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Welfare Maximization with Friends-of-Friends
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2 University of Vienna, Faculty of Computer Science, Austria

Abstract
Online social networks allow the collection of large amounts of data about the influence between
users connected by a friendship-like relationship. When distributing items among agents forming
a social network, this information allows us to exploit network externalities that each agent
receives from his neighbors that get the same item. In this paper we consider Friends-of-Friends
(2-hop) network externalities, i.e., externalities that not only depend on the neighbors that get
the same item but also on neighbors of neighbors. For these externalities we study a setting where
multiple different items are assigned to unit-demand agents. Specifically, we study the problem
of welfare maximization under different types of externality functions. Let n be the number of
agents and m be the number of items. Our contributions are the following: (1) We show that
welfare maximization is APX-hard; we show that even for step functions with 2-hop (and also with
1-hop) externalities it is NP-hard to approximate social welfare better than (1−1/e). (2) On the
positive side we present (i) an O(

√
n)-approximation algorithm for general concave externality

functions, (ii) an O(logm)-approximation algorithm for linear externality functions, and (iii)
an (1 − 1/e) 1

6 -approximation algorithm for 2-hop step function externalities. We also improve
the result from [6] for 1-hop step function externalities by giving a (1 − 1/e)/2-approximation
algorithm.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity, G.1.2
Approximation
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1 Introduction

Assume you have to form a committee and need to decide whom to choose as a member. It
seems like a good strategy to select members from your network that are well-connected to
the whole field so that not only the knowledge of the actual members but also of their whole
network can be called upon when needed. Along the same vein assume you want to play a
multiplayer online game but you do not have enough friends who are willing to play with
you. Then it is a good idea to ask these friends to contact their friends whether they are
willing to play as well. Both these settings can be modeled by a social network graph and
in both settings not the direct (or 1-hop) neighbors alone, but instead the 1-hop neighbors
in combination with the neighbors of neighbors (or 2-hop neighbors) are the decisive factor.
Note that the 2-hop neighborhoods cannot be modeled by 1-hop neighborhoods through the
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insertion of an additional edge (to the neighbor of the neighbor) as we require that every
participating neighbor of a neighbor is adjacent to a participating neighbor. In the above
example, we can only get the opinion of a contact of a contact if we asked the contact before.
In the same way, the participation of a friend of a friend will only be possible if there is a
participating friend that invites him.

There has been a large body of work by social scientists and, in the last decade, also by
computer scientists (see e.g., the influential paper by Kempe, Kleinberg, and Tardos [18]
and its citations) to model and analyze the effect of 1-hop neighborhoods. The study of
2-hop neighborhoods has received much less attention (see e.g., [10, 17]). This is surprising
as a recent study [14] of the Facebook network shows that the median Facebook user has
31k people as “friends of friends” and due to some users with very large friend lists, the
average number of friends-of-friends reaches even 156k. Thus, even if each individual friend
of a friend has only a small influence on a Facebook user, in aggregate the influence of the
friends-of-friends might be large and should not be ignored.

We, therefore, initiate the study of the influence of 2-hop neighborhoods in the popular
assignment setting, where items are assigned to users whose values for the item depend on
who else in their neighborhood has the item. There is a large body of work on mechanisms
and pricing strategies for this problem with a single [5, 15, 4, 1, 7, 19, 11, 3, 13] or multiple
items [8, 2, 6, 12, 21, 22, 20, 16] when the valuation function of a user depends solely on
the 1-hop neighborhood of a user and the user itself. All this work assumes that there is
an infinite supply of items (of each type if there are different items) and the users have
unit-demand, that is, they want to buy only one item. This is frequently the case, for
example, if the items model competing products or if the user has to make a binary decision
between participating or not participating. In the above examples, this requirement would
model that each user can only be in one committee or play one game at a time.

Thus, we study the allocation of items to users in a setting with 2-hop network externalities,
where the valuation that a user derives from the products depends on herself, her 1-hop, and
her 2-hop neighborhood with the goal of maximizing the social welfare of the allocation. The
prior work that is most closely related to our work is the work by Bhalgat et al. [6], where
they study the multi-item setting with 1-hop externality functions and give approximation
algorithms for different classes of externality functions. For linear externalities they give a
1/64-approximation algorithm and for step function externalities they get an approximation
ratio of (1 − 1/e)/16 ≈ 0.04. Additionally they present a 2O(d)-approximation algorithm
for convex externalities that are bounded by polynomials of degree d and a polylogarithmic
approximation algorithm for submodular externalities.

1.1 Our Results
The Model: Let G = (V,E) be an undirected graph modeling the social network. Consider
any agent j ∈ V who receives item i ∈ I, and let Sij ⊆ V \ {j} denote the (2-hop) support
of agent j for item i: this is the set of agents who contribute towards the valuation of j.
Specifically, an agent j′ ∈ V \ {j} belongs to the set Sij iff j′ gets item i and the following
condition holds: either j′ is a neighbor of j (i.e., (j, j′) ∈ E), or j and j′ have a common
neighbor j′′ who also gets item i. The valuation received by agent j is equal to λij ·extij(|Sij |),
where λij is the agent’s intrinsic valuation and extij(|Sij |) is her 2-hop externality for item
i. The goal is to compute an assignment of items to the agents that maximizes the social
welfare, which is defined as the sum of the valuations obtained by the agents.

