
Rank Join Queries in NoSQL Databases

Nikos Ntarmos
School of Computing Science

University of Glasgow, UK

nikos.ntarmos@
glasgow.ac.uk

Ioannis Patlakas
Max-Planck-Institut für
Informatik, Germany

patlakas@mpi-inf.mpg.de

Peter Triantafillou
School of Computing Science

University of Glasgow, UK

peter.triantafillou@
glasgow.ac.uk

ABSTRACT
Rank (i.e., top-k) join queries play a key role in modern an-
alytics tasks. However, despite their importance and unlike
centralized settings, they have been completely overlooked
in cloud NoSQL settings. We attempt to fill this gap: We
contribute a suite of solutions and study their performance
comprehensively. Baseline solutions are offered using SQL-
like languages (like Hive and Pig), based on MapReduce
jobs. We first provide solutions that are based on special-
ized indices, which may themselves be accessed using ei-
ther MapReduce or coordinator-based strategies. The first
index-based solution is based on inverted indices, which are
accessed with MapReduce jobs. The second index-based
solution adapts a popular centralized rank-join algorithm.
We further contribute a novel statistical structure compris-
ing histograms and Bloom filters, which forms the basis for
the third index-based solution. We provide (i) MapReduce
algorithms showing how to build these indices and statisti-
cal structures, (ii) algorithms to allow for online updates to
these indices, and (iii) query processing algorithms utilizing
them. We implemented all algorithms in Hadoop (HDFS)
and HBase and tested them on TPC-H datasets of various
scales, utilizing different queries on tables of various sizes
and different score-attribute distributions. We ported our
implementations to Amazon EC2 and ”in-house” lab clus-
ters of various scales. We provide performance results for
three metrics: query execution time, network bandwidth
consumption, and dollar-cost for query execution.

1. INTRODUCTION
Cloud stores have become the storage of choice for a large

variety of big data producers, consumers, and managers
(e.g., Twitter, Facebook, Google, Amazon, etc.) For many
modern Big Data applications, RDBMSs were found lacking,
particularly with respect to scalability (in terms of num-
ber of data items, users, operations per second, etc.), de-
spite valiant efforts (e.g., sharding, memory caches, par-
tial denormalization, etc.). To fill this gap, two comple-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 7
Copyright 2014 VLDB Endowment 2150-8097/14/03.

mentary technologies emerged: NoSQL databases and the
MapReduce framework. Interestingly, even traditional key
RDBMS players, such as Oracle, are now focusing on NoSQL
products coupled with MapReduce platforms. There is an
impressive list of NoSQL cloud databases; e.g., BigTable,
DynamoDB, Riak, HBase, Cassandra, etc. All these are
purpose-built to scale across a large number of servers (by
sharding/horizontal partitioning of data items), to be fault
tolerant (through replication, write-ahead logging, and data
repair mechanisms), to achieve high write throughput (by
employing memory caches and append-only storage seman-
tics) and low read latencies (through caching and smart stor-
age data models), flexibility (with schema-less design and
denormalization), and development friendliness (Object Re-
lational Mappings are typically avoided, etc.). Further, dif-
ferent systems offer different approaches to issues such as
consistency, replication strategies, data types, and models.

The data model employed by NoSQL DBs can be viewed
as a key-value model, built around four core abstractions:
(a) the “key-value pair”: a quadruplet {key, column name,
column value, (and perhaps a timestamp)}, uniquely iden-
tified by the combination of key, column name (and times-
tamp, where applicable); (b) the “table”: an ordered collec-
tion of key-value pairs; and (c) the “row”: a collection of all
key-value pairs in a given table, sharing the same key. Some
systems further employ the notion of “column families”, in
essence partitioning the table data vertically so that each
such family includes key-value pairs with specific column
names. All such systems support efficient point queries and
sequential scans on key-value pairs and rows based on their
key, as well as efficient insertion/deletion of key-value pairs.
However, queries on other parts of the data (e.g., column
names/values, timestamps, etc.) are costly, often requiring
a scan of all key-value pairs even for simple equality queries.

Despite original intents, NoSQL is now ”re-baptized” to
spell ”Not Only SQL”. As more data poured into these
systems, the need for complex queries – particularly for an-
alytics – emerged, leading to the rise of data warehousing
systems, such as Hive[24] and Pig[21], offering SQL-like in-
terfaces. This went hand-in-hand with the realization of the
shortcomings of denormalization for several real-world an-
alytic workloads; carrying denormalization to the extreme
implies a huge amount of data being repeated across very
large numbers of rows in a ”universal” table, creating an up-
date/maintenance nightmare and utterly negating several of
the key performance advantages of NoSQL systems in the
long run. Although NoSQL guarantees fast keyed-row re-
trievals, these rows now contain typically lots of data use-

493

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/96894633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


less to most queries, resulting in poor query performance
as many more disk IOs are needed to get the desired data
(e.g., in typical queries involving large scans of rows), and
more useless data are shipped across the NoSQL cloudstore
substrate. Hence, inevitably NoSQL systems transformed to
contain several tables, linked through foreign-key-like con-
structs (although without the consistency semantics inher-
ent in classic RDBMSs) and joined at query time. The issue
is that the burden to do this lies on the applications. This is
currently the conventional wisdom, especially when model-
ing many-to-many relationships and storing them in NoSQL
systems. Orthogonally, emerging analytic tasks often rely on
data dispersed across different files or tables.

Motivations. As joins are very resource hungry, several re-
cent research efforts have attempted to expedite them in
cloud stores. So far, ranked (top-k) equi-joins have been
completely overlooked in this setting, despite the fact that
these queries arise naturally in a variety of situations, as
joining and ranking are fundamental to many analytics tasks.
Take for example a collection of per-day search engine logs,
consisting of phrases and their frequency of appearance in
user inputs, with a separate table or file per day. Now imag-
ine we wish to find the k most popular phrases appearing in
several of these days. This would be formulated as a rank-
join query, where the phrase text is the join attribute, and
the total popularity of each phrase is computed as an aggre-
gate over the per-day frequencies. Rank equi-joins also arise
in full-text search scenarios. Imagine a collection of posting
lists over a large text corpus consisting of several documents.
Each posting list would include information for documents
containing the related keyword, with each list entry consist-
ing of (at least) the document identifier and the document’s
relevance score with regard to the keyword. With the size of
many of these lists being in the gigabytes even for relatively
small collections such as Wikipedia dumps (and much larger
when scaling to web archives and/or the actual World-Wide-
Web), and given the need to scan through them efficiently,
it is only reasonable to assume that each list is stored in a
separate table in a key-value store. Then, finding the most
relevant documents for two (or more) keywords, consists of
a rank-join over the corresponding posting lists, where the
document ID is the join attribute and the relevance of each
document to the search phrase is computed using a function
over the individual relevance scores.

1.1 Problem Formulation
We assume operation in a distributed shared-nothing cloud

store. Please note that the raw table data can be stored ei-
ther at the filesystem level (e.g., HDFS) or at any NoSQL
store. Our algorithms are impervious to this!

Formally, a top-k join query can be written as:
SELECT select-list FROM R1, R2, . . . , Rn

WHERE equi-join-expression(R1, R2, . . . , Rn)
ORDER BY f(R1, R2, . . . , Rn) STOP AFTER k

Scoring of individual rows is typically based on either a
(predefined) function on attribute values, or some explicit
“score” attribute (e.g., movie rating, PageRank score, etc.).
The solutions we discuss make no distinction between these
two cases and work equally well for both; however, for ease
of presentation and without loss of generality, we assume
there is a scoring attribute in each row. Furthermore, for
ease of presentation, we assume that score attributes take

values in [0, 1]; it should be obvious that our algorithms per-
form the same with arbitrary score values as well, provided
that there is a total ordering on these values. Last, as is
common in rank-join works, the score of tuples in the join
result set is computed using a monotonic aggregate function
f(·) on their individual scores.

A naive approach would first compute the join result, then
rank and select the top-k tuples; this is the approach of Hive
and (with minor optimizations) of Pig. This is obviously
extremely costly, even in centralized settings, let alone when
data have to be shipped across the network. Our challenge
is to compute the result set without producing the full join
result, ensuring that the amount of data that is transferred
is as little as possible and the query latency is small.

