

warwick.ac.uk/lib-publications

Original citation:
Bhattacharya, Sayan, Henzinger, Monika and Italiano, Giuseppe F. (2015) Deterministic fully
dynamic data structures for vertex cover and matching. In: Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, San Diego, 4-6 Jan 2015. Published in: Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms pp. 785-804.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/92706

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
First Published in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithm, 2015. published by the Society for Industrial and Applied Mathematics
(SIAM). Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may be
cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/96894703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92706
mailto:wrap@warwick.ac.uk

Deterministic Fully Dynamic Data Structures

for Vertex Cover and Matching

Sayan Bhattacharya∗ Monika Henzinger† Giuseppe F. Italiano‡

Abstract

We present the first deterministic data structures for main-

taining approximate minimum vertex cover and maximum

matching in a fully dynamic graph in o(
√
m) time per up-

date. In particular, for minimum vertex cover we provide

deterministic data structures for maintaining a (2 + ε) ap-

proximation in O(logn/ε2) amortized time per update. For

maximum matching, we show how to maintain a (3 + ε) ap-

proximation in O(m1/3/ε2) amortized time per update, and a

(4+ε) approximation in O(m1/3/ε2) worst-case time per up-

date. Our data structure for fully dynamic minimum vertex

cover is essentially near-optimal and settles an open problem

by Onak and Rubinfeld [13].

1 Introduction

Finding maximum matchings and minimum vertex cov-
ers in undirected graphs are classical problems in combi-
natorial optimization. Let G = (V,E) be an undirected
graph, with m = |E| edges and n = |V | nodes. A
matching in G is a set of vertex-disjoint edges, i.e., no
two edges share a common vertex. A maximum match-
ing, also known as maximum cardinality matching, is a
matching with the largest possible number of edges. A
matching is maximal if it is not a proper subset of any
other matching in G. A subset V ′ ⊆ V is a vertex cover
if each edge of G is incident to at least one vertex in V ′.
A minimum vertex cover is a vertex cover of smallest
possible size.

The Micali-Vazirani algorithm for maximum match-

∗University of Vienna, Faculty of Computer Science. Email:

jucse.sayan@gmail.com. The research leading to these results
has received funding from the European Research Council under

the European Union’s Seventh Framework Programme (FP/2007-

2013) / ERC Grant Agreement no. 340506.
†University of Vienna, Faculty of Computer Science. Email:

monika.henzinger at univie.ac.at. The research leading to

these results has received funding from the European Research
Council under the European Union’s Seventh Framework Pro-

gramme (FP/2007-2013) / ERC Grant Agreement no. 340506.
‡Università di Roma ”Tor Vergata”, Rome, Italy. Email:

giuseppe.italiano@uniroma2.it. Partially supported by MIUR,
the Italian Ministry of Education, University and Research, under

Project AMANDA (Algorithmics for MAssive and Networked
DAta).

ing runs in O(m
√
n) time [5, 10]. Using this algorithm,

a (1 + ε)-approximate maximum matching can be con-
structed in O(m/ε) time [3]. Finding a minimum vertex
cover, on the other hand, is NP-hard. Still, these two
problems remain closely related as their LP-relaxations
are duals of each other. Furthermore, a maximal match-
ing, which can be computed in O(m) time in a greedy
fashion, is known to provide a 2-approximation both to
maximum matching and to minimum vertex cover (by
using the endpoints of the maximal matching). Under
the unique games conjecture, the minimum vertex cover
cannot be efficiently approximated within any constant
factor better than 2 [7]. Thus, under the unique games
conjecture, the 2-approximation in O(m) time by the
greedy method is the optimal guarantee for this prob-
lem.

In this paper, we consider a dynamic setting, where
the input graph is being updated via a sequence of
edge insertions/deletions. The goal is to design data
structures that are capable of maintaining the solution
to an optimization problem faster than recomputing it
from scratch after each update. If P 6= NP we can-
not achieve polynomial time updates for minimum ver-
tex cover. We also observe that achieving fast update
times for maximum matching appears to be a partic-
ularly difficult task: in this case, an update bound of
O(polylog(n)) would be a breakthrough, since it would
immediately improve the longstanding bounds of the
static algorithms [5, 9, 10, 11]. The best known update
bound for dynamic maximum matching is obtained by
a randomized data structure of Sankowski [14], which
has O(n1.495) time per update. In this scenario, if one
wishes to achieve fast update times for dynamic max-
imum matching or minimum vertex cover, approxima-
tion appears to be inevitable. Indeed, in the last few
years there has been a growing interest in designing ef-
ficient dynamic data structures for maintaining approx-
imate solutions to both these problems.

Previous work. A maximal matching can be main-
tained in O(n) worst-case update time by a trivial de-
terministic algorithm. Ivković and Lloyd [6] showed

how to improve this bound to O((n + m)
√
2/2). Onak

and Rubinfeld [13] designed a randomized data struc-
ture that maintains constant factor approximations to
maximum matching and to minimum vertex cover in
O(log2 n) amortized time per update with high proba-
bility, with the approximation factors being large con-
stants. Baswana, Gupta and Sen [2] improved these
bounds by showing that a maximal matching, and thus
a 2-approximation of maximum matching and minimum
vertex cover, can be maintained in a dynamic graph in
amortized O(log n) update time with high probability.

Subsequently, turning to deterministic data struc-
tures, Neiman and Solomon [12] showed that a 3/2-
approximate maximum matching can be maintained
dynamically in O(

√
m) worst-case time per update.

Their data structure maintains a maximal matching
and thus achieves the same update bound also for
2-approximate minimum vertex cover. Furthermore,
Gupta and Peng [4] presented a deterministic data
structure to maintain a (1+ ε) approximation of a max-
imum matching in O(

√
m/ε2) worst-case time per up-

date. We also note that Onak and Rubinfeld [13] gave a
deterministic data structure that maintains an O(log n)-
approximate minimum vertex cover in O(log2 n) amor-
tized update time.

Very recently, Abboud and Vassilevska Williams [1]
showed a conditional lower bound on the performance
of any dynamic matching algorithm. There exists an
integer k ∈ [2, 10] with the following property: if
the dynamic algorithm maintains a matching with the
property that every augmenting path in the input graph
(w.r.t. the matching) has length at least (2k − 1), then
an amortized update time of o(m1/3) for the algorithm
will violate the 3-SUM conjecture (which states that the
3-SUM problem on n numbers cannot be solved in o(n2)
time).

Our results. From the above discussion, it is clear
that for both fully dynamic constant approximate max-
imum matching and minimum vertex cover, there is a
huge gap between state of the art deterministic and
randomized performance guarantees: the former gives
O(
√
m) update time, while the latter gives O(log n) up-

date time. Thus, it seems natural to ask whether the
O(
√
m) bound achieved in [4, 12] is a natural barrier

for deterministic data structures. In particular, in their
pioneering work on these problems, Onak and Rubin-
feld [13] asked:

• “Is there a deterministic data structure that
achieves a constant approximation factor with poly-
logarithmic update time?”

We answer this question in the affirmative by pre-
senting a deterministic data structure that maintains
a (2 + ε)-approximation of a minimum vertex cover in

O(log n/ε2) amortized time per update. Since it is im-
possible to get better than 2-approximation for mini-
mum vertex cover in polynomial time, our data struc-
ture is near-optimal (under the unique games conjec-
ture). As a by product of our approach, we can also
maintain, deterministically, a (2 + ε)-approximate max-
imum fractional matching in O(log n/ε2) amortized up-
date time. Note that the vertices of the fractional
matching polytope of a graph are known to be half in-
tegral, i.e., they have only {0, 1/2, 1} coordinates (see,
e.g., [8]). This implies immediately that the value of any
fractional matching is at most 3/2 times the value of
the maximum integral matching. Thus, it follows that
we can maintain the value of the maximum (integral)
matching within a factor of (2 + ε) · (3/2) = (3 +O(ε)),
deterministically, in O(log n/ε2) amortized update time.

Next, we focus on the problem of maintaining
an integral matching in a dynamic setting. For this
problem, we show how to maintain a (3+ε)-approximate
maximum matching in O(m1/3/ε2) amortized time per
update, and a (4 + ε)-approximate maximum matching
in O(m1/3/ε2) worst-case time per update. Since
m1/3 = o(n), we provide the first deterministic data
structures for dynamic matching whose update time is
sublinear in the number of nodes.

Table 1 puts our main results in perspective with
previous work.

Our techniques. To see why it is difficult to determin-
istically maintain a dynamic (say maximal) matching,
consider the scenario when a matched edge incident to
a node u gets deleted from the graph. To recover from
this deletion, we have to scan through the adjacency
list of u to check if it has any free neighbor z. This
takes time proportional to the degree of u, which can
be O(n). Both the papers [2, 13] use randomization to
circumvent this problem. Roughly speaking, the idea
is to match the node u to one of its free neighbors z
picked at random, and show that even if this step takes
O(deg(u)) time, in expectation the newly matched edge
(u, z) survives the next deg(u)/2 edge deletions in the
graph (assuming that the adversary is not aware of the
random choices made by the data structure). This is
used to bound the amortized update time.

Our key insight is that we can maintain a large
fractional matching deterministically. Suppose that in
this fractional matching, we pick each edge incident
to u to an extent of 1/deg(u). These edges together
contribute at most one to the objective. Thus, we do not
have to do anything for the next deg(u)/2 edge deletions
incident to u, as these deletions reduce the contribution
of u towards the objective by at most a factor of
two. This gives us the desired amortized bound.
Inspired by this observation, we take a closer look at

Problem Approximation Update Data Reference
Guarantee Time Structure

MM & MVC O(1) O(log2 n) amortized randomized [13]
MM & MVC 2 O(log n) amortized randomized [2]

MM 1.5 O(
√
m) worst-case deterministic [12]

MVC 2 O(
√
m) worst-case deterministic [12]

MM 1 + ε O(
√
m/ε2) worst-case deterministic [4]

MVC 2 + ε O(log n/ε2) amortized deterministic This paper
MM 3 + ε O(m1/3/ε2) amortized deterministic This paper
MM 4 + ε O(m1/3/ε2) worst-case deterministic This paper

Table 1: Dynamic data structures for approximate (integral) maximum matching (MM) and minimum vertex
cover (MVC).

the framework of Onak and Rubinfeld [13]. Roughly
speaking, they maintain a hierarchical partition of the
set of nodes V into O(log n) levels such that the nodes
in all but the lowest level, taken together, form a
valid vertex cover V ∗. In addition, they maintain a
matching M∗ as a dual certificate. Specifically, they
show that |V ∗| ≤ λ · |M∗| for some constant λ, which
implies that V ∗ is a λ-approximate minimum vertex
cover. Their data structure is randomized since, as
discussed above, it is particularly difficult to maintain
the matching M∗ deterministically in a dynamic setting.
To make the data structure deterministic, instead of
M∗, we maintain a fractional matching as a dual
certificate. Along the way, we improve the amortized
update time of [13] from O(log2 n) to O(log n/ε2), and
their approximation guarantee from some large constant
λ to 2 + ε.

Our approach gives near-optimal bounds for fully
dynamic minimum vertex cover and, as we have already
remarked, it maintains a fractional matching. Next,
we consider the problem of maintaining an approxi-
mate maximum integral matching, for which we are able
to provide deterministic data structures with improved
(polynomial) update time. Towards this end, we in-
troduce the concept of a kernel of a graph, which we
believe is of independent interest. Intuitively, a kernel
is a subgraph with two important properties: (i) each
node has bounded degree in the kernel, and (ii) a ker-
nel approximately preserves the size of the maximum
matching in the original graph. Our key contribution is
to show that a kernel always exists, and that it can be
maintained efficiently in a dynamic graph undergoing a
sequence of edge updates.