We study three types of 2-hop externality functions, namely concave, linear and step
function externalities.
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92 Welfare Maximization with Friends-of-Friends Network Externalities

Step-function externalities: Consider a game requiring a minimal or fixed number of
players (larger than two), e.g., Bridge or Canasta, then the externality is a step function.
For step functions we show that it is NP-hard to approximate the social welfare within a
factor of (1− 1/e). The result holds for 1-hop and 2-hop externalities. We also show that
the problem remains APX-hard when the number of items is restricted to 2. Then we give
an (1− 1/e)/6 ≈ 0.1-approximation algorithm for 2-hop step function externalities. Note
that this is within a factor of 1/6 of the hardness bound. Our technique also leads to a
combinatorial (1−1/e)/2 ≈ 0.3-approximation algorithm for 1-hop step function externalities,
improving the approximation ratio of the LP-based algorithm in [6].

Linear externalities: First we show that social welfare maximization for linear 2-hop ex-
ternality functions is NP-hard.1 Then we give an O(logn)-approximation algorithm for linear
2-hop externalities. For these externality functions we can relax the unit-demand requirement.
Specifically, we can handle the setting where each user j can buy up to cj different items,
where cj is a parameter given in the input.2

Concave externalities: We give an O(
√
n) -approximation algorithm when the externality

functions extij(.) are concave and monotone.

Extensions: Our algorithms for linear and concave externalities can be further generalized
to allow a weighting of 2-hop neighbors so that 2-hop neighbors have a lower weight than
1-hop neighbors. This can be useful if it is important that the influence of 2-hop neighbors
does not completely dominate the influence of the 1-hop neighbors.

Techniques: The main challenge in dealing with 2-hop externalities is as follows. Fix an
agent j who gets an item i, and let Vi ⊆ V denote the set of all agents who get item i. Recall
that the agent j’s externality is given by extij(|Sij |), where the set Sij is called the support
of agent j. The problem is that |Sij |, as a function of Vi \ {j}, is not submodular. This is in
sharp contrast with the 1-hop setting, where the support for the agent’s externality comes
only from the set of her 1-hop neighbors who receive item i.

All the mechanisms in [6] use the same basic approach: First solve a suitable LP-relaxation
and then round its values independently for each item i. In the 2-hop setting, however, the
lack of submodularity of the support size (as described above) leads to many dependencies
in the rounding step. Nevertheless, we show how to extend the technique in [6] to achieve
the approximation algorithm for linear 2-hop externality functions, using a novel LP. We
further give a simple combinatorial algorithm with an approximation guarantee of O(

√
n)

for 2-hop concave externalities. For this, we show that either an Ω(1/
√
n)-fraction of the

optimal social welfare comes from a single item, or we can reduce our problem to a setting
with 1-hop step function externalities by losing an (1− Ω(1/

√
n))-fraction of the objective.

Our approach for 2-hop step functions is different. We use a novel decomposition of the
graph into a maximal set of disjoint connected sets of size 3, 2, and 1. We say an assignment
is consistent if it assigns all the nodes (i.e., users) in the same connected set the same item.

1 Theorem 3.1 in [6] claims that the welfare maximization problem for linear 1-hop externality functions
in complete graphs is MaxSNP-hard, which would imply our result, but, as we show in the full version,
this claim is not true.

2 This is also true for the results in [6]. In both results, the assumption is that the valuation functions
are additive over the items.
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We show first that restricting ourself to consistent assignments reduces the maximum welfare
by at most a factor of 1/6. Finally, we show that finding the optimal consistent assignment
is equal to maximizing social welfare in a scenario where agents are not unit demand, do
not influence each other, and have valuation functions that are fractionally subadditive in
the items they get assigned. For the latter we use the (1− 1/e)-approximation algorithm by
Feige [9].

2 Notations and Preliminaries

We are given a simple undirected graph G = (V,E) with |V | = n nodes. Each node j ∈ V in
this graph is an agent, and there is an edge (j, j′) ∈ E iff the agents j and j′ are friends with
each other. There is a set of m items I = {1, . . . ,m}. Each item is available in unlimited
supply, and each agent wants to get at most one item. An assignment A : V → I specifies
the item received by every agent, and under this assignment, uj(A, G) gives the valuation
of an agent j ∈ V . Our goal is to find an assignment that maximizes the social welfare∑

j∈V uj(A, G), i.e., the sum of the valuations of the agents.
Let F 1

j (G) (resp. F 2
j (G)) be the 1-hop (resp. 2-hop) neighborhood of node j.

F 1
j (G) = {j′ ∈ V : (j, j′) ∈ E}, F 2

j (G) =
⋃

j′∈F 1
j

(G) F
1
j′(G) \ (F 1

j (G) ∪ {j}).

