have

$$(-1)^{rk_2(J/\mathcal{K})} = \prod_{v \in M_\mathcal{K}} \lambda_v, \text{ with } \lambda_v = (-1)^{\Lambda_v}.$$

### **3.3** Computation of local invariants at infinite places

In this section we discuss how to express the local factor  $\lambda_v$  given by Theorem 3.2.16 in terms of basic properties of the defining polynomial of C when v is an infinite place. In this case, the local factor  $\lambda_v$  is given by

$$\lambda_v = (-1)^{ord_2\left(\frac{\hat{n} \cdot m_v}{|ker(\varphi)|n \cdot \hat{m}_v}\right)},$$

where  $n, \hat{n}$  denote the number of connected components of  $J(\mathcal{K}_v)$  and  $\hat{J}(\mathcal{K}_v), \varphi$  is the restriction of  $\phi$  to the identity component of  $J(K_v), m_v = 2$  if C is deficient for  $v, m_v = 1$  otherwise and similarly for  $\hat{m}_v$ .

Case  $\mathcal{K}_v = \mathbb{C}$ 

**Lemma 3.3.18.** Let C be a Richelot curve and denote J its Jacobian. Then  $\lambda_v = 1$  for places v of K with  $K_v = \mathbb{C}$ .

*Proof.* In this case  $\lambda_v = 1$  trivially as  $n = \hat{n} = m_v = \hat{m}_v = 1$  and  $|ker(\varphi)| = 4$ .  $\Box$ 

Case  $\mathcal{K}_v = \mathbb{R}$ 

Using a result of Gross and Harris in [19], we compute the number of real connected components of J and  $\hat{J}$  from the number of real connected components of their underlying curves. The computation of  $m_v$  and  $\hat{m}_v$  follows from the definition of the deficiency of a curve at the place v (see Remark 3.2.8). Finally we explain how to compute  $|ker\varphi|$  from the defining polynomial of C.

**Proposition 3.3.19.** [19][Proposition 3.2.2 and 3.3] Let  $n(C(\mathbb{R}))$  denote the number of connected components on  $C(\mathbb{R})$ . Then

$$n(J(\mathbb{R})) = \begin{cases} 2^{n(C(\mathbb{R}))-1} & \text{if } n(C(\mathbb{R})) > 0\\ 1 & \text{if } n(C(\mathbb{R})) = 0. \end{cases}$$

**Proposition 3.3.20.** Let C be a Richelot curve with given quadratic factorization  $G(x) = G_1(x)G_2(x)G_3(x)$  and denote by c the leading term of G(x). Let  $\delta_1, \delta_2, \delta_3$  denote the discriminants of the quadratic factors  $G_1(x), G_2(x), G_3(x)$  respectively. Then C is deficient over  $\mathbb{R}$ , i.e.  $m_{\mathbb{R}} = 2$  if and only if either

- $\delta_i \in \mathbb{R}, \ \delta_i < 0, \ \forall i \in \{1, 2, 3\} \ and \ c < 0 \ or,$
- up to reordering,  $\delta_1 < 0$ ,  $\delta_2 = \overline{\delta_3}$  and c < 0.

*Proof.* This is clear from the definition of deficiency (see Definition 3.2.7), since a curve C of genus 2 is deficient over  $\mathbb{R}$  if and only if  $C(\mathbb{R}) = \emptyset$  (see Remark 3.2.8).  $\Box$ 

**Proposition 3.3.21.** A divisor  $D_i = [P_i, Q_i] \in ker(\phi)$  is in  $ker(\varphi)$  if and only if the points  $P_i, Q_i \in C$  satisfy either i)  $P_i = \overline{Q_i}$ , or

ii)  $P_i, Q_i$  lie on the same connected component of  $C(\mathbb{R})$ .

Proof. Recall that  $\varphi : J(\mathbb{R})^0 \to \hat{J}(\mathbb{R})^0$  denotes the restriction of  $\phi_{\mathbb{R}}$  to the identity component of  $J(\mathbb{R})$ . In particular, a divisor  $D \in J(\mathbb{R})$  belongs to  $ker(\varphi)$  if  $D \in ker(\phi) \cap J(\mathbb{R})^0$ . But since

$$ker(\phi) = \{0, D_1 = [P_1, Q_1], D_2 = [P_2, Q_2], D_3 = [P_3, Q_3]\},\$$

it follows that a divisor  $D_i = [P_i, Q_i] \in ker(\varphi)$  if  $D_i$  and 0 share the same connected component on  $J(\mathbb{R})$ . Equivalently,  $D_i = [P_i, Q_i] \in ker(\varphi)$  if  $P_i, Q_i$  can be deformed continuously into two points on C defining  $0 \in J$  (those two points being the intersections of  $C(\mathbb{R})$  with a vertical line). This is clearly the case when  $P_i, Q_i$  are real points and both lie on the same component on  $C(\mathbb{R})$ . On the other hand, consider the case  $P_i = \overline{Q_i}$ . If C has no real point then  $J(\mathbb{R})$  has only one component and we are done. Otherwise we can assume that f(x) has at least a real root, say r and let T = (r, 0) be the associated real point on  $C(\mathbb{R})$ . Pick any continuous path from  $P_i$  to T on  $C(\mathbb{C})$ , i.e. a continuous function  $F : [0, 1] \to C(\mathbb{C})$ , with  $F(0) = P_i$  and F(1) = T. Then  $G(t) = \overline{F(t)}$  is a continuous path on  $C(\mathbb{C})$  from  $\overline{P_i}$  to T. Hence D(t) = [F(t), G(t)] is a continuous path on  $J(\mathbb{R})$  from  $D_i$  to [T, T] = 0. Lastly, if  $P_i, Q_i$  are real points but lie on different components of  $C(\mathbb{R})$ , then there is no such continuous path D(t) from  $D_i$  to 0 and hence  $D_i \notin ker(\varphi)$ .

#### Computation of $\hat{n}$ and $\hat{m}$

It remains to compute the number of real connected components of  $\hat{J}$  as well as the real deficiency of  $\hat{C}$ . From Propositions 3.3.19 and 3.2.9, it is enough to compute the discriminants of the quadratic factors of the defining polynomial of  $\hat{C}$ . For that purpose, let C be a Richelot curve with given quadratic factorization G(x) = $G_1(x)G_2(x)G_3(x)$  and denote by  $\delta_1, \delta_2, \delta_3$  the discriminants of the quadratic factors  $G_1(x), G_2(x), G_3(x)$  respectively. Let  $\alpha_i, \beta_i$  denote the roots of  $G_i(x)$ .

Consider the dual curve  $\hat{C}$  with quadratic factorization  $F(x) = F_1(x)F_2(x)F_3(x)$  and denote by  $\hat{\delta}_1, \hat{\delta}_2, \hat{\delta}_3$  the discriminants of  $F_1(x), F_2(x), F_3(x)$  respectively. Henceforth, addition of indices is performed modulo 3.

**Definition 3.3.22.** We define the *cross-ratio* of the four real numbers  $\alpha_i, \beta_i, \alpha_j, \beta_j \in \mathbb{R}$  to be

$$\kappa_{i,j} = \frac{(\alpha_i - \alpha_j)(\beta_i - \beta_j)}{(\beta_i - \alpha_j)(\alpha_i - \beta_j)}.$$

**Proposition 3.3.23.** The number of real roots of F(x) is given as follows. i) if  $\delta_i \in \mathbb{R}$  and  $\delta_{i+1}, \delta_{i+2} \notin \mathbb{R}$ , i.e.  $\delta_{i+1} = \overline{\delta_{i+2}}$  then

$$\hat{\delta}_i \in \mathbb{R}, \quad \hat{\delta}_{i+1}, \hat{\delta}_{i+2} \notin \mathbb{R} \text{ with } \hat{\delta}_{i+1} = \hat{\delta}_{i+2},$$

*ii) if*  $\delta_i, \delta_{i+1} \in \mathbb{R}$  *then* 

$$\hat{\delta}_{i+2} \in \mathbb{R} \text{ and } \hat{\delta}_{i+2} < 0 \Leftrightarrow \kappa_{i,i+1} < 0.$$

*Proof.* This follows directly from the formal computation of the discriminants  $\hat{\delta}_1, \hat{\delta}_2, \hat{\delta}_3$  which gives

$$\hat{\delta}_i = \frac{4}{\Delta_G^2} (\alpha_{i+1} - \alpha_{i+2}) (\alpha_{i+1} - \beta_{i+2}) (\beta_{i+1} - \alpha_{i+2}) (\beta_{i+1} - \beta_{i+2}), \quad i = 1, 2, 3.$$

#### Convention

Let C be a Richelot curve with given quadratic factorization  $G(x) = G_1(x)G_2(x)G_3(x)$ . In view of Propositions 3.3.19, 3.3.20 and 3.3.21, in order to compute  $\lambda_{\mathbb{R}}$  we need to understand how the roots of G(x) are distributed on the real line. We use the following convention to represent real roots of G(x) on the real line: each dot • • • • • • • • • • • • • • • represents a root of G(x) with the following shaping/colouring: red circles represent the real roots of  $G_1(x)$  (respectively  $F_1(x)$ ), blue diamonds that of  $G_2(x)$  (respectively  $F_2(x)$ ) and purple stars the real roots of  $G_3(x)$  (respectively  $F_3(x)$ ). A line between two roots  $\alpha$ ,  $\beta$  means that the points  $P = (\alpha, 0)$  and  $Q = (\beta, 0)$  belong to the same connected component of  $C(\mathbb{R})$ . It is understood that the broken lines on the outside of the roots meet at infinity so that exterior roots belongs to the same real component.

**Remark 3.3.24.** 1) The condition on the cross ratio of roots in the second case of Proposition 3.3.23 can be easily seen from their real picture as it involves their interlacing on the real line. As an example, if the real roots of  $G_1(x), G_2(x)$  are distributed as follows • • • • or • • • • • then  $\kappa_{1,2} > 0$  so that  $\hat{\delta}_3 > 0$ . Otherwise, if they are as follows • • • • then  $\kappa_{1,2} < 0$  so that  $\hat{\delta}_3 < 0$ .

2) The order of  $|ker(\varphi)|$  is immediate from the real picture as it suffices to count the number of same colour/shape roots that are linked by a line.

**Example 3.3.25.** Let  $G_1(x) = x^2 - 16$ ,  $G_2(x) = x^2 + x + \frac{17}{4}$  and  $G_3(x) = x^2 - 2x + 9$ so that we have the following Richelot curve over  $\mathbb{Q}$ .



Here  $\delta_1 = 64, \delta_2 = -16, \delta_3 = -32$ so that C has only one real connected component. Hence C is not deficient over **R**. The real roots of G(x) in Figure 3.1 are only that of  $G_1(x)$  so that they necessarily share the unique real connected component. The corresponding picture is the simple one  $-\bullet$   $\bullet$ .

Therefore the divisor  $D_1$  corresponding to the quadratic  $G_1(x)$  is on the real identity component of J and hence in  $ker(\varphi)$ . Finally, since  $\delta_2, \delta_3 \in \mathbb{R}$ , it follows that  $\beta_2 = \overline{\alpha_2}, \beta_3 = \overline{\alpha_3}$  so that  $D_2, D_3 \in ker(\varphi)$  and  $|ker(\varphi)| = 4$ .

**Example 3.3.26.** Let  $G_1(x) = \frac{6}{131}x^2 - \frac{19}{2}x - \frac{35}{2}$ ,  $G_2(x) = 2x^2 - 50x + 32$  and  $G_3(x) = x^2 + \frac{81}{2}x + 16$  so that we have the following Richelot curve over  $\mathbb{Q}$ .

$$C: y^2 = G(x) = (\frac{6}{131}x^2 - \frac{19}{2}x - \frac{35}{2})(2x^2 - 50x + 32)(x^2 + \frac{81}{2}x + 16).$$

Here  $\delta_1 = \frac{1201}{17161}, \delta_2 = 2244, \delta_3 = \frac{6305}{4}$  so that C has three real connected components. In particular, C is not deficient over  $\mathbb{R}$ . Note that the leading coefficient of G(x) is positive. Computing the real roots of G(x) we obtain the following picture  $\Rightarrow$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$  . Hence, in this example, none of the divisors defined by the quadratic polynomials of G(x) share the same real component with the identity of J. Therefore  $|ker(\varphi)| = 1$ .

**Remark 3.3.27.** The sign of the leading term of G(x) determines how the Weierstrass points of C are paired on real connected components. As an example, consider the same polynomial as in Example 3.3.26 but change the sign of its leading term 

#### Computation of $\lambda_{\mathbb{R}}$ : Example

As in Example 3.3.25, let  $G_1(x) = x^2 - 16$ ,  $G_2(x) = x^2 + x + \frac{17}{4}$  and  $G_3(x) = x^2 - 2x + 9$ so that we have the following Richelot curve over  $\mathbb{Q}$ .

$$C: y^{2} = G(x) = (x^{2} - 16)(x^{2} + x + \frac{17}{4})(x^{2} - 2x + 9).$$

We have seen that  $\delta_1, \delta_2, \delta_3 \in \mathbb{R}$  with  $\delta_1 > 0$  and  $\delta_2, \delta_3 < 0$ . Hence  $n(C(\mathbb{R})) = 1$  so that by Proposition 3.3.19,  $n(J(\mathbb{R})) = 1$  and by Proposition 3.3.20,  $m_{\mathbb{R}} = 1$ . From Proposition 3.3.23 it follows that  $\hat{\delta_1}, \hat{\delta_2}, \hat{\delta_3} \in \mathbb{R}$  with  $\hat{\delta_1}, \hat{\delta_2}, \hat{\delta_3} > 0$  so that  $n(\hat{C}(\mathbb{R})) =$ 3. Therefore  $n(\hat{J}(\mathbb{R})) = 4$  and  $\hat{m}_{\mathbb{R}} = 1$ . Finally, we found that  $|ker(\varphi)| = 4$  so that

$$\lambda_{\mathbb{R}} = (-1)^{ord_2\left(\frac{1\cdot 1}{4\cdot 4\cdot 1}\right)} = 1.$$

# 3.4 Computation of local invariants at semistable finite places $v \nmid 2$

In this section, considering odd finite places, we explain how to extract a criterion for the semistability of C, and when C is semistable, the Tamagawa number of J and the deficiency of C from the p-adic properties of the roots of the defining polynomial of C. Since it will be used in later chapters, we also include how to extract the local root number of J. The results presented in this section are primarily a summary of existing results of V. Dokchitser and A. Morgan in [1], T. and V. Dokchitser in [10] and a joint work with T. and V. Dokchitser and A. Morgan in [14] and [15]. We refer to the articles for the proofs.

In the latter article, working over a field K with a discrete valuation, we discuss the semistable types of hyperelliptic curves and introduce the notion of a *cluster picture* for those. We also propose a naming convention which extends that of Namikawa-Ueno for genus 2 curves in [38] that will be used here. In [14], we discuss the arithmetic of hyperelliptic curves over local fields of odd residue characteristics from their cluster pictures. Results of particular interest for us include a criterion to decide whether a hyperelliptic curve C is semistable and an explicit description of the special fibre of its minimal regular model including the action of Galois on its components. Our computation of deficiency for C follows from that description. Table 3.1 below lists the reduction types of a class of semistable genus 2 curves <sup>1</sup>, including the computation of Tamagawa numbers, deficiency and local root numbers. This table will be used as a reference in later sections when computing invariants of semistable Richelot curves and Jacobians. We end this section by providing examples to illustrate the use of these results.

<sup>&</sup>lt;sup>1</sup>the list is not complete as we are not considering the types  $1 \times I_n$  and  $I_n \times I_m$  in this work. A complete version of this list can be found in [15].
### Notation

In this section, K will denote a finite extension of  $\mathbb{Q}_p$  for an odd prime p. We write v(x) for the normalized p-adic valuation of  $x \in \overline{\mathbb{Q}}_p$ ,  $\pi$  for a choice of uniformiser of K, k for the residue field of K and  $G_K = Gal(\overline{\mathbb{Q}_p}/K)$ . Let C/K be a hyperelliptic curve of genus g given by

$$C: y^2 = f(x) = c \prod_{r \in R} (x - r),$$

where

 $R \subset \overline{\mathbb{Q}_p}, \quad c \in K^{\times}, \quad deg(f) = 2g + 1 \text{ or } 2g + 2 \quad (\neq 1, 2, 4).$ 

and write J for its Jacobian.

### **Cluster pictures**

**Definition 3.4.28.** A *cluster* of roots  $\mathfrak{s}$  is a non-empty subset of R of the form

$$\mathfrak{s} = \{ r \in R \mid v(r - z_{\mathfrak{s}}) \ge d \} = R \cap Disc(z_{\mathfrak{s}}, d),$$

with  $z_{\mathfrak{s}} \in \overline{\mathbb{Q}_p}, d \in \mathbb{Q}$ . We call  $d_{\mathfrak{s}} = \min_{r,r' \in \mathfrak{s}} v(r-r')$  the *depth* of  $\mathfrak{s}$ . The set of clusters for the roots of f(x) is called the *Cluster picture* of *C*.

As a convention, we draw the roots  $r \in R$  by means of the little symbol  $\bullet$ , and clusters by circling the roots (we do not circle single roots). We indicate the depth of a cluster at the bottom right of the circle.

### Examples

1) Let  $C: y^2 = x(x-1)(x-2)(x-3)(x-4)(x-5)$  and choose p = 13. Then  $R = \{0, 1, 2, 3, 4, 5\}$  and the only cluster of roots for C is R itself. It has depth 0 and is represented by  $(\bullet \bullet \bullet \bullet \bullet \bullet)_0$ .

2) Let  $C: y^2 = x(x-13)(x-2)(x-3)(x-4)(x-5)$  and choose p = 13. Then  $R = \{0, 13, 2, 3, 4, 5\}$  and the cluster picture of C consists of 2 clusters: R of depth

0 and  $\{0, 13\}$  of depth 1. The Cluster picture of C is

There is terminology associated to cluster pictures which we will use in this work. We include a little glossary for future reference.

### Glossary

| root                      | cluster of size 1                                                   | ٩                                       |
|---------------------------|---------------------------------------------------------------------|-----------------------------------------|
| child of $\mathfrak s$    | $\mathfrak{s}' < \mathfrak{s}$ maximal subcluster of $\mathfrak{s}$ | ( <b>• •</b> ) <sub>\$'</sub>           |
| parent of $\mathfrak{s}'$ | cluster $\mathfrak s$ in which $\mathfrak s'$ is maximal            | ( <b>• •</b> ) <sub>5'</sub>            |
| even                      | cluster of even size                                                |                                         |
| odd                       | cluster of odd size                                                 | $\textcircled{\bullet} \bullet \bullet$ |
| übereven                  | even cluster with only even children                                |                                         |
| twin                      | cluster of size 2                                                   |                                         |
| principal $\mathfrak{s}$  | $ \mathfrak{s}  > 2$ and if $ \mathfrak{s}  = 2g + 2$               |                                         |
|                           | then $\mathfrak s$ is not the union of children                     |                                         |
|                           | of size $2, 2g$ or $1, 1, 2g$ or odd,odd                            |                                         |



### Semistability criterion

**Theorem 3.4.29.** The curve C/K is semistable if and only if the following hold: (i) K(R)/K has ramification degree at most 2, (ii) Every cluster of size > 1 is inertia invariant,

(iii) Every principal cluster  $\mathfrak{s}$  has  $d_{\mathfrak{s}} \in \mathbb{Z}$  and  $\nu_{\mathfrak{s}} \in 2\mathbb{Z}$ , where

$$\nu_{\mathfrak{s}} = v(c) + |\mathfrak{s}| d_{\mathfrak{s}} + \sum_{r \notin \mathfrak{s}} v(z_{\mathfrak{s}} - r)$$

## Semistable reduction of genus 2 curves, Tamagawa numbers, deficiency and local root numbers

Table 3.1 tabulates a class of semistable genus 2 curves by reduction types. Precisely, we are considering curves of genus 2 given by  $C/K : y^2 = G(x)$ , where G(x) has good reduction mod  $\pi$  or has one, two or three double roots, or two triple roots within which no deeper double roots occur (the latter corresponding to the case of the Jacobian of C having good reduction while C has bad reduction). These cases essentially cover the semistable cases of C except for the missing cases of having double roots inside triple roots.

Each type is given using a cluster picture together with its action of  $G_K$ , the Tamagawa number of the corresponding Jacobian, the local deficiency and the local root number.

### Table 3.1: Semistable reduction type in genus 2

Notation:  $n, m, r \in \mathbb{Z}$ , and in the last two rows  $d \equiv n \equiv m \mod 2$ . In the third column:  $\tilde{n} = 2$  if 2|n and  $\tilde{n} = 1$  if  $2 \nmid n$ ,

| Type                       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $c_v$                                 | $m_v$                                                                  | $\omega_v$ |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------|------------|
| 2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     | 1                                                                      | 1          |
| $1_n^+$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                                     | 1                                                                      | -1         |
| $1_n^-$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\tilde{n}$                           | 1                                                                      | 1          |
| $I_{n,m}^{+,+}$            | $\textcircled{\textcircled{0}} \textcircled{0} \textcircled{0} \textcircled{1}_{\underline{n}}^{+} \textcircled{0} \textcircled{0} \textcircled{1}_{\underline{m}}^{+} \textcircled{1}_{\underline{m}} \textcircled{1}_{\underline{m}}^{+} \textcircled{1}_{\underline{m}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nm                                    | 1                                                                      | 1          |
| $I_{n,m}^{+,-}$            | $\left( \bullet \bullet \left( \bullet \bullet \right)_{\underline{n}}^{+} \left( \bullet \bullet \right)_{\underline{m}}^{-} \right)_{\underline{0}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n <i>m</i>                            | 1                                                                      | -1         |
| $I_{n,m}^{-,-}$            | $\underbrace{\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \underbrace{\textcircled{\bullet}}_{\underline{n}}^{-} \underbrace{\textcircled{\bullet}} \underbrace{\textcircled{\bullet}}_{\underline{m}}^{-}}_{\underline{m}} \underbrace{\textcircled{\bullet}}_{\underline{m}}^{-}}_{\underline{m}} \underbrace{\textcircled{\bullet}}_{\underline{m}}^{-} \underbrace{\textcircled{\bullet}}_{\underline{m}}^{-}}_{\underline{m}} \underbrace{\textcircled{\bullet}}_{\underline{m}}^{-} \underbrace{\underbrace{\textcircled{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\textcircled{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\textcircled{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}\\_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}\\_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}\\_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}}_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}\\_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\_{\underline{m}}^{-} \underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\underbrace{\underbrace{\underbrace{\bullet}}\\\underbrace{\underbrace{\bullet}}\\\underbrace{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\tilde{n}\tilde{m}$                  | 1                                                                      | 1          |
| $I^+_{n \sim n}$           | $\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                     | 1                                                                      | -1         |
| $I^{n-n}$                  | $\underbrace{\bullet \bullet \bullet \bullet}_{\underline{n}}^{\underline{n}} \underbrace{\bullet \bullet}_{\underline{n}}_{\underline{n}}_{\underline{n}} \underbrace{\bullet \bullet}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_{\underline{n}}}_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $	ilde{n}$                            | 1                                                                      | 1          |
| $U^+_{n,m,r}$              | $\underbrace{\textcircled{\textcircled{0}}}_{\underline{n}}\underline{a}\underbrace{\textcircled{0}}_{\underline{m}}\underbrace{\textcircled{0}}_{\underline{m}}\underbrace{\textcircled{0}}_{\underline{r}}\underline{r}_{\underline{r}}\underbrace{\textcircled{0}}_{\underline{r}}\underbrace{r}_{\underline{r}}\underbrace{\textcircled{0}}_{\underline{r}}\underbrace{r}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{\underline{r}}\underbrace{f}_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ν                                     | 1                                                                      | 1          |
| $U^{n,m,r}$                | $\underbrace{\textcircled{\bullet\bullet}}_{\underline{n}}\underbrace{\bullet\bullet}_{\underline{m}}\underbrace{\bullet\bullet}_{\underline{r}}\underbrace{\bullet\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}\underline{\bullet}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}_{\underline{r}}\underbrace{\bullet}\underline$ | $\widetilde{N/D}\times \widetilde{D}$ | $\begin{cases} 2 & n, m, r \text{ odd} \\ 1 & \text{else} \end{cases}$ | 1          |
| $U^+_{n \sim n,r}$         | $\underbrace{\textcircled{\bullet \bullet}_{\frac{n}{2}} \textcircled{\bullet \bullet}_{\frac{n}{2}} \textcircled{\bullet \bullet}_{\frac{r}{2}}}_{0}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n+2r                                  | 1                                                                      | -1         |
| $U^{n-n,r}$                | $\underbrace{\textcircled{\bullet \bullet}}_{\frac{n}{2}} \underbrace{\bullet \bullet}_{\frac{n}{2}} \underbrace{\bullet \bullet}_{\frac{r}{2}} \underbrace{\bullet}_{0}^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                                     | $\begin{cases} 2 & r \text{ odd} \\ 1 & \text{else} \end{cases}$       | -1         |
| $U^+_{n \sim n \sim n}$    | $\underbrace{\textcircled{\bullet\bullet}}_{\frac{n}{2}}\underbrace{\bullet\bullet}_{\frac{n}{2}}\underbrace{\bullet\bullet}_{\frac{n}{2}}{\bullet\bullet}_{\frac{n}{2}}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{0}{\bullet}_{1}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0}{\bullet}_{0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                     | 1                                                                      | 1          |
| $U^{n \sim n \sim n}$      | $\boxed{\textcircled{\bullet \bullet}_{\frac{n}{2}}\textcircled{\bullet \bullet}_{\frac{n}{2}}\textcircled{\bullet \bullet}_{\frac{n}{2}}}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     | $\begin{cases} 2 & n \text{ odd} \\ 1 & \text{else} \end{cases}$       | 1          |
| $1 \times \frac{n+m}{2} 1$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     | 1                                                                      | 1          |
| $1\tilde{\times}_n 1$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     | $\begin{cases} 2 & n \text{ odd} \\ 1 & \text{else} \end{cases}$       | 1          |

 $D = \gcd(m, n, r): N = nm + nr + mr.$ 

### Convention

This table can be used as follows. Consider a semistable genus 2 curve  $C/K: y^2 =$ G(x). Denote  $c \in K$  the leading term of G(x). By the semistability criterion 3.4.29, either  $v(c) \in 2\mathbb{Z}$  or, if v(c) is odd, then C corresponds to the last two rows of the table<sup>2</sup>. In the former case we apply a change of variable if necessary to obtain v(c) = 0. Then reducing  $G(x) \mod \pi$ , we find C to be in the first block of Table 3.1 if G(x) has good reduction; second, third and fourth block if G(x) has one, two or three double roots mod  $\pi$  respectively. Lastly, if G(x) has two triple roots then the cluster picture of C corresponds to the last block of Table  $3.1^3$ . In each case, it remains to find the specific row corresponding to C. In a cluster picture, we draw a line between two clusters when they are permuted by  $G_K$ . This action can be identified from the field of definition of the roots contained in the clusters. Finally, the sign on top of the clusters are given by Proposition 3.4.30. These signs indicate the action of  $G_K$  on the components of the special fibre of the minimal regular model of C corresponding to the nodes on the reduced curve given by the twin clusters, or the action of  $G_K$  on the two components with three transversal intersections in the case of three double roots. A "+" on the top right corner of a twin means that  $G_K$ acts trivially on its corresponding components and a "-" means that it permutes them. This is the equivalent of having split or non-split multiplicative reduction on an elliptic curve. Finally, in the last two rows of Table 3.1, the depths displayed are "relative depths", i.e. the valuations of the differences of the roots inside the size three clusters are n + d and m + d.

**Proposition 3.4.30.** Let C be a semistable hyperelliptic curve of genus 2. Let  $r_1, ..., r_6 \in \overline{\mathbb{Q}}_p$  be the roots of  $G(x) \in K[x]$  defining C and  $c \in K$  be the leading term of G(x).

i) If C is of type  $1_n^{\pm}$  or  $I_{n,m}^{\pm,\pm}$  ( $I_{n,n}^{\pm,\pm}$  resp.), let  $\mathfrak{t}$  be a twin cluster in the cluster picture of C and choose a root r in  $\mathfrak{t}$ . Then the sign of  $\mathfrak{t}$  is + if and only if

$$T_r = c \prod_{r_i \notin \mathfrak{t}} (r - r_i) \in K^{\times 2} \ (F^{\times 2} \ resp.),$$

where F/K is a quadratic unramified extension. *ii)* If C is of type  $U_{n,m,r}^{\pm}$ , then C is of type  $U_{n,m,r}^{\pm}$  if and only if  $c \in K^{\times 2}$ .

*Proof.* This is a reformulation of Theorem 5.6 in [14] adapted to the semistable cases of genus 2 curves.  $\Box$ 

 $<sup>^{2}</sup>$  or to one of the missing cases that can be found in Table 9 in [15]

<sup>&</sup>lt;sup>3</sup>See Remark 3.4.31 if the reduction of G(x) is different from that given in Table 3.1

### Deficiency of C

It follows from Remark 1 in [32] that C is deficient at a finite place if and only if the order of the  $Gal(\bar{k}/k)$ -orbit of each irreducible component of the special fibre of the minimal regular model of C is even. In [14], starting with the cluster picture of a semistable curve C/K, we give an explicit description of the special fibre of the minimal regular model of C as well as the Galois action on its components. We refer to the article for the precise statements and proof but we note that this is enough to recover the deficiency of C at that place.

### Tamagawa numbers for J

Tamagawa numbers for Jacobians of genus 2 curves at a semistable place are computed in [1]. In the last block of Table 3.1, J has good reduction and hence its Tamagawa number is 1.

### Local root number

The local root numbers for semistable abelian varieties are explicitly given from their Weil-Deligne representation in [10][Proposition 3.23]. In particular  $\omega_v(J/K) =$  $(-1)^t$ , where t is the multiplicity of 1 as an eigenvalue of Frobenius on the toric part of the Galois representation<sup>4</sup>. The Weil-Deligne representation for semistable Jacobians of hyperelliptic curves of genus g at odd places are computed in [14].

**Remark 3.4.31.** The cluster picture associated to a hyperelliptic curve  $C: y^2 = f(x)$  is not canonical. Indeed, applying a Mobius transformation to the roots of f(x) might change their *p*-adic configuration and hence the new model of f(x) would produce a different cluster picture. However, as shown in [15], these different pictures share the same equivalence class for which there is a canonical representative (the only cluster picture such that the maximal cluster is of size 2g + 2 and is the only cluster of size > g + 1, and there are either 0 or 2 clusters of size g + 1). This representative is called a *balanced* cluster picture (see Definition 3.37 in [15]).

In particular, two semistable curves

$$C_1: y^2 = c_1 \prod_{i=1,\dots,6} (x - r_i), \quad C_2: y^2 = c_2 \prod_{i=1,\dots,6} (x - r'_i).$$

such that the cluster pictures of  $C_1$  and  $C_2$  are equivalent, share the same special fibre, Tamagawa number, deficiency and root number. For genus 2, Table 3.2 gives a list of all possible cluster pictures in each class as well as its balanced representative (orange star cluster pictures are balanced). Strictly speaking, the process of

 $<sup>^{4}</sup>$  when the cluster picture is balanced and the maximal cluster is not übereven, this amounts to counting the number of + on top of twins

rebalancing also takes into consideration the depth of the clusters. We chose not to display the depths of clusters in Table 3.2 in order to keep its length reasonable.



Table 3.2: Cluster pictures for semistable types of genus 2 curves with *balanced* representative

#### Balanced cluster pictures: example

Let p > 5, n > 0 and consider the curve  $C/\mathbb{Q}_p$  given by

$$y^{2} = (x-1)(x-2)(x-5+p^{n})(x-5+2p^{n})(x-5+3p^{n})(x-5+4p^{n}).$$

1) 
$$x_1 = x + 5 \Rightarrow C : y^2 = (x_1 + 4)(x_1 - 3)(x_1 + p^n)(x_1 + 2p^n)(x_1 + 3p^n)(x_1 + 4p^n)$$
  
2)  $x_1 = p^n x_2 \Rightarrow C : y^2 = p^{4n}(p^n x_2 + 4)(p^n x_2 - 3)(x_2 + 1)(x_2 + 2)(x_3 + 3)(x_2 + 4)$   
3)  $y = p^{2n}y_1 \Rightarrow C : y_1^2 = (p^n x_2 + 4)(p^n x_2 - 3)(x_2 + 1)(x_2 + 2)(x_3 + 3)(x_2 + 4)$   
4)  $x_2 = \frac{1}{x_3} \Rightarrow C : y_1^2 = (p^n \frac{1}{x_3} + 4)(p^n \frac{1}{x_3} - 3)(\frac{1}{x_3} + 1)(\frac{1}{x_3} + 2)(\frac{1}{x_3} + 3)(\frac{1}{x_3} + 4)$   
5)  $y_2 = y_1 x_3^3 \Rightarrow C : y_2^2 = (4x_3 + p^n)(3x_3 + p^n)(x_3 + 1)(x_3 + 2)(x_3 + 3)(x_3 + 4),$ 

### Semistability criterion: examples

1) Let  $C: y^2 = x(x-p)(x-2)(x-3)(x-4)(x-5)$  and choose p > 5. (i) and (ii) in Theorem 3.4.29 are trivially satisfied. The only principal cluster in the cluster picture of C is R and

$$\nu_R = v(1) + 6 \times 0 + 0 = 0, \qquad \textcircled{\circ}_1 \circ \circ \circ \circ_0$$

hence C semistable.

2) Let  $C: y^2 = px(x-p)(x-2)(x-3)(x-4)(x-5)$  and choose p > 5. This is similar to our first example, except

$$\nu_R = v(p) + 6 \times 0 + 0 = 1, \qquad \underbrace{\bigcirc}_{\mathbf{1}^{\bigcirc} \bullet \bullet \bullet \bullet}_{\mathbf{0}}$$

hence C is not semistable.

3) Let  $C: y^2 = x(x-p)(x+p)(x-1+p)(x-1+p^2)(x-1+2p^2)$  and choose p > 5. (*i*) and (*ii*) in Theorem 3.4.29 are trivially satisfied. Clusters in the cluster picture of C are R of depth 1,  $\mathfrak{s}_1 = \{0, p, -p\}$  and  $\mathfrak{s}_2 = \{1-p, 1-p^2, 1-2p^2\}$  both of depth 1. Only  $\mathfrak{s}_1$  and  $\mathfrak{s}_2$  are principal and

$$\nu_{\mathfrak{s}_1} = v(1) + 3 \times 1 + 0 = 3, \qquad \nu_{\mathfrak{s}_2} = v(1) + 3 \times 1 + 0 = 3, \qquad \underbrace{(\bullet \bullet \bullet)_1 (\bullet \bullet \bullet)_1}_{0 \to 0}$$

hence C is not semistable.

4) Let  $C: y^2 = px(x-p)(x+p)(x-1+p)(x-1+p^2)(x-1+2p^2)$  and choose p > 5. This is similar to Example 3) except

$$\nu_{\mathfrak{s}_1} = v(p) + 3 \times 1 + 0 = 4, \qquad \nu_{\mathfrak{s}_2} = v(p) + 3 \times 1 + 0 = 4, \qquad \underbrace{(\bullet \bullet \bullet)_1 (\bullet \bullet \bullet)_1}_{0 \to 0} = 0$$

hence C is semistable.

### Cluster pictures: examples

1) Consider the curve defined over  $\mathbb{Q}_{131}$  as

$$C: y^{2} = f(x) = \frac{-131}{2}(-3x^{2} + \frac{19}{2}x + \frac{35}{2})(2x^{2} - 50x + 32)(x^{2} + \frac{81}{2}x + 16),$$

Computing the roots of f(x) gives the following cluster picture  $\underbrace{(\bullet \bullet \bullet]_1 \bullet \bullet \bullet]_1}_{0}$ . In particular since v(c) = 1, C is semistable. The line between the two clusters of size 3 indicates that the roots of f(x) are defined over an unramified extension of  $\mathbb{Q}_{131}$  so that their respective clusters are permuted by Frobenius.

2) Let p > 5 and consider the hyperelliptic curve

$$C: y^{2} = x(x - p^{3})(x - 1)(x - 2)(x - 3)(x - 4).$$

The special fibre of the minimal regular model of C consists of a hexagon of  $\mathbb{P}_1$ 's, obtained by blowing up the singularity at the node of  $\tilde{C}$ . It follows from Proposition 3.4.30 that if  $24 \in \mathbb{Q}_p^{\times 2}$  then  $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$  acts trivially on them (equivalently, both slopes of the tangents at the node of  $\tilde{C}$  are defined over  $\mathbb{F}_p$ ) and the cluster picture

is 
$$(\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet^+_3)_0$$
.

### Computation of $\lambda_v$ : Example

Keeping the same example as in Section 3.3, consider the following Richelot curve defined over  $\mathbb{Q}$  by

$$C: y^{2} = (x^{2} - 16)(x^{2} + x + \frac{17}{4})(x^{2} - 2x + 9),$$

and its Richelot dual

$$\hat{C}: y^2 = \frac{-131}{2}(-3x^2 + \frac{19}{2}x + \frac{35}{2})(2x^2 - 50x + 32)(x^2 + \frac{81}{2}x + 16).$$

In order to determine the parity  $rk_2(J/\mathbb{Q})$  using Theorem 3.2.16, we need to compute  $\lambda_p$  for  $J/\mathbb{Q}$  at each prime p. By first computing both discriminants of C and  $\hat{C}$  we find that the odd finite places of bad reduction of C are p = 3, 5, 11, 13, 17, 97, 1201 and similarly for  $\hat{C}$  with the addition of p = 131. Hence, outside of this set of primes,  $\lambda_p = 1$ . For the primes of bad reduction, we compute the cluster pictures of C and  $\hat{C}$ , and use the results above to compute  $c_p, m_p, \hat{c}_p$  and  $\hat{m}_p$ .

For p = 131, C has good reduction while the cluster picture of  $\hat{C}$  is  $\underbrace{(\bigcirc \bigcirc \bigcirc ]_1}_{0}$ . It follows that  $c_p = 1, m_p = 1$  and  $\hat{c}_p = 1, \hat{m}_p = 2$  so that  $\lambda_p = -1$ .

### **3.5** Computation of local invariants at finite places v|2

In the case of places v dividing 2, we take a different approach to control  $\lambda_v$ . Indeed, at these places, it is very difficult to compute the Tamagawa numbers and the minimality of the Néron differential for all reduction types. Rather, we come back to the initial definition of  $\lambda_v$  and compute

$$ord_2 \frac{|coker(\phi_v : J(K_v) \to J(K_v))|}{|ker(\phi_v : J(K_v) \to J(K_v))|} \frac{m_v(C)}{m_v(\hat{C})}$$

First we note that if the curve C has totally split toric reduction at v then it is not deficient (see Section 3.4) and similarly for  $\hat{C}$ . We therefore construct a family of curves having totally split toric reduction at v and prove, using a result of A. Morgan presented in the appendix, that  $\lambda_v = 1$  for their Jacobians.

**Lemma 3.5.32.** Let  $K/\mathbb{Q}_2$  be a finite extension and let C/K be a hyperelliptic curve of genus 2 given by

$$C: y^2 + yh(x) = f(x), with$$

 $h(x) = h_2 x^2 + h_1 x + h_0, \quad f(x) = c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$ for  $h_i, c_i \in \mathcal{O}_K, \ 0 \le i \le 6.$  If

 $c_0 \equiv c_1 \equiv c_2 \equiv h_0 \equiv 0 \mod \pi$ , and  $h_1 \equiv h_2 \equiv c_4 \equiv c_6 \equiv c_5 \equiv c_3 \equiv 1 \mod \pi$ ,

then J has totally split toric reduction at v.

Proof. This follows from computing partial derivatives of  $g(x, y) = y^2 - yh(x) - f(x)$  to find two singularities on C at the points (0,0) and (1,0). Since  $g(x,y) \equiv (y+x(x+1)^2)(y+x^2(x+1)) \mod \pi$ , it follows that the reduction of this chart consists of two genus 0 components intersecting at the two points (0,0) and (1,0). Computing the Taylor series of  $g(x,y) \mod \pi$  around singularities (0,0), (1,0), one finds  $xy + y^2 +$  higher order terms and  $y^2 + (x+1)y$  + higher order terms respectively. Considering the second affine chart by letting  $x = \frac{1}{t}$  and  $y = \frac{v}{t^3}$  and computing partial derivatives as above, we find that the point at infinity given by t = 0, v = 1 is singular. As above, the reduction of this chart is given by two genus 0 curves intersecting at two points, one of them being the point at infinity. It follows that the reduction of the model of the curve given by these two charts consists of two  $\mathbb{P}_1$ s intersecting transversally in the three points (0,0), (1,0) and (t = 0, v = 1). Moreover, Frobenius acts trivially on the homology of the special fibre and hence the reduction is totally split toric.

### Corollary 3.5.33. The curve

$$C_2: y^2 + y(x^2 + x + 2) = f_2(x), \qquad f_2(x) = x^6 + x^5 - 135x^4 + 821x^3 - 4414x^2 + 2988x + 734x^2 + 2988x^2 +$$

admits a Richelot isogeny and has totally split toric reduction at 2.

*Proof.* The curve  $C_2$  has totally split toric reduction at 2 from Lemma 3.5.32. In order to show that  $C_2$  admits a Richelot isogeny, we perform the following change of variable over  $\mathbb{Q}_2$ :

$$X = x,$$
  $Y = y - \frac{1}{2}h(X),$   $h(x) = x^2 + x + 2,$ 

to obtain

$$C_2: Y^2 = (X-1)(X+15)(X^2 - 9X - \frac{7}{4})(X^2 - 4X + 28)$$

and the existence of a Richelot isogeny follows from the factorization of the right hand side.  $\hfill \Box$ 

**Proposition 3.5.34.** Let  $n, m, d, k, r \in \mathcal{O}_K$  and define the following family of curves

$$C: y^2 = f(x) = G_1(x)G_2(x)G_3(x), \quad with \ G_1(x) = x^2 - (8+4n)^2,$$

 $G_2(x) = x^2 + x(-2m-23) + \frac{441}{4} - 2d + 14m, \quad G_3(x) = x^2 + x(-8k-18) + 105 + 8r + 56k.$ Then the curves in C have totally split toric reduction.

*Proof.* Follows from performing the change of variable X = x + 7,  $Y = y + \frac{1}{2}h(X)$ 

with  $h(x) = x^2 + x + 2$  to find that reducing mod  $\pi$ ,  $f(x) \equiv f_2(x)$  so that all curves  $C \in \mathcal{C}$  have totally split toric reduction by Corollary 3.5.33.

**Corollary 3.5.35.** The family C can be given by mean of congruences on coefficients as follows:

$$\mathcal{F}: y^2 = (x^2 - (4t_1)^2)(x^2 + t_2x + t_3)(x^2 + t_4x + t_5),$$

where

$$t_1 \in \mathcal{O}_K, \quad t_2 \equiv 1 \mod 2, \quad t_3 - \frac{1}{4} \equiv 0 \mod 2, \quad t_4 = -2 \mod 8, \quad t_5 \equiv 1 \mod 8.$$

*Proof.* This follows from letting

$$t_1 = \frac{8+4n}{4}, t_2 = -2m - 23, t_3 = \frac{441}{4} - 2d + 14m,$$
$$t_4 = -8k - 18, t_5 = 105 + 8r + 56k.$$

One recovers  $n, m, d, k, r \in \mathcal{O}_K$  as follows

$$n = t_1 - 2, \quad m = \frac{t_2 + 23}{2}, \quad d = \frac{t_3}{2} - \frac{1}{8} - 55 - 7m, \quad k = \frac{t_4 + 18}{8}, \quad r = \frac{t_5 - 1}{8} - 13 - 7k$$

**Theorem 3.5.36.** Let  $K/\mathbb{Q}_2$  be a finite extension and suppose that  $C \in \mathcal{C}$  is given by

$$C: y^2 = G_1(x)G_2(x)G_3(x)$$

such that  $G_2(x), G_3(x)$  are both irreducible in K. Then  $\lambda_v = 1$  for C.

Proof. From Corollary 3.5.33 and Proposition 3.5.34, all curves  $C \in \mathcal{C}$  have totally split toric reduction and admit a Richelot isogeny. Therefore, since from Remark 1 in [32], it follows that C is deficient at a finite place if and only if the order of the  $Gal(\bar{k}/k)$ -orbit of each irreducible component of the special fibre of the minimal regular model of C is even, none of the curves C are deficient over K. Similarly for  $\hat{C}$ since they have isogenous Jacobians so that  $\hat{C}$  also has totally split toric reduction. It follows by definition of  $\lambda_v$  that

$$\lambda_v = (-1)^{ord_2 \frac{|coker(\phi_v: J(K_v) \to J(K_v))|}{|ker(\phi_v: J(K_v) \to J(K_v))|}}.$$

Moreover, from Proposition A.0.9 and Remark A.0.11, we have that

$$\frac{|coker(\phi_v: J(K_v) \to J(K_v))|}{|ker(\phi_v: J(K_v) \to J(K_v))|} = 2^{2[K:\mathbb{Q}_2]}$$

since when  $G_2(x), G_3(x)$  are irreducible over K we necessarily have |J(K)[2]| = 4 =

 $|ker(\phi)|.$ 

Therefore  $\lambda_v = 1$ .

# Computation of $\lambda_v$ : Example

It is readily verified that our curve

$$C: y^{2} = (x^{2} - 16)(x^{2} + x + \frac{17}{4})(x^{2} - 2x + 9),$$

belongs to the family  $\mathcal{F}$  above and that both  $G_2(x)$  and  $G_3(x)$  are irreducible over  $\mathbb{Q}_2$ . Therefore  $\lambda_2(J) = 1$  by Theorem 3.5.36.

# 3.6 Example of computation of the parity of the $2^{\infty}$ Selmer rank

We now compute the parity of the  $2^{\infty}$  Selmer rank of the Jacobian of

$$C: y^2 = (x^2 - 16)(x^2 + x + \frac{17}{4})(x^2 - 2x + 9)$$

using Theorem 3.2.16. Let  $S = \{3, 5, 11, 13, 17, 97, 1201, 131\}$  be the set of odd primes of bad reduction for C and  $\hat{C}$ . It follows from the set of examples above that

$$\lambda_{\mathbb{R}}(J) = 1, \quad \lambda_p = 1 \ \forall p \notin S, \quad \lambda_p = -1 \ \forall p \in S.$$

Therefore

$$(-1)^{rk_2(J)} = 1,$$

so that  $rk_2(J)$  is even.

# Chapter 4

# 2-parity conjecture for $C_2 \times D_4$ Jacobians

### 4.1 2-parity theorem

In this chapter we prove the 2-parity conjecture for a particular family of semistable Richelot Jacobians. Namely for these we show

$$(-1)^{rk_2(J)} = \omega(J),$$

where  $\omega(J)$  denotes the global root number (see Conjecture 2.3.21). From the results of Chapter 3, we are now able to compute the parity of the  $2^{\infty}$  Selmer rank for semistable Richelot Jacobians (with conditions at 2-adic places as in Section 3.5). This is achieved by factorizing  $(-1)^{rk_2(J)}$  as a product of computable local terms  $\lambda_v$ . In order to prove the 2-parity conjecture, one would hope to prove that at each place v, the local term  $\lambda_v$  equals the local root number  $\omega_v$ , so that the conjecture follows by taking product over all places. However, as suggested by the proof of the 2-parity conjecture for elliptic curves in [9], these terms do not agree locally but their discrepancy is given by a product of Hilbert Symbols involving some specific invariant polynomials in the roots of the defining polynomial of the curve. The main step of the proof is therefore to find the suitable set of invariants which, correctly paired in Hilbert Symbols, match the local discrepancy between  $\lambda_v$  and  $\omega_v$ . We found such a set under the condition that the Galois group of the Richelot polynomial of C is a subgroup of  $C_2 \times D_4$ . In this case we conjecture the following.

**Conjecture 4.1.1** (Conjecture 4.4.10). Let  $C/\mathcal{K}$  be a Richelot curve given by

$$C: y^2 = f(x), \quad such that \quad Gal(f) \subseteq C_2 \times D_4,$$

and denote J its Jacobian. Then for all places v of K

$$\lambda_v(J) = E_v(J) \cdot \omega_v(J),$$

for the explicit product of Hilbert Symbols  $E_v(J)$  given in Definition 4.3.9, and whenever the invariants involved in  $E_v$  are non-zero.

**Definition 4.1.2** ( $C_2 \times D_4$  curve). A Richelot polynomial of the form

$$G(x) = G_1(x)G_2(x)G_3(x) \in \mathcal{K}[x], \text{ where } \qquad G_1(x) = c(x - \alpha_1)(x + \alpha_1) \in \mathcal{K}[x]$$

is called a  $C_2 \times D_4$  polynomial<sup>1</sup>. This factorization is equivalent to

$$Gal(G(x)) \subseteq C_2 \times D_4 \subset C_2^3 \rtimes S_3 \subset S_6.$$

A Richelot curve given by a  $C_2 \times D_4$  polynomial is called a  $C_2 \times D_4$  curve and its Jacobian a  $C_2 \times D_4$  Jacobian.

**Theorem 4.1.3** (Theorem 4.4.11). Let  $C/\mathcal{K}$  be a Richelot curve and let J denote its Jacobian. Suppose the following:

- i) C is a  $C_2 \times D_4$  curve,
- ii) the cluster picture of C at odd finite places is one of Table 3.1,
- iii) for  $v \mid 2, C \in \mathcal{C}$  as in Section 3.5,
- iv) none of the  $C_2 \times D_4$  invariants defined in Definition 4.3.9 for C are zero.

Then Conjecture 4.4.10 is true for C at all places v of  $\mathcal{K}$ . In particular, in this case

$$\prod_{v \in M_{\mathcal{K}}} \lambda_v(J) = \prod_{v \in M_{\mathcal{K}}} \omega_v(J),$$

hence the 2-parity conjecture holds.

**Corollary 4.1.4.** Let C be hyperelliptic curve of genus 2 defined over  $\mathbb{Q}$  given by

$$C: y^2 = f(x) = (x^2 - 4a)g(x), \qquad a \in \mathbb{Z}, \quad g(x) \in \frac{\mathbb{Z}}{2}[x].$$

such that  $Gal(g) \subseteq D_4$  and preserves the factorization  $g(x) = (x^2 + t_2x + t_3)(x^2 + t_4x + t_5)$ . Suppose that

i) for every odd prime p, the reduction of  $f(x) \mod p$  has no root of multiplicity  $\geq 3$ ,

<sup>&</sup>lt;sup>1</sup>It is possible to centre the roots of a quadratic polynomial with a simple change of variable. Hence a Richelot polynomial can be made into a  $C_2 \times D_4$  by insisting that  $G_1(x) \in \mathcal{K}[x]$  and performing that change of variable.

ii) at p = 2, the two quadratics are irreducible over  $\mathbb{Q}_2$  and  $t_i \in \mathbb{Q}_2$ , i = 2, 3, 4, 5 with

$$t_2 \equiv 1 \mod 2$$
,  $t_3 - \frac{1}{4} \equiv 0 \mod 2$ ,  $t_4 = -2 \mod 8$ ,  $t_5 \equiv 1 \mod 8$ .

Then

$$(-1)^{rk_2(J)} = \omega(J).$$

*Proof.* C is a  $C_2 \times D_4$  curve (see Definition 4.1.2), at odd places the cluster picture of C is one of Table 3.1, at  $v \mid 2, C \in C$  as in Proposition 3.5.34 and finally because  $C \in C$ , none of the  $C_2 \times D_4$  invariants are zero (see Section 6.5).

In the first section, we define the dual curve of a  $C_2 \times D_4$  curve and set up our notation. We then introduce the set of invariants which form the term of discrepancy  $E_v(J)$  in the second section. For a lack of a more efficient method to prove that  $\lambda_v = E_v \omega_v$  for all places v of  $\mathcal{K}$ , we proceed with a case by case analysis. We use the results of Sections 3.3, 3.4, Theorem 3.5.36 and Section 3.4 to compute and tabulate  $\lambda_v, \omega_v$  for infinite places, odd finite places and places above 2 respectively. We also compute  $E_v$  at all places using the definitions of the invariants and properties of Hilbert Symbols. The proof of Theorem 3.2.6 is then immediate from these computations as it shows that  $\lambda_v = E_v \omega_v$  in all cases. The number of cases is however quite significant and moreover, the definitions of  $\lambda_v$  and  $E_v$  in terms of invariants make their computations heavy on notation and rather tedious. Consequently, we chose to place them in separate subsequent chapters for clarity.

# List of notation for this chapter

| $G_1(x)$                         | $c(x - \alpha_1)(x + \alpha_1)$ with $\alpha_1^2 \in K$                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------------|
| $G_i(x), i = 2, 3$               | $(x-lpha_i)(x-eta_i)$                                                                                  |
| G(x)                             | $G_1(x)G_2(x)G_3(x)$                                                                                   |
| ${\cal L}$                       | Splitting field of $G(x)$                                                                              |
| С                                | leading term of $G(x)$                                                                                 |
| C                                | $C_2 \times D_4$ curve defined over K with the given factorization                                     |
|                                  | $y^2 = G(x) = G_1(x)G_2(x)G_3(x)$                                                                      |
| J                                | $C_2 \times D_4$ Jacobian of $C$                                                                       |
| $\phi$                           | Richelot isogeny on J given by the factorization of $G(x)$                                             |
| $L_1(x)$                         | $L_1(x) = \frac{1}{\Delta_G}[G_2(x), G_3(x)] = \ell_1(x - A_1)(x - B_1)$                               |
| $\ell_1 = \frac{u_1}{\Delta_G}$  | leading term of $L_1(x)$ with $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$                          |
| $L_i(x), i = 2, 3$               | $L_i(x) = [G_{i+1}(x), G_{i+2}(x)] = \ell_i(x - A_i)(x - B_i)$                                         |
| L(x)                             | $L_1(x)L_2(x)L_3(x)$                                                                                   |
| $\ell = \ell_1 \ell_2 \ell_3$    | leading term of $L(x)$                                                                                 |
| $\hat{C}$                        | dual curve of $C$ defined over $K$ with the given factorization                                        |
|                                  | $y^2 = L(x) = L_1(x)L_2(x)L_3(x)$                                                                      |
| $\hat{J}$                        | $C_2 	imes D_4$ Jacobian of $\hat{C}$                                                                  |
| $\delta_i,i=1,2,3$               | discriminant of $G_i(x)$                                                                               |
| $\hat{\delta_i},  i=1,2,3$       | discriminant of $L_i(x)$                                                                               |
| $\alpha_i, \beta_i, i = 1, 2, 3$ | roots of $G_i(x)$                                                                                      |
| $A_i, B_i, i = 1, 2, 3$          | roots of $L_i(x)$                                                                                      |
| $P_i, Q_i, i = 1, 2, 3$          | Weierstrass points $P_i = (\alpha_i, 0), Q_i = (\beta_i, 0)$                                           |
| $D_i, i = 1, 2, 3$               | Element of $ker(\phi)$ , $D_i = [P_i, Q_i]$                                                            |
| $n_v, \hat{n}_v,$                | number of connected components of $J(\mathcal{K}_v)$ and $\hat{J}(\mathcal{K}_v)$ when $v \mid \infty$ |
| $m_v$                            | $m_v = 2$ if C is deficient at $v, m_v = 1$ otherwise                                                  |
| $\hat{m}_v$                      | $\hat{m}_v = 2$ if $\hat{C}$ is deficient at $v, \ \hat{m}_v = 1$ otherwise                            |
| $\phi_{\mathbb{R}}$              | map induced by $\phi$ on $J(\mathbb{R})$                                                               |
| arphi                            | restriction of $\phi_{\mathbb{R}}$ to the identity component of $J(\mathbb{R})$                        |
| $c_v, \hat{c}_v$                 | Tamagawa numbers of $J$ and $\hat{J}$ at $v$ when $v \nmid \infty$                                     |
| $(.,.)_{v}$                      | Hilbert Symbol at $v$                                                                                  |
| • •                              | $\alpha_1, \beta_1$ in the cluster picture of $C$ $(A_1, B_1$ is that of $\hat{C}$ )                   |
| ♦                                | $\alpha_2, \beta_2$ in the cluster picture of $C$ $(A_2, B_2$ is that of $\hat{C}$ )                   |
| <b>*</b> *                       | $\alpha_3, \beta_3$ in the cluster picture of $C$ $(A_3, B_3$ is that of $\hat{C}$ )                   |

### 4.2 $C_2 \times D_4$ Richelot curves and Jacobians

Via the Richelot construction described in Section 2.2, we form the  $C_2 \times D_4$  dual curve  $\hat{C}$  of a  $C_2 \times D_4$  curve.

**Definition 4.2.5.**  $[C_2 \times D_4 \text{ dual curve}]$  The  $C_2 \times D_4$  dual curve of a  $C_2 \times D_4$  curve is given by

$$\hat{C}$$
 :  $y^2 = L(x) = L_1(x)L_2(x)L_3(x)$ ,

where

$$L_1(x) = \frac{1}{\Delta_G}[G_2(x), G_3(x)], \quad L_2(x) = [G_3(x), G_1(x)], \quad L_3(x) = [G_1(x), G_2(x)].$$

**Remark 4.2.6.** The definition of the  $L_i(x)$ s above slightly differs from that of the  $F_i(x)$ s in Definition 2.2.11. We chose the above construction for  $C_2 \times D_4$  curves since it eases the computations performed in the remaining of this thesis. This is without loss of generality, since as noted in Remark 2.2.13, both definitions yields isomorphic curves over  $\mathcal{K}$ . However, the set  $\{L_1(x), L_2(x), L_3(x)\}$  is no longer Galois stable. Indeed if for  $\sigma \in Gal(\overline{\mathcal{K}}/\mathcal{K}), \sigma(G_2(x)) = G_3(x)$ , then  $\sigma(L_2(x)) = -L_3(x)$ . This could be fixed by letting

$$L_1(x) = -\frac{1}{\Delta_G}[G_2(x), G_3(x)], \quad L_2(x) = [G_1(x), G_3(x)], \quad L_3(x) = [G_1(x), G_2(x)].$$

We chose not to do so for computational reasons.

# 4.3 $C_2 \times D_4$ invariant polynomials

**Definition 4.3.8.** Let G(x) be a  $C_2 \times D_4$  polynomial over  $\mathcal{K}$  and  $\mathcal{L}/\mathcal{K}$  its splitting field. In addition to the leading terms of G(x) and L(x), c and  $\ell = \ell_1 \ell_2 \ell_3$ , we associate the following set of  $Gal(\mathcal{L}/\mathcal{K})$ -invariant polynomials in the roots of G(x):  $I_{20} = \frac{1}{2^3} (\delta_2 + \delta_3)$ ,  $I_{21} = (\alpha_2 + \beta_2)(\alpha_2 + \beta_2)$ 

$$I_{21} = (\alpha_2 + \beta_2)(\alpha_3 + \beta_3),$$
  

$$I_{22} = \frac{1}{2}(\Delta_G^2 \ell_1^2 - \delta_2 - \delta_3) = (\alpha_2 - \alpha_3)(\beta_2 - \beta_3) + (\beta_2 - \alpha_3)(\alpha_2 - \beta_3),$$
  

$$I_{23} = 4c^2\alpha_1^2,$$

$$\begin{split} I_{40} &= \frac{1}{2^6} (\delta_2 - \delta_3)^2, \\ I_{41} &= 16 \left( \alpha_2 \beta_2 \alpha_3 \beta_3 + \alpha_1^2 \left( \alpha_1^2 + \alpha_2 \beta_2 + \alpha_3 \beta_3 + (\alpha_2 + \beta_2) (\beta_3 + \alpha_3) \right) \right), \\ I_{42} &= 4 (2\alpha_1^2 - \alpha_2^2 - \beta_2^2) (2\alpha_1^2 - \alpha_3^2 - \beta_3^2), \\ I_{43} &= \delta_2 \left( \alpha_2^2 + \beta_2^2 - 2\alpha_1^2 \right) + \delta_3 \left( \alpha_3^2 + \beta_3^2 - 2\alpha_1^2 \right) \right), \\ I_{44} &= \delta_2 \delta_3 = (\alpha_2 - \beta_2)^2 (\alpha_3 - \beta_3)^2, \\ I_{45} &= 4 (\beta_3 - \beta_2) (\alpha_3 - \beta_2) (\alpha_2 - \beta_3) (\alpha_2 - \alpha_3), \\ I_{60} &= 4 \hat{\delta}_3 \left( \alpha_2^2 + \beta_2^2 - 2\alpha_1^2 \right) + 4 \hat{\delta}_2 \left( \alpha_3^2 + \beta_3^2 - 2\alpha_1^2 \right) \right), \\ I_{80} &= \frac{1}{c^4} \hat{\delta}_2 \hat{\delta}_3, \end{split}$$

Each invariant is of the form  $I_{i,j}$ , where *i* denotes the degree of  $I_{i,j}$  in the roots of G(x) and *j* indicates the number of this invariant of degree *i*.

**Definition 4.3.9** (Local discrepancy). Let  $(.,.)_v$  denote the Hilbert Symbol at a place v of  $\mathcal{K}$ . For each place  $v \in M_{\mathcal{K}}$ , let

$$H_{1} = (-1, I_{22}I_{41}I_{43}I_{60})_{v}, \quad H_{2} = (I_{20}, -I_{40}I_{44})_{v}, \quad H_{3} = (I_{40}, \ell I_{60}I_{43})_{v},$$
$$H_{4} = (c, I_{23}I_{44}I_{80})_{v}, \quad H_{5} = (I_{23}, I_{41})_{v}, \quad H_{6} = (I_{45}, -\ell I_{22}I_{21})_{v},$$
$$H_{7} = (I_{44}, 2I_{22}I_{42}I_{43})_{v}, \quad H_{8} = (I_{80}, -2I_{41}I_{42}I_{60})_{v}, \quad H_{9} = (I_{42}, -I_{60}I_{43})_{v},$$

and define

$$E_v = \prod_{i=1}^9 H_i.$$

# 4.4 A conjecture on local discrepancy for $C_2 \times D_4$ Jacobians

**Conjecture 4.4.10** (Local discrepancy conjecture). Let  $C/\mathcal{K}$  be a  $C_2 \times D_4$  curve and J its Jacobian. Then at all places v of  $\mathcal{K}$ 

$$\lambda_v(J) = E_v(J) \cdot \omega_v(J),$$

where  $\lambda_v$  is given in Corollary 3.2.17,  $E_v$  in Definition 4.3.9, and  $\omega_v(J)$  denotes the local root number of J, whenever the invariants involved in  $E_v$  are non-zero.

**Theorem 4.4.11.** Let  $C/\mathcal{K}$  be a Richelot curve and let J denote its Jacobian. Suppose the following:

i) C is a  $C_2 \times D_4$  curve,

ii) the cluster picture of C at odd finite places is one of Table 3.1,

iii) for  $v \mid 2, C \in C$  as in Section 3.5,

iv) none of the  $C_2 \times D_4$  invariants for C are zero (see Definitions 4.3.8 and 4.3.9). Then the local discrepancy conjecture 4.4.10 is true for J. **Corollary 4.4.12.** The 2-parity conjecture holds for Jacobians satisfying the conditions of Theorem 4.4.11.

*Proof.* This is immediate from Theorems 3.2.16 and 4.4.11 since  $\prod_{v \in M_{\mathcal{K}}} E_v = 1$  by the product formula for Hilbert Symbols.

The proof of Theorem 4.4.11 consists of a case by case analysis. Starting with infinite places of K, we consider all possible configurations of the real roots of G(x) as in Section 3.3 and compute  $\lambda_v, E_v$  and  $\omega_v$ . Then considering finite places v of  $\mathcal{K}$  such that  $v \mid 2$ , we prove that  $\lambda_v = E_v \omega_v$  for  $C \in \mathcal{C}$ . Finally, for odd finite places  $v \in M_{\mathcal{K}}$ , we consider all reduction types for C at v using cluster pictures as in Section 3.4 with all possible Richelot isogenies (equivalently,  $C_2 \times D_4$  quadratic factorization for G(x)) associated to this reduction type. For each case, we compute  $\lambda_v, E_v$  and  $\omega_v$ . The results are presented in the next sections via a set of tables and one can readily see that in all cases  $\lambda_v = E_v \omega_v$  as required. Chapters 5 and 6 consist of the proofs of the computations presented in the tables.

# 4.5 $C_2 \times D_4$ curves at infinite places

**Lemma 4.5.13.** Let C be a Richelot curve and denote by J its Jacobian. Then  $\omega_v = 1$  for places v of  $\mathcal{K}$  with  $\mathcal{K}_v \simeq \mathbb{R}$  or  $\mathcal{K} \simeq \mathbb{C}$ .

*Proof.* This follows from Lemma 2.1 in [33] since C is of genus 2 so that J is of dimension 2.  $\Box$ 

**Theorem 4.5.14.** Let C be a  $C_2 \times D_4$  curve and let J be its Jacobian. Then Conjecture 4.4.10 holds for complex places of K.

*Proof.* At complex places,  $\omega_v = 1$  by Lemma 4.5.13 and  $E_v = 1$  trivially. The result follows since  $\lambda_v = 1$  by Lemma 3.3.18.

**Lemma 4.5.15.** Let C be a  $C_2 \times D_4$  curve given by  $C : y^2 = G(x)$  and let J be its Jacobian. Then, for real places v of  $\mathcal{K}$ ,  $\lambda_v$ ,  $E_v$  and  $\omega_v$  are invariant under the change of variable  $x \mapsto -x$ .

Proof. Let  $r_1, ..., r_6$  be the roots of G(x). Applying the above change of variable yields  $r_i \mapsto -r_i, i = 1, 2, 3, 4, 5, 6$ . It follows from Propositions 3.3.19, 3.3.23, 3.3.20 and 3.3.21 that  $\lambda_v$  is invariant under this change of variable.  $\omega_v$  is trivially invariant from Lemma 4.5.13 and so is  $E_v$  since all  $C_2 \times D_4$  invariants involved in its definition are of even degrees.

### Notation

In this section, we fix a real place  $v \in M_{\mathcal{K}}$ . For a given  $C_2 \times D_4$  curve C, we wish to compute  $\lambda_{\mathbb{R}}, E_{\mathbb{R}}$ . In particular, we need to compute the number of real connected components of J and  $\hat{J}$ , the real deficiency of C and  $\hat{C}$  as well as  $|ker(\varphi)|$ . From Section 3.3, we know that this is possible once we know the real/complex configuration of the roots of G(x). We therefore consider all possible configurations and compute  $\lambda_{\mathbb{R}}, E_{\mathbb{R}}$  in each case. The results are tabulated below. Except for  $E_{\mathbb{R}}$  whose proof is presented in Section 6.4, the computations are clear from the results of Section 3.3.

#### Table convention

In a given table, each row corresponds to a particular configuration of the real/complex roots of G(x). The first column names the case considered, the second column gives the configuration of the roots. We used the symmetry between the roots of  $G_2(x)$ and  $G_3(x)$  (blue diamonds and purple stars in the real picture), and without loss of generality, always placed the roots of  $G_2(x)$  on the left of that of  $G_3(x)$  in the real pictures. The third, fourth, fifth and sixth columns specify the signs of the leading terms of G(x) and L(x) as well as the signs of  $I_{23} = \delta_1$ ,  $I_{44} = \delta_2 \delta_3$ ,  $I_{45} = \Delta_G^2 \delta_1$  and  $I_{80} = \delta_2 \delta_3$ . The vertical double lines represent the end of the input data. We note that the double lines do not occur at the same place in all tables. This is because in some cases, the leading term of L(x) and  $I_{45}$  are part of the input data, while in some other cases, they are fixed by the real configuration of the roots of G(x). The next columns after the vertical double lines give the number of real connected components of J and  $\hat{J}$ , the order of  $ker(\varphi)$  and the real deficiency of C and  $\hat{C}$ . Finally the three last columns list  $\lambda_{\mathbb{R}}, E_{\mathbb{R}}$  and  $\omega_{\mathbb{R}}$ .

#### Naming convention

Tables are indexed by real/complex roots configurations. The names start with the number of complex roots: 6C, 4C, 2C, 6R for 6, 4, 2, complex roots and 6 real roots respectively. The number indicates different configurations within the same case, the capital letters A, B vary with the sign of the leading term c of G(x) and the small letter vary with the sign of other invariants.

**Theorem 4.5.16.** Let C be a  $C_2 \times D_4$  curve. Then Conjecture 4.4.10 holds for real places of K whenever the  $C_2 \times D_4$  invariants involved in  $E_v$  are non-zero.