1.2 Contributions
A study of how to efficiently process top-k join queries

in NoSQL cloudstores is very much lacking, given the rapid
popularity increase of such environments and their unique
characteristics. We will use as a reference point the base-
line techniques of using Hive or Pig to formulate and exe-
cute such queries in a massively parallel manner. However,
acknowledging their disadvantages we will contribute and
study the performance of a number of different approaches.
First, we contribute a MapReduce solution that is based on
specialized indices. Second, in the no-MapReduce realm,
we contribute an algorithm coined Inverse Score List Rank
Join (ISL), which is based on the popular HRJN[13] cen-
tralized rank join algorithm. Our third contribution is an
algorithm based on a novel rank-join statistical access struc-
ture, coined the Bloom Filter Histogram Matrix (BFHM).
We prove that the BFHM algorithm can achieve 100% recall
(despite its probabilistic nature). We have chosen to store
all our access structures in a NoSQL DB. Although not a
hard requirement, this choice was dictated by the need to
handle possible large volumes of new item insertions/dele-
tions, for which NoSQL DBs are much better suited than
DFSs. Further, we also provide algorithms for efficiently
maintaining indexes in the face of updates. Our solutions of-
fer trade-offs with regard to various metrics. We thus further
contribute an in-depth performance evaluation in real-world
systems (Amazon’s EC2 and in-house clusters, using TPC-
H datasets), against the baseline approaches. The metrics
are: query processing time, network bandwidth consump-
tion, and query processing dollar cost (e.g., when executed
on charge-per- item infrastructures, such as DynamoDB).

2. RELATED WORK

Rank Queries. Well-known ranking operators include the
top-k and kNN operators. Top-k (selection) operators typ-
ically accept as input a set of records each of the type
< ID, score1, . . . , scoren >, a monotone score aggregation
function, f(score1, . . . , scoren)→ [0, 1] and a threshold num-
ber k, and produce the IDs of records whose aggregate score
(from all n score attributes) is in the top-k among the score
of all records. kNN operators are different; they accept as
input a specific record, r, a table of records T = {t1, . . . , tn}
and a notion of similarity among records sim(s, t), and pro-
duce the result set R = {tR1 , tR2 , ..., tRk} with tRi ∈ T and
|R| = k, so that sim(r, tRi) > sim(r, tj), ∀tj ∈ T

∧
tj 6∈ R.

Our paper focuses on ranking a la top-k queries defined
above. A survey of top-k query processing algorithms for

494



this setting is presented in [14]. In [10] instance-optimal al-
gorithms are presented, i.e., the Threshold Algorithm (TA)
and variants, using sorted and/or random accesses. The first
notable distributed variant of TA is the Three-Phase Uni-
form Threshold (TPUT) algorithm[5]. KLEE[16] improved
TPUT by employing histograms and Bloom filters for each
node to limit the tuple search space and bandwidth con-
sumption. Last, the Threshold Join Algorithm (TJA) [28]
is a top-k selection query processing algorithm, using an
outer join step to maintain partial top-k results as these are
aggregated at parent nodes. TJA is developed for a hierar-
chical (sensor) topology – a setting drastically different than
that of NoSQL clusters.

Rank and Join Queries. kNN joins[26], as well as similar-
ity joins[4] include both rank and join operators. Similarity
joins accept as input two collections of sets, R and S, a
notion of set similarity and a threshold similarity value t,
and return all pairs (r, s) with {r ∈ R} and {s ∈ S}, such
that sim(r, s) > t. This is equivalent to returning, for each
record r fromR, all records s from S, such that sim(r, s) > t.
kNN join operators are similar to the above, generalizing
the kNN operator to perform kNN operations not for just
a given record but for a set of records. Finally, top-k simi-
larity joins[27], like similarity and kNN joins, use a notion
of distance to define similarity among records from R with
those from S. A top-k similarity join returns those joined
record pairs having the highest k similarities. The top-k join
operators considered in this paper extend top-k selection
queries by aggregating score attributes from two (or more)
relations and by returning the top-k scores only of records
which are in the result of a join operation (based on some
other common attribute of the two relations). As such, top-
k join queries are substantially different than kNN join and
(top-k) similarity join queries. Joining is performed on sep-
arate explicit join attributes (introducing challenges/oppor-
tunities for extra indexing and optimisations) and ranking
is based on a monotone aggregate function of the relations’
score attributes (as opposed to a distance between records).

Ilyas et al. presented NRA-RJ [12] to support such rank
joins. A pipelined operator, J*, was presented in [19], pro-
viding a join operator with a general non-equi-join condition.
In [13], Ilyas et al. present an influential algorithm for ranked
join (HRJN) (to be discussed at more length later). More
recently, [22] presented the Pull/Bound Rank Join (PBRJ)
algorithm, a generalization of HRJN-style algorithms. [25]
proposes a join graph in which joining attributes are rep-
resented by nodes and relations among attributes by edges.
This approach provides support for top-k join queries (other
than inner-join ones) over web databases.

Join Queries on Clouds. Recently join queries in the cloud
received considerable attention. Hive [24] and Pig [21] sup-
port joins over very large datasets using MapReduce. Ha-
doopDB[1] replaces local data stores with DBMS instances
and supports the execution of MapReduce jobs over them;
in essence, it is a parallel DBMS enriched with MapReduce
capabilities, and is unlike NoSQL systems. Hadoop++[7]
proposes ”Trojan indices”, created at data load time on join
attributes and collocated with the data read by each map-
per, allowing mappers to avoid expensive disk scans to sort
data. Then, ”Trojan Joins” co-partition the splits of the
relations to be joined, yielding map-only jobs and saving

considerable overhead. Results have also been produced for
other than equi-joins and 2-way joins [2, 15, 20].

Bloom Filters, Joins, and Top-k. A Bloom filter (BF)[3,
17] is a data structure that compactly represents a set of
items as a bit vector to expedite membership queries. [6,
18] use BFs to estimate the cardinality of a join result. Our
treatment of BFs differs in its statistical intuition from both
[18] and [6]. Finally, KLEE also uses BFs and histograms for
top-k queries; however, KLEE does not deal with joins, the
actual data structures and their use are different, it doesn’t
use counting filters, and cannot guarantee 100% recall.

Rank Joins in Distributed Settings. Although inspira-
tional, none of the above works have attempted to solve the
problem of top-k equi-join queries in cloud stores. [29] and
[8] tackled the problem of rank join processing in large dis-
tributed systems. They both attempt to compute a bound
on the scores of individual tuples from the base relation,
in order to prune tuples not participating in the top-k join
result, and both assume operation over a DHT network over-
lay. [29] uses a sampling stage in which the querying node
multicasts the query to a random set of peers. These peers
then perform a hash-join by rehashing their data onto the
DHT using the join value as the hash function input. The
querying node collects the result set and retains the k’th
highest score. It then broadcasts this score to all nodes,
which in turn perform a distributed hash-join again, only
now limiting the rehashed items to those that can produce
a join result with a score above the threshold (assuming they
join with a tuple with the maximum score value). [8] employ
2-D equi-width histograms; for each of the distinct join val-
ues in the input data, they build and store a histogram on
the corresponding score values. Query processing consists
of two stages – score bound estimation using the histogram
buckets, and pulling of data tuples with scores above the
bound – repeated in sequence until the final result is pro-
duced. As maintaining one bucket per distinct join value is
not feasuble in real scenarios, the authors generalize their
solution by grouping same-score buckets for adjacent join
values and combining them using the uniform frequency as-
sumption. Both of these approaches (much like our ISL and
BFHM), fall in the general family of PBRJ-style algorithms,
interchanging between bound computation and data pulling.
Both these and ISL produce bounds on the tuple scores, ig-
noring however their join attribute values, thus ending up
transferring more tuples than necessary (as several of them
may not contribute to the final result due to not joining with
any other tuple). Such approaches are at a disadvantage in
cloudstores, as their processing time is dominated by data
transfers. This situation is further aggravated by the fact
that sampling ([29]) and approximate statistics ([8]) often
lead to inaccurate estimations and either low recalls (e.g.,
as low as 0.2 for [8]) or extremely high query processing
costs (to be shown shortly). BFHM, however, combines his-
tograms with Bloom filters to locate tuples that will indeed
end up in the final result set, achieving further savings in
query processing time, bandwidth consumption, and dollar-
cost, while guaranteeing a perfect 100% recall.