Define Vi(A, G) = {j ∈ V : A(j) = i} to be the set of agents who receive item i ∈ I under
the assignment A. Let N1

j (i,A, G) = F 1
j (G) ∩ Vi(A, G) denote the set of agents in F 1

j (G)
who receive item i under the assignment A. Further, let N2

j (i,A, G) = F 2
j (G) ∩ Vi(A, G) ∩(⋃

j′′∈N1
j

(i,A,G) F
1
j′′(G)

)
denote the set of agents in F 2

j (G) who receive item i under the
assignment A and are adjacent to some node in N1

j (i,A, G).
The support of an agent j ∈ V for item i ∈ I is defined as Sij(A, G) = N1

j (i,A, G) ∪
N2

j (i,A, G). This is the set of agents contributing towards the valuation of j for item i.
Let λij be the intrinsic valuation of agent j for item i, and let extij(|Sij(A, G)|) be the
externality of the agent for the same item. The agent’s valuation from the assignment A is
given by the following equality.

uj(A, G) = λA(j),j · extA(j),j(|SA(j),j(A, G)|).

We consider three types of externalities in this paper.

I Definition 1. In concave externality it holds that extij(t) is a monotone and concave
function of t, with extij(0) = 0, for every item i ∈ I and agent j ∈ V .

I Definition 2. In linear externality it holds that for all j ∈ V , i ∈ I and every nonnegative
integer t, we have extij(t) = t.

We extend the step function definition of [6] as follows to 2-hop neighborhoods.

I Definition 3. For integer s ≥ 1, in s-step function externality it holds that for all j ∈ V ,
i ∈ I and every nonnegative integer t, we have extij(t) is 1 if t ≥ s and 0 otherwise.

We omit the symbol G from these notations if the underlying graph is clear from the context.
Some proofs are omitted due to space restrictions but are provided in a full version available
at http://eprints.cs.univie.ac.at/4240/1/paper-full.pdf.
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3 An O(
√

n)-Approximation for Concave Externalities

For the rest of this section, we fix the underlying graph G, and assume that the agents have
concave externalities as per Definition 1. We also fix the intrinsic valuations λij and the
externality functions extij(.).

Let A∗ ∈ argmaxA
{∑

j∈V uj(A)
}

be an assignment that maximizes the social welfare,
and let Opt =

∑
j∈V uj(A∗) be the optimal social welfare.

Let X∗ = {j ∈ V : |SA∗(j),j(A∗)| ≥
√
n} be the set of agents with support size at least√

n under the assignment A∗, and let Y ∗ = V \X∗ be the remaining set of agents.
Since X∗ and Y ∗ partition the set of agents V , there can be two possible cases. Half of the
social welfare under A∗ is coming (1) either from the agents in X∗, or (2) from the agents
in Y ∗. Lemma 4 shows that in the former case there is a uniform assignment, where every
agent gets the same item, that retrieves 1/(2

√
n)-fraction of the optimal social welfare. We

consider the latter case in Lemma 5, and reduce it to a problem with 1-hop externalities.

I Lemma 4. If
∑

j∈X∗ uj(A∗) ≥Opt/2, then there is an item i ∈ I such that
∑

j∈V uj(Ai) ≥
Opt/(2

√
n), where Ai is the assignment that gives item i to every agent in V , that is,

Ai(j) = i for all j ∈ V .

Proof. Define the set of items I(X∗) =
⋃

j∈X∗{A∗(j)}.
We claim that |I(X∗)| ≤

√
n. To see why the claim holds, let V ∗i = {j ∈ V : A∗(j) = i}

be the set of agents who receive item i under A∗. Now, fix any item i ∈ I(X∗), and note that,
by definition, there is an agent j ∈ X∗ with A∗(j) = i. Thus, we have |V ∗i | ≥ |Sij(A∗)| ≥

√
n.

We conclude that |V ∗i | ≥
√
n for every item i ∈ I(X∗). Since

∑
i∈I(X∗) |V ∗i | ≤ |V | = n, it

follows that |I(X∗)| ≤
√
n.

To conclude the proof of the lemma, we now make the following observations.

∑
j∈X∗

uj(A∗) =
∑

i∈I(X∗)

∑
j∈X∗ :A∗(j)=i

uj(A∗) ≤ |I(X∗)| · max
i∈I(X∗)

 ∑
j∈X∗ :A∗(j)=i

uj(A∗)


≤
√
n · max

i∈I(X∗)

 ∑
j∈X∗ :A∗(j)=i

uj(Ai)

 ≤ √n · max
i∈I(X∗)

∑
j∈V

uj(Ai)


The lemma holds since Opt/(2

√
n)≤

∑
j∈X∗ uj(A∗)/

√
n ≤ maxi∈I(X∗)

(∑
j∈V uj(Ai)

)
. J

For every item i ∈ I and agent j ∈ V , we now define the externality function ˆextij(t) and
the valuation function ûj(A).

ˆextij(t) =
{
extij(1) if t ≥ 1;
0 otherwise.

ûj(A) = λA(j),j · ˆextij(|N1
j (i,A)|) (1)

Clearly, for every assignment A : V → I, we have 0 ≤
∑

j∈V ûj(A) ≤
∑

j∈V uj(A). Also
note that the valuation function ûj(.) depends only on the 1-hop neighborhood of the agent
j. Specifically, if an agent j gets an item i, then her valuation is λij · extij(1) if at least
one of her 1-hop neighbors also gets the same item i, and zero otherwise. Bhalgat et al. [6]
gave an LP-based O(1)-approximation for finding an assignment A : V → I that maximizes
the social welfare in this setting (also see Section 5 for a combinatorial algorithm). In the
lemma below, we show that if the agents in Y ∗ contribute sufficiently towards Opt under the
assignment A∗, then by losing an O(

√
n)-factor in the objective, we can reduce our original

problem to the one where the externalities are ˆextij(.) and the valuations are ûj(.).
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I Lemma 5. If
∑

j∈Y ∗ uj(A∗) ≥ Opt/2, then
∑

j∈V ûj(A∗) ≥ Opt/(2
√
n).