2 Deterministic Fully Dynamic Vertex Cover

The input graph G = (V,E) has |V | = n nodes and zero
edges in the beginning. Subsequently, it keeps getting
updated due to the insertions of new edges and the
deletions of already existing edges. The edge updates,
however, occur one at a time, while the set V remains
fixed. The goal is to maintain an approximate vertex
cover of G in this fully dynamic setting.

In Section 2.1, we introduce the notion of an (α, β)-
partition of G = (V,E). This is a hierarchical partition
of the set V into L+1 levels, where L = dlogβ(n/α)e and
α, β > 1 are two parameters (Definition 1). If the (α, β)-
partition satisfies an additional property (Invariant 1),
then from it we can easily derive a 2αβ-approximation
to the minimum vertex cover (Theorem 2.2). In Sec-
tion 2.3, we present a natural deterministic algorithm
for maintaining such an (α, β)-partition, and analyze it
in Sections 2.5, 2.6 by setting α← 1+2ε and β ← 1+ε.
Our main result is summarized in the theorem below.

Theorem 2.1. For every ε ∈ (0, 1], we can determin-
istically maintain a (2 + ε)-approximate vertex cover in
a fully dynamic graph, the amortized update time being
O(log n/ε2).

2.1 The (α, β)-partition and its properties.

Definition 1. An (α, β)-partition of the graph G par-
titions its node-set V into subsets V0 . . . VL, where L =
dlogβ(n/α)e and α, β > 1. For i ∈ {0, . . . , L}, we iden-

tify the subset Vi as the ith level of this partition, and
denote the level of a node v by `(v). Thus, we have
v ∈ V`(v) for all v ∈ V . Furthermore, the partition as-

signs a weight w(u, v) = β−max(`(u),`(v)) to every edge
(u, v) ∈ V .

DefineNv to be the set of neighbors of a node v ∈ V .

Given an (α, β)-partition, let Nv(i) ⊆ Nv denote the
set of neighbors of v that are in the ith level, and let
Nv(i, j) ⊆ Nv denote the set of neighbors of v whose
levels are in the range [i, j].

(2.1) Nv = {u ∈ V : (u, v) ∈ E} ∀v ∈ V.

(2.2) Nv(i) = {u ∈ Nv ∩ Vi} ∀v ∈ V ; i ∈ {0, . . . , L}

(2.3)

Nv(i, j) =

j⋃
k=i

Nv(k) ∀v ∈ V ; i, j ∈ {0, . . . , L}, i ≤ j.

Similarly, define the notations Dv and Dv(i, j).
Note that Dv is the degree of a node v ∈ V .

(2.4) Dv = |Nv|

(2.5) Dv(i, j) = |Nv(i, j)|

Given an (α, β)-partition, let Wv =
∑
u∈Nv w(u, v)

denote the total weight a node v ∈ V receives from the
edges incident to it. We also define the notation Wv(i).
It gives the total weight the node v would receive from
the edges incident to it, if the node v itself were to go
to the ith level. Thus, we have Wv = Wv(`(v)). Since
the weight of an edge (u, v) in the hierarchical partition
is given by w(u, v) = β−max(`(u),`(v)), we derive the
following equations for all nodes v ∈ V .

(2.6) Wv =
∑
u∈Nv

β−max(`(u),`(v)).

(2.7) Wv(i) =
∑
u∈Nv

β−max(`(u),i) ∀i ∈ {0, . . . , L}.

Lemma 2.1. Every (α, β)-partition of the graph G sat-
isfies the following conditions for all nodes v ∈ V .

(2.8) Wv(L) ≤ α

(2.9) Wv(L) ≤ · · · ≤Wv(i) ≤ · · · ≤Wv(0)

(2.10) Wv(i) ≤ β ·Wv(i+ 1) ∀i ∈ {0, . . . , L− 1}.

Proof. Fix any (α, β)-partition and any node v ∈ V .
We prove the first part of the lemma as follows.

Wv(L) =
∑
u∈Nv

β−max(`(u),L)

=
∑
u∈Nv

β−L ≤ n · β−L ≤ n · β− logβ(n/α) = α.

We now fix any level i ∈ {0, . . . , L − 1} and show
that the (α, β)-partition satisfies equation 2.9.

Wv(i+ 1) =
∑
u∈Nv

β−max(`(u),i+1)

≤
∑
u∈Nv

β−max(`(u),i) = Wv(i).

Finally, we prove equation 2.10.

Wv(i) =
∑
u∈Nv

β−max(`(u),i) = β ·
∑
u∈Nv

β−1−max(`(u),i)

≤ β ·
∑
u∈Nv

β−max(`(u),i+1) = β ·Wv(i+ 1)

Fix any node v ∈ V , and focus on the value of
Wv(i) as we go down from the highest level i = L to the
lowest level i = 0. Lemma 2.1 states that Wv(i) ≤ α
when i = L, that Wv(i) keeps increasing as we go down
the levels one after another, and that Wv(i) increases
by at most a factor of β between consecutive levels.

We will maintain a specific type of (α, β)-partition,
where each node is assigned to a level in a way that
satisfies Invariant 1.

Invariant 1. For every node v ∈ V , if `(v) = 0, then
Wv ≤ α · β. Else if `(v) ≥ 1, then Wv ∈ [1, αβ].

Consider any (α, β)-partition satisfying Invariant 1.
Let v ∈ V be a node in this partition that is
at level `(v) = k ∈ {0, . . . , L}. It follows that∑
u∈Nv(0,k) w(u, v) = |Nv(0, k)| · β−k ≤ Wv ≤ αβ.

Thus, we infer that |Nv(0, k)| ≤ αβk+1. In other words,
Invariant 1 gives an upper bound on the number of
neighbors a node v can have that lie on or below `(v).
We will crucially use this property in the analysis of our
algorithm.

Theorem 2.2. Consider an (α, β)-partition of the
graph G that satisfies Invariant 1. Let V ∗ = {v ∈ V :
Wv ≥ 1} be the set of nodes with weight at least one.
The set V ∗ is a feasible vertex cover in G. Further, the
size of the set V ∗ is at most 2αβ-times the size of the
minimum-cardinality vertex cover in G.

Proof. Consider any edge (u, v) ∈ E. We claim that
at least one of its endpoints belong to the set V ∗.
Suppose that the claim is false and we have Wu < 1
and Wv < 1. If this is the case, then Invariant 1 implies
that `(u) = `(v) = 0 and w(u, v) = β−max(`(u),`(v)) = 1.
Since Wu ≥ w(u, v) and Wv ≥ w(u, v), we get Wu ≥ 1
and Wv ≥ 1, and this leads to a contradiction. Thus,
we infer that the set V ∗ is a feasible vertex cover in the
graph G.

Next, we construct a fractional matching Mf by
picking every edge (u, v) ∈ E to an extent of x(u, v) =
w(u, v)/(αβ) ∈ [0, 1]. Since for all nodes v ∈ V , we have∑
u∈Nv x(u, v) =

∑
u∈Nv w(u, v)/(αβ) = Wv/(αβ) ≤ 1,

we infer that Mf is a valid fractional matching in
G. The size of this matching is given by |Mf | =∑

(u,v)∈E x(u, v) = (1/(αβ)) ·
∑

(u,v)∈E w(u, v). We now

bound the size of V ∗ in terms of |Mf |.

|V ∗| =
∑
v∈V ∗

1 ≤
∑
v∈V ∗

Wv =
∑
v∈V ∗

∑
u∈Nv

w(u, v)

≤
∑
v∈V

∑
u∈Nv

w(u, v) = 2 ·
∑

(u,v)∈E

w(u, v) = (2αβ) · |Mf |

2.2 Query time. We store the nodes v with Wv ≥
1 as a separate list. Thus, we can report the set
of nodes in the vertex cover in O(1) time per node.
Using appropriate pointers, we can report in O(1) time
whether or not a given node is part of this vertex cover.
In O(1) time we can also report the size of the vertex
cover.

2.3 Handling the insertion/deletion of an edge.
A node is called dirty if it violates Invariant 1, and clean
otherwise. Since the graph G = (V,E) is initially empty,
every node is clean and at level zero before the first
update in G. Now consider the time instant just prior
to the tth update in G. By induction hypothesis, at this
instant every node is clean. Then the tth update takes
place, which inserts (resp. deletes) an edge (x, y) in G
with weight w(x, y) = β−max(`(x),`(y)). This increases
(resp. decreases) the weights Wx,Wy by w(x, y). Due
to this change, the nodes x and y might become dirty.
To recover from this, we call the subroutine in Figure 1.

01. While there exists a dirty node v
02. If Wv > αβ, Then

// If true, then by equation 2.8 `(v) < L.
03. Increment the level of v

by setting `(v)← `(v) + 1.
04. Else if (Wv < 1 and `(v) > 0), Then
05. Decrement the level of v

by setting `(v)← `(v)− 1.

Figure 1: RECOVER().

Consider any node v ∈ V and suppose that Wv =
Wv(`(v)) > αβ. In this event, equation 2.8 implies that
Wv(L) < Wv(`(v)) and hence we have L > `(v). In
other words, when the procedure described in Figure 1
decides to increment the level of a dirty node v (Step
02), we know for sure that the current level of v is
strictly less than L (the highest level in the (α, β)-

partition).
Next, consider a node z ∈ Nv. If we change

`(v), then this may change the weight w(v, z), and this
in turn may change the weight Wz. Thus, a single
iteration of the While loop in Figure 1 may lead to
some clean nodes becoming dirty, and some other dirty
nodes becoming clean. If and when the While loop
terminates, however, we are guaranteed that every node
is clean and that Invariant 1 holds.

Comparison with the framework of Onak and
Rubinfeld [13]. As described below, there are two
significant differences between our framework and that
of [13]. Consequently, many of the technical details of
our approach (illustrated in Section 2.6) differ from the
proof in [13].

First, in the hierarchical partition of [13], the
invariant for a node y consists of O(L) constraints: for
each level i ∈ {`(y), . . . , L}, the quantity |Ny(0, i)| has
to lie within a certain range. This is the main reason
for their amortized update time being Θ(log2 n). Indeed
when a node y becomes dirty, unlike in our setting, they
have to spend Θ(log n) time just to figure out the new
level of y.

Second, along with the hierarchical partition, the
authors in [13] maintain a matching as a dual certificate,
and show that the size of this matching is within a
constant factor of the size of their vertex cover. As
pointed out in Section 1, this is the part where they
crucially need to use randomization, as till date there
is no deterministic data structure for maintaining a
large matching in polylog amortized update time. We
bypass this barrier by implicitly maintaining a fractional
matching as a dual certificate. Indeed, the weight
w(y, z) of an edge (y, z) in our hierarchical partition,
after suitable scaling, equals the fractional extent by
which the edge (y, z) is included in our fractional
matching.

2.4 Data structures. We now describe the relevant
data structures that will be used to implement our
algorithm.

• We maintain for each node v ∈ V :

– A counter Level[v] to keep track of the
current level of v. Thus, we set Level[v] ←
`(v).

– A counter Weight[v] to keep track of the
weight of v. Thus, we set Weight[v]←Wv.

– For every level i > Level[v], the set of nodes
Nv(i) in the form of a doubly linked list
Neighborsv[i]. For every level i ≤ Level[v],
the list Neighborsv[i] is empty.