3. BASELINE RANK JOINS
We focus on two-way equi-joins; extending the algorithms

495



R1 R2

row join score row join score
key value value key value value
r11 d 0.82 r21 a 0.51
r12 c 0.93 r22 b 0.91
r13 c 0.67 r23 c 0.64
r14 d 0.82 r24 d 0.53
r15 a 0.73 r25 d 0.41
r16 c 0.79 r26 d 0.50
r17 b 0.82 r27 a 0.35
r18 b 0.70 r28 a 0.38
r19 d 0.68 r29 a 0.37
r110 a 1.00 r210 c 0.31
r111 b 0.64 r211 b 0.92

Figure 1: Running example: Tuples of R1 and R2

to multi-way joins is straightforward. We first describe Hive’s
and Pig’s approaches, as the baseline solutions for rank-join
queries. Fig. 1 shows the input for our running example.

3.1 Rank Joins with Hive and Pig
In Hive, rank join processing consists of two MapReduce

jobs plus a final stage. The first job computes and materi-
alizes the join result set, while the second one computes the
score of the join result set tuples and stores them sorted on
their score; a third, non-MapReduce stage then fetches the
k highest-ranked results from the final list.

Pig takes a smarter approach. Its query plan optimizer
pushes projections and top-k (STOP AFTER) operators as
early in the physical plan as possible, and takes extra mea-
sures to better balance the load caused by the join result or-
dering (ORDER BY) operator. Specifically, 3 MapReduce
jobs are used. The first computes the join result: mappers
scan the table files, do early projections (stripping out un-
related columns), and emit rows with the join value as their
key; then, reducers group together rows with the same join
value, produce the join result set, and store it in an HDFS
file. The second MapReduce job is a by-product of the OR-
DER BY clause; it samples the records in the join result file
in the map phase, and appropriate quantiles are computed
at the reduce phase. These quantiles are then used to con-
struct a balanced partitioner for the third job, which orders
the temporary records on their score and produces the top-k
result set. First, the map phase emits the temporary records
with their join score as their key, and a combiners take over
producing a local top-k list. These lists are then assigned to
a sole reducer producing the final top-k result set.

4. INDEXED RANK JOINS
As BigTable/HBase were the archetypical key-value cloud-

stores, we borrow their terminology in the description of the
various algorithms and examples. It should be clear, though,
that our indices and algorithms apply (perhaps with slight,
obvious modifications) to all contemporary key-value stores.

4.1 Inverse Join List MapReduce Rank-Join
Our first algorithm – Inverse Join List MapReduce rank

join (IJLMR) – uses MapReduce, but utilizes an index to
reduce the required MapReduce jobs to one, and avoid extra
network transfers and inefficiencies.

4.1.1 IJLMR Index
In the above approaches, the first stage mappers actually

create an inverted list of input tuples keyed by their join

Algorithm 1 IJLMR Index Creation

1 Input: Rows from a single column family (e.g., A), of
the form {row.rowKey: row.joinValue, row.score}

2 Output: IJLMR index rows for A
3 Map():
4 foreach(row ∈ s e qu en t i a l scan o f A)
5 emit(row.joinV alue: row.rowKey, row.score);

Row key Index tuples ({row key, score})
(join value) R1 R2

a
{r110 ,1.00}, {r15 ,0.73} {r21 ,0.51}, {r27 ,0.35},

{r28 ,0.38}, {r29 ,0.37}

b
{r17 ,0.82}, {r18 ,0.70}, {r22 ,0.91}, {r211 ,0.92}
{r111 ,0.64}

c
{r12 ,0.93}, {r13 ,0.67}, {r23 ,0.64}, {r210 ,0.31}
{r16 ,0.79}

d
{r11 ,0.82}, {r14 ,0.82}, {r24 ,0.53}, {r25 ,0.41},
{r19 ,0.68} {r26 ,0.50}

Figure 2: Running example: IJLMR index table

values; this is, in essence, a materialized view where each
entry has a join value as its key, and the input rows with
that specific join value as its set of values. Our IJLMR
index consists of a space-optimized form of these inverted
lists, where index values consist of a list of tuples each being
a combination of the row key and score value of the indexed
row (Fig. 2). The IJLMR index for each indexed table is
stored as a separate column family in one big table. This
means that, if the table is split up/sharded and distributed
across the NoSQL store nodes, index entries for the same
join values across all indexed tables are stored next to each
other on the same node. The IJLMR index is built with a
map-only MapReduce job (Algorithm 1) – a special type of
MapReduce job where there are no reducers and the output
of mappers is written directly into the NoSQL store. We
also provide routines for online maintenance and updates to
this index, to be discussed shortly.

4.1.2 IJLMR Query Processing
The IJLMR query processing algorithm consists of a sin-

gle MapReduce job/stage, with several mappers and a sin-
gle reducer (Algorithm 2). In this job, each mapper scans
through its partition of the IJLMR index, reading columns
from the index column families for the joined tables, one row
at a time. For each row, it computes the Cartesian product
(i.e., the join result) and join score of index entries from the
different column families; e.g., the mapper responsible for
join value a (see Fig. 2) would produce 2× 4 key-values, the
mapper responsible for b would produce 3 × 2 tuples, etc.
The mappers store in-memory only the top-k ranking result
tuples, and emit their final top-k list when their input data is
exhausted. The single reducer then combines the individual
top-k lists and emits the global top-k result.

In addition to reducing the overall MapReduce jobs and
stages down to one, this design has the added benefit that
data transfers due to MapReduce shuffling/sorting are min-
imized; the Hadoop framework ensures that each mapper
is executed on the NoSQL store node storing its input re-
gion data (or as close to it as possible), and thus only the
individual top-k result sets are transferred across the net-
work and shuffled/sorted at the single reducer. As we shall
see in the performance evaluation section, this approach

496



Algorithm 2 IJLMR Rank-Join

1 Input: Rows from the IJLMR index for column families A
and B, of the form {row.joinValue: row.rowKey,
row.score}

2 Output: Top-k join result set
3 Map():
4 foreach(row ∈ input) {
5 HashTable tuplesA =∅, tuplesB =∅;
6 Sor t edL i s t r e s u l t s =∅;
7 foreach(kv ∈ row) {
8 i f (kv.columnFamily == A) {
9 myTuples = tuplesA . get (kv.joinV alue);

10 otherTuples = tuplesB . get (kv.joinV alue);
11 } else {
12 myTuples = tuplesB . get (kv.joinV alue);
13 otherTuples = tuplesA . get (kv.joinV alue);
14 }
15 foreach (kv′ ∈ otherTuples ) {
16 r e s u l t s .add( i nne rJo in (kv, kv′));
17 r e s u l t s . tr im (k);
18 }
19 myTuples.append(kv.joinV alue, kv);
20 }
21 emit( r e s u l t s );
22 Reduce():
23 Sor t edL i s t r e s u l t s =∅;
24 foreach(kv ∈ input) {
25 r e s u l t s .add(kv);
26 r e s u l t s . tr im (k);
27 }
28 emit( r e s u l t s ); // Final top -k result set

achieves at least an order of magnitude faster query process-
ing times compared to Hive, and several orders of magnitude
less bandwidth consumption. Unfortunately, note that the
mappers still have to scan through the entire input dataset,
weighing on the dollar-cost of query processing, which is
almost as high as that of the Hive approach.

4.2 Inverse Score List Rank-Join
Clearly, network and disk I/O bandwidth savings are tan-

tamount. Also, taking advantage of the intrinsics of the
query processing engine of the NoSQL store at hand can
provide further improvements. We note that MapReduce is
a poor match for such complex queries as top-k joins. Our
intuition is similar to that of Stonebraker, et al.[23], who
pointed out that MapReduce is suboptimal for several as-
pects of data management, including complex queries. Fol-
lowing this thread of thought, we first overview HRJN[13]
and then contribute Inverse Score List rank join (ISL).