Proof. Consider a node j ∈ Y ∗ that makes nonzero contribution towards the objective (i.e.,
uj(A∗) > 0) and suppose that it gets items i (i.e., A∗(j) = i). Since uj(A∗) > 0, we have
Sij(A∗) = N1

j (i,A∗) ∪N2
j (i,A∗) 6= ∅, which in turn implies that N1

j (i,A∗) 6= ∅. Thus, we
have ûj(A∗) = λij ·extij(1). Since |Sij(A∗)| ≤

√
n and extij(.) is a concave function, we have

extij(1) ≥ extij(|Sij(A∗)|)/|Sj(A∗)| ≥ extij(|Sij(A∗)|)/
√
n. Multiplying both sides of this

inequality by λij , we conclude that ûj(A∗) ≥ uj(A∗)/
√
n for all agents j ∈ Y ∗ with uj(A∗) >

0. In contrast, if uj(A∗) = 0, then the inequality ûj(A∗) ≥ uj(A∗)/
√
n is trivially true.

Thus, summing over all j ∈ Y ∗, we infer that
∑

j∈Y ∗ ûj(A∗, G) ≥
∑

j∈Y ∗ uj(A∗, G)/
√
n ≥

Opt/(2
√
n). The lemma now follows since

∑
j∈V ûj(A∗, G) ≥

∑
j∈Y ∗ ûj(A∗, G). J

The algorithm for concave externalities. We run two procedures. Procedure (1) returns
an assignment A′ ∈ arg maxi∈I

(∑
j∈V uj(Ai)

)
, where Ai(j) = i for all i ∈ I and j ∈

V . Procedure (2) invokes the algorithm in [6] and returns an assignment A′′ such that∑
j∈V ûj(A′′) ≥ (1/α) ·maxA

(∑
j∈V ûj(A)

)
for some constant α ≥ 1, where the function

ûj(.) is defined as in equation 1. Our algorithm now compares these two assignments A′ and
A′′ and returns the one that gives maximum social welfare, i.e, we output an assignment
A′′′ ∈ arg maxA∈{A′,A′′}

(∑
j∈V uj(A)

)
.

I Theorem 6. The algorithm described above gives an O(
√
n)-approximation for social

welfare under 2-hop, concave externalities.

Proof. Recall the notations introduced in the beginning of Section 3. Since the set of
agents V is partitioned into X∗ ⊆ V and Y ∗ = V \X∗, either

∑
j∈X∗ uj(A∗) ≥ Opt/2 or∑

j∈Y ∗ uj(A∗) ≥ Opt/2. In the former case, Lemma 4 guarantees that
∑

j∈A′′′ uj(A′′′) ≥∑
j∈A′ uj(A′) ≥ Opt/(2

√
n). In the latter case, by Lemma 5 we have

∑
j∈A′′′ uj(A′′′) ≥∑

j∈A′′ uj(A′′) ≥
∑

j∈A′′ ûj(A′′) ≥
∑

j∈A∗ ûj(A∗)/α ≥ Opt/(2α
√
n). Since α is a constant,

we conclude that the social welfare returned by our algorithm is always within an O(
√
n)-factor

of the optimal social welfare. J

4 An O(log m)-Approximation for Linear Externalities

In this section, we assume that the input graph G = (V,E) is of the following form. The set
V is partitioned into three groups V1, V2 and V3. Further, an edge in E either connects a
node in V1 with a node in V2, or connects a node in V2 with a node in V3. Our goal is to
assign the items to the agents in such a way as to maximize the social welfare from the set
V1. We refer to this problem as Restricted-Welfare.

I Theorem 7. Any α-approximation algorithm for the Restricted-Welfare problem can
be converted into an O(α)-approximation algorithm for the welfare-maximization problem in
general graphs with linear (or even concave) externalities.

Consider the LP below. Here, the variable α(i, j, k) indicates if both the agents j ∈ V1
and k ∈ F 1

j received item i ∈ I. If this variable is set to one, then agent j gets one unit
of externality from agent k. Similarly, the variable β(i, j, l) indicates if both the agents
j ∈ V1, l ∈ V3 ∩ F 2

j received item i ∈ I and there is at least one agent k ∈ F 1
j ∩ F 1

l who
also received the same item. If this variable is set to one, then agent j gets one unit of
externality from agent l. Clearly, the total valuation of agent j for item i is given by∑

k∈V2∩F 1
j
λij · α(i, j, k) +

∑
l∈V3∩F 2

j
λij · β(i, j, l). Summing over all the items and all the

agents in V1, we see that the LP-objective encodes the social welfare of the set V1.