– For level i = Level[v], the set of nodes
Nv(0, i) in the form of a doubly linked
list Neighborsv[0, i]. For every level i 6=
Level[v], the list Neighborsv[0, i] is empty.

• When the graph G gets updated due to an edge
insertion/deletion, we may discover that a node
violates Invariant 1. Such a node is called dirty, and
we store the set of such nodes as a doubly linked list
Dirty-nodes. For every node v ∈ V , we maintain
a bit Status[v] ∈ {dirty, clean} that indicates if
the node is dirty or not. Every dirty node stores a
pointer to its position in the list Dirty-nodes.

• We use the phrase “neighborhood lists of
v” to refer to the collection of linked lists⋃L
i=0 {Neighborsv[0, i],Neighborsv[i]}. For

every edge (u, v), we maintain two bidirectional
pointers: one links the edge to the position of v in
the neighborhood lists of u, while the other links
the edge to the position of u in the neighborhood
lists of v. Using these pointers, we can update the
neighborhood lists of u and v when the edge (u, v)
is inserted into (resp. deleted from) the graph, or
when the node v increases (resp. decreases) its
level by one.

2.5 Bounding the amortized update time. In
the full version of this paper, we present a detailed
implementation of our algorithm using the data struc-
tures described in Section 2.4. We also prove that for
any ε ∈ [0, 1], α = 1 + 2ε and β = 1 + ε, it takes
O(t log n/ε2) time to handle t edge insertions/deletions
in G starting from an empty graph. This gives an amor-
tized update time of O(log n/ε2), and by Theorem 2.2,
a (2 + 10ε)-approximation to the minimum vertex cover
in G. Specifically we show that after an edge insertion
or deletion the data structure can be updated in time
O(1) plus the time to adjust the levels of the nodes, i.e.,
the time for procedure RECOVER. To bound the latter
we show that it takes time Θ(1 + Dv(0, i)), when node
v changes from level i to level i + 1 or level i − 1 and
prove the bound on the total time spent in procedure
RECOVER using a potential function based argument.
Due to space constraints, we give a (slightly) simpli-
fied variant of this argument here, which gives an amor-
tized bound on the number of times we have to change
the weight of an already existing edge. This number is
Dv(0, i), when node v changes from level i to level i+ 1
and Dv(0, i − 1), when node v changes from level i to
level i − 1.1 Specifically, we prove Theorem 2.3 in Sec-

1The proof actually shows a stronger result assuming that the
level change of node v from i to i − 1 causes Θ(Dv(0, i)) many

tion 2.6, which implies that on average we change the
weights of O(L/ε) = O(log n/ε2) edges per update in G.

Theorem 2.3. Set α ← 1 + 2ε, β ← 1 + ε. In
the beginning, when G is an empty graph, initialize
a counter Count ← 0. Subsequently, each time we
change the weight of an already existing edge in the
hierarchical partition, set Count← Count + 1. Then
Count = O(tL/ε) just after we handle the tth update
in G.

The proof in Section 2.6 uses a carefully chosen
potential function. As the formal analysis is quite
involved, some high level intuitions are in order. Below,
we give a brief overview of our approach. To highlight
the main ideas, in contrast with Theorem 2.3, we assume
that α and β are some sufficiently large constants.

Define the level of an edge (y, z) to be `(y, z) =
max(`(y), `(z)), and note that the weight w(y, z) de-
creases (resp. increases) iff the edge’s level `(y, z) goes
up (resp. down). There is a potential associated with
both nodes and edges. Note that we use the terms “to-
kens” and “potential” interchangeably.

Each edge e has exactly 2(L − `(e)) tokens. These
tokens are assigned as follows. Whenever a new edge
is inserted, it receives 2(L − `(e)) tokens. When e
moves up a level, it gives one token to each endpoint.
Whenever e is deleted, it gives one token to each
endpoint. Whenever e moves down a level because one
endpoint, say u, moves down a level, e receives two
tokens from u.

Initially and whenever a node moves a level higher,
it has no tokens. Whenever a node u moves up a level,
only its adjacent edges to the same or lower levels have
to be updated as their level changes. The level of all
other edges is unchanged. Recall that each such edge
gives 1 token to u, which in turn uses this token to pay
for updating the edge. Whenever a node u moves down
a level, say from k to k − 1, it has at most βk adjacent
edges at level k or below. These are all the edges whose
level needs to be updated (which costs a token) and
whose potential needs to be increased by two tokens.
In this case we show that u has enough tokens, (i) to
pay for the work involved in the update, (ii) to give two
tokens to each of the at most βk adjacent edges, and
(iii) to still have a sufficient number of tokens for being
on level k − 1.

Whenever the level of a node v is not modified
but its weight Wv decreases because the weight of the
adjacent edge (u, v) decreases, the level of (u, v) must
have increased and (u, v) gives one token to v (the other
one goes to u). Note that this implies that a change in

edges to change their level.

Wv by at most β−`(v) increases the potential of v by 1,
i.e., the “conversion rate” between weight changes and
token changes is β`(v). Whenever the level of v does not
change but its weight Wv increases as the level of (u, v)
has decreased, no tokens are transferred between v and
(u, v). (Technically the potential of v might fall slightly
but the change might be so small that we ignore it.)
Formally we achieve these potential function changes
by setting the potential of every node in V0 to 0 and for
every other node to β`(v) ·max(0, α−Wv).

Thus, the crucial claim is that a node v that moves
down to level k−1 has accumulated a sufficent number of
tokens, i.e., at least X := 3βk+βk−1 max(0, α−Wv(k−
1)) tokens. Case 1: Assume first that v’s immediately
preceeding level was on level k − 1, i.e. that v just had
moved up from level k−1. Recall that, by the definition
of the potential function, v had no tokens when it moved
up from level k− 1. However, in this case we know that
Wv was least αβ and, thus, after adjusting the weight of
its adjacent edges to the level change, Wv is still at least
α after the level change. Node v only drops to level k−1
if Wv < 1, i.e., while being on level k its weight must
have dropped by at least α−1. By the above “conversion
rate” between weight and tokens this means that v must
have received at least βk(α− 1) tokens while it was on
level k, which at least X for large enough α. Case 2:
Assume next that node v was at level k+1 immediately
before level k. Right after dropping from level k+1 node
v owned βk(α −Wv(k)) tokens. As v has not changed
levels since, it did not have to give any tokens to edges
and did not have to pay for any updates of its adjacent
edges. Instead it might have received some tokens from
inserted or deleted adjacent edges. Thus, it still ownes
at least βk(α −Wv(k)) tokens. As Wv(k) ≤ Wv(k − 1)
and Wv(k) < 1 when v drops to level k−1, this number
of tokens is at least X for β ≥ 2 and α ≥ 3β + 1.

To summarize, whenever an edge is inserted it
receives a sufficient number of tokens to pay the cost of
future upwards level changes, but also to give a token
to its “lower” endpoint every time its level increases.
These tokens accumulated at the “lower” endpoints are
sufficient to pay for level decreases of these endpoints
because (a) nodes move up to a level when their weight
on the new level is at least α > 1 but only move down
when their weight falls below 1 and (b) the weight of
edges on the same and lower levels drops by a factor of
β between two adjacent levels. Thus βk(α − 1) many
edge deletions or edge weight decreases of edges adjacent
to node v are necessary to cause v to drop from level k
to level k − 1 (each giving one token to v), while there
are only βk−1 many edges on levels below k that need
to be updated when v drops. Thus, the cost of v’s level
drop is βk−1 and the new potential needed for v on

level k − 1 is βk−1(α − 1), but v has collected at least
βk(α− 1) tokens, which, by suitable choice of β and α,
is sufficient.

2.6 Proof of Theorem 2.3. Recall that the level of
an edge (y, z) is defined as `(y, z) = max(`(y), `(z)).
Consider the following thought experiment. We have a
bank account, and initially, when there are no edges in
the graph, the bank account has zero balance. For each
subsequent edge insertion/deletion, at most L/ε dollars
are deposited to the bank account; and every time
our algorithm changes the level of an already existing
edge, 1 dollar is withdrawn from it. We show that the
bank account never runs out of money, and this implies
that Count = O(tL/ε) after t edge insertions/deletions
starting from an empty graph.

Let B denote the total amount of money (or poten-
tial) in the bank account at the present moment. We
keep track of B by distributing an ε-fraction of it among
the nodes and the current set of edges in the graph.

(2.11) B = (1/ε) ·

(∑
e∈E

Φ(e) +
∑
v∈V

Ψ(v)

)

In the above equation, the amount of money (or
potential) associated with an edge e ∈ E is given by
Φ(e), and the amount of money (or potential) associated
with a node v ∈ V is given by Ψ(v). To ease
notation, for each edge e = (u, v) ∈ E, we use the
symbols Φ(e),Φ(u, v) and Φ(v, u) interchangeably. At
every point in time, all the potentials Φ(u, v),Ψ(v) are
determined by the two invariants stated below.

Invariant 2. For every edge (u, v) ∈ E, we have:

Φ(u, v) = (1 + ε) · (L−max(`(u), `(v)))

Invariant 3. For every node v ∈ V , we have:

Ψ(v) =
(
β`(v)+1/(β − 1)

)
·max (0, α−Wv)

When the algorithm starts, the graph has zero
edges, all the nodes are at level 0, and every node is
passive. At that moment, Invariant 3 sets Ψ(v) = 0 for
all nodes v ∈ V . Consequently, equation 2.11 implies
that the potential B is also set to zero. This is consistent
with our requirement that initially the bank account
ought to have zero balance. Theorem 2.3, therefore, will
follow if we can prove the next two lemmas. Their proofs
appear in Section 2.6.1 and Section 2.6.2 respectively.

Lemma 2.2. Consider the insertion (resp. deletion)
of an edge (u, v) in G. It creates (resp. destroys)
the weight w(u, v) = β−max(`(u),`(v)), creates (resp.

destroys) the potential Φ(u, v), and increases (resp.
decreases) the potential Ψ(u) (resp. Ψ(v)). Due to these
changes, the total potential B increases by at most L/ε.

Lemma 2.3. During every single iteration of the
While loop in Figure 1, the total increase in Count
is no more than the net decrease in the potential B.

2.6.1 Proof of Lemma 2.2. If an edge (u, v) is
inserted into G, then the potential Φ(u, v) is created and
gets a value of at most (1+ε)L units. As the weight Wu

(resp. Wv) increases, it follows that the potential Ψ(u)
(resp. Ψ(v)) does not increase. All the other potentials
remain unchanged. Thus, the net increase in B is at
most (1/ε) · (1 + ε)L = (1 + 1/ε)L ≤ L/ε.

In contrast, if an edge (u, v) is deleted from G,
then the potential Φ(u, v) is destroyed. The weight Wu

(resp. Wv) decreases by at most β−`(u) (resp. β−`(v)).
Hence, each of the potentials Ψ(u),Ψ(v) increases by
at most β/(β − 1) = 1 + 1/ε ≤ (1 + ε)/ log(1 + ε) ≤
((log n)−1)/ log(1+ ε) ≤ L for n ≥ 8. The potentials of
the remaining nodes and edges do not change. Hence,
by equation 2.11, the net increase in B is at most L/ε.

2.6.2 Proof of Lemma 2.3.
Throughout this section, fix a single iteration of the
While loop in Figure 1 and suppose that it changes
the level of a dirty node v by one unit. We use the
superscript 0 (resp. 1) on a symbol to denote its state
at the time instant immediately prior to (resp. after)
that specific iteration of the While loop. Further, we
preface a symbol with δ to denote the net decrease in its
value due to that iteration. For example, consider the
potential B. We have B = B0 immediately before the
iteration begins, and B = B1 immediately after iteration
ends. We also have δB = B0 − B1.