4.2.1 HRJN Overview
Assume an n-way rank join between relations R1, R2, . . .,

Rn. In HRJN the tuples of each relation Ri are sorted in
lists, ranked according to a scoring attribute Ri.score, or
by using a scoring function on one or more attribute values.
For simplicity, we assume the former scenario, but our solu-
tions are equally applicable in the latter. The score of the
n-way join result tuples is then computed using a monotonic
ranking function f(R1.score, . . . , Rn.score) on the individ-
ual scores of joined tuples. Tuples from the n lists are itera-
tively retrieved in decreasing score order, and the algorithm
keeps the minimum (s̄i) and maximum (ŝi) tuple scores seen
thus far (for i ∈ [1, . . . , n]). Every retrieved tuple is joined
against previously retrieved ones and appended to the result

Algorithm 3 ISL Index Creation

1 Input: Rows from a single column family (e.g., A), of
the form {row.rowKey: row.joinValue, row.score}

2 Output: ISL index rows for A
3 Map():
4 foreach(row ∈ s e qu en t i a l scan o f A)
5 emit(row.score: row.rowKey, row.joinvalue);

Row key
(score)

Index tuples
({row key, join value})
R1 R2

-1.00 {r110 , a}
-0.93 {r12 , c}
-0.92 {r211 , b}
-0.91 {r22 , b}
-0.82 {r11 , d}, {r14 , d},

{r17 , b}
-0.79 {r16 , c}

· · ·
-0.35 {r27 , a}
-0.31 {r210 , c}

Figure 3: Running example: ISL index table

set, if the latter has less than k tuples or the score of the new
join tuple is higher than that of the kth tuple (resulting in
the latter’s elimination). Then, a threshold score S is com-
puted as: S = max{f(s̄1, ŝ2, . . . , ŝn), f(ŝ1, s̄2, . . . , ŝn), . . .
f(ŝ1, ŝ2, . . . , s̄n)}. In other words, the threshold score equals
the maximum attainable score by any subsequent join result
tuple. The algorithm terminates when the score of the kth

join result is greater than the threshold.

4.2.2 The ISL Index
Like HRJN, ISL is based on the existence of inverted score

lists. These lists are part of the ISL index, created via a
map-only MapReduce job (Algorithm 3), just like in the
case of the IJLMR index above. More specifically, for each
input relation, we build and maintain an index, comprised
of a column family in a common index table, where each
row has a score value as its key, and the set of input tuples
with this value in their score attribute as the content of
the row. A kink of HBase is that it provides fast scans in
increasing rowkey order but has no support for scans in the
other direction; due to this, in our implementation we have
used the negated score values as the index keys (see Fig. 3).

4.2.3 ISL Query Processing
The query processing algorithm is outlined in Algorithm 4.

During query processing, the “coordinator” scans through
the index column families for the joined relations alternately.
Scanning is performed in increasing key (i.e., decreasing
score) order, and in batches of a user-defined size. As NoSQL
stores are in essence column stores, and key-value pairs with
subsequent keys are stored next to each-other on disk, batch-
ing reads results in a lower disk I/O overhead, as well as a
lower processing time due to the cost of IPC calls to the
NoSQL store being amortized over the batch size. As we
shall see in the performance evaluation section, such batched
scans (e.g., HBase scans with a non-zero rowcache size) can
result in significant gains in query processing times, trading
off bandwidth consumption and dollar-costs. The coordina-
tor stores (in-memory) all retrieved tuples in separate hash
tables, using the join value as the key; this allows for fast

497



Algorithm 4 ISL Rank-Join

1 Input: Rows from the ISL index for column families A
and B, of the form {row.score: row.rowKey,
row.joinvalue} (see Fig. 3), batch sizes CA, CB

2 Output: Top-k join result set
3 HashTable tuplesA =∅, tuplesB =∅;
4 Sor t edL i s t r e s u l t s =∅, batch=∅;
5 CurrentRelat ion cr = A;
6 while (true) {
7 i f ( cr == A) {
8 myTuples = tuplesA . get (kv.joinV alue);
9 otherTuples = tuplesB . get (kv.joinV alue);

10 } else {
11 myTuples = tuplesB . get (kv.joinV alue);
12 otherTuples = tuplesA . get (kv.joinV alue);
13 }
14 batch. i n s e r t (next Ccr rows from CF "cr");
15 foreach(row ∈ batch) {
16 foreach(kv ∈ row) {
17 myTuples.append(kv.joinV alue, kv);
18 foreach (kv′ ∈ otherTuples ) {
19 r e s u l t s .add( i nne rJo in (kv, kv′));
20 i f (HRJNTerminationTest( r e s u l t s ,

tuplesA , tuplesB ) == true)
21 return ( r e s u l t s );
22 }
23 }
24 }
25 batch. c l e a r ();
26 cr = ( cr == A) ? B : A;
27 }
28 return ( r e s u l t s );

joins whenever new tuples are fetched. The coordinator fur-
ther maintains a list of the current top-k results. With every
new tuple fetched and processed, the coordinator computes
the current threshold value, and terminates when it is below
the score of the k’th tuple in the result set.

5. STATISTICAL RANK-JOINS
Both of the previous algorithms, ship tuples even though

they may not participate in the top-k result set. Our next
contribution aims to avoid this. Note that we need not only
estimate which tuples will produce the join result, but also
to predict whether these tuples can have a top-k score.

5.1 The BFHM Data Structure
The BFHM index is a two-level statistical data structure,

encompassing histograms and Bloom filters. At the first
level, we have an equi-width histogram on the score axis;
that is, all histogram buckets have the same spread and
each such bucket stores information for tuples whose scores
lie within the boundaries of the bucket. At the second level,
instead of a simple counter per bucket (plus the actual min
and max scores of tuples recorded in the bucket), we choose
to maintain a Bloom filter-like data structure, recording the
join values of the tuples belonging to the bucket. This will
then be used to estimate the cardinality of the join result set
during query processing, to be discussed shortly. In brief,
the BFHM data structure has two main parameters: the
number of buckets in the BFHM (numBuckets), and the
number of bits in each BFHM bucket Bloom filter (m).

As false positives can inflate the join cardinality estima-
tion, we have opted for a fusion scheme, combining single-
hash-function Bloom filters with Counting Bloom filters and

Bitmap

...

0

1

0

0

1

0

1

0

Counters

(hash table)

1

2

1

r_1_8: b, 0.70

r_1_3: c, 0.67

r_1_9: d, 0.68

r_1_11: b, 0.64

Golomb compressed

h(b)

h(c)

h(b)

h(d)

Input data

Figure 4: BFHM bucket structure

compression. More specifically, in each BFHM bucket we
maintain: (i) the minimum and maximum score values of
tuples recorded in the bucket; (ii) a single-hash-function
Bloom filter of sizem (bits); and (iii) a hash table of counters
for each non-zero bit of the Bloom filter. Both of the lat-
ter two constructs are then compressed using Golomb cod-
ing[11]. The resulting data structure is a hybrid between
Golomb Compressed Sets and Counting Bloom filters, al-
lowing us at the same time to (i) minimize the false posi-
tive probability for our treatment of Bloom filters for join
cardinality estimation (to be discussed shortly), (ii) greatly
reduce the amount of bytes stored in the NoSQL store and
transferred across the network, and (iii) achieve a reasonable
trade-off between compression ratio and processing costs.
Fig. 4 depicts a pictorial of how data are inserted to the
Bloom filter-related section of the BFHM bucket for the
score range (0.60, 0.70] for tuples of relation R1 in our run-
ning example. Please note that the compression of the bit
vector and counter hash table is an integral part of our data
structure, as single hash function Bloom filters can grow very
large in space and are thus impractical otherwise. Moreover,
to our knowledge, this is the first work to propose, imple-
ment, and evaluate such a fusion scheme.