STACS 2015
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Maximize:
∑
j∈V1

∑
i∈I

λij ·
( ∑

k∈V2∩F 1
j

α(i, j, k) +
∑

l∈V3∩F 2
j

β(i, j, l)
)

(2)

β(i, j, l) ≤ min{w(i, l), y(i, j)} ∀i ∈ I, j ∈ V1, l ∈ V3 ∩ F 2
j (3)

β(i, j, l) ≤
∑

k∈F 1
j
∩F 1

l
z(i, k) ∀i ∈ I, j ∈ V1, l ∈ V3 ∩ F 2

j (4)

α(i, j, k) ≤ min{y(i, j), z(i, k)} ∀i ∈ I, j ∈ V1, k ∈ V2 ∩ F 1
j (5)∑

i y(i, j)≤ 1,
∑

i z(i, k) ≤ 1,
∑

i w(i, l) ≤ 1 ∀j, k, l (6)
0 ≤ z(i, k), y(i, j), w(i, l), α(i, j, k), β(i, j, l) ∀i, j, k, l (7)

The variables y(i, j), z(i, k) and w(i, l) respectively indicate if an agent j ∈ V1, k ∈ V2,
l ∈ V3 received item i ∈ I. Constraints 6 state that an agent can get at most one item.
Constraint 5 says that if α(i, j, k) = 1, then both y(i, j) and z(i, k) must also be equal to
one. Constraint 3 states that if β(i, j, l) = 1, then both y(i, j) and w(i, l) must also be equal
to one. Finally, note that if an agent l ∈ V3 contributes one unit of externality to an agent
j ∈ V1 for an item i ∈ I, then there must be some agent k ∈ F 1

j ∩ F 1
l in V2 who received the

same item. This condition is encoded in constraint 4. Thus, we have the following lemma.

I Lemma 8. The LP is a valid relaxation of the Restricted-Welfare problem.

Before proceeding towards the rounding scheme, we perform a preprocessing step as
described in the next lemma.

I Lemma 9. In polynomial time, we can get a feasible solution to the LP that gives an
O(logm) approximation to the optimal objective, and ensures that each α(i, j, k), β(i, j, l),
y(i, j), w(i, l) ∈ {0, γ} for some real number γ ∈ [0, 1], and that each z(i, k) ≤ γ.

We now present the rounding scheme for LP (see Algorithm 1). Here, the set Wi denotes
the set of agents that have not yet been assigned any item when the rounding scheme enters
the For loop for item i (see Step 2). Note that the sets Ti might overlap, but these conflicts
are resolved in Line 9 by intersecting Ti with Wi, which is disjoint with all previous Tj , j < i.

Algorithm 1 Rounding Scheme for LP
1. In accordance with Lemma 9, compute a feasible solution to the LP.

Set T0 ← ∅, and W0 ← V = V1 ∪ V2 ∪ V3.
2. For all items i ∈ I = {1, . . . ,m}:
3. Set Wi ←Wi−1 \ Ti−1, and Ti ← ∅.
4. Pick a value ηi uniformly at random from [0, 1].
5. If ηi ≤ γ:
6. For all nodes j ∈ V1:

If y(i, j) = γ, then with probability 1/4, set Ti ← Ti ∪ {j}.
7. For all nodes l ∈ V3:

If w(i, l) = γ, then with probability 1/4, set Ti ← Ti ∪ {l}.
8. For all nodes k ∈ V2:

With probability z(i, k)/(4γ), set Ti ← Ti ∪ {k}.
9. Assign item i to all nodes in Wi ∩ Ti, i.e., set A(t)← i for all t ∈Wi ∩ Ti.
10. Return the (random) assignment A.

I Lemma 10. For all t ∈ V and all i ∈ I, we have P[t ∈Wi] ≥ 3/4. Thus, P[{t1, t2, t3} ⊆
Wi] ≥ 1/4 for all t1, t2, t3 ∈ V .
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Proof. We will prove the lemma for a node in V1, the argument extends to V2 ∪ V3.
Fix any node j ∈ V1 and any item i ∈ I, and consider an indicator random variable Γi′j

that is set to one iff j ∈ Ti′ . It is easy to check that E[Γi′j ] = y(i′, j)/4 for all items i′ ∈ I. By
constraint 6 and linearity of expectation, we thus have: E[

∑
i′<i Γi′j ] =

∑
i′<i y(i′, j)/4 ≤ 1/4.

Applying Markov’s inequality, we get P[
∑

i′<i Γi′j = 0] ≥ 3/4. In other words, with
probability at least 3/4, we have that j /∈ Ti′ for all i′ < i. Under this event, we must have
j ∈Wi.

We have P[t /∈ Wi] ≤ 1/4 for all t ∈ {t1, t2, t3}. P[{t1, t2, t3} ⊆ Wi] ≥ 1/4 now follows
from applying union-bound over these three events. J

In the first step, when we find a feasible solution to the LP in accordance with Lemma 9,
we lose a factor of O(logm) in the objective. Below, we will show that the remaining steps in
the rounding scheme result in a loss of at most a constant factor in the approximation ratio.

For all items i ∈ I, nodes j ∈ V1, and nodes k ∈ F 1
j , l ∈ F 2

j , we define the random
variables X(i, j, k) and Y (i, j, l). Their values are determined by the outcome A of our
randomized rounding. To be more specific, we have that X(i, j, k) = 1 if both j and k receive
item i, and X(i, j, k) = 0 otherwise. Further, Y (i, j, l) = 1 if both j and l receive item i and
there is some node in F 1

j ∩ F 1
l that also received item i, and Y (i, j, l) = 0 otherwise. Now,

the valuation of any agent j ∈ V1 from the (random) assignment A is:

uj(A) =
∑
i∈I

(∑
k∈F 1

j

λij ·X(i, j, k) +
∑
l∈F 2

j

λij · Y (i, j, l)
)

(8)

We will analyze the expected contribution of the rounding scheme to each term in the
LP-objective. Towards this end, we prove the following lemmas.