*Proof.* Follows from Tables 4.1, 4.2 and 4.3 since in all cases we find  $\lambda_v = E_v \omega_v$ . The exhaustivity of the cases addressed in these tables follows from Lemma 4.5.15.  $\Box$ 

| Isogeny | $C(\mathbb{R})$                                                     | c | l | $I_{23}$ | $I_{44}$ | $I_{45}$ | $I_{80}$ | n | $\hat{n}$ | $ ker(\varphi) $ | $m_{\mathbb{R}}$ | $\hat{m}_{\mathbb{R}}$ | $\lambda_{\mathbb{R}}$ | $\omega_{\mathbb{R}}$ | $E_{\mathbb{R}}$ |
|---------|---------------------------------------------------------------------|---|---|----------|----------|----------|----------|---|-----------|------------------|------------------|------------------------|------------------------|-----------------------|------------------|
| 6C1A    | $\delta_1, \delta_2, \delta_3 \in \mathbb{R}_{<0}$                  | + | ± | -        | +        | +        | +        | 1 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 6C1B    | $\delta_1, \delta_2, \delta_3 \in \mathbb{R}_{<0}$                  | _ | ± | -        | +        | +        | +        | 1 | 4         | 4                | 2                | 1                      | -1                     | 1                     | -1               |
| 6C2Aa   | $\delta_1 \in \mathbb{R}_{\leq 0},  \delta_2 = \overline{\delta_3}$ | + | ± | _        | +        | _        | +        | 1 | 1         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6C2Ab   | $\delta_1 \in \mathbb{R}_{\leq 0},  \delta_2 = \overline{\delta_3}$ | + | + | _        | +        | +        | +        | 1 | 1         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6C2Ac   | $\delta_1 \in \mathbb{R}_{\geq 0},  \delta_2 = \overline{\delta_2}$ | + | _ | _        | +        | +        | +        | 1 | 1         | 2                | 1                | 2                      | 1                      | 1                     | 1                |
| 6C2Ba   | $\delta_1 \in \mathbb{R}_{\geq 0},  \delta_2 = \delta_3$            | - | + |          |          |          | -<br>-   | 1 | 1         | 2                | 2                | 1                      | 1                      | 1                     | 1                |
| CoDh    | $\delta_1 \in \mathbb{R}_{\geq 0},  \delta_2 = \delta_3$            |   | - |          |          |          |          | 1 | 1         | 2                | 2                | 1                      | 1                      | 1                     | 1                |
| 0C2DD   | $\delta_1 \in \mathbb{R}_{<0},  \delta_2 = \delta_3$                | _ | + | _        | +        | +        | +        | 1 | 1         | 2                | 2                | 1                      | 1                      | 1                     | 1                |
| 6C2Bc   | $\delta_1 \in \mathbb{R}_{<0},  \delta_2 = \delta_3$                | - | - | -        | +        | +        | +        | 1 | 1         | 2                | 2                | 2                      | -1                     | 1                     | -1               |
| 4C1A    | •—––• $\delta_2, \delta_3 \in \mathbb{R}_{<0}$                      | + | ± | +        | +        | +        | +        | 1 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 4C1B    | • $\delta_2, \delta_3 \in \mathbb{R}_{<0}$                          | _ | ± | +        | +        | +        | +        | 1 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 4C2A    | $\bullet \longrightarrow \delta_1, \delta_3 \in \mathbb{R}_{<0}$    | + | ± | -        | -        | +        | +        | 1 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 4C2B    | $\bullet \longrightarrow \ \delta_1, \delta_3 \in \mathbb{R}_{<0}$  | - | ± | -        | -        | +        | +        | 1 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 4C3a    | • $\delta_2 = \overline{\delta_3}$                                  | ± | ± | +        | +        | -        | +        | 1 | 1         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 4C3b    | • $\delta_2 = \overline{\delta_3}$                                  | ± | + | +        | +        | +        | +        | 1 | 1         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 4C3c    | • $\delta_2 = \overline{\delta_3}$                                  | ± | - | +        | +        | +        | +        | 1 | 1         | 2                | 1                | 2                      | 1                      | 1                     | 1                |
| 2C1A    |                                                                     | + | ± | -        | +        | +        | +        | 2 | 4         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 2C1B    |                                                                     | _ | ± | -        | +        | +        | +        | 2 | 4         | 4                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C2A    |                                                                     | + | ± | -        | +        | _        | +        | 2 | 2         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C2B    |                                                                     | — | ± | -        | +        | _        | +        | 2 | 2         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C3A    |                                                                     | + | ± | -        | +        | +        | +        | 2 | 4         | 4                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C3B    |                                                                     | _ | ± | _        | +        | +        | +        | 2 | 4         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 2C4A    | $- \bullet  \bullet - \bullet  \bullet - \delta_3 < 0$              | + | ± | +        | -        | +        | +        | 2 | 4         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 2C4B    | •••• $\delta_3 < 0$                                                 | _ | ± | +        | -        | +        | +        | 2 | 4         | 4                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C5A    |                                                                     | + | ± | +        | -        | +        | -        | 2 | 2         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C5B    | •                                                                   | _ | ± | +        | -        | +        | -        | 2 | 2         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C6aA   | $-\bullet$ $\bullet-\bullet$ $\bullet \delta_3 < 0$                 | + | ± | +        | -        | +        | +        | 2 | 4         | 4                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C6aB   | ••• ••• $\delta_3 < 0$                                              | - | ± | +        | -        | +        | +        | 2 | 4         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 2C6bA   | $- \blacklozenge \bullet \bullet \bullet \bullet \delta_3 < 0$      | + | ± | +        | _        | +        | +        | 2 | 4         | 4                | 1                | 1                      | -1                     | 1                     | -1               |
| 2C6bB   | $ \bullet - \bullet  \bullet - \bullet  \delta_3 < 0 $              | - | ± | +        | -        | +        | +        | 2 | 4         | 2                | 1                | 1                      | 1                      | 1                     | 1                |

Table 4.1: G(x) has 6,4,2 complex roots.

| Isogeny | $C(\mathbb{R})$                       | c | l | $I_{23}$ | $I_{44}$ | $I_{45}$ | $I_{80}$ | n | $\hat{n}$ | $ ker(\varphi) $ | $m_{\mathbb{R}}$ | $\hat{m}_{\mathbb{R}}$ | $\lambda_{\mathbb{R}}$ | $\omega_{\mathbb{R}}$ | $E_{\mathbb{R}}$ |
|---------|---------------------------------------|---|---|----------|----------|----------|----------|---|-----------|------------------|------------------|------------------------|------------------------|-----------------------|------------------|
| 6R1A    | - <b>0 0\$ \$\$ \$</b> -              | + | ± | +        | +        | +        | +        | 4 | 4         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R1B    | 00                                    | - | ± | +        | +        | +        | +        | 4 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R2A    | -• •-• <del>*-</del> • <del>*</del> - | + | ± | +        | +        | -        | +        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R2B    | •• • <del></del>                      | - | ± | +        | +        | -        | +        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R3A    | -• •• •                               | + | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R3B    | ••• •••                               | - | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R4A    | -0 -0                                 | + | ± | +        | +        | +        | -        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R4B    | ••• •••                               | - | ± | +        | +        | +        | -        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R5A    | -• •-• •-• •-                         | + | ± | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R5B    | • • • • •                             | - | ± | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R6A    | -• •-• •-• •-                         | + | ± | +        | +        | +        | -        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R6B    | ••••                                  | - | ± | +        | +        | +        | -        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R7A    | -• •-• •-• •-                         | + | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R7B    | ••• •••                               | - | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R8aA   | -0 <b>)-1</b> 0 ) 12-                 | + | + | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R8aB   | ••• •••                               | - | + | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R8bA   | -0 <b>)</b> -1 0 ) 1-                 | + | - | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 2                      | -1                     | 1                     | -1               |
| 6R8bB   | •-• • •-•                             | - | - | +        | +        | -        | _        | 4 | 1         | 1                | 1                | 2                      | -1                     | 1                     | -1               |
| 6R9A    | -0                                    | + | ± | +        | +        | +        | +        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R9B    | • • • •                               | - | ± | +        | +        | +        | +        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R10A   | -0 <b>)</b> -0 <b>)</b> -0 <b>)</b> - | + | ± | +        | +        | +        | -        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R10B   | • • • • •                             | - | ± | +        | +        | +        | -        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R11A   | -0 \$-17 \$-0 11-                     | + | ± | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R11B   | •••                                   | - | ± | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R12A   | -• •                                  | + | ± | +        | +        | +        | -        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R12B   | •••                                   | - | ± | +        | +        | +        | _        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R13A   | -• •-• •-                             | + | ± | +        | +        | +        | +        | 4 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R13B   | •••                                   | - | ± | +        | +        | +        | +        | 4 | 4         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R14A   | -• •                                  | + | ± | +        | +        | _        | +        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |

Table 4.2: G(x) has 6 real roots

| Isogeny          | $C(\mathbb{R})$                                              | c | l | $I_{23}$ | $I_{44}$ | $I_{45}$ | $I_{80}$ | n | $\hat{n}$ | $ ker(\varphi) $ | $m_{\mathbb{R}}$ | $\hat{m}_{\mathbb{R}}$ | $\lambda_{\mathbb{R}}$ | $\omega_{\mathbb{R}}$ | $E_{\mathbb{R}}$ |
|------------------|--------------------------------------------------------------|---|---|----------|----------|----------|----------|---|-----------|------------------|------------------|------------------------|------------------------|-----------------------|------------------|
| 6R14B            | o                                                            | - | ± | +        | +        | -        | +        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R15A            | -0 <del>) 1</del> 1 1 -                                      | + | ± | +        | +        | +        | -        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R15B            | 0\$ \$ <u>1</u> \$} \$0                                      | - | ± | +        | +        | +        | -        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R16A            | -> 00                                                        | + | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R16B            | <b>♦0 0♦ ¥¥</b>                                              | - | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R17A            | - <b>&gt; 00 \$&gt; \$-</b> -                                | + | ± | +        | +        | -        | +        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| $6\mathrm{R17B}$ | <b>♦—● ●</b> ——————————————————————————————————              | - | ± | +        | +        | -        | +        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R18A            | - <b>• •• •</b> -• •-                                        | + | ± | +        | +        | +        | +        | 4 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R18B            | <b>↓ ● ● ☆ ☆ ◆</b>                                           | - | ± | +        | +        | +        | +        | 4 | 4         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R19A            | -> •-> •                                                     | + | ± | +        | +        | +        | _        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R19B            | <b>♦</b> ● <b>♦</b> ♦                                        | - | ± | +        | +        | +        | _        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R20A            | -> •                                                         | + | ± | +        | +        | -        | -        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R20B            | <b>♦—● ╈—● ♦—╈</b>                                           | - | ± | +        | +        | _        | _        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R21A            | - <b></b>                                                    | + | ± | +        | +        | +        | _        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R21B            | <b>↓</b> → <b>☆</b> → <b>☆</b> →                             | - | ± | +        | +        | +        | _        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R22A            | -> •-> <del>*</del> -• *-                                    | + | ± | +        | +        | +        | +        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R22B            | <b>↓ → ↓ ↓ ↓</b>                                             | - | ± | +        | +        | +        | +        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R23aA           | -> •                                                         | + | + | +        | +        | _        | +        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R23aB           | <b>↓ • • • • • •</b>                                         | _ | + | +        | +        | -        | +        | 4 | 1         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R23bA           | -• •• •-• •                                                  | + | - | +        | +        | -        | +        | 4 | 1         | 1                | 1                | 2                      | -1                     | 1                     | -1               |
| 6R23bB           | <b>↓</b> → <b>↓</b> → <b>↓</b>                               | - | - | +        | +        | -        | +        | 4 | 1         | 1                | 1                | 2                      | -1                     | 1                     | -1               |
| 6R24A            | -> •                                                         | + | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R24B            | <b>↓ → ☆ → </b>                                              | - | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R25A            | -> <b>&gt; -&gt; +</b> +-                                    | + | ± | +        | +        | +        | +        | 4 | 4         | 1                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R25B            | <b>♦</b> — <b>♦ ●</b> — <b>●</b> <del>♦</del> — <del>♦</del> | - | ± | +        | +        | +        | +        | 4 | 4         | 4                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R26A            | -> x> x> x                                                   | + | ± | +        | +        | -        | +        | 4 | 2         | 1                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R26B            | <b>◇─☆ ○─○ ◇─☆</b>                                           | - | ± | +        | +        | _        | +        | 4 | 2         | 2                | 1                | 1                      | 1                      | 1                     | 1                |
| 6R27A            | -> x> ex >-                                                  | + | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |
| 6R27B            | <b>◇─☆ ○─○ ☆─</b> ◇                                          | - | ± | +        | +        | +        | +        | 4 | 4         | 2                | 1                | 1                      | -1                     | 1                     | -1               |

Table 4.3: G(x) has 6 real roots

# **4.6** $C_2 \times D_4$ curves at finite places $v \mid 2$

In order to use the results of Section 3.5, we impose the condition that our  $C_2 \times D_4$  curves belong to the family C given in Proposition 3.5.34 at 2-adic places. Theorem 3.5.36 yields  $\lambda_v = 1$  in this case. Moreover,  $E_v$  and  $\omega_v$  are as follows.

**Lemma 4.6.17.**  $E_v = 1$  for all curves  $C \in C$ .

Proof. See Section 6.5.

**Lemma 4.6.18.**  $\omega_v = 1$  for all curves  $C \in \mathcal{C}$ .

*Proof.* By Corollary 3.5.33, J has split totally toric reduction. The result follows from [10][Proposition 3.23].

**Theorem 4.6.19.** Conjecture 4.4.10 holds for places  $v \mid 2$  such that  $C \in C$ .

*Proof.* Clear from Theorem 3.5.36 and Lemmata 4.6.17, 4.6.18.

4.7  $C_2 \times D_4$  curves at finite places  $v \nmid 2$ 

### Notation

In this section, we fix a finite place  $v \in M_{\mathcal{K}}$  such that  $v \nmid 2$  and denote by Kthe completion  $\mathcal{K}_v$  of  $\mathcal{K}$  at v. We let  $\mathcal{O}_K$  be the ring of integers of K, choose a uniformizer  $\pi$  and denote by v the corresponding normalized valuation. Let  $Gal_K$ denote the Galois group of  $\overline{K}$  over K, Frob the Frobenius automorphism and  $I_K$ the inertia subgroup.

For a given  $C_2 \times D_4$  curve C, we wish to compute  $\lambda_v, E_v$  and  $\omega_v$ . By Theorem 3.2.16, this means computing Tamagawa numbers at v for J and  $\hat{J}$ , deficiency at v for C and  $\hat{C}$ ,  $E_v$  and  $\omega_v$ . As proven in Chapters 5 and 6, this can be done once we know the cluster picture of C at v and its  $C_2 \times D_4$  factorization together with some specific local data. We therefore consider all the possible semistable reduction types of C over the local field K together with each possible  $C_2 \times D_4$  factorization and compute  $\lambda_v, E_v$  and  $\omega_v$  in each case. The results are tabulated below.

### Table convention

Each table corresponds to a specific reduction type with a specific  $C_2 \times D_4$  factorization. In a given table, each row corresponds to a particular Galois action and values of extra invariants. The first column names the case considered, the second column gives the corresponding cluster picture for C (using without loss of generality the symmetry between the roots of  $G_2(x)$  and  $G_3(x)$ , blue diamonds and purple stars), the Tamagawa number of J and the deficiency for C. The third, fourth and fifth

columns specify the valuations of the leading terms of G(x) and L(x) as well as the valuation of  $\Delta_G$ . The last column before the vertical double lines gives conditions on invariants of C that determine the Galois action on the cluster pictures of C and  $\hat{C}$ . We use the dash symbol "-" to mean that the value of a given invariant is not determined by the case considered. The vertical double lines represent the application of the Richelot isogeny. The next column after the vertical double line therefore gives the balanced representative of the cluster picture of  $\hat{C}$ , the Tamagawa number of  $\hat{J}$  and the deficiency of  $\hat{C}$ . Finally the three last columns compute  $\lambda_v, E_v$  and  $\omega_v$ .

Tables are indexed by reduction types for C, where for a given type, each  $C_2 \times D_4$  factorization for G(x) is given a particular number, followed by a letter which indicates a specific Galois action. Type 2 cases are called GR for Good Reduction, type  $1_{2a}$  cases are called ON for One Node, type  $I_{2a,2b}$  cases TN for Two Nodes, type  $U_{2a,2b,2n}$  are called U for Ubereven and types  $1 \times 1$  are called TC for Two Cusps. The following example illustrates this construction.

### Example 4.7.20.

Let C/K be a  $C_2 \times D_4$  curve with factorization  $G(x) = G_1(x)G_2(x)G_3(x)$  such that G(x) has 2 double roots mod  $\pi$ . Following notation in Section 3.4, possible types for C are A)  $I_{2a,2b}^{+,+}$ , B)  $I_{2a,2b}^{+,-}$ , C)  $I_{2a,2b}^{-,+}$ , D)  $I_{2a,2b}^{-,-}$ , E)  $I_{2a}^+{}_{2a}$  and F)  $I_{2a}^-{}_{2a}$  for some  $a, b \in \frac{1}{2}\mathbb{Z}$  (all curves considered are assumed to be semistable;  $2a, 2b \in \mathbb{Z}$  follows directly from the semistability criterion 3.4.29). First note that Tamagawa numbers for  $J, \hat{J}$  and deficiency for C and  $\hat{C}$  depend on the exact type of C. We therefore have to consider all types and give the conditions on C to differentiate them. In types  $A, B, C, D, Gal_K$  acts trivially on clusters, while in types E and F, Frob permutes both clusters (see Table 3.1). To distinguish these types one needs to know the field of definition of the roots of G(x). The signs in the types are given by the field of definition of the slopes of the tangents at the nodes on the reduced curve, which can be computed using Proposition 3.4.30.

Now the double roots of  $G(x) \mod \pi$  can be distributed among the 6 roots of its 3 quadratic factors. With the restriction that  $G_1(x) \in K[x]$  by construction, this yields several cases to consider, each of them giving a different reduction type (cluster picture) for  $\hat{C}$  and therefore different values for  $\lambda_v, E_v$  and  $\omega_v$ . All possibilities in that specific case are listed, defined and computed in Tables 4.9 to 4.22.

As an example, consider the curve  $C/\mathbb{Q}_{17}$ :  $y^2 = G_1(x)G_2(x)G_3(x)$ , with

$$G_1(x) = (x - 17^2)(x + 17^2), G_2(x) = (x - 3 + 17^6)(x - 3 - 17^6), G_3(x) = (x - 1)(x - 4).$$

Here, G(x) has two double roots when reduced modulo 17. These concern the roots  $\alpha_1, -\alpha_1$  of  $G_1(x)$ , say  $\mathfrak{t}_1$  is the twin cluster around the two red circles, and the roots  $\alpha_2, \beta_2$  of  $G_2(x)$ , say  $\mathfrak{t}_2$  is the twin cluster around the blue diamonds. By Proposition

3.4.30 the sign of  $\mathfrak{t}_1$  is + since  $T_{\alpha_1} \equiv 15 \mod 17 \in \mathbb{F}_{17}^{\times 2}$ , and the sign of  $\mathfrak{t}_2$  is + since  $T_{\alpha_2} \equiv 16 \mod 17 \in \mathbb{F}_{17}^{\times 2}$ . The cluster picture of C is  $\underbrace{\mathfrak{o}}_2^+ \underbrace{\mathfrak{o}}_6^+ \underbrace{\mathfrak{o}}_6^+ \underbrace{\mathfrak{o}}_6^-$ , so that C is of type  $I_{4,12}^{+,+}$  (case TN1A in Table 4.9 below). It follows from the Richelot construction that

$$L_1(x) = \frac{1}{2913111186232305}x^2 + 1165244474459512x - 2913111186148784,$$

 $L_2(x) = 5x^2 - 167050x + 417605, \quad L_3(x) = -6x^2 - 1165244474292462x - 501126.$ 

Computing the roots of L(x), we find that the cluster picture of  $\hat{C}$  is  $(\mathbf{v})_{4}^{+} (\mathbf{v})_{12}^{+} (\mathbf{v})_{12}^{+}$ 

**Theorem 4.7.21.** Let C be a  $C_2 \times D_4$  curve and v a place of K of odd residue characteristic. If the cluster picture of C is one of Table 3.1, then Conjecture 4.4.10 holds for C at v whenever the  $C_2 \times D_4$  invariants involved in  $E_v$  are non-zero.

*Proof.* Follows since Tables 4.4 to 4.33 list all possible cases for  $C_2 \times D_4$  curves with the required cluster pictures and since in all cases we find  $\lambda_v = E_v \omega_v$ .

| $E_v$                                                               | <del>, - 1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ц                                                                                                                                                          | $(-1)^{r}$                                                                |                                  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            | 1                                                                         |                                  |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                          | $(-1)^{r}$                                                                |                                  |
| Ĉ                                                                   | $\hat{oldsymbol{o}}_{v} ullet $ | $\widehat{c}_v = 1,  \widehat{m}_v = 1$                                                                                                                    | $\widehat{c_v = 1,  \hat{m}_v = r+1}$                                     | if $2 \nmid x$ .                 |
| $(A_1 - B_1)^2$                                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\in K^{	imes 2}$                                                                                                                                          | $\notin K^{\times 2}$                                                     | $2 x \text{ and } \tilde{x} = 1$ |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2r                                                                                                                                                         | 2r                                                                        | $\tilde{x} = 2$ if               |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right $ | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{cases} \equiv r \ (2) \\ \equiv r \ (2) \end{cases}$                                                                                               | $\begin{cases} \equiv r \ (2) \\ \equiv r \ (2) \end{cases}$              | Notation:                        |
| v(c)                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                          | 0                                                                         |                                  |
| C                                                                   | $\underbrace{\bullet \bullet \bullet \bullet \bullet \bullet}_{c_v} c_v = 1,  m_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\bullet \bullet $ | $(\bullet \bullet \bullet \bullet \bullet \bullet)^0$ $c_v = 1,  m_v = 1$ |                                  |
| Isogeny                                                             | GR1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GR1B                                                                                                                                                       | GR1C                                                                      |                                  |

|                                                                     |                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | 1                                                                                                     |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $E_v$                                                               | 1                                                                                                                                                 | $(-1)^{2a}$                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(-1)^{2a}$                                                                                                                              |                                                                                                       |
| $w_v$                                                               | -1                                                                                                                                                | 1                                                                                                                          | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                        |                                                                                                       |
| $\lambda_v$                                                         | -1                                                                                                                                                | $(-1)^{2a}$                                                                                                                | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(-1)^{2a}$                                                                                                                              |                                                                                                       |
| Ĉ                                                                   | $ \widehat{\left( \diamondsuit \bigstar \right)^{+}_{2a} \bullet \bullet \diamondsuit \bigstar } $ $ \widehat{c}_{v} = 4a,  \widehat{m}_{v} = 1 $ | $\hat{\left( \diamondsuit \bigstar  ight)}_{2a}^{-} \bullet \bullet \diamondsuit \bigstar \ \hat{c}_v = 2,  \hat{m}_v = 1$ | $\widehat{\left( \underbrace{\diamondsuit}_{v}^{+} \underbrace{\bigstar}_{2a}^{+} \underbrace{\bullet}_{r} \underbrace{\circlearrowright}_{r} \underbrace{\bullet}_{v} \underbrace{\bigstar}_{v} \underbrace{\bullet}_{v} \underbrace{\bullet}_$ | $\widehat{\hat{c}_v=2,  \hat{m}_v=1}$                                                                                                    |                                                                                                       |
| $T_{lpha_1}$                                                        | $\in K^{\times 2}$                                                                                                                                | $\notin K^{	imes 2}$                                                                                                       | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\notin K^{\times 2}$                                                                                                                    |                                                                                                       |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                 | 0                                                                                                                          | 2r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2r                                                                                                                                       |                                                                                                       |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ \equiv 0 \ (2) \end{array} \right.$                                                                   | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ \equiv 0 \ (2) \end{array} \right.$                                            | $\begin{cases} \equiv r \ (2) \\ \equiv r \ (2) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left\{ \equiv r \ (2) \\ \equiv r \ (2) \right\}$                                                                                      | $_{3})(lpha_{1}-eta_{3}),$                                                                            |
| v(c)                                                                | 0                                                                                                                                                 | 0                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                        | $(\alpha_1 - \alpha$                                                                                  |
| C                                                                   | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                | $\overbrace{c_v=\widetilde{2a}, \ m_v=1}^{\overline{}} \checkmark \checkmark \checkmark \checkmark_0$                      | $\widehat{(ullet ullet)_a^+}$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $o_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\widehat{(ullet ullet)_a^-} & \bigstar & \bigstar \ \widehat{(ullet ullet)_a^-} & \bigstar & \bigstar \ c_v = \widetilde{2a},  m_v = 1$ | $T_{\alpha_1} = c(\alpha_1 - \alpha_2)(\alpha_1 - \beta_2)$<br>: and $\tilde{x} = 1$ if $2 \nmid x$ . |
| Isogeny                                                             | ON1A                                                                                                                                              | ON1B                                                                                                                       | ON1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON1D                                                                                                                                     | Notation: $\frac{1}{2}$<br>$\tilde{x} = 2$ if $2 x$                                                   |

Table 4.5: C is of type  $1_{2a}$ , ON1

| $E_v$                                                               | 1                                                                                                                                      | $(-1)^{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(-1)^{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $w_v$                                                               | -1                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |
| $\lambda_v$                                                         | -1                                                                                                                                     | $(-1)^{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(-1)^{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
| Ĉ                                                                   | $ \widehat{\left( \bullet \mathbf{A} \right)_{2a}^{+} \bullet \mathbf{A} \mathbf{A} } $ $ \widehat{c}_{v} = 4a,  \widehat{m}_{v} = 1 $ | $\hat{oldsymbol{c}}_{v}^{-} ullet ullett ullet ullett ullet ullet ullet ullet ullett ullet ullett ullet ullett ulle$ | $\widehat{(\bullet \bigstar_{2a}^{+} \bullet)}_{r} (\bullet \bigstar_{r}^{+} \bullet)_{0}$ $\widehat{c}_{v} = 4a,  \widehat{m}_{v} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\hat{c}_v=2,  \hat{m}_v=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
| $T_{lpha_2}$                                                        | $\in K^{\times 2}$                                                                                                                     | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |
| $\left\{ \begin{array}{l} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{smallmatrix} \equiv 0 & (2) \\ - \end{smallmatrix} \right.$                                                            | $\left\{ \begin{smallmatrix} \equiv 0 \\ - \end{smallmatrix} \right. (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left\{ \stackrel{\equiv}{=} r \ (2) \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left\{ \stackrel{\equiv}{=} r \ (2) \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\alpha_3)(\alpha_2-\beta_3),$                                                                             |
| v(c)                                                                | 0                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\alpha_2 - c)$                                                                                            |
| C                                                                   | $egin{array}{c} \left( \diamondsuit & \diamondsuit  ight)^+_a \bullet \bullet \bigstar & \bigstar \ c_v = 2a,  m_v = 1 \end{array}$    | $\overbrace{c_v=\widetilde{2a},  m_v=1}^{\neg\bullet\bullet\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $egin{array}{c} (lackslash lackslash la$ | $egin{array}{c} \left( igodot igodot  ight)_a^- igodot igodot  ightarrow  i$ | $\Gamma_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)$<br>: and $\tilde{x} = 1$ if $2 \nmid x$ . |
| Isogeny                                                             | ON2A                                                                                                                                   | ON2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ON2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ON2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\overline{\text{Notation: } 1}$ $\tilde{x} = 2 \text{ if } 2 x$                                            |

Table 4.6: C is of type  $1_{2a}$ , ON2

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                           | $v(\epsilon$                                    | (c)                                                                | $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $v(\Delta_G^2)$ | $T_{\alpha_2}$       | Ċ                                                                                                                                                          | $\lambda_v$ | $w_v$ | $E_v$      |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|------------|-----|
| $0 \neq K^{\times 2} \left  \begin{array}{c c} \bullet \bullet^{-}_{2} \bullet \bullet \bullet \bullet \\ \bullet \bullet^{-}_{2} \bullet \bullet \bullet \bullet \\ \hat{c}_{v} = \tilde{a},  \hat{m}_{v} = 1 \end{array} \right  (-1)^{a} \left  \begin{array}{c c} \bullet \bullet \\ \bullet \bullet \\ \bullet \end{array} \right ^{\bullet} \bullet$ | $ \begin{array}{c} \left( \blacklozenge \blacklozenge_{a}^{+} \bullet \bullet \blacklozenge_{0}^{+} \bullet \bullet \blacklozenge_{0}^{-} \bullet \bullet \bullet & \bullet \\ c_{v} = 2a,  m_{v} = 1 \\ \end{array} \qquad 0 \qquad \begin{cases} \equiv 0  (2) \\ - \\ - \\ \end{array} $ | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$ | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                    |                                                                     | 0               | $\in K^{	imes 2}$    | $\widehat{\left( ullet ullet  ight)}_{2}^{+} \blacklozenge \blacklozenge \bigstar \bigstar_{0}$ $\widehat{c}_{v} = a,  \hat{m}_{v} = 1$                    | -1          | -1    | 1          |     |
|                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} \left( \blacklozenge \blacklozenge_{a}^{-} \bullet \blacklozenge \blacklozenge_{0} \\ c_{v} = 2,  m_{v} = 1 \end{array} \right)  0  \begin{cases} \equiv 0 \ (2) \\ - \end{cases} $                                                                                      | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$ | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$ |                                                                     | 0               | $\notin K^{	imes 2}$ | $\widehat{\left( ullet ullet  ight)}_2^{-}$ $\diamond$ $\bigstar$ $\bigstar$ $\widehat{\left( ullet  ight)}_0$ $\hat{c}_v = \widetilde{a},  \hat{m}_v = 1$ | $(-1)^{a}$  | 1     | $(-1)^{a}$ | ♦ ♦ |

| ON3      |  |
|----------|--|
| $1_{2a}$ |  |
| f type   |  |
| ) is o   |  |
| 4.7: (   |  |
| Table    |  |

| $\lambda_v \mid w_v \mid E_v$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(-1)^a \left  1 \right  (-1)^a \left  \underbrace{\checkmark}_{\bullet} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ĉ                                                                 | $\hat{igodowskip}^+_2 ullet u$ | $\hat{\left( \bigstar \bigstar \right) }_{2}^{	extsf{-}} \bullet \bullet \blacklozenge \bullet \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $T_{lpha_1}$                                                      | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\notin K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $v(\Delta_G^2)$                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\left\{ egin{array}{c} v(\ell) \\ v(\ell_1) \end{array}  ight\}$ | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| v(c)                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C                                                                 | $egin{pmatrix} egin{pmatrix} eta & eta $   | $egin{array}{c} lacksymbol{\circ} & lack$ |
| Isogeny                                                           | ON4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| ON4                 |
|---------------------|
| $1_{2a}$ ,          |
| type                |
| $\operatorname{of}$ |
| $\mathbf{IS}$       |
| $\mathcal{O}$       |
| 4.8:                |
| Table               |

|                                                                     |                                                                                                                                                                     |                                                                                                                                                                                                                             | <sub>b</sub> ♠ ♠                                                                                                                                                                  |                                                                                                                                                |                                                         |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| $E_v$                                                               | 1                                                                                                                                                                   | $(-1)^{2a}$                                                                                                                                                                                                                 | $(-1)^{2b}$                                                                                                                                                                       | $(-1)^{2a+2b}$                                                                                                                                 |                                                         |
| $w_v$                                                               | 1                                                                                                                                                                   | -1                                                                                                                                                                                                                          | -1                                                                                                                                                                                | Η                                                                                                                                              |                                                         |
| $\lambda_v$                                                         | 1                                                                                                                                                                   | $(-1)^{2a+1}$                                                                                                                                                                                                               | $(-1)^{2b+1}$                                                                                                                                                                     | $(-1)^{2a+2b}$                                                                                                                                 |                                                         |
| Ĉ                                                                   | $ \widehat{(\diamondsuit * \bigstar)_{2a}^{+}} \underbrace{(\bullet \bigstar)_{2b}^{+} \bullet \blacklozenge}_{0} \\ \widehat{c}_{v} = 16ab,  \widehat{m}_{v} = 1 $ | $\underbrace{\left( \bigstar \ \mathbf{A} \right)_{2a}^{-} \left( \mathbf{O} \ \mathbf{A} \right)_{2b}^{+} \mathbf{O} }_{\hat{c}_{v}} \underbrace{\left( \bigstar \ \mathbf{A} \right)_{2b}^{+} \mathbf{O} }_{\hat{c}_{v}}$ | $ \widehat{(\bullet \star)}_{2a}^{+} \underbrace{(\bullet \star)_{2b}^{-} \bullet \bullet}_{b} \\ \widehat{c}_{v} = 8a,  \widehat{m}_{v} = 1 $                                    | $ \widehat{(\diamondsuit * \bigstar)_{2a}^{-}} ( \bullet \bigstar)_{2b}^{-} \bullet \blacklozenge ) \\ \widehat{c}_v = 4,  \widehat{m}_v = 1 $ | $+ \alpha_1)(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3),$ |
| $T_{lpha_1},T_{lpha_2}$                                             | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                     | $\in K^{	imes 2}, \notin K^{	imes 2}$                                                                                                                                             | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                     | $= c(\alpha_2 - \alpha_1)(\alpha_2)$                    |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                                   | 0                                                                                                                                                                                                                           | 0                                                                                                                                                                                 | 0                                                                                                                                              | $^{3}_{3}), T_{lpha_{2}}$                               |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{smallmatrix} \equiv 0 \\ - \end{smallmatrix} \right. (2)$                                                                                           | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                          | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right.$                                                                                    | $-lpha_3)(lpha_1-ar{arepsilon})$                        |
| v(c)                                                                | 0                                                                                                                                                                   | 0                                                                                                                                                                                                                           | 0                                                                                                                                                                                 | 0                                                                                                                                              | $(\alpha_1)^{(\alpha_1)}$                               |
| C                                                                   | $\overbrace{c_{v}=4ab,  m_{v}=1}^{+} \bigstar $                                                                                                                     | $\widehat{\left( ullet ullet  ight)_a^-} \left( ullet ullet ullet  ight)_a^+ ullet ullet  ight)_b^+ ullet ullet  ight)_0^- c_v = \widetilde{2a}2b, \hspace{1.5cm} m_v = 1$                                                  | $\widehat{\left( ullet ullet  ight)^a}^+ igvee ullet ullet  ight)^b_a ullet ullet  ight)^c_b ullet ullet  ight)^c_0$ $c_v = 2a \widetilde{2} \widetilde{b}, \hspace{1cm} m_v = 1$ | $\overbrace{c_v=\widetilde{2a2b}}^{-} (\clubsuit \clubsuit)_b^{-} \bigstar \bigstar_0$                                                         | $T_{lpha_1} = c(lpha_1-lpha_2)(lpha_1-ar{lpha}_1)^{-1}$ |
| Isogeny                                                             | TN1A                                                                                                                                                                | TN1B                                                                                                                                                                                                                        | TN1C                                                                                                                                                                              | TN1D                                                                                                                                           | Notation: $\tilde{v} = 2$ if 2].                        |

| TN1          |
|--------------|
| $I_{2a,2b},$ |
| f type       |
| C is of      |
| 4.9:         |
| Table        |

| $E_v$                                                              | 1                                                                                                                                                                                                  | $(-1)^{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(-1)^{2a}$<br>$(-1)^{2b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |                                                                                                  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $w_v$                                                              | 1                                                                                                                                                                                                  | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                      |                                                                                                  |
| $\lambda_v$                                                        | 1                                                                                                                                                                                                  | $(-1)^{2a+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(-1)^{2b+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(-1)^{2a+2b}$                                                         |                                                                                                  |
| Ç                                                                  | $\hat{(\mathbf{e},\mathbf{f})}_{2a}^+$ $\hat{(\mathbf{e},\mathbf{f})}_{2b}^+$ $\hat{(\mathbf{e},\mathbf{f})}_{2b}^+$ $\hat{(\mathbf{e},\mathbf{f})}_{2b}^+$ $\hat{(\mathbf{e},\mathbf{f})}_{2b}^+$ | $\widehat{\hat{c}_v = 8b,  \hat{m}_v = 1}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \widehat{\hat{c}_v = 8a},  \widehat{\hat{m}_v = 1}^{+} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \hat{c}_v = 4,  \hat{m}_v = 1 $                                      | $+ lpha_1)(lpha_2 - lpha_3)(lpha_2 - eta_3),$                                                    |
| $T_{lpha_1},T_{lpha_2}$                                            | $\in K^{	imes 2}, \in K^{	imes 2}$                                                                                                                                                                 | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\in K^{	imes 2}, \notin K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\notin K^{\times 2}, \notin K^{\times 2}$                             | $= c(lpha_2 - lpha_1)(lpha_2)$                                                                   |
| $v(\Delta_G^2)$                                                    | 2r > 0                                                                                                                                                                                             | 2r > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2r > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2r > 0                                                                 | $(3_3), T_{\alpha_2} =$                                                                          |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                               | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left\{ { \equiv r \ (2) } \right.$                                   | $-lpha_3)(lpha_1-eta$                                                                            |
| v(c)                                                               | 0                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                      | $\beta_2)(\alpha_1$                                                                              |
| U                                                                  | $\overbrace{c_v = 4ab,  m_v = 1}^{+} \bigstar_b^+ \bigstar_b^-$                                                                                                                                    | $egin{aligned} & \widehat{uoteta}_a^- & \widehat{uoteta}_b^+ & \widehat{uoteta}_b^- \ & \widehat{uoteta}_b^- & \widehat{uoteta}_b^- \ & \widehat{uoteta}_b^- \ & \widehat{uoteta}_b^- & \widehat{uoteta}_b^- \ & $ | $egin{aligned} &oldsymbol{igodol}^+ igodolmatrix igo$ | $c_v = 2\widetilde{a}\widetilde{2}\widetilde{b}, \hspace{1cm} m_v = 1$ | $T_{lpha_1} = c(lpha_1 - lpha_2)(lpha_1 - eta) \ x 	ext{ and } 	ilde{x} = 1 	ext{ if } 2  eq x.$ |
| Isogeny                                                            | TNIE                                                                                                                                                                                               | TN1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TNIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HINT                                                                   | Notation: $\tilde{x} = 2$ if $2 $ :                                                              |

| TN1           |
|---------------|
| $I_{2a,2b},$  |
| type          |
| of            |
| $\mathbf{IS}$ |
| $\mathcal{O}$ |
| 4.10:         |
| Table         |

|                                                                     |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             | 0                                                                                                                                                      | ~                                                                                                                                                             | ]                                                                                            |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $E_v$                                                               | 1                                                                                                                                                         | $(-1)^{2c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(-1)^{2a+}$                                                                                                                                                                | 1                                                                                                                                                      | $(-1)^{2c}$                                                                                                                                                   |                                                                                              |
| $w_v$                                                               | 1                                                                                                                                                         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             | -1                                                                                                                                                     |                                                                                                                                                               |                                                                                              |
| $\lambda_v$                                                         | 1                                                                                                                                                         | $(-1)^{2a+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(-1)^{2a+2b}$                                                                                                                                                              | -1                                                                                                                                                     | $(-1)^{2a}$                                                                                                                                                   |                                                                                              |
| ŷ                                                                   | $\underbrace{\left( \bullet \bigstar \right)_{2a}^{+} \left( \bullet \bigstar \right)_{2b}^{+} \bigstar \bigstar}_{\hat{c}_{v}} = 16ab,  \hat{m}_{v} = 1$ | $\underbrace{\left( \bullet \bigstar \right)_{2a}^{-} \left( \bullet \bigstar \right)_{2b}^{+} \bigstar \bigstar}_{\hat{c}v} \bullet \underbrace{\left( \bullet \bigstar \right)_{2b}^{+} \bigstar \bigstar}_{\hat{c}v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\underbrace{\left( \bullet \bigstar \right)_{2a}^{-} \left( \bullet \bigstar \right)_{2b}^{-} \bigstar \bigstar}_{\hat{c}_{v}} \bigstar$                                   | $ \widehat{(\mathbf{o} \bigstar)^+_{2a}} \underbrace{(\mathbf{o} \bigstar)_{2a}}_{2a} \bigstar \bigstar_0 $ $ \widehat{c}_v = 4a,  \widehat{m}_v = 1 $ | $\underbrace{\left( \bullet \bigstar \right)_{2a}^{-} \left( \bullet \bigstar \right)_{2a} \bullet \bigstar}_{\hat{c}_{v}} \bullet \underbrace{ \bullet}_{0}$ | $_{1})(lpha_{3}-lpha_{2})(lpha_{3}-eta_{2}),$                                                |
| $(A_1 - B_1)^2$                                                     | $\in K^{\times 2}$                                                                                                                                        | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\in K^{	imes 2}$                                                                                                                                                           | $\notin K^{\times 2}$                                                                                                                                  | $\notin K^{\times 2}$                                                                                                                                         | $(\alpha_1)(\alpha_3 + \alpha_3)$                                                            |
| $T_{lpha_{3}},T_{lpha_{3}}$                                         | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                      | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                  | -, -                                                                                                                                                   | ,  <br>                                                                                                                                                       | $T_{\alpha_3} = c(\alpha_3 -$                                                                |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                           | 0                                                                                                                                                      | 0                                                                                                                                                             | $(2 - \beta_3),$                                                                             |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{smallmatrix} = 0 & (2) \\ 0 \end{smallmatrix} \right.$                                                                                    | $\begin{cases} \equiv 0 \ (2) \\ 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{cases} \equiv 0 \ (2) \\ 0 \end{cases}$                                                                                                                             | $\left\{ \begin{smallmatrix} = 0 \\ 0 \end{smallmatrix} \right. (2)$                                                                                   | $\begin{cases} \equiv 0 \ (2) \\ 0 \end{cases}$                                                                                                               | $(\alpha_2 - \alpha_3)(\alpha_3)$                                                            |
| v(c)                                                                | 0                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                           | 0                                                                                                                                                      | 0                                                                                                                                                             | $+ \alpha_1$                                                                                 |
| C                                                                   | $\underbrace{(\bigstar \bigstar)^+_a(\bigstar \bigstar)^+_b \bullet \bullet}_{c_v = 4ab,  m_v = 1}$                                                       | $\underbrace{\left( \bigstar \bullet \right)^{-}_{a}}_{c_{v}} \underbrace{\left(\bigstar \bullet \right)^{+}_{b}}_{b} \bullet \bullet \underbrace{\left(\bigstar \bullet \right)^{+}_{a}}_{c_{v}} \bullet \underbrace{\left(\bigstar \bullet \right)^{+}_{a}}_{c_{v}} \underbrace{\left(\bigstar \bullet \right)^{+}_{a}}_{c_{v}} \bullet \underbrace{\left(\bigstar \bullet \right)^{+}_{c_{v}}}_{c_{v}} \bullet \underbrace{\left(\bigstar \bullet \right)^{+}_{c_{v}} \bullet \underbrace$ | $\underbrace{\left( \bigstar \bullet \right)_{a}^{-} (\bigstar \bullet)_{b}^{-} \bullet \bullet}_{c_{v} = \widetilde{2}\widetilde{a}\widetilde{2}\widetilde{b},  m_{v} = 1$ | $\overbrace{c_v=2a, \ m_v=1}^{+} \bullet \bullet_a \bullet \bullet_b$                                                                                  | $\overbrace{c_v=2\tilde{a}, m_v=1}^{\overline{} \bullet \bullet}$                                                                                             | $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2)$<br> x and $\tilde{x} = 1$ if $2 \nmid x$ . |
| Isogeny                                                             | TN2A                                                                                                                                                      | TN2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TN2C                                                                                                                                                                        | TN2D                                                                                                                                                   | TN2E                                                                                                                                                          | Notation: $\tilde{x} = 2$ if 2                                                               |

| TN2           |
|---------------|
| $I_{2a,2b},$  |
| type          |
| of            |
| $\mathbf{is}$ |
| $\mathcal{O}$ |
| 4.11:         |
| Table         |

| $E_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(-1)^{2a}$                                                                                                                                                                                                       | $(-1)^{2a+2b}$                                                                                                                                                        | $(-1)^{r}$                                                                                                                                                                                                                                                                                                     | $(-1)^{2a+r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                | 1                                                                                                                                                                     | -1                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(-1)^{2a+1}$                                                                                                                                                                                                     | $(-1)^{2a+2b}$                                                                                                                                                        | (-1) <sup>r+1</sup>                                                                                                                                                                                                                                                                                            | $(-1)^{2a+r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |
| Ç                                                                   | $\widehat{\left( \begin{array}{c} \textcircled{\bullet} \\ \hline \bullet \\ \hline \end{array} \right)_{2a}^{+}}_{c_{v}} \underbrace{\left( \begin{array}{c} \textcircled{\bullet} \\ \hline \bullet \\ \end{array} \right)_{2b}^{+}}_{r} \underbrace{\left( \begin{array}{c} \hline \bullet \\ \end{array} \right)_{2b}^{+}}_{r} \underbrace{\left( \begin{array}{c} \hline \bullet \\ \end{array} \right)_{2b}^{+} \\ \hline \end{array} \right)_{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\widehat{\left( \circ \bigstar \right]_{2a}}_{2a} \left( \circ \checkmark \right)_{2b}^{+} \underbrace{\left( \circ \checkmark \right)_{2b}^{+}}_{\hat{c}_{b}} \right)_{b}$ $\hat{c}_{v} = 8b,  \hat{m}_{v} = 1$ | $\widehat{\left( \bullet \bullet \right)_{2a}}_{\hat{c}v} \left( \bullet \bullet \right)_{2b} \bullet _{r}$ $\widehat{c}_{v} = 4,  \hat{m}_{v} = 1$                   | $\widehat{\left( \begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right)_{2a}}_{\hat{v}_{v}} \left( \begin{array}{c} \bullet \\ \bullet \end{array} \right)_{r} \left( \begin{array}{c} \bullet \\ \bullet \end{array} \right)_{2a} \bullet \\ \hat{v}_{v} \\ \hat{v}_{v} = r + 1 \end{array}$ | $\widehat{\left( \begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right)_{r}} \stackrel{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}{\underset{r}} \overset{\bullet}}{\underset{r}}$ | $_1)(lpha_3-lpha_2)(lpha_3-eta_2),$                                                          |
| $(A_1 - B_1)^2$                                                     | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\in K^{	imes 2}$                                                                                                                                                                                                 | $\in K^{	imes 2}$                                                                                                                                                     | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                          | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(\alpha_1)(\alpha_3 + \alpha_3)$                                                            |
| $T_{lpha_{3}},T_{lpha_{3}}$                                         | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                           | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                            | <br>                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{\alpha_3} = c(\alpha_3 - $                                                               |
| $v(\Delta_G^2)$                                                     | 2r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2r                                                                                                                                                                                                                | 2r                                                                                                                                                                    | 2r                                                                                                                                                                                                                                                                                                             | 2r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $_2-eta_3),$                                                                                 |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                                                                                                                            | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                  | $\left\{ \equiv r \ (2 \\ -r \right.$                                                                                                                                                                                                                                                                          | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(lpha_2-lpha_3)(lpha_3)$                                                                    |
| v(c)                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                 | 0                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+ \alpha_1$                                                                                 |
| C                                                                   | $\left( igoplus_v^+ \left( igoplus_v^+ igoplus_v^+ igoplus_v^+ igoplus_v^+ igoplus_v^- igoplus_v$ | $c_v = \widetilde{2a2b},  m_v = 1$                                                                                                                                                                                | $\overbrace{c_v=\widetilde{2a}\widetilde{b},  m_v=1}^{\left[\bigstar, \bigstar, \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right]}$ | $\overbrace{c_v=2a, \ m_v=1}^{+} \bullet \bullet_0$                                                                                                                                                                                                                                                            | $\underbrace{(\bigstar)^{-}_{a}(\bigstar)^{a}}_{c_{v}} \bullet \bullet \bullet_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2)$<br> x and $\tilde{x} = 1$ if $2 \nmid x$ . |
| Isogeny                                                             | TN2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TN2G                                                                                                                                                                                                              | TN2H                                                                                                                                                                  | TN2I                                                                                                                                                                                                                                                                                                           | TN2J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notation: $\tilde{x} = 2$ if 2                                                               |

Table 4.12: C is of type  $I_{2a,2b}$ , TN2

|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         | 5 <b>* *</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                 |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $E_v$                                                               | 1 (-1) <sup>2a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | $(-1)^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(-1)^{2a+b}$                                                                                                                                                                                                                                                                                 |                                                                                                 |
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                                                                                                      | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                             |                                                                                                 |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(-1)^{2a+1}$                                                                                                                           | $(-1)^{b+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(-1)^{2a+b}$                                                                                                                                                                                                                                                                                 |                                                                                                 |
| ŷ                                                                   | $ \widehat{\left( \begin{array}{c} \bullet \\ \bullet \\ b \end{array} \right)}_{c_{v}}^{\dagger} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a}^{\dagger} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a}^{\dagger} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a} \left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \right)_{2a} \left( \begin{array}{c} \bullet \\ \bullet $ | $\underbrace{\underbrace{\bullet \bullet}_2^+ \left( \bullet \bullet \right)_{2a}^- \bullet \bullet}_{\hat{c}v} \underbrace{\bullet}_0$ | $ \widehat{\left( \bullet \bullet \right)_{2}^{\overline{b}}} \underbrace{\left( \bullet \bullet \right)_{2a}^{\overline{b}} }_{\hat{c}_{a}} \underbrace{\left( \bullet \bullet \bullet \right)_{2a}^{\overline{b}} \bullet }_{\hat{c}_{a}} \underbrace{\left( \bullet \bullet \bullet \right)_{2a}}_{\hat{c}_{a}} \bullet \underbrace{\left( \bullet \bullet \bullet \right)_{2a}}_{\hat{c}_{a}} \underbrace{\left( \bullet \bullet \bullet \right)_{2a}}_{\hat{c}} \underbrace{\left( \bullet \bullet \bullet \right)_{2a}}_{\hat{c}_{a}} \underbrace{\left( \bullet \bullet \bullet \right)_{2a}}_{\hat{c}} \left$ | $ \widehat{ ( \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet} _{0} }_{ \hat{c}_{v}} = 2 \tilde{b},  \hat{m}_{v} = 1 $ | $- \alpha_1)(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3),$                                         |
| $T_{lpha_1},T_{lpha_2}$                                             | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                 | $\in K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                                                                    | $= c(lpha_2 - lpha_1)(lpha_2 + $                                                                |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                             | (3), $T_{\alpha_2} =$                                                                           |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ 0 \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ 0 \end{array} \right.$                                                                      | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ 0 \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ 0 \end{array} \right.$                                                                                                                                                                                                                            | $- lpha_3)(lpha_1 - eta$                                                                        |
| v(c)                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                             | $\beta_2)(\alpha_1$                                                                             |
| C                                                                   | $\underbrace{(\bullet \bullet)^+_a (\bullet \bullet)^+_b (\bullet \bullet)^b}_{c_v = 4ab,  m_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overbrace{c_v=\widetilde{2a}2b,  m_v=1}^{\bullet} \checkmark \bigstar_b^+ \bigstar \bigstar_0$                                        | $egin{array}{c} egin{array}{c} & eta & egin{array}{c} & eta & eta \\ egin{array}{c} ell & eta & eta \\ c_v = 4a, & m_v = 1 \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overbrace{c_v=\widetilde{2a}\widetilde{2b},  m_v=1}^{\bullet} \checkmark \bigstar_0^{-}$                                                                                                                                                                                                    | $T_{lpha_1} = c(lpha_1 - lpha_2)(lpha_1 - ar k \ x 	ext{ and } 	ilde x = 1 	ext{ if } 2  eq x.$ |
| Isogeny                                                             | TN3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TN3B                                                                                                                                    | TN3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TN3D                                                                                                                                                                                                                                                                                          | Notation: $\tilde{x} = 2$ if $2 $ .                                                             |

| TN3          |
|--------------|
| $I_{2a,2b},$ |
| f type       |
| C is of      |
| 4.13: (      |
| Table        |
| $E_v$                                                               | 1                                                                                                                                                                                                                                       | $(-1)^{2a}$                                                                                                                                                                                                                                                                     | $(-1)^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(-1)^{2a+b}$                                                                                                                                                                                                                                           |                                                                                               |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| $w_v$                                                               | 1                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                       |                                                                                               |  |  |  |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                       | $(-1)^{2a+1}$                                                                                                                                                                                                                                                                   | $(-1)^{b+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(-1)^{2a+b}$                                                                                                                                                                                                                                           |                                                                                               |  |  |  |
| ŷ                                                                   | $ \widehat{\left( \underbrace{\bullet \bullet}_{2}^{+} \underbrace{\bullet}_{2}^{+} \underbrace{\bullet \bullet}_{2a}^{+} \bullet \right)}_{ \hat{c}_{v} = 4ab,  \hat{m}_{v} = 1 $                                                      | $ \underbrace{ \left( \bigstar \overset{+}{\bullet} \overset{+}{\overset{-}{2}} \left( \bullet \overset{-}{\bullet} \overset{-}{\bullet} \overset{-}{\bullet} \right) }_{\hat{c}_{v}} \bullet }_{\hat{c}_{v}} \underbrace{ \hat{c}_{v} = 2b,  \hat{m}_{v} = 1 }_{\hat{c}_{v}} $ | $ \underbrace{ \left( \bigstar \bullet \overset{-}{\bullet} \right)^{-}_{2} \left( \bullet \bullet \right)^{+}_{2a} \bullet \bullet }_{\hat{c}v} = 4a\hat{b},  \hat{m}_{v} = 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \widehat{\left( \bigstar \bigstar \right)^{-}_{2}} \underbrace{\left( \bigstar \bigstar \right)^{-}_{2a} \bigstar }_{\hat{c}_{v}} \underbrace{\bullet}_{v} \underbrace{\bullet}_{\hat{c}_{v}} \underbrace{\circ}_{v} = 2\tilde{b},  \hat{m}_{v} = 1 $ | $lpha_1-lpha_3)(lpha_1-eta_3),$                                                               |  |  |  |
| $T_{lpha_3}, T_{lpha_1}$                                            | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                    | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                         | $\in K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                              | = $2c\alpha_1(\alpha_1 - \beta_2)(\alpha_1 - \beta_2)(\alpha_2)$                              |  |  |  |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                       | (2), $T_{\alpha_1} =$                                                                         |  |  |  |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right.$                                                                                                                                                                             | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                                              | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                      | $- lpha_2)(lpha_3 - eta$                                                                      |  |  |  |
| v(c)                                                                | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                       | $(1)(\alpha_3)$                                                                               |  |  |  |
| C                                                                   | $\overbrace{\boldsymbol{c}_v}^+ \bullet \bullet \overbrace{\boldsymbol{b}_v}^+ \bullet \bullet$ | $\widehat{(\bigstar^{+})^{a}}_{c_{v}} \widehat{(\diamond \diamond)}_{b}^{+} \widehat{(\diamond \diamond)}_{b}^{+} \widehat{(\diamond \diamond)}_{b}$                                                                                                                            | $egin{array}{c} \left( egin{array}{c} egin{array}{c} + & egin{array}{c} & egin{array}{c} - & egin{array}{c} & egin{array}{c} - & egin{array}{c} & egin$ | $\overbrace{c_v=2\widetilde{2a},  m_v=1}^{\neg} \bullet \bullet_0^{\neg} \bullet \bullet_0$                                                                                                                                                             | $T_{lpha_3} = c(lpha_3 - lpha_1)(lpha_3 + c \ x 	ext{ and } 	ilde{x} = 1 	ext{ if } 2  eq x.$ |  |  |  |
| Isogeny                                                             | TN4A                                                                                                                                                                                                                                    | TN4B                                                                                                                                                                                                                                                                            | TN4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TN4D                                                                                                                                                                                                                                                    | Notation: $\tilde{x} = 2$ if $2 $ :                                                           |  |  |  |

Table 4.14: C is of type  $I_{2a,2b}$ , TN4

| $E_v$                                                               | 1                                                                                                                                                                                                                      | $(-1)^{a}$                                                                                                                                                                                                   | $(-1)^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(-1)^{a+b}$                                                                                                                                                                                                           |                                                                                                                |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| $w_v$                                                               | 1                                                                                                                                                                                                                      | -1                                                                                                                                                                                                           | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                                                                                                                                                                                                                      |                                                                                                                |  |  |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                      | $(-1)^{a+1}$                                                                                                                                                                                                 | $(-1)^{b+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(-1)^{a+b}$                                                                                                                                                                                                           |                                                                                                                |  |  |
| Ĝ                                                                   | $ \widehat{(\circ \circ)_{\frac{1}{2}}^{+}} \underbrace{(\diamond \circ)_{\frac{3}{2}}^{+}}_{2} \diamond \circ $ | $ \widehat{\left( \bullet \bullet \right)_{\frac{1}{2}}^{+} \left( \bullet \bullet \right)_{\frac{\alpha}{2}}^{-} \bullet \bullet }_{\hat{c}_{v}} $ $ \widehat{c}_{v} = \widehat{a}b,  \widehat{m}_{v} = 1 $ | $ \widehat{\left( \bullet \bullet \right)_{\frac{1}{2}}^{\frac{1}{2}} \left( \bullet \bullet \right)_{\frac{3}{2}}^{\frac{1}{2}} \bullet \bullet } \\ \widehat{c}_v = a \widetilde{b},  \widehat{m}_v = 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \widehat{\left( \bullet \bullet \right)_{\frac{1}{2}}^{\frac{1}{2}} \left( \bullet \bullet \right)_{\frac{3}{2}}^{\frac{1}{2}} \bullet \bullet} \\ \widehat{c}_v = \widetilde{a} \widetilde{b},  \widehat{m}_v = 1 $ | $lpha_3-lpha_2)(lpha_3-eta_3),$                                                                                |  |  |
| $T_{lpha_1}, T_{lpha_3}$                                            | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                   | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                      | $\in K^{	imes 2}, \notin K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                             | $-\alpha_1)(\alpha_3+\alpha_1)(\overline{\alpha})$                                                             |  |  |
| $v(\Delta_G^2)$                                                     | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                      | $= c(\alpha_3 - \alpha_3)$                                                                                     |  |  |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                        | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                              | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left\{ \begin{bmatrix} \equiv 0 & (2) \\ - & \end{array} \right.$                                                                                                                                                    | $(lpha_1-eta_3),T_{lpha_3}$                                                                                    |  |  |
| v(c)                                                                | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                      | $-\alpha_3)$                                                                                                   |  |  |
| C                                                                   | $egin{pmatrix} egin{pmatrix} egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                         | $egin{pmatrix} egin{pmatrix} egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                               | $egin{pmatrix} egin{pmatrix} eta & eta \ eta & eta \ \end{pmatrix}_a^+ egin{pmatrix} eta & eta \ ebee \ eta \ ebee \ eta \ ebee \ ebee \ ebee \ eta \ ebee \ eebee \ $ | $\overbrace{c_v=4, \ m_v=1}^{-} (\clubsuit \blacklozenge)_{b}^{-} \bullet \bigstar_{0}$                                                                                                                                | $\overline{T_{\alpha_1} = c2\alpha_1(\alpha_1 - \beta_2)(\alpha_1)}$<br>x and $\tilde{x} = 1$ if $2 \nmid x$ . |  |  |
| Isogeny                                                             | TN5A                                                                                                                                                                                                                   | TN5B                                                                                                                                                                                                         | TN5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TN5D                                                                                                                                                                                                                   | Notation: $\tilde{x} = 2$ if $2 $ :                                                                            |  |  |

| TN5          |
|--------------|
| $I_{2a,2b},$ |
| of type      |
| C is $c$     |
| 4.15:        |
| Table        |

| · · · · · ·                                                        | []                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [                                                                                                                                                                  | 1                                                                                                              |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $E_v$                                                              | 1                                                                                                                                                        | $(-1)^{a}$                                                                                                                          | $(-1)^{a+b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(-1)^{a}$                                                                                                                                                         |                                                                                                                |
| $w_v$                                                              | 1                                                                                                                                                        | -1                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                  |                                                                                                                |
| $\lambda_v$                                                        | 1                                                                                                                                                        | $(-1)^{a+1}$                                                                                                                        | $(-1)^{a+b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(-1)^{a}$                                                                                                                                                         | -                                                                                                              |
| Ĉ                                                                  | $ \widehat{(\bigstar \bigstar)^{+}_{\frac{3}{2}}}(\bigstar \bigstar)^{+}_{\frac{3}{2}} \bullet \bullet ) \\ \widehat{c}_{v} = ab,  \widehat{m}_{v} = 1 $ | $ \widehat{(\bigstar \bigstar)_2^-} (\bigstar \bigstar)_2^+ \bullet \bullet ] \\ \widehat{c}_v = \widehat{a}b,  \widehat{m}_v = 1 $ | $ \widehat{(\bigstar \bigstar)^{-}_{\frac{3}{2}}} \underbrace{(\bigstar \bigstar)^{-}_{\frac{3}{2}} \bullet}_{\hat{\mathcal{O}}_{v}} \bullet \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet}_{\hat{\mathcal{O}}_{v}} \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet}_{\hat{\mathcal{O}}_{v}} \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet}_{\hat{\mathcal{O}}_{v}} \bullet \bullet \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet}_{\hat{\mathcal{O}}_{v}} \bullet \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet}_{\hat{\mathcal{O}}_{v}} \bullet \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet \underbrace{(\bigstar \bigstar)^{-}_{\hat{\mathcal{O}}_{v}} \bullet}_{\mathcal{O$ | $ \widehat{\left( \bigstar \bigstar \right)^{+}_{\frac{3}{2}}} (\bigstar \bigstar \right)_{\frac{3}{2}} \bullet \bullet 0 \\ \widehat{c}_{v} = a,  \widehat{m}_{v} = 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widehat{\left(\bigstar \bigstar\right)}_{2}^{-} (\bigstar \blacklozenge\right)_{2}^{-} \bullet \bullet \\ \widehat{c}_{v} = \widetilde{a},  \widehat{m}_{v} = 1$ | $\beta_2)(-lpha_1-eta_3),$                                                                                     |
| $(A_2 - A_3)^2$                                                    | $\in K^{	imes 2}$                                                                                                                                        | $\in K^{	imes 2}$                                                                                                                   | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\notin K^{\times 2}$                                                                                                                                              | $(\alpha_2)(-\alpha_1 - \alpha_1)$                                                                             |
| $T_{\alpha_1}, T_{-\alpha_1}$                                      | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                     | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                             | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,<br>                                                                                                                                                              | $-2c\alpha_1(-\alpha_1-\alpha_1)$                                                                              |
| $v(\Delta_G^2)$                                                    | 0                                                                                                                                                        | 0                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                  | $T_{-\alpha_1} =$                                                                                              |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \begin{smallmatrix} \equiv 0 & (2) \\ - \end{smallmatrix} \right.$                                                                              | $\left\{ \begin{smallmatrix} \equiv 0 \\ - \end{smallmatrix} \right. (2)$                                                           | $\left\{ \begin{smallmatrix} \equiv 0 \\ - \end{smallmatrix} \right. (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left\{ \begin{smallmatrix} \equiv 0 \\ - \end{smallmatrix} \right. (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left\{ \begin{smallmatrix} \equiv 0 \\ - \end{smallmatrix} \right. (2)$                                                                                          | $(\beta_2)(lpha_1-eta_3),$                                                                                     |
| v(c)                                                               | 0                                                                                                                                                        | 0                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                  | $\alpha_1 - \alpha_1$                                                                                          |
| C                                                                  | $\overbrace{c_v=4ab, \ m_v=1}^{\bullet} \bullet \bullet \bullet_b^+ \bullet \bullet_b$                                                                   | $\overbrace{c_v=4b,  m_v=1}^{\bullet\bullet^+} \bullet \bigstar_0$                                                                  | $egin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ c_v = 4,  m_v = 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $egin{array}{c} lacksymbol{ightarrow}^+_a lacksymbol{ightarrow} lacksymbol{ightarrow}^+_a lacksymbol{ightarrow} lacksymbol{ightarrow}_a lacksymbol{ightarrow} lacksymbol{ightarrow}_a lacksymbol{ightarrow}_a lacksymbol{ightarrow} lacksymbol{ightarrow}_a lacksymbol{ightarrow} lacksymbol{ightarrow}_a lacksymbol{ightarrow} lacksymbol{ightarrow}_a lacksymbol{ightarrow} lacksymbol{ightarrow}_a lacksymbol{ightarrow} lacksymbol{etarrow} lacksymbol{ightarrow} lacksymbol{etarrow} lacksymbol{etarr$ | $\overbrace{c_v=2, \ m_v=1}^{\bullet}, \bullet \bigstar_0$                                                                                                         | $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \alpha_3)(\frac{1}{x} \text{ and } \tilde{x} = 1 \text{ if } 2 \nmid x.$ |
| Isogeny                                                            | TN6A                                                                                                                                                     | TN6B                                                                                                                                | TN6C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TN6D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN6E                                                                                                                                                               | Notation: $\tilde{x} = 2$ if 2                                                                                 |

Table 4.16: C is of type  $I_{2a,2b}$ , TN6

| $E_v$                                                               | 1                                                                                                                                                                                                                                 | $(-1)^{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(-1)^{a+b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(-1)^{a+b}$                                                                                                                                                                                                                                                                                          |                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| $w_v$                                                               | 1                                                                                                                                                                                                                                 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                     |                                             |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                 | $(-1)^{2a+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(-1)^{a+b+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(-1)^{a+b}$                                                                                                                                                                                                                                                                                          |                                             |
| Ĉ                                                                   | $ \widehat{(\boldsymbol{\diamond} \boldsymbol{\star})}_{a} ( \boldsymbol{\diamond} \boldsymbol{\star})_{a} ( \boldsymbol{\bullet} \boldsymbol{\bullet})_{\frac{1}{2}} )_{0}^{+} $ $ \widehat{c}_{v} = 4ab,  \widehat{m}_{v} = 1 $ | $\underbrace{\left( \bigstar _{a}}^{} \underbrace{\left( \bigstar _{a}}^{} \bigstar _{a} \underbrace{\diamond \bigstar }_{a} \underbrace{\bullet \bullet }_{b} \underbrace{\bullet \bullet }_{\frac{1}{2}} \right)_{0}^{+}}_{\hat{c}_{v}} = 2b,  \hat{m}_{v} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\widehat{(\mathbf{O}_{v} \bullet \mathbf{A}_{a} \bullet \mathbf{O}_{a})} \underbrace{(\mathbf{O}_{v} \bullet \mathbf{A}_{a} \bullet \mathbf{O}_{a})}_{\hat{\mathcal{O}}_{v}} \underbrace{(\mathbf{O}_{v} \bullet \mathbf{A}_{a} \bullet \mathbf{O}_{v})}_{\hat{\mathcal{O}}_{v}} \underbrace{(\mathbf{O}_{v} \bullet \mathbf{A}_{v})}_{\hat{\mathcal{O}}_{v}} \underbrace{(\mathbf{O}_{v} \bullet \mathbf{A}_{v})}_{\hat{\mathcal{O}}_{v$ | $\underbrace{\left( \underbrace{\diamondsuit}_{a} & \underbrace{\diamondsuit}_{a} & \underbrace{\diamondsuit}_{a} & \underbrace{\circlearrowright}_{a} & \underbrace{\circlearrowright}_{b} \\ \hat{c}_{v} = \underbrace{4ab/D}_{n} \cdot \tilde{D}, \\ \hat{m}_{v} = b + a + 1 \end{aligned}\right)$ | $(\beta_3 - \alpha_3)(\beta_3 - \alpha_3).$ |
| $(A_2 - B_2)^2$                                                     | $\in K^{\times 2}$                                                                                                                                                                                                                | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\notin K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                     | $(1)(\beta_0 + \alpha_1)$                   |
| $T_{lpha_2}, T_{eta_2}$                                             | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                              | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\in K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\notin K^{	imes 2}, \notin K^{	imes 2}$                                                                                                                                                                                                                                                              | $T_{a_1} = c(\beta_a - \alpha)$             |
| $v(\Delta_G^2)$                                                     | 2a                                                                                                                                                                                                                                | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a                                                                                                                                                                                                                                                                                                    | - 3                                         |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ 0 \end{array} \right.$                                                                                                                                                                | $\left\{ \begin{bmatrix} = 0 & (2) \\ 0 \end{bmatrix} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left\{ \begin{bmatrix} = 0 & (2) \\ 0 \end{bmatrix} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left\{ \begin{matrix} \equiv 0 \\ 0 \end{matrix} \right. $                                                                                                                                                                                                                                          | $(\alpha_0 - \beta_0)(\alpha_0)$            |
| v(c)                                                                | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                     | ( <sup>1</sup> 0 +                          |
| C                                                                   | $\underbrace{(\bigstar \bigstar_a^+ \bigstar_b^+ \bigstar_b^+ \bullet \bullet)}_{c_v = 4ab,  m_v = 1}$                                                                                                                            | $egin{pmatrix} egin{pmatrix} lacksymbol{\circ} & eta \end{pmatrix}_a^- egin{pmatrix} lacksymbol{\circ} & eta \end{pmatrix}_b^+ ello & eta \end{pmatrix}_b^+ ello & eta \end{pmatrix}_b^- eta & eta & eta \end{pmatrix}_b^- eta & eta \end{pmatrix}_b^- eta & eta \end{pmatrix}_b^- eta & eta \end{pmatrix}_b^- eta & eta & eta \end{pmatrix}_b^- eta & eta & eta \end{pmatrix}_b^- eta & eta & eta & eta & eta & eta \end{pmatrix}_b^- eta & eta $ | $egin{array}{c} egin{array}{c} + & egin{ar$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                    | $T_{22} = c(\alpha_2 - \alpha_1)(\alpha_2)$ |
| Isogeny                                                             | $\operatorname{TN7A}_{a < b}$                                                                                                                                                                                                     | TN7B $a < b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\text{TN7C}}{a < b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d > b $a < b$                                                                                                                                                                                                                                                                                         | Votation:                                   |

| 1N7          |
|--------------|
| $I_{2a,2b},$ |
| type         |
| of           |
| .51          |
| 0            |
| 4.17:        |
| Table        |