Like with our indices, the BFHM data are stored in the
NoSQL store. More specifically, for each input relation, the
BFHM index is stored in a separate column family or index
table. Each BFHM bucket is stored in a separate row with
the bucket number as its key (e.g., for scores in [0, 1] and 10
buckets, the first bucket – i.e., for score values in (0.9, 1.0]
– will be stored under key 0, the bucket for score values
in (0.8, 0.9] will use key 1, and so on); the row values then
include the min and max actual scores, plus the Golomb-
compressed bitmap and counters’ hashtable (coined BFHM
bucket “blob”). Moreover, as we shall see shortly, during
query processing we need to be able to map BFHM set bit
positions back to the corresponding join values. As this
is not possible with most quasi-random hash functions, we
need to further store these mappings. These are stored in the
same column family/table as the above data, in rows where
the key consists of the concatenation of the bucket number
and bit position, and where the row data includes tuples of
the form {rowkey : join value, score}. Assuming that h(x)
is the bit position indicated for item x by the hash function
used by our Bloom filter, Fig. 5 depicts the BFHM table
contents for our running example. This is created with a
MapReduce job (Algorithm 5). In the Map phase, the map-

498



Algorithm 5 BFHM Index Creation

1 Input: Rows from a single column family (e.g., A), of
the form {row.rowKey: row.joinValue, row.score},
number of buckets in BFHM (numBuckets)

2 Output: BFHM blob rows and reverse mappings for A
3 Map():
4 foreach(row ∈ s e qu en t i a l scan o f A) {
5 int bucketNo = scoreToBucket(row. score ,

numBuckets);
6 emit(bucketNo: {row.rowKey:

row.joinvalue, row.score});
7 }
8 Reduce():
9 HybridBloomFilter f i l t e r ; // see sec. 5.1

10 f loat minScore = ∞, maxScore = -∞;
11 foreach(kv ∈ input) {
12 int bitPos = f i l t e r . i n s e r t (row. j o inValue );
13 i f (row. s c o r e < minScore)
14 minScore = row. s c o r e ;
15 i f (row. s c o r e > maxScore)
16 maxScore = row. s c o r e ;
17 emit(bucketNo|bitPos : {row.rowKey:

row.joinvalue, row.score});
18 }
19 emit(bucketNo , {GolombCompress( f i l t e r ),

minScore ,maxScore});

pers partition incoming tuples into the various histogram
buckets. Each reducer operates on the mapped tuples for
one BFHM bucket at a time. Each incoming tuple is first
added to the BFHM hybrid filter based on its join value,
and its corresponding bit position is recorded. The reducer
emits a reverse mapping entry for each such tuple, and keeps
track of the min and max scores of all tuples in the bucket.
When the bucket tuples are exhausted, the reducer finally
emits the BFHM bucket blob row.

5.2 BFHM Query Processing
Query processing consists of two phases: (i) estimating

the result, and (ii) reverse mapping and computation of the
true result. Algorithm 6 shows the 1st phase. The “coordi-
nator” fetches BFHM bucket rows for the joined relations,
one at a time, with newly fetched buckets being “joined”
with older ones. The bucket join result – an estimation of
the join result for tuples recorded in the joined buckets –
is then added to the list of estimated results. When the
estimated number of result tuples in this list (i.e., the sum
of cardinalities of added buckets) is above k, the algorithm
tests for the BFHM termination condition, to be discussed
shortly. If the latter is satisfied, processing continues with
the reverse mapping/final result set computation phase.

Algorithm 7 outlines the bucket join procedure. First, we
compute the bitwise-AND of the Bloom filter bitmaps from
the two buckets; if the resulting bitmap is empty (i.e., all
bits are 0), then there are no joining tuples recorded in these
two buckets. Otherwise, we compute an estimation of the
cardinality of the join, by summing up the products of the
counters corresponding to the non-zero bit positions in the
result filter. The factor α (line 9) is there to compensate for
false positives in the filters; for now, assume α = 1. Last, we
compute the min and max score of any join result tuple from
these buckets, by using the actual min and max scores of the
joined buckets as input to the aggregate score function.

Fig. 6(c) shows the estimated result set for our running

Row key
Index tuples

([blob],scoremin,scoremax or {row key: join value, score})
R1 R2

0 [blob],0.93,1.00 [blob],0.91,0.92
0|h(a) {r110 : a,1.00}
0|h(b) {r22 : b,0.91},{r211 : b,0.92}
0|h(c) {r12 : c,0.93}

1 [blob],0.82,0.82
1|h(b) {r17 : b,0.82}
1|h(d) {r11 : d,0.82}, {r14 : d,0.82}

2 [blob],0.70,0.79
2|h(a) {r15 : a,0.73}
2|h(b) {r18 : b,0.70}
2|h(c) {r16 : c,0.79}

3 [blob],0.64,0.68 [blob],0.64,0.64
3|h(b) {r111 : b,0.64}
3|h(c) {r13 : c,0.67} {r23 : c,0.64}
3|h(d) {r19 : d,0.68}

4 [blob],0.50,0.53
4|h(a) {r21 : a,0.51}
4|h(d) {r24 : d,0.53}, {r26 : d,0.50}

5 [blob],0.41,0.41
5|h(d) {r25 : d,0.41}

6 [blob],0.31,0.38
6|h(a) {r27 : a,0.35}, {r28 : a,0.38},

{r29 : a,0.37}
6|h(c) {r210 : c,0.31}

Figure 5: Running example: BFHM index table

example, using sum as the aggregate scoring function; the
join attribute value is shown as h(·) to denote that we refer
to non-zero positions in the bitwise-AND of filter bitmaps
and not to actual join values, while the Bloom filter coun-
ters are given in consolidated form in Fig. 6(a) and 6(b) for
clarity. First, the algorithm would fetch the (0.9, 1.0] buck-
ets for R1 and R2; their bucket-join would return null as
they have no common non-zero bit position. The algorithm
would then proceed by fetching bucket (0.8, 0.9] for R1 and
joining it to bucket (0.9, 1.0] for R2; the join would return
an estimated result containing two tuples (the product of
the counters for bit position h(b)), with a minimum score of
0.82+0.91 = 1.73 and a maximum score of 0.82+0.92 = 1.74.
Then it would be R2’s turn, fetching the (0.6, 0.7] bucket and
joining it to the two buckets already fetched for R1, etc.

To test for the termination of the estimation phase, we
examine the estimated results list and the buckets fetched
so far. First, we compute the minimum score of the k’th es-
timated result. The estimation phase terminates if there are
more than k estimated results and there is no combination
of buckets not examined so far that could have a maximum
score above that of the k’th estimated result.

Take for example the estimated result of Fig. 6(c) and
assume we requested the top-3 join results. After having
fetched the first two buckets for R1 (i.e., (0.9, 1.0], (0.8, 0.9])
and for R2 (i.e., (0.9, 1.0] and (0.6, 0.7]), we would have com-
puted rows 1 and 3 of the result set in Fig. 6(c). At this time,
the estimated result set consists of 2 + 1 = 3 estimated tu-
ples, and the minimum score of the third tuple would be
1.57. The maximum attainable score for the join of the next
bucket (i.e., bucket (0.7, 0.8]) of R1 and the highest-score
bucket of R2 (i.e., (0.9, 1.0]) would be 0.8 + 1.0 = 1.8 which
is higher than 1.57 so the estimation phase does not termi-
nate. After fetching and joining bucket (0.7, 0.8] of R1, the
result set would consist of rows 1, 2, 3, and 6 of Fig. 6(c).
Now the estimated score for the top-third result becomes
1.71. The maximum attainable score for the join of the next
bucket of R2 (bucket (0.5, 0.6]) against the highest-scoring

499



Algorithm 6 BFHM Rank-Join Estimation

1 Input: Rows from the BFHM index for A and B (Fig. 5)
2 Output: Estimated top-k join result set
3 L i s t bucketsA=∅, bucketsB=∅, myBuckets ,

otherBuckets ;
4 Sor t edL i s t r e s u l t s =∅; // Sorted on maxScore
5 int numEstimatedResults = 0;
6 CurrentRelat ion cr = A;
7 BFHM newBucket;
8 boolean done = fa l se ;
9 while (!done) {

10 i f ( cr == A) {
11 myBuckets = bucketsA;
12 otherBuckets = bucketsB;
13 } else {
14 myBuckets = bucketsB;
15 otherBuckets = bucketsA;
16 }
17 newBucket = fetchNextBucketFrom(BFHM { cr });
18 myBuckets.add(newBucket);
19 foreach(bucket ∈ otherBuckets ) {
20 EstimatedResult r e s = bucketJoin (newBucket ,

bucket); // See alg. 7
21 i f ( r e s == nu l l )
22 continue;
23 r e s u l t s .add( r e s );
24 numEstimatedResults += r e s . c a r d i n a l i t y ;
25 i f (BFHMTerminationTest(bucketsA ,bucketsB ,

numEstimatedResults)) {
26 done = true;
27 break;
28 }
29 }
30 cr = ( cr == A) ? B : A;
31 }
32 return ( r e s u l t s );

bucket of R1 would be 1.6; conversely, the maximum at-
tainable score for the next bucket of R1 (bucket (0.6, 0.7])
against bucket (0.9, 1.0] of R2 is 1.7; since both of these are
lower than 1.71, the estimation phase terminates.