I Lemma 11. For all i ∈ I, j ∈ V1, k ∈ F 1
j , we have EA[X(i, j, k)] ≥ δ · α(i, j, k), where

δ > 0 is a sufficiently small constant.

I Lemma 12. For all i ∈ I, j ∈ V1, l ∈ F 2
j , we have EA[Y (i, j, l)] ≥ δ · β(i, j, l), where δ is a

sufficiently small constant.

Proof. Fix an item i ∈ I, a node j ∈ V1 and a node l ∈ F 2
j . If β(i, j, l) = 0 the lemma is

trivially true. Otherwise suppose for the rest of the proof that β(i, j, l) = y(i, j) = w(i, l) = γ.
Let Ei be the event that ηi ≤ γ (see Step 4 in Algorithm 1). Let Z(i, k) be an indicator

random variable that is set to one iff node k ∈ V2 is included in the set Ti by our rounding
scheme (see Step 8 in Algorithm 1). We have:

P[Ei] = γ, and P[Z(i, k) = 1 | Ei] = z(i, k)/4γ for all k ∈ V2 (9)

Thus, conditioned on the event Ei, the expected number of common neighbors of j and l
who are included in the set Ti is given by

µi := E
[ ∑

k∈F 1
j
∩F 1

l

Z(i, k)
∣∣∣ Ei

]
=

∑
k∈F 1

j
∩F 1

l

z(i, k)/4γ ≥ 1/4 (10)

Note that conditioned on the event Ei, the random variables Z(i, k) are mutually independent.
Thus, applying Chernoff bound on Equation 10, we infer that with constant probability, at
least one common neighbor of j and l will be included in the set Ti. To be more precise,
define Ti,j,l = Ti ∩ F 1

j ∩ F 1
l . For some sufficiently small constant δ1, we have:

P
[
Ti,j,l 6= ∅

∣∣∣ Ei

]
= P

[ ∑
k∈F 1

j
∩F 1

l

Z(i, k) > 0
∣∣∣ Ei

]
≥ 1− e−1/8 = δ1 (11)
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Let Ei,j,l be the event that the following two conditions hold simultaneously: (a) Ti,j,l 6= ∅,
and (b) j, l, and an arbitrary node from Ti,j,l—each of these three nodes is included
in Wi. Now, Equation 11 and Lemma 10 imply that P[Ei,j,l | Ei] ≥ δ2 for δ2 = δ1/4.
Putting all these observations together, we obtain that P[Y (i, j, l) = 1] = P[Ei] ·P[Ei,j,l | Ei]·
P[j, l ∈ Ti | Ei,j,l ∩ Ei] = γ · δ2 · (1/4) · (1/4) = δ · γ = δ · β(i, j, l) for δ = δ2/16. J

I Theorem 13. The rounding scheme in Algorithm 1 gives an O(logm)-approximation to
the Restricted-Welfare problem.

Proof. In the first step, when we find a feasible solution to the LP in accordance with
Lemma 9, we lose a factor of O(logm) in the objective. At the end of the remaining steps,
the expected valuation of an agent j ∈ V1 is given by:

EA[uj(A)] =
∑
i∈I

λij ·
(∑

k∈F 1
j

EA[X(i, j, k)] +
∑
l∈F 1

l

EA[Y (i, j, l)]
)

= Θ
(∑

i∈I

λij ·
(∑

k∈F 1
j

α(i, j, k) +
∑
l∈F 1

l

β(i, j, l)
))

The first equality follows from linearity of expectation, while the second equality follows
from Lemma 11 and Lemma 12. Thus, the expected valuation of any agent in V1 is within a
constant factor of the fractional valuation of the same agent under the feasible solution to
the LP obtained at the end of Step 1 (see Algorithm 1). Summing over all the agents in V1,
we get the theorem. J

We can generalize the above approach to the following setting: Each user j is given
an integer cj and can be assigned up to cj different items (each at most once). For this
we replace for each item i and node j the constraint

∑
i y(i, j) ≤ 1 by the two constraints∑

i y(i, j) ≤ cj and y(i, j) ≤ 1 and adapt the proof of Lemma 10.
Finally, we state NP-hardness for linear externalities, not only in the 2-hop setting but

also for 1-hop. 3

I Theorem 14. Maximizing social welfare under linear externalities is NP-hard.

5 Constant Approximation for Step Function Externalities

In this section, our goal is to maximize the social welfare when the agents have general
step function externalities, i.e., to receive externality an agent needs a certain number of
1- and 2-hop neighbors having the same product. We will show that no constant factor
approximation is possible unless a bound on the number of neighbors an agent needs to
receive externality is given. Thus we consider the case of 2-step function externalities, where
only two neighbors are needed (see Definition 3) and give a 1

6 · (1 − 1/e)-approximation
algorithm for this problem. Notice that if we consider step functions that just require one
neighbor the problem reduces to the 1-hop step function scenario in [6]. However, our
algorithm gives a 1

2 · (1− 1/e)-approximation for this scenario improving the result in [6].
In the following we assume 2-step function externalities. Let GV ′ denote the subgraph

induced by V ′ ⊆ V . For the rest of this section, the term “triple” will refer to any (unordered)

3 Theorem 3.1 in [6] claims that the welfare maximization problem for linear 1-hop externality functions
in complete graphs is MaxSNP-hard, which would imply our result, but this claim is not true.
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set of three nodes T = {j1, j2, j3} such that GT is connected. Similarly, the term “pair” will
refer to any (unordered) set of two nodes {j1, j2} that are connected by an edge in E.