A change in the level of node v affects only the
potentials of the nodes u ∈ Nv ∪ {v} and that of the
edges e ∈ {(u, v) : u ∈ Nv}. This observation, coupled
with equation 2.11, gives us the following guarantee.

(2.12)

δB = (1/ε) ·

(
δΨ(v) +

∑
u∈Nv

δΦ(u, v) +
∑
u∈Nv

δΨ(u)

)

A change in the level of node v does not affect the
(a) the neighborhood structure of the node v, and (b)
the level and the overall degree of any node u 6= v. Thus,
we get the following equalities.

N 0
v (i) = N 1

v (i) for all i ∈ {0, . . . , L}.(2.13)

`0(u) = `1(u) for all u ∈ V \ {v}.(2.14)

D0
u = D1

u for all u ∈ V \ {v}.(2.15)

Accordingly, to ease notation we do not put any
superscript on the following symbols, as the quantities
they refer to remain the same throughout the duration
of the iteration of the While loop we are concerned
about.
Nv, Dv.

Nv(i),Wv(i) for all i ∈ {0, . . . , L}.
Nv(i, j),Dv(i, j) for all i, j ∈ {0, . . . , L}, i ≤ j.
`(u), Du for all u ∈ V \ {v}.

We divide the proof of Lemma 2.3 into two possible
cases, depending upon whether the concerned iteration
of the While loop increments or decrements the level of
v. The main approach to the proof remains the same in
each case. We first give an upper bound on the increase
in Count due to the iteration. Next, we separately
lower bound each of the following quantities: δΨ(v),
δΦ(u, v) for all u ∈ Nv, and δΨ(u) for all u ∈ Nv.
Finally, applying equation 2.12, we derive that δB is
sufficiently large to pay for the increase in Count.

Case 1: The level of the node v increases from k
to (k + 1).

Claim 1. We have Count1 −Count0 = Dv(0, k).

Proof. When the node v changes its level from k to
(k + 1), this only affects the levels of those edges that
are of the form (u, v), where u ∈ Nv(0, k).

Claim 2. We have δΨ(v) = 0.

Proof. Since the node v increases its level from k to
(k + 1), Step 02 (Figure 1) guarantees that W 0

v =
Wv(k) > αβ. Next, from Lemma 2.1 we infer that
W 1
v = Wv(k + 1) ≥ β−1 · Wv(k) > α. Since both

W 0
v ,W

1
v > α, we get: Ψ0(v) = Ψ1(v) = 0. It follows

that δΨ(v) = Ψ0(v)−Ψ1(v) = 0.

Claim 3. For every node u ∈ Nv, we have:

δΦ(u, v) =

{
(1 + ε) if u ∈ Nv(0, k);

0 if u ∈ Nv(k + 1, L).

Proof. If u ∈ Nv(0, k), then we have Φ0(u, v) = (1 + ε) ·
(L − k) and Φ1(u, v) = (1 + ε) · (L − k − 1). It follows
that δΦ(u, v) = Φ0(u, v)− Φ1(u, v) = (1 + ε).

In contrast, if u ∈ Nv(k + 1, L), then we have
Φ0(u, v) = Φ1(u, v) = (1 + ε) · (L − `(u)). Hence, we
get δΦ(u, v) = Φ0(u, v)− Φ1(u, v) = 0.

Claim 4. For every node u ∈ Nv, we have:

δΨ(u) ≥

{
−1 if u ∈ Nv(0, k);

0 if u ∈ Nv(k + 1, L).

Proof. Consider any node u ∈ Nv(k + 1, L). Since
k < `(u), we have w0(u, v) = w1(u, v), and this implies
that W 0

u = W 1
u . Thus, we get δΨ(u) = 0.

Next, fix any node u ∈ Nv(0, k). Note that δWu =
δw(u, v) = β−k − β−(k+1) = (β − 1)/βk+1. Using this
observation, we infer that:

δΨ(u) ≥ −
(
β`(u)+1/(β − 1)

)
· δWu

= −β`(u)+1/βk+1 ≥ −1.

From Claims 2, 3, 4 and equation 2.12, we derive the
following bound.

δB = (1/ε) ·

(
δΨ(v) +

∑
u∈Nv

δΦ(u, v) +
∑
u∈Nv

δΨ(u)

)
≥ (1/ε) · (0 + (1 + ε) ·Dv(0, k)−Dv(0, k))

= Dv(0, k)

Thus, Claim 1 implies that the net decrease in the
potential B in no less than the increase in Count. This
proves Lemma 2.3.

Case 2: The level of the node v decreases from
k to k − 1.

Claim 5. We have W 0
v = Wv(k) < 1, Dv(0, k) ≤ βk.

Proof. Since the node v decreases its level from k to
(k− 1), Step 04 (Figure 1) ensures that W 0

v = Wv(k) <
1. Since `0(v) = k, we have w0(u, v) ≥ β−k for all
u ∈ Nv. We conclude that:

1 > W 0
v ≥

∑
u∈Nv(0,k)

w0(u, v) ≥ β−k ·Dv(0, k).

Thus, we get Dv(0, k) ≤ βk.

Claim 6. We have Count1 −Count0 ≤ βk.

Proof. The node v decreases its level from k to k − 1.
Due to this event, the level of an edge changes iff it is
of the form (u, v) with u ∈ Nv(0, k− 1). Thus, we have
Count1 −Count0 = Dv(0, k − 1) ≤ Dv(0, k) ≤ βk.

Claim 7. For all u ∈ Nv, we have δΨ(u) ≥ 0.

Proof. Fix any node u ∈ Nv. As the level of the node
v decreases from k to k − 1, we infer that w0(u, v) ≤
w1(u, v), and, accordingly, we get W 0

u ≤ W 1
u . Since

Ψ(u) = β`(u) ·max (0, α−Wu), we derive that Ψ0(u) ≥
Ψ1(u). Thus, we have δΨ(u) = Ψ0(u)−Ψ1(u) ≥ 0.

Claim 8. For every node u ∈ Nv, we have:

δΦ(u, v) =

{
0 if u ∈ Nv(k, L);

−(1 + ε) if u ∈ Nv(0, k − 1);

Proof. Fix any node u ∈ Nv. We consider two possible
scenarios.

1. We have u ∈ Nv(k, L). As the level of the node v
decreases from k to k − 1, we infer that Φ0(u, v) =
Φ1(u, v) = (1 + ε) · (L − `(u)). Hence, we get
δΦ(u, v) = Φ1(u, v)− Φ0(u, v) = 0.

2. We have u ∈ Nv(0, k−1). Since the level of node v
decreases from k to k − 1, we infer that Φ0(u, v) =
(1 + ε) · (L− k) and Φ1(u, v) = (1 + ε) · (L− k+ 1).
Hence, we get δΦ(u, v) = Φ1(u, v) − Φ0(u, v) =
−(1 + ε).

This concludes the proof of the claim.

We now partition W 0
v into two parts: x and y.

The first part denotes the contributions towards W 0
v

by the neighbors of v that lie below level k, while the
second part denotes the contribution towards W 0

v by the
neighbors of v that lie on or above level k. Note that
x =

∑
u∈Nv(0,k−1) w

0(u, v) = β−k ·Dv(0, k − 1). Thus,
we get the following equations.

W 0
v = x+ y ≤ 1(2.16)

x = β−k ·Dv(0, k − 1)(2.17)

y =
∑

u∈Nv(k,L)

w0(u, v)(2.18)

Equation 2.16 holds due to Claim 5.

Claim 9. We have
∑
u∈Nv δΦ(u, v) = −(1 + ε) · x · βk.

Proof. Claim 8 implies that
∑
u∈Nv δΦ(u, v) = −(1 +

ε) ·Dv(0, k − 1). Applying equation 2.17, we infer that
Dv(0, k − 1) = x · βk.

Claim 10. We have:

δΨ(v) = (α− x− y) ·
(
βk+1/(β − 1)

)
−max (0, α− βx− y) ·

(
βk/(β − 1)

)
.

Proof. Equation 2.16 states that W 0
v = x+y < 1. Since

`0(v) = k, we get:

(2.19) Ψ0(v) = (α− x− y) ·
(
βk+1/(β − 1)

)
As the node v decreases its level from k to k − 1, we
have:

w1(u, v) =

{
β · w0(u, v) if u ∈ Nv(0, k − 1);

w0(u, v) if u ∈ Nv(k, L)

Accordingly, we have W 1
v = β · x+ y, which implies the

following equation.

(2.20) Ψ1(v) = max(0, α− βx− y) ·
(
βk/(β − 1)

)
Since δΨ(v) = Ψ0(v) − Ψ1(v), the claim follows from
equations 2.19 and 2.20.

We now consider two possible scenarios depending
upon the value of (α − βx − y). We show that in each
case δB ≥ βk. This, along with Claim 6, implies that
δB ≥ Count1 −Count0. This proves Lemma 2.3.

1. Suppose that (α−βx−y) < 0. From Claims 7, 9, 10
and equation 2.12, we derive:

ε · δB =
∑
u∈Nv

δΨ(u) +
∑
u∈Nv

δΦ(u, v) + Ψ(v)

≥ −(1 + ε) · x · βk + (α− x− y) · βk+1

(β − 1)

≥ −(1 + ε) · βk + (α− 1) · βk+1/(β − 1)

=
βk

(β − 1)
· {(α− 1) · β − (1 + ε)(β − 1)}

= (1 + ε) · βk

≥ ε · βk

The last equality holds since α = 1 + 2ε and
β = 1 + ε.

2. Suppose that (α−βx−y) ≥ 0. From Claims 7, 9, 10
and equation 2.12, we derive:

ε · δB =
∑
u∈Nv

δΨ(u) +
∑
u∈Nv

δΦ(u, v) + Ψ(v)

≥ −(1 + ε) · x · βk + (α− x− y) · βk+1

(β − 1)

−(α− βx− y) · βk/(β − 1)

=
βk

(β − 1)
·
{

(α− x− y) · β

−(1 + ε) · x · (β − 1)− (α− βx− y)
}

=
βk

(β − 1)
·
{

(α− x− y) · (β − 1)

−ε · x · (β − 1)
}

≥ βk

(β − 1)
·
{

(α− 1)(β − 1)− ε(β − 1)
}

= ε · βk (since α = 1 + 2ε, β = 1 + ε)

3 Dynamic Matching: Preliminaries

We are given an input graph G = (V,E) that is being
updated dynamically through a sequence of edge inser-
tions/deletions. We want to maintain an approximately
maximum matching in G. We will present two different
algorithms for this problem. They are described in Sec-
tions 4 and 5. Both these algorithms, however, will use
two key ideas.

1. It is easy to maintain a good approximate matching
in a bounded degree graph (see Section 3.1).

2. Every graph contains a subgraph of bounded de-
gree, called its kernel, that approximately preserves
the size of the maximum matching (see Section 3.2).

In Section 3.3, we give a static algorithm for building
a kernel in a graph. In Section 3.4, we present the
data structures that will be used in Sections 4 and 5
for maintaining a kernel in a dynamic setting.

Query time. In this paper, all the data structures
for dynamic matching explicitly maintain the set of
matched edges. Accordingly, using appropriate point-
ers, we can support the following queries.

• Report the size of the matching M maintained by
the data structure in O(1) time.

• Report the edges in M in O(1) time per edge.

• In O(1) time, report whether or not a given edge
(u, v) is part of the matching.

• In O(1) time, report whether or not a given node
u is matched in M , and if yes, in O(1) time report
the node it is matched to.