The next phase examines the estimated results of the first
phase and purges all estimated results whose maximum score
is below that of the (estimated) k’th tuple. Then, the algo-
rithm fetches the reverse mapping rows corresponding to the
non-zero bit positions of the Bloom filters in the estimated
results, which are then used to compute the final result set.

5.3 Analysis of BFHM Rank-Join
Our BFHM-based algorithms deal with two sources of in-

accuracy when estimating the rank join result set: use of
histograms and use of Bloom Filters. The former introduces
errors in the estimation of the actual score of the join results,
while false positives in the latter may result in overestimat-
ing the join result size. For ease of presentation, assume
for now that our Bloom filters are false-positive free. This
allows us to know for sure when joining tuples from any
two given buckets of the BFHM will actually produce join
results. However, it gives us no way of knowing the exact
scores of the joined tuples and thus does not allow us to
compute the actual score of the join result tuple.

In order to accomplish this, we maintain the min and max
score achievable when joining two buckets; then, instead of
keeping the k highest scored estimated results, our algo-
rithms also keep all those tuples whose maximum possible
score is larger than the lowest possible score of the kth es-

Algorithm 7 BFHM bucket join

1 Input: BFHMR1 [i] (i’th bucket from R1’s
BFHM), BFHMR2

[j] (j’th bucket from R2’s BFHM)
2 Output: join result estimation for this bucket pair
3 EstimatedResult r e s ;
4 r e s .BF = BFHMR1

[i].BF & BFHMR2
[j].BF;

5 i f ( r e s .BF == ∅)
6 return nu l l ;
7 foreach( b i t ∈ r e s .BF non- zero b i t s )
8 r e s . c a r d i n a l i t y += BFHMR1 [i]. counter s ( b i t ) *

BFHMR2
[j]. counter s ( b i t ) * α;

9 r e s .minScore = j o i nS co r e (BFHMR1
[i].minScore ,

BFHMR2 [j].minScore);
10 r e s .maxScore = j o i nS co r e (BFHMR1

[i].maxScore ,
BFHMR2

[j].maxScore);
11 return r e s ;

timated result. This guarantees that no tuple is lost from
the final result set, at the expense of fetching/storing some
tuples that may not make it in the final result set.

In a false-positive-free world, this would suffice. Alas, false
positives in the Bloom filters of the BFHM may cause an
overestimation of the join result set size for any two joined
buckets. Surely one can tweak the Bloom filter parameters
so as to minimize the false positive probability; however, do-
ing this may lead to overly large Bloom filters, thus dimin-
ishing any bandwidth consumption returns expected from
their use. Moreover, even if very large BFs were practical,
one can not guarantee that no false positives arise, as a re-
sult for example of a BFHM bucket being overpopulated.
In order to deal with this, we incorporate the effective false
positive probabilities of the Bloom filters in the join result
size estimation (the α factor in algorithm 7). Given a single-
hash-function Bloom filter of size m, after having inserted n
distinct items, the probability that a given bit is set equals
PT = (1− (1− 1/m)kn) ≈ 1− e−m/kn. In the case of count-
ing Bloom filters, we can use this information to estimate a
“compensated” value of any given counter, as follows. When
joining two filters (say BFA and BFB), and JSize is the es-
timated join size as computed through BFA ·BFB (i.e., sum
of products of matching Bloom filter counter values), we
scale JSize by a factor of α = (1−PTA) · (1−PTb); that is:

JSizeA·B = BFA ·BFB · (1− PTA) · (1− PTb)
Our experimental evaluation showed that the combina-

tion of these two mechanisms results in a 100% recall for
all workloads and parameter values tested. Apart from the
above probabilistic scheme, we can further guarantee a 100%
recall, as follows. First, when we have k or more results in
the final result set, we examine the score of the kth actual
join result and compare it to the maximum scores of BFHM
buckets that didn’t make it to the fetch list. If there are
buckets whose maximum score is above the former, then we
should consider these additional buckets too. If no change
occurs in the result set after this step, the algorithm termi-
nates. Similarly, for the case were k′ < k results have been
produced in the second query processing phase, we resume
the query processing algorithm from the point it initially
stopped, only now looking for the top-k + (k − k′) results.
When k or more results have been produced, the algorithm
performs the checks outlined in the first case.

Lemma 1. The set of tuples represented by the BFHM re-
sulting by combining the BFHMs of multiple joined buckets,

500



0.9 0.8 0.7 0.6
– – – –
1.0 0.9 0.8 0.7

min 0.93 0.82 0.70 0.64
max 1.00 0.82 0.79 0.68
h(a) 1 1
h(b) 1 1 1
h(c) 1 1 1
h(d) 2 1

(a) R1 BFHM

0.9 0.6 0.5 0.4 0.3
– – – – –
1.0 0.7 0.6 0.5 0.4

min 0.91 0.64 0.50 0.41 0.31
max 0.92 0.64 0.53 0.41 0.38
h(a) 1 3
h(b) 2
h(c) 1 1
h(d) 2 1

(b) R2 BFHM

# Join Min Max # of est. R1 R2

Attr Score Score Results bucket bucket
1 h(b) 1.73 1.74 2 0.8–0.9 0.9–1.0
2 h(b) 1.61 1.71 2 0.7–0.8 0.9–1.0
3 h(c) 1.57 1.64 1 0.9–1.0 0.6–0.7
4 h(b) 1.55 1.60 2 0.6–0.7 0.9–1.0
5 h(a) 1.43 1.53 1 0.9–1.0 0.5–0.6
6 h(c) 1.34 1.43 1 0.7–0.8 0.6–0.7
7 h(d) 1.32 1.35 4 0.8–0.9 0.5–0.6
8 h(c) 1.28 1.32 1 0.6–0.7 0.6–0.7
9 h(a) 1.24 1.38 3 0.9–1.0 0.3–0.4
10 h(c) 1.24 1.38 1 0.9–1.0 0.3–0.4
11 h(d) 1.23 1.23 2 0.8–0.9 0.4–0.5
12 h(a) 1.20 1.32 1 0.7–0.8 0.5–0.6
13 h(d) 1.14 1.21 2 0.6–0.7 0.5–0.6
14 h(d) 1.05 1.09 1 0.6–0.7 0.4–0.5
15 h(a) 1.01 1.17 3 0.7–0.8 0.3–0.4
16 h(c) 1.01 1.17 1 0.7–0.8 0.3–0.4
17 h(c) 0.95 1.06 1 0.6–0.7 0.3–0.4

(c) Estimated BFHM join result (score function: sum)

Figure 6: Example: BFHM join result estimation

is a superset of the actual join result set.

Proof. Remember that tuples are inserted to the BFHM
based on their join attribute value, and that when joining
two (or more) such structures, we first perform a bitwise-
AND of the Bloom filters. This means that, in the resulting
BFHM, bit positions that were unset in at least one of the
BFHMs, will also be 0, while all remaining positions (i.e.,
for which all BFHMs had a non-zero value) will be non zero,
and the product of the respective counters will give us an
estimation of their join result size. Being based on Bloom
filters, each individual BFHM cell can only introduce false
positives; that is, in our context, the individual counters in
every counter position of the original BFHMs will be equal
to or larger than the cardinality of the values they represent.
Hence, we can only overestimate the number of join results
corresponding to any position in the final BFHM.

In essence, this means that the recall of our BFHM-based
algorithm is not affected by the use of Bloom filters. It thus
suffices to prove that our treatment of BFHM cells/buckets
is such that if some item is missing from the output, then
our algorithms can detect and fetch it.

Theorem 1. The BFHM-based rank join algorithms can
achieve a 100% recall for any valid input.

Proof. We shall prove this by contradiction. Let t be
a join result tuple which should be in the top-k join result
set but is omitted by our algorithm; that is, t’s score is
among the actual top-k join result scores but t is not in
the final result set computed during phase 2 (and possible
repetitions, as discussed above). Given lemma 1, this may
happen only if the algorithm has stopped before examining
the join result BFHM bucket in which t belongs. This in
turn means that the result set consists of at least k results,

and that the maximum score of t’s bucket (being larger or
equal to t’s score) – and hence t’s score – is below the score
of the kth result; a contradiction.