We first compute a maximal collection of mutually disjoint triples in the graph G. We
denote this collection by T , and let V (T ) =

⋃
T∈T T ⊆ V . The graph GV \V (T ), by definition,

consists of a mutually disjoint collection of pairs (say P) and a set of isolated nodes (say B).
We thus have the following lemma.

I Lemma 15. In G = (V,E), there is no edge that connects a node j ∈ B with another node
in B or with a node belonging to a pair in P. Furthermore, there is no edge that connects
two nodes j, j′ belonging to two different pairs P, P ′ ∈ P.

I Definition 16. An assignment A is consistent iff two agents get the same item whenever
they belong to the same triple or the same pair. To be more specific, for all j, j′ ∈ V , we
have that A(j) = A(j′) if either (a) j, j′ ∈ T for some triple T ∈ T or (b) {j, j′} ∈ P.

The next lemma shows that by losing a factor of 6 in the approximation ratio, we can
focus on maximizing the social welfare via a consistent assignment.

I Lemma 17. The social welfare from the optimal consistent assignment is at least (1/6)·Opt,
where Opt is the maximum social welfare over all assignments.

Proof. Let A∗ be an assignment (not necessarily consistent) that gives maximum social
welfare. We convert it into a (random) consistent assignment A as follows. For each triple
{j1, j2, j3} ∈ T , we pick one of the items A∗(j1),A∗(j2),A∗(j3) uniformly at random, and
assign that item to all the three agents j1, j2, j3. Similarly, for each pair {j1, j2} ∈ P , we pick
one of the items A∗(j1),A∗(j2) uniformly at random, and assign that item to both the agents
j1, j2. The events corresponding to different triples and pairs are mutually independent.
Finally, the remaining agents (those who are in B) get the same items as in A∗. It is easy to
see that the resulting assignment A is consistent. We claim that E[uj(A)] ≥ (1/6) · uj(A∗)
for all j ∈ V . To prove this claim, we consider three cases.

Case 1 (j ∈ B): Let A∗(j) = i. Since j ∈ B, it always gets the same item under A, i.e.,
A(j) = i. Now, if uj(A∗) = 0, then the claim is trivially true. Otherwise it must be the case
that A∗(j′) = i for some neighbor j′ of j. Since j ∈ B, this neighbor j′ must be part of some
triple T ∈ T (see Lemma 15). With probability at least 1/3 all the three nodes in T are
assigned item i under A and at least two nodes of T are in the 2-hop neighborhood of j. In
that event j gets the same valuation as in A∗, and we have that E[uj(A)] ≥ (1/3) · uj(A∗).

Case 2 (j belongs to a pair in P): Consider the pair P = {j, j′} ∈ P , which has j and another
node (say j′) as its members. Let A∗(j) = i. As in Case 1, if uj(A∗) = 0, then the claim is
trivially true. Otherwise it must be the case that there exists a node j′′ with A∗(j′′) = i

such that j′′ is either a neighbor of j or a neighbor of j′. Since {j, j′} ∈ P, this agent j′′
must be part of some triple T ∈ T (see Lemma 15). Let E1 be the event that all the three
nodes in T are assigned item i under A. Similarly, let E2 be the event that both the nodes
j, j′ ∈ P get the same item i under A. Since these two events are mutually independent, we
have that P[E1 ∩E2] ≥ (1/3) · (1/2) = 1/6, and in the event E1 ∩E2, we have uj(A) = uj(A∗).
It follows that E[uj(A)] ≥ (1/6) · uj(A∗).

Case 3 (j belongs to a triple in T ): Consider the triple T = {j, j′, j′′} ∈ T which has, besides
j, two other nodes (say j′ and j′′) as its members. With probability at least 1/3, all these
three nodes are assigned item A∗(j) under A, and in this event we have uj(A) ≥ uj(A∗). It
follows that E[uj(A)] ≥ (1/3) · uj(A∗).
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Now, we take a sum of the inequalities E[uj(A)] ≥ (1/6) · uj(A∗) over all agents j ∈ V ,
and by linearity of expectation infer that the expected social welfare under the consistent
assignment A is within a factor of 6 of the optimal social welfare. This concludes the proof
of the lemma. J

Next, we will give an (1−1/e)-approximation algorithm for finding a consistent assignment
of items that maximizes the social welfare. Along with Lemma 17, this will imply the main
result of this section (see Theorem 20).

We use the term “resource” to refer to either a pair P ∈ P or an agent j ∈ B. Let
R = P ∪B denote the set of all resources. We say that a resource r ∈ R neighbors a triple
T ∈ T iff in the graph G = (V,E) either (a) r = {j, j′} ∈ P and some node in {j, j′} is
adjacent to some node in T , or (b) r = j ∈ B and j is adjacent to some node in T . We
slightly abuse the notation (see Section 2) and let N(T ) ⊆ R denote the set of resources that
are neighbors of T ∈ T .