69

Notation:  $T_{\alpha 2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \rho_2)(\alpha_2 - \beta_2)$  $\tilde{x} = 2$  if 2|x and  $\tilde{x} = 1$  if  $2 \nmid x$ , D = gcd(2a, b - a).

|                                                                    |                                                                                                                                                                                                                                                     |                                                                                                                                                 |                                                                                                                                                | 0                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $E_v$                                                              | -                                                                                                                                                                                                                                                   | $(-1)^{2a}$                                                                                                                                     | -                                                                                                                                              | $(-1)^{2a}$                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| $w_v$                                                              | 1                                                                                                                                                                                                                                                   | -1                                                                                                                                              | 1                                                                                                                                              | -1                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| $\lambda_v$                                                        | 1                                                                                                                                                                                                                                                   | $(-1)^{2a+1}$                                                                                                                                   | 1                                                                                                                                              | $(-1)^{2a+1}$                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| ŷ                                                                  | $ \widehat{\left( \diamondsuit \mathbf{A} \right)^{\!\!+}_{a}} \left( \diamondsuit \mathbf{A} \right)^{\!\!+}_{a} \left( \diamondsuit \mathbf{A} \right)^{\!\!+}_{a} \bullet \bullet \mathbf{O} \\ \widehat{c}_{v} = 4a^{2},  \widehat{m}_{v} = 1 $ | $\widehat{(\diamondsuit \bigstar_n^+ (\diamondsuit \bigstar_n^- \bullet \bullet)}_0 \bullet \bullet ]$ $\widehat{c}_v = 2a,  \widehat{m}_v = 1$ | $\widehat{\left( \diamondsuit \bigstar_a^- \left( \diamondsuit \bigstar_a^- \bullet \bullet \right) \right)}_{\hat{c}_v = c_v,  \hat{m}_v = 1$ | $ \widehat{\left( \diamondsuit \bigstar_a^- \left( \diamondsuit \bigstar_a^+ \bullet \bullet \right) \right)}^{-} \widehat{c}_v = 2a\widetilde{a},  \widehat{m}_v = 1 $ | $\begin{split} & \overbrace{\hat{c}_v = \hat{2}\tilde{a},  \hat{m}_v = 1}^{\overbrace{\bullet} \bullet \underbrace{\bullet}_a \bullet \bullet} \\ & \widehat{c}_v = \hat{2}\tilde{a},  \hat{m}_v = 1 \\ & \beta_2 - \alpha_2)(\beta_2 - \alpha_3), \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| $(A_2 - B_2)^2$                                                    | $\in K^{\times 2}$                                                                                                                                                                                                                                  | $\notin K^{\times 2}$                                                                                                                           | $\in K^{\times 2}$                                                                                                                             | $\in K^{\times 2}$                                                                                                                                                      | $\notin K^{\times 2}$ $(\beta_2 + \alpha_1)(\beta_2 + \alpha_1)(\beta_2 + \alpha_2)(\beta_2 + \alpha_2)(\beta_2)(\beta_2)(\beta_2)(\beta_2)(\beta_2)(\beta_2)($ |                                         |
| $T_{lpha_2}, T_{eta_2}$                                            | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                         | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                     | <br>                                                                                                                                                                    | $-, eta_2=c(eta_2-lpha_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| $v(\Delta_G^2)$                                                    | 2a                                                                                                                                                                                                                                                  | 2a                                                                                                                                              | 2a                                                                                                                                             | 2a                                                                                                                                                                      | 2a<br>- $\beta_3$ ), $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\begin{cases} \equiv 0 \ (2) \\ 0 \ (2) \end{cases}$                                                                                                                                                                                               | $\begin{cases} \equiv 0 \ (2) \\ 0 \ (2) \end{cases}$                                                                                           | $\begin{cases} \equiv 0 \ (2) \\ 0 \ (2) \end{cases}$                                                                                          | $\begin{cases} \equiv 0 \ (2) \\ 0 \ (2) \end{cases}$                                                                                                                   | $\begin{cases} \equiv 0 \ (2) \\ 0 \ (2) \\ \alpha_2 - \beta_2) (\alpha_2 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| v(c)                                                               | 0                                                                                                                                                                                                                                                   | 0                                                                                                                                               | 0                                                                                                                                              | 0                                                                                                                                                                       | $0 \\ + \alpha_1)($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| C                                                                  | $\overbrace{c_v=4a^2,  m_v=1}^{+} \bullet \bullet_0^{-}$                                                                                                                                                                                            | $\overbrace{c_v}^{\bullet} = 2\widetilde{a}a,  m_v = 1$                                                                                         | $c_v = \widetilde{2\widetilde{2a}}_a^{-} ( \bigstar \mathbb{A}_a^{-} \bullet \bullet )_a $                                                     | $\overbrace{c_v=2a, \ m_v=1}^{+} \bullet \bullet_0$                                                                                                                     | $\begin{array}{c c} & & & & \\ \hline & & & \\ \hline & & \\ c_v = \tilde{2a}, & m_v = 1 \\ T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 - \alpha_2) \\ \hline & & \\ c_{\alpha 2} = c(\alpha_2 - \alpha_1)(\alpha_2 - \alpha_2) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ x $ and $x = 1$ if $z \downarrow x$ . |
| Isogeny                                                            | TN7E                                                                                                                                                                                                                                                | TN7F                                                                                                                                            | TN7G                                                                                                                                           | H7NT                                                                                                                                                                    | TN71<br>Notation:<br>$\tilde{m} = 0$ if $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\tau = \tau = x$                       |

Table 4.18: C is of type  $I_{2a,2a}$ , TN7

| $E_v$                                                              | 1                                                    | $(-1)^{2a+r}$                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(-1)^{2a}$                                                               | $(-1)^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |
|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $w_v$                                                              | 1                                                    | -1                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
| $\lambda_v$                                                        | 1                                                    | $(-1)^{2a+r+1}$                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(-1)^{2a+1}$                                                             | (-1) <sup>r</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |
| Ç                                                                  | $ \hat{c}_v = 4a^2,  \hat{m}_v = 1 $                 | $\hat{c}_v = 2a,  \hat{m}_v = r+1$                                     | $\widehat{\left( \underbrace{\bigstar}_{n} \bullet \underbrace{\bigstar}_{n} \right)}_{\hat{c}_{v} = c_{v},  \hat{m}_{v} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \hat{c}_v = 2a\hat{a}, \hat{n}_v = 1 $                                  | $\hat{c}_{v} = \tilde{2}\hat{a},  \hat{m}_{v} = r + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $)(D_{2} - \alpha_{2})(D_{2} - \alpha_{3}),$                                                                |
| $(A_2 - B_2)^2$                                                    | $\in K^{	imes 2}$                                    | $\notin K^{\times 2}$                                                  | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\in K^{	imes 2}$                                                         | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $x_1$ )( $p_2 + \alpha_1$                                                                                   |
| $T_{lpha_2}, T_{eta_2}$                                            | $\in K^{\times 2}, \in K^{\times 2}$                 | $\notin K^{\times 2}, \in K^{\times 2}$                                | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -,                                                                        | -, -<br>-, -<br>, -<br>, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $I\beta_2 = c(p_2 - c$                                                                                      |
| $v(\Delta_G^2)$                                                    | 2r + 2a $r > 0$                                      | 2r + 2a $r > 0$                                                        | 2r + 2a $r > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2r + 2a $r > 0$                                                           | $\begin{bmatrix} 2r + 2a \\ r > 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2 — D3),                                                                                                   |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$ | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                   | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                      | $\begin{cases} \equiv r \ (2) \\ -r \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\eta(\alpha_2 - \mu_2)(\alpha_1)$                                                                          |
| v(c)                                                               | 0                                                    | 0                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\alpha_1$                                                                                                  |
| C                                                                  | $\overbrace{c_v=4a^2,  m_v=1}^{+} \bullet \bullet_0$ | $\overbrace{c_v=2\tilde{a}a, \ m_v=1}^{\bullet} \bullet \bullet_0^{+}$ | $\underbrace{(\bigstar \bigstar)^{-}}_{c_v} \underbrace{(\bigstar \bigstar)^{-}}_{c_v} \bullet (\bigstar \bigstar)^{$ | $\overbrace{c_v=2a, \ m_v=1}^{+} \bullet \bullet_{a} \bullet \bullet_{0}$ | $\underbrace{\left( \blacklozenge \bigstar_{a}^{-}(\diamondsuit \blacklozenge_{a}) \bullet \bullet \right)}_{c_{v} = 2\tilde{a}, m_{v} = 1} \bullet \underbrace{\left( \diamondsuit \bigstar_{a} \bullet \bullet \right)}_{c_{v} = 2\tilde{a}, m_{v} = 1} \bullet \left( \circlearrowright \circlearrowright$ | $\therefore \iota_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2)$<br> x and $\tilde{x} = 1$ if $2 \nmid x$ . |
| Isogeny                                                            | ſ2NT                                                 | TN7K                                                                   | TN7L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TN7M                                                                      | N7NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\tilde{x} = 2$ if 2                                                                                        |

Table 4.19: C is of type  $I_{2a,2a}$ , TN7

| $E_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(-1)^{a+b}$                                                                                                       | $(-1)^{a+b}$                                                                                                                                                                                                                                          |                                                                                            |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                                                                                                                 | 1                                                                                                                                                                                                                                                     |                                                                                            |  |  |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(-1)^{a+b+1}$                                                                                                     | $(-1)^{a+b}$                                                                                                                                                                                                                                          |                                                                                            |  |  |
| Ĉ                                                                   | $\underbrace{\left( \bullet \bullet \right)}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)}_{\hat{m}_v} \underbrace{\left( \bullet \bullet \right)}_{\hat{m}_v$ | $\underbrace{\underbrace{(\bullet \diamond)}_{a} \bullet \diamond}_{\hat{c}v} \underbrace{(\bullet \diamond)}_{a} \underbrace{(\bullet \diamond)}_{a} \underbrace{(\bullet \diamond)}_{a} \underbrace{(\bullet \diamond)}_{\hat{c}v} \underbrace{(\bullet \bullet)}_{\hat{c}v} (\bullet $ | $\left( \bullet \bullet_a \bullet_a \bullet \bullet_a \bullet_a \bullet_a \bullet_a \bullet_a \bullet_a \bullet_a$ | $\widehat{(\bullet \bullet)_a} \underbrace{(\bullet \bullet)_a}_{\hat{O}_a} \underbrace{(\bullet \bullet)_a}_{\hat{O}_a} \underbrace{(\bullet \bullet)_{\hat{D}_a}}_{\hat{O}_a}$ $\widehat{c}_v = \underline{4a^2/D} \cdot \tilde{D},  \hat{m}_v = 1$ | $-lpha_3)(-lpha_1-eta_3),$                                                                 |  |  |
| $(A_1 - B_1)^2$                                                     | $\in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\notin K^{	imes 2}$                                                                                               | $\in K^{	imes 2}$                                                                                                                                                                                                                                     | $-\alpha_2)(-\alpha_1$                                                                     |  |  |
| $T_{\alpha_1}, T_{-\alpha_1}$                                       | $\in K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\in K^{\times 2}, \notin K^{\times 2}$                                                                            | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                                                                                            | $= -2c\alpha_1(-\alpha_1)$                                                                 |  |  |
| $v(\Delta_G^2)$                                                     | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2a                                                                                                                 | 2a                                                                                                                                                                                                                                                    | $, T_{-\alpha_1}$                                                                          |  |  |
| $\left\{ \begin{array}{l} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                 | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                    | $lpha_3)(lpha_1-eta_3)$ = $gcd(2a,b-$                                                      |  |  |
| v(c)                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                  | 0                                                                                                                                                                                                                                                     | D = D                                                                                      |  |  |
| C                                                                   | $\underbrace{(\bullet \blacklozenge)^+_a (\bullet \diamondsuit)^+_b \bigstar}_{c_0} = 4ab,  m_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overbrace{\boldsymbol{c}_v=4b,}^{-} \overbrace{\boldsymbol{o} \diamondsuit_b^+}^+ \bigstar_b^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\overbrace{c_v=4a,  m_v=1}^{+} \bullet \bullet_0^{-} \bullet \bullet_0$                                           | $\underbrace{(\bullet \bullet)^a \bullet \bullet)^b \bullet \bullet}_{c_v = 4,  m_v = 1$                                                                                                                                                              | $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \beta_2)$<br> x and $\tilde{x} = 1$ if $2 \nmid x$ , |  |  |
| Isogeny                                                             | TN8A $a < b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TN8B $a < b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TN8C $a < b$                                                                                                       | $\begin{array}{l} \text{TN8D} \\ a < b \end{array}$                                                                                                                                                                                                   | Notation:<br>$\tilde{x} = 2$ if 2                                                          |  |  |

Table 4.20: C is of type  $I_{2a,2b}$ , TN8

| ц<br>°                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                      | 0                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| ww j                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1-                                                                                                                                                   | 1                                                                                                                                                                    | -1                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |
| $\lambda_v = i$                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | 1                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |
| ŷ                                                                  | $\widehat{(\bullet \bullet)}_a^+ (\bullet \bullet)_a^+ \bullet \bullet \\ \widehat{c}_v = 4a^2,  \widehat{m}_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\widehat{(ullet ullet)_a^+} = \widehat{(ullet ullet)_a^+} = \widehat{(ullet ullet)_a^+} = \widehat{(ullet ullet)_a^+} = \widehat{(ullet ullet)_a^+}$ | $\widehat{\left(ulletullet ight)}^{-}_{v} \left(ulletulletullet ight)^{-}_{a} \left(ulletulletulletullet ight)^{-}_{a}  arrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | $\widehat{\left( ullet ullet  ight) }^{-}_{a} \left( ullet ullet  ight) ^{+}_{a} ullet ullet  ight) ^{+}_{a} ullet ullet  ight) ^{-}_{a}$ $\hat{c}_{v} = 4a,  \hat{m}_{v} = 1$ | $\widehat{(\bullet \bullet)^a \bullet \bullet_a} \bullet 4_0$ $\widehat{c}_v = 2,  \widehat{m}_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-\alpha_1 - \beta_3),$                                                                                |
| $(A_1 - B_1)^2$                                                    | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\notin K^{\times 2}$                                                                                                                                 | $\in K^{	imes 2}$                                                                                                                                                    | $\in K^{	imes 2}$                                                                                                                                                              | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(-\alpha_1 - \alpha_3)($                                                                              |
| $T_{lpha_1}, T_{-lpha_1}$                                          | $\in K^{	imes 2}, \in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                               | $\notin K^{\times 2},\notin K^{\times 2}$                                                                                                                            | -, -                                                                                                                                                                           | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $c\alpha_1(-\alpha_1-\alpha_2)$                                                                        |
| $v(\Delta_G^2)$                                                    | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2a                                                                                                                                                    | 2a                                                                                                                                                                   | 2a                                                                                                                                                                             | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-\alpha_1 = -2$                                                                                       |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right. (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right. (2)$                                                                                       | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right.$                                                                                                          | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right.$                                                                                                                    | $\left\{ \begin{smallmatrix} \equiv 0 & (2) \\ - \end{smallmatrix} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(lpha_1-eta_3),T$ $d(2a,b-a).$                                                                        |
| v(c)                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                     | 0                                                                                                                                                                    | 0                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0 = \frac{1}{g_0}$                                                                                    |
| C                                                                  | $egin{array}{c} lacksymbol{\circ}^+ lacksymbol{\circ}^+ lacksymbol{\circ}^+ lacksymbol{\circ}^+ lacksymbol{\circ}^+ lacksymbol{\circ}^- lacksymbol{\circ}^+ lacksymbol{\circ}^- lack$ | $\underbrace{\left( \bullet \bullet \right)_a^- \left( \bullet \bullet \right)_a^+ }_{c_v} \bullet \bullet \right)_a$                                 | $\underbrace{\left( \bullet \bullet \right)_a^- \left( \bullet \bullet \bullet \right)_a^- \bullet \bullet }_{c_v = 4,  m_v = 1$                                     | $\overbrace{c_v=2a,  m_v=1}^{\bullet} \textcircled{\bullet}_a \bigstar$                                                                                                        | $egin{array}{c} lacksymbol{igstarrow}^{-} lacksymbol{igstarrow}^{-} lacksymbol{igstarrow}^{-} lacksymbol{igstarrow}^{+} lacksymbol{igstarrow}^{+} lacksymbol{igstarrow}^{-} lacksymbol{igstarrow}^{+} lacksymbol{$ | $T_{lpha_1} = 2c lpha_1 (lpha_1 - eta_2) (lpha_1) \ x 	ext{ and } 	ilde{x} = 1 	ext{ if } 2  eq x,  1$ |
| Isogeny                                                            | TN8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN8F                                                                                                                                                  | TN8G                                                                                                                                                                 | H8NT                                                                                                                                                                           | IN8I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notation: $\tilde{v} = 2$ if 2.                                                                        |

Table 4.21: C is of type  $I_{2a,2a}$ , TN8

| $E_v$                                                               | 1                                                                                                               | $(-1)^{r}$                                                                                                                                              | 1                                                                                                                                                                             | 1                                                                                                                                                                            | $(-1)^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $w_v$                                                               | 1                                                                                                               | -1                                                                                                                                                      | 1                                                                                                                                                                             | -1                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| $\lambda_v$                                                         | 1                                                                                                               | (-1) <sup>r+1</sup>                                                                                                                                     | 1                                                                                                                                                                             | -1                                                                                                                                                                           | (-1) <sup>r</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| Ĉ                                                                   | $ \hat{c}_v = 4a^2,  \hat{m}_v = 1 $                                                                            | $ \widehat{\left( \bullet \bullet \right)}^+_a \bullet \left( \bullet \bullet \right)_a \bullet \\ \widehat{c}_v = 2a,  \widehat{m}_v = \widehat{r+1} $ | $\widehat{\left( \bullet \bullet \right)}^{-} \clubsuit \left( \bullet \bullet \right)^{-} \left( \bullet \bullet \right)^{-} \bullet \\ \widehat{c}_v = c_v,  \hat{m}_v = 1$ | $\hat{oxed{(\circ \diamond)}}_a^+$ $\hat{oxed{(\circ \diamond)}}_a^+$ $\hat{oxed{(\circ \diamond)}}_a^+$ $\hat{oxed{(\circ \diamond)}}_n^+$ $\hat{c}_v = 4a,  \hat{m}_v = 1$ | $(\overbrace{b}^{\circ}, \overbrace{b}^{\circ}, \overbrace{b}^{\circ}, \overbrace{c}^{\circ}, c$ |             |
| $(A_1 - B_1)^2$                                                     | $\in K^{\times 2}$                                                                                              | $\notin K^{\times 2}$                                                                                                                                   | $\in K^{\times 2}$                                                                                                                                                            | $\in K^{\times 2}$                                                                                                                                                           | $\notin K^{\times 2}$ $\neq X^{2} (-\alpha_1 - \alpha_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| $T_{\alpha_1}, T_{-\alpha_1}$                                       | $\in K^{\times 2}, \in K^{\times 2}$                                                                            | $\notin K^{\times 2}, \in K^{\times 2}$                                                                                                                 | $\notin K^{\times 2}, \notin K^{\times 2}$                                                                                                                                    | -,                                                                                                                                                                           | $^{-,-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $v(\Delta_G^2)$                                                     | 2r + 2a $r > 0$                                                                                                 | 2r + 2a $r > 0$                                                                                                                                         | 2r + 2a $r > 0$                                                                                                                                                               | 2r + 2a $r > 0$                                                                                                                                                              | $\begin{array}{c} 2r + 2a \\ r > 0 \\ T - \alpha_1 = - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                          | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                                                                  | $\left\{ \equiv r  (2) \\ -r  \right.$                                                                                                                                        | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                                                                                       | $\begin{cases} \equiv r  (2) \\ -r \\ \chi_3)(\alpha_1 - \beta_3), \\ \alpha_2 \alpha_1(\beta_2, \beta_2 - \alpha_3), \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ycu(∠u, v u |
| v(c)                                                                | 0                                                                                                               | 0                                                                                                                                                       | 0                                                                                                                                                                             | 0                                                                                                                                                                            | $\begin{bmatrix} \alpha_1 \\ -\alpha_2 \end{bmatrix} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ר<br>ו      |
| C                                                                   | $\left( \bullet \bullet \right)_a^+ \left( \bullet \bullet \right)_a^+ \bullet \bullet \\ c_v = 4a^2,  m_v = 1$ | $\left( ullet ullet  ight)_a^- \left( ullet ullet  ight)_a^+ \clubsuit ullet  ight)_a$                                                                  | $\underbrace{\left( \bullet \bigstar \right)_a^- \left( \bullet \bigstar \right)_a^- \bigstar \bigstar}_{c_v = 4,  m_v = 1$                                                   | $\overbrace{c_v=2a,  m_v=1}^{+} \bullet \bullet \Biggr)_a \bigstar \bullet \bullet \Biggr)$                                                                                  | $egin{array}{c} \left(ullet ullet  ight)_n^n \left(ullet ullet  ight)_n^n \left(ullet ullet ullet  ight)_n^n \left(ullet ullet ullet  ight)_n^n \left(ullet ullet ullet ullet  ight)_n^n \left(ullet ullet $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x   = 1     |
| Isogeny                                                             | TN8J                                                                                                            | TN8K                                                                                                                                                    | TN8L                                                                                                                                                                          | TN8M                                                                                                                                                                         | TN8N<br>Notation:<br>$\tilde{m} = 0$ if $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 II 7 — 7  |

Table 4.22: C is of type  $I_{2a,2a}$ , TN8

| $E_v$                                                              | 1                                                                                                                                                         | $(-1)^N$                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(-1)^{2a}$                                                                                                                                                                  |                                                |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| $w_v$                                                              | 1                                                                                                                                                         | 1                                                                                                                                                                      | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1                                                                                                                                                                           |                                                |  |  |  |
| $\lambda_v$                                                        | 1                                                                                                                                                         | $(-1)^N$                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(-1)^{2a+1}$                                                                                                                                                                |                                                |  |  |  |
| Ĉ                                                                  | $ \underbrace{ \left( \bigstar \bigstar_a  \textcircled{\bullet} \bigstar_b  \textcircled{\bullet} \bigstar_n \right)}_{ \hat{c}_v = 4N,  \hat{m}_v = 1 $ | $ \underbrace{\left( \bigstar \bigstar_{2a} \left( \bullet \bigstar_{2b} \left( \bullet \bigstar_{2n} \right) \right)}_{ \hat{c}_v = 4,  \hat{m}_v = 1 } \right)^{-} $ | $ \widehat{\left( \blacklozenge \bigstar_{2a} \bullet \bigstar_{2b} \bullet \bigstar_{2b} \bullet \blacklozenge_{2b} \right)}^{+}_{0}$ $ \widehat{c}_{v} = 4b + 8a,  \widehat{m}_{v} = 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\widehat{\left( \bigstar_{2a} \bigstar_{2b} \bigstar_{2b} \bigstar_{2b} \bigstar_{2b} \right)}^{c}$ $\widehat{c}_{v} = 4b,  \widehat{m}_{v} = 1$                            |                                                |  |  |  |
| $(A_1 - B_1)^2$                                                    | $\in K^{	imes 2}$                                                                                                                                         | $\in K^{	imes 2}$                                                                                                                                                      | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\notin K^{\times 2}$                                                                                                                                                        |                                                |  |  |  |
| с                                                                  | $\in K^{\times 2}$                                                                                                                                        | $\notin K^{\times 2}$                                                                                                                                                  | $\in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\notin K^{	imes 2}$                                                                                                                                                         |                                                |  |  |  |
| $v(\Delta_G^2)$                                                    | 0                                                                                                                                                         | 0                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                            |                                                |  |  |  |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | 0 }                                                                                                                                                       | 0 }                                                                                                                                                                    | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 }                                                                                                                                                                          |                                                |  |  |  |
| v(c)                                                               | 0                                                                                                                                                         | 0                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                            | $[2 \nmid x]$                                  |  |  |  |
| С                                                                  | $\widehat{oldsymbol{(\bullet)}_a}$ $\widehat{ullet(\bullet)}_b$ $\widehat{ullet(\bullet)}_{0}^{+}$                                                        | $\underbrace{\left( \bullet \bullet \right)}_{c_v = \widetilde{N/D} \cdot \widetilde{D}}, \underbrace{\left( \bullet \bullet \right)}_{m_v = d}$                       | $\underbrace{\left( \bullet \bullet \right)}_{c_v} \underbrace{\left( \bullet \bullet \right)}_{b_v} \underbrace{\left( \bullet \bullet \right)}_{b_v} \underbrace{\left( \bullet \bullet \right)}_{b_v}^+ \underbrace{\left( \bullet \bullet \right)}_{b_v}^+ \underbrace{\left( \bullet \bullet \right)}_{b_v} \left( \bullet $ | $\underbrace{\left( \bullet \bullet \right)}_{c_v = 2b,} \underbrace{\left( \bullet \bullet \right)}_{c_v = 2b,} \underbrace{\left( \bullet \bullet \right)}_{m_v = 2a + 1}$ | $\tilde{x} = 2$ if $2 x$ and $\tilde{x} = 1$ i |  |  |  |
| Isogeny                                                            | U1A                                                                                                                                                       | U1B                                                                                                                                                                    | UIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UID                                                                                                                                                                          | Notation:                                      |  |  |  |
|                                                                    |                                                                                                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              | r                                              |  |  |  |

| U1              |
|-----------------|
| $U_{2a,2b,2n},$ |
| type i          |
| C is of         |
| 4.23: (         |
| Table .         |

75

D = gcd(2a, 2b, 2n), N = 4ab + 4an + 4bn, d = 2 if 2a, 2b, 2n are odd, d = 1 otherwise.

| $E_v$                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(-1)^N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(-1)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $w_v$                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\lambda_v$                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(-1)^N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(-1)^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ŷ                                                                  | $\underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{b}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{a}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{a}{2}}}_{\hat{c}$ | $\underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{1}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \left($ | $\underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \underbrace{\left( \bullet \bullet \right)_{\hat{c}_v}}_{\hat{c}_v} \left( \bullet \bullet \right)_{\hat$ | $\widehat{\left( \bullet \bullet \right)_{\frac{n}{2}}} \underbrace{\left( \bullet \bullet \right)_{\frac{n}{2}}}_{\hat{c}_{v}} \left( \bullet \bullet \right)_{\frac{$ |
| $\delta_2, \delta_3$                                               | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\notin K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| с                                                                  | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\notin K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $v(\Delta_G^2)$                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| v(c)                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C                                                                  | $\overbrace{c_v=4N,  m_v=1}^{\bullet \bigstar_n} (\overbrace{\diamond \bigstar_n}^+)_0^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overbrace{c_v=4, \ m_v=1}^{\bullet \bullet_n} (\bullet \bullet_n)^{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underbrace{\left( \bullet \bullet \right)_a \bullet \left( \bullet \bullet \right)_a }_{c_v = 2a + 4n,  m_v = 1  n_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\overbrace{c_v=2a, \ m_v=1}^{\bullet \bullet_a \bullet_a \bullet_a \bullet_a \bullet_b \bullet_a \bullet_b \bullet_a \bullet_b \bullet_a \bullet_b \bullet_b \bullet_b \bullet_b \bullet_b \bullet_b \bullet_b \bullet_b \bullet_b \bullet_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Isogeny                                                            | U2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| U2              |
|-----------------|
| $U_{2a,2b,2n},$ |
| type            |
| of              |
| $\mathbf{s}$    |
| $\mathcal{O}$   |
| 4.24:           |
| Table           |

Notation:  $\tilde{x} = 2$  if 2|x and  $\tilde{x} = 1$  if  $2 \nmid x$ , D = gcd(a, b, n), N = ab + an + bn, d = 2 if a, b, n are odd, d = 1 otherwise.

| $E_v$                                                               | 1                                                                                                                                                                               | $(-1)^{2n+a+b}$                                                                                                                                                                                                                                                               |                                      |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $w_v$                                                               | 1                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                             |                                      |
| $\lambda_v$                                                         | 1                                                                                                                                                                               | $(-1)^{2n+a+b}$                                                                                                                                                                                                                                                               |                                      |
| $\hat{C}$                                                           | $\underbrace{\left(\bigstar _{a}}_{\hat{c}v} \bigotimes_{a+2n} \underbrace{(\bigstar _{a-2})_{a+2n}}_{\hat{c}v} \underbrace{(\bigstar _{a-2})_{\hat{c}}}_{\hat{c}v}\right)^{+}$ | $\underbrace{\underbrace{\left(\bigstar \bigstar}_{a} \underbrace{\left(\bigstar \bigstar}_{a} \underbrace{\left(\bigstar \bigstar}_{a+2n} \underbrace{\bullet \bullet}_{a}\right)_{2}^{b-a}\right)}_{\hat{c}_{v}} = N/\tilde{D} \cdot \widetilde{D},  \hat{m}_{v} = \hat{d}$ |                                      |
| $\delta_2, \delta_3$                                                | $\in K^{	imes 2}$                                                                                                                                                               | $\in K^{	imes 2}$                                                                                                                                                                                                                                                             |                                      |
| с                                                                   | $\in K^{\times 2}$                                                                                                                                                              | $\notin K^{\times 2}$                                                                                                                                                                                                                                                         |                                      |
| $v(\Delta_G^2)$                                                     | 2a                                                                                                                                                                              | 2a                                                                                                                                                                                                                                                                            |                                      |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\begin{cases} \equiv 0 \ (2) \\ 0 \end{cases}$                                                                                                                                 | $\begin{cases} \equiv 0 \ (2) \\ 0 \end{cases}$                                                                                                                                                                                                                               | 1 if $2 + x$                         |
| v(c)                                                                | 0                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                             | $\tilde{x} =$                        |
| C                                                                   | $\overbrace{c_v=N,  m_v=1}^{\bullet}$                                                                                                                                           | $\underbrace{\left( \underbrace{\bigstar}_{v} \bigstar_{b}  \underbrace{\bigstar}_{b}  \underbrace{\bigstar}_{b}  \underbrace{\bigstar}_{b} \\ c_{v} = \widetilde{N/D} \cdot \widetilde{D},  m_{v} = d \end{aligned}$                                                         | $T = c$ $\tilde{x} = 2$ if $2 x$ and |
| Isogeny                                                             | $\begin{array}{c} \mathrm{U3A} \\ a < b \end{array}$                                                                                                                            | $\begin{array}{c} \text{U3B} \\ a < b \end{array}$                                                                                                                                                                                                                            | Notation:                            |

| U3                  |
|---------------------|
| $U_{2a,2b,2n},$     |
| type                |
| $\operatorname{of}$ |
| $\mathbf{s}$        |
| $\mathcal{O}$       |
| Table $4.25$ :      |

NOTATION: T = c, x = 2 If 2|x and x = 1 If  $2 \notin x$ , D = gcd(2a, 2b, 2n), N = 4ab + 4an + 4bn, d = 2 if 2a, 2b, 2n are odd, d = 1 otherwise,  $\hat{D} = gcd(2a, b - a), \hat{d} = 2$  if 2a, b - a are odd,  $\hat{d} = 1$  otherwise.

| $E_v$                                                               | 1                                                                                                                                                                                          | $(-1)^{2n}$                                                                                                                                                                                             | $(-1)^{2a}$                                                                                                                                                                                                                                                                                          | $(-1)^{2n+2a}$                                                                                                                                        |                                              |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| $w_v$                                                               | 1                                                                                                                                                                                          | 1                                                                                                                                                                                                       | -1                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                    |                                              |  |
| $\lambda_v$                                                         | 1                                                                                                                                                                                          | $(-1)^{2n}$                                                                                                                                                                                             | $(-1)^{2a+1}$                                                                                                                                                                                                                                                                                        | $(-1)^{2n+2a+1}$                                                                                                                                      |                                              |  |
| Ĉ                                                                   | $\underbrace{\left( \bigstar \bigstar_a^+ \left(\bigstar \bigstar_{a+2n}^+ \bullet \bullet \right)}_{\hat{c}_v = N,  \hat{m}_v = 1} \right)$                                               | $\widehat{(\mathbf{\hat{e}} \bullet \mathbf{\hat{e}}_a^- (\mathbf{\hat{e}} \bullet \mathbf{\hat{e}}_{a+2n}^- \bullet \bullet)}_0$ $\widehat{c}_v = \widetilde{2a}(2\overline{a+4n}), \widehat{m}_v = 1$ | $ \hat{\hat{c}}_v = \tilde{2}\tilde{a}(2a+4n),  \hat{m}_v = 1 $                                                                                                                                                                                                                                      | $\widehat{(\diamond \bigstar)^+} \underbrace{(\diamond \bigstar)^{a+2n} \bullet \bullet}_0$ $\widehat{c}_v = (2\overline{a+4n})2a, \widehat{m}_v = 1$ |                                              |  |
| $\delta_2, \delta_3$                                                | $\in K^{	imes 2}$                                                                                                                                                                          | $\in K^{	imes 2}$                                                                                                                                                                                       | $\notin K^{	imes 2}$                                                                                                                                                                                                                                                                                 | $\notin K^{	imes 2}$                                                                                                                                  |                                              |  |
| с                                                                   | $\in K^{	imes 2}$                                                                                                                                                                          | $\notin K^{\times 2}$                                                                                                                                                                                   | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                    | $\notin K^{\times 2}$                                                                                                                                 |                                              |  |
| $v(\Delta_G^2)$                                                     | 2a                                                                                                                                                                                         | 2a                                                                                                                                                                                                      | 2a                                                                                                                                                                                                                                                                                                   | 2a                                                                                                                                                    |                                              |  |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\begin{cases} \equiv 0 \ (2) \\ \equiv 0 \ (2) \end{cases}$                                                                                                                               | $\begin{cases} \equiv 0 \ (2) \\ \equiv 0 \ (2) \end{cases}$                                                                                                                                            | $\begin{cases} \equiv 0 \ (2) \\ \equiv 0 \ (2) \end{cases}$                                                                                                                                                                                                                                         | $\begin{cases} \equiv 0 \ (2) \\ \equiv 0 \ (2) \end{cases}$                                                                                          | x,                                           |  |
| v(c)                                                                | 0                                                                                                                                                                                          | 0                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                     | if $2 \not\downarrow$                        |  |
| C                                                                   | $\overbrace{c_v=N,  m_v=1}^{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet}_a \overset{\bullet}{\bullet}_{0} \overset{\bullet}{\bullet}_{0} \overset{\bullet}{\bullet}_{0}$ | $\overbrace{c_v = \widetilde{N/D}, \widetilde{D}, m_v = d}^{\bullet}$                                                                                                                                   | $\underbrace{\left( \textcircled{\textcircled{b}} \textcircled{\textcircled{b}}_{a} \textcircled{\textcircled{b}}_{a} \textcircled{\textcircled{b}}_{a} \textcircled{\textcircled{b}}_{a} \textcircled{\textcircled{b}}_{a} \textcircled{\textcircled{b}}_{b} \right)}_{c_{v} = 2a + 4n,  m_{v} = 1$ | $\underbrace{\left( \bigstar _{a} \bigstar _{a} (\bigstar _{a}) (\bigstar _{a}) \right)}_{c_{v} = 2a,  m_{v} = d}$                                    | $\tilde{x} = 2$ if $2 x$ and $\tilde{x} = 1$ |  |
| Isogeny                                                             | U3C                                                                                                                                                                                        | U3D                                                                                                                                                                                                     | U3E                                                                                                                                                                                                                                                                                                  | U3F                                                                                                                                                   | Notation:                                    |  |

| U3               |
|------------------|
| $J_{2a,2b,2n}$ , |
| f type U         |
| C is of          |
| 4.26:            |
| Table            |

Notation:  $\tilde{x} = 2$  if 2|x and  $\tilde{x} = 1$  if  $2 \nmid x$ ,  $D = gcd(2a, 2n), N = 4a^2 + 8an, d = 2$  if 2a, 2n are odd, d = 1 otherwise.

| $E_v$                                                              | 1                                                                                                                                           | $(-1)^{2n}$                                                                                                                                                                                                                                                                                         | $(-1)^{2a}$                                     | $(-1)^{2n+2a}$                                                                                                                                                                                                             |                                              |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| $w_v$                                                              |                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                   | -1                                              | -                                                                                                                                                                                                                          |                                              |
| $\lambda_v$                                                        | 1                                                                                                                                           | $(-1)^{2n}$                                                                                                                                                                                                                                                                                         | $(-1)^{2a+1}$                                   | $(-1)^{2n+2a+1}$                                                                                                                                                                                                           |                                              |
| ŷ                                                                  | $\hat{\hat{c}}_v = N,  \hat{\hat{m}}_v = 1$                                                                                                 | $\widehat{\hat{c}_v = \widehat{2a(2a+4n)}, \widehat{m}_v = 1}^{\bullet}$                                                                                                                                                                                                                            | $\hat{c}_v = \tilde{2a}(2a+4n),  \hat{m}_v = 1$ | $\hat{\hat{c}}_v = 2a(2\overline{a} + 4n), \hat{\hat{m}}_v = 1$                                                                                                                                                            |                                              |
| $\delta_2, \delta_3$                                               | $\in K^{\times 2}$                                                                                                                          | $\in K^{\times 2}$                                                                                                                                                                                                                                                                                  | $\notin K^{\times 2}$                           | $\notin K^{\times 2}$                                                                                                                                                                                                      |                                              |
| с                                                                  | $\in K^{\times 2}$                                                                                                                          | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                               | $\in K^{\times 2}$                              | $\notin K^{\times 2}$                                                                                                                                                                                                      |                                              |
| $v(\Delta_G^2)$                                                    | 2a + 2r $r > 0$                                                                                                                             | 2a + 2r $r > 0$                                                                                                                                                                                                                                                                                     | 2a + 2r $r > 0$                                 | 2a + 2r $r > 0$                                                                                                                                                                                                            |                                              |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                        | $\left\{ \equiv r \ (2) \\ -r \right.$                                                                                                                                                                                                                                                              | $\left\{ \equiv r \ (2) \\ -r \right.$          | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                                                       | x,                                           |
| v(c)                                                               | 0                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                   | 0                                               | 0                                                                                                                                                                                                                          | if 2∤                                        |
| G                                                                  | $\overbrace{c_v=N,  m_v=1}^{\bigstar} \left( \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet \\ \end{array} \right)_0^+$ | $\underbrace{\left( \textcircled{\clubsuit}_{a} \textcircled{\clubsuit}_{a} \textcircled{\clubsuit}_{a} \textcircled{\clubsuit}_{a} \textcircled{\clubsuit}_{a} \textcircled{\clubsuit}_{a} \textcircled{\clubsuit}_{n} \Biggr)_{0}^{-}}_{c_{v} = \widetilde{N/D} \cdot \widetilde{D}, \ m_{v} = d$ | $\overbrace{c_v=2a+4n, m_v=1}^{\bullet}$        | $\underbrace{\left( \blacklozenge _{a} \diamondsuit _{a} \blacklozenge _{a} \blacklozenge _{a} \circlearrowright _{a} \circlearrowright _{n} \biggr _{0} \biggr _{0} \biggr _{0} \biggr _{0} \biggr _{v} = 2a,  m_{v} = d$ | $\tilde{x} = 2$ if $2 x$ and $\tilde{x} = 1$ |
| Isogeny                                                            | U3G                                                                                                                                         | U3H                                                                                                                                                                                                                                                                                                 | U3I                                             | U3J                                                                                                                                                                                                                        | Notation:                                    |

Table 4.27: C is of type  $U_{2a,2b,2n}$ , U3

Notation:  $\tilde{x} = 2$  if 2|x and  $\tilde{x} = 1$  if  $2 \nmid x$ ,  $D = gcd(2a, 2n), N = 4a^2 + 8an, d = 2$  if 2a, 2n are odd, d = 1 otherwise.

|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                           |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $E_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(-1)^{2n+a+b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(-1)^{2n+a+b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |
| ŷ                                                                   | $\underbrace{\left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_{a+2n} \left( \bullet \bullet \right)_{a+2n} \left( \bullet \bullet \right)_{\overline{z}}^+ }_{\hat{c}_v = N,  \hat{m}_v = 1}^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\underbrace{\underbrace{\left( \bullet \bullet \right)_a}_{\hat{\mathcal{O}}_a} \underbrace{\left( \bullet \bullet \right)_{a+2n}}_{\hat{\mathcal{O}}_a} \underbrace{\left( \bullet \bullet \right)_{\frac{1}{2}}_{\underline{\mathcal{O}}_a}}_{\hat{\mathcal{O}}_a} \underbrace{\left( \bullet \bullet \right)_{\frac{1}{2}}}_{\hat{\mathcal{O}}_a} \left( \bullet \bullet \right)$ |                                                                             |
| $\delta_1, \delta_2$                                                | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |
| υ                                                                   | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a).                                                                         |
| $v(\Delta_G^2)$                                                     | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2a, b - b)                                                                 |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{cases} \equiv 0 \ (2) \\ - \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x,<br>$4bn, \hat{D} = gcd$                                                  |
| v(c)                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | if $2 \not $<br>an +                                                        |
| C                                                                   | $egin{array}{c} egin{array}{c} egin{array}$ | $\overbrace{c_v = \widetilde{N/D} \cdot \widetilde{D}, \ m_v = 1}^{\bullet \bullet_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\tilde{x} = 2$ if $2 x$ and $\tilde{x} = 1$<br>2a, 2b, 2n, $N = 4ab + 4ab$ |
| Isogeny                                                             | $\begin{array}{c} \mathrm{U4A} \\ a < b \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U4B<br>a < b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\overline{Notation:} D = gcd(:$                                            |

| U4              |
|-----------------|
| $U_{2a,2b,2n},$ |
| type            |
| of              |
| $\mathbf{s}$ .  |
| $\mathcal{O}$   |
| 4.28:           |
| Table           |

| $E_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(-1)^{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                | $(-1)^{2n}$                                                                                                                                                                 |                                                                                |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                                                                                                                                                                               | -1                                                                                                                                                                          |                                                                                |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(-1)^{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1                                                                                                                                                                               | $(-1)^{2n+1}$                                                                                                                                                               |                                                                                |
| Ĉ                                                                   | $\underbrace{\left( \bullet \bullet \right)_a^+ \left( \bullet \bullet \right)_{a+2n}^+ \bullet \bullet \\ \hat{c}_v = N,  \hat{m}_v = 1 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\underbrace{\left( \bullet \bullet \right)_a^- \left( \bullet \bullet \right)_{a+2n}^- \bullet \bullet}_{\hat{c}_v = 4,  \hat{m}_v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \widehat{\left( \bullet \bullet \right)_a^-} \underbrace{\left( \bullet \bullet \right)_a^+}_{a+2n} \bullet \bullet \bullet \\ \widehat{c}_v = 2(2a+4n),  \widehat{m}_v = 1 $  | $\underbrace{\left( \bullet \bullet \right)_a^+ \left( \bullet \bullet \right)_{a+2n}^- \bullet \bullet }_{\hat{c}v} \\ \hat{c}_v = 2a,  \hat{m}_v = 1$                     |                                                                                |
| $\delta_1, \delta_2$                                                | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\notin K^{	imes 2}$                                                                                                                                                             | $\notin K^{	imes 2}$                                                                                                                                                        |                                                                                |
| c                                                                   | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\in K^{	imes 2}$                                                                                                                                                                | $\notin K^{\times 2}$                                                                                                                                                       |                                                                                |
| $v(\Delta_G^2)$                                                     | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2a                                                                                                                                                                               | 2a                                                                                                                                                                          |                                                                                |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\left\{ \begin{matrix} \equiv 0 \\ - \end{matrix} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ - \end{array} \right.$                                                                                                               | $\left\{ \begin{smallmatrix} = & 0 \\ - \end{smallmatrix} \right. $                                                                                                         |                                                                                |
| v(c)                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                | 0                                                                                                                                                                           | $2 \nmid x$ ,                                                                  |
| C                                                                   | $egin{array}{c} egin{array}{c} egin{array}$ | $\left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_a \left($ | $\underbrace{\left( \bullet  \bullet \right)_a \left( \bullet  \bullet \right)_a \left( \bullet  \bullet \right)_a \left( \bullet  \bullet \right)_a }_{c_v = 2a + 4n,  m_v = 1$ | $\underbrace{\left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_a }_{c_v = 2a,  m_v = 2n+1}$ | $\tilde{x} = 2$ if $2 x$ and $\tilde{x} = 1$ if $2a, 2n$ ), $N = 4a^2 + 8an$ . |
| Isogeny                                                             | U4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U4D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U4E                                                                                                                                                                              | U4F                                                                                                                                                                         | $\overline{\text{Notation:}} \\ D = gcd(2$                                     |

Table 4.29: C is of type  $U_{2a,2b,2n}$ , U4

| $E_v$                                                              | 1                                                                                                                                                        | $(-1)^{2n}$                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                           | $(-1)^{2n}$                                                                                                                                                                                       |                                                                                |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| $w_v$                                                              | 1                                                                                                                                                        | 1                                                                                                                                                                                                                    | -1                                                                                                                                                                                                                                          | -1                                                                                                                                                                                                |                                                                                |  |
| $\lambda_v$                                                        | 1                                                                                                                                                        | $(-1)^{2n}$                                                                                                                                                                                                          | -1                                                                                                                                                                                                                                          | $(-1)^{2n+1}$                                                                                                                                                                                     |                                                                                |  |
| Ĉ                                                                  | $\hat{c}_v = N,  \hat{m}_v = 1$                                                                                                                          | $\hat{c}_v = 4,  \hat{m}_v = 1$                                                                                                                                                                                      | $ \hat{c}_v = 2(2a+4n),  \hat{m}_v = 1 $                                                                                                                                                                                                    | $ \hat{\hat{c}_v} = 2a,  \hat{\hat{m}_v} = 1 $                                                                                                                                                    |                                                                                |  |
| $\delta_1, \delta_2$                                               | $\in K^{\times 2}$                                                                                                                                       | $\in K^{\times 2}$                                                                                                                                                                                                   | $\notin K^{\times 2}$                                                                                                                                                                                                                       | $\notin K^{\times 2}$                                                                                                                                                                             |                                                                                |  |
| С                                                                  | $\in K^{\times 2}$                                                                                                                                       | $\notin K^{\times 2}$                                                                                                                                                                                                | $\in K^{\times 2}$                                                                                                                                                                                                                          | $\notin K^{\times 2}$                                                                                                                                                                             |                                                                                |  |
| $v(\Delta_G^2)$                                                    | 2a + 2r $r > 0$                                                                                                                                          | 2a + 2r $r > 0$                                                                                                                                                                                                      | 2a + 2r $r > 0$                                                                                                                                                                                                                             | $\begin{array}{c} 2a+2r\\ r>0 \end{array}$                                                                                                                                                        |                                                                                |  |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                     | $\left\{ {{\equiv r}\atop{-r}}\left( 2\right) \right.$                                                                                                                                                               | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                                                                        | $\left\{ \stackrel{\equiv}{=} r \ (2) \\ -r \right.$                                                                                                                                              |                                                                                |  |
| v(c)                                                               | 0                                                                                                                                                        | 0                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                 | f $2 \nmid x$                                                                  |  |
| C                                                                  | $\underbrace{\left( \bullet \bullet \right)}_{c_v} \left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_n^+$ | $\underbrace{\left( \bullet \bullet \right)}_{c_v} \left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_a \left( \bullet \bullet \right)_n \\ c_v = \widetilde{N/D} \cdot \widetilde{D}, \\ m_v = 2n + 1$ | $\underbrace{\left( \bullet \bullet \right)_{a}}_{c_{v}} \left( \bullet \bullet \right)_{a} \left( \bullet \bullet \right)_{a} \left( \bullet \bullet \right)_{a}^{+} \left( \bullet \bullet \right)_{a}^{+}$ $c_{v} = 2a + 4n,  m_{v} = 1$ | $\underbrace{\left( \bullet \bullet \right)_{a}}_{c_{v}} \left( \bullet \bullet \right)_{a} \left( \bullet \bullet \right)_{a} \left( \bullet \bullet \right)_{a}$ $c_{v} = 2a,$ $m_{v} = 2n + 1$ | $\tilde{x} = 2$ if $2 x$ and $\tilde{x} = 1$ i.<br>(a, 2n), $N = 4a^2 + 8an$ . |  |
| Isogeny                                                            | U4G                                                                                                                                                      | U4H                                                                                                                                                                                                                  | U4I                                                                                                                                                                                                                                         | U4J                                                                                                                                                                                               | Notation:<br>D = gcd(2                                                         |  |

Table 4.30: C is of type  $U_{2a,2b,2n}$ , U4

| $E_v$                                                               | 1                                                                                                                   |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $w_v$                                                               | 1                                                                                                                   |
| $\lambda_v$                                                         | 1                                                                                                                   |
| Ģ                                                                   | $\widehat{(\bullet \bullet \diamond)}_b (\diamondsuit \bigstar \bigstar_a)$ $\widehat{c}_v = 1,  \widehat{m}_v = 1$ |
| $(A_1 - B_1)^2$                                                     | I                                                                                                                   |
| $v(\Delta_G^2)$                                                     | 2v(c)                                                                                                               |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{array}{c} v(c) \\ -v(c) \end{array} \right.$                                                        |
| $\delta_1$                                                          | I                                                                                                                   |
| v(c)                                                                | $\equiv a \equiv b \ (2)$                                                                                           |
| Ö                                                                   | $\overbrace{c_v=1,  m_v=1}^{\bullet \bullet \bullet} \overbrace{a_b}^{\bullet}$                                     |
| Isogeny                                                             | TC1                                                                                                                 |

Table 4.31: C is of type  $1\times1,$  TC1

| $E_v$                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $w_v$                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                           |
| $\lambda_v$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                           |
| ŷ                                                                   | $\widehat{(\diamond \diamond \bullet)}_{b} ( \bullet \bigstar \bigstar_{u} )$ $\widehat{c}_{v} = 1,  \widehat{m}_{v} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\widehat{c}_v = 1,  \widehat{m}_v = \overrightarrow{a+1}$                                                                                                                                                                                  |
| $(A_1 - B_1)^2$                                                     | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\notin K^{\times 2}$                                                                                                                                                                                                                       |
| $v(\Delta_G^2)$                                                     | 2v(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2v(c)                                                                                                                                                                                                                                       |
| $\left\{ \begin{array}{c} v(\ell) \\ v(\ell_1) \end{array} \right.$ | $\left\{ \begin{matrix} v(c) \\ -v(c) \end{matrix} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left\{ \begin{array}{c} v(c) \\ -v(c) \end{array} \right.$                                                                                                                                                                                |
| $\delta_1$                                                          | $\in K^{	imes 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\notin K^{\times 2}$                                                                                                                                                                                                                       |
| v(c)                                                                | $\equiv a \equiv b \; (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\equiv a \ (2)$                                                                                                                                                                                                                            |
| C                                                                   | $egin{array}{c} & lackslash egin{array}{c} & lackslash egin{array}{c$ | $\underbrace{(\textcircled{\diamond \diamond \bullet}_a \bullet \textcircled{\bullet}_a \bullet \textcircled{\bullet}_a)}_{c_v = 1} \underbrace{(\textcircled{\diamond \diamond \bullet}_a \bullet \textcircled{\bullet}_a)}_{m_v = a + 1}$ |
| Isogeny                                                             | TC2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TC2B                                                                                                                                                                                                                                        |

Table 4.32: C is of type  $1\times1,\,\mathrm{TC2}$ 

|                                                                    |                                                                                                                                    |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                             |                                                                                                                                                                            |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_v$                                                              | 1                                                                                                                                  | 1                                                                                                                                                       | $(-1)^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | щ                                                                                             | $(-1)^{a}$                                                                                                                                                                 |
| $w_v$                                                              | 1                                                                                                                                  | 1                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                             | 1                                                                                                                                                                          |
| $\lambda_v$                                                        | 1                                                                                                                                  | 1                                                                                                                                                       | $(-1)^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                             | (-1) <sup>a</sup>                                                                                                                                                          |
| Ĉ                                                                  | $\underbrace{\left( \bullet \bullet \bullet \bullet \bullet \bullet \bullet \right)_{\frac{1}{2}}}_{\hat{c}v} = 1,  \hat{m}_v = 1$ | $\underbrace{\left( \bullet \bigstar \right)}_{\hat{c}_v} \left( \bullet \bigstar \right)}_{\hat{c}_v} \left( \bullet \bigstar \right)_{1 \ge 0}^{b-a}$ | $\widehat{(\bullet \diamond \bigstar)}_{r} \underbrace{(\bullet \diamond \bigstar)}_{\widehat{c}^{n}} \underbrace{(\bullet \diamond \frown)}_{\widehat{c}^{n}} \underbrace{(\bullet \bullet)}_{\widehat{c}^{n}} \underbrace{(\bullet \bullet)} \underbrace{(\bullet \bullet)} ($ | $\widehat{c}_v = 1,  \widehat{m}_v = 1$                                                       | $egin{array}{c} ellet ellet eta eta eta eta \ eta \end{pmatrix}_0 eta eta eta eta eta \end{pmatrix}_0$ $\hat{c}_v = 1,  \hat{m}_v = 1$                                     |
| $(A_1 - B_1)^2$                                                    | l                                                                                                                                  | $\in K^{\times 2}$                                                                                                                                      | $\notin K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                                                             | I                                                                                                                                                                          |
| $v(\Delta_G^2)$                                                    | 2(a+b+v(c))                                                                                                                        | 2(a+b+v(c)+r) $r > 0$                                                                                                                                   | 2(a+b+v(c)+r) $r > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2(2a+v(c))                                                                                    | 2(2a+v(c))                                                                                                                                                                 |
| $\left\{ \begin{matrix} v(\ell) \\ v(\ell_1) \end{matrix} \right.$ | $\left\{ \begin{array}{l} v(c)\!+\!2a\!-\!b\\ -\!b\!-\!v(c) \end{array} \right.$                                                   | $\left\{ \begin{array}{l} v(c) + 2a - b - r \\ -b - v(c) - r \end{array} \right.$                                                                       | $\left\{ \begin{array}{l} v(c) + 2a - b - r \\ -b - v(c) - r \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ v(u_1) - 2a - v(c) \end{array} \right.$           | $\left\{ \begin{array}{l} \equiv 0 \ (2) \\ v(u_1) - 2a - v(c) \end{array} \right.$                                                                                        |
| $\delta_1$                                                         | $\in K^{\times 2}$                                                                                                                 | $\in K^{\times 2}$                                                                                                                                      | $\in K^{\times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\in K^{\times 2}$                                                                            | $\notin K^{\times 2}$                                                                                                                                                      |
| v(c)                                                               | $\equiv a \equiv b \ (2)$                                                                                                          | $\equiv a \equiv b \ (2)$                                                                                                                               | $\equiv a \equiv b \ (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\equiv a \ (2)$                                                                              | $\equiv a \ (2)$                                                                                                                                                           |
| C                                                                  | $\underbrace{(\bullet \diamond \bigstar)}_{c_v = 1,  m_v = 1}$                                                                     | $\underbrace{(\bullet \diamond \bigstar)}_{c_v = 1,  m_v = 1}$                                                                                          | $\underbrace{(\bullet \diamond \bigstar)}_{c_v = 1,  m_v = 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\underbrace{(\bullet \diamond \bigstar_a(\bullet \diamond \bigstar_a)}_{c_v = 1}, \ m_v = 1$ | $\underbrace{(\bullet \diamond \bigstar_a \bullet \diamond \bigstar_a)}_{c_v = 1} \bullet \bullet \star \underbrace{(\bullet \diamond \diamond \bigstar_a)}_{b_v = a + 1}$ |
| Isogeny                                                            | $\operatorname{TC3A}_{a < b}$                                                                                                      | $\begin{array}{c} TC3B \\ a < b \end{array}$                                                                                                            | TC3C<br>a < b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TC3D                                                                                          | TC3E                                                                                                                                                                       |

Table 4.33: C is of type  $1 \times 1$ , TC3

| $E_v$                                            | 1                                                                                                                | $(-1)^{r}$                                                                                         | $(-1)^{a}$                                                                                                       | $(-1)^{a+r}$                                                                                                                                |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $w_v$                                            | 1                                                                                                                | 1                                                                                                  | 1                                                                                                                | 1                                                                                                                                           |
| $\lambda_v$                                      | 1                                                                                                                | $(-1)^{r}$                                                                                         | (-1) <sup>a</sup>                                                                                                | $(-1)^{a+r}$                                                                                                                                |
| Ĉ                                                | $\widehat{(\bullet \diamond \bigstar)}_r (\bullet \diamond \bigstar)_r \\ \widehat{c}_v = 1,  \widehat{m}_v = 1$ | $\widehat{\hat{c}_v=1,  \hat{m}_v=r+1}$                                                            | $\widehat{(\bullet \diamond \bigstar)}_r (\bullet \diamond \bigstar)_r \\ \widehat{c}_v = 1,  \widehat{m}_v = 1$ | $\widehat{\hat{c}_v=1,  \hat{m}_v=\hat{r+1}_0}$                                                                                             |
| $(A_1 - B_1)^2$                                  | $\in K^{\times 2}$                                                                                               | $\notin K^{\times 2}$                                                                              | $\in K^{\times 2}$                                                                                               | $\notin K^{\times 2}$                                                                                                                       |
| $v(\Delta_G^2)$                                  | 2(2a+v(c)+r) $r > 0$                                                                                             | 2(2a+v(c)+r) $r > 0$                                                                               | 2(2a+v(c)+r) $r > 0$                                                                                             | 2(2a+v(c)+r) $r > 0$                                                                                                                        |
| $\begin{cases} v(\ell) \\ v(\ell_1) \end{cases}$ | $\left\{ \begin{array}{l} \equiv r \ (2) \\ v(u_1) - 2a - v(c) - r \end{array} \right.$                          | $\left\{ \begin{array}{l} \equiv r \ (2) \\ v(u_1) - 2a - v(c) - r \end{array} \right.$            | $\left\{ \begin{array}{l} \equiv r \ (2) \\ v(u_1) - 2a - v(c) - r \end{array} \right.$                          | $\left\{ \begin{array}{l} \equiv r \ (2) \\ v(u_1) - 2a - v(c) - r \end{array} \right.$                                                     |
| $\delta_1$                                       | $\in K^{	imes 2}$                                                                                                | $\in K^{	imes 2}$                                                                                  | $\notin K^{\times 2}$                                                                                            | $\notin K^{\times 2}$                                                                                                                       |
| v(c)                                             | $\equiv a \ (2)$                                                                                                 | $\equiv a \ (2)$                                                                                   | $\equiv a \ (2)$                                                                                                 | $\equiv a (2)$                                                                                                                              |
| C                                                | $\underbrace{(\bullet \diamond \bigstar_a}_{c_v} \underbrace{(\bullet \diamond \bigstar_a)}_{c_v}$               | $\underbrace{(\bullet \diamond \bigstar_a}_{c_v} \underbrace{(\bullet \diamond \bigstar_a)}_{c_v}$ | $\underbrace{(\bullet \diamond \bullet)}_{c_v = 1,  m_v = \overrightarrow{a+1}}$                                 | $\underbrace{(\bullet \diamond \bullet)}_{c_v} \underbrace{(\bullet \diamond \bullet)}_{a_v} \underbrace{(\bullet \diamond \bullet)}_{a_v}$ |
| Isogeny                                          | TC3F                                                                                                             | TC3G                                                                                               | TC3H                                                                                                             | TC3I                                                                                                                                        |

Table 4.34: C is of type  $1 \times 1$ , TC3

## Chapter 5

# Richelot isogeny in odd residue characteristic

#### 5.1 Introduction

In this chapter, we prove the results presented in Tables 4.4 to 4.34. Each of these tables takes a cluster picture for C with extra local data as an input and displays the cluster picture of  $\hat{C}$  together with the Tamagawa numbers of J and  $\hat{J}$ , the deficiency of C and  $\hat{C}$  as well as  $\lambda_v$  and  $\omega_v$  as an output (it also displays  $E_v$  which is treated in Chapter 6). Table 3.1 in Section 3.4 computes Tamagawa numbers, deficiency and root numbers for semistable curves (Jacobians) of genus 2 from their cluster pictures. Therefore it remains to compute the cluster picture of  $\hat{C}$  to obtain  $\lambda_v$  in each case. As introduced in Section 2.2, the Richelot construction is entirely explicit. In particular, we can compute the valuations of differences of the roots of  $\hat{C}$ , and hence the cluster picture of  $\hat{C}$ , from the valuations of the differences of the roots of G(x) (that is from the cluster picture of C). We first present the properties of the Richelot construction that allow us to do such computations before presenting all computations case by case.

### List of notation for this chapter

Henceforth addition of indices is performed modulo 3.

| K                               | local field with odd residue characteristic                                                                                     |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $\pi$                           | uniformiser of $K$                                                                                                              |
| v                               | normalized valuation of $K$                                                                                                     |
| $G_1(x)$                        | $c(x-\alpha_1)(x+\alpha_1)$ with $\alpha_1^2 \in K$                                                                             |
| $G_i(x), i = 2, 3$              | $(x-lpha_i)(x-eta_i)$                                                                                                           |
| G(x)                            | $G_1(x)G_2(x)G_3(x)$                                                                                                            |
| L                               | Splitting field of $G(x)$                                                                                                       |
| С                               | leading term of $G(x)$                                                                                                          |
| C                               | $C_2 \times D_4$ curve defined over K with the given factorization                                                              |
|                                 | $y^2 = G(x) = G_1(x)G_2(x)G_3(x)$                                                                                               |
| J                               | Jacobian of $C$                                                                                                                 |
| $\phi$                          | Richelot isogeny on J given by the factorization of $G(x)$                                                                      |
| $L_1(x)$                        | $L_1(x) = \frac{1}{\Delta_G}[G_2(x), G_3(x)] = \ell_1(x - A_1)(x - B_1)$                                                        |
| $\ell_1 = \frac{u_1}{\Delta_G}$ | leading term of $L_1(x)$ with $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$                                                   |
| $L_i(x), i = 2, 3$              | $L_i(x) = [G_{i+1}(x), G_{i+2}(x)] = \ell_i(x - A_i)(x - B_i)$                                                                  |
| L(x)                            | $L_1(x)L_2(x)L_3(x)$                                                                                                            |
| $\ell = \ell_1 \ell_2 \ell_3$   | leading term of $L(x)$                                                                                                          |
| $\hat{C}$                       | $C_2 \times D_4$ dual curve of C defined over K by                                                                              |
|                                 | $y^2 = L(x) = L_1(x)L_2(x)L_3(x)$                                                                                               |
| $\hat{J}$                       | Jacobian of $\hat{C}$                                                                                                           |
| $\delta_i,  i=1,2,3$            | discriminant of $G_i(x)$ , $\delta_1 = 4c^2 \alpha_1^2$ , $\delta_2 = (\alpha_2 - \beta_2)^2$ , $\delta_3 = (\alpha_3 - b_3)^2$ |
| $\hat{\delta}_i, i = 1, 2, 3$   | discriminant of $L_i(x)$ , $\hat{\delta}_i = \ell_i^2 (A_i - B_i)^2$                                                            |
| $\alpha_i,\beta_i,i=1,2,3$      | roots of $G_i(x)$                                                                                                               |
| $A_i, B_i, i = 1, 2, 3$         | roots of $L_i(x)$                                                                                                               |
| $x \equiv y$                    | $x \equiv y \mod \pi$                                                                                                           |
| $x \equiv_{\Box} y$             | $x \equiv yz$ where z is a square element in $K^{\times}$                                                                       |
| $x =_{\Box} y$                  | $x = yz$ where z is a square element in $K^{\times}$                                                                            |
| Frob                            | Frobenius automorphism in $Gal(\bar{K}/K)$                                                                                      |
| $I_K$                           | inertia subgroup of $Gal(\overline{K}/K)$                                                                                       |
| • •                             | $\alpha_1, \beta_1$ in the cluster picture of $C$ $(A_1, B_1$ is that of $\hat{C}$ )                                            |
| <b>♦ ♦</b>                      | $\alpha_2, \beta_2$ in the cluster picture of $C$ $(A_2, B_2$ is that of $\hat{C}$ )                                            |
| <b>*</b> *                      | $\alpha_3, \beta_3$ in the cluster picture of $C$ $(A_3, B_3$ is that of $\hat{C}$ )                                            |

#### Algebraic identities of a $C_2 \times D_4$ Richelot curve 5.2

**Proposition 5.2.1.** Let G(x) be a  $C_2 \times D_4$  polynomial and L(x) the defining polynomial of its associated  $C_2 \times D_4$  dual curve as in Definition 4.2.5. Then for i = 2, 3, 3

i) 
$$\Delta_L = -2\Delta_G$$
,  
ii)  $\hat{\delta}_1 = \ell_1^2 (A_1 - B_1)^2 = \frac{4}{\Delta_G^2} (\alpha_2 - \beta_3)(\alpha_2 - \alpha_3)(\beta_2 - \alpha_3)(\beta_2 - \beta_3)$ ,  
ii)  $\hat{\delta}_i = \ell_i^2 (A_i - B_i)^2 = 4c^2(\alpha_{i+1} - \beta_{i+2})(\alpha_{i+1} - \alpha_{i+2})(\beta_{i+1} - \alpha_{i+2})(\beta_{i+1} - \beta_{i+2})$ ,

and the discriminants of G(x) and L(x) are given by

*iii*) 
$$Disc(G(x)) = \frac{1}{2^{12}} \delta_1 \delta_2 \delta_3 \hat{\delta_1}^2 \hat{\delta_2}^2 \hat{\delta_3}^2,$$
  
*iv*)  $Disc(L(x)) = \Delta_G^{12} \delta_1^2 \delta_2^2 \delta_3^2 \hat{\delta_1} \hat{\delta_2} \hat{\delta_3}.$ 

*Proof.* Follow from direct computations.

**Proposition 5.2.2.** Let  $G(x), L(x) \in \mathcal{K}[x]$  be as in Proposition 5.2.1 above. Then applying the  $C_2 \times D_4$  construction to L(x) as in Definition 4.2.5 gives

$$H(x) = \prod_{i=1}^{3} H_i(x), \qquad H_i(x) = -2\Delta_G G_i(x), \quad i=1,2,3.$$

In particular  $H(x) = -8\Delta_G^3 G(x)$ .

Proof. Clear from computation.

**Corollary 5.2.3.** The discriminants  $\delta_1, \delta_2, \delta_3$  associated to the Richelot factorization of G(x) satisfy for i = 2, 3

$$\begin{aligned} \Delta_G^2 \delta_1 &= \Delta_G^2 c^2 (\alpha_1 - \beta_1)^2 \\ &= \ell_2^2 \ell_3^2 (A_2 - B_3) (A_2 - A_3) (B_2 - B_3) (B_2 - B_3) \\ \Delta_G^2 \delta_i &= \Delta_G^2 (\alpha_i - \beta_i)^2 \\ &= \ell_{i+1}^2 \ell_{i+2}^2 (A_{i+1} - B_{i+2}) (A_{i+1} - A_{i+2}) (B_{i+1} - B_{i+2}) (B_{i+1} - B_{i+2}). \end{aligned}$$

*Proof.* It follows from Proposition 5.2.2 that for i = 1, 2, 3, the discriminants of  $H_i(X)$  are equal to  $4\Delta_G^2 \delta_i$ . Now the result follows from applying Proposition 5.2.1 to L(x) and H(x). 

**Proposition 5.2.4.** The  $C_2 \times D_4$  dual curve of  $\hat{C}$  is isomorphic to C and is given by

$$\hat{C} : y^2 = 4G(x).$$

*Proof.* We have that  $\hat{C}$  :  $y^2 = L(x)$ . It suffices to apply the Richelot construction to  $L(x) = L_1(x)L_2(x)L_3(x)$  to get

 $[L_1(x), L_2(x)] = -2G_3(x), \quad [L_1(x), L_3(x)] = -2G_2(x), \quad [L_2(x), L_3(x)] = -2\Delta_G G_1(x),$ and  $\Delta_L = -2\Delta_G$ . Now, by definition  $\hat{C} : \Delta_L y^2 = -8\Delta_G G(x)$ , so that  $\hat{C} : y^2 = 4G(x)$ , as required.  $\Box$ 

The following results follow either by definition, direct computations or properties given above.