6. UPDATES AND MAINTENANCE
Both the IJLMR and ISL indexes are in essence space-

optimized inverted lists of the base data. To maintain these
indexes up-to-date in the face of concurrent run-time up-
dates, we have overloaded the base data insertion and dele-
tion functions, intercepting these primitives so as to also
propagate changes to the index. More specifically, both
insertions and deletions are intercepted at the caller level;
then, the mutation is augmented so as to perform both a
base data and an index insertion/deletion in one operation,
using the original mutation timestamp for both operations.
This reduces the time between data and index updates, and
takes a step towards index consistency. We have opted for
eventual consistency, since this is the consistency level also
natively supported by most contemporary NoSQL stores;
failed mutations are retried until successful and key-value
timestamps are used to discern between fresh and stale tu-
ples.

For BFHM, the existence of the BFHM blobs makes con-
current updates more complicated. To this end, we have
taken a hybrid approach, where updates to the reverse map-
pings are performed just as above, while updates to the
blobs are handled through special insertion and tombstone
records. These are key-value pairs that are stored in the
bucket row, along with the blob and bucket score range.
Each tuple insertion in a specific BFHM bucket will result
in an “insertion” record being added to the bucket row (in
addition to an entry being added in the corresponding re-
verse mapping row); this key-value pair holds all BFHM-
related information (i.e., the tuple’s rowkey, join value, and
score), and bears the same timestamp as the newly inserted
tuple. Conversely, if a tuple is deleted from a BFHM bucket,
then a “tombstone” record is added to the bucket row, again
bearing all BFHM-related information and the same times-
tamp as the delete operation; reverse mappings are directly
deleted, using the NoSQL store’s vanilla delete operation.
This information allows anyone retrieving a bucket row to
replay all row mutations in timestamp order and reconstruct
the up-to-date blob from the original blob. The blob is
then written back to the NoSQL store using the timestamp
of the latest replayed mutation, and insertion/tombstone
records with an older or equal timestamp are purged, all in
a single operation. HBase (and most NoSQL stores) sup-
port row-level atomicity; coupled with the above treatment
of timestamps, this ensures that no updates are lost. The
blob write-back can be performed eagerly (at the beginning
of query processing), lazily (after the query results are re-
turned to the user), or off-line (by a thread periodically
probing bucket rows for mutation records). Moreover, one
can choose to perform the write-back only if the number of
replayed mutations is above some predefined threshold.

7. EXPERIMENTAL EVALUATION

7.1 Methodology
We implemented all of the above mentioned algorithms,

comprising approx. 6k lines of Java code. We further im-
plemented the DRJN algorithm from [8]. The DRJN index

501



is roughly a 2-d matrix, with join value partitions on its x-
axis and score value partitions on its y-axis. DRJN query
processing proceeds as follows: (i) the querying node fetches
complete DRJN matrix rows in decreasing score order; (ii)
the relevant buckets are “joined” so as to estimate the car-
dinality of their join; (iii) when the cumulative cardinality
surpasses k, contact all nodes and fetch and join all tuples
whose score is above the the lower score boundaries of the
last fetched buckets; (iv) terminate if the cardinality of the
actual result set is k and the score of the k’th tuple is larger
than the maximum attainable join score of the last fetched
buckets, otherwise loop to (i), incrementally fetching more
buckets and tuples. As [8] was designed for a P2P-like set-
ting, we had to revisit it so as to be useable in a NoSQL store
such as HBase. First, we opted to group DRJN buckets by
their scores and store all buckets for a given score range as
columns of a single row; thus, the querying node will retrieve
a complete batch of buckets, as required at step (i) above,
with a single HBase Get() operation. We further augmented
HBase with custom server-side filters to allow for efficient fil-
tering of tuples in step (iv). Last, we further expedited step
(iv) by implementing it as a lightweight Map-only Hadoop
job, storing its output data in a temporary HBase table for
the querying node to access and join.

We employed two different clusters: one in a controlled
lab environment and one ”in-the-wild”. For the latter, we
used Amazon’s Elastic Compute Cloud (EC2), with clusters
consisting of 3, 5, and 9 m1.large nodes. (each with 2 virtual
cores, 7.5 GB RAM, and 2x 420 GB of instance storage).
The lab cluster (LC) consisted of 5 nodes, each with 2 CPUs,
16 cores per CPU, 64GB RAM, and 10× 1TB disks.

We used the TPC-H generator, generating data for the
“Lineitem”, “Orders”, and ”Part” tables, for scale factors
from 10 to 500. The larger (smaller) data scale resulted in
tables with 3 billion (60M), 750 million (15M), and 100 mil-
lion (2M) rows, which occupied ≈1.7TB (34GB), ≈200GB
(4GB), and ≈25GB (0.5GB) of HBase disk space, respec-
tively. With the TPC-H generator we also computed up-
date sets, to be applied to the base data and indexes. All
Bloom filters were configured to contain the most heavily
populated of the buckets with a false positive probability of
5%. The number of BFHM buckets was set to 100 and 1000
on EC2 and to 100 and 500 on LC. ISL was configured with
batching sizes matching the number of BFHM buckets; 1%
and 0.1% on EC2, and 1% and 0.2% on LC. DRJN was also
configured with 100 and 500 buckets on LC.

We used the following queries:
Q1: SELECT * FROM Part P, Lineitem L

WHERE P.PartKey=L.PartKey
ORDER BY (P.RetailPrice * L.ExtendedPrice)
STOP AFTER k

Q2: SELECT * FROM Orders O, Lineitem L
WHERE O.OrderKey=L.OrderKey
ORDER BY (O.TotalPrice + L.ExtendedPrice)
STOP AFTER k

These queries were selected to showcase both the use of
different aggregate scoring functions and the effect of score
value distributions on the query processing time. Queries
were executed 20 times and we report on the average values
(the standard deviation was too small to show on the graphs
in all cases). Last, we applied the update sets one at a
time and executed 20 repetitions of the same queries. All
block-level/memory caches were purged between consecutive

update and query executions.
We evaluate all algorithms using the following metrics:
• Turnaround time: the wall-clock time required to com-

pute and return the top-k join result.
• Network bandwidth: the number of bytes transferred

through the network.
• Dollar cost: the number of tuples read from the cloud

store during query processing1.
Regarding query processing times, the BFHM and ISL al-

gorithms were similar across all EC2 cluster sizes. For the
PIG, HIVE, and IJLMR approaches, the increase in cluster
size resulted in a ≈30% decrease in processing time going
from 1+2 to 1+8 nodes, with the rest of the metrics be-
ing roughly the same across cluster sizes. Thus, to save
space, we present only the figures for the 1+8 EC2 cluster
and a scalefactor of 10 (denoted “EC2”), and for the 5-node
lab cluster and a scalefactor of 500 (“LC”). With respect
to query response time, IJLMR, PIG, and HIVE had sig-
nificantly reduced performance. Specifically, IJLMR, was
consistently worse than the next-best algorithm by up to an
order of magnitude, PIG was worse than IJMLR by about
an order of magnitude, and HIVE was worse than PIG by
about an order of magnitude. Thus, for presentation clar-
ity we omit specific results for these when showing the LC
results with the big scale factor.

7.2 Results

Query Processing Time. Figures 7(a), 7(d), 8(a), and 8(d)
depict the time required by each algorithm to process the
Q1 and Q2 top-k join queries, for various values of k. Please
note the logarithmic y-axis. Contrasting the results for Q1
and Q2 we can see how the different score distributions affect
the processing time. For Q2 there are fewer high-ranking
tuples, thus we need to reach deeper into each index to pro-
duce the top-k result set compared to Q1. On EC2, BFHM
is the clear winner across the board, with ISL following, and
IJLMR, PIG, and HIVE trailing by large margins. For LC,
ISL is shown to be best, with BFHM closing the gap and
occasionally beating ISL, as k increases. DRJN trails by
several orders of magnitude, primarily due to the cost of
the Map jobs needing to scan the whole dataset to send to
the coordinator those rows having a score greater that the
threshold calculated by it.

Query Processing Bandwidth Consumption. Figures 7(b),
7(e), 8(b), and 8(e) depict the bandwidth consumed to pro-
cess Q1 and Q2. IJLMR does in general very well, as it only
transfers the local top-k lists from the mappers to the sole
reducer. However, as k increases, BFHM closes the gap,
eventually even winning for large values of k. In general,
DRJN achieves its best performance for this metric. From
the LC results, DRJN is the clear winner for Q1 and for low-
k values for Q2. Note that in DRJN, although its mappers
need to scan the complete dataset, this is typically fetched
from each mapper’s local disk. Further, our optimization of
server-side filtering paid off, as the amount of data put on

1Per DynamoDB’s pricing scheme[9], each key-value read
from the NoSQL store corresponds to 1 unit of Read Capac-
ity (as all of our key-value pairs are less than 1KB in size),
with Read Throughput being priced at $0.01 per hour for
every 50 units of Read Capacity.