3.1 Maintaining an approximate matching in a
bounded degree graph.
Maintaining a maximal matching in a graph with max-
imum degree δ in time O(δ) per deletion and O(1)
per edge insertion is straightforward: After an inser-
tion check whether the inserted edge can be added to
the matching. If a matched edge is deleted, check all
neighbors of its endpoints to rematch them if possible.
Following the approach from [12], we can show that in
O(δ) worst-case update time we can even maintain a
3/2-approximate matching by guaranteeing that no aug-
menting path has a length less than 5. The basic idea
is to keep for each node a list of its neighbors as well
as a list of its unmatched neighbors. Due to space con-
straints, the proofs of the next two theorems appear in
the full version of the paper.

Theorem 3.1. Consider a dynamic graph G = (V, E),
and suppose that the maximum degree of a node in
G is always upper bounded by δ. There exists a data
structure for maintaining a maximal matching M in G
that handles each edge insertion in O(1) time and each
edge deletion in O(δ) time.

Theorem 3.2. Consider a dynamic graph G = (V, E),
and suppose that the maximum degree of a node in G is
always upper bounded by δ. There exists a data structure
for maintaining a matching M in G such that (a) every
augmenting path in G (w.r.t. M) has length at least five
and (b) an edge insertion or deletion in G takes O(δ)
worst-case time. Condition (a) implies that M is a 3/2-
approximate maximum matching in G.

3.2 The kernel and its properties.
In the input graph G = (V,E), let Nv = {u ∈ V :
(u, v) ∈ E} denote the set of neighbors of v ∈ V .

Consider a subgraph κ(G) = (V, κ(E)) with κ(E) ⊆
E. For all v ∈ V , define the set κ(Nv) = {u ∈ Nv :
(u, v) ∈ κ(E)}. If u ∈ κ(Nv), then we say that u
is a friend of v in κ(G). Next, the set of nodes V
is partitioned into two groups: tight and slack. We
denote the set of tight (resp. slack) nodes by κT (V)
(resp. κS(V)). Thus, we have V = κT (V) ∪ κS(V) and
κT (V) ∩ κS(V) = ∅.

Definition 2. Fix any c ≥ 1 and any ε ∈ [0, 1/3). The
subgraph κ(G) is an (ε, c)-kernel of G with respect to the
partition (κT (V), κS(V)) iff it satisfies Invariants 4- 6.

Invariant 4. |κ(Nv)| ≤ (1 + ε)c for all v ∈ V , i.e.,
every node has at most (1 + ε)c friends.

Invariant 5. |κ(Nv)| ≥ (1 − ε)c for all v ∈ κT (V),
i.e., every tight node has at least (1− ε)c friends.

Invariant 6. For all u, v ∈ κS(V), if (u, v) ∈ E, then
(u, v) ∈ κ(E). In other words, if two slack nodes are
connected by an edge in G, then that edge must belong
to κ(G).

By Invariant 4, the maximum degree of a node in
an (ε, c)-kernel is O(c). In Theorems 3.3 and 3.4, we
show that an (ε, c)-kernel κ(G) is basically a subgraph
of G with maximum degree O(c) that approximately
preserves the size of the maximum matching.

For ease of exposition, we often refer to a kernel
κ(G) without explicitly mentioning the underlying par-
tition (κT (V), κS(V)). The proofs of Theorems 3.3, 3.4
appear in Sections 3.2.1 and 3.2.2 respectively.

Theorem 3.3. Let M be a maximal matching in an
(ε, c)-kernel κ(G). Then M is a (4 + 6ε)-approximation
to the maximum matching in G.

Theorem 3.4. Let M be a matching in an (ε, c)-
kernel κ(G) such that every augmenting path in κ(G)
(w.r.t. M) has length at least five. Then M is a (3+3ε)-
approximation to the maximum matching in G.

3.2.1 Proof of Theorem 3.3.
Let V (M) = {v ∈ V : (u, v) ∈ M for some u ∈ Nv}
be the set of nodes that are matched in M , and let
FT = κT (V) \ V (M) be the subset of tight nodes in
κ(G) that are free in M .

Lemma 3.1. We have |FT | ≤ (2 + 6ε) · |M |.

Proof. We will show that |FT | ≤ (1+3ε) · |V (M)|. Since
|V (M)| = 2 · |M |, the lemma follows.

We design a charging scheme where each node in
FT contributes one dollar to a global fund. So the
total amount of money in this fund is equal to |FT |
dollars. Below, we demonstrate how to transfer this
fund to the nodes in V (M) so that each node x ∈ V (M)
receives at most (1 + 3ε) dollars. This implies that
|FT | ≤ (1 + 3ε) · |V (M)|.

Since M is a maximal matching in κ(G), we must
have κ(Nv) ⊆ V (M) for all v ∈ FT . For each node
v ∈ FT , we distribute its one dollar equally among
its friends, i.e., each node x ∈ κ(Nv) gets 1/|κ(Nv)|
dollars from v. Since FT ⊆ κT (V), Invariant 5 implies
that 1/|κ(Nv)| ≤ 1/ ((1− ε)c) for all v ∈ FT . In other
words, a node in V (M) receives at most 1/ ((1− ε)c)
dollars from each of its friends under this money-
transfer scheme. But, by Invariant 4, a node can
have at most (1 + ε)c friends. So the total amount
of money received by a node in V (M) is at most
(1 + ε)c/ ((1− ε)c) ≤ (1 + 3ε), for ε ∈ [0, 1/3).

To continue with the proof of Theorem 3.3, let
Mo ⊆ E be a maximum-cardinality matching in G =
(V,E). Define Mo

1 ⊆ Mo to be the subset of edges
whose both endpoints are unmatched in M , and let
Mo

2 = Mo \Mo
1 .

Consider any edge (u, v) ∈Mo
1 . By definition, both

the nodes u, v are free in M . Since M is a maximal
matching in κ(G), it follows that the edge (u, v) is not
part of the kernel, i.e., (u, v) 6= κ(E). Hence, Invariant 6
implies that either u /∈ κS(V) or v /∈ κS(V). Without
any loss of generality, suppose that u /∈ κS(V). This
means that the node u is tight, and, furthermore, it is
free in M . We infer that every edge in Mo

1 is incident
to at least one node from FT , where FT ⊆ κT (V) is the
subset of tight nodes that are free in M . Accordingly,
we have |Mo

1 | ≤ |FT |. Combining this inequality with
Lemma 3.1, we get:

(3.21) |Mo
1 | ≤ (2 + 6ε) · |M |

Next, every edge in Mo
2 has at least one endpoint

that is matched in M . Thus, M is a maximal matching
in the graph G′ = (V,Mo

2 ∪ M). Since Mo
2 is also a

matching in G′, we get:

(3.22) |Mo
2 | ≤ 2 · |M |

The theorem follows if we add equations 3.21
and 3.22.

3.2.2 Proof of Theorem 3.4.
Let V (M) = {v ∈ V : (u, v) ∈ M for some u ∈ Nv}
be the set of nodes that are matched in M . For all
nodes v ∈ V (M), let eM (v) denote the edge in M that
is incident to v. Let FT = κT (V) \ V (M) be the subset
of tight nodes in κ(G) that are free in M .

Lemma 3.2. For every edge (u, v) ∈ M , we have
| (κ(Nu) ∩ FT) ∪ (κ(Nv) ∩ FT) | ≤ (1 + ε)c.

Proof. Suppose that the lemma is false and we have
| (κ(Nu) ∩ FT)∪ (κ(Nv) ∩ FT) | > (1+ε)c for some edge
(u, v) ∈ M . As Invariant 4 guarantees that |κ(Nu)| ≤
(1 + ε)c and |κ(Nv)| ≤ (1 + ε)c, there has to be a pair
of distinct nodes u′, v′ ∈ FT such that u′ ∈ κ(Nu) and
v′ ∈ κ(Nv). This means that the path (u′, u, v, v′) is
an augmenting path in κ(G) (w.r.t. M) and has length
three. We reach a contradiction.

Lemma 3.3. We have |FT | ≤ (1 + 3ε) · |M |.

Proof. We design a charging scheme where each node in
FT contributes one dollar to a global fund. So the total
amount of money in this fund is equal to |FT | dollars.
Below, we demonstrate how to transfer this fund to the
edges in M so that each edge e ∈ M receives at most
(1 + 3ε) dollars. This implies that |FT | ≤ (1 + 3ε) · |M |.

Since M is a maximal matching in κ(G), we must
have κ(Nv) ⊆ V (M) for all v ∈ FT . For each node
v ∈ FT , we distribute its one dollar equally among
the matched edges incident to its friends, i.e., for each
node x ∈ κ(Nv), the edge eM (x) gets 1/|κ(Nv)| dollars
from v. Since FT ⊆ κT (V), Invariant 5 implies that
1/|κ(Nv)| ≤ 1/ ((1− ε)c) for all v ∈ FT . In other words,
an edge (x, y) ∈M receives at most 1/ ((1− ε)c) dollars
from each of the nodes v ∈ (κ(Nx)∩FT)∪ (κ(Ny)∩FT)
under this money-transfer scheme. Hence, Lemma 3.2
implies that the total amount of money received by an
edge (x, y) ∈M is at most (1+ ε)c/((1− ε)c) ≤ (1+3ε),
for ε ∈ [0, 1/3).

To continue with the proof of Theorem 3.4, define
Mo ⊆ E to be a maximum-cardinality matching in
G = (V,E). Furthermore, let Mo

1 ⊆ Mo be the subset
of edges whose both endpoints are unmatched in M ,
and let Mo

2 = Mo \Mo
1 .

Consider any edge (u, v) ∈Mo
1 . By definition, both

the nodes u, v are free in M . Since M is a maximal
matching in κ(G), it follows that the edge (u, v) is
not part of the kernel, i.e., (u, v) 6= κ(E). Hence,
Invariant 6 implies that either u /∈ κS(V) or v /∈ κS(V).
Without any loss of generality, suppose that u /∈ κS(V).
This means that the node u is tight, and, furthermore,
it is free in M . We infer that every edge in Mo

1 is
incident to at least one node from FT . Accordingly,
we have |Mo

1 | ≤ |FT |. Combining this inequality with
Lemma 3.3, we get:

(3.23) |Mo
1 | ≤ (1 + 3ε) · |M |

Next, every edge in Mo
2 has at least one endpoint

that is matched in M . Thus, M is a maximal matching

in the graph G′ = (V,Mo
2 ∪ M). Since Mo

2 is also a
matching in G′, we get:

(3.24) |Mo
2 | ≤ 2 · |M |

The theorem follows if we add equations 3.23
and 3.24.

3.3 An algorithm for building a kernel in a
static graph.
We present a linear-time algorithm for constructing a
(0, c)-kernel κ(G) of a static graph G = (V,E).

Theorem 3.5. We have an algorithm for computing a
(0, c)-kernel κ(G) = (V, κ(E)) of a graph G = (V,E).
The kernel returned by the algorithm has the added
property that tight nodes have exactly c friends and slack
nodes have less than c friends. For every c ≥ 1, the
algorithm runs in O(|E|) time.

Proof. Initially, each node in V has zero friends, and
the edge-set κ(E) is empty. We then execute the For
loop stated below.

• For all (u, v) ∈ E

– if |κ(Nu)| < c and |κ(Nv)| < c, Then

∗ Set κ(Nv) ← κ(Nv) ∪ {u} and κ(Nu) ←
κ(Nu) ∪ {v}.
∗ Set κ(E)← κ(E) ∪ {(u, v)}.