**Proposition 5.2.5.** Keeping notation for the roots of G(x) and L(x) as in Section 2.2, we have

$$1. \ \delta_{1} = 4c^{2}\alpha_{1}^{2}, \quad \delta_{2} = (\alpha_{2} - \beta_{2})^{2}, \quad \delta_{3} = (\alpha_{3} - \beta_{3})^{2},$$

$$2. \ \Delta_{G} = -c(\alpha_{1}^{2}(\alpha_{2} + \beta_{2} - \alpha_{3} - \beta_{3}) + \alpha_{2}\beta_{2}(\alpha_{3} + \beta_{3}) + \alpha_{3}\beta_{3}(-\alpha_{2} - \beta_{2})),$$

$$3. \ \ell_{1} = \frac{u_{1}}{\Delta_{G}} = \frac{\alpha_{2} + \beta_{2} - \alpha_{3} - \beta_{3}}{\Delta_{G}}, \quad \ell_{2} = c(\alpha_{3} + \beta_{3}), \quad \ell_{3} = c(-\alpha_{2} - \beta_{2}),$$

$$4. \ \hat{\delta_{1}} = \ell_{1}^{2}(A_{1} - B_{1})^{2} = \frac{4}{\Delta_{G}^{2}}(\alpha_{2} - \alpha_{3})(\alpha_{2} - \beta_{3})(\beta_{2} - \alpha_{3})(\beta_{2} - \beta_{3}),$$

$$5. \ \hat{\delta_{2}} = \ell_{2}^{2}(A_{2} - B_{2})^{2} = 4c^{2}(\alpha_{3} - \alpha_{1})(\alpha_{3} + \alpha_{1})(\beta_{3} - \alpha_{1})(\beta_{3} + \alpha_{1}),$$

$$6. \ \hat{\delta_{3}} = \ell_{3}^{2}(A_{3} - B_{3})^{2} = 4c^{2}(\alpha_{1} - \alpha_{2})(\alpha_{1} - \beta_{2})(-\alpha_{1} - \alpha_{2})(-\alpha_{1} - \beta_{2}),$$

$$7. \ \Delta_{G}^{2}\delta_{1} = \ell_{2}^{2}\ell_{3}^{2}(A_{2} - A_{3})(A_{2} - B_{3})(B_{2} - A_{3})(B_{2} - B_{3}),$$

$$8. \ \delta_{2} = \ell_{3}^{2}\ell_{1}^{2}(A_{3} - A_{1})(A_{3} - B_{1})(B_{3} - A_{1})(B_{3} - B_{1}),$$

$$9. \ \delta_{3} = \ell_{1}^{2}\ell_{2}^{2}(A_{1} - A_{2})(A_{1} - B_{2})(B_{1} - A_{2})(B_{1} - B_{2}).$$

$$10. \ Disc(G(x)) = \frac{\Delta_{G}^{4}}{2t^{2}}\delta_{1}\delta_{2}\delta_{3}\delta_{1}^{2}\delta_{2}^{2}\delta_{3}^{2},$$

$$11. \ Disc(L(x)) = \Delta_{G}^{4}\delta_{1}^{2}\delta_{2}^{2}\delta_{3}^{2}\delta_{1}\delta_{2}\delta_{3},$$

$$12. \ cu_{1} + \ell_{2} + \ell_{3} = 0.$$

**Remark 5.2.6.**  $\Delta_G \neq 0$  by definition of a Richelot curve (see Definition 2.2.12),

We will use extensively Proposition 5.2.5 in the proofs below. Therefore we will use P.k to refer to Proposition 5.2.5.k.

#### 5.3 **Proof of Tables 4.4 to 4.34**

**Remark 5.3.7.** 1) In the following proofs, we do not include formal computations that can be readily verified using a computer algebra. All of these computations have been performed using Maple and can be made available if needed.

2) In the cluster pictures displayed in the following section, we denote the depth of a cluster relatively to that of its parent. For instance, in the cluster picture

 $\underbrace{\bullet \bullet \bullet \bullet \bullet \bullet}_{2r_{n_1}} \Big|_{n_2}, \text{ we have } v(\alpha_1 - \beta_1) = v(\alpha_1 - \alpha_2) = v(\alpha_1 - \beta_2) = v(\alpha_1 - \alpha_3) = v(\alpha_1 - \beta_3) = n_2, v(\alpha_2 - \beta_1) = v(\alpha_2 - \beta_2) = v(\alpha_2 - \beta_3) = v(\alpha_3 - \beta_1) = v(\alpha_3 - \beta_2) = v(\alpha_3 - \beta_3) = n_1 + n_2 \text{ and } v(\beta_1 - \beta_2) = v(\beta_1 - \beta_3) = v(\beta_2 - \beta_3) = 2r + n_1 + n_2.$ 

**Lemma 5.3.8.** If C is of type 2,  $1_n$ ,  $I_{a,b}$  or  $U_{a,b,n}$  as in Table 3.1 then  $v(c) \in 2\mathbb{Z}$ .

*Proof.* Clear from the semistability criterion 3.4.29.

**Corollary 5.3.9.** If C is type 2,  $1_n$ ,  $I_{a,b}$  or  $U_{a,b,n}$  as in Table 3.1 then without loss of generality v(c) = 0. If C is of type  $1 \times \frac{n+m}{2} 1$  then without loss of generality v(c) = 0 or v(c) = 1.

*Proof.* The first case follows from Lemma 5.3.8. If C is of type  $1 \times \frac{n+m}{2} 1$  then by semistability criterion  $v(c) \equiv n \equiv m \mod 2$ .

#### 5.3.1 C is of type 2

**Lemma 5.3.10.** Suppose that C is of type 2, i.e. its given Weiertrass model has unit discriminant. Then the same hold for  $\hat{C}$  if and only if  $v(\Delta_G^2) = 0$ .

*Proof.* By Corollary 5.3.9, we have v(c) = 0. Since C is of type 2 we have that v(Disc(G(x)) = 0, and by P.10)

$$v(\delta_i) = 0, \quad \forall i = 1, 2, 3, \quad v(\Delta_G^2 \hat{\delta_1}) = v(\hat{\delta_2}) = v(\hat{\delta_3}) = 0.$$

It follows from P.11 that v(Disc(L(x)) = 0 if and only if  $v(\Delta_G^2) = 0$ . In particular,  $\hat{C}$  has good reduction if and only if  $v(\Delta_G^2) = 0$ .

#### Proof of Table 4.4

By Corollary 5.3.9 we have v(c) = 0. We note that since J has good reduction, it follows that  $\hat{J}$  also has good reduction. Therefore, if  $\hat{C}$  has bad reduction, it is of type  $1 \times_n 1$  or  $1 \times_n 1$  for some  $n \neq 0$ .

**<u>Case GR1A</u>**. Here  $v(\Delta_G^2) = 0$ , therefore  $\hat{C}$  is of type 2 by Lemma 5.3.10. From

P.4, P.5 and P.6 we have  $v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2v(u_1)$ ,

$$v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2v(\ell_2) - 2v(\ell_3),$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(u_1) - 2v(\ell_3),$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2v(u_1) - 2v(\ell_2).$$

If  $v(\ell) = 0$  then the cluster picture of L(x) is the balanced one given in Table 4.4. Otherwise if  $v(\ell) \neq 0$  then  $v(\ell_i) = 0$  for some i = 1, 2, 3, for otherwise P.2 and P.12 would yield  $v(\Delta_G^2) > 0$ . Assume without loss of generality that  $v(\ell_1) = n \neq 0$ . Then  $n \in 2\mathbb{Z}$  by semistability criterion 3.4.29 and the cluster picture for L(x) is

**Cases GR1B/GR1C**. Since  $v(\Delta_G^2) = 2r > 0$ ,  $\hat{C}$  has bad reduction by Lemma 5.3.10. From P.4, P.5 and P.6 we have  $v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2v(u_1)$ ,

$$v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2r - 2v(\ell_2) - 2v(\ell_3) = 2r - 2v(\ell_2) - 2v(\ell_3) = 2r - 2v(\ell_1) - 2v(\ell_3) = 2r - 2v(\ell_1) - 2v(\ell_3),$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2r - 2v(u_1) - 2v(\ell_3),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2r - 2v(u_1) - 2v(\ell_2).$$

If  $v(u_1) = v(\ell_2) = v(\ell_3) = 0$  then the cluster picture for  $\hat{C}$  is that of Table 4.4. Otherwise, if  $v(u_1) = n_1 > 0$  then by P.2 and P.12, we have  $v(\ell_2) = v(\ell_3)$ , say

 $v(\ell_2) = n$ . We obtain the following cluster picture for  $\hat{C} \underbrace{\bullet \bullet \bullet \bullet \bullet}_{2r}_{-n+n_1}_{-n_1}$ , which is equivalent to the claimed balanced cluster picture as shown in Table 3.2. Similarly if  $v(\ell_2), v(\ell_3) > 0$ .

**Frobenius action**. If  $(A_1 - B_1)^2 \notin K^{\times 2}$ , then *Frob* permutes  $A_1$  and  $B_1$  and hence permutes both clusters yielding the required automorphism.

**5.3.2** *C* is of type  $1_{2a}$ 

#### Proof of Table 4.5

**Case ON1A/B**. Here  $v(\Delta_G^2) = 0$ , and

$$v(\delta_1) = 2a, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) =$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = -2v(\ell_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2a - 2v(\ell_2) - 2v(\ell_3),$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2).$$

If  $v(\ell_1) = v(\ell_2) = v(\ell_3) = 0$  then without loss of generality, let  $v(A_2 - A_3)=2a$ so that the cluster picture of  $\hat{C}$  is that of Table 4.5 for ON1A/B. Otherwise, since  $v(\Delta_G^2) = 0$ , either  $v(\ell_1) = n > 0$  and  $v(\ell_2) = v(\ell_3) = 0$  or without loss of generality,  $v(\ell_2) = n > 0$  and  $v(\ell_1) = v(\ell_3) = 0$ . Then in the first case, one readily verifies

using the valuations above that the cluster picture for  $\hat{C}$  is  $\hat{C}_{2a} \hat{\bullet} \hat{\bullet}_{n}_{-n}$ . And similarly, in the second case if  $v(\ell_2) = n > 0$  then the cluster picture for  $\hat{C}$ 

is  $()_{2a} ()_{2a} ()_{n} ()_{-n}$ . In both cases, these cluster pictures are in the equivalence class of  $()_{2a} ()_{2a} ()_{0} ()_{0}$  as required.

**<u>Case ON1C/D</u>**. Here  $v(\Delta_G^2) = 2r > 0$  so that  $v(\ell_1) = v(u_1) - r$ , and

$$v(\delta_1) = 2a, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = -2v(u_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2a + 2r - 2v(\ell_2) - 2v(\ell_3),$$

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2r - 2v(u_1) - 2v(\ell_3),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2r - 2v(u_1) - 2v(\ell_2).$$

If  $v(u_1) = v(\ell_2) = v(\ell_3) = 0$  then without loss of generality, let  $v(A_2 - A_3) = 2a$  so that the cluster picture of  $\hat{C}$  is that of Table 4.5 for ON1C/D. Otherwise, note that since  $v(\Delta_G^2) > 0$ , we have  $v(u_1), v(\ell_2), v(\ell_3) > 0$  (for otherwise, this forces others double roots mod  $\pi$  a contradiction to the cluster picture of C).

Write 
$$v(u_1) = n_1, v(\ell_2) = n_2, v(\ell_3) = n_3$$
. Assume that  $n_2 < n_3$ , then  $r = n_1 = n_2$ 

Assume that  $n_3 < n_2$ , then  $r = n_1 = n_3$  and the cluster picture for  $\hat{C}$  is

Assume that  $n_3 = n_2$  and  $r = n_1 = n_3$ . Then the cluster picture for  $\hat{C}$  is

Assume that  $n_3 = n_2$  and  $n_1 > n_3 = r$ . Then the cluster picture for  $\hat{C}$  is

$$\underbrace{ \bullet \underbrace{ \bullet } \bullet \underbrace{ \bullet } \bullet \underbrace{ \bullet }_{2a}_{2r} }_{-n_3+n_1} - n_1.$$

In all cases, the cluster pictures obtained are in the equivalence class of  $ext{as required}$ .

**<u>Frobenius action</u>**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = c(\alpha_1 - \alpha_2)(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$ .

#### Proof of Table 4.6

**Case ON2A/B.** Here  $v(\Delta_G^2) = 0$ , and

$$v(\delta_1) = 0, v(\delta_2) = 2a, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = -2v(\ell_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = -2v(\ell_2) - 2v(\ell_3),$$

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2a - 2v(\ell_1) - 2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2).$$

If  $v(\ell_1) = v(\ell_2) = v(\ell_3) = 0$  then without loss of generality, let  $v(A_3 - A_1)=2a$ so that the cluster picture of  $\hat{C}$  is that of Table 4.6 for ON2A/B. Otherwise, since  $v(\Delta_G^2) = 0$ , either  $v(\ell_1) = n > 0$  and  $v(\ell_2) = v(\ell_3) = 0$  or without loss of generality,  $v(\ell_2) = n > 0$  and  $v(\ell_1) = v(\ell_3) = 0$ . Then in the first case, one readily verifies

using the valuations above that the cluster picture for  $\hat{C}$  is  $\hat{C}_{2a} \rightarrow \hat{C}_{n}_{-n}$ . And similarly, in the second case if  $v(\ell_2) = n > 0$  then the cluster picture for  $\hat{C}$ 

is  $2a^{2a} \cdot a_{n}^{2a} \cdot a_{n}^{2a}$ . In both cases, these cluster pictures are in the equivalence class of  $2a^{2a} \cdot a_{n}^{2a} \cdot$ 

**<u>Case ON2C/D</u>**. Here  $v(\Delta_G^2) = 2r > 0$  so that  $v(\ell_1) = v(u_1) - r$ , and

$$v(\delta_1) = 0, v(\delta_2) = 2a, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = -2v(u_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2r - 2v(\ell_2) - 2v(\ell_3),$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2a + 2r - 2v(u_1) - 2v(\ell_3),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2r - 2v(u_1) - 2v(\ell_2).$$

If  $v(u_1) = v(\ell_2) = v(\ell_3) = 0$  then without loss of generality, let  $v(A_3 - A_1) = 2a$  so that the cluster picture of  $\hat{C}$  is that of Table 4.6 for ON2C/D. Otherwise, note that since  $v(\Delta_G^2) > 0$ , we have  $v(u_1), v(\ell_2), v(\ell_3) > 0$  (for otherwise, this forces others double roots mod  $\pi$  a contradiction to the cluster picture of C).

Write  $v(u_1) = n_1, v(\ell_2) = n_2, v(\ell_3) = n_3$ . Assume that  $n_2 < n_3$ , then  $r = n_1 = n_2$ 



Assume that  $n_3 < n_2$ , then  $r = n_1 = n_3$  and the cluster picture for  $\hat{C}$  is

$$\left( \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Assume that  $n_3 = n_2$  and  $r = n_1 = n_3$ . Then the cluster picture for  $\hat{C}$  is  $\textcircled{\diamond \diamond \diamond} (\diamond \textcircled{\diamond}_{2a})_{2r}$ 

Assume that  $n_3 = n_2$  and  $n_1 > n_3 = r$ . Then the cluster picture for  $\hat{C}$  is

$$\bigcirc \checkmark \diamondsuit \textcircled{\textcircled{2a}_{2a}}_{2r} \__{-n_3+n_1} \__{-n_1}$$

In all cases the cluster pictures obtained are in the equivalence class of



**<u>Frobenius action</u>**. By Proposition 3.4.30, the reduction at the node at  $\alpha_2$  is split if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3) \equiv_{\Box} 1$ .

#### Proof of Table 4.7

**Case ON3A/B**. Computing  $\ell_1$  we find that  $v(\ell_1) = 0$  with  $v(\Delta_G^2) = 0$ . From the definition of the isogeny, either  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  or *Frob* permutes  $\delta_2$  and  $\delta_3$  so that  $Frob(\alpha_2) = \alpha_3$ ,  $Frob(\alpha_3) = \alpha_2$  and similarly for  $\beta_2, \beta_3$ 

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = a, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = a$$
,  $v(A_2 - B_2)^2 = -2v(\ell_2)$ ,  $v(A_3 - B_3)^2 = -2v(\ell_3)$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = -2v(\ell_2) - 2v(\ell_3),$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_2).$$

It follows that  $v(A_1 - B_1) = \frac{a}{2}$  and if  $v(\ell_2) = v(\ell_3) = 0$  then the cluster picture of  $\hat{C}$  is that of Table 4.7 for ON3A/B. Otherwise, if  $v(\ell_2) = n_2 > 0$  then  $v(\ell_3) = 0$ . Indeed, by definition of  $\ell_2$  we have  $\beta_3 \equiv -\alpha_2$ . By definition of  $\ell_3$ , if  $v(\ell_3) > 0$  then  $\beta_2 \equiv -\alpha_2$ , a contradiction since  $\beta_3 \not\equiv \beta_2$ . Therefore we obtain the following cluster

picture for  $\hat{C}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}^{n}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}}^{n}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$   $\widehat{\mathbb{C}^{n}}$ 

if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \beta_2)(\alpha_2 - \beta_3) \equiv_{\Box} 1.$ 

#### Proof of Table 4.8

<u>**Case ON4A/B**</u>. Computing  $\ell_1$  we find that  $v(\Delta_G^2) = 0$ . From the definition of the isogeny,  $\alpha_1, \alpha_2, \beta_2 \in K$   $v(\alpha_1 - \alpha_2) = a \in \mathbb{Z}$  and

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = a,$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = -2v(\ell_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = a - 2v(\ell_3),$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = -2v(\ell_2) - 2v(\ell_3),$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2).$$

It follows that  $v(A_3 - B_3) = \frac{a}{2}$  and if  $v(\ell_1) = v(\ell_2) = v(\ell_3) = 0$  then the cluster picture of  $\hat{C}$  is that of Table 4.8 for ON4A/B. Otherwise, since  $v(\Delta_G) = 0$  it follows from Lemma 6.2.2.5, that either  $v(\ell_1) = n > 0$  and  $v(\ell_2) = v(\ell_3) = 0$  or without loss of generality,  $v(\ell_2) = n > 0$  and  $v(\ell_1) = v(\ell_3) = 0$ . Therefore we obtain

the following cluster picture for  $\hat{C}$ :

both cases, these cluster pictures are in the equivalence class of  $(2^{a})^{a} = (2^{a})^{a} = (2^$ 

**<u>Frobenius action</u>**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$ .

#### 5.3.3 C is of type $I_{2a,2b}$

#### Proof of Tables 4.9 and 4.10

By definition of the isogeny we have

$$v(\delta_1) = 2a, v(\delta_2) = 2b, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

 $\alpha_1 \equiv 0 \neq \alpha_2, \alpha_3, \beta_3$ . This yields  $v(\ell_3) = 0$  since  $\ell_3 \equiv -2c\alpha_2$ . Case TN1A/B/C/D. Here  $v(\Delta_G) = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\ell_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = 0,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2a - 2v(\ell_2),$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2b - 2v(\ell_1),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2).$$

If  $v(\ell_1) = v(\ell_2) = 0$  then without loss of generality, let  $v(A_2 - A_3) = 2a$  and  $(A_1 - B_3) = 2b$  so that the cluster picture of  $\hat{C}$  is that of Table 4.9 for TN1A/B/C/D. Otherwise, since  $v(\Delta_G^2) = 0$ , either  $v(\ell_1) = n > 0$  and  $v(\ell_2) = 0$  or  $v(\ell_2) = n > 0$  and  $v(\ell_1) = 0$ . Then in the first case, one readily verifies using the valuations above

that the cluster picture for  $\hat{C}$  is  $(\hat{v})_{2b} (\hat{v})_{2b} ($ 

**Case TN1E/F/G/H.** Here  $v(\Delta_G) = r > 0$  so that  $v(\ell_1) = v(u_1) - r$ . Note that here  $\alpha_1 \equiv 0 \neq \alpha_2 \equiv \beta_2 \mod \pi$ . In particular, computing  $\ell_2, \ell_3, u_1$ , one finds that  $\ell_3 \equiv -2c\beta_2$  and hence  $v(\ell_3) = 0$ . Since  $v(\Delta_G^2) > 0$  we find that if  $v(\ell_2) > 0$  or equivalently  $v(u_1) > 0$  then  $\alpha_3 \equiv 0 \mod \pi$  a contradiction to the cluster picture of C. Hence  $v(u_1) = v(\ell_2) = 0$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 0$$
,  $v(A_2 - B_2)^2 = 0$ ,  $v(A_3 - B_3)^2 = 0$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2r + 2a,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2r + 2b,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2r.$$

Thus without loss of generality, let  $v(A_2 - A_3) = 2a + r$  and  $(A_1 - B_3) = 2b + r$  so that the cluster picture of  $\hat{C}$  is that of Table 4.9 for TN1E/F/G/H.

**Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = c(\alpha_1 - \alpha_2)(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $\alpha_2$  is split if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{a,b}^{+,+}$ ,  $I_{a,b}^{-,+}$ ,  $I_{a,b}^{+,-}$ ,  $I_{a,b}^{-,-}$  in TN1A/B/C/D respectively. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_2$  and  $A_1$ , one finds that  $\hat{C}$ is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,-}$ ,  $I_{2a,2b}^{-,-}$  in TN1A/B/C/D respectively. Finally, since G(x)is a  $C_2 \times D_4$  polynomial, we have that  $\delta_1 \in K$  so that *Frob* does not permute any clusters in the cluster picture of *C* and similarly for  $\hat{C}$ .

#### Proof of Tables 4.11 and 4.12

By definition of the isogeny

$$v(\delta_1) = 0, v(\delta_2) = 2a, v(\delta_3) = 2b, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0.$$

Reducing invariants, we find that  $u_1 \equiv_{\Box} (\alpha_3 - \beta_2)^2$  so that  $v(u_1) = 0$ . Case TN2A/B/C/D/E. Here  $v(\Delta_G) = 0$  hence  $v(\ell_1) = 0$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 0$$
,  $v(A_2 - B_2)^2 = -2v(\ell_2)$ ,  $v(A_3 - B_3)^2 = -2v(\ell_3)$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = -2v(\ell_2) - 2v(\ell_3)$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2a - 2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2b - 2v(\ell_2).$$

If  $v(\ell_2) = v(\ell_3) = 0$  then without loss of generality, let  $v(A_1 - A_3) = 2a$  and  $(A_1 - A_2) = 2b$  so that the cluster picture of  $\hat{C}$  is that of Table 4.11 for TN2A/B/C/D/E. Otherwise, computing  $\ell_2$  and  $\ell_3$  and reducing mod  $\pi$  we find that  $\ell_2 \equiv 2c\alpha_3$  and  $\ell_3 \equiv -2c\beta_2$ . It follows from the isogeny that  $\alpha_3 \not\equiv \beta_2$  therefore either  $v(\ell_2) > 0$  and  $v(\ell_3) = 0$  or conversely  $v(\ell_3) > 0$  and  $v(\ell_2) = 0$ . In the first case, one readily verifies

using the valuations above that the cluster picture for  $\hat{C}$  is  $\hat{\mathbb{C}}_{2a} \otimes \hat{\mathbb{C}}_{2b}$ 

And similarly, in the second case, the cluster picture for  $\hat{C}$  is

**Case TN2E/F/G/H.** Here 
$$v(\Delta_G) = r > 0$$
 hence  $v(\ell_1) = -r$ . Computing  $\ell_2$ 

and  $\ell_3$  and reducing mod  $\pi$  we find that  $\ell_2 \equiv 2c\alpha_3$  and  $\ell_3 \equiv -2c\beta_2$ . But since  $v(\Delta_G) = r > 0$ , we also have  $\alpha_1^2 \equiv \alpha_3\beta_2$ . It follows from the cluster picture of C that  $\alpha_1 \neq 0$  so that  $v(\ell_2) = v(\ell_3) = 0$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 0$$
,  $v(A_2 - B_2)^2 = 0$ ,  $v(A_3 - B_3)^2 = 0$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2r,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2r + 2a,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2r + 2b.$$

Thus without loss of generality, let  $v(A_1 - A_3) = 2a + r$  and  $(A_1 - A_2) = 2b + r$  so that the cluster picture of  $\hat{C}$  is that of Table 4.12 for TN2F/G/H/I/J.

**<u>Frobenius action</u>**. By Proposition 3.4.30, the reduction at the node at  $\alpha_2$  is split if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $\alpha_3$  is split if and only if  $T_{\alpha_3} = c(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1)(\alpha_3 - \alpha_2)(\alpha_3 - \beta_2) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,+}$ ,  $I_{2a,2b}^{-,-}$  in TN1A/B/C respectively. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_1$  and  $B_1$ , one finds that  $\hat{C}$  is of type  $I_{4a,4b}^{+,+}$ ,  $I_{4a,4b}^{-,+}$ ,  $I_{4a,4b}^{-,-}$  in TN1A/B/C respectively. Computing  $(A_1 - B_1)^2$  and reducing mod  $\pi$  one finds that  $(A_1 - B_1)^2 \equiv (\alpha_3 - \beta_2)^2$  so that  $(A_1 - B_1)^2 \in K^{\times 2}$  in these 3 cases.

In TN2D/E, *Frob* permutes  $\delta_2$  and  $\delta_3$  (by semistability criterion,  $I_K$  acts trivially on clusters of size > 1). It follows that  $T_{\alpha_2}, T_{\alpha_3} \in K(\delta_2) \subseteq K^{nr}$ . For TN2D, we let  $T_{\alpha_2}, T_{\alpha_3} \in K(\delta_2)^{\times 2}$  so that *C* is of type  $I_{2a^22a}^+$ . For TN2E, we let  $T_{\alpha_2}, T_{\alpha_3} \notin K(\delta_2)^{\times 2}$  so that *C* is of type  $I_{2a^22a}^-$ . Since  $(A_1 - B_1)^2 \equiv (\alpha_3 - \beta_2)^2$ , it follows that  $(A_1 - B_1)^2 \notin K^{\times 2}$  in both cases. Finally, using Proposition 3.4.30 at the nodes  $A_1$  and  $B_1$  one finds that  $T_{A_1}$  and  $T_{B_1}$  are congruent to  $T_{\alpha_2}, T_{\alpha_3} \mod \pi$ . Therefore  $\hat{C}$  is of types  $I_{4a^24a}^+$  and  $I_{4a^24a}^-$  respectively.

Cases TN2F/G/H are similar to TN2A/B/C. However, cases TN2I/J are different since  $\hat{C}$  is deficient for v if r is odd.

#### Proof of Table 4.13

Case TN3A/B/C/D. By definition of the isogeny

$$v(\delta_1) = 2a, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = b, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

 $\alpha_1 \equiv 0 \not\equiv \alpha_2, \beta_2, \alpha_3$  and  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$  so that  $b \in \mathbb{Z}$ . Reducing invariants, we find that

$$\Delta_G \equiv -\alpha_3^2(\beta_2 - \beta_3), \quad \ell_1 \equiv \frac{-1}{c\alpha_3^2}, \quad \ell_2 \equiv c(\alpha_3 + \beta_3), \quad \ell_3 \equiv -c(\alpha_3 + \beta_2),$$

so that  $v(\Delta_G) = v(\ell_1) = 0$  and if  $v(\ell_2) > 0$  ( $v(\ell_3) > 0$  respectively) then  $v(\ell_3) = 0$  ( $v(\ell_2) = 0$  respectively).

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = b$$
,  $v(A_2 - B_2)^2 = -2v(\ell_2)$ ,  $v(A_3 - B_3)^2 = -2v(\ell_3)$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2a - 2v(\ell_2) - 2v(\ell_3),$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 0 - 2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 0 - 2v(\ell_2).$$

If  $v(\ell_2) = v(\ell_3) = 0$  then without loss of generality, let  $v(A_2 - A_3) = 2a$  so that the cluster picture of  $\hat{C}$  is that of Table 4.13 for TN3A/B/C/D. Otherwise, if  $v(\ell_2) = n > 0$  and  $v(\ell_3) = 0$  or conversely  $v(\ell_3) = n > 0$  and  $v(\ell_2) = 0$ one readily verifies using the valuations above that the cluster picture for  $\hat{C}$  is

 $\hat{C}$   $\hat{C}$ 

class of  $( \bullet \bullet )_{\underline{b}} ( \bullet \bullet )_{\underline{a}} ( \bullet \bullet )_{\underline{a}}$  as required.

**Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = c(\alpha_1 - \alpha_2)(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $\alpha_2$  is split if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,+}$ ,  $I_{2a,2b}^{-,-}$  in TN3A/B/C/D respectively. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_1$  and  $A_2$ , one finds that the reduction at the node at  $A_1$  is split if and only if  $\ell(A_1 - A_2)(A_1 - B_2)(A_1 - A_3)(A_1 - B_3) \equiv T_{\alpha_2} \equiv_{\Box} 1$ . Finally, the reduction at the node at  $A_2$  is split if and only if  $\ell(A_2 - A_1)(A_2 - B_1)(A_2 - A_3)(A_2 - B_3) \equiv T_{\alpha_1} \equiv_{\Box} 1$ . Therefore  $\hat{C}$  is of type  $I_{b,4a}^{+,+}$ ,  $I_{b,4a}^{-,+}$ ,  $I_{b,4a}^{-,-}$  in TN3A/B/C/D respectively. Finally, since G(x) is a  $C_2 \times D_4$  polynomial, we have that  $\delta_1 \in K$  so that *Frob* does not permute any clusters in the cluster picture of *C* and similarly for  $\hat{C}$ .
### Proof of Table 4.14

Case TN4A/B/C/D. By definition of the isogeny

$$v(\delta_1)=0, v(\delta_2)=0, v(\delta_3)=2a, v(\hat{\delta_1})=0, v(\hat{\delta_2})=0, v(\hat{\delta_3})=b,$$

 $\alpha_1, \alpha_2, \beta_2 \in K$  so that  $b \in \mathbb{Z}$ . Reducing invariants, we find that

$$\Delta_G \equiv c(\alpha_1 - \alpha_3)^2 (\alpha_1 + \beta_2), \quad u_1 \equiv \alpha_1 + \beta_2 - 2\alpha_3, \quad \ell_2 \equiv 2c\alpha_3, \quad \ell_3 \equiv -c(\alpha_1 + \beta_2),$$

so that  $v(\Delta_G) = v(\ell_3) = 0$  and  $v(\ell_1) = v(u_1)$ . Moreover, by Lemma 6.2.2.5., if  $v(\ell_1) > 0$  ( $v(\ell_2) > 0$  respectively) then  $v(\ell_2) = 0$  ( $v(\ell_1) = 0$  respectively). From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\ell_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = b,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = -2v(\ell_2),$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2a - 2v(\ell_1) - 2v(\ell_2).$$

If  $v(\ell_1) = v(\ell_2) = 0$  then without loss of generality, let  $v(A_1 - A_2) = 2a$  so that the cluster picture of  $\hat{C}$  is that of Table 4.14 for TN4A/B/C/D. Otherwise, if  $v(\ell_1) = n > 0$  and  $v(\ell_2) = 0$  or conversely  $v(\ell_2 = n) > 0$  and  $v(\ell_1) = 0$ one readily verifies using the valuations above that the cluster picture for  $\hat{C}$  is

class of  $(\textcircled{2}, \textcircled{2}, \rule{2}, \rule{2},$ 

**<u>Frobenius action</u>**. By Proposition 3.4.30, the reduction at the node at  $\alpha_3$  is split if and only if  $T_{\alpha_3} = c(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1)(\alpha_3 - \alpha_2)(\alpha_3 - \beta_2) \equiv_{\Box} 1$  and the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,+}$ ,  $I_{2a,2b}^{-,-}$ , in TN4A/B/C/D respectively. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_3$  and  $A_1$ , one finds that the reduction at the node at  $A_1$  is split if and only if  $\ell(A_3 - A_1)(A_3 - B_1)(A_3 - A_2)(A_3 - B_2) \equiv T_{\alpha_1} \equiv_{\Box} 1$ . Finally, the reduction at the node at  $A_1$  is split if and only if  $\ell(A_1 - B_1)(A_1 - B_2)(A_1 - A_3)(A_1 - B_3) \equiv T_{\alpha_3} \equiv_{\Box} 1$ . Therefore  $\hat{C}$  is of type  $I_{b,4a}^{+,+}, I_{b,4a}^{-,+}, I_{b,4a}^{+,-}, I_{b,4a}^{-,-}$  in TN4A/B/C/D respectively.

Proof of Table 4.15

Case TN5A/B/C/D. By definition of the isogeny

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = b, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = a,$$

 $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  so that  $a, b \in \mathbb{Z}$ . Reducing invariants, we find that

$$v(\Delta_G) = 0, \quad \ell_2 \equiv c(\alpha_3 + \beta_3), \quad \ell_3 \equiv -c(\alpha_1 + \alpha_3),$$

In particular,  $v(\ell_3) = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = b$$
,  $v(A_2 - B_2)^2 = -2v(\ell_2)$ ,  $v(A_3 - B_3)^2 = a - 2v(\ell_3)$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\ell_2) - 2v(\ell_3),$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2v(\ell_2).$$

If  $v(\ell_2) = 0$  then  $v(A_1 - B_1) = \frac{b}{2}$  and  $v(A_3 - B_3) = \frac{a}{2}$  so that the cluster picture of  $\hat{C}$  is that of Table 4.15 for TN5A/B/C/D. Otherwise, if  $v(\ell_2) = n > 0$  then one readily verifies using the valuations above that the cluster picture for  $\hat{C}$  is

 $\underbrace{\bullet}_{\frac{b}{2}} \underbrace{\bullet}_{\frac{a}{2}} \underbrace{\bullet}_{n}_{-n}$ , which is in the equivalence class of  $\underbrace{\bullet}_{\frac{b}{2}} \underbrace{\bullet}_{\frac{a}{2}} \underbrace{\bullet}_{\frac{a}{2}} \underbrace{\bullet}_{0}$  as required.

**Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = c2\alpha_1(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $\alpha_3$  is split if and only if  $T_{\alpha_3} = c(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1)(\alpha_3 - \alpha_2)(\alpha_3 - \beta_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{a,b}^{+,+}$ ,  $I_{a,b}^{-,+}$ ,  $I_{a,b}^{-,-}$  in TN5A/B/C/D respectively. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_1$  and  $A_3$ , one finds that the reduction at the node at  $A_1$  is split if and only if  $\ell(A_1 - A_2)(A_1 - B_2)(A_1 - A_3)(A_1 - B_3) \equiv T_{\alpha_3} \equiv_{\Box} 1$ . Finally, the reduction at the node at  $A_3$  is split if and only if  $\ell(A_3 - A_1)(A_3 - B_1)(A_3 - A_2)(A_3 - B_2) \equiv T_{\alpha_1} \equiv_{\Box} 1$ . Therefore  $\hat{C}$  is of type  $I_{b,a}^{+,+}$ ,  $I_{b,a}^{-,+}$ ,  $I_{b,a}^{+,-}$ ,  $I_{b,a}^{-,-}$  in TN5A/B/C/D respectively.

### Proof of Table 4.16

Case TN6A/B/C/D/E. By definition of the isogeny

$$v(\delta_1)=0, v(\delta_2)=0, v(\delta_3)=0, v(\hat{\delta_1})=0, v(\hat{\delta_2})=b, v(\hat{\delta_3})=a,$$

 $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$  for otherwise  $I_K$  would permute both clusters, a contradiction to the semistability criterion 3.4.29. Hence  $a, b \in \mathbb{Z}$ . Reducing invariants, we find that

$$v(\Delta_G) = v(\ell_2) = v(\ell_3) = 0.$$

In particular, we have  $v(\ell_1) = v(u_1)$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(u_1), \quad v(A_2 - B_2)^2 = b, \quad v(A_3 - B_3)^2 = a,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 0,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(u_1),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2v(u_1).$$

If  $v(u_1) = 0$  then  $v(A_2 - B_2) = \frac{b}{2}$  and  $v(A_3 - B_3) = \frac{a}{2}$  so that the cluster picture of  $\hat{C}$  is that of Table 4.16 for TN6A/B/C/D/E. Otherwise, if  $v(u_1) = n > 0$  then one readily verifies using the valuations above that the cluster picture for  $\hat{C}$  is

$$\underbrace{\left(\underbrace{\ast} \underbrace{\ast}_{\frac{a}{2}} \underbrace{\diamond}_{\frac{a}{2}} \underbrace{\bullet}_{n}\right)_{-n}}_{n}$$
, which is in the equivalence class of  $\underbrace{\left(\underbrace{\ast} \underbrace{\ast}_{\frac{a}{2}} \underbrace{\diamond}_{\frac{a}{2}} \underbrace{\bullet}_{\frac{a}{2}} \underbrace{\bullet}_{\frac{a}{2}}$ 

**Frobenius action**. Computing roots and invariants and reducing mod  $\pi$  we see that  $(A_2-A_3)^2 \equiv_{\Box} \alpha_1^2$ . It follows that Frob acts trivially on clusters for TN6A/B/C, while permuting them for TN6D/E. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \alpha_3)(\alpha_1 - \beta_2)(\alpha_1 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $-\alpha_1$  is split if and only if  $T_{-\alpha_1} = -2c\alpha_1(-\alpha_1 - \alpha_2)(-\alpha_1 - \beta_2)(-\alpha_1 - \beta_3) \equiv_{\Box} 1$ . It follows that C is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,+}$ ,  $I_{2a,2b}^{-,-}$  in TN6A/B/C respectively. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_3$  and  $A_2$ , one finds that the reduction at the node at  $A_3$  is split if and only if  $T_{A_3} = \ell(A_3 - A_1)(A_3 - B_1)(A_3 - A_2)(A_3 - B_2) \equiv T_{\alpha_1} \equiv_{\Box} 1$ . Finally, the reduction at the node at  $A_2$  is split if and only if  $T_{A_2} \equiv \ell(A_2 - A_1)(A_2 - B_1)(A_2 - B_3) \equiv_{\Box} T_{-\alpha_1} \equiv_{\Box} 1$ . Therefore  $\hat{C}$  is of type  $I_{a,b}^{+,+}$ ,  $I_{a,b}^{-,-}$  in TN6A/B/C respectively. For TN6D/E we have  $\alpha_1^2 \notin K^{\times 2}$  and hence since  $(A_2 - A_3)^2 \equiv_{\Box} \alpha_1^2$ , it follows

that Frob permutes both clusters in the cluster picture of  $\hat{C}$ . For TN6D, we let  $T_{\alpha_1}, T_{-\alpha_1} \in K(\delta_2)^{\times 2} = K(\delta_3)^{\times 2}$  so that C is of type  $I_{2a^22a}^+$ . Moreover as noted above, since  $T_{A_3} \equiv_{\Box} T_{\alpha_1}$  and  $T_{A_2} \equiv_{\Box} T_{-\alpha_1}$ , it follows that  $\hat{C}$  is of type  $I_{a^2a}^+$ . Similarly, for TN6E, so that C is of type  $I_{2a^22a}^-$  and  $I_{a^2a}^-$ .

### Proof of Tables 4.17, 4.18 and 4.19

By definition of the isogeny

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = a + b, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

Without loss of generality, assume  $a \leq b$ . Write

$$\alpha_3 = \alpha_2 + a_3 \pi^a, \quad \beta_3 = \beta_2 + b_3 \pi^b, \quad a_3, b_3 \in \mathcal{O}_{\overline{K}}^{\times}.$$

By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3\pi^{b-a}(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^b(\alpha_2 + \beta_2) \right),$$
  
$$u_1 = -a_3\pi^a - b_3\pi^b, \quad \ell_2 = c(\alpha_2 + \beta_2 + a_3\pi^a + b_3\pi^b), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

It follows that if a < b then  $v(\Delta_G) = a$ ,  $v(u_1) = a$ . In particular,  $v(\ell_1) = 0$  and  $v(\ell) \in 2\mathbb{Z}$ .

If a = b then

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^a(\alpha_2 + \beta_2) \right),$$
  
$$u_1 = -\pi^a(a_3 + b_3), \quad \ell_2 = c(\alpha_2 + \beta_2 + \pi^a(a_3 + b_3)), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Therefore

$$v(\Delta_G) = a + r, \quad r = v \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^a(\alpha_2 + \beta_2) \right),$$
$$v(u_1) = a + n_1, \quad n_1 = v(a_3 + b_3),$$
$$v(\ell_2) = v(\alpha_2 + \beta_2 + \pi^a(a_3 + b_3)), \quad v(\ell_3) = v(\alpha_2 + \beta_2).$$

In particular,  $v(\ell_1) = n_1 - r$ .

Case TN7A/B/C/D : Here we let a < b so that  $v(\Delta_G) = a$ ,  $v(u_1) = a$  and  $v(\ell_1) = 0$ .  $v(\ell_2) = 0$  if  $v(\ell_3) = 0$  or  $v(\ell_2) \ge \min\{a, v(\ell_3)\}$  and by semistability criterion 3.4.29, we have  $v(\ell) \in 2\mathbb{Z}$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = a + b - 2v(\Delta_G) - 2v(\ell_1) = a + b - 2a = b - a,$$

$$v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3)$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2a - 2v(\ell_2) - 2v(\ell_3),$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(\ell_3),$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2v(\ell_2).$$

If  $v(\ell_2) = v(\ell_3) = 0$  then we have, without loss of generality, let  $v(A_2 - A_3) = v(B_2 - B_3) = a$  and  $v(A_1 - B_1) = \frac{b-a}{2}$  so that the cluster picture of  $\hat{C}$  is that of Table 4.17 for TN7A/B/C/D. Otherwise,

if  $v(\ell_3) = n_3 > 0$  with  $n_3 > a$ , then  $v(\ell_2) = a$  and the cluster picture for  $\hat{C}$ 

is 
$$( \bullet \bullet_{a} \bullet_{a} \bullet_{a} \bullet_{a+n_{3}} \bullet_{$$

If  $v(\ell_3) = n_3 > 0$  with  $n_3 < a$ , then  $v(\ell_2) = v(\ell_3)$  and the cluster picture for

$$\hat{C}$$
 is  $\hat{C} = \hat{C} = \hat{C}$ 

If  $v(\ell_3) = n_3 > 0$  with  $n_3 = a$ , then if  $v(\ell_2) = v(\ell_3) = a$ , the cluster picture for  $\hat{C}$  is  $v(\ell_3) = a$ , the cluster picture for

$$\hat{C}$$
 is  $\hat{C}$  is  $\hat{C}$ 

**Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_2$  is split if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \beta_2)(\alpha_2 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $\beta_2$  is split if and only if  $T_{\beta_2} = c(\beta_2 - \alpha_1)(\beta_2 + \alpha_1)(\beta_2 - \alpha_2)(\beta_2 - \alpha_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,+}$ ,  $I_{2a,2b}^{-,-}$  in TN7A/B/C/D respectively. Now computing invariants, one finds that  $(A_2 - B_2)^2 \equiv_{\Box} (\alpha_2 + \beta_2)^2 T_{\alpha_2} T_{\beta_2}$ .

Now computing invariants, one finds that  $(A_2 - B_2)^2 \equiv_{\Box} (\alpha_2 + \beta_2)^2 T_{\alpha_2} T_{\beta_2}$ . Here  $(\alpha_2 + \beta_2)^2 \in K^{\times 2}$ , it follows that  $(A_2 - B_2)^2 \in K^{\times 2}$  for TN7A/D and  $(A_2 - B_2)^2 \notin K^{\times 2}$  for TN7B/C. Also, using Proposition 3.4.30, one finds that  $\hat{C}$  is of type  $U^+$  ( $U^-$  respectively) if  $\ell \in K^{\times 2}$  ( $\ell \notin K^{\times 2}$  respectively). Computing  $\ell$  yields  $\ell \equiv_{\Box} c(\beta_2 - \alpha_1)(\beta_2 + \alpha_1)(\alpha_2 + \beta_2)^2 \equiv T_{\beta_2}$ . Therefore  $\ell \in K^{\times 2}$  for TN7A/B and  $\ell \notin K^{\times 2}$  for TN7C/D. This yields that  $\hat{C}$  is of type  $U^+_{2a,2a,b-a}$  for TN7A,  $U^+_{2a^22a,b-a}$  for TN7B,  $U^-_{2a^22a,b-a}$  for TN7C,  $U^-_{2a,2a,b-a}$  for TN7D.

**Remark 5.3.11.** Since  $\alpha_2 \equiv \alpha_3$  and  $\beta_2 \equiv \beta_3$ , it follows that  $2a \text{ odd} \Leftrightarrow 2b \text{ odd}$ .

**Tamagawa numbers and deficiency** :  $\lambda_v$  is clear for computations of Tamagawa

numbers and deficiency given in Table 3.1 except for TN7C/D.Therefore, for TN7C we have

$$(-1)^{ord_2(\frac{c_v}{\hat{c}_v})} = 1 \Leftrightarrow b \equiv 1 \mod 2, \quad (-1)^{ord_2(\frac{m_v}{\hat{m}_v})} = 1 \Leftrightarrow b - a \equiv 1 \mod 2,$$

which yields that  $\lambda_v = -1$  if and only if  $b \equiv a \mod 2$  as required.

For TN7D we use the following lemma.

### Lemma 5.3.12.

- 1. For  $a, b \in \mathbb{Z}$ . If b a is odd then d = gcd(2a, b a) is odd and  $\frac{4ab}{d}$  is even. If b a is even then d is even and  $\frac{4ab}{d}$  is even.
- 2. For  $a, b \in \frac{1}{2}\mathbb{Z}$  with 2a, 2b odd. If b-a odd then d = gcd(2a, b-a) is odd and  $\frac{4ab}{d}$  is odd. If b-a even then d is odd and  $\frac{4ab}{d}$  is odd.

*Proof.* 1) The first claim is clear. If b-a is even with a, b odd then 2 divides exactly once 2a, and hence d. On the other hand, 4 divides exactly once 4ab so that  $\frac{4ab}{d}$  is even. Finally if b-a is even with a, b even write  $a = 2^n a'$  and  $b = 2^m b'$  with  $n \le m$ . Then  $2^n$  divides exactly d and  $4ab = 2^{n+m+2}a'b'$  so that  $\frac{4ab}{d}$  is even.

2) This is clear since 4ab is odd and d is odd.

Hence, if  $a, b \in \mathbb{Z}$  then  $c_v = 4$ ,  $m_v = 1$  and if b - a is even then  $\hat{c}_v = 4$  and  $\hat{m}_v = 1$ , if b - a is odd, then ,  $\hat{c}_v = 2$  and  $\hat{m}_v = 2$ . Therefore in this case

$$(-1)^{ord_2(\frac{c_v}{\hat{c}_v})} = 1 \Leftrightarrow b - a \equiv 0 \mod 2, \quad (-1)^{ord_2(\frac{m_v}{\hat{m}_v})} = 1 \Leftrightarrow b - a \equiv 0 \mod 2.$$

If  $a, b \in \frac{1}{2}\mathbb{Z}$  then  $c_v = 1, m_v = 1$  and

if b - a is even then  $\hat{c}_v = 1$  and  $\hat{m}_v = 1$ ,

if b - a is odd, then ,  $\hat{c}_v = 1$  and  $\hat{m}_v = 2$ . Therefore in this case

$$(-1)^{ord_2(\frac{c_v}{c_v})} = 1, \quad (-1)^{ord_2(\frac{m_v}{m_v})} = 1 \Leftrightarrow b - a \equiv 0 \mod 2.$$

Therefore,  $\lambda_v = 1$  if and only if  $2a \equiv b - a \mod 2$ , equivalently if  $b - a \equiv 0 \mod 2$  as required.

<u>Case TN7E/F/G/H/I</u>: Here a = b but we let  $v(\Delta_G) = 2a$  so that  $v(\ell_1) = n_1$ . Also,  $v(\ell_2) = 0$  if  $v(\ell_3) = 0$  or  $v(\ell_2) \ge \min\{a, v(\ell_3)\}$  and by semistability criterion 3.4.29, we have  $v(\ell) \in 2\mathbb{Z}$ . Recall that in this case

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^a(\alpha_2 + \beta_2) \right)$$
$$u_1 = -\pi^a(a_3 + b_3), \quad \ell_2 = c(\alpha_2 + \beta_2 + \pi^a(a_3 + b_3)), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Therefore

$$v(\Delta_G) = a \quad v \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^a(\alpha_2 + \beta_2) \right) = 0,$$
$$v(u_1) = a + n_1, \quad n_1 = v(a_3 + b_3),$$
$$v(\ell_2) = v(\alpha_2 + \beta_2 + \pi^a(a_3 + b_3)), \quad v(\ell_3) = v(\alpha_2 + \beta_2).$$

In particular,  $v(\ell_1) = n_1$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 2a - 2v(\Delta_G) - 2v(\ell_1) = 2a - 2a - 2n_1 = -2n_1$$
$$v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = -2v(\ell_3),$$

and P.7, P.8 and P.9 give

$$v((A_2-A_3)(A_2-B_3)(B_2-A_3)(B_2-B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2a - 2v(\ell_2) - 2v(\ell_3)$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2n_1 - 2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2n_1 - 2v(\ell_2).$$
If  $n_1 = v(\ell_2) = v(\ell_3) = 0$  then, without loss of generality, let  $v(A_2 - A_3) = v(B_2 - 2k)$ 

If  $n_1 = v(\ell_2) = v(\ell_3) = 0$  then, without loss of generality, let  $v(A_2 - A_3) = v(B_2 - B_3) = a$  so that the cluster picture of  $\hat{C}$  is that of Table 4.18 for TN7E/F/G/H/I. Otherwise, assume that  $n_1=0$  then

if  $v(\ell_3) = n_3 > 0$  with  $n_3 > a$ , then  $v(\ell_2) = a$  and the cluster picture for  $\hat{C}$ 

is 
$$\mathbf{1}$$

If  $v(\ell_3) = n_3 > 0$  with  $n_3 < a$ , then  $v(\ell_2) = v(\ell_3)$  and the cluster picture for

 $\hat{C}$  is  $\hat{\mathbf{A}} = \hat{\mathbf{A}}_{a} \hat{\mathbf{A}}_{a} \hat{\mathbf{A}}_{a-n_{3}} \hat{\mathbf{A}}_{a-n_{3}}$ 

If  $v(\ell_3) = n_3 > 0$  with  $n_3 = a$ , then if  $v(\ell_2) = v(\ell_3) = a$ , the cluster picture

for  $\hat{C}$  is  $\hat{C}$  and if  $v(\ell_2) > v(\ell_3) = a$ , the cluster picture for  $\hat{C}$  is  $\hat{C} = a$ ,  $\hat{C$ 

Finally, if  $n_1 > 0$  then since  $v(\Delta_G) = a$  we have  $v(\ell_2) = v(\ell_3) = 0$  and the

cluster picture of  $\hat{C}$  is  $(\hat{C} \otimes \hat{C})^{a} \otimes \hat{C}^{a} \otimes \hat{C} \otimes \hat{C}^{a} \otimes \hat{C}^{a}$ 

All are in the equivalence class of  $( \diamond \diamond_a \diamond \diamond_a \bullet \bullet_0 )_0$  as required. **Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_2$  is split

**Problem as action**. By Proposition 3.4.50, the reduction at the node at  $\alpha_2$  is split if and only if  $T_{\alpha_2} = c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_2 - \beta_2)(\alpha_2 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $\beta_2$  is split if and only if  $T_{\beta_2} = c(\beta_2 - \alpha_1)(\beta_2 + \alpha_1)(\beta_2 - \alpha_2)(\beta_2 - \alpha_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{2a,2a}^{+,+}$ ,  $I_{2a,2a}^{-,-}$  in TN7E/F/G respectively.

Now computing invariants, one finds that  $\hat{\delta}_2 \equiv_{\Box} \hat{\delta}_3 \equiv_{\Box} T_{\alpha_2} T_{\beta_2}$ . It follows that  $\hat{\delta}_2, \hat{\delta}_3 \in K^{\times 2}$  for TN7F and  $\hat{\delta}_2, \hat{\delta}_3 \notin K^{\times 2}$  for TN7E/G. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_2$  and  $A_B$ , one finds that the reduction at the node at  $A_2$  is split multiplicative if and only if  $T_{A_2} = \ell(A_2 - A_1)(A_2 - B_1)(A_2 - B_2)(A_2 - B_3) \equiv_{\Box} 1$ . Finally, the reduction at the node at  $B_2$  is split multiplicative if and only if  $T_{B_2} \equiv \ell(B_2 - A_1)(B_2 - B_1)(B_2 - A_2)(B_2 - A_3) \equiv_{\Box} 1$ . However, computing  $T_{A_2}, T_{B_2}$  we have that  $T_{A_2}T_{B_2} \equiv_{\Box} \delta_2 \equiv \delta_3$ . Therefore  $\hat{C}$  is of type  $I_{2a,2a}^{+,+}, I_{2a^-2a}^{+,+,+}$ ,  $I_{2a,2a}^{-,-,-,-}$  in TN7E/F/G respectively.

**Remark 5.3.13.** It could be argued that for TN7G, since  $T_{A_2}T_{B_2} \equiv_{\Box} \delta_2 \equiv \delta_3 \equiv 1$ , we could have  $T_{A_2}, T_{B_2} \in K^{\times 2}$ . However, this is not possible since the order of *Frob* on the components of both special fibers of C and  $\hat{C}$  is preserved (e.g. because it can be read of the local factor of the *L*-function). That is, for TN7E, *Frob* acts trivially on the components of the special fiber of C, therefore its action is also trivial on that of  $\hat{C}$ . Similarly, for TN7G, *Frob* has order 2 on both 2*a*-gone of the special fiber of C. It follows that *Frob* has order 2 on both 2*a*-gone of the special fiber of  $\hat{C}$  and hence that  $\hat{C}$  is of type  $I_{2a,2a}^{-,-}$ .

Finally, for TN7H : Let  $t_{\alpha_2}^+, t_{\alpha_2}^-$ , (respectively  $t_{\beta_2}^+, t_{\beta_2}^-$ ) denote the square roots of  $T_{\alpha_2}$ , (resp.  $T_{\beta_2}$ ); i.e.  $(t_{\alpha_2}^+)^2 = (t_{\alpha_2}^-)^2 = T_{\alpha_2}$ . Since C is of type  $I_{2a\tilde{2}a}^{+,+}$ , it follows that Frob has order 2 on  $t_{\alpha_2}^+, t_{\beta_2}^+$ . Hence, without loss of generality, let  $Frob(t_{\alpha_2}^+) = t_{\beta_2}^+$ ,  $Frob(t_{\beta_2}^+) = (t_{\alpha_2}^+)$  and  $Frob(t_{\alpha_2}^-) = t_{\beta_2}^-$ ,  $Frob(t_{\beta_2}^-) = (t_{\alpha_2}^-)$ . Since, as above

$$d\ell_2 \equiv d\ell_3 \equiv_\square T_{\alpha_2} T_{\beta_2},$$

and

$$T_{\alpha_2}T_{\beta_2} = (t_{\alpha_2}^+)^2 (t_{\beta_2}^+)^2 = (t_{\alpha_2}^+ t_{\beta_2}^+)^2,$$

with  $Frob(t_{\alpha_2}^+t_{\beta_2}^+) = t_{\alpha_2}^+t_{\beta_2}^+$ , it follows that  $t_{\alpha_2}^+t_{\beta_2}^+ \in K^{\times}$  and  $d\ell_2, d\ell_3 \in K^{\times 2}$ .

Also, using P.8 we have that  $\delta_2 = 4\ell_1^2\ell_3^2(A_3-A_1)(A_3-B_1)(B_3-A_1)(B_3-B_1)$ . Write  $\alpha_3 = a_3\pi^a + \alpha_2$  and  $\beta_3 = b_3\pi^a + \beta_2$ , then either  $Frob(\alpha_2) = \beta_2$  and  $Frob(\alpha_3) = \beta_3$  in which case  $Frob(a_3) = b_3$ ,  $Frob(b_3) = a_3$  or  $Frob(\alpha_2) = \beta_3$  and  $Frob(\alpha_3) = \beta_2$  in which case  $Frob(a_3) = -b_3$ ,  $Frob(b_3) = -a_3$ . In both cases,  $\delta_2 \equiv_{\Box} T_{A_2}T_{B_2}$ , with  $T_{A_2}, T_{B_2} \in K$ . Since  $\delta_2 \equiv \delta_3 \notin K^{\times 2}$  it follows that, without loss of generality,  $T_{A_2} \in K^{\times 2}$  and  $T_{B_2} \notin K^{\times 2}$ . Therefore,  $\hat{C}$  is of type  $I_{2a,2a}^{-,+}$  as required. For TN7F : Here *Frob* has order 4 on  $t_{\alpha_2}^+$ , hence we have  $Frob(t_{\alpha_2}^+) = t_{\beta_2}^+$ ,  $Frob(t_{\beta_2}^+) = t_{\alpha_2}^-$ ,  $Frob(t_{\alpha_2}^-) = t_{\beta_2}^-$ ,  $Frob(t_{\beta_2}^-) = t_{\alpha_2}^+$ . It follows that  $Frob(t_{\alpha_2}^+ t_{\beta_2}^+) = t_{\beta_2}^+ t_{\alpha_2}^-$  so that  $t_{\alpha_2}^+ t_{\beta_2}^+ \notin K$  and  $\hat{\delta}_2 \equiv \hat{\delta}_3 \equiv T_{\alpha_2} T_{\beta_2} = (t_{\alpha_2}^+ t_{\beta_2}^+)^2 \notin K^{\times 2}$ . It follows that  $Frob(T_{A_2}) = T_{B_2}$  and using P.8 as above we have  $T_{A_2} T_{B_2} \equiv_{\Box} \delta_2 \equiv \delta_3 \notin K^{\times 2}$ . Writing  $T_{A_2} T_{B_2} = (t_{A_2})^2 (t_{B_2})^2 = (t_{A_2} t_{B_2})^2$ , it follows that  $t_{A_2} t_{B_2} \notin K$  and therefore  $\hat{C}$  is of type  $I_{2a^-2a}^{-,+}$ .

**Case TN7J/K/L/M/N** : Here a = b but we let  $v(\Delta_G) = a + r > a$ . Recall that

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^a(\alpha_2 + \beta_2) \right),$$
$$u_1 = -\pi^a(a_3 + b_3), \quad \ell_2 = c(\alpha_2 + \beta_2 + \pi^a(a_3 + b_3)), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

In particular,  $v(\ell_1) = a + n_1 - r$  where  $v(a_3 + b_3) = n_1$ . Note that since  $v(\Delta_G) > a$ we have  $a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) \equiv -b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)$ . Now if  $v(\ell_3) > 0$  or  $v(u_1) > a$ this yields another congruence between roots, contradicting the cluster picture of C. Therefore  $v(\ell_3) = v(\ell_2) = n_1 = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 2a - 2v(\Delta_G) - 2v(\ell_1) = 2a - 2(a+r) - 2(-r) = 0,$$
  
 $v(A_2 - B_2)^2 = 0, \quad v(A_3 - B_3)^2 = 0,$ 

and P.7, P.8 and P.9 give

$$v((A_{2} - A_{3})(A_{2} - B_{3})(B_{2} - A_{3})(B_{2} - B_{3})) = 2v(\Delta_{G}) - 2v(\ell_{2}) - 2v(\ell_{3}) = 2(a + r),$$
  

$$v((A_{3} - A_{1})(A_{3} - B_{1})(B_{3} - A_{1})(B_{3} - B_{1})) = -2v(\ell_{1}) - 2v(\ell_{3}) = 2r,$$
  

$$v((A_{1} - A_{2})(A_{1} - B_{2})(B_{1} - A_{2})(B_{1} - B_{2})) = -2v(\ell_{1}) - 2v(\ell_{2}) = 2r.$$

Thus we have the following cluster picture  $\boxed{\textcircled{r}}_{a}$ ,  $\boxed{\textcircled{r}}_{b}$  as required. **Frobenius action, Tamagawa numbers and deficiency**. Follows from the previous case, except for TN7K/N where deficiency is different but readily computable from Table 3.1.

#### Proof of Tables 4.20, 4.21 and 4.22

By definition of the isogeny

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = a + b,$$

Since G(x) is a  $C_2 \times D_4$  polynomial, we have  $\delta_1 \in K$ , therefore  $\alpha_1, \alpha_2, \beta_2 \in K^{nr}$ for otherwise  $I_K$  would permute both clusters, a contradiction to the semistability criterion 3.4.29. Hence  $a, b \in \mathbb{Z}$ . Without loss of generality, assume  $a \leq b$ . Write

$$\alpha_2 = \alpha_1 + a_2 \pi^a, \quad \beta_2 = -\alpha_1 + b_2 \pi^b, \quad a_2, b_2 \in \mathcal{O}_{\overline{K}}^{\times}.$$

By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) + b_2\pi^{b-a}(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) - a_2b_2\pi^b(\alpha_3 + \beta_3)),$$

$$u_1 = a_2 \pi^a + b_2 \pi^b - \alpha_3 - \beta_3, \quad \ell_2 = c(\alpha_3 + \beta_3), \quad \ell_3 = -c(a_2 \pi^a + b_2 \pi^b).$$

It follows that if a < b then  $v(\Delta_G) = a$ ,  $u_1 = a_2\pi^a - \alpha_3 - \beta_3$ ,  $v(\ell_3) = a$ . If a = b then

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) + b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) - a_2b_2\pi^a(\alpha_3 + \beta_3)),$$
$$u_1 = \pi^a (a_2 + b_2) - \alpha_3 - \beta_3, \quad \ell_2 = c(\alpha_3 + \beta_3), \quad \ell_3 = -c\pi^a (a_2 + b_2).$$

Therefore

$$v(\Delta_G) = a + r, \quad r = v \left( a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) + b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) - a_2b_2\pi^a(\alpha_3 + \beta_3) \right),$$
$$v(\ell_3) = a + r_3, \quad r_3 = v(a_2 + b_2),$$
$$v(u_1) = v(\pi^a(a_2 + b_2) + \alpha_3 + \beta_3), \quad v(\ell_2) = v(\alpha_3 + \beta_3).$$

In particular,  $v(\ell_1) = v(u_1) - a - r$ .

Case TN8A/B/C/D: Here we let a < b so that  $v(\Delta_G) = a, v(\ell_3) = a$  and  $v(\ell_1) = v(u_1) - a$ .  $v(u_1) = 0$  if  $v(\ell_2) = 0$  or  $v(u_1) \ge \min\{a, v(\ell_2)\}$  and by semistability criterion 3.4.29, we have  $v(\ell) \in 2\mathbb{Z}$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2a - 2v(u_1) + 2a = -2v(u_1),$$

$$v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = a + b - 2v(\ell_3) = a + b - 2a = b - a_3$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3)$$
$$= 2a - 2v(\ell_2) - 2a = -2v(\ell_2),$$

 $v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(u_1) + 2a - 2a = -2v(u_1),$  $v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2v(u_1) + 2a - 2v(\ell_2).$  If  $v(\ell_2) = 0$  then  $v(u_1) = 0$  and we have, without loss of generality, let  $v(A_1 - A_2) =$  $v(B_1 - B_2) = a$  and  $v(A_3 - B_3) = \frac{b-a}{2}$  so that the cluster picture of  $\hat{C}$  is that of Table 4.20 for TN8A/B/C/D. Otherwise,

if  $v(\ell_2) = n_2 > 0$  with  $n_2 > a$ , then  $v(u_1) = a$  and the cluster picture for  $\hat{C}$ 

 $\boxed{\textcircled{\diamond}}_{a} \underbrace{\textcircled{\diamond}}_{a} \underbrace{\textcircled{\diamond}}_{a}_{a} \underbrace{\textcircled{\diamond}}_{a}_{a+n_{2}} \underbrace{\textcircled{\diamond}}_{a+n_{2}}_{a+n_{2}}$ 

If  $v(\ell_2) = n_2 > 0$  with  $n_2 < a$ , then  $v(u_1) = v(\ell_2)$  and the cluster picture for

$$\hat{C}$$
 is  $\hat{C} = \hat{C} = \hat{C}$ 

If  $v(\ell_2) = n_2 > 0$  with  $n_2 = a$ , then if  $v(u_1) = v(\ell_2) = a$ , the cluster picture

for  $\hat{C}$  is

 $\mathbf{A}_{a}$   $\mathbf{A}_{2}$   $\mathbf{A}_{a}$   $\mathbf{A}_{a}$   $\mathbf{A}_{a}$   $\mathbf{A}_{a}$   $\mathbf{A}_{a}$  and if  $v(u_{1}) > v(\ell_{2}) = a$ , the cluster picture for

All are in the equivalence class of  $(\bullet \diamond_a \bullet_b \bullet_b \bullet_b \bullet_a)_{b-a}$  as required. **Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv \Box 1$  and the reduction at the node at  $-\alpha_1$  is split if and only if  $T_{-\alpha_1} = -2c\alpha_1(-\alpha_1 - \alpha_2)(-\alpha_1 - \alpha_3)(-\alpha_1 - \beta_3) \equiv_{\Box} 1$ . It follows that C is of type  $I_{2a,2b}^{+,+}$ ,  $I_{2a,2b}^{-,+}$ ,  $I_{2a,2b}^{-,-}$  in TN8A/B/C/D respectively.

Now computing invariants, one finds that  $(A_1 - B_1)^2 \equiv_{\Box} (\alpha_3 + \beta_3)^2 T_{\alpha_1} T_{-\alpha_1}$ . Here  $(\alpha_3 + \beta_3)^2 \in K^{\times 2}$ , it follows that  $(A_1 - B_1)^2 \in K^{\times 2}$  for TN8A/D and  $(A_1 - B_1)^2 \in K^{\times 2}$  $(B_1)^2 \notin K^{\times 2}$  for TN8B/C. Also, using Proposition 3.4.30, one finds that  $\hat{C}$  is of type  $U^+$  ( $U^-$  respectively) if  $\ell \in K^{\times 2}$  ( $\ell \notin K^{\times 2}$  respectively). Computing  $\ell$  yields  $\ell \equiv_{\Box} c(\alpha_1 + \beta_3)(\alpha_1 + \alpha_3) \equiv T_{-\alpha_1}$ . Therefore  $\ell \in K^{\times 2}$  for TN8A/B and  $\ell \notin K^{\times 2}$  for TN8C/D. This yields that  $\hat{C}$  is of type  $U^+_{2a,2a,b-a}$  for TN8A,  $U^+_{2a\tilde{}2a,b-a}$  for TN8B,  $U_{2a\tilde{2}a,b-a}^{-}$  for TN8C,  $U_{2a,2a,b-a}^{-}$  for TN8D

### Tamagawa numbers and deficiency:

 $\lambda_v$  is clear for computations of Tamagawa numbers and deficiency given in Table 3.1 except for TN8D. Here D = gcd(2a, b - a) with  $2a \in 2\mathbb{Z}$ . Hence  $D \equiv$  $b - a \mod 2$ . It follows that if b - a is odd, then  $\frac{4a^2}{D}$  is even so that  $\hat{c}_v = 2$ , Otherwise,  $\frac{4a^2}{D}$  is even and D is even, hence  $\hat{c}_v = 4$ . Therefore  $\lambda_v = (-1)^{b-a}$ .

**Case TN8E/F/G/H/I** : Here a = b but we let  $v(\Delta_G) = 2a$ . Recall that if a = b

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) + b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) - a_2b_2\pi^a(\alpha_3 + \beta_3))$$
$$u_1 = \pi^a (a_2 + b_2) - \alpha_3 - \beta_3, \quad \ell_2 = c(\alpha_3 + \beta_3), \quad \ell_3 = -c\pi^a (a_2 + b_2).$$

Therefore

$$v(\Delta_G) = a + r, \quad r = v \left( a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) + b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) - a_2 b_2 \pi^a(\alpha_3 + \beta_3) \right),$$
$$v(\ell_3) = a + n_3, \quad r_3 = v(a_2 + b_2),$$
$$v(u_1) = v(\pi^a(a_2 + b_2) + \alpha_3 + \beta_3), \quad v(\ell_2) = v(\alpha_3 + \beta_3).$$

In particular, we set r = 0 so that  $v(\ell_1) = v(u_1) - a$  and  $v(u_1) = 0$  if  $v(\ell_2) = 0$ , otherwise if  $v(\ell_2) = n_2 > 0$ , then  $v(u_1) \ge \min\{n_2, a\}$ . By semistability criterion 3.4.29, we have  $v(\ell) \in 2\mathbb{Z}$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2a - 2v(u_1) + 2a + 2r = -2v(u_1),$$
$$v(A_2 - B_2)^2 = -2v(\ell_2), \quad v(A_3 - B_3)^2 = 2a - 2a - 2n_3 = -2n_3,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = -2v(\ell_2) - 2n_3,$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(u_1) - 2n_3,$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2v(u_1) + 2a - 2v(\ell_2).$$
  
If  $u_1 = -2v(\ell_1) - 2v(\ell_2) = -2v(u_1) + 2a - 2v(\ell_2)$ .