By definition, every consistent assignment ensures that if two agents belong to the same
triple in T (resp. the same pair in P), then both of them get the same item. We say that
the item is assigned to a triple (resp. resource). Note that the triples do not need externality
from outside. To be more specific, the contribution of a triple T ∈ T to the social welfare is
always equal to

∑
j∈T λi,j , where i is the item assigned to T . Resources, however, do need

outside externality, which by Lemma 15 can come only from a triple in T .

I Lemma 18. In a consistent assignment, if a resource r ∈ R makes a positive contribution
to the social welfare, then it neighbors some triple Tr ∈ T , and both the resource r and the
triple Tr receive the same item.

Proof. If a resource contributes a nonzero amount to the social welfare, then it must receive
nonzero externality from the assignment. By Lemma 15, such externality can come only
from a triple in T . The lemma follows. J

Thus, given a consistent assignment A consider the following mapping TA(r) of a resource
r ∈ R to triples in T in accordance with Lemma 18: If the resource r makes zero contribution
towards the social welfare (a case not covered by the lemma), then we let TA(r) be any
arbitrary triple from T . Otherwise TA(r) denotes an (arbitrary) neighboring triple of T that
receives the same item as r. We say that the triple TA(r) claims the resource r.

For ease of exposition, let λi,r(T ) be the valuation of the resource r when both the
resource and the triple T that claims it get item i ∈ I, i.e.,

λi,r(T ) =


λi,j + λi,j′ if r = {j, j′} ∈ P and r ∈ N(T );
λi,j if r = j ∈ B and r ∈ N(T );
0 if r /∈ N(T ).

Now, any consistent assignmentA can be interpreted as follows. Under such an assignment,
every triple T ∈ T claims the subset of the resources ST = {r ∈ R : TA(r) = T}; the
subsets corresponding to different triples being mutually exclusive. A triple T and the
resources in ST all get the same item (say i ∈ I). The valuation obtained from them is
uT (ST , i) =

∑
j∈T λi,j +

∑
r∈ST

λi,r(T ).
If our goal is to maximize the social welfare, then, naturally, for every triple T , we will pick

the item that maximizes uT (ST , i), thereby extracting a valuation of uT (ST ) = maxi uT (ST , i).
The next lemma shows that this function is fractionally subadditive.

I Lemma 19. The function uT (ST ) is fractionally subadditive in ST .
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The preceding discussion shows that the problem of computing a consistent assignment
for welfare maximization is equivalent to the following setting. We have a collection of triples
T , and a set of resources R. We will distribute these resources amongst the triples, i.e., every
triple T will get a subset ST ⊆ R, and these subsets will be mutually exclusive. The goal is
to maximize the sum

∑
T∈T uT (ST ), where the functions uT (·)’s are fractionally subadditive.

By a celebrated result of Feige [9], we can get an (1− 1/e)-approximation algorithm for this
problem if we can implement the following subroutine (called demand oracle) in polynomial
time: Each resource r is given a “cost” p(r) and we need to determine for each triple T a set
of resources S∗T that maximizes uT (ST )−

∑
r∈ST

p(r) over all sets ST . Such a demand oracle
can be implemented in polynomial time using a simple greedy algorithm for each T and each
item i: Add a resource r to S∗T iff λi,r(T ) > p(r). The result of the approximation algorithm
assigns each triple T a subset ST and we then pick the item i that maximizes uT (ST , i) over
all items i. Together with Lemma 15, this implies the theorem stated below.

I Theorem 20. We can get a polynomial-time 1
6 · (1− 1/e)-approximation algorithm for the

problem of maximizing social welfare under 2-step function externalities.

The algorithm can be easily adapted for 1-hop step function externalities. The difference
is that instead of computing a maximal collection T of mutually disjoint triples, one computes
a maximal collection of mutually disjoint pairs.

I Theorem 21. We can get a polynomial-time 1
2 · (1 − 1/e)-approximation algorithm for

maximizing social welfare under 1-step function externalities.

Finally, we present our hardness results for step functions. By a reduction from Max
Independent Set we can show that, for unbounded s, there is no constant factor approxim-
ation. The main idea is that we modify the graph such that we replace each edge by a path
of length three and each of the original nodes j wants a different item, while j can only get
positive externalities when having a support of 2δj (δj the node degree of j). The valuations
of the newly introduced nodes are set to 0. That is, nodes that are adjacent in the original
graph have two common neighbors in the constructed graph, want different items, need all
their neighbors as support, and thus only one of them can have positive valuation.

I Theorem 22. For any ε > 0 the problem of maximizing social welfare under arbitrary
s-step function externalities is not approximable within O(n1/4−ε) unless NP = P, and not
approximable within O(n1/2−ε) unless NP = ZPP.

Second, we show that maximizing social welfare under 2-step function externalities is
APX-hard and thus no PTAS can exists. This is by a reduction from Max Coverage. The
APX-hardness for two items is by a reduction from SAT.

I Theorem 23. The problem of maximizing social welfare under step function externalities
is APX-hard, in particular, there is no polynomial time 1− 1

e + ε-approximation algorithm
(unless P = NP). Furthermore, the problem remains APX-hard (although with a larger
constant) even if there are only two items.
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