Consider the κ(G) = (V, κ(E)) we get at the end of the
For loop. Clearly, in κ(G) every node has at most c
friends, i.e., |κ(Nv)| ≤ c for all v ∈ V . Furthermore, for
all edges (u, v) ∈ E, if |κ(Nu)| < c and |κ(Nv)| < c, then
it is guaranteed that (u, v) ∈ κ(E). Thus, if we define
κT (V) = {v ∈ V : |κ(Nv)| = c} and κS(V) = {v ∈
V : |κ(Nv)| < c}, then κ(G) becomes a (0, c)-kernel of
G. The whole procedure can be implemented in O(|E|)
time.

3.4 Data structures for representing a kernel in
a dynamic graph.
In the graph G, the set of neighbors of a node v is stored
in the form of a linked list neighbors(v), which is part
of an adjacency-list data structure. Further, each node
v maintains the following information.

• A bit Type(v) indicating if the node is tight or
slack.

Type(v) =

{
tight if v ∈ κT (V);

slack if v ∈ κS(V).

• The set of nodes κ(Nv), in the form of a doubly
linked list Friends(v).

• A counter #friends(v) = |κ(Nv)| that keeps track
of the number of friends of the node.

Furthermore, we store at each edge (u, v) ∈ κ(E)
two pointers, corresponding to the two occurrences
of edge (u, v) in the linked lists Friends(u) and
Friends(v). In particular, we denote by Pointer[u, v]
(resp. Pointer[v, u]) the pointer to the position of u
(resp. v) in the list Friends(v) (resp. Friends(u)). Us-
ing those pointers, we can insert an edge into κ(G) or
delete an edge from κ(G) in O(1) time.

4 (3 + ε)-approximate matching in O(m1/3/ε2)
amortized update time

Fix any constant ε ∈ (0, 1/3). In this section,
we present an algorithm for maintaining a (3 + ε)-
approximate matching M in a graph G = (V,E) un-
dergoing a sequence of edge insertions/deletions. It re-
quires O(m1/3/ε2) amortized update time.

4.1 Overview of our approach.
The main idea is to partition the sequence of updates
(edge insertions/deletions) in G into phases. Each phase
lasts for ε2c2/2 consecutive updates in G. Let Gi,t
denote the state of G just after the tth update in phase i.
The initial state of the graph, before it starts changing,
is given by G1,0. We reach the graph Gi,t from Gi,0
after a sequence of (i− 1) · (ε2c2/2) + t updates in G.

For the rest of this section, we focus on describing
our algorithm for any given phase i ≥ 1. We define
m ← |Ei,0| to be the number of edges in the input
graph in the beginning of the phase, and set c← m1/3.
Since the phase lasts for only O(ε2m2/3) updates in G,
it follows that |Ei,t| = O(m) for all 0 ≤ t ≤ ε2c2/2.
During the phase, we maintain a (3 + ε)-approximate
matching in G as described below.

Just before phase i begins, we build a (0, c)-kernel
κ(G) on G = Gi,0 as per Theorem 3.5. This takes O(m)
time. Next, we compute a 3/2-approximate maximum
matching M = Mi,0 on κ(Gi,0) by ensuring that every
augmenting path in κ(Gi,0) (w.r.t. Mi,0) has length at
least five. This also takes O(m) time, and concludes the
preprocessing step.

After each update in G during phase i, we first mod-
ify the kernel κ(G) using the algorithm in Section 4.2,
and subsequently we modify the matching M in κ(G)
using Theorem 3.2. Theorem 4.2 guarantees that the
graph κ(G) remains an (ε, c)-kernel of G throughout the
phase. Hence, by Theorem 3.4, the matchingM remains
a (3 + ε)-approximation to the maximum matching in
G.

The idea behind the algorithm in Section 4.2 is
simple. In the beginning of the phase, Theorem 3.5

guarantees that every tight node has exactly c friends.
During the phase, whenever the number of friends of
a tight node v drops below (1 − ε)c, it scans through
its first c neighbors in Nv, and keeps making friends
out of them until |κ(Nv)| becomes equal to c. This
procedure is implemented in the subroutine REFILL(v)
(see Figure 2). A potential problem with this approach
is that after a while a node v may have more than (1+ε)c
friends due to the repeated invocations of the subroutine
REFILL(u), for u ∈ Nv. We show that this event can
be ruled out by ending the current phase after ε2c2/2
updates in G.

Bounding the update time.

• Preprocessing.

The preprocessing in the beginning of the phase
takes O(m) time. Since the phase lasts for
ε2c2/2 updates, we get an amortized bound of
O(m/(ε2c2)) = O(m1/3/ε2).

• Maintaining the kernel κ(G).

By Theorem 4.2, the kernel κ(G) can be modified
after each update in G in O(c) = O(m1/3) time.

• Maintaining the matching M in κ(G).

By Theorem 4.2, the number of updates made into
κ(G) during the entire phase is O(ε2c2). Since the
maximum degree of a node in κ(G) is O(c), mod-
ifying the matching M after each update in κ(G)
requires O(c) time (see Theorem 3.2). Thus, the
total time spent during the phase in maintaining
the matching M is O(ε2c2) ·O(c) = O(ε2c3). Since
the phase lasts for ε2c2/2 updates in G, we get an
amortized bound of O(c) = O(m1/3).

We summarize the main result of this section in the
theorem below.

Theorem 4.1. In a dynamic graph G = (V,E), we can
maintain a (3 + ε)-approximate matching M ⊆ E in
O(m1/3/ε2) amortized update time.

4.2 Algorithms for maintaining the kernel dur-
ing a phase.
We present our algorithm for maintaining an (ε, c)-
kernel of the graph during a phase.

Theorem 4.2. Suppose that we are given a (0, c)-
kernel κ(G) of G in the beginning of a phase. Then we
have an algorithm for modifying κ(G) after each update
(edge insertion/deletion) in G such that:

1. Each update in G is handled in O(c) worst-case
time.

2. At most O(ε2c2) updates are made into κ(G) during
the entire phase.

3. Throughout the duration of the phase, κ(G) re-
mains an (ε, c)-kernel of G.

The rest of Section 4.2 is organized as follows. In
Section 4.2.1 (resp. 4.2.2), we present our algorithm for
handling an edge insertion (resp. edge deletion) in G
during the phase. In Section 4.2.3, we prove that the
algorithm satisfies the properties stated in Theorem 4.2.

4.2.1 Handling an edge insertion in G during
the phase.
Suppose that an edge (u, v) is inserted into the graph
G = (V,E). To handle this edge insertion, we first
update the lists neighbors(u) and neighbors(v), and
then process the edge as follows.

• Case 1: Either Type(u) = tight or Type(v) =
tight.

We do nothing and conclude the procedure.

• Case 2: Both Type(u) = slack and Type(v) =
slack.

– Case 2a: Either #Friends(u) ≥ c or
#Friends(v) ≥ c.
If #Friends(u) ≥ c, then we set Type(u)←
tight. Next, if #Friends(v) ≥ c, then we set
Type(v)← tight.

– Case 2b: Both #Friends(u) < c and
#Friends(v) < c.

We add the edge (u, v) to the kernel κ(G) and
make u, v friends of each other. Specifically,
we add the node u to the list Friends(v)
and v to the list Friends(u), update the
pointers Pointer[u, v] and Pointer[v, u] ac-
cordingly, and increment each of the counters
#Friends(u), #Friends(v) by one unit.

Lemma 4.1. Suppose that an edge is inserted into the
graph G and we run the procedure described above.

1. This causes at most one edge insertion into κ(G)
and at most one edge deletion from κ(G).

2. The procedure runs in O(1) time in the worst case.

4.2.2 Handling an edge deletion in G during the
phase.
Suppose that an edge (u, v) is deleted from the graph
G = (V,E). To handle this edge deletion, we first
update the lists neighbors(u) and neighbors(v), and
then proceed as follows.

We check if the edge (u, v) was part of the kernel
κ(G), and, if yes, then we delete (u, v) from κ(G).
Specifically, we delete u from Friends(v), v from
Friends(u) (using Pointer[u, v] and Pointer[v, u]),
and decrement each of the counters #Friends(u),
#Friends(v) by one unit.

We then process the nodes u and v one after
another. Below, we describe only the procedure that
runs on the node u. The procedure for the node v is
exactly the same.

• Case 1: Type(u) = tight. Here, we check if
the number of friends of u has dropped below the
prescribed limit due to the edge deletion, and,
accordingly, we consider two possible sub-cases.

– Case 1a: #Friends(u) < (1− ε)c. Here, we
call the subroutine REFILL(u) as described
in Figure 2.

– Case 1b: #Friends(u) ≥ (1 − ε)c. In
this case, we do nothing and conclude the
procedure.

• Case 2: Type(u) = slack. In this case, we do
nothing and conclude the procedure.

Lemma 4.2. Suppose that an edge is deleted from the
graph G and we run the procedure described above.

1. This causes at most O(εc) edge insertions into κ(G)
and at most one edge deletion from κ(G).

2. The procedure runs in O(c) time in the worst case.

4.2.3 Proof of Theorem 4.2.
The first part of the theorem immediately follows from
Lemmas 4.1, 4.2. We now focus on the second part.
Note that at most one edge is deleted from κ(G) after
an update (edge insertion or deletion) in G. Since the
phase lasts for ε2c2/2 updates in G, at most ε2c2/2 edge
deletions occur in κ(G) during the phase. To complete
the proof, we will show that the corresponding number
of edge insertions in κ(G) is also O(ε2c2).

For an edge insertion in G, at most one edge is
inserted into κ(G). For an edge deletion in G, there
can be O(εc) edge insertions in κ(G), but only if the
subroutine REFILL(.) is called. Lemma 4.3 shows that
at most εc calls are made to the subroutine REFILL(.)
during the phase. This implies that at most O(ε2c2)
edge insertions occur in κ(G) during the phase, which
proves the second part of the theorem.

Lemma 4.3. The subroutine REFILL(.) is called at
most εc times during the phase.

If the list neighbors(u) is empty, Then
Set Type(u)← slack.
Return.

Let x be the first node in the list neighbors(u).
While (#Friends(u) < c)

If x /∈ Friends(u), Then
Add x to Friends(u) and u to
Friends(x), so that the edge (u, x)
becomes part of the kernel
κ(G) = (V, κ(E)).
Increment each of the counters
#Friends(u), #Friends(v) by one unit.
Update the pointers Pointer[u, x]
and Pointer[x, u].

If x is the last node in neighbors(u), Then
exit the While loop.

Else
Let y be the node that succeeds x in
the list neighbors(u).
Set x← y.

If #Friends(u) < c, Then
Set Type(u)← slack.

Figure 2: REFILL(u).

Proof. When the phase begins, every tight node has
exactly c friends (see Theorem 3.5), and during the
phase, the status of a node u is changed from slack
to tight only when |κ(Nu)| becomes (weakly) greater
than c. On the other hand, the subroutine REFILL(u)
is called only when u is tight and |κ(Nu)| falls below
(1 − ε)c. Thus, each call to REFILL(.) corresponds
to a scenario where a tight node has lost at least εc
friends. Each edge deletion in G leads to at most two
such losses (one for each of the endpoints), whereas an
edge insertion in G leads to no such event. Since the
phase lasts for ε2c2/2 edge insertions/deletions in G, a
counting argument shows that it can lead to at most
(ε2c2/2) · 2/(εc) = εc calls to REFILL(.).

It remains to prove the final part of the theorem,
which states that the algorithm maintains an (ε, c)-
kernel. Specifically, we will show that throughout the
duration of the phase, the subgraph κ(G) maintained
by the algorithm satisfies Invariants 4–6.