If  $n_3 = v(\ell_2) = v(u_1) = 0$  then we have, without loss of generality, let  $v(A_1 - A_2) = v(B_1 - B_2) = a$  so that the cluster picture of  $\hat{C}$  is that of Table 4.21 for TN8E/F/G/H/I. Otherwise, assume that  $n_3 = 0$ , then

if  $v(\ell_2) = n_2 > 0$  with  $n_2 > a$ , then  $v(u_1) = a$  and the cluster picture for  $\hat{C}$ 

is 
$$\mathbf{U}_{a} (\mathbf{0}) = \mathbf{1}_{a} \mathbf{0}_{a}$$

If  $v(\ell_2) = n_2 > 0$  with  $n_2 < a$ , then  $v(u_1) = v(\ell_2)$  and the cluster picture for

$$\hat{C}$$
 is  $\hat{C}$  is  $\hat{C}$ 

If  $v(\ell_2) = n_2 > 0$  with  $n_2 = a$ , then if  $v(u_1) = v(\ell_2) = a$ , the cluster picture

for  $\hat{C}$  is  $e^{-a}$ , and if  $v(u_1) > v(\ell_2) = a$ , the cluster picture for  $\hat{C}$  is

Finally, if  $n_3 > 0$  then since  $v(\Delta_G) = a$  we have  $v(u_1) = v(\ell_2) = 0$  and the

cluster picture of  $\hat{C}$  is  $\widehat{(\bullet \diamond_a \bullet \diamond_a \bullet_{n_3})}_{-n_3}$ 

All are in the equivalence class of  $( \bullet \bullet_a \bullet_$ 

**Frobenius action**. By Proposition 3.4.30, the reduction at the node at  $\alpha_1$  is split if and only if  $T_{\alpha_1} = 2c\alpha_1(\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) \equiv_{\Box} 1$  and the reduction at the node at  $-\alpha_1$  is split if and only if  $T_{-\alpha_1} = -2c\alpha_1(-\alpha_1 - \alpha_2)(-\alpha_1 - \alpha_3)(-\alpha_1 - \beta_3) \equiv_{\Box} 1$ . It follows that *C* is of type  $I_{2a,2a}^{+,+}$ ,  $I_{2a,2a}^{-,+}$ ,  $I_{2a,2a}^{-,-}$  in TN8E/F/G respectively.

Now computing invariants, one finds that  $(A_1 - B_1)^2 \equiv_{\Box} T_{\alpha_1} T_{-\alpha_1}$ . It follows that  $(A_1 - B_1)^2 \in K^{\times 2}$  for TN8F and  $(A_1 - B_1)^2 \notin K^{\times 2}$  for TN8E/G. Similarly for  $\hat{C}$ , using Proposition 3.4.30 at the nodes  $A_1$  and  $B_1$ , one finds that the reduction at the node at  $A_1$  is split if and only if  $T_{A_1} = \ell(A_1 - B_1)(A_1 - B_2)(A_1 - A_3)(A_1 - B_3) \equiv_{\Box} 1$ . Finally, the reduction at the node at  $B_1$  is split if and only if  $T_{B_1} \equiv$  $\ell(B_1 - A_1)(B_1 - A_2)(B_1 - A_3)(B_1 - B_3) \equiv_{\Box} 1$ . However, computing  $T_{A_1}, T_{B_1}$  we have that  $T_{A_1}T_{B_1} \equiv_{\Box} \delta_2 \equiv \delta_2$ . Therefore  $\hat{C}$  is of type  $I_{2a,2a}^{+,+}, I_{2a,2a}^{-,-}, I_{2a,2a}^{-,-}$  in TN8E/F/G respectively. We note that the same remark as in Remark 5.3.13 can be done about TN8G. Finally, for TN8H/I, the proof follows directly from that of TN7H/I.

**Case TN8J/K/L/M/N** : Here a = b but we let  $v(\Delta_G) = a + r > a$ . Recall that

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) + b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3) - a_2b_2\pi^a(\alpha_3 + \beta_3)),$$
$$u_1 = \pi^a (a_2 + b_2) - \alpha_3 - \beta_3, \quad \ell_2 = c(\alpha_3 + \beta_3), \quad \ell_3 = -c\pi^a (a_2 + b_2).$$

In particular,  $v(\ell_1) = v(u_1) - a - r$ ,  $v(\ell_3) = a + r_3$ , where  $v(a_3 + b_3) = r_3$ . Note that since  $v(\Delta_G) > a$  we have  $a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) \equiv -b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3)$ . Now if  $v(\ell_2) > 0$  or  $r_3 > 0$  this yields another congruence between roots, contradicting the cluster picture of C. Therefore  $r_3 = v(\ell_2) = v(u_1) = 0$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2a - 2r - 2v(u_1) + 2a + 2r = 0,$$
$$v(A_2 - B_2)^2 = -0, \quad v(A_3 - B_3)^2 = 2a - 2a - 2r_3 = 0,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2r$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2r,$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2r.$$

Thus we have the following cluster picture  $\left| \underbrace{(\bullet \diamond)_a}_r \underbrace{(\bullet \diamond)_a}_r \right|_r = 0$  as required.

The Frobenius action, Tamagawa numbers and deficiency follows from the previous case, except for TN8K/N where deficiency is different but readily computable from Table 3.1.

**5.3.4** C is of type  $U_{2a,2b,2n}$ 

Proof of Tables 4.23

Case U1A/B/C/D: By definition of the isogeny

$$v(\delta_1) = 2a, v(\delta_2) = 2b, v(\delta_3) = 2n, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G \equiv -2c\alpha_2\alpha_3(\alpha_2 - \alpha_3), \quad u_1 \equiv 2(\alpha_2 - \alpha_3), \quad \ell_2 \equiv 2c\alpha_3, \quad \ell_3 \equiv -2c\alpha_2,$$

and  $\ell \equiv_{\Box} c$ . Since G(x) is a  $C_2 \times D_4$  polynomial, we have  $\alpha_1 \equiv 0 \neq \alpha_2 \neq \alpha_3$  so that  $v(\Delta_G) = v(u_1) = v(\ell_2) = v(\ell_3) = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = 0, \quad v(A_2 - B_2)^2 = -2v(\ell_2) = 0,$$
  
 $v(A_3 - B_3)^2 = -2v(\ell_3) = 0,$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2a + 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2a,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2b - 2v(\ell_1) - 2v(\ell_3) = 2b,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2n - 2v(\ell_1) - 2v(\ell_2) = 2n.$$

It follows that, without loss of generality,  $v(A_2 - A_3) = 2a$ ,  $v(A_1 - B_3) = 2b$ and  $v(B_1 - A_2) = 2n$  so that the cluster picture of  $\hat{C}$  is that of Table 4.23 for U1A/B/C/D.

**Frobenius action**. Since G(x) is a  $C_2 \times D_4$  polynomial, we have  $\delta_1 \in K$ , therefore either  $\delta_2, \delta_3 \in K$  or *Frob* swaps  $\delta_2, \delta_3$ . In particular in that case,  $b = n \in \mathbb{Z}$ (otherwise  $I_K$  swaps the two clusters in the cluster picture of C which contradicts the semistability criterion 3.4.29).

By Proposition 3.4.30, C is of type  $U^+$  if and only if  $c \in K^{\times 2}$ . Since  $\ell \equiv_{\Box} c$ , it follows that  $\hat{C}$  is of type  $U^+$  whenever C is. Moreover, computing  $A_1, B_1$ , one finds that  $(A_1 - B_1)^2 \equiv (\alpha_2 - \alpha_3)^2$ . It follows that C is of type  $U^+_{2a,2b,2n}, U^-_{2a,2b,2n}, U^-_{2a,2b,2n}, U^-_{2a,2b,2n}, U^-_{2a,2b,2b}$  for U1A/B/C/D respectively and that  $\hat{C}$  is of type  $U^+_{4a,4b,4n}, U^-_{4a,4b,4n}, U^+_{4a,4b,4b}$  for U1A/B/C/D respectively.

**Tamagawa numbers and deficiency**: Tamagawa numbers, deficiency and  $\lambda_v$ 

are clear from Table 3.1, except for U1B. Here N = 4ab + 4an + 4bn and D = gcd(2a, 2b, 2n). We have the following :

if 2a, 2b, 2n are odd, then N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 2$ ,

if 2a, 2b, 2n are even, then N is even, D is even and  $\frac{N}{D}$  is even so that  $c_v = 4$  and  $m_v = 1$ ,

if one of 2a, 2b, 2n is odd, then N is even, D is odd and  $\frac{N}{D}$  is even so that  $c_v = 2$ and  $m_v = 1$ ,

if two of 2a, 2b, 2n are odd, then N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$ and  $m_v = 1$ . It then follows that  $\lambda_v = -1$  if and only if one or three of 2a, 2b, 2n is odd, which is the same as N is odd.

### Proof of Tables 4.24

Case U2A/B/C/D: By definition of the isogeny

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = n, v(\hat{\delta_2}) = b, v(\hat{\delta_3}) = a,$$

By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G \equiv 2\alpha_1 c(\alpha_1 - \beta_2)(\alpha_1 + \beta_2), \quad u_1 \equiv 2\alpha_1, \quad \ell_2 \equiv -c(\alpha_1 - \beta_2),$$

and  $\ell_3 \equiv -c(\alpha_1 + \beta_2)$ ,  $\ell \equiv c$ . Since  $\alpha_1 \neq 0$ , we have  $v(\Delta_G) = v(u_1) = v(\ell_2) = v(\ell_3) = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = n - 2v(\Delta_G) - 2v(\ell_1) = n, \quad v(A_2 - B_2)^2 = b - 2v(\ell_2) = b,$$
  
 $v(A_3 - B_3)^2 = 2a - 2v(\ell_3) = a,$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = -2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 0,$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 0,$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 0.$$

It follows that  $v(A_1 - B_1) = \frac{n}{2}$ ,  $v(A_2 - B_2) = \frac{b}{2}$  and  $v(A_3 - B_3) = \frac{a}{2}$  so that the cluster picture of  $\hat{C}$  is that of Table 4.24 for U2A/B/C/D.

**Frobenius action**. Since G(x) is a  $C_2 \times D_4$  polynomial, we have either  $\delta_1 \in K^{\times 2}$ and  $\delta_2, \delta_3 \in K$  or  $\delta_1 \notin K^{\times 2}$  and  $\delta_2, \delta_3 \notin K$ . In particular in both case,  $a, b, n \in \mathbb{Z}$ (otherwise  $I_K$  swaps the two clusters in the cluster picture of C which contradicts the semistability criterion 3.4.29). By Proposition 3.4.30, C is of type  $U^+$  if and only if  $c \in K^{\times 2}$ . It follows that C is of type  $U_{2a,2b,2n}^+$ ,  $U_{2a,2b,2n}^-$ ,  $U_{2a,2b-2b}^+$ ,  $U_{2a,2b-2b}^-$  for U2A/B/C/D respectively. Moreover, since  $\delta_2 \equiv (\alpha_1 - \beta_2)^2$  and  $\delta_3 \equiv (\alpha_1 + \beta_2)^2$  and  $\ell \equiv_{\Box} c$ , it follows that  $\hat{C}$  is of type  $U^+$  whenever C is so that  $\hat{C}$  is of type  $U_{a,b,n}^+$ ,  $U_{a,b,n}^-$ ,  $U_{a,b-b}^+$ ,  $U_{a,b-b}^-$  for U2A/B/C/D respectively.

**Tamagawa numbers and deficiency**: Tamagawa numbers, deficiency and  $\lambda_v$  are clear from Table 3.1, except for U2B. Here N = ab + an + bn and D = gcd(a, b, n). We have the following :

if a, b, n are odd, then N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 2$ , if a, b, n are even, then N is even, D is even and  $\frac{N}{D}$  is even so that  $c_v = 4$  and  $m_v = 1$ ,

if one of a, b, n is odd, then N is even, D is odd and  $\frac{N}{D}$  is even so that  $c_v = 2$  and  $m_v = 1$ ,

if two of a, b, n are odd, then N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 1$ . It then follows that  $\lambda_v = -1$  if and only if one or three of a, b, n is odd, which is the same as N is odd.

### Proof of Tables 4.25, 4.26 and 4.27

By definition of the isogeny

$$v(\delta_1) = 2n, v(\delta_2) = 0, v(\delta_3) = 0, v(\hat{\delta_1}) = a + b, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = 0,$$

where  $2a, 2b, 2n \in \mathbb{Z}$ .

Write

$$\alpha_1 = a_1 \pi^n, \quad \alpha_3 = \alpha_2 + a_3 \pi^a, \quad \beta_3 = \beta_2 + b_3 \pi^b,$$

for some  $a_1, a_3, b_3 \in \mathcal{O}_{\overline{K}}^{\times}$ . By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3\pi^{b-a}(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^b(\alpha_2 + \beta_2) \right),$$
$$u_1 = \pi^a(a_3 + b_3\pi^{b-a}), \quad \ell_2 = c(\pi^a(a_3 + b_3\pi^{b-a}) + \alpha_2 + \beta_2), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Case U3A/B: Here a < b hence

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) \right) + o(\pi^a),$$
$$u_1 = \pi^a a_3 + o(\pi^a), \quad \ell_2 = \alpha_2 + \beta_2 + o(\pi^a), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Therefore  $v(u_1) = v(\Delta_G) = a$  so that  $v(\ell_1) = 0$  and  $v(\ell_2) = v(\ell_3)$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = a + b - 2v(\Delta_G) - 2v(\ell_1) = b - a, \quad v(A_2 - B_2)^2 = -2v(\ell_2),$$
  
 $v(A_3 - B_3)^2 = -2v(\ell_3),$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2n + 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3)$$
$$= 2n + 2a - 2v(\ell_2) - 2v(\ell_3),$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(\ell_3),$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2v(\ell_2).$$

Assume that  $v(\ell_2) = v(\ell_3) = 0$ . It follows that  $v(A_1 - B_1) = \frac{b-a}{2}$  and without loss of generality  $v(A_2 - A_3) = a$  and  $v(B_2 - B_3) = a + 2n$  so that the cluster picture of  $\hat{C}$  is that of Table 4.25 for U3A/B. On the other hand,

if  $v(\ell_3) = n_3 > a$  then  $v(\ell_2) = a$  and the cluster picture for  $\hat{C}$  is

$$\underbrace{\fboxline (\textcircled{\bullet} \bullet \underline{b-a} \textcircled{\bullet} \textcircled{\bullet} \underline{a+2n}_{a} \textcircled{\bullet} \textcircled{\bullet} \underbrace{\bullet}_{-a+n_{3}}_{-n_{3}}}_{-n_{3}}$$

If  $v(\ell_3) = n_3 \leq a$  and  $v(\ell_2) = n_3$  and the cluster picture for  $\hat{C}$  is

$$\underbrace{\textcircled{\bullet \bullet}}_{2} \underbrace{\textcircled{\bullet}}_{a+2n} \underbrace{\textcircled{\bullet}}_{n_{3}} \underbrace{\textcircled{\bullet}}_{a-n_{3}} \Big|_{-n}$$

If  $v(\ell_3) = a$  and  $v(\ell_2) = n_2 > n_3$  then the cluster picture for  $\hat{C}$  is

$$\underbrace{\underbrace{\bullet \bullet}_{\frac{b-a}{2}} \underbrace{\bullet}_{a+2n} \underbrace{\bullet}_{n_3}}_{-n_3+n_2} \underbrace{\bullet}_{-n_2+n_2}$$

All are in the equivalence class of  $All are in the equivalence class of <math>All are in the equivalence class of <math>All are in a_{a+2n} \bullet \bullet \bullet_{a}$ , as required. **Frobenius action**. First note that since G(x) is a  $C_2 \times D_4$  polynomial, if  $\delta_2, \delta_3 \notin K$  then 2a is odd if and only if 2b is odd. By Proposition 3.4.30, C is of type  $U^+$  if and only if  $c \in K^{\times 2}$ . It follows that C is of type  $U^+_{2a,2b,2n}$ ,  $U^-_{2a,2b,2n}$  for U3A/B respectively. Moreover, since  $\ell = c(\alpha_2 + \beta_2)^2 \beta_2^2 + o(\pi)$ , it follows from the cluster picture of C that  $\hat{C}$  is of type  $U^+$  whenever C is so that  $\hat{C}$  is of type  $U^+_{2a,2a+4n,b-a}$ ,  $U^-_{2a,2a+4n,b-a}$  for U3A/B respectively.

**Tamagawa numbers and deficiency** : Tamagawa numbers, deficiency and  $\lambda_v$  are clear from Table 3.1, except for U4B. Here N = 4ab + 4an + 4bn and D = gcd(2a, 2b, 2n),  $\hat{D} = gcd(2a, b - a)$ . We have either i) 2a, 2b, 2n are odd; or ii) 2a, 2b are odd and 2n is even; or iii) 2a, 2b are even and 2n is odd; or iv) 2a, 2b, 2n are

even.

i) N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 1$ ;  $\hat{D}$  is odd so that  $\hat{c}_v = 1$  and  $\hat{m}_v = 2$  if and only if b - a is odd.

ii) N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 2$ ;  $\hat{D}$  is odd so that  $\hat{c}_v = 1$  and  $\hat{m}_v = 2$  if and only if b - a is odd.

iii) N is even, D is odd and  $\frac{N}{D}$  is even so that  $c_v = 2$  and  $m_v = 1$ ;  $\hat{D}$  is even if and only if b - a is even so that  $\hat{c}_v = 4$  if and only if b - a is even, and  $\hat{m}_v = 1$ .

iv) N is even, D is even and  $\frac{N}{D}$  is even so that  $c_v = 4$  and  $m_v = 1$ ;  $\hat{D}$  is even if and only if b - a is even so that  $\hat{c}_v = 4$  if and only if b - a is even, and  $\hat{m}_v = 1$ .

It follows that  $\lambda_v = 1$  if and only if  $2n \equiv b - a \mod 2$ , equivalently,  $\lambda_v = (-1)^{2n+b+a}$  as required.

**Case U3C/D/E/F**: Here a = b but we let  $v(\Delta_G) = a$  hence

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^b(\alpha_2 + \beta_2) \right),$$
$$u_1 = \pi^a(a_3 + b_3), \quad \ell_2 = c(\pi^a(a_3 + b_3)) + \alpha_2 + \beta_2), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Write  $v(a_3 + b_3) = n_1$  so that  $v(\ell_1) = n_1$  and note that since  $v(\Delta_G) = a$ , we have either  $n_1 = 0$  and  $v(\ell_2) \ge v(\ell_3)$ , or  $n_1 > 0$  and  $v(\ell_2) = v(\ell_3) = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 2a - 2v(\Delta_G) - 2v(\ell_1) = -2n_1, \quad v(A_2 - B_2)^2 = -2v(\ell_2),$$
  
 $v(A_3 - B_3)^2 = -2v(\ell_3),$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2n + 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3)$$
  
$$= 2n + 2a - 2v(\ell_2) - 2v(\ell_3),$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2n_1 - 2v(\ell_3),$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2n_1 - 2v(\ell_2).$$

Assume that  $n_1 = v(\ell_2) = v(\ell_3) = 0$ . It follows that  $v(A_1 - B_1) = 0$  and without loss of generality  $v(A_2 - A_3) = a$  and  $v(B_2 - B_3) = a + 2n$  so that the cluster picture of  $\hat{C}$  is that of Table 4.26 for U3C/D/E/F. On the other hand, assume that  $n_1 = 0$ then

if  $v(\ell_3) = n_3 > a$  then  $v(\ell_2) = a$  and the cluster picture for  $\hat{C}$  is



If  $v(\ell_3) = n_3 \leq a$  and  $v(\ell_2) = n_3$  and the cluster picture for  $\hat{C}$  is

$$\underbrace{\bullet \bullet \diamondsuit}_{a+2n} \underbrace{\bullet \bigstar}_{n_3} \underbrace{\bullet \bigstar}_{a-n_3} - n_3$$

If  $v(\ell_3) = a$  and  $v(\ell_2) = n_2 > n_3$  then the cluster picture for  $\hat{C}$  is

$$\left[ \underbrace{\bullet \bullet (\bullet \star)_{a+2n} \bullet}_{n_3} \bullet \right]_{-n_3+n_2} - n_2$$

All are in the equivalence class of  $( \diamond \diamond a )_{a+2n} \circ \bullet )_{0,}$  as required. Frobenius action.

For U3C/D, by Proposition 3.4.30, C is of type  $U^+$  if and only if  $c \in K^{\times 2}$ . It follows that C is of type  $U_{2a,2b,2n}^+$ ,  $U_{2a,2b,2n}^-$ ,  $U_{2a,2a,2n}^-$ ,  $U_{2a,2a,2n}^-$  for U3C/D/E/F respectively. Also, for U3C/D, given the cluster picture of C we have either,  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  or  $I_K$  permutes  $\alpha_2$  and  $\alpha_3$  as well as  $\beta_2$  and  $\beta_3$ . In particular  $I_K(\delta_2) = \delta_3$  and by Hensel's lemma,  $\delta_2, \delta_3, \alpha_2^2, \beta_2^2 \in K^{\times 2}$ . Moreover,  $(A_2 - B_2)^2 \in K^{\times 2}$  and by Proposition 3.4.30, we find that the reduction of  $\hat{C}$  at the node  $A_2$  is split if and only if  $T_{A_2} = \ell(A_2 - A_1)(A_2 - B_1)(A_2 - B_2)^2 \in K^{\times 2}$ . Similarly, the reduction of  $\hat{C}$  at the node  $B_2$  is split if and only if  $T_{B_2} = \ell(B_2 - A_1)(B_2 - B_1)(B_2 - A_2)^2 \in K^{\times 2}$ . Now, computing  $T_{A_2}, T_{B_2}$ , one finds that  $T_{A_2} \in K^{\times 2} \Leftrightarrow c\delta_2 \in K^{\times 2}$  and  $T_{B_2} \in K^{\times 2} \Leftrightarrow c \in K^{\times 2}$ . Therefore  $\hat{C}$  is of type  $I_{2a,2a+4n}^{+,+}$  and  $I_{2a,2a+4n}^{-,-}$  for U3C/D respectively. Finally, for U3E/F, we have that  $\delta_2, \delta_3 \notin K^{\times 2}$  so that  $\hat{C}$  is of type  $I_{2a,2a+4n}^{+,+}$  and  $I_{2a,2a+4n}^{+,-}$  respectively.

**Tamagawa numbers and deficiency**: Tamagawa numbers, deficiency and  $\lambda_v$  are clear from Table 3.1, except for U3D/H. Here  $N = 4a^2 + 8an$  so that N is odd if and only if 2a is odd, and D = gcd(2a, 2n). We have either i) 2a, 2n are odd; or ii) 2a is odd and 2n is even; or iii) 2a is even and 2n is odd; or iv) 2a, 2n are even.

i) N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 2$ ;  $\hat{c}_v = 1$  and  $\hat{m}_v = 1$ . ii) N is odd, D is odd and  $\frac{N}{D}$  is odd so that  $c_v = 1$  and  $m_v = 1$ ;  $\hat{c}_v = 1$  and  $\hat{m}_v = 1$ . iii) N is even, D is odd and  $\frac{N}{D}$  is even so that  $c_v = 2$  and  $m_v = 1$ ;  $\hat{c}_v = 4$  and  $\hat{m}_v = 1$ .

iv) N is even, D is even and  $\frac{N}{D}$  is even so that  $c_v = 4$  and  $m_v = 1$ ;  $\hat{c}_v = 4$  and  $\hat{m}_v = 1$ .

It follows that  $\lambda_v = 1$  if and only if  $2n \equiv 0 \mod 2$ , equivalently,  $\lambda_v = (-1)^{2n}$  as required.

**Case U3G/H/I/J**: Here a = b and we let  $v(\Delta_G) = a + r > a$  hence

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^b(\alpha_2 + \beta_2) \right),$$
$$u_1 = \pi^a(a_3 + b_3), \quad \ell_2 = c(\pi^a(a_3 + b_3) + \alpha_2 + \beta_2), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Write  $v(a_3 + b_3) = n_1$  so that  $v(\ell_1) = n_1 - r$  and  $v(\ell_2) \ge v(\ell_3)$ . Note that since  $v(\Delta_G) > a$  we have  $a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) \equiv -b_3(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)$ . Now if  $v(\ell_3) > 0$  or  $v(u_1) > a$  this yields another congruence between roots, contradicting the cluster picture of C. Therefore  $v(\ell_3) = v(\ell_2) = n_1 = 0$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 2a - 2v(\Delta_G) - 2v(\ell_1) = 0, \quad v(A_2 - B_2)^2 = 0,$$
  
 $v(A_3 - B_3)^2 = -0,$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2n + 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2n + 2a + 2r,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2r,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2r.$$

Thus the cluster picture of  $\hat{C}$  is that of Table 4.27 for U3G/H/I/J. **Frobenius action**. Follows directly from cases U3C/D/E/F.

### Proof of Tables 4.28, 4.29 and 4.30

By definition of the isogeny

$$v(\delta_1) = 0, v(\delta_2) = 0, v(\delta_3) = 2n, v(\hat{\delta_1}) = 0, v(\hat{\delta_2}) = 0, v(\hat{\delta_3}) = a + b,$$

where  $a, b, 2n \in \mathbb{Z}$  (since G(x) is a  $C_2 \times D_4$  polynomial  $\delta_1 \in K$ , and if  $a, b \notin \mathbb{Z}$ ,  $I_K$  permutes both clusters, a contradiction to the semistability criterion 3.4.29). Write

$$\alpha_2 = \alpha_1 + a_2 \pi^a, \quad \beta_2 = -\alpha_1 + b_2 \pi^b, \quad \beta_3 = \alpha_3 + b_3 \pi^n,$$

for some  $a_2, b_2, b_3 \in \mathcal{O}_{\overline{K}}^{\times}$ . By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)^2 + a_2b_3\pi^n(\alpha_1 + \alpha_3) + b_2\pi^{b-a}(\alpha_1 - \alpha_3)^2 - b_2b_3\pi^{b-a+n}(\alpha_1 - \alpha_3) - 2a_2b_2\alpha_3\pi^b - a_2b_2b_3\pi^{b+n}),$$

 $u_1 = \pi^a (a_2 + b_2 \pi^{b-a}) - 2\alpha_3 - b_3 \pi^n, \quad \ell_2 = c(2a_3 + b_3 \pi^n)), \quad \ell_3 = -c\pi^a (a_2 + b_2 \pi^{b-a}).$ 

Case U4A/B: Here a < b hence

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)^2) + o(\pi)_2$$

$$u_1 = -2\alpha_3 - b_3\pi^n + o(\pi^a), \quad \ell_2 = c(2a_3 + b_3\pi^n)), \quad \ell_3 = -c\pi^a(a_2) + o(\pi^a).$$

Therefore  $v(\ell_3) = v(\Delta_G) = a$  and  $v(u_1) \ge \min\{v(\ell_2), a\}$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2a - 2v(u_1) + 2a = -2v(u_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2),$$
$$v(A_3 - B_3)^2 = a + b - 2v(\ell_3) = b - a,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = -2v(\ell_2),$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(u_1),$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2n - 2v(\ell_1) - 2v(\ell_2) = 2n + 2a - 2v(u_1) - 2v(\ell_2).$$

Assume that  $v(u_1) = v(\ell_2) = 0$ . It follows that  $v(A_3 - B_3) = \frac{b-a}{2}$  and without loss of generality  $v(A_1 - A_2) = a$  and  $v(B_1 - B_2) = a + 2n$  so that the cluster picture of  $\hat{C}$  is that of Table 4.28 for U4A/B. On the other hand,

if  $v(\ell_2) = n_2 > a$  then  $v(u_1) = a$  and the cluster picture for  $\hat{C}$  is

$$\underbrace{\underbrace{\textcircled{\textcircled{}}}_{\underline{b-a}} \underbrace{\bullet}_{a+2n} \underbrace{\bullet}_{a+2n} \underbrace{\bullet}_{-a+n_2} \underbrace{\bullet}_{-n_2,}$$

if  $v(\ell_2) = n_2 \leq a$  and  $v(u_1) = n_2$  and the cluster picture for  $\hat{C}$  is

$$\underbrace{\textcircled{\textcircled{}}_{\frac{b-a}{2}} \textcircled{}_{a+2n}}_{n_2} \underbrace{\textcircled{}_{a-n_2}}_{n_2} - n$$

if  $v(\ell_2) = a$  and  $v(u_1) = n_1 > n_2$  then the cluster picture for  $\hat{C}$  is

$$\underbrace{\left[\underbrace{\textcircled{\textcircled{}}}_{\underline{b}-\underline{a}}\underbrace{\textcircled{}}_{\underline{a}+2n}\right]_{n_{2}}}_{n_{2}} \bullet_{-n_{2}+n_{1}}_{-n_{1}}.$$

All are in the equivalence class of All are in the equivalence class of <math>All are in the equivalence class of <math>All are a a a a a a a a a a contradiction. By Proposition 3.4.30, <math>C otherwise  $I_K$  would permute  $\alpha_1$  and  $\alpha_2$  a contradiction. By Proposition 3.4.30, C is of type  $U^+$  if and only if  $c \in K^{\times 2}$ . It follows that C is of type  $U^{+}_{2a,2b,2n}, U^{-}_{2a,2b,2n}$  for U4A/B respectively. Moreover, since  $\ell = \Box c \alpha_3^2 (\alpha_1 + \alpha_3)^2 + o(\pi)$ , it follows from the cluster picture of C that  $\hat{C}$  is of type  $U^+$  whenever C is so that  $\hat{C}$  is of type  $U^{+}_{2a,2a+4n,b-a}, U^{-}_{2a,2a+4n,b-a}$  for U4A/B respectively.

**Tamagawa numbers and deficiency** : Tamagawa numbers, deficiency and  $\lambda_v$ are clear from Table 3.1, except for U4B. Here  $2a, 2b \in 2\mathbb{Z}$ , N = 4ab + 4an + 4bnand D = gcd(2a, 2b, 2n). It follows that  $m_v = \hat{m}_v = 1$  and that  $c_v = 2$  if 2n is odd,  $c_v = 4$  otherwise. Similarly,  $\hat{c_v} = 2$  if b - a is odd,  $\hat{c_v} = 4$  otherwise. It follows that  $\lambda_v = 1$  if and only if  $2n \equiv b - a \mod 2$ , equivalently,  $\lambda_v = (-1)^{2n+b+a}$  as required. Case U4C/D/E/F: Here a = b but we let  $v(\Delta_G) = a$  hence

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)^2 + a_2b_3\pi^n(\alpha_1 + \alpha_3) + b_2(\alpha_1 - \alpha_3)^2$$
$$-b_2b_3\pi^n(\alpha_1 - \alpha_3) - 2a_2b_2\alpha_3\pi^b - a_2b_2b_3\pi^{a+n}),$$
$$u_1 = \pi^a (a_2 + b_2) - 2\alpha_3 - b_3\pi^n, \quad \ell_2 = c(2a_3 + b_3\pi^n)), \quad \ell_3 = -c\pi^a (a_2 + b_2).$$

Write  $v(a_2 + b_2) = n_3$  so that  $v(\ell_3) = a + n_3$  and note that since  $v(\Delta_G) = a$ , we have either  $n_3 = 0$  and  $v(u_1) \ge v(\ell_3)$ , or  $n_3 > 0$  and  $v(u_1) = v(\ell_2) = 0$ . From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = -2v(\Delta_G) - 2v(\ell_1) = -2v(u_1), \quad v(A_2 - B_2)^2 = -2v(\ell_2),$$
$$v(A_3 - B_3)^2 = a + b - 2v(\ell_3) = -n_3,$$

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = -2v(\ell_2) - 2n_3,$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2v(u_1) - 2n_3,$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2n + 2a - 2v(u_1) - 2v(\ell_2)$$

Assume that  $v(u_1) = v(\ell_2) = v(\ell_3) = 0$ . It follows that  $v(A_3 - B_3) = 0$  and without loss of generality  $v(A_1 - A_2) = a$  and  $v(B_1 - B_2) = a + 2n$  so that the cluster picture of  $\hat{C}$  is that of Table 4.29 for U4C/D/E/F. On the other hand, assume that  $n_3 = 0$ then

if  $v(\ell_2) = n_2 > a$  then  $v(u_1) = a$  and the cluster picture for  $\hat{C}$  is

if  $v(\ell_2) = n_2 \leq a$  and  $v(u_1) = n_2$  and the cluster picture for  $\hat{C}$  is

if  $v(\ell_2) = a$  and  $v(u_1) = n_1 > a$  then the cluster picture for  $\hat{C}$  is

$$\underbrace{ \left( \underbrace{ \diamond \circ}_{a+2n} \diamond \circ_{a+n_1} \right)}_{-a+n_1} - n_1.$$

All are in the equivalence class of  $(\bullet \diamond_a \bullet \diamond_{a+2n} \bullet \diamond)_0$ , as required. Frobenius action.

## By Proposition 3.4.30, C is of type $U^+$ if and only if $c \in K^{\times 2}$ . It follows

that *C* is of type  $U_{2a,2b,2n}^+$ ,  $U_{2a,2b,2n}^-$ ,  $U_{2a,2a,2n}^-$ ,  $U_{2a\tilde{2}a,2n}^-$  for U4C/D/E/F respectively. Also, for U4C/D, given the cluster picture of *C* we have  $\alpha_1\alpha_2, \beta_2 \in K$  and  $\beta_3 \equiv \alpha_3$ , hence  $\delta_1, \delta_2, \alpha_3^2 \in K^{\times 2}$ . Moreover, by Proposition 3.4.30, we find that the reduction of  $\hat{C}$  at the node  $A_1$  is split if and only if  $T_{A_1} = \ell(A_1 - B_1)(A_1 - B_2)(A_1 - A_3)(A_1 - B_3) \in K^{\times 2}$ . Similarly, the reduction of  $\hat{C}$  at the node  $B_1$  is split if and only if  $T_{B_1} \equiv \ell(B_1 - A_1)(B_1 - A_2)(B_1 - A_3)(B_1 - B_3) \in K^{\times 2}$ . Now, computing  $T_{A_1}, T_{B_1}$ , one finds that  $T_{A_1} \in K^{\times 2} \Leftrightarrow c\alpha_1^2\delta_2 \in K^{\times 2}$  and  $T_{B_1} \in K^{\times 2} \Leftrightarrow c \in K^{\times 2}$ . Therefore  $\hat{C}$  is of type  $I_{2a,2a+4n}^{+,+}$  and  $I_{2a,2a+4n}^{-,-}$  for U4C/D respectively. Finally, for U4E/F, we have that  $\delta_1, \delta_2 \notin K^{\times 2}$  so that  $\hat{C}$  is of type  $I_{2a,2a+4n}^{-,+}$  and  $I_{2a,2a+4n}^{-,-}$  respectively. **Tamagawa numbers and deficiency**: Tamagawa numbers, deficiency and  $\lambda_v$  are clear from Table 3.1 since  $2a \in 2\mathbb{Z}$ .

**Case U4G/H/I/J**: Here a = b and we let  $v(\Delta_G) = a + r > a$  hence

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)^2 + a_2b_3\pi^n(\alpha_1 + \alpha_3) + b_2(\alpha_1 - \alpha_3)^2$$
$$-b_2b_3\pi^n(\alpha_1 - \alpha_3) - 2a_2b_2\alpha_3\pi^b - a_2b_2b_3\pi^{a+n}),$$
$$u_1 = \pi^a(a_2 + b_2) - 2\alpha_3 - b_3\pi^n, \quad \ell_2 = c(2a_3 + b_3\pi^n)), \quad \ell_3 = -c\pi^a(a_2 + b_2)$$

Write  $v(a_2 + b_2) = r_3$  so that  $v(\ell_3) = a + r_3$ . Note that since  $v(\Delta_G) > a$  we have  $a_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) \equiv -b_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3)$ . Now if  $v(\ell_2) > 0$  or  $r_3 > 0$  this yields another congruence between roots, contradicting the cluster picture of C. Therefore  $r_3 = v(\ell_2) = v(u_1) = 0$ .

From P.4, P.5 and P.6 we have

$$v(A_1 - B_1)^2 = 2v(\Delta_G) - 2v(\ell_1) = 0, \quad v(A_2 - B_2)^2 = 0,$$
  
 $v(A_3 - B_3)^2 = 0,$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2n + 2v(\Delta_G) - 2v(\ell_2) - 2v(\ell_3) = 2r,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2r,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2n + 2a + 2r.$$

Thus the cluster picture of C is that of Table 4.30 for U4G/H/I/J. **Frobenius action**. Follows directly from cases U4C/D/E/F. **Tamagawa numbers and deficiency**: Follows directly from cases U4C/D/E/F. 5.3.5 *C* is of type  $1 \times 1$ 

### Proof of Tables 4.31, 4.32, 4.33

Since C is if type  $1 \times 1$  or  $1 \times 1$ , it follows from the semistability criterion 3.4.29 that  $v(c) \equiv a \equiv b \mod 2$ .

<u>**Case TC1**</u>. Since  $\beta_1 = -\alpha_1$ , it follows that  $\alpha_1 \equiv \beta_1 \equiv \alpha_2 \equiv 0 \neq \beta_2 \equiv \alpha_3 \equiv \beta_3 \mod \pi$ . Reducing invariants we find

$$\ell \equiv 2c \mod \pi, \quad \ell_1 \equiv \frac{-1}{c\beta_2^2} \mod \pi, \quad \ell_2 \equiv 2c\beta_2 \mod \pi, \quad \ell_3 \equiv -c\beta_2 \mod \pi,$$

$$\Delta_G \equiv c\beta_2^3 \mod \pi,$$

hence  $v(\Delta_G) = v(c) = v(\ell)$ . Now

$$v(\delta_1) = 2a + 2c, v(\delta_2) = 0, v(\delta_3) = 2b, v(\hat{\delta_1}) = 2b - 2c, v(\hat{\delta_2}) = 2c, v(\hat{\delta_3}) = 2a + 2c, v(\hat{\delta_3}) =$$

so that P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = 2b$$
,  $v(A_2 - B_2)^2 = 0$ ,  $v(A_3 - B_3)^2 = 2a$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2a,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 0,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2b,$$

from which we obtain the cluster picture for  $\hat{C}$ .

**<u>Frobenius action</u>**. If *Frob* swaps  $\alpha_2$  and  $\beta_2$  then by the cluster configuration, it must swap  $\delta_1$  and  $\delta_3$ . This is a contradiction since G(x) is a  $C_2 \times D_4$  polynomial. Similarly for L(x) so that the action of *Frob* on the cluster picture follows. <u>**Cases TC2A/B**</u>. Since  $\beta_1 = -\alpha_1$ , it follows that  $\alpha_1 \neq 0 \mod \pi$ . Reducing invariants we find

$$\ell \equiv 2c \mod \pi, \quad \ell_1 \equiv \frac{1}{2c\alpha_1^2} \mod \pi, \quad \ell_2 \equiv -2c\alpha_1 \mod \pi, \quad \ell_3 \equiv -2c\alpha_1 \mod \pi,$$
$$\Delta_G \equiv 8c\alpha_1^3 \mod \pi, \quad \delta_1 \equiv 4c^2\alpha_1^2 \mod \pi, \quad \hat{\delta_1} \equiv \frac{1}{c^2\alpha_1^2} \mod \pi,$$

and the valuations and Frobenius action of clusters follow.

Since

$$v(\delta_1) = 2v(c), \quad v(\delta_2) = 2a, \quad v(\delta_3) = 2b,$$

$$v(\hat{\delta_1}) = -2v(c), \quad v(\hat{\delta_2}) = 2b + 2v(c), \quad v(\hat{\delta_3}) = 2a + 2v(c),$$

P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = 0$$
,  $v(A_2 - B_2)^2 = 2b$ ,  $v(A_3 - B_3)^2 = 2a$ ,

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 0,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = 2a,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = 2b,$$

from which we obtain the cluster picture for  $\hat{C}$ .

**<u>Cases TC3</u>**. Since  $\beta_1 = -\alpha_1$ , it follows that  $\alpha_1 \not\equiv 0 \mod \pi$ . Write

$$\alpha_2 = \alpha_1 + a_2 \pi^a$$
,  $\alpha_3 = \alpha_1 + a_3 \pi^a$ ,  $\beta_2 = -\alpha_1 + b_2 \pi^b$ ,  $\beta_3 = -\alpha_1 + b_3 \pi^b$ ,

where  $a_2, a_3, b_2, b_3 \in \mathcal{O}_{\bar{K}}^{\times}$ . It follows that  $\delta_1 \equiv 4c^2 \alpha_1^2 \mod \pi$ ,  $\delta_2 \equiv \delta_3 \equiv 4\alpha_1^2 \mod \pi$ , so that  $v(\delta_1) = 2v(c)$ ,  $v(\delta_2) = v(\delta_3) = 0$  and

$$v(\hat{\delta_1}) = a + b - 2v(\Delta_G), \quad v(\hat{\delta_2}) = 2v(c) + a + b, \quad v(\hat{\delta_3}) = 2v(c) + a + b,$$

and

$$u_1 = \pi^a (a_2 - a_3) + \pi^b (b_2 - b_3), \quad \ell_2 = c(a_3 \pi^a + b_3 \pi^b), \quad \ell_3 = -c(a_2 \pi^a + b_2 \pi^b),$$
$$\Delta_G = c \pi^{a+b} \left( 2\alpha_1 (a_2 b_3 - a_3 b_2) + a_2 a_3 \pi^a (b_3 - b_2) + b_2 b_3 \pi^b (a_3 - a_2) \right),$$

**<u>Case TC3A</u>**. Here a < b and  $v(\Delta_G) = v(c) + a + b$ . Therefore

$$v(\ell_1) = -b - v(c), \quad v(\ell_2) = a + v(c), \quad v(\ell_3) = a + v(c),$$

P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = a + b - 2v(\Delta_G) - 2v(\ell_1) = b - a,$$

 $v(A_2-B_2)^2 = a+b+2v(c)-2v(\ell_2) = b-a, \quad v(A_3-B_3)^2 = a+b+2v(c)-2v(\ell_3) = b-a,$ and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) + 2v(c) - 2v(\ell_2) - 2v(\ell_3) = 2b - 2a,$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2b - 2a,$$

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2b - 2a.$$

Hence the cluster picture for  $\hat{C}$  is that of the isogeny TC3A. **Case TC3B/C.** Here a < b and  $v(\Delta_G) = v(c) + a + b + r$ , with r > 0. Therefore

$$v(\ell_1) = -b - v(c) - r, \quad v(\ell_2) = a + v(c), \quad v(\ell_3) = a + v(c),$$

P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = a + b - 2v(\Delta_G) - 2v(\ell_1) = b - a_1$$

 $v(A_2-B_2)^2 = a+b+2v(c)-2v(\ell_2) = b-a, \quad v(A_3-B_3)^2 = a+b+2v(c)-2v(\ell_3) = b-a,$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) + 2v(c) - 2v(\ell_2) - 2v(\ell_3) = 2b - 2a + 2r,$$
  
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2r + 2b - 2a,$$
  
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2r + 2b - 2a.$$

Hence the cluster picture for  $\hat{C}$  is that of the isogeny TC3B/C.

**Frobenius action**. Given the cluster picture for  $\hat{C}$ , it follows that *Frob* permutes both clusters if and only if  $(A_1 - B_1)^2 \notin K^{\times 2}$ . Case TC3D/E/F/G/H/I. Here a = b so that

$$u_1 = \pi^a (a_2 - a_3 + b_2 - b_3), \quad \ell_2 = c\pi^a (a_3 + b_3), \quad \ell_3 = -c\pi^a (a_2 + b_2),$$
$$\Delta_G = c\pi^{2a} \left( 2\alpha_1 (a_2b_3 - a_3b_2) + \pi^a (a_2a_3(b_3 - b_2) + b_2b_3(a_3 - a_2)) \right).$$

Let  $n_1 = v(a_2 - a_3 + b_2 - b_3), n_2 = v(a_3 + b_3), n_3 = v(a_2 + b_2)$  so that  $v(u_1) = v(a_2 - a_3 + b_2 - b_3), n_3 = v(a_3 - b_3), n_4 = v(a_3 - b_3), n_5 = v(a_5 - b_3), n_5$  $a + n_1, v(\ell_2) = a + n_2, v(\ell_3) = a + n_3.$ 

**Case TC3D/E.** Here we set  $v(\Delta_G) = v(c) + 2a$ . Therefore

$$v(\ell_1) = n_1 - a - v(c), \quad v(\ell_2) = n_2 + a + v(c), \quad v(\ell_3) = n_3 + a + v(c),$$

and since  $v(\Delta_G) = v(c) = 2a$ , it follows that if  $n_i > 0$  then  $n_{i+1} = n_{i+2} = 0$  for i = 1, 2, 3 and where addition of indices is performed modulo 3. P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = 2a - 2v(\Delta_G) - 2v(\ell_1) = -2n_1$$

 $v(A_2-B_2)^2 = 2a+2v(c)-2v(\ell_2) = -2n_2, \quad v(A_3-B_3)^2 = 2a+2v(c)-2v(\ell_3) = -2n_3,$ 

and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) + 2v(c) - 2v(\ell_2) - 2v(\ell_3) = -2n_2 - 2n_3,$$
  

$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = -2n_1 - 2n_3,$$
  

$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = -2n_1 - 2n_2.$$

If  $n_1 = n_2 = n_3 = 0$  then the cluster picture for  $\hat{C}$  is that of the isogenies TC3D/E. Otherwise, without loss of generality, let  $n_1 > 0$ . As noted above this implies  $n_2 = n_3 = 0$  so that the cluster picture for  $\hat{C}$  is  $(\bullet \bullet \bullet \bullet \bullet \bullet)_{n_1}_{-n_1}$ , which is in the equivalence class of  $(\bullet \bullet \bullet \bullet \bullet \bullet)_0$  as required. Case TC3F/G/H/I. Here a = b and  $v(\Delta_G) = v(c) + a + b + r$ , with r > 0. Therefore

$$v(\ell_1) = n_1 - a - v(c) - r, \quad v(\ell_2) = n_2 + a + v(c), \quad v(\ell_3) = n_3 + a + v(c),$$

P.4, P.5 and P.6 yield

$$v(A_1 - B_1)^2 = 2a - 2v(\Delta_G) - 2v(\ell_1) = -2n_1,$$

 $v(A_2-B_2)^2 = 2a+2v(c)-2v(\ell_2) = -2n_2, \quad v(A_3-B_3)^2 = 2a+2v(c)-2v(\ell_3) = -2n_3,$ and P.7, P.8 and P.9 give

$$v((A_2 - A_3)(A_2 - B_3)(B_2 - A_3)(B_2 - B_3)) = 2v(\Delta_G) + 2v(c) - 2v(\ell_2) - 2v(\ell_3) = 2r - 2n_2 - 2n_3$$
$$v((A_3 - A_1)(A_3 - B_1)(B_3 - A_1)(B_3 - B_1)) = -2v(\ell_1) - 2v(\ell_3) = 2r - 2n_1 - 2n_3,$$
$$v((A_1 - A_2)(A_1 - B_2)(B_1 - A_2)(B_1 - B_2)) = -2v(\ell_1) - 2v(\ell_2) = 2r - 2n_2 - 2n_2.$$

If  $n_1 = n_2 = n_3 = 0$  then the cluster picture for  $\hat{C}$  is that of the isogenies TC3F/G/H/I.

Otherwise, if  $n_i > 0$  then  $n_{i+1} = n_{i+2}$  for i = 1, 2, 3 and where addition on indices is performed modulo 3. Assume first that  $n_{i+1} = n_{i+2} = 0$  and without loss of

generality, let i = 1. Then the cluster picture of  $\hat{C}$  is  $(\hat{C} \otimes \hat{C})_{2r}_{n_1}_{-n_1}$ . Finally if  $n_2 = n_3 > 0$  the cluster picture of  $\hat{C}$  is  $(\hat{C} \otimes \hat{C})_{2r}_{-n_2+n_1}_{-n_1}$ . In both cases, the cluster pictures are in the same equivalence class of  $(\hat{C} \otimes \hat{C})_{r}_{-n_2+n_1}_{-n_1}$  as required. **<u>Frobenius action</u>**. Given the cluster pictures for C and  $\hat{C}$ , it follows that Frob permutes clusters if and only if  $\delta_1 \notin K^{\times 2}$ ,  $(A_1 - B_1)^2 \notin K^{\times 2}$  respectively.

# Chapter 6

# Proof of local discrepancy conjecture

# 6.1 Introduction

In this chapter we compute the term of local discrepancy  $E_v$  associated to a  $C_2 \times D_4$ curve and prove the last columns of Tables 4.1 to 4.34. Recall from Definition 4.3.9 that, in addition to the leading terms of G(x) and L(x), c and  $\ell = \ell_1 \ell_2 \ell_3$ , we associated the following  $C_2 \times D_4$  polynomial invariants to G(x)

$$\begin{split} I_{20} &= \frac{1}{2^3} \left( \delta_2 + \delta_3 \right), \\ I_{21} &= \left( \alpha_2 + \beta_2 \right) (\alpha_3 + \beta_3), \\ I_{22} &= \frac{1}{2} \left( \Delta_G^2 \ell_1^2 - \delta_2 - \delta_3 \right) = \left( \alpha_2 - \alpha_3 \right) (\beta_2 - \beta_3) + \left( \beta_2 - \alpha_3 \right) (\alpha_2 - \beta_3), \\ I_{23} &= 4c^2 \alpha_1^2, \\ I_{40} &= \frac{1}{2^6} \left( \delta_2 - \delta_3 \right)^2, \\ I_{41} &= 16 \left( \alpha_2 \beta_2 \alpha_3 \beta_3 + \alpha_1^2 \left( \alpha_1^2 + \alpha_2 \beta_2 + \alpha_3 \beta_3 + (\alpha_2 + \beta_2) (\beta_3 + \alpha_3) \right) \right), \\ I_{42} &= 4(2\alpha_1^2 - \alpha_2^2 - \beta_2^2)(2\alpha_1^2 - \alpha_3^2 - \beta_3^2), \\ I_{43} &= \delta_2 \left( \alpha_2^2 + \beta_2^2 - 2\alpha_1^2 \right) + \delta_3 \left( \alpha_3^2 + \beta_3^2 - 2\alpha_1^2 \right), \\ I_{44} &= \delta_2 \delta_3 = (\alpha_2 - \beta_2)^2 (\alpha_3 - \beta_3)^2, \\ I_{45} &= \Delta_G^2 \delta_1^2 = 4(\beta_3 - \beta_2)(\alpha_3 - \beta_2)(\alpha_2 - \beta_3)(\alpha_2 - \alpha_3), \\ I_{60} &= 4\delta_3 \left( \alpha_2^2 + \beta_2^2 - 2\alpha_1^2 \right) + 4\delta_2 \left( \alpha_3^2 + \beta_3^2 - 2\alpha_1^2 \right), \\ I_{80} &= \frac{1}{c^4} \delta_2 \delta_3, \end{split}$$

and for each place v of  $\mathcal{K}$ , we defined the following Hilbert symbols at v

$$H_{1} = (-1, I_{22}I_{41}I_{43}I_{60}), \quad H_{2} = (I_{20}, -I_{40}I_{44}), \quad H_{3} = (I_{40}, \ell I_{60}I_{43}),$$
$$H_{4} = (c, I_{23}I_{44}I_{80}), \quad H_{5} = (I_{23}, I_{41}), \quad H_{6} = (I_{45}, -\ell I_{22}I_{21}),$$
$$H_{7} = (I_{44}, 2I_{22}I_{42}I_{43}), \quad H_{8} = (I_{80}, -2I_{41}I_{42}I_{60}), \quad H_{9} = (I_{42}, -I_{60}I_{43}),$$

and formed the following product

$$E_v = \prod_{i=1}^9 H_i.$$

Throughout the entire chapter, we assume that none of the  $I_{i,j}$ , c and  $\ell$  are zero. In Sections 4.5–4.7, we claimed that  $E_v$  correctly matches the local discrepancy between the local factors  $\lambda_v$  and the local root numbers  $\omega_v$ . In this chapter, we explicitly compute  $E_v$  for each case and prove the claim.

We first derive a few properties of the  $C_2 \times D_4$  invariants involved that will prove essential in the computations of  $E_v$ . We also include a few properties concerning Hilbert Symbols at finite places.

### List of notation for this chapter

| local field of odd residue characteristic                                             |
|---------------------------------------------------------------------------------------|
| ring of integers of $K$                                                               |
| maximal unramified extension                                                          |
| residue field                                                                         |
| uniformiser of $K$                                                                    |
| normalized valuation on $K$                                                           |
| Hilbert Symbol at $v$                                                                 |
| leading term of $G(x)$                                                                |
| leading term of $L_1(x)$                                                              |
| with $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$                                  |
| leading term of $L(x)$                                                                |
| discriminant of $G_i(x)$                                                              |
| discriminant of $\frac{1}{\Delta_G}L_1(x)$                                            |
| discriminant of $L_i(x)$                                                              |
| roots of $G_i(x)$                                                                     |
| roots of $L_i(x)$                                                                     |
| $x \equiv y \bmod \pi$                                                                |
| $x\equiv yz$ where $z$ is a square element in $K$ and $x,y,z\in \mathcal{O}_K^\times$ |
| x = yz where z is a square element in K                                               |
| Frobenius automorphism in $Gal(\bar{K}/K)$                                            |
| inertia subgroup of $Gal(\overline{K}/K)$                                             |
|                                                                                       |

# 6.2 Properties of $C_2 \times D_4$ invariants

We derive a series of Lemmata concerning interesting properties of  $C_2 \times D_4$  invariants. When readily verifiable by simple computations, the proofs are omitted.

### Lemma 6.2.1.

- 1.  $I_{20}^2 = \frac{1}{16}I_{44} + I_{40}$ ,
- 2.  $I_{21} = -\frac{1}{c^2}\ell_2\ell_3$  hence  $\ell = -c^2\ell_1I_{21}$ ,
- 3. Let  $A_{23} = (\alpha_2 \alpha_3)(\beta_2 \beta_3), \quad B_{23} = (\beta_2 \alpha_3)(\alpha_2 \beta_3),$ so that  $I_{45} = 4A_{23}B_{23}$  and  $I_{22} = A_{23} + B_{23}.$ Then  $I_{22}^2 = I_{45} + I_{44}$  and  $I_{22} = \frac{1}{2}u_1^2 - \frac{1}{2}(\delta_2 + \delta_3),$
- 4.  $I_{40} = \frac{u_1^2}{64} J_{40}^2$ , for some  $J_{40} \in K$
- 5. Let  $A_{41p} = 8(\alpha_2 + \alpha_1)(\beta_2 + \alpha_1)(\alpha_3 + \alpha_1)(\beta_3 + \alpha_1),$   $A_{41m} = 8(\alpha_2 - \alpha_1)(\beta_2 - \alpha_1)(\alpha_3 - \alpha_1)(\beta_3 - \alpha_1).$  Then  $I_{41} = A_{41p} + A_{41m}$  and  $I_{80} = A_{41p}A_{41m}.$  Moreover  $I_{41}^2 = 16I_{80} + 16^2\alpha_1^2 J_{41}^2 = 16I_{80} + \frac{64}{c^2}I_{23}J_{41}^2,$  for some  $J_{41} \in K$
- 6. Let  $A_{21} = (\alpha_2 \alpha_1)(\alpha_2 + \alpha_1) + (\beta_2 \alpha_1)(\beta_2 + \alpha_1),$   $A_{31} = (\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1) + (\beta_3 - \alpha_1)(\beta_3 + \alpha_1).$  Then
  - (a)  $I_{42} = 4A_{21}A_{31}$ ,
  - (b)  $I_{60} = \frac{4}{c^2} (\hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21}),$
  - (c)  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$ .
  - (d)  $A_{21}^2 = \frac{\hat{\delta}_3}{c^2} + \delta_2(\alpha_2 + \beta_2)^2,$ (e)  $A_{31}^2 = \frac{\hat{\delta}_2}{c^2} + \delta_3(\alpha_3 + \beta_3)^2,$
- 7.  $I_{43}^2 I_{42}I_{44} = u_1^2 J_{43}^2$ , for some  $J_{43} \in K$ .
- 8.  $I_{60}^2 16I_{42}I_{80} = u_1^2 J_{60}^2$ , for some  $J_{60} \in K$ .
- 9.  $4c\Delta_G u_1 = c^2 I_{45} + u_1^2 I_{23} 4c^2 (\alpha_2 \beta_2 \alpha_3 \beta_3)^2$ .
- 10.  $J_{43} = \frac{\delta_2 A_{21} \delta_3 A_{31}}{u_1}$ .
- 11.  $J_{60} = \frac{4}{c^2} \frac{\hat{\delta_2} A_{31} \hat{\delta_3} A_{21}}{u_1}$
- 12.  $J_{41} = \frac{A_{41p} A_{41m}}{4\alpha_1}$

Proof. 1. 2. 3. are clear from computations. 4.  $J_{40} = \frac{(\alpha_2 - \beta_2 - \alpha_3 + \beta_3)(\alpha_2 - \beta_2 + \alpha_3 - \beta_3)}{(\alpha_2 + \beta_2 - \alpha_3 - \beta_3)}$ . 5.  $J_{41} = \alpha_1^2 (\alpha_2 + \beta_2 + \alpha_3 + \beta_3) + \alpha_2 \beta_2 (\alpha_3 + \beta_3) + \alpha_3 \beta_3 (\alpha_2 + \beta_2)$ . 6. is clear from computation.

7. 
$$J_{43} = \frac{-\alpha_2^4 - \beta_2^4 + \alpha_3^4 + \beta_3^4 - 4\alpha_1^2 \alpha_2 \beta_2 - 2\alpha_3^2 \alpha_1^2 - 2\beta_3^2 \alpha_1^2 + 4\alpha_1^2 \alpha_3 \beta_3 + 2\alpha_2 \beta_2^3 - 2\alpha_3^3 \beta_3 - 2\alpha_3 \beta_3^3 + 2\alpha_2^2 \beta_2 + 2\alpha_2^2 \alpha_1^2 + 2\beta_2^2 \alpha_1^2 + 2\beta_2^2 \alpha_2^2 - 2\beta_2^2 \alpha_2^2}{\alpha_2 + \beta_2 - \alpha_3 - \beta_3}$$
8. 
$$J_{60} = \frac{a_1^2 \beta_3^4 - 3\alpha_1^4 \beta_3^2 + \alpha_2^2 \beta_2^4 + \alpha_2^4 \beta_2^2 - \alpha_3^2 \beta_3^3 + 4\alpha_1^2 \alpha_3^2 \beta_3^2 - 3\alpha_1^4 \alpha_3^2 + 3\alpha_1^2 \beta_2^2 + 3\alpha_2^2 \alpha_1^4 - 4\alpha_1^2 \alpha_2^2 \beta_2^2 - \alpha_3^4 \beta_3^2 + \alpha_1^2 \alpha_2^2 - \alpha_1^2 \beta_2^4}{\alpha_2 + \beta_2 - \alpha_3 - \beta_3}$$
8. Note that all the denominators are  $u_1$ , and hence non-zero as otherwise  $u_1 = \ell_1 = \ell_1 = \ell_1 = \ell_1 = \ell_1 = \ell_1$ 

**Lemma 6.2.2.** All the following expressions are equivalent ways to define  $\Delta_G$ .

$$1. \ \Delta_{G} = c \big( (\alpha_{1} + \beta_{2})(\alpha_{1} - \alpha_{2})(\alpha_{2} + \beta_{2} - \alpha_{3} - \beta_{3}) + (\alpha_{2} + \beta_{2})(\alpha_{2} - \alpha_{3})(\alpha_{2} - \beta_{3}) \big),$$

$$2. \ \Delta_{G} = c \big( (\alpha_{1} + \beta_{2})(\alpha_{1} - \beta_{2})(\alpha_{2} - \alpha_{3}) + (\beta_{3} - \beta_{2})((\beta_{2} - \alpha_{1})(\alpha_{3} - \alpha_{2}) + (\alpha_{2} + \alpha_{1})(\alpha_{3} - \alpha_{1})) \big),$$

$$3. \ \Delta_{G} = c \big( (\alpha_{1} + \beta_{2})(\alpha_{1} - \beta_{2})(\alpha_{2} - \alpha_{3}) + (\beta_{3} - \beta_{2})(\alpha_{2}(\alpha_{3} - \beta_{2}) + (\beta_{2}\alpha_{3} - \alpha_{1}^{2})) \big),$$

$$4. \ \Delta_{G} = c \big( (\alpha_{1} + \alpha_{2})(\alpha_{3} - \alpha_{1})(\beta_{3} - \alpha_{1}) + (\beta_{2} - \alpha_{1})((\alpha_{1} - \beta_{3})(\alpha_{2} - \alpha_{3}) + (\alpha_{3} + \alpha_{1})(\alpha_{1} - \alpha_{2})) \big),$$

$$5. \ \Delta_{G} = c (\alpha_{1}^{2}u_{1} - \alpha_{2}\beta_{2}\ell_{2} - \alpha_{3}\beta_{3}\ell_{3}).$$

# 6.3 Standard properties of Hilbert Symbols

For convenience we recall some basic properties of Hilbert symbols. First recall that (A, B) = 1 if A or B is a square and whenever A, B are both units for odd places.

**Lemma 6.3.3.** Let  $A, B, C \in K^{\times}$ . Then

- 1. (A + B, -AB) = (A, B),
- 2. (A, 1 A) = (A, -A) = 1,
- 3. (A, B)(-A, -C)(B, -C) = 1 if A + B + C = 0.

**Lemma 6.3.4.** Let K be a finite extension of  $\mathbb{Q}_p$  for an odd prime p. Let  $A, B, C \in K^{\times}$  such that  $A^2 = B + C$ . Write  $A = u_A \pi^a$ ,  $B = u_B \pi^b$ ,  $C = u_C \pi^c$ , where  $u_A, u_B, u_C \in \mathcal{O}_K^{\times}$  and  $a, b, c \in \mathbb{Z}$ . Then

- 1. if  $v(A^2) > v(B) = v(C)$  then (A, -BC) = 1,
- 2. if  $v(B) > v(A^2) = v(C)$  then (A, -BC) = (A, -B),
- 3. if  $v(C) > v(A^2) = v(B)$  then (A, -BC) = (A, -C),
- 4. if  $v(A^2) = v(B) = v(C)$  then  $(A, -BC) = (A, -u_B u_C)$ .

*Proof.* 1. Since  $v(A^2) > v(B) = v(C)$ , we have b = c and  $u_B + u_C = u_n \pi^n$  for some  $u_n \in \mathcal{O}_K^{\times}$  and  $n \in \mathbb{Z}_{>0}$ . Hence  $(A, -BC) = (A, -\pi^{2b}u_B u_C) = (A, -u_B u_C) = (A, -(u_n \pi^n - u_C)u_C) = (A, u_C^2) = 1.$ 

2. We have  $C = u_A^2 \pi^{2a} - u_B \pi^b$  and 2a < b since  $v(B) > v(A^2) = v(C)$ . Hence

$$\begin{aligned} (A, -BC) &= (A, -B)(A, u_A^2 \pi^{2a} - u_B \pi^b) = (A, -B)(A, \pi^{2a}(u_A^2 - u_B \pi^{b-2a})) \\ &= (A, -B)(A, u_A^2) = (A, -B). \\ 3. \text{ Follows from ii}). \\ 4. \text{ Here } b &= c \text{ as } v(A^2) = v(B) = v(C). \text{ Hence } (A, -BC) = (A, -u_B u_C \pi^{2b}) = (A, -u_B u_C). \end{aligned}$$

# 6.4 Local discrepancy at infinite places

This section computes  $E_v$  at real places and proves the last columns of Tables 4.1, 4.2 and 4.3. Since for two real numbers  $a, b \in \mathbb{R}$  we have (a, b) = -1 if and only if  $a, b \in \mathbb{R}_{<0}$ , we are primally interested here in the signs of all invariants involved in  $E_{\mathbb{R}}$ . These signs are sometimes obvious from the definitions of the invariants and the configuration of the real roots considered. When this is the case, the sign appears in Tables 6.1, 6.2 and 6.3. On the other hand, when the signs can vary, its corresponding entry is left blank and we use the properties of the  $C_2 \times D_4$  invariants in Section 6.2 to prove that  $E_{\mathbb{R}}$  gives the required result. This is done case by case in the second part of this section.

| Isogeny | $I_{44}$ | $I_{23}$ | $I_{80}$ | $I_{45}$ | $I_{40}$ | $I_{20}$ | $I_{21}$ | $I_{22}$ | $I_{41}$ | $I_{42}$ | $I_{43}$ | $I_{60}$ | c | $\ell$ | $E_{\mathbb{R}}$ |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|--------|------------------|
| 6C1A    | +        | —        | +        | +        | +        | —        |          | +        |          |          |          |          | + |        | 1                |
| 6C1B    | +        | —        | +        | +        | +        | —        |          | +        |          |          |          |          | - |        | -1               |
| 6C2Aa   | +        | _        | +        | _        | -        |          | +        |          |          | +        |          |          | + |        | -1               |
| 6C2Ab   | +        | _        | +        | +        | -        |          | +        | _        |          | +        |          |          | + | +      | -1               |
| 6C2Ac   | +        | _        | +        | +        | -        |          | +        | _        |          | +        |          |          | + | _      | 1                |
| 6C2Ba   | +        | _        | +        |          | _        |          | +        |          |          | +        |          |          |   |        | 1                |
| 6C2Bb   | +        | _        | +        | +        | -        |          | +        | _        |          | +        |          |          | _ | +      | 1                |
| 6C2Bc   | +        | _        | +        | +        | -        |          | +        | —        |          | +        |          |          | - | —      | -1               |
| 4C1A/B  | +        | +        | +        | +        | +        | _        |          | +        | +        |          |          |          |   |        | 1                |
| 4C2A/B  |          | _        | +        | +        | +        |          |          |          |          |          |          |          |   |        | 1                |
| 4C3a    | +        | +        | +        | _        | _        |          | +        |          | +        | +        |          |          |   |        | -1               |
| 4C3b    | +        | +        | +        | +        | _        |          | +        |          | +        | +        |          |          |   | +      | -1               |
| 4C3c    | +        | +        | +        | +        | _        |          | +        |          | +        | +        |          |          |   | —      | 1                |
| 2C1A    | +        | _        | +        | +        | +        | +        |          | +        |          | +        |          |          | + |        | 1                |
| 2C1B    | +        | _        | +        | +        | +        | +        |          | +        |          | +        |          |          | _ |        | -1               |
| 2C2A/B  | +        | _        | +        | _        | +        | +        |          |          |          | +        |          |          |   |        | -1               |
| 2C3A    | +        | _        | +        | +        | +        | +        |          | _        |          | +        |          |          | + |        | -1               |
| 2C3B    | +        | _        | +        | +        | +        | +        |          | _        |          | +        |          |          | _ |        | 1                |
| 2C4A    | _        | +        | +        | +        | +        |          |          |          |          |          |          |          | + |        | 1                |
| 2C4B    | _        | +        | +        | +        | +        |          |          |          |          |          |          |          | _ |        | -1               |
| 2C5A/B  | _        | +        | _        | +        | +        |          |          |          |          |          |          |          |   |        | -1               |
| 2C6aA   |          | +        | +        | +        | +        |          |          |          | +        |          |          |          | + |        | -1               |
| 2C6bA   | -        | +        | +        | +        | +        |          |          |          | _        |          |          |          | + |        | -1               |
| 2C6aB   | —        | +        | +        | +        | +        |          |          |          | +        |          |          |          | — |        | 1                |
| 2C6bB   | _        | +        | +        | +        | +        |          |          |          | _        |          |          |          | _ |        | 1                |

Table 6.1: Sign of  $C_2 \times D_4$  invariants over  $\mathbb{R}$ 

| Isogeny | $I_{44}$ | $I_{23}$ | $I_{80}$ | $I_{45}$ | $I_{40}$ | $I_{20}$ | $I_{21}$ | $I_{22}$ | $I_{41}$ | $I_{42}$ | $I_{43}$ | $I_{60}$ | c | $\ell$ | $E_{\mathbb{R}}$ |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|--------|------------------|
| 6R1A    | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | +        | +        | + |        | 1                |
| 6R1B    | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | +        | +        | — |        | 1                |
| 6R2A    | +        | +        | +        | —        | +        | +        | +        |          | +        | +        | +        | +        | + |        | -1               |
| 6R2B    | +        | +        | +        | —        | +        | +        | +        |          | +        | +        | +        | +        | — |        | 1                |
| 6R3A    | +        | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | +        | + |        | -1               |
| 6R3B    | +        | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | +        | — |        | -1               |
| 6R4A    | +        | +        | _        | +        | +        | +        |          | +        |          |          |          |          | + |        | -1               |
| 6R4B    | +        | +        | —        | +        | +        | +        |          | +        |          |          |          |          | — |        | 1                |
| 6R5A    | +        | +        | _        | _        | +        | +        |          |          |          |          |          |          | + |        | 1                |
| 6R5B    | +        | +        | _        | _        | +        | +        |          |          |          |          |          |          | — |        | 1                |
| 6R6A    | +        | +        | _        | +        | +        | +        |          | _        |          | +        | _        | _        | + |        | 1                |
| 6R6B    | +        | +        | _        | +        | +        | +        |          | -        |          | +        | _        | _        | _ |        | -1               |
| 6R7A    | +        | +        | +        | +        | +        | +        |          | +        | +        | _        |          |          | + |        | -1               |
| 6R7B    | +        | +        | +        | +        | +        | +        |          | +        | +        | _        |          |          | — |        | -1               |
| 6R8aA   | +        | +        | +        | _        | +        | +        | +        |          | +        |          |          |          | + | +      | 1                |
| 6R8aB   | +        | +        | +        | —        | +        | +        | +        |          | +        |          |          |          | — | +      | 1                |
| 6R8bA   | +        | +        | +        | _        | +        | +        | +        |          | +        |          |          |          | + | _      | -1               |
| 6R8bB   | +        | +        | +        | _        | +        | +        | +        |          | +        |          |          |          | — | _      | -1               |
| 6R9A    | +        | +        | +        | +        | +        | +        |          | _        | +        |          |          |          | + |        | 1                |
| 6R9B    | +        | +        | +        | +        | +        | +        |          | _        | +        |          |          |          | _ |        | 1                |
| 6R10A   | +        | +        | _        | +        | +        | +        |          | +        |          |          |          |          | + |        | 1                |
| 6R10B   | +        | +        | —        | +        | +        | +        |          | +        |          |          |          |          | — |        | -1               |
| 6R11A   | +        | +        | —        | —        | +        | +        |          |          |          |          |          |          | + |        | 1                |
| 6R11B   | +        | +        | —        | —        | +        | +        |          |          |          |          |          |          | — |        | 1                |
| 6R12A   | +        | +        | _        | +        | +        | +        |          | _        |          |          |          |          | + |        | -1               |
| 6R12B   | +        | +        | —        | +        | +        | +        |          | _        |          |          |          |          | _ |        | 1                |
|         |          |          |          |          |          |          |          |          |          |          |          |          |   |        |                  |

Table 6.2: Sign of  $C_2 \times D_4$  invariants over  $\mathbb{R}$ 

| Isogeny | $I_{44}$ | $I_{23}$ | $I_{80}$ | $I_{45}$ | $I_{40}$ | $I_{20}$ | $I_{21}$ | $I_{22}$ | $I_{41}$ | $I_{42}$ | $I_{43}$ | $I_{60}$ | c | $\ell$ | $E_{\mathbb{R}}$ |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|--------|------------------|
| 6R13A   | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | —        | —        | + |        | 1                |
| 6R13B   | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | —        | —        | — |        | 1                |
| 6R14A   | +        | +        | +        | —        | +        | +        |          |          | +        | +        | —        | —        | + |        | 1                |
| 6R14B   | +        | +        | +        | —        | +        | +        |          |          | +        | +        | —        | —        | _ |        | -1               |
| 6R15A   | +        | +        | _        | +        | +        | +        |          | —        |          | +        | +        | +        | + |        | -1               |
| 6R15B   | +        | +        | -        | +        | +        | +        |          | —        |          | +        | +        | +        | — |        | 1                |
| 6R16A   | +        | +        | +        | +        | +        | +        |          | +        | _        | +        | +        | +        | + |        | -1               |
| 6R16B   | +        | +        | +        | +        | +        | +        |          | +        | _        | +        | +        | +        | _ |        | -1               |
| 6R17A   | +        | +        | +        | _        | +        | +        |          |          | _        | +        | +        | +        | + |        | 1                |
| 6R17B   | +        | +        | +        | —        | +        | +        |          |          | —        | +        | +        | +        | — |        | -1               |
| 6R18A   | +        | +        | +        | +        | +        | +        |          | _        | _        | +        | +        | +        | + |        | 1                |
| 6R18B   | +        | +        | +        | +        | +        | +        |          | _        | _        | +        | +        | +        | _ |        | 1                |
| 6R19A   | +        | +        | _        | +        | +        | +        |          | +        |          |          |          |          | + |        | -1               |
| 6R19B   | +        | +        | _        | +        | +        | +        |          | +        |          |          |          |          | _ |        | 1                |
| 6R20A   | +        | +        | _        | _        | +        | +        |          |          |          |          |          |          | + |        | 1                |
| 6R20B   | +        | +        | _        | _        | +        | +        |          |          |          |          |          |          | _ |        | 1                |
| 6R21A   | +        | +        | _        | +        | +        | +        |          | _        |          | +        | _        | _        | + |        | 1                |
| 6R21B   | +        | +        | _        | +        | +        | +        |          | _        |          | +        | _        | _        | _ |        | -1               |
| 6R22A   | +        | +        | +        | +        | +        | +        |          | +        | _        |          |          |          | + |        | 1                |
| 6R22B   | +        | +        | +        | +        | +        | +        |          | +        | _        |          |          |          | _ |        | 1                |
| 6R23aA  | +        | +        | +        | _        | +        | +        | _        |          | _        |          |          |          | + | +      | 1                |
| 6R23aB  | +        | +        | +        | _        | +        | +        | _        |          | _        |          |          |          | _ | +      | 1                |
| 6R23bA  | +        | +        | +        | _        | +        | +        | _        |          | _        |          |          |          | + | _      | -1               |
| 6R23cB  | +        | +        | +        | _        | +        | +        | -        |          | _        |          |          |          | _ | _      | -1               |
| 6R24A   | +        | +        | +        | +        | +        | +        |          | _        | _        | _        |          |          | + |        | -1               |
| 6R24B   | +        | +        | +        | +        | +        | +        |          | _        | _        | _        |          |          | _ |        | -1               |
| 6R25A   | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | +        | +        | + |        | 1                |
| 6R25B   | +        | +        | +        | +        | +        | +        |          | +        | +        | +        | +        | +        | _ |        | 1                |
| 6R26A   | +        | +        | +        | _        | +        | +        | +        |          | +        | +        | +        | +        | + |        | -1               |
| 6R26B   | +        | +        | +        | _        | +        | +        | +        |          | +        | +        | +        | +        | _ |        | 1                |
| 6R27A   | +        | +        | +        | +        | +        | +        | +        | _        | +        | +        | +        | +        | + |        | -1               |
| 6R27B   | +        | +        | +        | +        | +        | +        | +        | _        | +        | +        | +        | +        | _ |        | -1               |

Table 6.3: Sign of  $C_2 \times D_4$  invariants over  $\mathbb{R}$ 

## 6.4.1 C has 0, 1 or 2 real connected components

### Proof of Table 4.1

Cases 6C1A/B.  $I_{22} > 0$  follows from the expression of  $I_{22}$  given in Lemma 6.2.1.3. Hence

$$E_{\mathbb{R}} = (-1, I_{41}I_{43}I_{60})(-1)(c, -1)(-1, I_{41})(I_{42}, -I_{60}I_{43})$$
$$= -(c, -1)(-I_{42}, I_{60})(-I_{42}, I_{43})(I_{42}, -1).$$

Hence if  $I_{42} < 0$  then  $E_{\mathbb{R}} = (c, -1) = \operatorname{sign}(c)$  and we are done. Otherwise from Lemma 6.2.1.6.(a), we have  $A_{21}, A_{31} > 0$  or  $A_{21}, A_{31} < 0$ . Assume the former, then
$I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21} > 0$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31} < 0$  which yields  $E_{\mathbb{R}} = (c, -1)$ . Finally if  $A_{21}, A_{31} < 0$  then  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21} < 0$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31} > 0$  thus  $E_{\mathbb{R}} = (c, -1)$  as required.

 $\frac{\text{Cases 6C2Aa/b/c and 6C2Ba/b/c.}}{|\bar{\beta}_2| = |(\alpha_2 + \beta_2)|^2 > 0 \text{ and } I_{42} = A_{21}\overline{A_{21}} = |A_{21}|^2 > 0. \text{ It follows that}} = |A_{21}|^2 > 0.$ 

$$E_{\mathbb{R}} = (-1, I_{22})(-1, \ell)(-1, c)(I_{45}, -I_{22}\ell).$$

We wish to prove that if  $I_{45} > 0$  then  $E_{\mathbb{R}} = -\text{sign}(\ell c)$ , and if  $I_{45} < 0$  then  $E_{\mathbb{R}} = -\text{sign}(c)$ . Assume the latter, then  $E_{\mathbb{R}} = -(c, -1) = -\text{sign}(c)$  proving the result. Finally assume that  $I_{45} > 0$ . By Lemma 6.2.1.3, it follows that  $I_{22} < 0$ . Therefore in this case,  $E_{\mathbb{R}} = -(-1, \ell)(c, -1) = -\text{sign}(\ell c)$  as required.

**Cases 4C1A/B**.  $I_{22} > 0$  and  $I_{41} > 0$  follow from  $\alpha_2 = \bar{\beta}_2$ ,  $\alpha_3 = \bar{\beta}_3$  and Lemmata 6.2.1.3 and 6.2.1.5. This yields  $E_{\mathbb{R}} = -(I_{43}, -I_{42})(I_{60}, -I_{42})(I_{42}, -1)$ . If  $I_{42} < 0$  then  $E_{\mathbb{R}} = 1$  and we are done. Otherwise from Lemma 6.2.1.6.(a), we have  $A_{21}, A_{31} > 0$  or  $A_{21}, A_{31} < 0$ . Assume the former, then  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21} > 0$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31} < 0$  which yields  $E_{\mathbb{R}} = 1$ . Finally if  $A_{21}, A_{31} < 0$  then  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21} < 0$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31} < 0$  which yields  $E_{\mathbb{R}} = 1$ . Finally if  $A_{21}, A_{31} < 0$  then  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21} < 0$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31} > 0$  so that  $E_{\mathbb{R}} = 1$  as required. **Cases 4C2A/B**. Here

$$E_{\mathbb{R}} = (-1, I_{22}I_{41}I_{43}I_{60})(I_{41}, -1)(-1, I_{22}I_{42}I_{43})(I_{42}, -I_{60}I_{43})$$
$$= (I_{42}, I_{60}I_{43})(I_{60}, -1)$$

and  $\delta_3 < 0$  and  $\delta_2 > 0$ . From Lemma 6.2.1.6 we have  $A_{21} > 0$ . Hence from Lemma 6.2.1.6.(a) and (b), if  $I_{42} > 0$  then  $A_{31} > 0$  and  $I_{60} > 0$  so that  $E_{\mathbb{R}} = 1$  as required. On the other hand, if  $I_{42} < 0$  then  $A_{31} < 0$  and  $I_{43} > 0$  from Lemma 6.2.1.6.(c). Therefore  $E_{\mathbb{R}} = 1$  proving the result.

Cases 4C3a/b/c.  $I_{21} > 0$ ,  $I_{42} > 0$  and  $I_{41} > 0$  follow from  $\alpha_2 = \bar{\alpha_3}$ ,  $\beta_2 = \bar{\beta_3}$  and Lemmata 6.2.1.5 and 6.2.1.6. This yields

$$E_{\mathbb{R}} = (-1, I_{22})(-1, \ell)(I_{45}, -\ell I_{22}).$$

We wish to prove that if  $I_{45} < 0$  then  $E_{\mathbb{R}} = -1$  and if  $I_{45} > 0$  then  $E_{\mathbb{R}} = -\text{sign}(\ell)$ . This is clear if If  $I_{45} < 0$ . On the other hand, if  $I_{45} > 0$  then by lemma 6.2.1.3 we have  $I_{22} < 0$ , therefore  $E_{\mathbb{R}} = -(-1, \ell)$  proving the result.

**Cases 2C1/2/3.** By definition of  $I_{42}$  we have  $I_{42} > 0$  since  $\alpha_1^2 < 0$ . Hence

$$E_{\mathbb{R}} = (-1, c)(I_{22}, -I_{45})(I_{43}, -1)(I_{60}, -1)(I_{45}, -\ell I_{21}).$$

Now it follows from Lemma 6.2.1.6.(a),(b) and (c) that  $(I_{43}, -1)(I_{60}, -1) = 1$ . There-

fore it remains to compute  $(-1, c)(I_{22}, -I_{45})(I_{45}, -\ell I_{21})$ .

**Cases 2C1A/B.** Here  $I_{45} > 0$  and  $I_{22} > 0$  hence  $E_{\mathbb{R}} = \operatorname{sign}(c)$ , as required.

**Cases 2C2A/B.** Here  $I_{45} < 0$  hence  $E_{\mathbb{R}} = -(-1, c)(-1, \ell I_{21})$ . Lemma 6.2.1.2 yields  $E_{\mathbb{R}} = -(-1, c)(-1, -\frac{u_1}{\Delta_G}) = (cu_1\Delta_G, -1)$  since  $u_1, \Delta_G \in \mathbb{R}$ . It follows from Lemma 6.2.1.9 that  $cu_1\Delta_G < 0$  since  $I_{23}, I_{45} < 0$  and  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in \mathbb{R}$ . Therefore  $E_{\mathbb{R}} = -1$  as required.

<u>Case 2C3A/B</u>. Here  $I_{45} > 0$  and  $I_{22} < 0$  hence  $E_{\mathbb{R}} = -\text{sign}(c)$ , as required. Cases 2C4/5/6. In this cases we have

$$E_{\mathbb{R}} = (I_{42}, -I_{43}I_{60})(I_{80}, -I_{41}I_{42}I_{60})(c, -I_{80})(-1, I_{41}I_{60})(-1, I_{42}).$$

**Cases 2C4A/B**. Here  $I_{80} > 0$  therefore  $\hat{\delta}_3 > 0$  and

$$E_{\mathbb{R}} = (I_{42}, -I_{43}I_{60})(c, -1)(-1, I_{41}I_{60})(-1, I_{42})$$

Using Lemma 6.2.1.6.(a), we have that  $A_{21} > 0$  hence if  $I_{42} > 0$  then  $I_{60} > 0$ . On the other hand, if  $I_{42} < 0$  then  $I_{43} > 0$ ; both cases yield  $E_{\mathbb{R}} = (I_{41}, -1)(c, -1)$ . Now from the expression given in Lemma 6.2.1.5 we have that  $I_{41p}, I_{41m} > 0$  hence  $E_{\mathbb{R}} = (-1, c)$  as required.

**Cases 2C5A/B**. Here  $I_{80} < 0$  hence  $\delta_3 < 0$  and

$$E_{\mathbb{R}} = -(I_{42}, -I_{43}I_{60})$$

If  $I_{42} > 0$  then  $E_{\mathbb{R}} = -1$  and we are done. Otherwise, from Lemma 6.2.1.6.(a), either  $A_{21} > 0, A_{31} < 0$  or  $A_{21} < 0, A_{31} > 0$ . In the former case we have  $I_{43} < 0$  and  $I_{60} > 0$ , while in the latter case we have  $I_{43} > 0$  and  $I_{60} < 0$ . In both cases  $-(I_{42}, -I_{43}I_{60}) = -1$  as required.

**Cases 2C6aA/B**. Here  $I_{80} > 0$  therefore  $\hat{\delta}_3 > 0$  and

$$E_{\mathbb{R}} = (I_{42}, -I_{43}I_{60})(c, -1)(-1, I_{41}I_{60})(-1, I_{42}).$$

From Lemma 6.2.1.5 we have that  $A_{41p}$ ,  $A_{41m} > 0$  for 2C6aA and 2C6aB hence  $I_{41} > 0$ . Using Lemma 6.2.1.6.(a), we have that  $A_{21} < 0$  hence if  $I_{42} > 0$  then  $A_{31} < 0$  and  $I_{60} < 0$ . On the other hand, if  $I_{42} < 0$  then  $A_{31} > 0$  and  $I_{43} < 0$ . In both cases this yields  $E_{\mathbb{R}} = -(-1, c)$  as required.

**Cases 2C6bA/B**. This is similar as for 2C6aA/B except that from Lemma 6.2.1.5 we have that  $A_{41p}$ ,  $A_{41m} < 0$  and hence  $I_{41} < 0$ . Using Lemma 6.2.1.6.(a), we have that  $A_{21} > 0$  hence if  $I_{42} > 0$  then  $A_{31} > 0$  and  $I_{60} > 0$ . On the other hand, if  $I_{42} < 0$  then  $A_{31} < 0$  and  $I_{43} > 0$ . In both cases this yields  $E_{\mathbb{R}} = -(-1, c)$  as required.

#### 6.4.2 C has 3 real connected components

### Proof of Tables 4.2 and 4.3

From now on, all roots of G(x) are real therefore  $I_{44}, I_{23}, I_{20}, I_{40} > 0$  and

$$E_{v} = (-1, I_{22}I_{41}I_{43}I_{60})(c, I_{80})(I_{45}, -\ell I_{22}I_{21})(I_{80}, -2I_{41}I_{42}I_{60})(I_{42}, -I_{60}I_{43}).$$

Cases 6R1A/B.  $E_{\mathbb{R}} = 1$ . Clear.

**Cases 6R2A/B**.  $E_{\mathbb{R}} = (-1, -\ell) = (-1, c)(-1, \frac{\Delta_G}{c}u_1)$ . The result follows since  $\overline{\frac{\Delta_G}{c}u_1} < 0$  from Lemma 6.2.2.

Cases 6R3A/B.  $E_{\mathbb{R}} = -1$ . Clear.

<u>Case 6R4A/B</u>.  $E_{\mathbb{R}} = -(c, -1)(I_{42}, I_{43}I_{60})(-1, I_{43})$ . From Lemma 6.2.1.6.(a) and by definition of 6R4, we have that  $A_{31} > 0$  hence if  $I_{42} > 0$  then  $I_{21} > 0$  and  $I_{43} > 0$ ; whereas if  $I_{42} < 0$  then  $I_{21} < 0$  and  $I_{60} > 0$ . Both case yield  $(I_{42}, I_{43}I_{60})(-1, I_{43}) = 1$ so that  $E_{\mathbb{R}} = -c(, -1)$  as required.

**Cases 6R5A/B.**  $E_{\mathbb{R}} = -(-1, -\ell I_{21})(I_{42}, -I_{43}I_{60})(-1, I_{42})(-1, I_{43})(c, -1)$ . By definition of 6R5, we have  $\hat{\delta}_3 < 0$  and by Lemma 6.2.1.6.(a), we have  $A_{31} > 0$ . Hence if  $I_{42} > 0$  then  $I_{43} > 0$ . On the other hand, if  $I_{42} < 0$  then  $I_{60} < 0$ . Both cases yield  $E_{\mathbb{R}} = -(-1, -\ell I_{21})(c, -1) = -(-1, \frac{\Delta_G}{c}u_1)$ . The result follows since  $\frac{\Delta_G}{c}u_1 < 0$  from Lemma 6.2.2.

**Cases 6R6A/B.**  $E_{\mathbb{R}} = (I_{42}, -I_{43}I_{60})(-1, I_{42})(-1, I_{43})(c, -1)$ . By definition of 6R6, we have  $\hat{\delta}_3 < 0$  and by Lemma 6.2.1.6.(a), we have  $A_{31} > 0$ . Hence if  $I_{42} > 0$  then  $I_{43} > 0$ . On the other hand, if  $I_{42} < 0$  then  $I_{60} > 0$ . Both cases yield  $E_{\mathbb{R}} = (c, -1)$  as required.

Cases 6R7A/B.  $E_{\mathbb{R}} = -1$ . Clear.

Cases 6R8aA/B and 6R8bA/B.  $I_{21} > 0$  follows from  $0 < \beta_2 - \alpha_1 < \alpha_2 + \beta_2$ and  $0 < \beta_3 - a_1 < \alpha_3 + \beta_3$ . Therefore

$$E_{\mathbb{R}} = (-1, -\ell I_{21})(I_{42}, -I_{43}I_{60})(-1, I_{43}I_{60}).$$

By definition of 6R8, we have  $\hat{\delta}_2, \hat{\delta}_3 < 0$  hence by Lemma 6.2.1.6, if  $I_{42} < 0$  then  $E_{\mathbb{R}} = (-1, \ell)$  and we are done. Otherwise, if  $I_{42} > 0$  with  $A_{21}, A_{31} > 0$  then  $I_{43} > 0$  and  $I_{60} < 0$ . On the other hand, if  $I_{42} > 0$  with  $A_{21}, A_{31} < 0$  then  $I_{43} < 0$  and  $I_{60} > 0$ . This yields  $E_{\mathbb{R}} = -(-1, -\ell I_{21}) = (-1, \ell)$  as required.

**Cases 6R9A/B.**  $E_{\mathbb{R}} = -(I_{42}, -I_{43}I_{60})(-1, I_{43}I_{60})$ . By definition of 6R9B, we have  $\hat{\delta}_2, \hat{\delta}_3 < 0$  hence by Lemma 6.2.1.6, if  $I_{42} < 0$  then  $E_{\mathbb{R}} = 1$  and we are done. Otherwise, if  $I_{42} > 0$  with  $A_{21}, A_{31} > 0$  then  $I_{43} > 0$  and  $I_{60} < 0$ . On the other hand, if  $I_{42} > 0$  with  $A_{21}, A_{31} < 0$  then  $I_{43} < 0$  and  $I_{60} > 0$ . Both cases yield  $E_{\mathbb{R}} = 1$  as required.

**Cases 6R10A/B.**  $E_{\mathbb{R}} = -(-1, I_{43})(I_{42}, I_{43}I_{60})(c, -1)$ . By definition of 6R10, we

have  $\hat{\delta}_2 < 0, \hat{\delta}_3 > 0$  and  $A_{21} < 0$ . Therefore, by Lemma 6.2.1.6, if  $I_{42} > 0$  then  $I_{43} < 0$  and  $E_{\mathbb{R}} = (c, -1)$  and we are done. Otherwise, if  $I_{42} < 0$  then  $A_{31} > 0$  and  $I_{60} < 0$  so that  $E_{\mathbb{R}} = (c, -1)$  as required.

<u>Cases 6R11A/B</u>.  $E_{\mathbb{R}} = -(-1, -\ell I_{21})(I_{42}, -I_{43}I_{60})(-1, I_{42})(-1, I_{43})(c, -1)$ . By definition of 6R11, we have  $\hat{\delta}_3 < 0$  and by Lemma 6.2.1.6.(a), we have  $A_{31} < 0$ . Hence if  $I_{42} > 0$  then  $I_{43} < 0$ . On the other hand, if  $I_{42} < 0$  then  $I_{60} < 0$ . Both cases yield  $E_{\mathbb{R}} = (-1, -\ell I_{21})(c, -1) = (-1, \frac{\Delta_G}{c}u_1)$ . The result follows since  $\frac{\Delta_G}{c}u_1 > 0$  from Lemma 6.2.2.

**Cases 6R12A/B.**  $E_{\mathbb{R}} = (-1, I_{43})(I_{42}, I_{43}I_{60})(c, -1)$ . By definition of 6R12, we have  $\hat{\delta}_2 > 0, \hat{\delta}_3 < 0$  and  $A_{31} < 0$ . Therefore, by Lemma 6.2.1.6, if  $I_{42} > 0$  then  $I_{43} < 0$  and  $E_{\mathbb{R}} = -(c, -1)$  and we are done. Otherwise, if  $I_{42} < 0$  then  $A_{21} > 0$  and  $I_{60} < 0$  so that  $E_{\mathbb{R}} = -(c, -1)$  as required.

Cases 6R13A/B .  $E_{\mathbb{R}} = 1$ . Clear.

Cases 6R14A/B.  $E_{\mathbb{R}} = (-1, -\ell I_{21}) = (-1, c)(-1, \frac{\Delta_G}{c}u_1)$ . Since  $\frac{\Delta_G}{c}u_1 > 0$  from Lemma 6.2.2 we have  $E_{\mathbb{R}} = (c, -1)$  as required.

<u>Cases 6R15A/B</u>.  $E_{\mathbb{R}} = (I_{42}, -I_{43}I_{60})(-1, I_{42})(-1, I_{43})(c, -1)$ . By definition of 6R15, we have  $\hat{\delta}_3 < 0$  and by Lemma 6.2.1.6.(a), we have  $A_{31} < 0$ . Hence if  $I_{42} > 0$  then  $I_{43} < 0$ . On the other hand, if  $I_{42} < 0$  then  $I_{60} < 0$ . Both cases yield  $E_{\mathbb{R}} = -(c, -1)$  as required.

Cases 6R16A/B.  $E_{\mathbb{R}} = -(-1, I_{43}I_{60})(I_{42}, I_{43}I_{60})$ . By definition of 6R16, we have  $\overline{I_{42}, I_{43}, I_{60} > 0}$ . Therefore  $E_{\mathbb{R}} = -1$  as required.

Cases 6R17A/B.  $E_{\mathbb{R}} = -(-1, -\ell I_{21}) = -(-1, c)(-1, \frac{\Delta_G}{c}u_1)$ . Since  $\frac{\Delta_G}{c}u_1 < 0$ from Lemma 6.2.2 we have  $E_{\mathbb{R}} = (c, -1)$  as required.

Cases 6R18A/B.  $E_{\mathbb{R}} = 1$ . Clear.

**Cases 6R19A/B.**  $E_{\mathbb{R}} = -(-1, I_{43})(I_{42}, I_{43}I_{60})(c, -1)$ . By definition of 6R19, we have  $\hat{\delta}_2 > 0, \hat{\delta}_3 < 0$  and  $A_{31} > 0$ . Therefore, by Lemma 6.2.1.6, if  $I_{42} > 0$  then  $I_{43} > 0$  and  $E_{\mathbb{R}} = -(c, -1)$  and we are done. Otherwise, if  $I_{42} < 0$  then  $A_{21} < 0$  and  $I_{60} > 0$  so that  $E_{\mathbb{R}} = -(c, -1)$  as required.

**Cases 6R20A/B.**  $E_{\mathbb{R}} = -(-1, I_{43})(I_{42}, I_{43}I_{60})(c, -1)(-1, -\ell I_{21})$ . By definition of 6R20, we have  $\hat{\delta}_2 < 0, \hat{\delta}_3 > 0$  and  $A_{21} > 0$ . Therefore, by Lemma 6.2.1.6, if  $I_{42} > 0$  then  $I_{43} > 0$  and  $E_{\mathbb{R}} = -(c, -1)(-1, -\ell I_{21})$ . Otherwise, if  $I_{42} < 0$  then  $A_{31} < 0$  and  $I_{60} > 0$  so that  $E_{\mathbb{R}} = -(c, -1)(-1, -\ell I_{21})$ . Using that  $\ell = -c^2 \ell_1 I_{21}$ , this yields  $E_{\mathbb{R}} = -(-1, c\ell_1)$ . Moreover,  $\ell_1 = \frac{u_1}{\Delta_G}$  with  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$ . By definition of 6R20 we have that  $\alpha_2 - \alpha_3 < 0$  since  $|\alpha_2| > |\alpha_3|$ . Also,  $\beta_2 - \beta_3 < 0$ , hence  $u_1 < 0$ . Using Lemma 6.2.2.2, we have that  $c\Delta_G > 0$  if

$$|(\beta_2 - \alpha_1)(\alpha_3 - \alpha_2)| > |(\alpha_2 + \alpha_1)(\alpha_3 - \alpha_1)|.$$

But  $|\beta_2 - \alpha_1| > |-2\alpha_1|$ , hence it suffices to prove that

$$|-2\alpha_{1}||\alpha_{3}-\alpha_{2}| > |\alpha_{2}+\alpha_{1}||\alpha_{3}-\alpha_{1}|$$

with  $\alpha_2 < \alpha_1 < \alpha_3 < -\alpha_1 = \beta_1$ . Let  $\alpha_1 = \alpha_2 + b, \alpha_3 = \alpha_2 + b + e, \beta_1 = \alpha_2 + b + e + d$ , with b, e, d > 0. Then  $\beta_1 - \alpha_1 = e + d, \alpha_3 - \alpha_2 = b + e, \alpha_2 - \beta_1 = -b - e - d, \alpha_3 - \alpha_1 = e$ . Hence  $|-2\alpha_1||\alpha_3 - \alpha_2| = e^2 + be + ed + bd$  and  $|\alpha_2 + \alpha_1||\alpha_3 - \alpha_1| = eb + e^2 + ed$ . The result follows since bd > 0.

Thus  $c\Delta_G > 0$  and  $c\ell_1 < 0$  so that  $E_{\mathbb{R}} = 1$ .

**Cases 6R21A/B.**  $E_{\mathbb{R}} = (I_{42}, -I_{43}I_{60})(-1, I_{42})(-1, I_{43})(c, -1)$ . By definition of 6R21, we have  $\hat{\delta}_3 < 0$  and by Lemma 6.2.1.6.(a), we have  $A_{31} > 0$ . Hence if  $I_{42} > 0$  then  $I_{43} > 0$ . On the other hand, if  $I_{42} < 0$  then  $I_{60} > 0$ . Both cases yield  $E_{\mathbb{R}} = (c, -1)$  as required.

**Cases 6R22A/B.**  $E_{\mathbb{R}} = -(I_{42}, -I_{43}I_{60})(-1, I_{43}I_{60})$ . By definition of 6R22, we have  $\hat{\delta}_2, \hat{\delta}_3 < 0$  hence by Lemma 6.2.1.6, if  $I_{42} < 0$  then  $E_{\mathbb{R}} = 1$  and we are done. Otherwise, if  $I_{42} > 0$  with  $A_{21}, A_{31} > 0$  then  $I_{43} > 0$  and  $I_{60} < 0$ . On the other hand, if  $I_{42} > 0$  with  $A_{21}, A_{31} < 0$  then  $I_{43} < 0$  and  $I_{60} > 0$ . Both cases yield  $E_{\mathbb{R}} = 1$  as required.

Cases 6R23aA/B and 6R23bA/B.  $I_{21} > 0$  follows from  $\alpha_2 + \beta_2 < \beta_2 - \alpha_1 < 0$ and  $0 < \beta_3 - a_1 < \alpha_3 + \beta_3$ .  $E_{\mathbb{R}} = -(-1, -\ell I_{21})(I_{42}, -I_{43}I_{60})(-1, I_{43}I_{60})$ . By definition of 6R23, we have  $\hat{\delta}_2, \hat{\delta}_3 < 0$  hence by Lemma 6.2.1.6, if  $I_{42} < 0$  then  $E_{\mathbb{R}} = (-1, -\ell I_{21}) = (-1, \ell)$  and we are done. Otherwise, if  $I_{42} > 0$  with  $A_{21}, A_{31} > 0$ then  $I_{43} > 0$  and  $I_{60} < 0$ . On the other hand, if  $I_{42} > 0$  with  $A_{21}, A_{31} < 0$  then  $I_{43} < 0$  and  $I_{60} > 0$ . Both cases yield  $E_{\mathbb{R}} = (-1, -\ell I_{21}) = (-1, \ell)$  as required.

Cases 6R24A/B .  $E_{\mathbb{R}} = -1$ . Clear.

**Cases 6R25A/B.**  $E_{\mathbb{R}} = (-1, I_{43}I_{60})(I_{42}, I_{43}I_{60})$ . By definition of 6R25, we have  $I_{42}, I_{43}, I_{60} > 0$  hence  $E_{\mathbb{R}} = 1$  as required.

Cases 6R26A/B.  $E_{\mathbb{R}} = (-1, -\ell I_{21}) = (-1, c)(-1, \frac{\Delta_G}{c}u_1)$ . Since  $\frac{\Delta_G}{c}u_1 < 0$  from Lemma 6.2.2 we have  $E_{\mathbb{R}} = -(c, -1)$  as required. Cases 6R27A/B.  $E_{\mathbb{R}} = -1$ . Clear.

# 6.5 Local discrepancy at finite places $v \mid 2$

Fix a 2-adic place v of  $\mathcal{K}$ . Recall from Section 4.6 that we required our  $C_2 \times D_4$  curve to belong to the family  $\mathcal{C}$  given by

$$C: y^2 = f(x) = G_1(x)G_2(x)G_3(x),$$
  
 $G_1(x) = (x^2 - (8 + 4n)^2),$ 

$$G_2(x) = (x^2 + x(-2m - 23) + \frac{441}{4} - 2d + 14m),$$
  

$$G_3(x) = (x^2 + x(-8k - 18) + 105 + 8r + 56k),$$

for  $n, m, d, k, r \in \mathcal{O}_K$ .

We wish to prove that  $E_v = 1$  for curves  $C \in C$  as claimed in Lemma 4.6.17. Recall the following results on Hilbert Symbols (see [9][Lemma 15]).

**Lemma 6.5.5.** Let  $F/\mathbb{Q}_p$  be a finite extension. Then (1) (1 + 4x, y) = 1 if v(x) > 0 and  $y \in F^{\times}$ , (2) (1 + 4x, y) = 1 if p = 2, v(x) = 0 and  $y \in \mathcal{O}_F^{\times}$ ,

Let C be a  $C_2 \times D_4$  curve such that  $C \in \mathcal{C}$  and consider the model for such curves given above. Computing its corresponding  $C_2 \times D_4$  invariants one finds that

$$I_{45} \equiv_{\Box} 1 \mod 16, \quad I_{40} =_{\Box} 1,$$
  
 $I_{80} = 1 + 4t, \quad I_{41} =_{\Box} (1 + 4t'), \quad I_{42} =_{\Box} (1 + 4t''),$ 

with v(t), v(t'), v(t'') > 0, so that by Lemma 6.5.5 we have

$$E_v = (-1, I_{22}I_{43}I_{60})(I_{20}, -I_{44})(I_{44}, 2I_{22}I_{43}).$$

Moreover

$$I_{22} \equiv \frac{1}{2} + 4d \mod 8 =_{\Box} (2 + 16d) \mod 32 =_{\Box} 2(1 + 8d),$$

 $I_{60} \equiv \frac{1}{2} + 4(d+m^2) \mod 8 =_{\Box} (2 + 16(d+m^2)) \mod 32 =_{\Box} 2(1 + 8(d+m^2)),$ 

so that

$$(-1, I_{22}I_{60}) = (I_{44}, 2I_{22}) = 1.$$

We therefore have that

$$E_v = (I_{20}, -I_{44})(I_{43}, -I_{44})$$

and we show that  $E_v = 1$ .

By definition we have  $I_{44} = \delta_2 \delta_3$ ,  $I_{20} = \frac{1}{2^3} (\delta_2 + \delta_3)$  and  $I_{43} = -\delta_2 A_{21} - \delta_3 A_{31}$ with  $A_{21}A_{31} = I_{42} = \Box$  and  $A_{21}, A_{31} \in K$  since  $G_2(x), G_3(x) \in K[x]$ . Replacing invariants by their expression above and using twice Lemma 6.3.3 we have

$$E_v = \left(\frac{1}{2^3}(\delta_2 + \delta_3), -\delta_2\delta_3\right)(-\delta_2A_{21} - \delta_3A_{31}, -\delta_2\delta_3),$$
$$= \left(\frac{1}{2^3}, -\delta_2\delta_3\right)(\delta_2, \delta_3)(-\delta_2A_{21}, -\delta_3A_{31}).$$

But  $A_{21} = \Box A_{31}$ , hence we can replace occurrences of  $A_{31}$  by  $A_{21}$  and obtain after simplification

$$E_v = (-\delta_2 \delta_3, -\frac{A_{21}}{2^3}) = 1$$

since  $-2A_{21} = 1 \mod 8$ .

# 6.6 Local discrepancy at finite places $v \nmid 2$

Recall that we consider a  $C_2 \times D_4$  curve  $C : y^2 = G_1(x)G_2(x)G_3(x)$  such that its cluster picture at places  $v \nmid 2$  of  $\mathcal{K}$  is one of Table 3.1. In particular, the roots of  $G_1(x), G_2(x), G_3(x)$  are integral and hence all the  $I_{i,j}, \delta_i, \delta_i, \Delta_G, u_1, \ell_2, \ell_3$  are integral (the only potentially non-integral invariant is  $\ell_1 = \frac{u_1}{\Delta_G}$ ). Also, it follows from the definition of the invariants that without loss of generality, we may assume v(c) = 0 or v(c) = 1. In this section, since  $v \nmid 2$ , we extensively use Hensel's Lemma to claim that  $x \in K^{\times 2}$  if and only if x reduces to a non zero square element in k.

**Lemma 6.6.6.** If  $v(A_{21}), v(A_{31}) > 0$  and  $v(I_{80}) = v(I_{44}) = 0$  then  $I_{80} \in K^{\times 2} \Leftrightarrow I_{44} \in K^{\times 2}$ .

Proof. Since  $v(I_{80}) = v(I_{44}) = 0$  and  $I_{80} = \[top] \delta_2 \delta_3$  and  $I_{44} = \[top] \delta_2 \delta_3$ , it follows that  $v(\delta_2) = v(\delta_3) = v(\delta_2) = v(\delta_3) = 0$ . From Lemma 6.2.1.6 (c),(d), we have  $\delta_2 \equiv \[top] -\delta_3(\alpha_3 + \beta_3)^2$  and  $\delta_3 \equiv \[top] -\delta_2(\alpha_2 + \beta_2)^2$ . Hence  $I_{80} = \[top] \delta_2 \delta_3 \equiv \[top] \delta_2 \delta_3 I_{21}^2 \equiv \[top] \delta_2 \delta_3 = \[top] I_{44}$  and the result follows.

**Lemma 6.6.7.** If  $v(A_{21}) \neq v(A_{31})$  then  $A_{21}, A_{31} \in K$  and moreover  $\delta_2, \delta_3, \hat{\delta_2}, \hat{\delta_3}, u_1 \in K$ .

*Proof.* Since the action of  $\sigma \in Gal(\overline{K}/K)$  preserves distances between the roots, it follows that  $\sigma(A_{21}) \neq A_{31}$  in this case. Therefore  $\sigma(A_{21}) = A_{21}$  and  $\sigma(A_{31}) = A_{31}$  which implies that  $\sigma(\alpha_i) = \alpha_i$  or  $\sigma(\alpha_i) = \beta_i$  for i=2,3. In particular, it follows that  $\sigma$  fixes  $\delta_2, \delta_3, \delta_2, \delta_3, u_1$ .

From this point onwards, our results concern computations of Hilbert Symbols. We give an extra detailed proof for the first Lemma. For the remaining of this section, the reader might find helpful to keep the list of notation for this chapter, the list of invariants  $I_{i,j}$ , Lemma 6.2.1 and the properties of Hilbert Symbols of Section 6.3 at hand.

**Lemma 6.6.8.** If  $v(I_{44}) = v(I_{80}) = v(I_{42}) = 0$  then  $(I_{43}, -I_{40}I_{42}I_{44}) = (I_{60}, -I_{40}I_{42}I_{80}) = 1$ .

*Proof.* Write  $S_{43}^2 = I_{43}^2 - I_{42}I_{44}$ ,  $S_{60}^2 = I_{60}^2 - 16I_{42}I_{80}$  as given in Lemmata 6.2.1.7 and 6.2.1.8. If  $v(I_{43}^2) > v(I_{42}I_{44}) = v(S_{43}^2)$  then  $(I_{43}, -I_{40}I_{42}I_{44}) = 1$  by Lemma

6.3.4.1. If  $v(I_{43}^2) = v(I_{42}I_{44}) = v(S_{43}^2) = 0$  then  $(I_{43}, -I_{40}I_{42}I_{44}) = 1$  trivially. Else, if  $v(S_{43}^2) > v(I_{43}^2) = v(I_{42}I_{44}) = 0$  then  $(I_{43}, -S_{43}^2I_{42}I_{44}) = (I_{43}, -S_{43}^2)$  by Lemma 6.3.4.3. In particular since  $S_{43}^2 = u_1^2 S^2 = \Box I_{40}$  where  $S \in K$  and since  $v(I_{43}) = 0$ , we have  $(I_{43}, -S_{43}^2) = (I_{43}, -u_1^2)$ . Now, here  $v(I_{44}) = v(I_{80}) = 0$  so that  $\alpha_2 \neq \beta_2 \neq \alpha_3 \neq \beta_3$  and hence inertia acts trivially on these roots. In particular,  $v(u_1) \in \mathbb{Z}$  so that  $v(u_1^2) \in 2\mathbb{Z}$ . Hence  $(I_{43}, -u_1^2) = 1$ . The proof is similar for  $(I_{60}, -I_{40}I_{42}I_{80})$ .

**Lemma 6.6.9.** If  $v(I_{44}) = v(I_{80}) = 0$  then

$$H = (I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80})(I_{42}, -I_{80}I_{44}) = 1.$$

In particular, this holds when C is of type 2.

*Proof.* Note that since  $v(I_{44}) = v(I_{80}) = 0$ ,  $\alpha_2 \neq \beta_2 \neq \alpha_3 \neq \beta_3$  and hence inertia acts trivially on these roots so that  $v(u_1^2), v(I_{40}) \in 2\mathbb{Z}$  and  $v(A_{21}), v(A_{31}) \in \mathbb{Z}$ .

1) First assume that  $v(I_{42}) = 0$ . Then  $(I_{42}, -I_{80}I_{44}) = 1$  trivially since  $v(I_{42}) = v(I_{44}) = v(I_{80}) = 0$  and the result follows from Lemma 6.6.8.

2) Now let  $v(I_{42}) > 0$  with  $v(A_{21}) > v(A_{31}) \ge 0$ . Then by Lemma 6.6.7, we have  $\delta_2, \delta_3 \in K^{\times}$  and  $I_{40} \in K^2$  by Lemma 6.2.1.4. Also, from Lemma 6.2.1.6.(b) and (c) we have  $I_{60} = \widehat{\delta}_2 A_{31} + \widehat{\delta}_3 A_{21}$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$ . Hence  $(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80}) = (\delta_3 A_{31}, -I_{42}I_{44})(\widehat{\delta}_2 A_{31}, -I_{42}I_{80})$  in this case. Using Lemma 6.2.1.6.(a) and replacing in H yields

$$H = (\delta_3 A_{31}, -A_{21} A_{31} \delta_2 \delta_3) (\hat{\delta}_2 A_{31}, -A_{21} A_{31} \hat{\delta}_2 \hat{\delta}_3) (A_{21} A_{31}, -\hat{\delta}_2 \hat{\delta}_3 \delta_2 \delta_3),$$

which, once simplified using the multiplicativity property of Hilbert Symbols yields  $H = (A_{21}, -\delta_2 \hat{\delta}_3)(A_{31}, -\hat{\delta}_2 \delta_3)$ . Since  $v(A_{21}) > 0$ , it follows from Lemma 6.2.1.6.(d) that  $\hat{\delta}_3 \equiv_{\Box} -\delta_2$  so that  $-\delta_2 \hat{\delta}_3 \in K^{\times 2}$  and  $(A_{21}, -\delta_2 \hat{\delta}_3) = 1$ . Lastly, If  $v(A_{31}) = 0$  then  $(A_{31}, -\hat{\delta}_2 \delta_3) = 1$  trivially and we are done, otherwise by Lemma 6.2.1.6.(e), it follows that  $\hat{\delta}_2 \equiv_{\Box} -\delta_3$  so that  $-\hat{\delta}_2 \delta_3 \in K^{\times 2}$  and  $(A_{31}, -\hat{\delta}_2 \delta_3) = 1$ .

3) Lastly, let  $v(I_{42}) > 0$  with  $v(A_{21}) = v(A_{31}) > 0$ . Then  $v(I_{42}) \in 2\mathbb{Z}$  and by Lemma 6.6.6, we have  $(I_{42}, -I_{80}I_{44}) = 1$  so that

$$H = (I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80}).$$

It follows from Lemma 6.2.1.6.(b) and (c) that  $v(I_{43}), v(I_{60}) \ge v(A_{21}) = v(A_{31})$ , and hence by Lemma 6.2.1.6.(a) we have  $v(I_{42}) \le v(I_{60}^2), v(I_{43}^2)$ .

i) If  $v(I_{42}) = v(I_{43}^2) = v(I_{60}^2)$ . Write  $I_{42} = \pi^{2n}U_{42}$  for some  $n \in \mathbb{Z}_{>0}$  and  $U_{42} \in K^{\times}$ . By Lemmata 6.2.1.7 and 6.2.1.8, if  $v(u_1^2 J_{43}^2) = v(u_1^2 J_{60}^2) = v(I_{43}^2)$  then

using Lemma 6.3.4.4 it follows that  $(I_{43}, -I_{40}I_{42}I_{44}) = (I_{43}, -u_1^2U_{42}I_{44})$  and that  $(I_{60}, -I_{40}I_{42}I_{80}) = (I_{60}, -u_1^2U_{42}I_{80})$ . Since  $v(I_{43}) = v(I_{60})$ , this yields

$$H = (I_{43}, I_{44})(I_{60}, I_{80}),$$

and the result follows from Lemma 6.6.6. On the other hand, if  $v(u_1^2 J_{43}^2) > v(I_{43}^2)$ then by Lemma 6.3.4.2 we have that

$$(I_{43}, -I_{40}I_{42}I_{44}) = (I_{43}, -u_1^2).$$

If in addition,  $v(u_1^2 J_{60}^2) > v(I_{60}^2)$  then by the same Lemma we have

$$(I_{60}, -I_{40}I_{42}I_{80}) = (I_{60}, -u_1^2),$$

so that

$$(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80}) = 1$$

since  $v(I_{43}) = v(I_{60})$ .

Finally, if  $v(u_1^2 J_{43}^2) > v(I_{43}^2)$  and  $v(u_1^2 J_{60}^2) = v(I_{60}^2)$  then writing  $u_1^2 = \pi^{2b} U_1^2$  for some  $b \in \mathbb{Z}$  and  $U_1 \in \mathcal{O}_{\overline{K}}^{\times}$ , and using Lemma 6.3.4.2 and 4, this yields

$$(I_{43}, -I_{40}I_{42}I_{44}) = (I_{43}, -U_1^2), \quad (I_{60}, -I_{40}I_{42}I_{80}) = (I_{60}, -U_1^2U_{42}I_{80}).$$

Hence

$$H = (I_{43}, -U_1^2)(I_{60}, -U_1^2U_{42}I_{80}) = (I_{60}, U_{42}I_{80})$$

Write  $A_{21} = \pi^a U_{21}$  and  $A_{31} = \pi^a U_{31}$  for some  $a \in \mathbb{Z}$  and  $U_{21}, U_{31} \in \mathcal{O}_{\overline{K}}^{\times}$ . Using Lemma 6.2.1.10, we have that  $u_1^2 J_{43}^2 = (\delta_2 A_{21} - \delta_3 A_{31})^2$  and since  $v((\delta_2 A_{21} - \delta_3 A_{31})^2) > v(I_{43}^2)$ , it follows that  $v(\delta_2 U_{21} - \delta_3 U_{31}) > 0$ . In particular  $\delta_2 U_{21} \equiv \delta_3 U_{31}$ . By Lemma 6.2.1.6.1 we can write  $U_{42} = U_{21}U_{31}$  so that

$$U_{42}I_{80} = U_{21}U_{31}\hat{\delta}_2\hat{\delta}_3.$$

Also, by Lemma 6.2.1.6.(d) and (e) we have

$$\frac{\hat{\delta_3}}{c^2} \equiv -\delta_2(\alpha_2 + \beta_2)^2, \quad \frac{\hat{\delta_2}}{c^2} \equiv -\delta_3(\alpha_3 + \beta_3)^2.$$

It follows that

$$U_{42}I_{80} = U_{21}U_{31}\hat{\delta}_2\hat{\delta}_3 \equiv U_{21}U_{31}\delta_2\delta_3((\alpha_2 + \beta_2)(\alpha_3 + \beta_3))^2$$
$$\equiv_{\Box} U_{21}U_{31}\delta_2\delta_3 \equiv U_{21}^2\delta_2^2 \equiv_{\Box} 1.$$

The last congruence follows from the fact that  $U_{21}\delta_2 \in k$ , therefore  $U_{42}I_{80} \equiv_{\Box} 1$  and  $(I_{60}, U_{42}I_{80}) = 1$ . The proof is similar if  $v(u_1^2 J_{60}^2) > v(I_{60}^2)$  and  $v(u_1^2 J_{43}^2) = v(I_{43}^2)$ .

ii) If  $v(I_{42}) = v(I_{43}^2) < v(I_{60}^2)$  then by Lemmata 6.2.1.8 and 6.3.4.1 we have  $(I_{60}, -I_{40}I_{42}I_{80}) = 1$  so that  $H = (I_{43}, -I_{40}I_{42}I_{44})$ . Using Lemma 6.3.4.3, we have

$$H = (\delta_2 A_{21} + \delta_3 A_{31}, -I_{40} A_{21} A_{31} \delta_2 \delta_3) = (\pi^a (\delta_2 U_{21} + \delta_3 U_{31}), -U_1^2 U_{21} U_{31} \delta_2 \delta_3).$$

Also, since  $v(I_{43}^2) = v(I_{42})$  it follows that  $v(\delta_2 U_{21} + \delta_3 U_{31}) = 0$  so that

$$H = (\pi^a, -U_1^2 U_{21} U_{31} \delta_2 \delta_3),$$

Now, by Lemma 6.2.1.6.(d) and (e) we have  $\hat{\delta}_2 = \Box -\delta_3(\alpha_3 + \beta_3)^2$  and  $\hat{\delta}_3 = \Box -\delta_2(\alpha_2 + \beta_2)^2$ . Also, since  $v(I_{43}^2) < v(I_{60}^2)$ , using Lemma 6.2.1.6.(b) we have

$$I_{60} =_{\Box} \hat{\delta_2} A_{31} + \hat{\delta_3} A_{21} = \pi^a (\hat{\delta_2} U_{31} + \hat{\delta_3} U_{21}), \quad \text{and} \ v(\hat{\delta_2} U_{31} + \hat{\delta_3} U_{21}) > 0,$$

so that  $\hat{\delta}_2 U_{31} \equiv -\hat{\delta}_3 U_{21}$ . Therefore  $U_{21}U_{31}\hat{\delta}_2\hat{\delta}_3 = -U_{21}^2\hat{\delta}_3^2 = -U_{21}^2\delta_2^2(\alpha_2 + \beta_2)^4$ . Hence

$$H = (\pi^a, U_1^2 U_{21}^2 \delta_2^2 (\alpha_2 + \beta_2)^4).$$

If  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  then  $U_1^2 U_{21}^2 \delta_2^2 (\alpha_2 + \beta_2)^4 \in K^{\times 2}$  and we are done. Otherwise  $U_1^2, U_{21}^2 \notin K^{\times 2}$  but their product is a square element in K hence H = 1. The proof is similar if  $v(I_{42}) = v(I_{60}^2) < v(I_{43}^2)$ .

iii) If  $v(I_{42}) < v(I_{60}^2), v(I_{43}^2)$  then since by Lemmata 6.2.1.7 and 6.2.1.8 we have  $I_{43}^2 = I_{42}I_{44} + I_{40}I$  for some  $I \in K^{\times 2}$  and  $I_{60}^2 = 16I_{42}I_{80} + I_{40}I'$  for some  $I' \in K^{\times 2}$ , it follows from Lemma 6.3.4.1. that H = 1.

| 1 | - | - | - | ٦ |
|---|---|---|---|---|
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

**Proposition 6.6.10.** Suppose that  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$  and i)  $v(\Delta_G^2) = v(I_{23}) = v(c) = v(I_{45}) = 0$  and  $v(u_1^2) > 0$ ; or ii)  $v(u_1), v(I_{23}) \neq 0$  and  $v(c) = v(I_{45}) = 0$ . Then

$$c^{2}I_{45} \equiv 4c^{2}(\alpha_{2}\beta_{2} - \alpha_{3}\beta_{3})^{2}$$
 and  $(\ell_{1}, u_{1}^{2}I_{45}) = 1$ .

*Proof.* It follows from Lemma 6.2.1.9 that  $c^2 I_{45} \equiv 4c^2(\alpha_2\beta_2 - \alpha_3\beta_3)^2$  in this case.

i) Recall that  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  and  $\ell_1 = \frac{u_1}{\Delta_G}$ . Write  $u_1 = \pi^a c_1$  with  $c_1 \in \mathcal{O}_{\overline{K}}^{\times}, a \in \mathbb{Z}$  since we assumed  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$ . We have

$$(\ell_1, u_1^2 I_{45}) = (\frac{\pi^a c_1}{\Delta_G}, \pi^{2a} c_1^2 I_{45}) = (\pi^a, c_1^2 I_{45})$$

since  $v(\Delta_G) = v(I_{45}) = 0$ . If  $u_1 \notin K$  then  $(\alpha_2\beta_2 - \alpha_3\beta_3)^2, c_1^2 \notin K^{\times 2}$  so that  $c_1^2(\alpha_2\beta_2 - \alpha_3\beta_3)^2 \in K^{\times 2}$  and hence  $c_1^2I_{45} \in K^{\times 2}$ . Conversely, if  $u_1 \in K$  then

 $(\alpha_2\beta_2 - \alpha_3\beta_3)^2 \in K^{\times 2} \text{ and } c_1^2 I_{45} \in K^{\times 2}.$ 

ii) Write  $u_1 = \pi^a c_1, \Delta_G = \pi^b u_d$  with  $c_1, u_d \in \mathcal{O}_{\overline{K}}^{\times}$ . We have  $a \in \mathbb{Z}$  since we assumed  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$ , from which it follows that  $b \in \mathbb{Z}$  since  $\ell_1 = \frac{u_1}{\Delta_G} \in K$ . If  $c_1 \notin K$ (equivalently  $u_d \notin K$ , as  $\ell_1 \in K$ ), then  $(\alpha_2\beta_2 - \alpha_3\beta_3) \notin K^{\times}$  hence  $I_{45} \notin K^{\times 2}$  and  $c_1^2 I_{45} \in K^{\times 2}$ . Conversely, if  $c_1 \in K^{\times}$  then  $(\alpha_2\beta_2 - \alpha_3\beta_3)^2 \in K^{\times 2}$  and  $I_{45}, c_1^2, c_1^2 I_{45} \in K^{\times 2}$ .

Now 
$$\left(\frac{u_1}{\Delta_G}, u_1^2 I_{45}\right) = \left(\pi^{a-b} \frac{c_1}{u_d}, \pi^{2a} c_1^2 I_{45}\right) = (\pi^{a-b}, c_1^2 I_{45}) = 1$$
 as required.

### **6.6.1** *C* is of type 2

**Lemma 6.6.11.** If C has good reduction then  $I_K$  acts trivially on J[2] which implies  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$ .

*Proof.* This follows from Neron-Ogg-Shafarevich Theorem and the characterization of J[2] in terms of  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3$  of Lemma 2.1.9.

#### Proof of Table 4.4

Since C is of type 2, it follows that  $v(I_{23}) = v(I_{45}) = v(I_{44}) = v(I_{80}) = 0$ . Recall that either v(c) = 0 or v(c) = 1 so by semistability criterion 3.4.29, v(c) = 0. Moreover  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$  so that valuations of invariants are integers.

Using Lemmata 6.2.1.5, 6.2.1.3 and 6.2.1.1, and since  $v(I_{40}) \in 2\mathbb{Z}$  by Lemma 6.2.1.4, we have that  $(I_{41}, -I_{23}I_{80}) = (I_{22}, -I_{45}I_{44}) = (I_{20}, -I_{40}I_{44}) = 1$  by Lemma 6.3.4.1. Also,  $(2, I_{44}) = (-2, I_{80}) = 1$  since  $v \nmid 2$  and

$$(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80})(I_{42}, -I_{80}I_{44}) = 1$$

by Lemma 6.6.9. Therefore using definitions of invariants and simplifying gives

$$E_v = (\ell, I_{40})(I_{45}, -\ell I_{21}) = (\ell_1, (A_1 - B_1)^2)(u_1^2, \ell_2 \ell_3).$$

<u>**Case GR1A**</u>. If  $v(\Delta_G \ell_1) = 0$  then  $E_v = (\ell_2 \ell_3, u_1^2)$ . If  $v(\ell_2 \ell_3) = 0$  we are done. Otherwise, if  $v(\ell_2) \neq v(\ell_3)$  then  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  and  $u_1^2 \in K^{\times 2}$  so that  $E_v = 1$ . On the other hand, if  $v(\ell_2) = v(\ell_3)$  then  $v(\ell_2 \ell_3) \in 2\mathbb{Z}$  and  $E_v = 1$ .

If  $v(\Delta_G \ell_1) > 0$  then since  $v(\Delta_G \ell_1) = u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  we have that  $v(u_1^2) \in 2\mathbb{Z}$ . Also recall that  $v(\ell) = v(\ell_1) + v(\ell_2) + v(\ell_3)$  so that  $v(\ell_1) \in 2\mathbb{Z}$  since by semistability criterion 3.4.29, we have  $v(\ell) \in 2\mathbb{Z}$ . Therefore  $(u_1^2, \ell_2 \ell_3) = 1$  and  $E_v = (\ell_1, (A_1 - B_1)^2) = 1$ .

If  $v(\ell_2\ell_3) > 0$  then by definition of  $\Delta_G$  and since  $v(\Delta_G) = 0$ , it follows that  $v(\Delta_G\ell_1) = 0$ . If  $v(\ell_2) = v(\ell_3)$  then  $v(\ell_2\ell_3) \in 2\mathbb{Z}$  and  $E_v = 1$ . Lastly, if  $v(\ell_2) \neq v(\ell_3)$  then  $u_1 = \Delta_G\ell_1 \in K$  so that  $u_1^2 \in K^{\times 2}$  and  $E_v = 1$ .

**Cases GR1B/GR1C.** Assume first that  $v(\Delta_G \ell_1) = 0$ . If  $v(\ell_2 \ell_3) = 0$  then  $E_v = (\ell_1, (A_1 - B_1)^2)$ . If  $v(\ell_2 \ell_3) > 0$  with  $v(\ell_2) \neq v(\ell_3)$  then  $\Delta_G \ell_1 \in K$ . On the other hand, if  $v(\ell_2) = v(\ell_3)$  then  $v(\ell_2 \ell_3) \in 2\mathbb{Z}$ . In both cases,  $E_v = (\ell_1, (A_1 - B_1)^2)$ .

Assume now that  $v(\Delta_G \ell_1) > 0$ . Then since  $v(\Delta_G \ell_1) = u_1$ , as above we have  $v(u_1^2) \in 2\mathbb{Z}$ . Now, if  $v(\ell_2) = v(\ell_3)$  then  $v(\ell_2 \ell_3) \in 2\mathbb{Z}$  and  $(u_1^2, \ell_2 \ell_3) = 1$ . Otherwise  $u_1 \in K$  and  $u_1^2 \in K^2$  so that  $(u_1^2, \ell_2 \ell_3) = 1$ . In both cases we have  $E_v = (\ell_1, (A_1 - B_1)^2)$ . The result follows since in this case  $v(\ell_1) \equiv r \mod 2$ .

### **6.6.2** *C* is of type $1_{2a}$

### Proof of Tables 4.5, 4.6, 4.7 and 4.8

<u>Cases ON1</u>. From the definition of the isogeny, we have

$$v(I_{23}) = 2a, \quad v(c) = v(I_{45}) = v(I_{80}) = v(I_{44}) = 0.$$

Also,  $\alpha_2 \neq \beta_2 \neq \alpha_3 \neq \beta_3 \neq 0$  so that inertia acts trivially on these roots and hence  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{\times nr}$ . We have  $(c, I_{80}I_{44})=1$ . Making repetitive use of Lemma 6.3.4.1, it follows from Lemma 6.2.1.1 that  $v(I_{20}) = 0$  since  $v(I_{44}) = 0$  so that  $(I_{20}, -I_{44}I_{40}) = (I_{20}, -I_{40})$ , since  $v(I_{45}) = v(I_{44}) = 0$ , it follows from Lemma 6.2.1.3 that  $(I_{22}, -I_{45}I_{44}) = 1$ , since  $v(\delta_1) > v(I_{80}) = 0$ , it follows from Lemma 6.2.1.5 that  $v(I_{41}) = 0$  and hence  $(I_{41}, -I_{23}I_{80}) = (I_{41}, -I_{23})$ . Therefore  $E_v = (I_{23}, cI_{41})H_1H_2$ , with

$$H_1 = (I_{40}, I_{20}\ell)(I_{45}, \ell I_{21}), \quad H_2 = (I_{42}, -I_{44}I_{80})(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80}).$$

From Lemma 6.6.9 we have that  $H_2 = 1$ . We show that  $H_1 = 1$ . By Lemma 6.2.1.4, we have  $I_{40} = \square u_1^2$ , where  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G} = \square \Delta_G u_1$ . Using this notation, we have  $H_1 = (\Delta_G u_1, u_1^2 I_{45})(\ell_2 \ell_3, u_1^2)$ .

**Cases ON1A/B.** Here  $v(\Delta_G) = 0$  hence  $H_1 = (\Delta_G u_1, u_1^2 I_{45})(\ell_2 \ell_3, u_1^2)$ .

If  $v(u_1) = 0$  then  $H_1 = (\ell_2 \ell_3, u_1^2)$ . If  $v(\ell_2) \neq v(\ell_3)$  then  $Frob(\alpha_2) = \alpha_2$ or  $Frob(\alpha_2) = \beta_2$  and similarly for  $\alpha_3$ . In particular  $u_1 \in K$  and  $u_1^2 \in \mathcal{O}_K^{\times 2}$ ; if  $v(\ell_2) = v(\ell_3)$  then  $v(\ell_2 \ell_3) \in 2\mathbb{Z}$ 

If  $v(u_1) > 0$ , since  $v(\Delta_G) = 0$ ,  $v(\ell_2) = 0$  or  $v(\ell_3) = 0$  or both from Lemma 6.2.2.5. But also since  $u_1 = \ell_2 + \ell_3$ , we must have  $v(\ell_2) = v(\ell_3) = 0$ . Moreover  $v(u_1^2) \in 2\mathbb{Z}$  since  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{\times nr}$ . Hence  $H_1 = (\Delta_G u_1, u_1^2 I_{45})$ . The result follows from Proposition 6.6.10.2.

<u>**Cases ON1C/D**</u>. Here  $v(\Delta_G) = r > 0$ . Since  $\ell_1 = \frac{u_1}{\Delta_G} \in K$ , it follows that  $r \in \mathbb{Z}$  and as above we have  $H_1 = (\Delta_G u_1, u_1^2 I_{45})$ .

The result follows from Proposition 6.6.10.2.

Therefore  $E_v = (I_{23}, cI_{41})$ . By definition of  $I_{41}$  we have that  $cI_{41} \equiv_{\Box} T_{\alpha_1}$  so

that  $E_v = 1$  for ON1A/C and  $E_v = (-1)^{2a}$  for ON1B/D as claimed. **Cases ON2**. From the definition of the isogeny, we have

$$v(I_{44}) = 2a, \quad v(c) = v(I_{23}) = v(I_{80}) = v(I_{45}) = 0,$$

Therefore  $(c, I_{23}I_{80})=1$ . Reducing invariants mod  $\pi$  yields

$$I_{20} \equiv_{\Box} 2(\alpha_3 - \beta_3)^2$$
,  $I_{40} \equiv_{\Box} I_{20}^2 \equiv_{\Box} 1$ ,  $I_{45} \equiv_{\Box} ((\alpha_2 - \alpha_3)(\alpha_2 - \beta_3))^2 \equiv_{\Box} 1$ 

and  $v(I_{40}) = 0$ . It follows that  $(I_{45}, -\ell I_{21}) = 1$  and from Lemma 6.2.1.1 that  $(I_{20}, -I_{44}I_{40}) = (I_{20}, -I_{44})$ , with  $v(I_{20}) = 0$ . Making repetitive use of Lemma 6.3.4, since  $v(I_{45}) = 0$ , it follows from Lemma 6.2.1.3 that  $(I_{22}, -I_{45}I_{44}) = (I_{22}, -I_{44})$  with  $v(I_{22}) = 0$ ; since  $v(I_{23}) = v(I_{80}) = 0$ , it follows from Lemma 6.2.1.5 that  $(I_{41}, -I_{23}I_{80}) = 1$ . From the definition of the isogeny we have that  $\delta_2, \delta_3 \in K$  so that using the definition of  $I_{42}$  in Lemma 6.2.1.6.(a) we have  $I_{42} = 4A_{21}A_{31}$  with  $A_{21}, A_{31} \in K$  and  $v(A_{21}) = 0$ . Using this notation, we have  $E_v = (I_{44}, -cI_{22}A_{21})H$ , with

$$H = (I_{44}, -2I_{20}A_{31}I_{43})(-I_{42}, -I_{43}I_{60})(I_{80}, I_{42}I_{60})$$

We show that H = 1. Recall from Lemma 6.2.1.6.(b) and (c) that  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$  and  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21}$ .

If  $v(I_{31}) = 0$  then  $v(I_{43}) = 0$  and  $(I_{60}, -I_{42}I_{80}) = 1$  by Lemmata 6.3.4 and 6.2.1.8. It follows that

$$H = (I_{44}, -2I_{20}A_{31}I_{43}) = (I_{44}, 4(\alpha_3 - \beta_3)^4(-\alpha_3^2 - \beta_3^2 + 2\alpha_1^2)^2) = 1.$$

If  $v(I_{31}) > 0$  then using definitions of invariants we obtain

$$H = (\delta_2 \delta_3, \delta_3 A_{31} I_{43}) (A_{21} A_{31}, -\hat{\delta_2} \hat{\delta_3}) (I_{43}, -A_{21} A_{31}) (\hat{\delta_3} A_{21}, -A_{21} A_{31} \hat{\delta_2} \hat{\delta_3}),$$

after reorganizing and simplifying we have

$$= (\delta_2, \delta_3 A_{31} I_{43})(A_{31}, A_{21} I_{43})(I_{43}, -\delta_3 A_{21}).$$

Now since  $I_{43} - \delta_2 A_{21} - \delta_3 A_{31} = 0$  it follows from Lemma 6.3.3.3 that

$$(I_{43}, -\delta_2 A_{21})(-I_{43}, \delta_3 A_{31})(-\delta_2 A_{21}, \delta_3 A_{31}) = 1.$$

Hence

$$(I_{43}, -A_{21}\delta_3)(\delta_2, \delta_3)(A_{31}, A_{21})(I_{43}, \delta_2)(I_{43}, A_{31})(\delta_2, A_{31})$$
$$= (\delta_2, \delta_3 A_{31}I_{43})(A_{31}, A_{21}I_{43})(I_{43}, -\delta_3 A_{21}) = 1$$

as required. Therefore  $E_v = (I_{44}, -cI_{22}A_{21})$  and since  $-cI_{22}A_{21} \equiv_{\Box} T_{a_2}$  it follows that  $E_v = 1$  for ON2A/C and  $E_v = (-1)^{2a}$  for ON2B/D.

<u>Cases ON3</u>. From the definition of the isogeny, we have

$$v(I_{45}) = a, \quad v(c) = v(I_{23}) = v(I_{80}) = v(I_{44}) = 0,$$

Therefore  $(c, I_{23}I_{80}I_{44}) = 1$ . Reducing invariants mod  $\pi$  yields

$$\ell_1 \equiv_\Box c(\alpha_1 - \alpha_2)(\alpha_1 + \alpha_2) \quad I_{40} \equiv_\Box (\beta_2 - \beta_3)^2,$$

so that  $v(\ell_1) = 0$  and  $v(I_{40}) \in 2\mathbb{Z}$ . Also from Lemma 6.2.1.3 we have that  $v(I_{22}) = 0$  and using Lemma 6.3.4, since  $v(I_{23}) = v(I_{80}) = 0$ , it follows from Lemma 6.2.1.5 that  $(I_{41}, -I_{23}I_{80}) = 1$ , similarly since  $v(I_{44}) = 0$  and  $v(I_{40}) \in 2\mathbb{Z}$  we have  $(I_{20}, -I_{40}I_{44}) = 1$ . Moreover since  $v(I_{40}) \in 2\mathbb{Z}$ ,

$$(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80})(I_{42}, -I_{80}I_{44}) = 1$$

by Lemma 6.6.9. This yields  $E_v = (I_{40}, \ell)(I_{45}, \ell I_{21}I_{22})$ . We show that  $(I_{40}, \ell) =$ 1. Clearly, if  $v(\ell_2\ell_3) = 0$  we are done. Otherwise, if  $v(\ell_2) > 0$  then  $v(\ell_3) = 0$ . Indeed, by definition of  $\ell_2$  that yields  $\beta_3 \equiv -\alpha_2$ . By definition of  $\ell_3$ , if  $v(\ell_3) > 0$ then  $\beta_2 \equiv -\alpha_2$ , a contradiction since  $\beta_3 \not\equiv \beta_2$ . Now either  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  and  $I_{40} \in K^{\times 2}$  and  $(I_{40}, \ell) = 1$ , or from the definition of the isogeny, the roots  $\alpha_2$  and  $\alpha_3$  are permuted, similarly for  $\beta_2$  and  $\beta_3$ . In particular  $\ell_2$  and  $-\ell_3$  are permuted, a contradiction since their valuation is different. Therefore  $E_v = (I_{45}, \ell I_{21}I_{22})$  and since  $\ell I_{21}I_{22} =_{\Box} T_{\alpha_2\alpha_3}$ , it follows that  $E_v = 1$  for ON3A and  $E_v = (-1)^a$  for ON3B as required.