Lemma 4.4. Suppose that κ(G) satisfies Invariants 5, 6
before an edge update in G. Then these invariants
continue to hold even after we modify κ(G) as per the
procedure in Section 4.2.1 (resp. Section 4.2.2).

Proof. Follows from the descriptions of the procedures
in Sections 4.2.1 and 4.2.2.

Recall that in the beginning of the phase, the graph
κ(G) is a (0, c)-kernel of G. Since every (0, c)-kernel is
also an (ε, c)-kernel, we repeatedly invoke Lemma 4.4
after each update in G, and conclude that κ(G) satisfies
Invariants 5, 6 throughout the duration of the phase.
For the rest of this section, we focus on proving the
remaining Invariant 4.

Fix any node v ∈ V . When the phase begins, the
subgraph κ(G) is a (0, c)-kernel of G, so that we have
|κ(Nv)| ≤ c. During the phase, the node v can get new
friends under two possible situations.

1. An edge incident to v has just been inserted into
(resp. deleted from) the graphG, and the procedure
in Section 5.2.3 (resp. the subroutine REFILL(v))
is going to be called.

2. The subroutine REFILL(u) is going to be called for
some u ∈ Nv.

If we are in situation (1) and the node v already has
at least c friends, then the procedure under considera-
tion will not end up adding any more node to κ(Nv).
Thus, it suffices to show that the node v can get at
most εc new friends during the phase under situation
(2). Note that each call to REFILL(u), u 6= v, cre-
ates at most one new friend for v. Accordingly, if we
show that the subroutine REFILL(.) is called at most
εc times during the entire phase, then this will suffice to
conclude the proof of Theorem 4.2. But this has already
been done in Lemma 4.3.

5 (4 + ε)-approximate matching in O(m1/3/ε2)
worst-case update time

Fix any ε ∈ (0, 1/6). We present an algorithm for
maintaining a (4 + ε)-approximate matching M in a
dynamic graph G = (V,E) with O(m1/3/ε2) worst-case
update time.

5.1 Overview of our approach.
As in Section 4.1, we partition the sequence of updates
(edge insertions/deletions) in G into phases. Each phase
lasts for ε2c2/2 consecutive updates in G. Let Gi,t
denote the state of G just after the tth update in phase i.
The initial state of the graph, before it starts changing,
is given by G1,0. Thus, we reach the graph Gi,t from
Gi,0 after a sequence of (i− 1) · (ε2c2/2) + t updates in
G.

For the rest of this section, we focus on describing
our algorithm for any given phase i ≥ 1. We define
m ← |Ei,0| to be the number of edges in the input
graph in the beginning of the phase, and set c← m1/3.
Since the phase lasts for only O(ε2m2/3) updates in G,
it follows that |Ei,t| = O(m) for all 0 ≤ t ≤ ε2c2/2.

Till now, the description has been the same as in
Section 4.1. From this point onwards, however, we need
to modify the framework in Section 4.1 to get a worst-
case bound on the update time.

Preprocessing. If i = 1, then we build a (0, c)-
kernel κ(G1,0) in the beginning of the phase as per
Theorem 3.5. Next, we build a maximal matching
M1,0 in κ(G1,0). Overall, this takes O(|V |+|E1,0|) time.

Algorithm for each phase. The algorithm of the
previous section rebuilds the kernel and a corresponding
matching from scratch at the beginning of each phase
and we amortize the cost of the rebuild over the
phase. To achieve a worst-case running time we do
this rebuilding “in the background” during the phase.
This means that at the beginning of a phase we start
with an empty graph G∗ and an empty kernel and
insert O(m/(ε2c2)) edges into G∗ and its kernel during
each update in G. Thus, edge insertions into G∗

need to be handled in constant time. We can handle
“bunch updates” into G∗ to build the kernel efficiently,
but we cannot efficiently update a 3/2-approximate
matching, in the kernel as each edge insertion takes
O(c) time (Theorem 3.2). However, we can update a
maximal matching, i.e., a 2-approximate matching in
constant time per edge insertions (Theorem 3.1). Thus,
we run the 2-approximation algorithm on the kernel
instead of the 3/2-approximation algorithm, leading to
a (4 + ε) overall approximation. Additionally, we need
to perform the updates of the current phase in G∗.
For that we use basically the same algorithm as in
Section 4.2. As a result at the end of a phase G∗ = G
and the kernel that we built for G∗ is only an (ε, c)
kernel of G, i.e., we have to start the next phase with
a (ε, c)-kernel instead of a (0, c)-kernel. This, however,
degrades the approximation ratio only by an additional
factor of ε.

To summarize our algorithm for phase i has two
components.

• Dealing with the current phase. Just before the
start of phase i, an (ε, c)-kernel κ(Gi,0) and a
maximal matching Mi,0 in κ(Gi,0) are handed
over to us. Then, as G keeps changing, we keep
modifying the subgraph κ(G) and the matching M .
Till the end of phase i, we ensure that κ(G) remains
a (2ε, c)-kernel of G and that M remains a maximal
matching in κ(G). Hence, by Theorem 3.3, the
matching M gives a (4 + ε)-approximation2 to the

2To be precise, the theorem shows a (4 + 12ε)-approximation

but running the algorithm with ε′ = ε/12 results in a (4 + ε)-
approximation.

maximum matching in G throughout the duration
of phase i.

• Preparing for the next phase. We build a new (ε, c)-
kernel (and a maximal matching in it) for Gi+1,0

in the background. They are handed over to the
algorithm for phase (i + 1) at the start of phase
(i+ 1).

We elaborate upon each of these components in more
details in Section 5.2 (see Lemmas 5.1, 5.2). For
maintaining a kernel in a dynamic graph, both these
components use a procedure that is essentially the one
described in Section 4.2. However, a more fine tuned
analysis of the procedure is necessary in order get worst-
case update time.

Finally, Theorem 3.3 and Lemmas 5.1, 5.2 give us
the desired guarantee.

Theorem 5.1. We can maintain a (4+ ε)-approximate
matching in a dynamic graph G = (V,E) in O(m1/3/ε2)
worst-case update time.

5.2 Algorithm for maintaining and building the
kernel during each phase.
In Subsections 5.2.3 and 5.2.4 we present an algorithm
for maintaining a kernel in a fully dynamic graph. It
is basically a relaxation of the algorithm from Subsec-
tion 4.2 and is based on the concept of an “epoch”.

Definition 3. For c ≥ 1, λ ∈ (0, 1), a sequence of
updates in a graph is called a (λ, c)-epoch iff it contains
at most λ2c2/2 edge deletions (which can be arbitrarily
interspersed with any number of edge insertions).

The resulting algorithm is summarized in the theo-
rem below.

Theorem 5.2. Fix any c ≥ 1 and ε, λ > 0 with
(ε + λ) < 1/3. Consider any (λ, c)-epoch in the input
graph G = (V,E), and suppose that we are given an
(ε, c)-kernel κ(G) in the beginning of the epoch. Then we
have an algorithm for updating κ(G) after each update
in G. The algorithm satisfies three properties.

1. An edge insertion in G is handled in O(1) worst-
case time, and this leads to at most one edge
insertion in κ(G) and zero edge deletion in κ(G).

2. An edge deletion in G is handled in O(c) worst-
case time, and this leads to at most O(λc) edge
insertions in κ(G) and at most one edge deletion
in κ(G).

3. Throughout the duration of the epoch, κ(G) re-
mains a (λ+ ε, c)-kernel of G.

We use the kernel update algorithm in the two
components of a phase, which we describe next in detail.
Recall that Gi,t denotes the state of G just after the tth

update in phase i ≥ 1, m← |Ei,0|, and c← m1/3.

5.2.1 Dealing with the current phase In the
beginning of phase i, we are given an (ε, c)-kernel
κ(Gi,0) and a maximal matching Mi,0 in κ(Gi,0). Since
a phase lasts for ε2c2/2 edge updates in G, we treat
phase i as an (ε, c)-epoch (see Definition 3). Thus,
after each edge insertion/deletion in G during phase i,
we modify κ(G) as per Theorem 5.2. This ensures that
κ(G) remains an (2ε, c)-kernel till the end of phase i.
After each update in κ(G), we modify the matching M
using Theorem 3.1 so as to ensure that M remains a
maximal matching in κ(G).

We show that this procedure requires O(c) time in the
worst case to handle an update in G.

• Case 1: An edge is inserted into the graph G.
By Theorem 5.2, in this case updating the kernel
κ(G) requires O(c) time, and this results in at
most one edge insertion into κ(G) and zero edge
deletion from κ(G). By Theorem 3.1, updating the
matching M requires O(1) time.

• Case 2: An edge is deleted from the graph G. By
Theorem 5.2, in this case updating the kernel κ(G)
requires O(c) time, and this results in O(εc) edge
insertions into κ(G) and at most one edge deletion
from κ(G). Since the maximum degree of a node
in κ(G) is O(c), updating the matching M requires
O(εc) +O(c) = O(c) time (see Theorem 3.1).

Lemma 5.1. Suppose that when phase i begins, we
are given an (ε, c)-kernel κ(G) of G and a maximal
matching M in κ(G). After each update in G during
phase i, we can modify κ(G) and M in O(c) time. Till
the end of phase i, κ(G) remains an (2ε, c)-kernel of G
and M remains a maximal matching in κ(G).

5.2.2 Preparing for the next phase.

Before phase i begins, in O(1) time we initialize
a graph G∗ = (V,E∗) with E∗ = ∅, a (0, c)-kernel
κ(G∗) = (V, κ(E∗)), and a maximal matching M∗ = ∅
in κ(G∗). To achieve constant time we use an unini-
tialized array for the Type-bit and assume that every
node for which the bit is not initialized is of type slack.

After each update in G in phase i, we call Update-G∗

(Figure 3). This ensures the following properties.

• (P1) Each edge insertion in G leads to at most

If an edge (u, v) is inserted into G, Then
E∗ ← E∗ ∪ {(u, v)}.

Else if an edge (u, v) is deleted from G, Then
E∗ ← E∗ \ {(u, v)}.

For i = 1 to 2m/(ε2c2)
If E \ E∗ 6= ∅, Then
Pick any edge e ∈ E \ E∗.
E∗ ← E∗ ∪ {e}.

Figure 3: Update-G∗.

O(m/(ε2c2)) edge insertions in G∗.

• (P2) Each edge deletion in G leads to at most one
edge deletion in G∗ and at most O(m/(ε2c2)) edge
insertions in G∗.

• (P3) After each edge insertion/deletion in G,
changing the graph G∗ requires O(m/(ε2c2)) time.

• (P4) We always have E∗ ⊆ E. Furthermore, at the
end of phase i, we have E∗ = E. This holds since
m is the size of E in the beginning of phase i, and
since the phase lasts for ε2c2/2 updates in G.

Now, consider the sequence of updates in G∗ that take
place during phase i. (P1) and (P2) guarantee that
this sequence contains at most ε2c2/2 edge deletions.
So this sequence can be treated as an (ε, c)-epoch in G∗

(see Definition 3).

Hence, after each update in G∗, we modify the subgraph
κ(G∗) using Theorem 5.2, and subsequently, we modify
the maximal matching M∗ in κ(G∗) using Theorem 3.1.

Since κ(G∗) was a (0, c)-kernel of G∗ in the beginning
of the epoch, we get the following guarantee.

• (P5) Throughout the duration of phase i, the graph
κ(G∗) is an (ε, c)-kernel of G∗ = (V,E∗) and M∗ is
a maximal matching in κ(G∗).