<u>Cases ON4</u>. From the definition of the isogeny, we have

$$v(I_{80}) = a, \quad v(c) = v(I_{23}) = v(I_{45}) = v(I_{44}) = 0,$$

and  $\alpha_1, \alpha_2, \beta_2 \in K$ . Therefore  $(c, I_{23}I_{44})=1$  and since  $I_{40} = (\alpha_2 + \alpha_2 - \alpha_3 - \beta_3)^2$  it follows that  $v(I_{40}) \in K^{\times 2}$  and  $(I_{40}, \ell I_{60}I_{43}) = 1$ . Computing  $\Delta_G$  we find that  $v(\Delta_G) = 0$ . Also from Lemma 6.2.1.1 we have that  $v(I_{20}) = 0$  so that and using Lemma 6.3.4, we have  $(I_{20}, -I_{44}I_{40}) = 1$ . Similarly, from Lemma 6.2.1.3, we have that  $(I_{22}, -I_{44}I_{45}) = 1$ ; and from Lemma 6.2.1.5 we have that  $v(I_{41}) = 0$  and  $(I_{41}, -I_{23}I_{80}) = (I_{41}, I_{80})$ . Moreover, by definitions of the invariants we have  $(I_{45}, -\ell I_{21}) = (I_{45}, \ell_1)$ . Recall that  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . Then, since  $v(\Delta_G) = 0$ ,  $(I_{45}, \ell_1) = 1$  if  $v(u_1) = 0$ . Otherwise by Lemma 9.1 we have that

 $(I_{45}, \ell_1) = 1$ . This yields

$$E_v = (I_{80}, -2cI_{41}I_{42}I_{60})(I_{43}, -I_{42}I_{44})(I_{60}, -I_{42})(I_{42}, -I_{44})$$

From the definition of the isogeny we have that  $\delta_2, \delta_3, \delta_2, \delta_3 \in K$  so that using the definition of  $I_{42}$  in Lemma 6.2.1.6.(a) we have  $I_{42} = 4A_{21}A_{31}$  with  $A_{21}, A_{31} \in K$ ,  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21}$  and  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$ . Note that  $v(\delta_2) = v(\delta_3) = v(\hat{\delta}_2) = v(A_{21}) = 0$ .

If  $v(A_{31}) = 0$  then  $v(I_{42}) = 0$  so that  $(I_{42}, -I_{44}) = 1$  and by Lemmata 6.3.4 and 6.2.1.7 we have  $(I_{43}, -I_{42}I_{44}) = 1$ . Also, in this case  $I_{60} \equiv \hat{\delta}_2 A_{31}$  and  $v(I_{60}) = 0$ , hence  $(I_{60}, -I_{42}) = 1$ . This yields

$$E_v = (I_{80}, -2cI_{41}A_{21}A_{31}\hat{\delta}_2A_{31}) = (I_{80}, -2cI_{41}A_{21}\hat{\delta}_2).$$

On the other hand, if  $v(A_{31}) > 0$  then  $I_{43} \equiv \delta_2 A_{21}$  and using this notation and the definitions of invariants and simplifying, we have

$$E_{v} = (\hat{\delta}_{2}\hat{\delta}_{3}, I_{60})(\hat{\delta}_{2}, A_{31})(\hat{\delta}_{3}, -2cI_{41}A_{21}A_{31})$$
$$(\delta_{2}A_{21}, -A_{21}A_{31}\delta_{2}\delta_{3})(I_{60}, -A_{21}A_{31})(A_{31}, -\delta_{2}\delta_{3}).$$

Since  $I_{60} - \hat{\delta}_2 A_{31} - \hat{\delta}_3 A_{21} = 0$  it follows from Lemma 6.3.3.3 that

$$(I_{60}, -\hat{\delta}_2 A_{31})(-I_{60}, \hat{\delta}_3 A_{21})(-\hat{\delta}_2 A_{31}, \hat{\delta}_3 A_{21}) = 1,$$

which yields

$$(I_{60}, \hat{\delta}_2 \hat{\delta}_3) = (I_{60}, -A_{21}A_{31})(\hat{\delta}_3 A_{21}, \hat{\delta}_2 A_{31})$$

Using this expression for  $(I_{60}, \hat{\delta}_2 \hat{\delta}_3)$  in  $E_v$  and simplifying again gives

$$E_v = (\hat{\delta}_3, -2cI_{41}A_{21}\hat{\delta}_2)(A_{31}, -\hat{\delta}_2\delta_3).$$

By Lemma 6.2.1.6.(e), since if  $v(A_{31}) > 0$  then we have  $\hat{\delta}_2 \equiv -\delta_3$ . Hence  $E_v = (\hat{\delta}_3, -2cI_{41}A_{21}\hat{\delta}_2)$  as in the previous case.

Since  $-2cI_{41}A_{21}\delta_2 \equiv T_{\alpha_1\alpha_2}$ , it follows that  $E_v = 1$  for ON4A and  $E_v = (-1)^a$  for ON4B as required.

# 6.6.3 C is of type $I_{2a,2b}$

#### Proof of Tables 4.9 to 4.22

**<u>Cases TN1</u>**. From the definition of the isogeny we see that  $v(I_{23}) = 2a$  and  $v(I_{44}) = 2b$  with  $v(\delta_2) = 2b \neq v(\delta_3) = 0$ . Hence  $\delta_2, \delta_3 \in K$  and  $\hat{\delta_2}, \hat{\delta_3}, A_{21}, A_{31} \in K$ . Reducing

invariants yields

$$I_{45} \equiv_{\Box} \hat{\delta_2} \equiv_{\Box} \hat{\delta_3} \equiv_{\Box} I_{40} \equiv_{\Box} 1, \quad I_{20} \equiv_{\Box} 2\delta_3, \quad I_{22} \equiv_{\Box} 2(\alpha_2 - \beta_3)(\alpha_2 - \alpha_3),$$
$$A_{21} \equiv_{\Box} 2\alpha_2^2, \quad A_{31} \equiv_{\Box} \alpha_3^2 + \beta_3^2.$$

It follows that  $E_v = (I_{23}, cI_{41})(I_{44}, cI_{22}A_{21})H$ , where  $H = (I_{44}, 2I_{20}I_{42}I_{43})(-I_{42}, -I_{43}I_{60})$ . We show that H = 1.

If  $v(A_{31}) = 0$  then by Lemma 6.2.1.7,  $v(I_{43}) = 0$  and  $I_{43} \equiv_{\Box} \delta_3 A_{31}$  so that

$$H = (I_{44}, \delta_3^2 A_{31}^2)(I_{60}, -A_{21}A_{31}) = (\hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21}, -A_{21}A_{31}).$$

Using Lemma 6.3.3.1 and since  $\hat{\delta}_2, \hat{\delta}_3 \in K^{\times 2}$ , this gives

$$= (\hat{\delta_2}A_{31} + \hat{\delta_3}A_{21}, -A_{21}A_{31}\hat{\delta_2}\hat{\delta_3}) = 1.$$

If  $v(A_{31}) > 0$  then  $I_{60} \equiv_{\Box} \hat{\delta}_3 A_{21}$  and  $\delta_3 \equiv -\hat{\delta}_2 \equiv_{\Box} -1$  from Lemma 6.2.1.6.(e), so that

$$H = (-\delta_2, -A_{31}I_{43})(A_{21}A_{31}, -I_{43}A_{21})(I_{43}A_{21}, -1).$$

But since  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$ , it follows from Lemma 6.3.3.3 that

$$1 = (I_{43}, -\delta_2 A_{21})(-I_{43}, \delta_3 A_{31})(-\delta_2 A_{21}, \delta_3 A_{31})$$
$$= (I_{43}, -\delta_2 A_{21})(-I_{43}, -A_{31})(-\delta_2 A_{21}, -A_{31}) = H,$$

proving the result.

Therefore  $E_v = (I_{23}, cI_{41})(I_{44}, cI_{22}A_{21})$ . Now  $cI_{41} \equiv_{\Box} T_{\alpha_1}$  and  $cI_{22}A_{21} \equiv_{\Box} T_{\alpha_2}$ . It follows that  $E_v = 1$  for TN1A/E,  $E_v = (-1)^{2a}$  for TN1B/F,  $E_v = (-1)^{2b}$  for TN1C/G and  $E_v = (-1)^{2a+2b}$  for TN1D/H as required.

**<u>Cases TN2</u>**. From the definition of the isogeny we see that  $v(I_{23}) = v(I_{45}) = v(I_{80}) = 0$  and  $v(I_{44}) = 2a + 2b$ . Write  $\beta_2 = \alpha_2 + a_2\pi^a$  and  $\beta_3 = \alpha_3 + a_3\pi^b$ ,  $a_2, a_3 \in \mathcal{O}_{\overline{K}}^{\times}$ . We have

$$I_{44} \equiv a_2^2 a_3^2 \pi^{2a+2b}, \quad I_{45} \equiv_{\Box} 1 \quad I_{40} \equiv_{\Box} u_1^2 \equiv_{\Box} (\alpha_2 - \alpha_3)^2,$$
$$I_{20} \equiv_{\Box} 2(a_2^2 \pi^{2a} + a_3^2 \pi^{2b}), \quad I_{22} \equiv_{\Box} 2(\alpha_2 - \alpha_3)^2,$$
$$I_{42} = 4A_{21}A_{31} \equiv_{\Box} (\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1), \quad I_{43} \equiv a_2^2 \pi^{2a} A_{21} + a_3^2 \pi^{2b} A_{31}$$

It follows that  $v(I_{22}) = v(I_{42}) = 0$ . Also by Lemma 6.2.1.5 and using Lemma 6.3.4 we have that  $(I_{41}, -I_{23}I_{80}) = 1$ , and by Lemma 6.2.1.8, we have  $(I_{60}, -I_{40}I_{42}I_{80}) = 1$ 

1. This yields  $E_v = (I_{20}, -I_{40}I_{44})(I_{43}, -I_{40}I_{42}I_{44})(I_{44}, 2cI_{22}I_{42})(\ell, I_{40}).$ Cases TN2A/B/C/F/G/H: Here  $\alpha_2, \alpha_3 \in K_v$  therefore

$$I_{44} \equiv \pi^{2a+2b}, \quad I_{45} \equiv I_{40} \equiv_{\Box} 1, \quad I_{22} \equiv_{\Box} 2, \quad I_{20} \equiv_{\Box} 2(a_2^2 \pi^{2a} + a_3^2 \pi^{2b}),$$

 $A_{21} \equiv 2(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1), \quad A_{31} \equiv 2(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1), \quad I_{43} \equiv a_2^2 \pi^{2a} A_{21} + a_3^2 \pi^{2b} A_{31}.$ 

Hence  $E_v = (I_{20}, -I_{44})(I_{43}, -I_{42}I_{44})(I_{44}, 2cI_{22}I_{42}).$ If a < b then  $I_{20} \equiv_{\Box} 2\pi^{2a}$  and  $I_{43} \equiv_{\Box} \pi^{2a}A_{21}$  so that

$$E_v = (2\pi^{2a}, -\pi^{2a+2b})(A_{21}\pi^{2a}, -A_{21}A_{31}\pi^{2a+2b})(\pi^{2a+2b}, cA_{21}A_{31}).$$

Simplifying yields  $E_v = (\pi^{2a}, 2cA_{21})(\pi^{2b}, 2cA_{31})$ . Now the results follows since we have  $T_{\alpha_2} \equiv_{\Box} 2cA_{21}$  and  $T_{\alpha_3} \equiv_{\Box} 2cA_{31}$ . Therefore  $E_v = 1$  for TN2A/F,  $E_v = (-1)^{2a}$  for TN2B/G and  $E_v = (-1)^{2a+2b}$  for TN2C/H as required.

If a = b then  $I_{44} \in K_v^2$  so that  $E_v = (I_{20}, -1)(I_{43}, -I_{42})$  with

$$I_{20} \equiv \pi^{2a}(a_2^2 + a_3^2)$$
 and  $I_{43} \equiv \pi^{2a}(a_2^2 A_{21} + a_3^2 A_{31})$ 

hence

$$E_v = (\pi^{2a}, A_{21}A_{31})(a_2^2 + a_3^2, -1)(a_2^2A_{21} + a_3^2A_{31}, -A_{21}A_{31}).$$

Now  $(a_2^2 + a_3^2, -1) = (a_2^2 + a_3^2, -a_2^2 a_3^2) = 1$  and  $(a_2^2 A_{21} + a_3^2 A_{31}, -A_{21} A_{31}) = (a_2^2 A_{21} + a_3^2 A_{31}, -a_2^2 a_3^2 A_{21} A_{31}) = 1$  by Lemma 6.3.3, therefore  $E_v = (\pi^{2a}, A_{21} A_{31})$ .

For TN2A (respectively TN2C), we have  $T_{\alpha_2} \equiv_{\Box} c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1), T_{\alpha_3} \equiv_{\Box} c(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1) \in K^{\times 2} (\notin K^{\times 2} \text{ respectively})$  so that (in both cases)  $(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) \in K^{\times 2} \Leftrightarrow (\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1) \in K^{\times 2}$ . It follows that  $A_{21}A_{31} \in K^{\times 2}$  and hence  $E_v = 1$  which proves the result.

For TN2B, we have  $T_{\alpha_2} \equiv_{\Box} c(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) \notin K^{\times 2}, T_{\alpha_3} \equiv_{\Box} v(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1) \in K^{\times 2}$  so that  $A_{21}A_{31} \notin K^{\times 2}$  and  $E_v = (-1)^{2a}$  as required.

**Cases TN2D/E/I/J**: Here a = b and Frob swaps  $\delta_2$  and  $\delta_3$  and hence  $\alpha_2, \beta_2, \alpha_3, \beta_3 \notin \overline{K}$ . Without loss of generality, let  $Frob(\alpha_2) = \alpha_3$  so that  $Frob(\beta_2) = \beta_3$ . By Lemma 6.2.1.4, we have  $v(I_{40}) \in 2\mathbb{Z}$  since  $v(u_1) = 0$ . Also, since a = b we have  $v(I_{44}) \in 2\mathbb{Z}$  and as above

$$I_{20} \equiv \pi^{2a}(a_2^2 + a_3^2), \quad I_{43} \equiv \pi^{2a}(a_2^2 A_{21} + a_3^2 A_{31}), \quad I_{44} \equiv_{\Box} a_2^2 a_3^2$$

This yields  $E_v = (I_{20}, -I_{40}I_{44})(I_{43}, -I_{40}I_{42}I_{44})(\ell, I_{40}).$ 

If  $2a \in 2\mathbb{Z}$ , since  $v(I_{42}) = 0$ , it follows from Lemma 6.2.1.7 that  $(I_{43}, -I_{40}I_{42}I_{44}) = 1$ . Hence  $E_v = (\pi^{2a}(a_2^2 + a_3^2), -I_{40}a_2^2a_3^2)(\ell, I_{40})$ . Simplifying using Lemma 6.3.3 which gives  $(a_2^2 + a_3^2, -a_2^2a_3^2) = (a_2^2, a_3^2)$  as above, yields  $E_v = (\ell, I_{40})$ . Now,  $\ell = \ell_1\ell_2\ell_3$  with  $\ell_1 = \frac{u_1}{\Delta_G}, \ell_2 \equiv_{\Box} 2c\alpha_3, \ell_3 \equiv_{\Box} -2c\alpha_2$ . It follows that  $v(\ell_2) = v(\ell_3) = 0$  and that

 $v(\ell_1) = 0$  for TND/E while  $v(\ell_1) = -r$  for TNI/J. Therefore  $E_v = (\ell_1, u_1^2)$ . For TN2D/E,  $v(\ell_1) = 0$  and  $E_v = 1$ . For TN2I/J,  $v(\ell_1) = -r$  so that  $E_v = (-1)^r$  since  $u_1^2 \notin K^{\times 2}$  as required.

If 2a is odd then using the above expression for the invariants yields

$$E_v = (\pi^{2a}(a_2^2 + a_3^2), -I_{40}I_{44})(\pi^{2a}(a_2^2A_{21} + a_3^2A_{31}), -I_{40}I_{42}I_{44})(\ell, I_{40})$$
$$= (\ell, I_{40})(\pi^{2a}, I_{40}^2I_{44}^2I_{42})H_1H_2,$$

where

$$H_1 = (a_2^2 + a_3^2, -I_{40}I_{44}), \quad H_2 = (a_2^2A_{21} + a_3^2A_{31}, -I_{40}I_{42}I_{44}).$$

If  $v(a_2^2 + a_3^2) > 0$  then  $v(I_{20}) > v(I_{44}) = v(I_{40})$  by Lemma 6.2.1.1. Therefore  $H_1 = 1$  by Lemma 6.3.4. Similarly for  $H_2$  since if  $v(a_2^2A_{21} + a_3^2A_{31}) > 0$  then  $v(I_{43}) > v(I_{42}I_{44})$  so that  $H_2 = 1$  by Lemma 6.2.1.7.

Therefore  $E_v = (\pi^{2a}, I_{42})(\ell, I_{40}).$ 

Recall from Proposition 3.4.30 that  $T_{\alpha_2} = c(\alpha_2 - \alpha_3)(\alpha_2 - \beta_3)(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)$  and  $T_{\alpha_3} = c(\alpha_3 - \alpha_2)(\alpha_3 - \beta_2)(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1)$ . In particular in these cases,  $Frob(T_{\alpha_2}) = T_{\alpha_3}$  and  $Frob(T_{\alpha_3}) = T_{\alpha_2}$ . Moreover,

$$T_{\alpha_2}T_{\alpha_3} \equiv c^2(\alpha_2 - \alpha_3)^4(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 + \alpha_1)$$

so that  $T_{\alpha_2}T_{\alpha_3} \equiv_{\Box} I_{42}$ .

Now, let  $t_{\alpha_2}^{\pm}$  and  $t_{\alpha_3}^{\pm}$  denote the square roots of  $T_{\alpha_2}, T_{\alpha_3}$  respectively. By definition of TN2D/I, we have without loss of generality  $Frob(t_{\alpha_2}^{\pm}) = t_{\alpha_3}^{\pm}$  and  $Frob(t_{\alpha_3}^{\pm}) = t_{\alpha_2}^{\pm}$ . Therefore  $T_{\alpha_2}T_{\alpha_3} = (t_{\alpha_2}^{\pm}t_{\alpha_3}^{\pm})^2 \in \mathcal{O}_K^{\times 2}$ , and hence  $I_{42} \in \mathcal{O}_K^{\times 2}$ . On the other hand, by definition of TN2E/J, we have  $Frob(t_{\alpha_2}^{\pm}) = t_{\alpha_3}^{\pm}$ ,  $Frob(t_{\alpha_3}^{\pm}) = t_{\alpha_2}^{\pm}$ ,  $Frob(t_{\alpha_2}^{\pm}) = t_{\alpha_3}^{\pm}$  and  $Frob(t_{\alpha_3}^{\pm}) = t_{\alpha_2}^{\pm}$ . It follows that  $T_{\alpha_2}T_{\alpha_3} = (t_{\alpha_2}^{\pm}t_{\alpha_3}^{\pm})^2 \notin \mathcal{O}_K^{\times 2}$ , and hence  $I_{42} \notin \mathcal{O}_K^{\times 2}$ .

This yields  $E_v = (\pi^{2a}, I_{42}) = 1$  for TN2D,  $E_v = (\pi^{2a}, I_{42}) = (-1)^{2a}$  for TN2E,  $E_v = (\pi^{2a}, I_{42})(\ell, I_{40}) = (-1)^r$  for TN2I, and  $E_v = (\pi^{2a}, I_{42})(\ell, I_{40}) = (-1)^{2a+r}$  for TN2J as required.

**<u>Cases TN3</u>**. From the definition of the isogeny we see that  $v(I_{23}) = 2a, v(I_{45}) = b$ and  $v(I_{44}) = v(I_{80}) = 0$ . Also since  $v(\alpha_2 - \alpha_3) \neq v(\beta_2 - \beta_3)$  and  $\beta_2 \not\equiv \beta_3$ , it follows that  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  (since otherwise  $I_K$  would permutes  $\alpha_2$  and  $\alpha_3$  while Frob would permute  $\beta_2$  and  $\beta_3$ , a contradiction). In particular  $b \in \mathbb{Z}$ ,  $A_{21}, A_{31} \in K$  and  $\delta_2, \delta_3, \hat{\delta_2}, \hat{\delta_3} \in K^{\times 2}$ . Reducing invariants yields

$$I_{44} \equiv_{\Box} I_{40} \equiv_{\Box} I_{80} \equiv_{\Box} 1,$$
$$\ell_1 \equiv_{\Box} \frac{-1}{c}, \quad I_{22} \equiv -(\alpha_2 - \beta_3)(\alpha_3 - \beta_2), \quad I_{41} \equiv_{\Box} \beta_2 \beta_3$$

so that  $v(\ell_1) = v(I_{22}) = v(I_{41}) = 0$ . Now from Lemma 6.2.1.1 and using Lemma 6.3.4, we have that  $(I_{20}, -I_{40}I_{44}) = 1$ . Therefore  $E_v = (I_{23}, cI_{41})(I_{45}, -\ell I_{22}I_{21})H$ , where  $H = (-I_{42}, -I_{43})(-I_{42}, I_{60})$ . We show that H = 1. Using definitions of invariants and since  $A_{21}, A_{31} \in K$  and  $\delta_2, \delta_3, \hat{\delta_2}, \hat{\delta_3} \in K^{\times 2}$ , we can rewrite H as

$$= (-A_{21}A_{31}, -A_{21}\delta_2 - A_{31}\delta_3)(-A_{21}A_{31}, A_{21}\hat{\delta}_3 + A_{31}\hat{\delta}_2)$$
$$= (-A_{21}A_{31}\delta_2\delta_3, -A_{21}\delta_2 - A_{31}\delta_3)(-A_{21}A_{31}\hat{\delta}_2\hat{\delta}_3, A_{21}\hat{\delta}_3 + A_{31}\hat{\delta}_2).$$

Using Lemma 6.3.3.1 we have  $H = (A_{21}\delta_2, A_{31}\delta_3)(A_{21}\hat{\delta}_3, A_{31}\hat{\delta}_2) = 1$ . Therefore  $E_v = (I_{23}, cI_{41})(I_{45}, -\ell I_{22}I_{21})$ . Since  $\ell = \ell_1\ell_2\ell_3$  and  $I_{21} = -\ell_2\ell_3$ , we have  $E_v = (I_{23}, cI_{41})(I_{45}, \ell_1I_{22})$ . Noting that  $cI_{41} \equiv_{\Box} T_{\alpha_1}$  and  $\ell_1I_{22} \equiv_{\Box} T_{\alpha_2}$ , we obtain that  $E_v = 1$  for TN3A,  $E_v = (-1)^{2a}$  for TN3B,  $E_v = (-1)^b$  for TN3C and  $E_v = (-1)^{2a+b}$  for TN3D as required.

**<u>Cases TN4</u>**. From the definition of the isogeny we see that  $v(I_{44}) = v(\delta_3) = 2a$ ,  $v(I_{80}) = v(\hat{\delta_3}) = b$  and  $v(I_{23}) = v(I_{45}) = 0$ . Also  $\alpha_1, \alpha_2, \beta_2 \in K$ . In particular  $b \in \mathbb{Z}$  and  $\delta_2, \delta_3, \hat{\delta_2}, \hat{\delta_3} \in K^{\times 2}$ . Reducing invariants yields

$$I_{23} \equiv_{\Box} I_{45} \equiv_{\Box} I_{40} \equiv_{\Box} 1, \quad I_{20} \equiv_{\Box} 2, \quad I_{22} \equiv_{\Box} 2(\alpha_3 - \alpha_1)(\alpha_3 - \beta_2),$$
$$I_{41} \equiv_{\Box} \alpha_1(\alpha_1 + \beta_2), \quad I_{42} \equiv_{\Box} 2(\alpha_1 - \beta_2)(\alpha_1 + \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 + \beta_3),$$
$$I_{43} \equiv_{\Box} -(\alpha_1 + \beta_2)(\alpha_1 - \beta_2), \quad I_{60} \equiv_{\Box} -2(\alpha_1 - \alpha_3)(\alpha_1 + \alpha_3).$$

Therefore  $E_v = (I_{44}, 2cI_{20}I_{22}I_{42}I_{43})(I_{80}, -2cI_{41}I_{42}I_{60})$ . Replacing invariants with their values above and clearing squares in K yields

$$E_v = (I_{44}, c(\alpha_3 - \beta_2)(\alpha_1 + \beta_3))(I_{80}, 2c\alpha_1(\alpha_1 - \beta_2)).$$

Noting that  $c(\alpha_3 - \beta_2)(\alpha_1 + \beta_3) \equiv T_{\alpha_3}$  and  $2c\alpha_1(\alpha_1 - \beta_2) \equiv T_{\alpha_1}$ , we obtain that  $E_v = 1$  for TN4A,  $E_v = (-1)^{2a}$  for TN4B,  $E_v = (-1)^b$  for TN4C and  $E_v = (-1)^{2a+b}$  for TN4D as required.

<u>**Cases TN5**</u>. From the definition of the isogeny we see that  $v(I_{45}) = b$ ,  $v(I_{80}) = v(\hat{\delta_3}) = a$  and  $v(I_{23}) = v(I_{44}) = 0$ . Also  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K$ . In particular  $a, b \in \mathbb{Z}, A_{21}, A_{31} \in K$  and  $I_{40}, \delta_2, \delta_3, \hat{\delta_2}, \hat{\delta_3} \in K^{\times 2}$ . Reducing invariants yields

 $I_{23} \equiv_{\Box} I_{44} \equiv_{\Box} I_{40} \equiv_{\Box} 1, \quad I_{41} \equiv_{\Box} \alpha_1(\alpha_1 + \beta_3), \quad A_{21} \equiv_{\Box} (\alpha_3 + \alpha_1)(\alpha_3 - \alpha_1).$ 

Using Lemma 6.3.4, it follows from Lemma 6.2.1.1 that  $(I_{20}, -I_{40}I_{44}) = 1$ . Therefore

$$E_v = (I_{45}, -\ell I_{21}I_{22})(I_{80}, -2cI_{41}I_{42}I_{60})(-I_{42}, -I_{43}I_{60}).$$

If  $v(I_{31}) = 0$  then by Lemma 6.2.1.6.(a), we have  $v(I_{42}) = 0$  and Lemmata

6.2.1.7 and 6.3.4 yields  $(I_{43}, -I_{42}I_{44}) = 0$ . Also, by Lemma 6.2.1.6.(b), we have  $I_{60} \equiv \hat{\delta_2} A_{31}$  so that

$$E_v = (I_{45}, -\ell I_{21}I_{22})(I_{80}, -2cI_{41}A_{21}A_{31}^2\hat{\delta}_2)(-A_{21}A_{31}, \hat{\delta}_2A_{31})$$
$$E_v = (I_{45}, -\ell I_{21}I_{22})(I_{80}, -2cI_{41}A_{21}\hat{\delta}_2).$$

If  $v(A_{31}) > 0$  then by Lemma 6.2.1.6.(c) we have  $I_{43} \equiv \delta_2 A_{21} \equiv A_{21}$  and  $\hat{\delta}_2 \equiv -1$ . Therefore

$$E_v = (I_{45}, -\ell I_{21}I_{22})(I_{80}, -2cI_{41}A_{21}\hat{\delta}_2)H, \quad H = (I_{80}, \hat{\delta}_2A_{31}I_{60})(-A_{21}A_{31}, -A_{21}I_{60}).$$

We show that H = 1. From Lemma 6.2.1.6.(b) we have that  $I_{60} - \delta_2 A_{31} - \delta_3 A_{21} = 0$ , therefore using Lemma 6.3.3.3 we have

$$(I_{60}, -\hat{\delta_2}A_{31})(-I_{60}, \hat{\delta_3}A_{21})(-\hat{\delta_2}A_{31}, \hat{\delta_3}A_{21}) = (I_{60}, A_{31})(-I_{60}, \hat{\delta_3}A_{21})(A_{31}, \hat{\delta_3}A_{21}) = 1$$

Now *H* can be rewritten as follows  $H = (\hat{\delta}_3, \hat{\delta}_2 A_{31} I_{60})(-A_{21}A_{31}, -A_{21}I_{60})$ , and we see that  $H = (I_{60}, A_{31})(-I_{60}, \hat{\delta}_3 A_{21})(A_{31}, \hat{\delta}_3 A_{21}) = 1$ .

Therefore in both case we have  $E_v = (I_{45}, -\ell I_{21}I_{22})(I_{80}, -2cI_{41}A_{21}\hat{\delta}_2)$ . Noting that  $-\ell I_{21}I_{22} \equiv_{\Box} T_{\alpha_1}$  and  $-2cI_{41}A_{21}\hat{\delta}_2 \equiv_{\Box} T_{\alpha_3}$ , we obtain that  $E_v = 1$  for TN5A,  $E_v = (-1)^a$  for TN5B,  $E_v = (-1)^b$  for TN5C and  $E_v = (-1)^{a+b}$  for TN5D as required.

**<u>Cases TN6</u>**. From the definition of the isogeny we see that  $v(I_{80}) = a + b$  and  $v(I_{45}) = v(I_{23}) = v(I_{44}) = 0$ .

**Cases TN6A/B/C.** Here  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K$ . In particular  $a, b \in \mathbb{Z}, A_{21}, A_{31} \in \overline{K}$  and  $I_{40}, I_{23}, \delta_2, \delta_3 \in K^{\times 2}$ . By Lemma 6.2.1.1 we have that  $v(I_{20}) = 0$  and Lemma 6.3.4 yields  $(I_{20}, -I_{40}I_{44}) = 1$ . Also, Lemma 6.2.1.3 yields  $v(I_{22}) = 0$  so that  $(I_{22}, -I_{44}I_{45}) = 1$ . Similarly, Lemma 6.2.1.7 gives  $v(I_{43}) = 0$  so that  $(I_{43}, -I_{40}I_{42}I_{44}) = 1$ . Finally, we have  $v(\ell_2) = v(\ell_3) = 0$ . Reducing invariants yields

$$A_{21} \equiv_{\Box} -(\alpha_1 - \beta_2)(\alpha_1 + \beta_2), \quad A_{31} \equiv_{\Box} -(\alpha_1 - \beta_3)(\alpha_1 + \beta_3),$$
$$I_{45} \equiv 2\alpha_1(\beta_2 - \beta_3)(\alpha_1 + \beta_2)(\alpha_1 - \beta_3)$$

so that  $v(I_{42}) = 0$  by Lemma 6.2.1.6.(a). Therefore

$$E_v = (I_{45}, -\ell I_{21})(I_{80}, -2cI_{41}I_{42}I_{60})(-I_{42}, I_{60})(-1, I_{41}).$$

Recall that  $\ell = \ell_1 \ell_2 \ell_3$  and  $I_{21} = -\ell_2 \ell_3$ . It follows that  $(I_{45}, -\ell I_{21}) = (I_{45}, \ell_1)$ . Recall that  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell = \frac{u_1}{\Delta_G}$ . In particular, we have  $v(\Delta_G) = 0$  and  $u_1 \equiv 2\alpha_1 + \beta_2 - \beta_3$ . If  $v(u_1) = 0$  then  $(I_{45}, \ell_1) = 1$ . On the other hand, if  $v(u_1) > 0$ 

then by Lemma 9 we have  $I_{45} \equiv_{\Box} 1$ . Hence  $(I_{45}, \ell_1) = 1$  and

$$E_v = (I_{80}, -2cI_{41}I_{42}I_{60})(-I_{42}, I_{60})(-1, I_{41}).$$

If a < b, by Lemma 6.2.1.6.(b) we have  $I_{60} \equiv \hat{\delta}_3 A_{21}$ . Moreover, using Lemma 6.2.1.5 we can write  $I_{41} \equiv 2u_a \pi^a (\alpha_1 - \beta_2)(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3)$  for some  $u_a \in \mathcal{O}_K^{\times}$ . Replacing invariants by their value and simplifying yields

$$E_v = (\hat{\delta}_2 \hat{\delta}_3, -u_a \pi^a (\alpha_1 - \beta_2) (\alpha_1 - \alpha_3) (\alpha_1 - \beta_3) A_{21} A_{31} \hat{\delta}_3 A_{21}) (A_{21} A_{31}, \hat{\delta}_3 A_{21}) (\pi^{2a}, -1)$$
$$= (\pi^a, c(\alpha_1 - \beta_2) (\alpha_1 - \beta_3)) (\pi^b, c(\alpha_1 + \beta_2) (\alpha_1 + \beta_3)).$$

Noting that  $T_{\alpha_1} \equiv_{\Box} c(\alpha_1 - \beta_2)(\alpha_1 - \beta_3)$  and  $T_{-\alpha_1} \equiv_{\Box} c(\alpha_1 + \beta_2)(\alpha_1 + \beta_3)$ , we obtain that  $E_v = 1$  for TN6A,  $E_v = (-1)^a$  for TN6B and  $E_v = (-1)^{a+b}$  for TN6C as required.

If a = b then  $v(I_{80}) \in 2\mathbb{Z}$  and  $E_v = (I_{80}, I_{41}I_{60})(I_{60}, -I_{42})(I_{41}, -1)$ . Using the definitions of invariants in Lemmata 6.2.1.6.(a), 6.2.1.5 and since  $I_{80} = \hat{\delta}_2 \hat{\delta}_3$ , we may write

$$I_{80} = u_a u_b \pi^{2a} \alpha_1^2 (\alpha_1 - \beta_3) (\alpha_1 + \beta_3) (\alpha_1 - \beta_2) (\alpha_1 + \beta_2)$$
  
=  $u_a u_b \pi^{2a} \alpha_1^2 A_{21} A_{31}$ ,  
$$I_{41} = \alpha_1 \pi^a ((u_b (\alpha_1 + \beta_2) (\alpha_1 + \beta_3) + u_a (\alpha_1 - \beta_2) (\alpha_1 - \beta_3))),$$
$$I_{60} = -2\alpha_1 \pi^a (u_a (\alpha_1 - \beta_2)^2 (\alpha + \beta_2)^2 + u_b (\alpha_1 - \beta_3)^2 (\alpha_1 - \beta_2)^2),$$

for some  $u_a, u_b \in \mathcal{O}_K^{\times}$ . Hence replacing invariants by their values and simplifying using Lemma 6.3.3 gives

$$(\pi^{a}, A_{21}A_{31})(u_{a}(\alpha_{1} - \beta_{2})^{2}(\alpha + \beta_{2})^{2} + u_{b}(\alpha_{1} - \beta_{3})^{2}(\alpha_{1} - \beta_{2})^{2}, -u_{a}u_{b})$$
$$((u_{b}(\alpha_{1} + \beta_{2})(\alpha_{1} + \beta_{3}) + u_{a}(\alpha_{1} - \beta_{2})(\alpha_{1} - \beta_{3})), -u_{a}u_{b}(\alpha_{1} - \beta_{3})(\alpha_{1} + \beta_{3})(\alpha_{1} - \beta_{2})(\alpha_{1} + \beta_{2}))$$
$$= (\pi^{a}, A_{21}A_{31}).$$

Noting that  $A_{21}A_{31} \equiv_{\Box} T_{\alpha_1}T_{-\alpha_1}$ , it follows that  $E_v = 1$  for TN6A,  $E_v = (-1)^a$  for TN6B and  $E_v = (-1)^{2a} = 1$  for TN6C as required.

**Cases TN6D/E.** Here  $\alpha_1\alpha_2, \beta_2, \alpha_3, \beta_3 \notin K$  and a = b. However, by semistability criterion 3.4.29, we have that  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$  so that  $v(I_{40}) \in 2\mathbb{Z}$ . Therefore, repeating the same arguments as above we have  $(I_{20}, -I_{40}I_{44}) = 1, (I_{22}, -I_{44}I_{45}) = 1$  and  $(I_{43}, -I_{40}I_{42}I_{44}) = 1$ . This yields

$$E_v = (I_{40}, \ell)(I_{45}, -\ell I_{21})(I_{41}, -I_{23}I_{80})(I_{60}, -I_{40}I_{42}I_{80}).$$

Using notation for  $\ell_1$  as above, and since  $v(\ell_2) = v(\ell_3) = 0$ , we can simplify  $(I_{40}, \ell)(I_{45}, -\ell I_{21})$  into  $(u_1^2, u_1)(I_{45}, u_1) = (u_1^2 I_{45}, u_1)$ . Now, if  $v(u_1) = 0$  then  $(u_1^2 I_{45}, u_1) = 1$ . Otherwise, by Lemma 6.2.1.9 we have  $I_{45} \notin K^{\times 2}$ . But  $u_1^2 \notin K^{\times 2}$ , hence  $u_1^2 I_{45} \in K^{\times 2}$  and  $(u_1^2 I_{45}, u_1) = 1$ . It follows that  $E_v = (I_{41}, -I_{23} I_{80})(I_{60}, -I_{40} I_{42} I_{80})$ . Using the notation for  $I_{80}, I_{41}, I_{60}$  set up above, using Lemma 6.3.3 and simplifying we have

$$E_{v} = (\pi^{a}(u_{b}(\alpha_{1} + \beta_{2})(\alpha_{1} + \beta_{3}) + u_{a}(\alpha_{1} - \beta_{2})(\alpha_{1} - \beta_{3})), -\alpha_{1}^{2}u_{a}u_{b}\alpha_{1}^{2}A_{21}A_{31})$$
$$(\pi^{a}(u_{a}(\alpha_{1} - \beta_{2})^{2}(\alpha + \beta_{2})^{2} + u_{b}(\alpha_{1} - \beta_{3})^{2}(\alpha_{1} - \beta_{2})^{2}), -I_{40}A_{21}A_{31}u_{a}u_{b}\alpha_{1}^{2}A_{21}A_{31})$$
$$= (\pi^{a}, A_{21}A_{31})(\pi^{a}, \alpha_{1}^{2}I_{40}) = (\pi^{a}, A_{21}A_{31})(\pi^{a}, \alpha_{1}^{2}u_{1}^{2}) = 1,$$

since  $u_1, \alpha_1^2 \notin K^{\times 2}$ . Therefore  $E_v = (\pi^a, A_{21}A_{31})$ .

Recall that  $A_{21}A_{31} \equiv_{\Box} T_{\alpha_1}T_{-\alpha_1}$ . In particular in these cases,  $Frob(T_{\alpha_1}) = T_{-\alpha_1}$  and  $Frob(T_{-\alpha_1}) = T_{\alpha_1}$ . Now, let  $t_{\alpha_1}^{\pm}$  and  $t_{-\alpha_1}^{\pm}$  denote the square roots of  $T_{\alpha_1}, T_{-\alpha_1}$  respectively. By definition of TN6D, we have without loss of generality  $Frob(t_{\alpha_1}^+) = t_{-\alpha_1}^+$  and  $Frob(t_{-\alpha_1}^+) = t_{\alpha_1}^+$ . Therefore  $T_{\alpha_1}T_{-\alpha_1} = (t_{\alpha_1}^+t_{-\alpha_1}^+)^2 \in \mathcal{O}_K^{\times 2}$ , and hence  $I_{42} \in \mathcal{O}_K^{\times 2}$ . On the other hand, by definition of TN6E, we have  $Frob(t_{\alpha_1}^+) = t_{-\alpha_1}^+$ ,  $Frob(t_{-\alpha_1}^+) = t_{-\alpha_1}^-$ ,  $Frob(t_{-\alpha_1}^-) = t_{-\alpha_1}^-$  and  $Frob(t_{-\alpha_1}^-) = t_{\alpha_1}^+$ . It follows that  $T_{\alpha_1}T_{-\alpha_1} = (t_{\alpha_1}^+t_{-\alpha_1}^+)^2 \notin \mathcal{O}_K^{\times 2}$ , and hence  $I_{42} \notin \mathcal{O}_K^{\times 2}$ .

This yields  $E_v = (\pi^a, I_{42}) = 1$  for TN6D,  $E_v = (\pi^a, I_{42}) = (-1)^a$  for TN2E as required.

<u>**Cases TN7**</u>. From the definition of the isogeny we see that  $v(I_{45}) = a + b$  and  $v(I_{80}) = v(I_{23}) = v(I_{44}) = 0$ . Write  $\alpha_3 = a_3\pi^a + \alpha_2$  and  $\beta_3 = b_3\pi^b + \beta_2$ , with  $2a, 2b \in \mathbb{Z}$  and  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . We have

$$\Delta_{G} = c(a_{3}\pi^{a}(\beta_{2} - \alpha_{1})(\beta_{2} + \alpha_{1}) + b_{3}\pi^{b}(\alpha_{2} - \alpha_{1})(\alpha_{2} + \alpha_{1}) + a_{3}b_{3}\pi^{a+b}(\alpha_{2} + \beta_{2})),$$
  

$$\ell_{1} = -(a_{3}\pi^{a} + b_{3}\pi^{b}), \quad I_{21} \equiv (\alpha_{2} + \beta_{2})^{2}, \quad \delta_{2} \equiv \delta_{3}, \quad I_{44} \equiv \delta_{2}^{2}, \quad \hat{\delta}_{2} \equiv \hat{\delta}_{3}, \quad I_{80} \equiv \hat{\delta}_{2}^{2},$$
  

$$I_{45} = 4a_{3}b_{3}\pi^{a+b}(\alpha_{2} - \beta_{2} - b_{3}\pi^{b})(\beta_{2} - \alpha_{2} - a_{3}\pi^{a}), \quad I_{20} \equiv_{\Box} \delta_{2}, \quad I_{22} \equiv -\delta_{2}, \quad I_{40} =_{\Box} u_{1}^{2},$$
  

$$I_{41} \equiv 2((\alpha_{1} + \alpha_{2})^{2}(\alpha_{1} + \beta_{2})^{2} + (\alpha_{2} - \alpha_{1})^{2}(\beta_{2} - \alpha_{1})^{2}), \quad I_{43} \equiv 2\delta_{2}A_{21}, \quad I_{60} \equiv 2\hat{\delta}_{2}A_{21},$$
  

$$A_{21} \equiv A_{31} \equiv (\alpha_{2} - \alpha_{1})(\alpha_{2} + \alpha_{1}) + (\beta_{2} - \alpha_{1})(\beta_{2} + \alpha_{1}), \quad I_{42} \equiv_{\Box} A_{21}^{2},$$

so that

$$E_{v} = (I_{40}, \ell I_{20})(I_{45}, -I_{22}\ell I_{21})(I_{41}, -I_{23}I_{80})(I_{42}, -I_{44}I_{80})(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80})$$
  
and  $(I_{41}, -I_{23}I_{80}) = 1$  by Lemmata 6.3.4 and 6.2.1.5 since  $v(I_{41}) \ge 0 = v(I_{80})$ .

Therefore

$$E_v = (I_{40}, \ell I_{20})(I_{45}, -I_{22}\ell I_{21})(I_{42}, -I_{44}I_{80})(I_{43}, -I_{40}I_{42}I_{44})(I_{60}, -I_{40}I_{42}I_{80})$$

Replacing invariants by their reduced expression above gives

$$E_v = (u_1^2, \ell \delta_2)(I_{45}, \delta_2 \ell (\alpha_2 + \beta_2)^2)(A_{21}^2, -\delta_2^2 \hat{\delta_2}^2)(2\delta_2 A_{21}, -u_1^2 A_{21}^2 \delta_2^2)(2\hat{\delta_2} A_{21}, -u_1^2 A_{21}^2 \hat{\delta_2}^2).$$

By definition of the isogeny, either  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  and  $(\alpha_2 + \beta_2)^2, A_{21}^2 \in K^{\times 2}$ , or  $\alpha_2, \beta_2, \alpha_3, \beta_3 \notin K$  but  $Frob(\alpha_2 + \beta_2) = (\alpha_2 + \beta_2)$  or  $Frob(\alpha_2 + \beta_2) = (\alpha_3 + \beta_3)$ . Either way,  $(\alpha_2 + \beta_2)^2, A_{21}^2 \in k^{\times 2}$  and hence  $(\alpha_2 + \beta_2)^2, A_{21}^2 \in K^{\times 2}$ . Therefore  $E_v$ simplifies to

$$(u_1^2, \ell\delta_2)(I_{45}, \delta_2\ell)(2\delta_2A_{21}, -u_1^2)(2\hat{\delta}_2A_{21}, -u_1^2) = (u_1^2, \ell\delta_2)(I_{45}, \delta_2\ell)(\delta_2, u_1^2)(\hat{\delta}_2, u_1^2).$$

Now since  $I_{45} = u_1^2 (A_1 - B_1)^2$  it follows that  $E_v =$ 

$$(u_1^2, \ell\delta_2)(u_1^2(A_1 - B_1)^2, \delta_2\ell)(\delta_2, u_1^2)(\hat{\delta_2}, u_1^2) = ((A_1 - B_1)^2, \delta_2\ell)(\delta_2, u_1^2)(\hat{\delta_2}, u_1^2).$$

**Cases TN7A/B/C/D**. Here  $v(u_1^2) = 2a$ ,  $v(A_1 - B_1)^2 = b - a$  and  $\alpha_2, \beta_2$  are fixed by Frobenius so that  $\delta_2 \in K^{\times 2}$ . Therefore  $E_v = ((A_1 - B_1)^2, \delta_2 \ell)(\hat{\delta_2}, u_1^2)$ . Note that by the semistability criterion 3.4.29,  $v(\ell) \in 2\mathbb{Z}$ .

**<u>TN7A</u>**. Since  $\hat{\delta}_2 \equiv_{\Box} T_{\alpha_2} T_{\beta_2} \equiv_{\Box} 1$ , we have that  $(\hat{\delta}_2, u_1^2) = 1$ . Now  $\ell \delta_2 \equiv \frac{(\alpha_2 + \beta_2)^2 (\alpha_2 - \beta_2)^2}{c(\beta_2 - \alpha_1)(\beta_2 + \alpha_1)} \equiv_{\Box} T_{\beta_2} \equiv_{\Box} 1$ . Hence  $((A_1 - B_1)^2, \delta_2 \ell) = 1$  and  $E_v = 1$ . **<u>TN7B</u>**. Since  $\hat{\delta}_2 \equiv T_{\alpha_2} T_{\beta_2} \notin K^{\times 2}$ , we have that  $(\hat{\delta}_2, u_1^2) = (-1)^{2a}$ . Now  $\ell \delta_2 \equiv \frac{(\alpha_2 + \beta_2)^2 (\alpha_2 - \beta_2)^2}{c(\beta_2 - \alpha_1)(\beta_2 + \alpha_1)} \equiv T_{\beta_2} \equiv \Box$ . Hence  $((A_1 - B_1)^2, \delta_2 \ell) = 1$ . Hence  $E_v = (-1)^{2a}$ .

**<u>TN7C</u>**. Since  $\hat{\delta_2} \equiv T_{\alpha_2} T_{\beta_2} \notin K^{\times 2}$ , we have that  $(\hat{\delta_2}, u_1^2) = (-1)^{2a}$ . Now  $\ell \delta_2 \equiv \frac{(\alpha_2 + \beta_2)^2 (\alpha_2 - \beta_2)^2}{c(\beta_2 - \alpha_1)(\beta_2 + \alpha_1)} \equiv T_{\beta_2} \notin K^{\times 2}$ . Hence  $((A_1 - B_1)^2, \delta_2 \ell) = 1 \Leftrightarrow b - a$  is even. Therefore  $E_v = 1 \Leftrightarrow 2a \equiv b - a \mod 2$ , equivalently  $E_v = 1 \Leftrightarrow a + b \equiv 0 \mod 2$ . **<u>TN7D</u>**. Since  $\hat{\delta_2} \equiv T_{\alpha_2} T_{\beta_2} \equiv \Box 1$ , we have that  $(\hat{\delta_2}, u_1^2) = 1$ .

<u>**TN7D</u></u>. Since \hat{\delta}\_2 \equiv T\_{\alpha\_2} T\_{\beta\_2} \equiv\_{\Box} 1, we have that (\hat{\delta}\_2, u\_1^2) = 1. Now \ell \delta\_2 \equiv \frac{(\alpha\_2 + \beta\_2)^2 (\alpha\_2 - \beta\_2)^2}{c(\beta\_2 - \alpha\_1)(\beta\_2 + \alpha\_1)} \equiv T\_{\beta\_2} \notin K^{\times 2}. Hence ((A\_1 - B\_1)^2, \delta\_2 \ell) = 1 \Leftrightarrow b - a is even. Hence E\_v = 1 \Leftrightarrow a + b \equiv 0 \mod 2.</u>** 

**Cases TN7E/F/G.** Here  $v(A_1 - B_1)^2 = 0$  and  $\alpha_2, \beta_2$  are fixed by Frobenius so that  $\delta_2 \in K^{\times 2}$ . Let  $v(u_1) = a + r_1 \ge a$  as in the proof of Table 4.18 in Section 5.3.3. By definition, we have  $v(\ell) = v(\ell_1) + v(\ell_2) + v(\ell_3)$  and by the semistability criterion 3.4.29,  $v(\ell) \in 2\mathbb{Z}$ . Here  $v(\ell_1) = r_1$ . Either  $r_1 = 0$  and  $v(\ell) = v(\ell_2) + v(\ell_3) \in 2\mathbb{Z}$ or  $r_1 > 0$  and  $v(\ell_2) = v(\ell_3) = 0$  so that  $r_1 \in 2\mathbb{Z}$ . Therefore  $E_v = (\hat{\delta_2}, u_1^2)$  and  $v(u_1) = a + r_1 \equiv a \mod 2$ .

**<u>TN7E</u>**. Since  $\hat{\delta}_2 \equiv_{\Box} T_{\alpha_2} T_{\beta_2} \equiv_{\Box} 1$ , we have that  $E_v = (\hat{\delta}_2, u_1^2) = 1$ .

**<u>TN7F</u>**. Since  $\hat{\delta_2} \equiv T_{\alpha_2} T_{\beta_2} \notin K^{\times 2}$ , we have that  $E_v = (\hat{\delta_2}, u_1^2) = 1 \Leftrightarrow 2a \equiv 0 \mod 2$ .

<u>**TN7G**</u>. Since  $\hat{\delta_2} \equiv T_{\alpha_2} T_{\beta_2} \in K^{\times 2}$ , we have that  $E_v = (\hat{\delta_2}, u_1^2) = 1$ .

**Cases TN7H/I.** Here  $v(A_1 - B_1)^2 = 0$  and  $\alpha_2, \beta_2$  are not fixed by Frobenius, hence  $\delta_2 \notin K^{\times 2}$ . Let  $v(u_1) = a + r_1 \ge a$ , as for the cases TN7E/F/G, we have  $v(u_1) = a + r_1 \equiv a \mod 2$ . It follows that  $E_v = (\delta_2, u_1^2)(\hat{\delta}_2, u_1^2)$  with  $(\delta_2, u_1^2) = 1 \Leftrightarrow 2a \equiv 0 \mod 2$ .

**<u>TN7H</u>**. Following the proof of Table 4.18 in Section 5.3.3, we see that  $\hat{\delta}_2 \in K^{\times 2}$  and hence  $E_v = (\delta_2, u_1^2)(\hat{\delta}_2, u_1^2) = (\delta_2, u_1^2) = 1 \Leftrightarrow 2a \equiv 0 \mod 2$ .

**<u>TN71</u>**. Following the proof of Table 4.18 in Section 5.3.3, we see that  $\hat{\delta}_2 \notin K^{\times 2}$  and hence  $E_v = (\delta_2, u_1^2)(\hat{\delta}_2, u_1^2) = (\delta_2, u_1^2)^2 = 1$ .

**Cases TN7J/K/L/M/N**: Here  $v(A_1 - B_1)^2 = 0$  and  $v(\Delta_G) = 2r > 2a$ ,  $v(u_1) = a$ so that  $v(\ell_1) = -r$  and  $v(\ell_2) = v(\ell_3) = 0$  as in Section 5.3.3. Therefore  $E_v = ((A_1 - B_1)^2, \ell)(\delta_2, u_1^2)(\hat{\delta_2}, u_1^2)$ . Note that from the cluster picture of  $\hat{C}$  we see that  $(A_1 - B_1)^2 \in K^{\times 2} \Leftrightarrow (A_2 - B_2)^2 \in K^{\times 2} \Leftrightarrow \hat{\delta_2} \in K^{\times 2}$ .

**TN7J/L.** Here  $(A_1 - B_1)^2, \delta_2, \hat{\delta_2} \in K^{\times 2}$ . Hence  $E_v = 1$ .

**<u>TN7K</u>**. Here  $\delta_2 \in K^{\times 2}$  and  $(A_1 - B_1)^2$ ,  $\hat{\delta_2} \notin K^{\times 2}$  hence  $E_v = ((A_1 - B_1)^2, \ell)(\hat{\delta_2}, u_1^2)$ , with  $((A_1 - B_1)^2, \ell) = 1 \Leftrightarrow r \equiv 0 \mod 2$  and  $(\hat{\delta_2}, u_1^2) = 1 \Leftrightarrow 2a \equiv 0 \mod 2$ . Therefore  $E_v = 1 \Leftrightarrow 2a + r \equiv 0 \mod 2$ .

<u>**TN7M**</u>. Here  $\delta_2 \notin K^{\times 2}$  and  $(A_1 - B_1)^2$ ,  $\hat{\delta_2} \in K^{\times 2}$  hence  $E_v = (\delta_2, u_1^2) = 1 \Leftrightarrow 2a \equiv 0 \mod 2$ .

**<u>TN7N</u>**. Here  $(A_1 - B_1)^2$ ,  $\delta_2$ ,  $\hat{\delta_2} \notin K^{\times 2}$  hence  $E_v = ((A_1 - B_1)^2, \ell)(\delta_2, u_1^2)(\hat{\delta_2}, u_1^2) = ((A_1 - B_1)^2, \ell)(\delta_2, u_1^2)^2 = 1 \Leftrightarrow r \equiv 0 \mod 2.$ 

**<u>Cases TN8</u>**. From the definition of the isogeny we see that  $v(I_{80}) = a + b$  and  $v(I_{45}) = v(I_{23}) = v(I_{44}) = 0$ . Write  $\alpha_2 = \alpha_1 + a_2 \pi^a$ ,  $\beta_2 = -\alpha_1 + b_2 \pi^b$ ,  $a_2, b_2 \in \mathcal{O}_{\overline{K}}^{\times}$ , with  $a, b \in \mathbb{Z}$  (since otherwise  $I_K$  would permute both clusters in the cluster picture of C, which contradicts the semistability criterion 3.4.29). In particular,  $v(u_1) \in \mathbb{Z}$  and  $A_{21}, A_{31}, A_{41p}, A_{41m} \in K$ . Let  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . We have

$$\begin{split} \Delta_{G} &= c\pi^{a}(a_{2}(\alpha_{1}+\alpha_{3})(\alpha_{1}+\beta_{3})+b_{2}\pi^{b-a}(\alpha_{1}-\alpha_{3})(\alpha_{1}-\beta_{3})-a_{2}b_{2}\pi^{b}(\alpha_{3}+\beta_{3})),\\ u_{1} &= a_{2}\pi^{a}+b_{2}\pi^{b}-\alpha_{3}-\beta_{3}, \quad \ell_{2} &= c(\alpha_{3}+\beta_{3}), \quad \ell_{3} &= -c(a_{2}\pi^{a}+b_{2}\pi^{b}),\\ I_{23} &\equiv_{\Box} \delta_{2} &\equiv_{\Box} \alpha_{1}^{2}, \quad I_{44} \equiv_{\Box} \alpha_{1}^{2}\delta_{3}, \quad I_{80} \equiv_{\Box} -\alpha_{1}^{2}a_{2}b_{2}\pi^{a+b}+o(\pi^{a+b}),\\ I_{21} &= (a_{2}\pi^{a}+b_{2}\pi^{b})(\alpha_{3}+\beta_{3}), \quad A_{21} &= 2\alpha_{1}(a_{2}\pi^{a}-b_{2}\pi^{b})+o(\pi^{a}), \quad I_{40} =_{\Box} u_{1}^{2},\\ I_{41p} &= \alpha_{1}b_{2}\pi^{b}(\alpha_{1}+\alpha_{3})(\alpha_{1}+\beta_{3}), \quad I_{41m} &= -\alpha_{1}a_{2}\pi^{a}(\alpha_{1}-\alpha_{3})(\alpha_{1}-\beta_{3}),\\ T_{\alpha_{1}} &\equiv c(2\alpha_{1})^{2}(\alpha_{1}-\alpha_{3})(\alpha_{1}-\beta_{3}), \quad T_{-\alpha_{1}} &= c(2\alpha_{1})^{2}(-\alpha_{1}-\alpha_{3})(-\alpha_{1}-\beta_{3}),\\ I_{45} &\equiv \hat{\delta_{2}} \equiv_{\Box} T_{\alpha_{1}}T_{-\alpha_{1}}. \end{split}$$

Using Lemma 6.3.4 and Lemmata 6.2.1.3 and 6.2.1.1, we have  $(I_{20}, -I_{44}) = (I_{22}, -I_{44}I_{45}) = 1$ . After simplification, this yields

$$E_{v} = (-1, I_{41}I_{43}I_{60})(I_{23}, I_{41})(I_{45}, -\ell I_{21})(I_{44}, I_{42}I_{43})(I_{80}, -2cI_{41}I_{42}I_{60})(I_{42}, -I_{60}I_{43})$$
  
=  $(-1, I_{41}A_{21})(I_{23}, I_{41})(I_{45}, -\ell I_{21})(I_{80}, -2cI_{41}A_{21})H$ , where  
$$H = (-1, I_{43}I_{60})(\delta_{2}\delta_{3}, A_{21}A_{31}I_{43})(\hat{\delta_{3}}\hat{\delta_{2}}, A_{31}I_{60})(A_{21}, I_{60}I_{43})(A_{31}, -I_{60}I_{43}) = 1,$$

We show that H = 1. Since  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$  and  $I_{60} = \hat{\delta}_2 A_{31} + \hat{\delta}_3 A_{21}$ , regrouping and using Lemma 6.3.3, we obtain

$$E_v = (I_{43}, -\delta_2\delta_3A_{21}A_{31})(I_{60}, -\hat{\delta}_2\hat{\delta}_3A_{21}A_{31})(\delta_2\delta_3, A_{21}A_{31})(A_{31}, \hat{\delta}_2\hat{\delta}_3)$$
$$= (\delta_2A_{21}, \delta_3A_{31})(\delta_2A_{31}, \hat{\delta}_3A_{21})(\delta_2\delta_3, A_{21}A_{31})(A_{31}, \hat{\delta}_2\hat{\delta}_3),$$

which gives  $E_v = (A_{31}, -\delta_3)$  after simplification. We are done by noting that if  $v(A_{31}) > 0$  then  $\hat{\delta}_2 \equiv_{\Box} -\delta_3$  by Lemma 6.2.1.6.(e), so that in this case,  $-\delta_3$  is a square. Therefore H = 1.

We also show that if a = b then  $v(I_{80}) \in 2\mathbb{Z}$  and  $(-1, I_{41}A_{21})(I_{80}, -2cI_{41}A_{21}) = 1$ . We have  $(-1, I_{41}A_{21})(I_{80}, -2cI_{41}A_{21}) = (-1, I_{41}A_{21})(I_{80}, I_{41}A_{21})$ , with

$$I_{41} = \alpha_1 \pi^a (b_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) - a_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3)), \quad A_{21} = 2\alpha_1 \pi^a (a_2 - b_2).$$

Now using Lemma 6.3.3

$$(I_{41}, -I_{80}) = (\alpha_1 \pi^a, a_2 b_2)(b_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3) - a_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3), a_2 b_2 \hat{\delta_2})$$
$$= (\alpha_1 \pi^a, a_2 b_2)(b_2(\alpha_1 + \alpha_3)(\alpha_1 + \beta_3), a_2(\alpha_1 - \alpha_3)(\alpha_1 - \beta_3)) = (\alpha_1 \pi^a, a_2 b_2).$$

Similarly,

$$(A_{21}, -I_{80}) = (2\alpha_1 \pi^a (a_2 - b_2), a_2 b_2) = (2\alpha_1 \pi^a, a_2 b_2).$$

Therefore  $(I_{41}A_{21}, -I_{80}) = 1$ . Cases TN8A/D/E/F/G/J/L. Here  $\alpha_1^2 \equiv I_{23} \equiv \delta_2 \equiv I_{45} \equiv \hat{\delta}_2 \equiv_{\Box} 1$ , hence  $\overline{E_v} = (-1, I_{41}A_{21})(I_{80}, -2cI_{41}A_{21})$ . Cases TN8A/D. Here a < b, hence

$$A_{21} = 2\alpha_1 a_2 \pi^a, \quad I_{41} = -\alpha_1 a_2 \pi^a (\alpha_1 - \alpha_3)(\alpha_1 - \beta_3),$$

so that

$$E_v = (-1, I_{41}A_{21})(I_{80}, -2cI_{41}A_{21}) = (I_{80}, -2cI_{41}A_{21}).$$

We have  $-2gI_{41}A_{21} \equiv T_{\alpha_1}$  so that  $E_v = 1$  for TN8A, and  $E_v = (-1)^{a+b}$  for TN8D.

Cases TN8E/F/G/J/L. Here a = b hence  $E_v = 1$  for TN8E/F/G/J/L. Cases TN8B/C/F/K. Here  $\alpha_1^2 \equiv_{\Box} I_{23} \equiv \delta_2 \equiv_{\Box} 1$  but  $T_{-\alpha_1}T_{\alpha_1}, I_{45}, \hat{\delta}_2 \not\equiv_{\Box} 1$ . Hence

$$E_v = (-1, I_{41}A_{21})(I_{45}, -\ell I_{21})(I_{80}, -2cI_{41}A_{21})$$

Recall that  $\ell = \ell_1 \ell_2 \ell_3$ ,  $I_{21} = -\ell_2 \ell_3$  and  $\ell_1 = \frac{u_1}{\Delta_G}$  so that hence  $(I_{45}, -\ell I_{21}) = (I_{45}, \frac{u_1}{\Delta_G})$ .

**Cases TN8B/C.** Here a < b,  $u_1 = -\alpha_3 - \beta_3 + o(\pi^a), v(\Delta_G) = a$  so that  $\overline{(I_{45}, -\ell I_{21})} = (I_{45}, u_1 \pi^a) = (I_{45}, u_1)(I_{45}, \pi^a)$ , since  $u_1 \in K$ . Also note that if  $v(u_1) > 0$  then  $I_{45} \in K^{\times 2}$  hence  $(I_{45}, -\ell I_{21}) = (I_{45}, \pi^a)$ . It follows that

$$E_v = (-1, I_{41}A_{21})(I_{80}, T_{\alpha_1})(I_{45}, \pi^a) = (I_{80}, T_{\alpha_1})(T_{\alpha_1}T_{-\alpha_1}, \pi^a) = (\pi^{a+b}, T_{-\alpha_1}).$$

Therefore,  $E_v = 1$  for TN8B and  $E_v = (-1)^{a+b}$  for TN8C as required.

**<u>Cases TN8F</u>**. Here a = b but  $v(\Delta_G) = 2a$ . It follows directly from the TN8B/C cases that  $E_v = 1$ .

<u>**Cases TN8K.**</u> Here a = b and  $v(\Delta_G) = 2a + 2r$ , with r > 0. We have  $E_v = (I_{45}, \frac{u_1}{\Delta_G}) = (I_{45}, \pi^{a+r})(I_{45}, u_1)$ . As in Section 5.3.3, we have  $v(u_1) = a$ . Therefore,  $E_v = (I_{45}, \frac{u_1}{\Delta_G}) = (I_{45}, \pi^{a+r})(I_{45}, \pi^a) = (I_{45}, \pi^r)$ , and  $E_v = (-1)^r$  for TN8K. **Cases TN8H/M.** Here  $I_{45} \equiv_{\Box} \hat{\delta_2} \equiv_{\Box} 1$  and  $\alpha_1^2 \equiv_{\Box} I_{23} \not\equiv_{\Box} 1$  so that

$$E_v = (I_{23}, I_{41}).$$

Using Lemma 6.2.1.5 and Lemma 6.3.4, we have that  $E_v = 1$  since  $v(I_{80}) \in 2\mathbb{Z}$ . Cases TN8I/N. Here  $\alpha_1^2 \equiv_{\Box} I_{23}, I_{45} \not\equiv_{\Box} 1$  and  $v(\Delta_G) = a$  so that

$$E_v = (I_{23}, I_{41})(I_{45}, -\ell I_{21}).$$

as in the cases of TN8B/C and TN8K, it follows that  $E_v = (I_{45}, -\ell I_{21}) = (I_{45}, \frac{u_1}{\Delta_G})$ and  $E_v = 1$  for TN8I but  $E_v = (-1)^r$  for TN8N as required.

# **6.6.4** *C* is of type $U_{2a,2b,2n}$

#### Proof of Tables 4.23 to 4.30

**<u>Cases U1</u>**. From the definition of the isogeny we see that  $v(I_{23}) = 2a$ ,  $v(I_{44}) = 2b + 2n$  and  $v(I_{45}) = v(I_{80}) = 0$ . By semistability criterion 3.4.29, we have v(c) = 0. Let  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . Computing invariants and reducing mod  $\pi$  we find that

 $u_1^2 \equiv_\Box (\alpha_2 - \alpha_3)^2, \quad \ell_1 \equiv_\Box -c\alpha_2\alpha_3, \quad I_{21} \equiv_\Box \alpha_2\alpha_3,$ 

$$I_{80} \equiv_{\Box} I_{45} \equiv_{\Box} I_{41} \equiv_{\Box} I_{42} \equiv_{\Box} 1, \quad I_{22} \equiv_{\Box} 2(\alpha_2 - \alpha_3)^2,$$
$$A_{21} \equiv_{\Box} 2\alpha_2^2, \quad A_{31} \equiv_{\Box} 2\alpha_3^2.$$

Using Lemma 6.3.4 and Lemma 6.2.1.8, we have  $(I_{60}, -I_{40}I_{42}I_{80}) = 1$ . After simplification, this yields

$$E_{v} = (-1, I_{43})(I_{20}, -I_{40}I_{44})(I_{40}, cI_{43})(c, I_{23}I_{44})(I_{44}, 2I_{22}I_{43}).$$

Cases U1A/B. Here  $\delta_2, \delta_3 \in K$  and  $2a, 2b, 2n \in \mathbb{Z}$ . In particular,  $I_{40} \in K^{\times 2}$ ,  $I_{22} \equiv_{\Box} A_{21} \equiv_{\Box} A_{31} \equiv_{\Box} 2$ . Therefore  $E_v = (I_{43}, -1)(I_{20}, -I_{44})(I_{44}, I_{43})(c, I_{23}I_{44})$ . Write  $\beta_2 = \alpha_2 + a_2\pi^b, \beta_3 = \alpha_3 + a_3\pi^n$ . If b < n we have

$$I_{20} =_{\Box} 2a_2^2 \pi^{2b} + o(\pi^{2b}), \quad I_{43} =_{\Box} a_2^2 \pi^{2b} + o(\pi^{2b}),$$

so that  $(I_{43}, -1)(I_{20}, -I_{44})(I_{44}, I_{43}) = (\pi^{2b}, -1)(2\pi^{2b}, -\pi^{2b+2n})(\pi^{2b+2n}, \pi^{2b}) = 1$ . On the other hand, if b = n then  $v(I_{44}) \in 2\mathbb{Z}$  and it follows from Lemmata 6.2.1.1 and 6.2.1.7, using Lemma 6.3.4 that  $(I_{43}, -I_{44}) = (I_{20}, -I_{44}) = 1$ . Therefore  $E_v = (c, I_{23}I_{44})$ .

For U1A, we have  $c \in K^{\times 2}$  hence  $E_v = 1$ . For U1B, we have  $c \notin K^{\times 2}$  hence  $E_v = -1$  if and only if one or three of 2a, 2b, 2n are odd. Equivalently,  $E_v = -1$  if and only if 4ab + 4ac + 4bn is odd as required.

**Cases U1C/D.** Here  $\delta_2, \delta_3 \notin K$ . In particular,  $I_{22}, I_{40} \notin K^{\times 2}$  but  $v(I_{44}), v(I_{40}) \in 2\mathbb{Z}$ . Therefore  $(I_{22}, I_{44}) = 1$  and by Lemmata 6.2.1.1 and 6.2.1.7, using Lemma 6.3.4 we have that  $(I_{43}, -I_{40}I_{44}) = (I_{20}, -I_{40}I_{44}) = 1$ . Therefore  $E_v = (c, I_{23})$  and  $E_v = 1$  for U1C, while  $E_v = -1$  if 2a is odd,  $E_v = 1$  otherwise for U1D as required.

**<u>Cases U2</u>**. From the definition of the isogeny we see that  $v(I_{45}) = n$ ,  $v(I_{80}) = a + b$ and  $v(I_{23}) = v(I_{44}) = 0$ . By semistability criterion 3.4.29, we may assume that v(c) = 0. Let  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ .

Computing invariants and reducing  $\mod \pi$  we find that

$$u_1^2 \equiv 2\alpha_1, \quad \ell_1 \equiv_{\Box} c(\alpha_1 - \beta_2)(\alpha_1 + \beta_2), \quad I_{21} \equiv_{\Box} -(\alpha_1 - \beta_2)(\alpha_1 + \beta_2),$$

 $I_{22} \equiv_{\Box} -I_{21}, \quad I_{40} \equiv_{\Box} \delta_1, \quad A_{21} \equiv_{\Box} A_{31}, \quad I_{42} \equiv_{\Box} I_{44} \equiv_{\Box} 1.$ 

Write  $\alpha_2 = \alpha_1 + a_2 \pi^a$ ,  $\alpha_3 = -\alpha_1 + a_3 \pi^b$ ,  $\beta_3 = \beta_2 + b_3 \pi^n$ . Then

$$\hat{\delta_2} = \Box -2a_3\pi^b \alpha_1 A_{21}, \quad \hat{\delta_3} = \Box 2a_2\pi^a \alpha_1 A_{21}, \quad I_{80} = \Box -a_2a_3\alpha_1^2\pi^{a+b},$$
$$I_{41} \equiv \Box \alpha_1 a_2\pi^b (\alpha_1 + \beta_2)^2 - \alpha_1 a_2\pi^a (\beta_2 - \alpha_1)^2.$$

Using Lemma 6.3.4 and Lemmata 6.2.1.1, 6.2.1.7, we have

$$(I_{20}, -I_{40}I_{44}) = (I_{43}, -I_{40}I_{44}I_{42}) = 1.$$

Also since  $I_{22} \equiv_{\Box} -I_{21}$  and  $\ell \equiv c$ , we have  $(I_{45}, -\ell I_{21}I_{22}) = (I_{45}, \ell) = (I_{45}, c)$ . After simplification, this yields  $E_v = (c, I_{80}I_{45})(I_{80}, -2I_{41}I_{60})(I_{41}, -I_{23})(I_{60}, -I_{40})$ . **Cases U2A/B**. Here  $I_{23} \in K^{\times 2}$  and  $\delta_2, \delta_3 \in K$ . In particular,  $I_{40} \in K^{\times 2}$  and  $E_v = (c, I_{80}I_{45})(I_{80}, -2I_{41}I_{60})(I_{41}I_{60}, -1)$ .

If a < b we have  $I_{60} = 2a_2^2 \alpha_1 \pi^a$ ,  $I_{41} = -\alpha_1 a_2 \pi^a (\beta_2 - \alpha_1)^2$ , so that  $-2I_{41}I_{60} \equiv 1$ and  $(I_{80}, -2I_{41}I_{60})(I_{41}I_{60}, -1) = 1$ .

On the other hand, if a = b then  $v(I_{80}) \in 2\mathbb{Z}$  and it follows from Lemmata 6.2.1.8 and 6.2.1.5, using Lemma 6.3.4 that  $(I_{41}, -I_{80}) = (I_{60}, -I_{80}) = 1$ . Therefore  $E_v = (c, I_{45}I_{80})$ .

For U2A, we have  $c \in K^{\times 2}$  hence  $E_v = 1$ . For U2B, we have  $c \notin K^{\times 2}$ , hence  $E_v = -1$  if and only if one or three of a, b, n are odd. Equivalently,  $E_v = -1$  if and only if ab + an + bn is odd as required.

<u>**Cases U2C/D.**</u> Here  $I_{23} \notin K^{\times 2}$ ,  $\delta_2, \delta_3 \notin K$  and a = b so that  $v(I_{80}) \in 2\mathbb{Z}$ . We have  $E_v = (c, I_{80}I_{45})(I_{80}, -2I_{41}I_{60})(I_{41}, -I_{23})(I_{60}, -I_{40})$ . By Lemmata 6.2.1.8 and 6.2.1.5, using Lemma 6.3.4 we have that  $(I_{41}, -I_{40}I_{80}) = (I_{60}, -I_{40}I_{80}) = 1$ . Therefore  $E_v = (c, I_{45})$  and  $E_v = 1$  for U2C, while  $E_v = -1$  if n is odd,  $E_v = 1$ otherwise for U2D as required.

**<u>Cases U3</u>**. From the definition of the isogeny we see that  $v(I_{45}) = a+b$ ,  $v(I_{23}) = 2n$ and  $v(I_{80}) = v(I_{44}) = 0$ . By semistability criterion 3.4.29, we may assume that v(c) = 0. Let  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . Write

$$\alpha_1 = a_1 \pi^n$$
,  $\alpha_3 = \alpha_2 + a_3 \pi^a$ ,  $\beta_3 = \beta_2 + b_3 \pi^b$ ,  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$ ,

for some  $a_1, a_3, b_3 \in \mathcal{O}_{\overline{K}}^{\times}$ , so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G = c\pi^a \left( a_3(\beta_2 - \alpha_1)(\beta_2 + \alpha_1) + b_3\pi^{b-a}(\alpha_2 - \alpha_1)(\alpha_2 + \alpha_1) + a_3b_3\pi^b(\alpha_2 + \beta_2) \right),$$
$$u_1 = \pi^a(a_3 + b_3\pi^{b-a}), \quad \ell_2 = c(\pi^a(a_3 + b_3\pi^{b-a}) + \alpha_2 + \beta_2), \quad \ell_3 = -c(\alpha_2 + \beta_2).$$

Reducing invariants  $\mod \pi$ ,

$$I_{21} \equiv_{\Box} 1, \quad \delta_2 \equiv \delta_3 \equiv_{\Box} I_{20}, \quad I_{44} \equiv_{\Box} 1, \quad I_{22} \equiv -\delta_2,$$
$$\hat{\delta_2} \equiv \hat{\delta_3} \equiv_{\Box} 1, \quad I_{80} \equiv_{\Box} 1, \quad I_{41} \equiv \hat{\delta_2} \mod \pi,$$
$$I_{43} \equiv 2(\alpha_2^2 + \beta_2^2)\delta_2, \quad I_{60} \equiv_{\Box} 2(\alpha_2^2 + \beta_2^2), \quad I_{42} \equiv_{\Box} 1,$$

so that  $I_{43}I_{60} \equiv \delta_2$ . Therefore  $E_v = (I_{20}, I_{40})(c, I_{23})(I_{40}, \ell I_{60}I_{43})(I_{45}, -\ell I_{22})$ . Re-

placing invariants by their reduction mod  $\pi$  and since  $I_{40} = u_1^2$ ,  $d\ell_1 = \ell_1^2 (A_1 - B_1)^2$ , this yields

$$E_v = (u_1^2, \delta_2)(c, I_{23})(u_1^2, \delta_2)(u_1^2, \ell)(u_1^2(A_1 - B_1)^2, \ell\delta_2)$$
  
=  $(c, I_{23})(u_1^2, \delta_2)((A_1 - B_1)^2, \ell)((A_1 - B_1)^2, \delta_2).$ 

We have

$$I_{45} = \Box -a_3 b_3 \pi^{a+b} + o(\pi^{a+b}), \quad I_{23} \equiv a_1^2 \pi^{2n}.$$

Now if a < b then  $\ell \equiv_{\Box} c$ . Otherwise, if a = b then  $v(A_1 - B_1) = 0$  and  $(A_1 - B_1)^2 \in K^{\times 2}$  so that  $E_v = (c, I_{23})(u_1^2, \delta_2)$ . <u>Cases U3A</u>. Here  $a < b, c \in K^{\times 2}$  and  $\delta_2 \in K^{\times 2}$  hence  $\ell \in K^{\times 2}$  and  $E_v = 1$ . <u>Cases U3B</u>. Here  $a < b, c \notin K^{\times 2}$  and  $\delta_2 \in K^{\times 2}$  hence  $\ell \notin K^{\times 2}$  and  $E_v = (c, I_{23})((A_1 - B_1)^2, \ell) = (-1)^{a+b+2n}$ . <u>Cases U3C/G</u>. Here  $a = b, c \in K^{\times 2}$  and  $\delta_2 \in K^{\times 2}$  and  $E_v = (c, I_{23})(u_1^2, \delta_2) = 1$ . <u>Cases U3D/H</u>. Here  $a = b, c \notin K^{\times 2}$  and  $\delta_2 \in K^{\times 2}$  and  $E_v = (c, I_{23})(u_1^2, \delta_2) = 1$ . <u>Cases U3E/I</u>. Here  $a = b, c \notin K^{\times 2}$  and  $\delta_2 \notin K^{\times 2}$  and  $E_v = (c, I_{23}) = (-1)^{2n}$ . <u>Cases U3F/J</u>. Here  $a = b, c \notin K^{\times 2}$  and  $\delta_2 \notin K^{\times 2}$  and  $E_v = (c, I_{23})(u_1^2, \delta_2) = (-1)^{2a}$ .

<u>**Cases U4</u>**. From the definition of the isogeny we see that  $v(I_{80}) = a+b$ ,  $v(I_{44}) = 2n$ and  $v(I_{45}) = v(I_{23}) = 0$ . By semistability criterion 3.4.29, we have v(c) = 0. Let  $u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3$  so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . Write</u>

$$\alpha_2 = \alpha_1 + a_2 \pi^a, \quad \beta_2 = -\alpha_1 + b_2 \pi^b, \quad \beta_3 = \alpha_3 + b_3 \pi^n, \quad u_1 = \alpha_2 + \beta_2 - \alpha_3 - \beta_3,$$

for some  $a_2, b_2, b_3 \in \mathcal{O}_{\overline{K}}^{\times}$ , so that  $\ell_1 = \frac{u_1}{\Delta_G}$ . By definition of  $\Delta_G, \ell_1, \ell_2, \ell_3$  we have

$$\Delta_G = c\pi^a (a_2(\alpha_1 + \alpha_3)^2 + a_2b_3\pi^n(\alpha_1 + \alpha_3) + b_2\pi^{b-a}(\alpha_1 - \alpha_3)^2 - b_2b_3\pi^{b-a+n}(\alpha_1 - \alpha_3) - 2a_2b_2\alpha_3\pi^b - a_2b_2b_3\pi^{b+n}),$$

 $u_1 = \pi^a (a_2 + b_2 \pi^{b-a}) - 2\alpha_3 - b_3 \pi^n, \quad \ell_2 = c(2a_3 + b_3 \pi^n)), \quad \ell_3 = -c\pi^a (a_2 + b_2 \pi^{b-a}).$ Reducing invariants mod  $\pi$ ,

$$\delta_{2} \equiv I_{23} \equiv_{\Box} \alpha_{1}^{2}, \quad I_{20} \equiv_{\Box} 2\alpha_{1}^{2}, \quad \hat{\delta_{2}} \equiv (\alpha_{1} - \alpha_{3})^{2} (\alpha_{1} + \alpha_{3})^{2} \equiv I_{45} \equiv_{\Box} 1,$$

$$I_{22} \equiv I_{60} \equiv A_{31} \equiv -2(\alpha_{1} - \alpha_{3})(\alpha_{1} + \alpha_{3}), \quad I_{40} \equiv_{\Box} 1,$$

$$A_{21} = a_{2}\pi^{a}(2\alpha_{1} + a_{2}\pi^{a}) + b_{2}\pi^{b}(-2\alpha_{1} + b_{2}\pi^{b}),$$

$$A_{21} = a_{2}\pi^{a}(2\alpha_{1} + a_{2}\pi^{a}) + a_{2}\pi^{b}(-2\alpha_{1} + b_{2}\pi^{b}),$$

 $I_{41} = 8b_2\pi^b(2\alpha_1 + a_2\pi^a)(\alpha_3 + \alpha_1)(\beta_3 + \alpha_1) + 8a_2\pi^a(-2\alpha_1 + b_2\pi^b)(\alpha_3 - \alpha_1)(\beta_3 - \alpha_1).$ 

It follows that

$$E_v = (-1, I_{41}I_{43})(I_{20}, I_{44})(g, I_{44}I_{80})(I_{41}, dg_1)(I_{44}, 2I_{22}I_{42}I_{43})(I_{80}, -2I_{41}I_{42}I_{60})(I_{42}, -I_{60}I_{43})$$

**Cases U4A/B**: Here a < b,  $I_{23} \equiv \delta_2 \equiv_{\Box} \alpha_1^2 \in K^{\times 2}$  therefore  $I_{20} \equiv_{\Box} 2$  and

$$E_v = (c, I_{44}I_{80})H, \quad H = (-1, I_{41}I_{43})(I_{44}, I_{22}I_{42}I_{43})(I_{80}, -2I_{41}I_{42}I_{60})(I_{42}, -I_{60}I_{43}).$$

We show that H = 1. Since a < b we have  $A_{21} \equiv 2\alpha_1 a_2 \pi^a$  and  $I_{41} \equiv -a_2 \alpha_1 \pi^a$ . It follows that

$$E = (-1, I_{41}I_{43})(\delta_3, A_{31}^2 A_{21}I_{43})(I_{80}, A_{21}^2 A_{31}^2)(A_{21}A_{31}, -A_{31}I_{43})$$
  
$$= (-1, I_{41}I_{43})(\delta_3, A_{21}I_{43})(A_{21}A_{31}, -A_{31}I_{43})$$
  
$$= (-1, A_{21}\delta_2 I_{43})(\delta_3, A_{21}\delta_2 I_{43})(A_{21}\delta_2, -A_{31}I_{43})(I_{43}, A_{31})$$
  
$$= (I_{43}, -A_{31}\delta_3)(A_{21}\delta_2, \delta_3 A_{31})(A_{21}\delta_2, I_{43}) = 1,$$

by Lemma 6.3.3 since  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$ . Hence  $E_v = (c, I_{44}I_{80})$ . As required, we obtain that  $E_v = 1$  for U4A, since  $c \in K^{\times 2}$  and  $E_v = (-1)^{a+b+2n}$  for U4B since  $c \notin K^{\times 2}$ .

**Cases U4C/D/G/H.** Here a = b,  $\delta_2 \equiv I_{23} \equiv_{\Box} \alpha_1^2 \in K^{\times 2}$  so that

$$E = (-I_{80}, I_{41}I_{42})(I_{43}, -1)(I_{44}, I_{22}I_{42}I_{43})(I_{42}, I_{60}I_{43})$$

Now  $v(I_{80}) \in 2\mathbb{Z}$  so that if we let  $I_{80} = -\pi^{2a}a_2b_2(\alpha_1 - \alpha_3)^2(\alpha_1 + \alpha_3)^2$ , we have

$$(-I_{80}, I_{41}I_{42}) = (a_2b_2, a_2 - b_2)(a_2b_2, b_2(\alpha_1 + \alpha_3)^2 - a_2(\alpha_3 - \alpha_1)^2) = 1$$

by Lemma 6.3.3 since  $(\alpha_3 + \alpha_1)^2, (\alpha_3 - \alpha_1)^2 \in K^{\times 2}$ . Therefore

$$E_v = (c, I_{44}I_{80})(-1, I_{43})(I_{44}, I_{22}I_{42}I_{43})(I_{42}, -I_{60}I_{43}),$$

with

$$(I_{43}, -\delta_3 A_{31})(I_{43}, A_{21}\delta_2)(\delta_2 A_{21}, \delta_3 A_{31}) = 1,$$

by Lemma 6.3.3 since  $I_{43} = \delta_2 A_{21} + \delta_3 A_{31}$  as above. It follows that  $E_v = (c, I_{44})$ and  $E_v = 1$  for U4C/G as  $c \in K^{\times 2}$  and  $E_v = (-1)^{2n}$  for U4D/H since  $c \notin K^{\times 2}$  as required.

<u>Cases U4E/F/I/J</u>. Here a = b,  $\delta_2 \equiv I_{23} \equiv_{\Box} \alpha_1^2 \notin K^{\times 2}$ . Hence  $E_v = (c, I_{44})H_1H_2$ , with

$$H_1 = (-I_{80}, I_{41}A_{21})(\delta_2, A_{21})(I_{41}, I_{23}),$$

$$H_2 = (I_{43}, -\delta_2 A_{21})(I_{43}, \delta_3 A_{31})(\delta_3, A_{21}\delta_2)(A_{21}, A_{31}).$$

On one hand, we can write  $H_2$  as  $H_2 = (I_{43}, -\delta_2 A_{21})(I_{43}, \delta_3 A_{31})(\delta_3 A_{31}, A_{21}\delta_2)$ , so that  $H_2 = 1$  by Lemma 6.3.3 since  $I_{43} - \delta_2 A_{21} - \delta_3 A_{31} = 0$ . On the other hand, using the expressions for  $I_{80}, I_{41}$  and  $A_{21}$  given above, we have

$$H_1 = (a_2 b_2 \alpha_1^2, 2\alpha_1^2 (a_2 - b_2) (b_2 (\alpha_3 + \alpha_1)^2 - a_2 (\alpha_3 - \alpha_1)^2))$$
$$= (a_2 b_2 \alpha_1^2, \alpha_1^2 (a_2 - b_2)) (a_2 b_2 \alpha_1^2, \alpha_1^2 (b_2 (\alpha_3 + \alpha_1)^2 - a_2 (\alpha_3 - \alpha_1)^2)) = 1$$

by Lemma 6.3.3. It follows that  $E_v = (c, I_{44})$  so that  $E_v = 1$  for U4E/I as  $c \in K^{\times 2}$ and  $E_v = (-1)^{2n}$  for U4F/J, as  $c \notin K^{\times 2}$ .

#### **6.6.5** *C* is of type $1 \times 1$

#### Proof of Tables 4.31 to 4.34

**<u>Case TC1</u>**. By definition of the isogeny and since J has good reduction, we have  $\alpha_2, \beta_2 \in K$  and  $\alpha_1, \alpha_3, \beta_3 \in K^{nr}$  by Lemma 6.6.11. In particular  $a, b \in \mathbb{Z}$  and  $a \equiv b \equiv v(c) \mod 2$  by semistability criterion 3.4.29. Also, since  $\beta_1 = -\alpha_1$  it follows that  $\alpha_1 \equiv \alpha_2 \equiv 0 \neq \beta_2 \equiv \alpha_3 \equiv \beta_3$ . Reducing invariants  $\mod \pi$  yields

$$I_{20} \equiv I_{21} \equiv_{\Box} I_{42} \equiv_{\Box} I_{60} \equiv_{\Box} 2, \quad I_{40} \equiv_{\Box} I_{43} \equiv_{\Box} 1, \ell \equiv_{\Box} 2c,$$

so that

$$E_v = (-1, I_{22}I_{41})(I_{44}, 2cI_{22})(I_{23}, cI_{41})(I_{45}, -cI_{22})(I_{80}, -2cI_{41}).$$

Since the following valuations are even,

$$v(I_{23}) = 2a, \quad v(I_{45}) = 2b, \quad v(I_{44}) = 2b, \quad v(I_{80}) = 2a,$$
  
 $E_v = (I_{22}, -I_{44}I_{45})(I_{41}, -I_{23}I_{80})(c, I_{44}I_{45}I_{23}I_{80}).$ 

Write  $\alpha_1 = a_1 \pi^a$ ,  $\alpha_2 = \alpha_1 + a_2 \pi^a$ ,  $\alpha_3 = \beta_2 + a_3 \pi^b$ ,  $\beta_3 = \beta_2 + b_3 \pi^b$ , with  $a_1, a_2, a_3, b_3 \in \mathcal{O}_{K^{nr}}^{\times}$ . We have

$$I_{22} = \beta_2 \pi^b (a_3 + b_3) + o(\pi^b), \quad I_{41} = \pi^a \beta_2 (a_1 + a_2) + o(\pi^a),$$
$$I_{44} =_{\Box} (a_3 - b_3)^2 + o(\pi^b), \quad I_{45} =_{\Box} -a_3 b_3 + o(1) \equiv_{\Box} -a_3 b_3,$$
$$I_{80} =_{\Box} -a_2 (2a_1 + a_2) + o(\pi^b), \quad I_{23} =_{\Box} a_1^2.$$

Now if  $v(I_{22}) > b$ , then by Lemma 6.2.1.3 and using Lemma 6.3.4, we have that  $(I_{22}, -I_{44}I_{45}) = 1$ . Also in this case  $a_3 \equiv -b_3$  so that  $I_{44}I_{45} = 1$  and  $(c, I_{44}I_{45}) = 1$ .

Similarly if  $v(I_{41}) > a$  then by Lemma 6.2.1.5 and using Lemma 6.3.4, we have that  $(I_{41}, -I_{23}I_{80}) = 1$ . Also, in this case  $a_1 \equiv -a_2$  so that  $I_{23}I_{80} = \Box 1$  and  $(c, I_{23}I_{80}) = 1$ . Finally assume that  $v(I_{22}) = b, v(I_{41}) = a$ . If  $a \equiv 0 \mod 2$  then since  $a \equiv b \equiv v(c) \mod 2$ , we are done. Otherwise assume  $a \equiv b \equiv v(c) \equiv 1 \mod 2$ . Then rewriting

$$E_v = (cI_{22}, I_{44}I_{45})(cI_{41}, I_{23}I_{80})(I_{22}I_{41}, -1),$$

it is clear that  $E_v = 1$ .

<u>**Case TC2</u></u>. By definition of the isogeny and since J has good reduction, we have \alpha\_1, \alpha\_2, \beta\_2, \alpha\_3, \beta\_3 \in K^{nr} by Lemma 6.6.11. In particular a, b \in \mathbb{Z} and a \equiv b \equiv v(c) \mod 2 by semistability criterion 3.4.29, and v(I\_{44}) = v(I\_{80}) = 2(a+b) \in 2\mathbb{Z}. Reducing invariants mod \pi yields</u>** 

$$\ell \equiv 2c, \quad I_{23} = \alpha_1^2, \quad (A_1 - B_1)^2 = \alpha_1^2, \quad I_{21} \equiv \alpha_1^2, \quad I_{22} \equiv \alpha_1^2, \quad I_{45} \equiv \alpha_$$

Also by Lemma 6.2.1.4,  $I_{40} = u_1^2$  so that  $I_{40} \equiv \alpha_1^2$ . Therefore

$$E_{v} = (I_{41}, -\alpha_{1}^{2}I_{80})(I_{43}, -\alpha_{1}^{2}I_{44}I_{42})(I_{60}, -\alpha_{1}^{2}I_{80}I_{42})(I_{20}, -\alpha_{1}^{2}I_{44})(c, I_{44}I_{80})(I_{42}, -I_{44}I_{80}).$$

Let  $a_2, b_2, a_3, b_3 \in \mathcal{O}_{K^{nr}}^{\times}$  and write

$$\alpha_2 = \alpha_1 + a_2 \pi^a, \quad \beta_2 = \alpha_1 + b_2 \pi^a, \quad \alpha_3 = -\alpha_1 + a_3 \pi^b, \quad \beta_3 = -\alpha_1 + \alpha_3 \pi^b,$$

so that

$$I_{42} = \Box -\alpha_1^2 \pi^{a+b} U_{42} \text{ with } U_{42} = (a_3 + b_3)(a_2 + b_2),$$
$$I_{44} = \pi^{2a+2b} U_{44} \text{ with } U_{44} = (a_2 - b_2)^2 (a_3 - b_3)^2,$$
$$I_{80} = \Box \pi^{2a+2b} U_{80} \text{ with } U_{80} = a_2 b_2 a_3 b_3.$$

If a < b then  $\alpha_1 \in K^{\times}$  since otherwise  $Frob(\alpha_1) = -\alpha_1$ , a contradiction to the definition of the isogeny since  $a \neq b$ . Therefore we have

$$I_{20} = 2(a_2 - b_2)^2 + o(\pi^{2a}), \quad I_{41} = 2a_2b_2 + o(\pi^{2a}),$$

 $I_{43} = \square 2\pi^a \alpha_1 (a_2 + b_2)(a_2 - b_2)^2 + o(\pi^{3a}), \quad I_{60} = \square 2\pi^a \alpha_1 a_2 b_2(a_2 + b_2) + o(\pi^{3a}).$ 

It follows that  $(I_{41}, -\alpha_1^2 I_{80}) = (I_{20}, -\alpha_1^2 I_{44}) = 1$  and since  $v(c) \equiv a \mod 2$  we can rewrite

$$E_v = (\pi^a, I_{42}^2 I_{44}^2 I_{80}^2)(2\alpha_1(a_2 + b_2)(a_2 - b_2)^2, (a_2 - b_2)^2(a_3 - b_3)^2(a_2 + b_2)(a_3 + b_3))$$

 $(2\alpha_1a_2b_2(a_2+b_2), a_2b_2a_3b_3(a_2+b_2)(a_3+b_3))(-(a_2+b_2)(a_3+b_3), -a_2b_2a_3b_3(a_2-b_2)^2(a_3-b_3)^2).$ 

Since  $v((a_2 - b_2)^2(a_3 - b_3)^2) = 1$ , simplifying yields

$$E_v = (a_2 + b_2, -a_2b_2(a_2 - b_2)^2)(a_3 + b_3, -a_3b_3(a_3 - b_3)^2).$$

Finally, assume that  $v(a_2+b_2) > 0$ , then  $a_2 \equiv -b_2$  so that  $-a_2b_2(a_2-b_2)^2 \equiv a_2^4 \equiv \Box 1$ and similarly for  $(a_3+b_3)$ . Therefore  $E_v = 1$ . If a = b then

$$I_{20} = \Box 2(a_2 - b_2)^2 + 2(a_3 - b_3)^2, \quad I_{41} = \Box 2\alpha_1^2 U_{41} + o(\pi^{2a}) \text{ with } U_{41} = (a_2b_2 + a_3b_3),$$
$$I_{43} = \Box 2\alpha_1 \pi^a U_{43} + o(\pi^{3a}) \text{ with } U_{43} = (a_2 + b_2)(a_2 - b_2)^2 - (a_3 + b_3)(a_3 - b_3)^2,$$
$$I_{60} = \Box 2\alpha_1^3 \pi^a U_{60} + o(\pi^{3a}) \text{ with } U_{60} = (a_2b_2(a_2 + b_2) - a_3b_3(a_3 + b_3)).$$

If  $v(2(a_2 - b_2)^2 + 2(a_3 - b_3)^2) > 0$  then  $v(I_{20}) > 2a$  and  $v(I_{20}^2) > v(I_{44})$  hence by Lemmata 6.2.1.1 and 6.3.4 we have  $(I_{20}, -\alpha_1^2 U_{44}) = 1$ . Similarly, if  $v(U_{41}) > 0$ then  $v(I_{41}) > 2a$  and  $v(I_{41}^2) > v(I_{80})$ , therefore by Lemmata 6.2.1.5 and 6.3.4 we have  $(I_{41}, -\alpha_1^2 I_{80}) = 1$ . Hence replacing invariants and simplifying yields

$$E_v = (2\alpha_1 \pi^a U_{43}, U_{44} U_{42})(2\alpha_1^3 \pi^a U_{60}, U_{80} U_{42})(\pi^a, U_{44} U_{80})(-\alpha_1^2 U_{42}, -U_{44} U_{80}).$$

Factoring out  $\pi^a$  we have  $(\pi^a, U_{44}^2 U_{42}^2 U_{80}^2) = 1$ , hence simplifying gives

$$E_v = (U_{43}, U_{44}U_{42})(U_{60}, U_{80}U_{42})(U_{42}, -U_{44}U_{80}).$$

If  $\alpha_1 \in K$  then by definition of the isogeny  $\delta_2, \delta_3 \in K$  and using Lemma 6.3.3.1 we have

$$(U_{43}, U_{44}U_{42}) = ((a_2 + b_2)(a_2 - b_2)^2, (a_3 + b_3)(a_3 - b_3)^2),$$
  

$$(U_{60}, U_{80}U_{42}) = (a_2b_2(a_2 + b_2), a_3b_3(a_3 + b_3))$$
  

$$(U_{42}, -U_{44}U_{80}) = (a_2 + b_2, -U_{44}U_{80})(a_3 + b_3, -U_{44}U_{80}).$$

Factoring out and simplifying gives

$$E_v = (a_2 + b_2, -a_2b_2(a_2 - b_2)^2)(a_3 + b_3, -a_3b_3(a_3 - b_3)^2).$$

Now if  $v(a_2 + b_2) > 0$  then  $a_2 \equiv -b_2$  and  $-a_2b_2(a_2 - b_2)^2 \equiv 4a_2^4 \equiv_{\Box} 1$ , similarly if  $v(a_3 + b_3) > 0$ . Hence  $E_v = 1$ .

If  $\alpha_1 \notin K$  then by definition of the isogeny  $\delta_2, \delta_3 \in K$  and  $Frob((a_2+b_2)) = (a_3+b_3)$ it follows that  $v(U_{42}) \in 2\mathbb{Z}$  hence

$$E_v = (U_{43}, U_{42}U_{44})(U_{60}, U_{42}U_8).$$

If  $v(U_{43}) > 0$  then  $(a_2 - b_2)^2(a_2 + b_2) \equiv (a_3 - b_3)^2(a_3 + b_3)$ , therefore  $U_{42}U_{44} \equiv (a_2 - b_2)^4(a_2 + b_2)^2$  so that  $U_{42}U_{44} \in K^{\times 2}$ .

If  $v(U_{60}) > 0$  then  $a_2b_2(a_2+b_2) \equiv a_3b_3(a_3+b_3)$ , therefore  $U_{42}U_8 \equiv (a_2b_2)^2(a_2+b_2)^2$  so that  $U_{42}U_8 \in K^{\times 2}$ . Both cases yield  $E_v = 1$ .

**<u>Case TC3</u>**. By definition of the isogeny and since J has good reduction, we have  $\alpha_1, \alpha_2, \beta_2, \alpha_3, \beta_3 \in K^{nr}$  from Lemma 6.6.11, and  $\alpha_1 \neq 0$ . In particular  $a, b \in \mathbb{Z}$  and  $a \equiv b \equiv v(c) \mod 2$  by semistability criterion 3.4.29. Here  $v(I_{23}) = v(I_{44}) = 0$  and  $v(I_{45}) = a + b \in 2\mathbb{Z}, v(I_{80}) = 2a + 2b \in 2\mathbb{Z}$ . Reducing invariants  $\mod \pi$  yields

$$I_{23} \equiv_{\Box} \alpha_1^2, \quad I_{44} \equiv_{\Box} 1, \quad I_{20} \equiv \alpha_1^2, \quad I_{22} \equiv_{\Box} -\alpha_1^2.$$

Hence

$$E_{v} = (-1, I_{41}I_{43}I_{60})(I_{40}, \ell I_{20}I_{43}I_{60})(I_{45}, -\ell I_{21}I_{22})(cI_{41}, I_{23})(I_{80}, cI_{41}I_{42}I_{60})(I_{42}, -I_{43}I_{60}).$$

Let  $a_2, b_2, a_3, b_3 \in \mathcal{O}_{\overline{K}}^{\times}$  and write

$$\alpha_2 = \alpha_1 + a_2 \pi^a, \quad \beta_2 = -\alpha_1 + b_2 \pi^b, \quad \alpha_3 = \alpha_1 + a_3 \pi^a, \quad \beta_3 = -\alpha_1 + b_3 \pi^b.$$

This yields

$$I_{45} = \Box -\alpha_1^2 \pi^{a+b} U_{45}, \text{ with } U_{45} = (a_2 - a_3)(b_2 - b_3)$$
$$I_{80} = \Box \pi^{2a+2b} U_{80} \text{ with } U_{80} = a_2 b_2 a_3 b_3.$$

**Cases TC3A/B/C.** Here  $a < b, \alpha_1 \in K$  hence

$$E_v = (I_{45}, \ell I_{21})(I_{40}, \ell)H, \quad H = (-1, I_{41}I_{43}I_{60})(I_{40}, I_{43}I_{60})(I_{80}, cI_{41}I_{42}I_{60})(I_{42}, -I_{43}I_{60}).$$

We show that H = 1. Computing invariants we find

$$I_{21} = a_2 a_3 \pi^{2a} + o(\pi^{2a}), \quad I_{40} =_{\Box} \pi^{2a} (a_2 - a_3)^2 + o(\pi^{2a}),$$
$$I_{41} =_{\Box} 2\pi^{2a} a_2 a_3, \quad I_{42} =_{\Box} \pi^{2a} a_2 a_3,$$

 $I_{43} = \square 2\alpha_1 \pi^a (a_2 + a_3) + o(\pi^a), \quad I_{60} = \square \pi^{a+b} (-2\alpha_1 \pi^a (a_2^2 b_2 + a_3^2 b_3)) + o(\pi^{2a+b}).$ 

Hence  $(I_{43}I_{60}, -I_{40}I_{42}) = (-(a_2+a_3)(a_2^2b_2+a_3^2b_3), -(a_2-a_3)^2a_2a_3)$ , and  $(I_{41}, -I_{80}) = (-I_{80}, I_{42}) = 1$  since  $v(I_{41}), v(I_{42}), v(I_{80}) \in 2\mathbb{Z}$ . Similarly  $(I_{80}, cI_{60}) = (a_2^2b_2 + a_3^2b_3, a_2b_2a_3b_3)$ . Simplifying yields

$$H = (a_2^2b_2 + a_3^2b_3, -(a_2 - a_3)^2a_2^2a_3^2b_2b_3)(a_2 + a_3, -(a_2 - a_3)^2a_2a_3)$$

i) If  $a_2, a_3, b_2, b_3 \in K$  then  $(a_2 - a_3)^2 \in K^{\times 2}$  and by Lemma 6.3.3 we have

$$H = (a_2^2 b_2, a_3^2 b_3)(a_2, a_3) = 1.$$

ii) If *Frob* permutes  $a_2$  and  $a_3$  as well as  $b_2$  and  $b_3$ , then  $(a_2 - a_3)^2 \notin K^{\times 2}$ . If  $a_2 + a_3$  and  $a_2^2b_2 + a_3^2b_3$  are units then H = 1. Otherwise, if  $v(a_2 + a_3) > 0$  then  $a_2 \equiv -a_3$  so that  $-a_2a_3(a_2 - a_3)^2 \equiv 4a_2^4$  hence  $-a_2a_3(a_2 - a_3)^2 \in K_v^2$  and H = 1. Finally, if  $v(a_2^2b_2 + a_3^2b_3) > 0$ , then  $a_2^2b_2 \equiv -a_3^2b_3$  so that  $-a_2^2b_2a_3^2b_3 \equiv_{\Box} b_2^2$ . In particular  $-a_2^2b_2a_3^2b_3 \notin K_v^2$  since  $Frob(b_2) = b_3$ , thus  $-a_2^2b_2a_3^2b_3(a_2 - a_3)^2 \in K_v^2$  (as  $(a_2 - a_3)^2 \notin K_v^2$ ) and H = 1. Hence  $E_v = (I_{40}, \ell)(I_{45}, \ell I_{21})$ . Now,  $\ell = -c^2\ell_1I_{21} =_{\Box} -\ell_1I_{21}$  so that  $\ell I_{21} =_{\Box} -\ell_1$ . Therefore

$$E_v = ((a_2 - a_3)^2, -\ell_1 I_{21})(-(a_2 - a_3)(b_2 - b_3), -\ell_1) = (\ell_1, -(a_2 - a_3)^3(b_2 - b_3)),$$

since  $I_{21}$  and  $(a_2 - a_3)$  are units in K. For isogeny TC3A, we have  $v(\ell_1) \in 2\mathbb{Z}$  hence  $E_v = 1$  as required.

Finally, computing  $(A_1 - B_1)^2$  in this case, one finds

$$(A_1 - B_1)^2 =_{\Box} \frac{-(a_2 - a_3)(b_2 - b_3)}{(a_2 - a_3)^2} + o(\pi^{a+b}),$$

hence  $(A_1 - B_1)^2 = (a_2 - a_3)^3(b_2 - b_3)$ . It follows that since  $(A_1 - B_1)^2 \in K^2$ in isogeny TC3B,  $E_v = 1$ . Finally,  $(A_1 - B_1)^2 \notin K^{\times 2}$  in isogeny TC3C, and  $v(\ell_1) \equiv r \mod 2$ , therefore  $E_v = (-1)^r$  as required.

Cases TC3D/E/F/G/H/I. Here a = b and  $E_v = (I_{45}, \ell I_{21})(I_{40}, -\ell I_{20}I_{22})(cI_{41}, I_{23})H$ , with

$$H = (-1, I_{41}I_{43}I_{60})(I_{40}, I_{43}I_{60})(I_{80}, cI_{41}I_{42}I_{60})(I_{42}, -I_{43}I_{60}).$$

We show that H = 1. Computing invariants, we find

$$I_{21} =_{\Box} (a_2 + b_2)(a_3 + b_3), \quad I_{40} =_{\Box} (a_2 + b_2 - a_3 - b_3)^2,$$

$$I_{41} =_{\Box} 2\alpha_1^2(a_2a_3 + b_2b_3) + o(\pi^{2a}), \quad I_{42} =_{\Box} \alpha_1^2(a_2 - b_2)(a_3 - b_3) + o(\pi^{2a}),$$

$$I_{43} =_{\Box} 2\alpha_1^3\pi^a U_{43} + o(\pi^a) \text{ with } U_{43} = (a_2 - b_2 + a_3 - b_3),$$

$$I_{60} =_{\Box} -2\alpha_1\pi^a U_{60} + o(\pi^{3a}) \text{ with } U_{60} = a_2b_2(a_2 - b_2) + a_3b_3(a_3 - b_3).$$

Also note that  $v(I_{40}) \in 2\mathbb{Z}$  hence  $(\alpha_1^2, -I_{40}) = 1$ .

Note that since either  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  or  $Frob(a_2 - b_2) = (a_3 - b_3)$ , we have that  $v(I_{42}) \in 2\mathbb{Z}$ . Using Lemma 6.3.3 and simplifying gives  $(I_{41}, -I_{80}) = (a_2a_3 + b_2b_3, -a_2b_2a_3b_3) = 1$ , since if  $v(I_{41}) > 0$  then  $a_2a_3 \equiv -b_2b_3$  so that  $-a_2b_2a_3b_3 \equiv (a_2a_3)^2 \equiv_{\Box} 1$ . Also  $(I_{43}, -I_{40}I_{42}) = (U_{43}, -U_{40}U_{42}) = 1$  since if  $v(U_{43}) > 0$  then  $v(I_{43}) > a$  thus  $v(I_{43}^2) > v(I_{42}I_{44})$  and the result follows from Lemma 6.3.4. Otherwise if  $v(U_{43}) = 0$  then the result follows since  $v(U_{42}), v(U_{40}) \in 2\mathbb{Z}$ . Similarly,  $(I_{42}, I_{80}) = 1$ . Finally,  $(I_{60}, -I_{40}I_{42}I_{80}) = (U_{60}, -U_{40}U_{42}U_{80}) = 1$  since if  $v(U_{60}) > 0$  then  $v(I_{60}) > 3a$  thus  $v(I_{60}^2) > 6a = v(I_{42}I_{80})$  hence  $(U_{60}, -U_{40}U_{42}U_{80}) = 1$  by Lemma 6.3.4. Otherwise, if  $v(U_{60}) = 0$  then the result follows since  $v(U_{42}), v(U_{40}) \in 2\mathbb{Z}$ .

Therefore when a = b, H = 1 and  $E_v = (I_{45}, \ell I_{21})(I_{40}, -\ell I_{20}I_{22})(cI_{41}, I_{23})$ .

Cases TC3D/F/G. Here  $\alpha_1 \in K$  so that  $E_v = (I_{45}, \ell I_{21})(I_{40}, \ell)$ . As above, we have,  $\ell = -c^2 \ell_1 I_{21} = -\ell_1 I_{21}$  so that  $\ell I_{21} = -\ell_1$ . Recall that  $I_{21} = -\ell_2 \ell_3$ . Hence  $E_v = (-(a_2 - a_3)(b_2 - b_3), -\ell_1)((a_2 + b_2 - a_3 - b_3)^2, \ell_1 \ell_2 \ell_3)$ . Moreover, computing the roots of  $L_1(x)$ , we find

$$(A_1 - B_1)^2 =_{\Box} \frac{-(a_2 - a_3)(b_2 - b_3)}{(a_2 + b_2 - a_3 - b_3)^2} =_{\Box} -(a_2 - a_3)(b_2 - b_3)(a_2 + b_2 - a_3 - b_3)^2,$$

so that  $E_v = ((A_1 - B_1)^2, \ell_1)((a_2 + b_2 - a_3 - b_3)^2, -(a_2 + b_2)(a_3 + b_3)).$ For TC3D, we have  $v(\ell_1) = v(u_1) - 2a - v(c)$ . If  $v(u_1) > 0$  then  $a_2 + b_2 \equiv a_3 + b_3$  and hence  $v(\ell_2) = v(\ell_3) = 0$  (see Proof of Table 4.33 in Section 5.3.5). Moreover, in this case,  $2v(u_1) \in 2\mathbb{Z}$  and  $a_2 - a_3 \equiv -b_2 + b_3$ . It follows that  $E_v = ((b_2 - b_3)^4, u_1) = 1$ . Finally, if  $v(u_1) = 0$  then  $((A_1 - B_1)^2, \ell_1) = 1$ . If  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  then  $u_1^2 \in K^{\times 2}$  and  $E_v = 1$ . Otherwise  $Frob(\alpha_2) = \alpha_3$  and  $Frob(\alpha_3) = \alpha_2$  and similarly for  $\beta_2, \beta_3$ , so that  $Frob(\ell_2) = -\ell_3$ . Therefore  $v(I_{21}) \in 2\mathbb{Z}$  and  $E_v = (u_1^2, -I_{21}) = 1$ .

For TC3F, we have  $(A_1 - B_1)^2 \in K^{\times 2}$  hence  $E_v = ((a_2 + b_2 - a_3 - b_3)^2, -(a_2 + b_2)(a_3 + b_3))$ . If  $v(a_2 + b_2) = v(a_3 + b_3) = 0$  then  $E_v = 1$  as  $v(u_1)^2 \in 2\mathbb{Z}$  and we are done. Otherwise either  $\alpha_2, \beta_2, \alpha_3, \beta_3 \in K$  and  $u_1^2 \in K^{\times 2}$  and we are done; or  $Frob(\ell_2) = -\ell_3$  and  $v(a_2 + b_2) = v(a_3 + b_3)$  so that  $v(a_2 + b_2)(a_3 + b_3)) \in 2\mathbb{Z}$  and  $E_v = 1$  as required.

For TC3G, we have  $(A_1 - B_1)^2 \notin K^{\times 2}$ . Now by definition of  $\Delta_G, u_1, \ell_2, \ell_3$  (see Proof of Table 4.33 in Section 5.3.5), we have  $v(\ell_2) = v_{\ell_3}$  when  $v(\Delta_G) > 2a$ . Therefore, since  $v(u_1)^2 \in 2\mathbb{Z}$  we have  $E_v = ((A_1 - B_1)^2, \ell_1)$ . Moreover, by semistability criterion 3.4.29, we have that  $v(\ell) \equiv r \mod 2$ . It follows that  $v(u_1) \equiv v(c) \mod 2$  and hence that  $v(\ell_1) \equiv r \mod 2$ . Thus  $E_v = (-1)^r$  as required.

**Cases TC3E/H/I.** Here  $\alpha_1 \in K$  so that  $E_v = (I_{45}, -\ell I_{21}I_{22})(I_{40}, \ell)(cI_{41}, I_{23})$ . Using Lemmata 6.3.4, 6.2.1.1 and 6.2.1.3 we have that  $(I_{41}, I_{23}) = (I_{40}, I_{20}) = 1$ . Moreover replacing invariants by their reduced values as above yields  $E_v = (I_{40}, \ell)(c, I_{23})(I_{45}, \ell \alpha_1^2 I_{21})$  Since  $I_{23} \equiv_{\Box} \alpha_1^2$  it follows that  $E_v = (I_{45}, \ell I_{21})(I_{40}, \ell)(\alpha_1^2, c)$ . The behaviour of the first two Hilbert Symbols is given in the cases of TC3D/F/G. Hence since  $v(c) \equiv a \mod 2$ , if follows that  $E_v = (-1)^a$  for TC3E/H, and  $E_v = (-1)^{a+r}$  for TC3I as required.
### Chapter 7

## Conclusion

### 7.1 Forthcoming result

The result on the 2-parity conjecture presented in Theorem 4.4.11 is used in a joint work with Vladimir Dokchitser in [17]. Combined with the theory of regulator constants of [10], [11], it yields the following result on the parity conjecture in this setting.

**Theorem 7.1.1.** Let  $C/\mathcal{K}$  be a hyperelliptic curve of genus 2 over a number field given by

$$C: y^2 = f(x)$$

and satisfying the conditions of Theorem 4.4.11. Let J denote its Jacobian,  $\mathcal{K}_f$  the splitting field of f(x) and assume that  $\operatorname{III}(J/\mathcal{K}_f)[p^{\infty}]$  is finite for p = 2, 3, 5. Then the parity conjecture holds for J/K.

**Remark 7.1.2.** If  $\mathcal{K} \subseteq \mathcal{L} \subseteq \mathcal{K}_f$  is an intermediate field with  $[\mathcal{K}_f : \mathcal{L}]$  a power of 2 then  $Gal(\mathcal{K}_f/\mathcal{L}) \subseteq C_2 \times D_4$ , as the latter is the Sylow 2-subgroup of  $S_6$ . In particular  $C/\mathcal{L}$  is a  $C_2 \times D_4$  curve. Thus Theorem 4.4.11 shows that the parity conjecture holds over all such fields  $\mathcal{L}$ . Combined with the theory of regulator constants, this is sufficient to deduce that the parity conjecture holds over  $\mathcal{K}$ .

### 7.2 Work in progress

We are currently working on improving Theorem 4.4.11, and hence Theorem 7.1.1, by removing some extra conditions. Namely, the following are work in progress: i) proving the local discrepancy conjecture 4.4.10 when the reduction at finite odd places of the polynomial defining C has double roots inside two triple roots, ii) showing that the term of the local discrepancy  $E_v$  is stable under the change of variables performed to balance a cluster picture as in [15][Definition 3.41], iii) controlling the term of the local discrepancy  $E_v$  when some  $C_2 \times D_4$  invariants vanish,

iv) weakening the conditions at 2-adic places.

By proving i), we would prove the 2-parity conjecture for curves C with semistable balanced cluster picture. Adding ii) would then remove the balanced condition so that all semistable cluster pictures at odd finite places could be considered. Finally showing iii) would release the extra condition on non-vanishing of  $C_2 \times D_4$  invariants.

### 7.3 Obstructions to generalization

As mentioned in Section 3.2.1, the parity of the  $2^{\infty}$  Selmer rank of a principally polarized abelian variety admitting an isogeny through which multiplication by 2 factors, is given by Lemma 3.2.5. However, in order to express this parity as a sum of local terms, one needs to control the order of their Shafarevic-Tate group (up to squares). This is achievable using a result of Poonen and Stoll in [32], whenever both the variety and the codomain of the isogeny are Jacobians. This was true in our case thanks to the property of a Richelot isogeny. In higher dimension, it is not clear how to get a hold of the order of the Shafarevich-Tate group up to squares since the codomain of the isogeny may be a principally polarized abelian variety that is not a Jacobian. Furthermore, even if it were the case, curves of genus g > 2 are not necessarily hyperelliptic so that we cannot explicitly control their local invariants as we have done here. And finally, even if they were hyperelliptic, finding the term of local discrepancy in order to prove the 2-parity conjecture in this case seems rather optimistic, unless a better conceptual understanding of the invariants involved is achieved.

## Appendix A

# Isogenies between abelian varieties with split totally toric reduction (by Adam Morgan)

### Preliminaries

**Definition A.0.1.** Let A and B be abelian groups and  $f : A \to B$  a homomorphism with finite kernel and cokernel. Then we define

$$z(f) := |\operatorname{coker}(f)| / |ker(f)|.$$

**Lemma A.0.2.** We have the following properties of z:

- (i) Let A be a finite abelian group and  $f : A \to A$  a homomorphism. Then z(f) = 1.
- (ii) Suppose we have a commutative diagram of abelian groups

$$0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0$$
$$\downarrow f_1 \qquad \qquad \downarrow f_2 \qquad \qquad \downarrow f_3 \\0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow 0$$

whose rows are exact. Suppose further that  $f_1$ ,  $f_2$  and  $f_3$  all have finite kernel and cokernel. Then  $z(f_2) = z(f_1)z(f_3)$ .

(iii) Let A be an abelian group, let  $A = A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$  be a filtration on A with finite quotients and let  $f : A \to A$  be a homomorphism having finite kernel and cokernel. Suppose further that f respects the filtration and that for each n the induced maps  $f_n : A_n \to A_n$  have finite kernel and cokernel. Then we have  $z(f) = z(f_n)$  for all  $n \ge 0$ . *Proof.* (i). The first isomorphism theorem gives  $A/ker(A) \cong im(A)$ , with each of A, ker(A) and im(A) finite by assumption. In particular, we have

$$|A| = |\operatorname{im}(A)||ker(A)|$$

from which the result follows immediately.

- (ii). Apply the snake lemma to the commutative diagram in the statement.
- (iii). For each  $n \ge 0$ , apply parts (i) and (ii) to the commutative diagram

(the top and bottom rows induced by the natural inclusion  $A_{n+1} \subseteq A_n$  and the map  $\overline{f_n}$  being induced by  $f_n$ ).

### The multiplicative group

Let K be a finite extension of  $\mathbb{Q}_p$  for some prime p, let  $g \ge 1$  and let  $M = (m_{i,j}) \in Mat_q(\mathbb{Z})$  be a full rank matrix. Write  $f_M : \bar{K}^{\times g} \to \bar{K}^{\times g}$  for the map

$$\mathbf{x} = (x_i) \longmapsto \mathbf{x}^M := \left(\prod_{j=1}^g x_j^{m_{i,j}}\right).$$

**Lemma A.0.3.** Write  $f_K$  for the restriction of  $f_M$  to a map  $K^{\times g} \to K^{\times g}$ . Then we have

$$z(f_K) = \frac{|\det(M)|}{|\det(M)|_K}$$

where here  $|\cdot|_K$  denotes the usual normalised abolute value on K (sending a uniformiser  $\pi_K$  for K to  $|k|^{-1}$  where k is the residue field of K) and  $|\cdot|$  denotes the usual archimedean absolute value on  $\mathbb{Z}$ .

*Proof.* Write  $f_0$  for the map  $\mathcal{O}_K^{\times g} \to \mathcal{O}_K^{\times g}$  induced by f. Let  $v_K$  denote the normalised valuation on K. We have a commutative diagram with exact rows

where the map  $\bar{f}_K : \mathbb{Z}^g \to \mathbb{Z}^g$  induced by f is just left multiplication by the matrix M. Considering the Smith Normal Form of M over  $\mathbb{Z}$  gives  $|\operatorname{coker}(\bar{f}_K)| =$ 

 $|\det(M)|$  and since M has full rank,  $ker(\bar{f}_K) = 0$ . By A.0.2(ii) we now have  $z(f_K) = |\det(M)|z(f_0)$ . Consider the filtration

$$\mathcal{O}_K^{\times g} \supseteq (1 + \pi_K \mathcal{O}_K)^g \supseteq (1 + \pi_K^2 \mathcal{O}_K)^g \supseteq \dots$$

which is preserved by  $f_K$  and has each successive quotient finite. Write  $f_n$  for the induced map on  $(1 + \pi_K^n \mathcal{O}_K)^g$ . Then A.0.2(iii) gives  $z(f_0) = z(f_n)$  for each  $n \ge 1$ . Taking  $n \ge 1$  sufficiently large, the formal logarithm gives an isomorphism

$$(1 + \pi_K^n \mathcal{O}_K)^g \xrightarrow{\sim} \mathcal{O}_K^g.$$

Since  $f_n$  is induced by the matrix  $M \in \operatorname{Mat}_g(\mathbb{Z})$ , the map  $f_n$  gets transported under this isomorphism to left multiplication by the matrix M on  $\mathcal{O}_K^g$ . Considering the Smith Normal Form of M over  $\mathcal{O}_K$  and again using the fact that M has full rank over  $\mathbb{Z}$  this gives  $z(f_n) = |\det(M)|_K^{-1}$  which completes the proof.  $\Box$ 

### Abelian varieties

Let K be a finite extension of  $\mathbb{Q}_p$  and A/K an abelian variety. Let  $\phi : A \to B$  be an isogeny.

Suppose that A/K has split totally toric reduction. Then the same is true also of B. We have an isomorphism of  $G_K := \operatorname{Gal}(\overline{K}/K)$ -modules

$$A(\bar{K}) \cong \bar{K}^{\times g} / \Lambda_A$$

for some lattice  $\Lambda_A \subseteq K^{\times g}$  (see [31, Section 5.3] for a review of the uniformisation of abelian varieties with split totally toric reduction and the definition of a lattice inside  $K^{\times g}$ ). The same is true for B with some lattice  $\Lambda_B \subseteq K^{\times g}$ . Note that the induced Galois action on  $\Lambda_A$  and  $\Lambda_B$  are trivial.

By [20, Theorem 3], there is a matrix  $M(\phi) \in \operatorname{Mat}_g(\mathbb{Z})$  such that the isogeny  $\phi : A \to B$  is induced by the map  $\mathbf{x} \mapsto \mathbf{x}^{M(\phi)}$  on  $\bar{K}^{\times g}$ , and  $M(\phi)$  sends  $\Lambda_A$  into  $\Lambda_B$ . We write  $\phi_{\Lambda}$  for the induced map  $\Lambda_A \to \Lambda_B$  of free  $\mathbb{Z}$ -modules of rank g. In summary, we have a  $G_K$ -equivariant commutative diagram

with exact rows. Since  $H^1(K, \Lambda_A) = 0 = H^1(K, \Lambda_B)$  ( $G_K$  is profinite whilst both  $\Lambda_A$  and  $\Lambda_B$  are torsion free with trivial action) we have the same diagram with  $A(\bar{K})$  (resp.  $B(\bar{K})$ ) replaced by A(K) (resp. B(K)) and  $\bar{K}^{\times g}$  replaced by  $K^{\times g}$ .

We note that the isogeny  $\phi$  determines the matrix  $M(\phi)$ . Indeed, since  $\Lambda_A$ and  $\Lambda_B$  are lattices,  $\mathcal{O}_{\bar{K}}^{\times g} \subseteq \bar{K}^{\times g}$  injects into  $\bar{K}^{\times g}/\Lambda_A$  (resp.  $\bar{K}^{\times g}/\Lambda_B$ ). Now since the maps  $x \mapsto x^n$  for  $n \in \mathbb{Z}$  are all distinct as endomorphisms of  $\mathcal{O}_{\bar{K}}^{\times g}$  (consider their kernels), the same is true for that maps  $\mathbf{x} \mapsto \mathbf{x}^M$  for all  $M \in \operatorname{Mat}_g(\mathbb{Z})$  as endomorphisms of  $\mathcal{O}_{\bar{K}}^{\times g}$ , from which the claim follows.

**Lemma A.0.5.** Write  $\phi_K$  for the map  $A(K) \to B(K)$  on K-points induced by  $\phi$ . The we have

$$z(\phi_K) = \frac{|A[\phi] \cap A(K)_0||\det(M)|}{\deg(\phi)|\det(M)|_K}$$

(Here  $A(\bar{K})_0$  denotes the points in  $A(\bar{K})$  reducing to the identity component of the Neron model of A/K).

*Proof.* Consider first the diagram A.0.4. Applying A.0.2 we obtain

$$z(f_{M(\phi)}) = z(\phi_{\bar{K}})z(\phi_{\Lambda}) \tag{A.0.6}$$

where here  $\phi_{\bar{K}}$  denotes the map  $A(\bar{K}) \to B(\bar{K})$  on  $\bar{K}$ -points induced by  $\phi$ . Now  $\phi$  is surjective on  $\bar{K}$ -points and  $|ker(\phi_{\bar{K}})| = \deg(\phi)$  by definition. In particular,  $z(\phi_{\bar{K}}) = \deg(\phi)^{-1}$ . Next, let  $M(\phi)^a$  denote the adjugate matrix of  $M(\phi)$ , so that  $M(\phi)M(\phi)^a = \det(M(\phi)) = M(\phi)^a M(\phi)$ . Now for any  $0 \neq n \in \mathbb{Z}$ , multiplication by n is surjective on  $\bar{K}^{\times g}$ . In particular, since  $M(\phi)$  has non-zero determinant we see that  $f_{M(\phi)}$  is surjective. Thus  $z(f_{M(\phi)}) = |ker(f_{M(\phi)})|^{-1}$ . Note also that with  $n = \det(M(\phi))$  we have  $ker(f_{M(\phi)}) \subseteq \mu_n^g \subseteq \bar{K}^{\times g}$ .

We now have from A.0.6 that

$$z(\phi_{\Lambda}) = \frac{\deg(\phi)}{|ker(f_{M(\phi)})|}$$

Let  $\mathcal{A}/\mathcal{O}_K$  denote the Neron model of A/K and let  $\mathcal{A}^0/\mathcal{O}_K$  denote the identity component of  $\mathcal{A}$ . Since A is assumed to have semistable reduction over K, the formation of  $\mathcal{A}^0$  commutes with base-change to any finite exctension L/K (though the same need not be true of the full Neron model). We have a commutative square

where both vertical arrows are isomorphisms and the horizontal arrows are injections (see [31, Figure 1] and the surrounding discussion).

The observation that  $ker(f_{M(\phi)}) \subseteq \boldsymbol{\mu}_n^g$  shows that  $ker(f_{M(\phi)}) = ker(f_{M(\phi)}|_{\mathcal{O}_{\bar{K}}^{\times g}})$ which by the above diagram is equal to  $A(\bar{K})_0[\phi] = A[\phi] \cap A(\bar{K})_0$ . We conclude that

$$z(\phi_{\Lambda}) = \frac{\deg(\phi)}{|A[\phi] \cap A(\bar{K})_0|}.$$
(A.0.8)

We now turn to the commutative diagram A.0.4 over K rather than K. A.0.2 (ii) gives

$$z(\phi_K) = \frac{z(f_{M(\phi)}|_K)}{z(\phi_\Lambda)}.$$

Combining this with A.0.8 and A.0.3 gives the result.

### The main result

Suppose now that A is principally polarised with fixed principal polarisation  $\lambda$  defined over K, and suppose that the isogeny  $\phi : A \to B$  is such that the kernel of  $\phi$  is a maximal isotropic subspace of A[2] with respect to the Weil pairing associated to  $\lambda$ . Note that in particular this forces  $\deg(\phi) = 2^g$ . In particular, B is principally polarised also and the dual isogeny  $\phi^{\vee} : B \to A$  is such that  $\phi \phi^{\vee} = [2] = \phi^{\vee} \phi$  (see, for example, [24, Proposition 16.8]). Let  $M(\phi^{\vee})$  be the matrix associated to  $\phi^{\vee}$ . Then we have  $M(\phi)M(\phi^{\vee}) = 2 = M(\phi^{\vee})M(\phi)$ . In particular, the determinant of  $M(\phi)$  is  $\pm$  a power of 2. As before,  $A(\bar{K})_0$  denotes the points in  $A(\bar{K})$  reducing to the identity component of the Neron model of A/K

**Proposition A.0.9.** Write  $\phi_K$  for the map  $A(K) \to B(K)$  on K-points induced by  $\phi$ . Then we have

$$z(\phi_K) = \begin{cases} \frac{|A[\phi] \cap A(\bar{K})_0|^2}{2^g} & p > 2\\ \frac{|A[\phi] \cap A(\bar{K})_0|^{[K:\mathbb{Q}_2]+2}}{2^g} & p = 2. \end{cases}$$

In particular,

$$\operatorname{ord}_{2} z(\phi_{K}) \equiv \begin{cases} g \pmod{2} & p > 2\\ g + [K : \mathbb{Q}_{2}] \operatorname{ord}_{2} |A[\phi] \cap A(\bar{K})_{0}| \pmod{2} & p = 2. \end{cases}$$

*Proof.* As observed previously, the assumption on  $\phi$  mean that the determinant of  $M(\phi)$  is a power of 2. In particular, we have

$$|\det(M)|_{K} = \begin{cases} 1 & p > 2\\ \frac{1}{|\det(M(\phi))|^{[K:\mathbb{Q}_{2}]}} & p = 2. \end{cases}$$

Thus in light of A.0.5 (and the fact that, as remarked previously,  $deg(\phi) = 2^g$ ), it

suffices to show that we have

$$\left|\det(M(\phi))\right| = \left|A[\phi] \cap A(\bar{K})_0\right|$$

Now  $A[\phi] \cap A(\bar{K})_0$  is the kernel of the map  $\mathbf{x} \mapsto \mathbf{x}^{M(\phi)}$  on  $\mathcal{O}_{\bar{K}}^{\times}$ . Since  $M(\phi^{\vee})M(\phi) = 2$ , this is contained in  $\boldsymbol{\mu}_2^g$ . Writing  $\boldsymbol{\mu}_2^g$  additively, the map  $\mathbf{x} \mapsto \mathbf{x}^{M(\phi)}$  on  $\boldsymbol{\mu}_2^g$  is just left multiplication by the reduction modulo 2 of the matrix  $M(\phi)$ . Denote this matrix by  $\bar{M}$ . Then  $|A[\phi] \cap A(\bar{K})_0|$  is just the size of the kernel of  $\bar{M} : \mathbb{F}_2^g \to \mathbb{F}_2^g$ .

Write  $M(\phi) = UDV$  where  $U, V \in GL_g(\mathbb{Z})$  and  $D \in \operatorname{Mat}_g(\mathbb{Z})$  is diagonal (i.e. write  $M(\phi)$  in Smith Normal form). Now  $M(\phi)M(\phi^{\vee})$  is twice the identity matrix. Thus

$$2V^{-1} = M(\phi^{\vee})UD.$$

In particular, each coefficient of  $M(\phi^{\vee})UD$  is divisible by 2, yet  $\frac{1}{2}M(\phi^{\vee})UD$  has determinant 1. If one of the entries of D were divisible by 4 then 2 would divide each entry of some row of the integral matrix  $\frac{1}{2}M(\phi^{\vee})UD$ , and hence its determinant, a contradiction. We deduce that each entry of D is divisible by 2 at most once. On the other hand, the determinant of  $M(\phi)$  is a power of 2 (it divides  $2^g$ ) so we deduce that each entry on the diagonal of D is in the set  $\{\pm 1, \pm 2\}$ . Noting that Uand V are both invertible modulo 2, we see that the number of  $\pm 2$ 's appearing on the diagonal of D is equal to the  $\mathbb{F}_2$ -dimension of the kernel of  $\overline{M}$ . In particular, we deduce that

$$|A[\phi] \cap A(\bar{K})_0| = 2^{\dim_{\mathbb{F}_2} ker(M)} = |\det(M(\phi))|$$

as desired.

**Remark A.0.10.** Under the isomorphism  $A(\bar{K})_0 \cong \mathcal{O}_{\bar{K}}^{\times g}$ , the subgroup  $A(\bar{K})_1$  of points reducing to the identity corresponds to  $(1 + \pi_K \mathcal{O}_K)^g$ . In particular, if p = 2then  $\mu_2^g$  lies in  $(1 + \pi_K \mathcal{O}_K)^g$  and so, when p = 2, we may replace  $|A[\phi] \cap A(\bar{K})_0|$ with the quantity  $|A[\phi] \cap A(\bar{K})_1|$ .

**Remark A.0.11.** Note that in the setup above,  $A(\bar{K})_0[2]$  corresponds to  $\{\pm 1\}^g$  sitting inside  $\mathcal{O}_{\bar{K}}^{\times g} \subseteq \bar{K}^{\times g}$  and is fixed by the action of  $\operatorname{Gal}(\bar{K}/K)$ . In particular,  $A(\bar{K})_0[2] = A(K)_0[2]$ . Suppose we have  $|A(K)[2]| = 2^g$ . Then we must necessarily have  $A(K)[2] = A(\bar{K})_0[2]$ . In particular, under this assumption, we have  $A[\phi] \cap A(\bar{K})_0 = A(K)[\phi]$ .

## Bibliography

- [1] A. Betts. On the computation of Tamagawa numbers and Néron component groups of semistable hyperelliptic curves. *Preprint*, 2016.
- [2] B.J. Birch. Conjectures concerning elliptic curves. Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., pages 106–112, 1965.
- [3] B.J. Birch and H.P.F. Swinnerton-Dyer. Notes on elliptic curves i and ii. J.Reine Angew. Math, (no. 212), 1963-1965.
- [4] N. Bruin and K. Doerksen. The arithmetic of genus two curves with (4,4)-split jacobians. *Canad. J. Math. Vol.* 63 (5), 2011.
- [5] J.W.S. Cassels and E.V. Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2. London Mathematical Society, Lecture Note Series 230, Cambridge University Press, 1996.
- [6] K. Cesnavicius. The p-parity conjecture for elliptic curves with a p-isogeny. J. Reine Angew. Math. 719, pages 45–73, 2016.
- [7] J. Coates, T. Fukaya, K. Kato, and R. Sujatha. Root numbers, Selmer groups, and non-commutative Iwasawa theory. J. Algebr. Geom., 19(1):19–97, 2010.
- [8] T. Dokchitser. Notes on the parity conjecture. In *Elliptic Curves, Hilbert Modular Forms and Galois Deformations*, pages 201–249. Springer Basel, Basel, 2013.
- [9] T. Dokchitser and V. Dokchitser. Parity of ranks for elliptic curves with a cyclic isogeny. *Journal of Number Theory, Vol 128*, 2008.
- [10] T. Dokchitser and V. Dokchitser. Regulator constants and the parity conjecture. *Inventiones mathematicae*, 178(1):23, 2009.
- [11] T. Dokchitser and V. Dokchitser. On the Birch-Swinnerton-Dyer quotients modulo squares. Annals of Mathematics, Princeton University and Institute for Advanced Study, Vol 172, 2010.

- [12] T. Dokchitser and V. Dokchitser. Root numbers and parity of ranks of elliptic curves. Journal f
  ür die reine und angewandte Mathematik (Crelles Journal), 2011(658):39–64, 2011.
- [13] T. Dokchitser and V. Dokchitser. Local invariants of isogenous elliptic curves. Transactions of the American Mathematical Society, 367(6):4339–4358, 2015.
- [14] T. Dokchitser, V. Dokchitser, C. Maistret, and A. Morgan. Arithmetic of hyperelliptic curves over local fields. *Preprint*, 2017.
- [15] T. Dokchitser, V. Dokchitser, C. Maistret, and A. Morgan. Semistable types of hyperelliptic curves. arXiv:1704.08338, 2017.
- [16] V. Dokchitser. Root numbers of non-abelian twists of elliptic curves. Proceedings of the London Mathematical Society, 91(2):300–324, 2005.
- [17] V. Dokchitser and C. Maistret. Parity of ranks of abelian surfaces. Preprint, 2017.
- [18] J. González, J. Guàrdia, and V. Rotger. Abelian surfaces of gl2-type as jacobians of curves. Acta Arithmetica, 116(3):263–287, 2005.
- [19] B. Gross and J. Harris. Real algebraic curves. Annales scientifiques de l'École Normale Supérieure, 14(2):157–182, 1981.
- [20] S. Kadziela. Rigid analytic uniformization of curves and the study of isogenies. Acta Applicandae Mathematicae, 99(2):185–204, 2007.
- [21] B.D. Kim. The parity theorem of elliptic curves at primes with supersingular reduction. *Compos. Math.143*, pages 47–72, 2007.
- [22] K. Kramer. Arithmetic of elliptic curves upon quadratic extension. Trans. Amer. Math. Soc. 264, pages 121–135, 1981.
- [23] K. Kramer and J. Tunnel. Elliptic curves and local ε-factors. Compositio Math. 46, pages 307–352, 1982.
- [24] J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150. Springer, New York, 1986.
- [25] J.S. Milne. Arithmetic Duality Theorems. BookSurge, LLC, second edition, 2006.
- [26] J.S. Milne. Jacobian varieties. In Arithmetic Geometry (Storrs, Conn., 1984), pages 167–212, Springer, New York, 1986.

- [27] P. Monsky. Generalizing the Birch-Stephens theorem. I: Modular curves. Math. Z. 221, pages 415–420, 1996.
- [28] A. Morgan. 2-Selmer Parity for Hyperelliptic Curves in Quadratic Extensions. ArXiv e-prints, April 2015.
- [29] J. Nekovar. Selmer complexes. Astérisque 310, 2006.
- [30] J. Nekovar. On the parity of ranks of selmer groups iv. Compos. Math 145, 6:1351–1359, 2009.
- [31] M. Papikian. Non-Archimedean uniformization and monodromy pairing. In *Tropical and non-Archimedean geometry*, volume 605 of *Contemp. Math.*, pages 123–160. Amer. Math. Soc., Providence, RI, 2013.
- [32] B. Poonen and M. Stoll. The Cassels-Tate pairing on polarized abelian varieties. Annals of Mathematics, 150, 1999.
- [33] M. Sabitova. Root numbers of abelian varieties. Transactions of the American Mathematical Society, 359(9):4259–4284, 2007.
- [34] B. Smith. Explicit Endomorphisms and Correspondence, phd thesis. 2005.
- [35] M. Stoll. Arithmetic of Hyperelliptic Curves. Summer Semester 2014, University of Bayreuth.
- [36] J. Tate. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Seminaire N. Bourbaki, 306:415–440, 1964-66.
- [37] J. Tate. Number theoretic background. In Automorphic Forms, Representations and L-Functions, Part 2. Proc. Symp. in Pure Math., vol. 33. AMS, Providence, pages 3–26. Borel, A., Casselman, W. (eds.), 1979.
- [38] K. Ueno and Y. Namikawa. The complete classification of fibres in pencils of curves of genus two. *Manuscripta mathematica*, 9:143–186, 1973.