By (P1) and (P2), an update in G leads to O(m/(ε2c2))
edge insertions and at most one edge deletion in G∗.
Each of these edge insertions in G∗ further leads to at
most one edge insertion in κ(G∗), while the potential
edge deletion in G∗ leads to at most one edge deletion
and O(εc) edge insertions in κ(G∗) (see Theorem 5.2).
To summarize, an update in G leads to the following
updates in G∗ and κ(G∗).

• At most one edge deletion and O(m/(ε2c2)) edge
insertions in G∗.

• At most one edge deletion and O(εc + m/(ε2c2))
edge insertions in κ(G∗).

Thus, by Theorems 5.2 and 3.1, we get the following
bound on the update time

• (P6) After each edge update in G, the graph κ(G∗)
and the maximal matching M∗ in κ(G∗) can be
modified in O(c) + O(εc + m/(ε2c2)) = O(c +
m/(ε2c2)) time.

Using (P3) and (P6), we derive that after each update in
G, the time required to modify the structures G∗, κ(G∗)
and M∗ is O(c + m/(ε2c2)) = O(m1/3/ε2) in the worst
case. By (P4) and (P5), the graph G∗ becomes identical
with G at the end of phase i, and at this point κ(G∗)
becomes an (ε, c)-kernel of Gi+1,0.

Lemma 5.2. Starting from the beginning of phase i, we
can run an algorithm with the following properties.

• After each update in G during phase i, it performs
O(m1/3/ε2) units of computation.

• At the end of phase i, it returns an (ε, c)-kernel of
Gi+1,0 and a maximal matching in this kernel.

Theorem 5.1 now follows from Theorem 3.3 and Lem-
mas 5.1, 5.2.

5.2.3 Handling an edge insertion into G during
the epoch.
Suppose that an edge (u, v) is inserted into the graph
G = (V,E). To handle this edge insertion, we first
update the lists neighbors(u) and neighbors(v), and
then process the edge as follows.

• Case 1: Either Type(u) = tight or Type(v) =
tight.

We do nothing and conclude the procedure.

• Case 2: Both Type(u) = slack and Type(v) =
slack.

– Case 2a: Either #Friends(u) ≥ (1− ε)c or
#Friends(v) ≥ (1− ε)c.
If #Friends(u) ≥ (1 − ε)c, then we set
Type(u) ← tight. Next, if #Friends(v) ≥
(1− ε)c, then we set Type(v)← tight.

– Case 2b: Both #Friends(u) < (1− ε)c and
#Friends(v) < (1− ε)c.
We add the edge (u, v) to the kernel κ(G).
Specifically, we add u to the list Friends(v)
and v to the list Friends(u), update the
pointers Pointer[u, v] and Pointer[v, u] ac-
cordingly, and increment each of the counters
#Friends(u), #Friends(v) by one unit.

Lemma 5.3. Suppose that an edge is inserted into the
graph G and we run the procedure described above.

1. This causes at most one edge insertion into κ(G)
and at most one edge deletion from κ(G).

2. The procedure runs in O(1) time in the worst-case.

5.2.4 Handling an edge deletion in G during the
epoch.
Suppose that an edge (u, v) gets deleted from the graph
G = (V,E). To handle this edge deletion, we first
consider the adjacency-list data structure for G, and
update the lists neighbors(u) and neighbors(v).

We check if the edge (u, v) was part of the ker-
nel κ(G), and, if yes, then we delete (u, v) from
κ(G). Specifically, we delete u from Friends(v) and
v from Friends(u) (using the pointers Pointer[u, v],
Pointer[v, u]), and decrement each of the counters
#Friends(u), #Friends(v) by one unit.

We then process the nodes u and v one after
another. Below, we describe only the procedure that
runs on the node u. The procedure for the node v is
exactly the same.

• Case 1: Type(u) = tight. Here, we check if
the number of friends of u has dropped below the
prescribed limit due to the edge deletion, and,
accordingly, we consider two possible sub-cases.

– Case 1a: #Friends(u) < (1−λ− ε)c. Here,
we call the subroutine REFILL-NOW(u)
(see Figure 4).

– Case 1b: #Friends(u) ≥ (1 − λ − ε)c. In
this case, we do nothing and conclude the
procedure.

• Case 2: Type(u) = slack. In this case, we do
nothing and conclude the procedure.

Lemma 5.4. Suppose that an edge is deleted from the
graph G and we run the procedure described above.

1. This causes at most O(λc) edge insertions into
κ(G) and at most one edge deletion from κ(G).

2. The procedure runs in O(c) time in the worst-case.

5.2.5 Proof of Theorem 5.2
The first and the second parts of the theorem follows
from Lemma 5.3 and Lemma 5.4 respectively. It remains
to show that the algorithm maintains a (λ+ε, c)-kernel.
Specifically, we will show that throughout the duration
of the (λ, c)-epoch, the subgraph κ(G) maintained by
the algorithm continues to satisfy Invariants 4–6 (re-
placing ε by λ+ ε in Invariants 4, 5).

If the list neighbors(u) is empty, Then
Set Type(u)← slack.
Return.

Let x be the first node in the list neighbors(u).
While (#Friends(u) < (1− ε)c)

If x /∈ Friends(u), Then
Add x to Friends(u) and u to Friends(x),
so that the edge (u, x) becomes part of the
kernel κ(G) = (V, κ(E)).
Increment each of the counters
#Friends(u), #Friends(x) by one unit.
Update the pointers
Pointer[u, x], Pointer[x, u].

If x is the last node in neighbors(u), Then
exit the While loop.

Else
Let y be the node that succeeds x
in the list neighbors(u).
Set x← y.

If #Friends(u) < (1− ε)c, Then
Set Type(u)← slack.

Figure 4: REFILL-NOW(u).

Lemma 5.5. Suppose that κ(G) satisfies two conditions
before an edge insertion (resp. deletion) in G.

1. |κ(Nv)| ≥ (1− λ− ε)c for all nodes v ∈ κT (V).

2. For all nodes u, v ∈ κS(V), if (u, v) ∈ E, then
either u ∈ κ(Nv) or v ∈ κ(Nu).

Then these two conditions continue to hold even after
we modify κ(G) using the procedure in Section 5.2.3
(resp. Section 5.2.4).

Proof. Follows from the descriptions of the procedures
in Sections 5.2.3 and 5.2.4.

Recall that before the (λ, c)-epoch begins, the graph
κ(G) is an (ε, c)-kernel of G. Since every (ε, c)-kernel is
also a (λ+ ε, c)-kernel, we repeatedly invoke Lemma 5.5
after each update in G, and conclude that κ(G) satisfies
Invariants 5, 6 (replacing ε by λ + ε) throughout the
duration of the epoch. For the rest of this section, we
focus on proving the remaining Invariant 4. Specifically,
we will show that at any point in time during the epoch,
we have |κ(Nv)| ≤ (1 + λ+ ε)c for all v ∈ V .

Fix any node v ∈ V . When the (λ, c)-epoch begins,
the subgraph κ(G) is an (ε, c)-kernel of G, so that we
have |κ(Nv)| ≤ (1 + ε)c. During the epoch, the node v
can get new friends under two possible situations.

1. An edge incident to v has just been inserted
into (resp. deleted from) the graph G, and the

procedure in Section 5.2.3 (resp. the subroutine
REFILL-NOW(v)) is going to be called.

2. The subroutine REFILL-NOW(u) is going to be
called for some u ∈ Nv.

If we are in situation (1) and the node v already has
more than (1 + ε)c friends, then the procedure under
consideration will not end up adding any more node to
κ(Nv). Thus, it suffices to show that the node v can get
at most λc new friends during the epoch under situation
(2). Note that each call to REFILL-NOW(u), u 6= v,
creates at most one new friend for v. Accordingly, if we
show that the subroutine REFILL-NOW(.) is called
at most λc times during the entire epoch, then this will
suffice to conclude the proof of Theorem 5.2.

Lemma 5.6. The subroutine REFILL-NOW(.) is
called at most λc times during a (λ, c)-epoch.

Proof. When the epoch begins, every tight node has
at least (1 − ε)c friends, and during the epoch, the
status of a node u is changed from slack to tight only
when |κ(Nu)| exceeds (1− ε)c. On the other hand, the
subroutine REFILL-NOW(u) is called only when u is
tight and |κ(Nu)| falls below (1−λ−ε)c. Thus, each call
to REFILL-NOW(.) corresponds to a scenario where
a tight node has lost at least λc friends. Each edge
deletion in G leads to at most two such losses (one for
each of the endpoints), whereas an edge insertion in G
leads to no such event. Since a (λ, c)-epoch contains at
most λ2c2/2 edge deletions (Definition 3), a counting
argument shows that such an epoch can result in at
most (λ2c2/2) · 2/(λc) = λc calls to REFILL-NOW(.).

References

[1] Amir Abboud and Virginia Vassilevska Williams. Pop-
ular conjectures imply strong lower bounds for dynamic
problems. In 55th IEEE Symposium on Foundations of
Computer Science, 2014.

[2] Surender Baswana, Manoj Gupta, and Sandeep Sen.
Fully dynamic maximal matching in O(logn) update
time. In 52nd IEEE Symposium on Foundations of
Computer Science, pages 383–392, 2011.

[3] Ran Duan and Seth Pettie. Approximating maxi-
mum weight matching in near-linear time. In 51st
IEEE Symposium on Foundations of Computer Sci-
ence, pages 673–682, 2010.

[4] Manoj Gupta and Richard Peng. Fully dynamic (1+ε)-
approximate matchings. In 54th IEEE Symposium
on Foundations of Computer Science, pages 548–557,
2013.

[5] John E. Hopcroft and Richard M. Karp. A n5/2 algo-
rithm for maximum matchings in bipartite graphs. In
12th Symposium on Switching and Automata Theory,
pages 122–125, 1971.

[6] Zoran Ivkovic and Errol L. Lloyd. Fully dynamic main-
tenance of vertex cover. In Graph-Theoretic Concepts
in Computer Science, pages 99–111, 1993.

[7] Subhash Khot and Oded Regev. Vertex cover might
be hard to approximate to within 2 − ε. Journal of
Computer and System Sciences, 74(3):335–349, 2008.

[8] László Lovász and Michael D. Plummer. Matching
Theory. Akadémiai Kiadó, Budapest, 1986. Also pub-
lished as Vol. 121 of the North-Holland Mathematics
Studies, North Holland Publishing, Amsterdam.

[9] Aleksander Madry. Navigating central path with elec-
trical flows: From flows to matchings, and back. In
54th IEEE Symposium on Foundations of Computer
Science, pages 253–262, 2013.

[10] Silvio Micali and Vijay V. Vazirani. An O(
√
|V | |E|)

algorithm for finding maximum matching in general
graphs. In 21st IEEE Symposium on Foundations of
Computer Science, pages 17–27, 1980.

[11] Marcin Mucha and Piotr Sankowski. Maximum match-
ings via Gaussian elimination. In 45th IEEE Sympo-
sium on Foundations of Computer Science, pages 248–
255, 2004.

[12] Ofer Neiman and Shay Solomon. Simple deterministic
algorithms for fully dynamic maximal matching. In
45th ACM Symposium on Theory of Computing, pages
745–754, 2013.

[13] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a
large matching and a small vertex cover. In 42nd ACM
Symposium on Theory of Computing, pages 457–464,
2010.

[14] Piotr Sankowski. Faster dynamic matchings and ver-
tex connectivity. In 18th ACM-SIAM Symposium on
Discrete Algorithms, pages 118–126, 2007.