502



(a) Q1: Query processing time (b) Q1: Network bandwidth (c) Q1: Dollar cost

(d) Q2: Query processing time (e) Q2: Network bandwidth (f) Q2: Dollar cost

Figure 7: Results for Q1 and Q2 on EC2

(a) Q1: Query processing time (b) Q1: Network bandwidth (c) Q1: Dollar cost

(d) Q2: Query processing time (e) Q2: Network bandwidth (f) Q2: Dollar cost

Figure 8: Results for Q1 and Q2 on LC

the network is significantly reduced. For Q1, where the top-
k join is computed very early, DRJN shines, as very little
data need be fetched over the network. For the more de-
manding Q2 however, as k increases, its improvement over
BFHM becomes much smaller.

Query Processing Dollar-cost. Following the DynamoDB
pricing model, Figures 7(c), 7(f), 8(c), and 8(f) depict the
number of key-value pairs read from the NoSQL store. Nat-
urally, the MapReduce approaches are the worst, since they
need to scan all of the input data. BFHM, with its accuracy
in estimating the result set cardinality, and its “surgical”
accuracy in retrieving appropriate tuples from the input re-
lation, is the clear winner here with ≈1-3 orders of magni-
tude less cost than the next best contender (ISL) and up to
5 orders of magnitude better than DRJN.

Indexing Costs. Fig. 9 depicts the indexing times, showing
that our indexing algorithms scale well with the cluster and
dataset sizes. We stress that, across the board, the sum of
the index building time plus the relevant query processing
times shown earlier, is on par or lower than the time required

to execute the same query in PIG (and much faster than
executing it in HIVE). In essence, this means that we can
afford to build our indices just before executing a query,
and still be competitive against PIG or HIVE! Additionally,
we report on the storage space used by each index and the
maximum memory footprint of individual mappers/reducers
during the index building stages, on the Lab Cluster and for
the 500-scalefactor. More specifically, the disk space used
by each index (for Part, Orders, and Lineitem resp.) was:
• BFHM: 2.6, 22, and 110 GB (incl. reverse mappings)
• ISL: 1.2, 13.5, and 85 GB
• IJLMR: 1.2, 13.5, and 85 GB
• DRJN: ranging from 400 kB (100 buckets) to 8.5 MB

(500 buckets)
Keep in mind that the on-disk size of the base relations was
25 GB, 200 GB, and 1.7 TB respectively for Part, Orders,
and Lineitem. The memory footprint of reducers during the
index building phase was:
• BFHM/100 buckets: 4 GB worst case, 1 GB average.
• BFHM/500 buckets: 2 GB worst case, 0.5 GB average
• ISL/IJLMR: negligible

503



Figure 9: Indexing time (solid: EC2; pattern: LC)

• DRJN: ranging from 3.5 MB (Part, 500 buckets) to
125 MB (Lineitem, 100 buckets)

Online Updates. Last, we studied the effect of online up-
dates for BFHM. We first used the TPC-H generator to gen-
erate a number of update sets, each consisting of ≈ s× 600
insertions and ≈ s×150 deletions for scale-factor s. We then
applied each of these sets in their entirety (i.e., ≈ 750 mu-
tations), followed by a single query for which we measured
the query processing time. Even with the “eager” update
scheme (i.e., the coordinator reconstructed and wrote back
the updated BFHM at the beginning of query processing),
fitting an update-heavy workload – a worst-case scenario
with regard to the query processing time overhead – the
overall time overhead was less than 10% across the board
(figure omitted due to space reasons).

8. CONCLUSIONS
Top-k join queries arise naturally in many real-world set-

tings. We studied algorithms for rank joins in NoSQL stores.
This is, to our knowledge the first such endeavor. We con-
tributed novel algorithms, implemented them, and exten-
sively tested their performance over Amazon EC2 and in-
house clusters, using TPC-H data at various scales and dif-
ferent query types. The central conclusion is that for all met-
rics, data sets, and query types studied, the BFHM Rank
Join algorithm is very desirable. It typically manages to
outperform the others and even when it is not the best ap-
proach, it offers a performance that is in absolute terms
satisfactory and is less sensitive to the various query types,
data sets, k values, and their configuration parameters. Im-
mediate future plans include the adoption of dynamic Bloom
filters to further improve the time and bandwidth perfor-
mance of BFHM Rank Join, as well as an exploration of the
design space with regard to our various system parameters.

9. REFERENCES
[1] A. Abouzeid, et al. HadoopDB: an architectural

hybrid of MapReduce and DBMS technologies for
analytical workloads. PVLDB, 2(1):922–933, 2009.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In Proc. EDBT, 2010.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426.

[4] C. Böhm and H.-P. Kriegel. A cost model and index
architecture for the similarity join. In Proc. ICDE,
2001.

[5] P. Cao and Z. Wang. Efficient top-k query calculation
in distributed networks. In Proc. ACM PODC, 2004.

[6] S. Cohen and Y. Matias. Spectral Bloom filters. In
Proc. ACM SIGMOD, 2003.

[7] J. Dittrich, et al. Hadoop++: Making a yellow
elephant run like a cheetah (without it even noticing).
PVLDB, 3(1-2):515–529, 2010.

[8] C. Doulkeridis, et al. Processing of rank joins in highly
distributed systems. In IEEE ICDE, 2012.

[9] DynamoDB pricing scheme:
http://aws.amazon.com/dynamodb/#pricing.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In Proc. ACM
PODS, 2001.

[11] S. W. Golomb. Run-length encodings. IEEE
Transactions on Information Theory, 12(3):399, 1966.

[12] I. Ilyas, W. Aref, and A. Elmagarmid. Joining ranked
inputs in practice. In Proc. VLDB, 2002.

[13] I. Ilyas, W. Aref, and A. Elmagarmid. Supporting
top-k join queries in relational databases. In Proc.
VLDB, 2003.

[14] I. Ilyas, G. Beskales, and M. Soliman. A survey of
top-k query processing techniques in relational
database systems. ACM Computing Surveys,
40(4):1–58, 2008.

[15] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu.
Llama: leveraging columnar storage for scalable join
processing in the mapreduce framework. In Proc.
ACM SIGMOD, 2011.

[16] S. Michel, P. Triantafillou, and G. Weikum. KLEE: A
framework for distributed top-k query algorithms. In
Proc. VLDB, 2005.

[17] M. Mitzenmacher. Compressed Bloom filters.
IEEE/ACM Transactions on Networking,
10(5):604–612, 2002.

[18] J. Mullin. Estimating the size of a relational join.
Information Systems, 18(3):189–196, 1993.

[19] A. Natsev, Y.-C. Chang, J. Smith, C.-S. Li, and
J. Vitter. Supporting incremental join queries on
ranked inputs. In Proc. VLDB, 2001.

[20] A. Okcan and M. Riedewald. Processing theta-joins
using mapreduce. In Proc. ACM SIGMOD, 2011.

[21] C. Olston, et al. Pig Latin: A not-so-foreign language
for data processing. In Proc. ACM SIGMOD, 2008.

[22] K. Schnaitter and N. Polyzotis. Evaluating rank joins
with optimal cost. In Proc. ACM PODS, 2008.

[23] M. Stonebraker, et al. Mapreduce and parallel
DBMSs: Friends or foes? Comm. ACM, 53(1):64–71,
2010.

[24] A. Thusoo, et al. Hive: a warehousing solution over a
map-reduce framework. PVLDB, 2(2):1626–1629,
2009.

[25] M. Wu, L. Berti-Equille, A. Marian, C. Procopiuc,
and D. Srivastava. Processing top-k join queries.
PVLDB, 3(1-2):860–870, 2010.

[26] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An
efficient method for kNN join processing. In Proc.
VLDB, 2004.

[27] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In Proc. ICDE, 2009.

[28] D. Zeinalipour-Yazti, et al. The Threshold Join
Algorithm for top-k queries in distributed sensor
networks. In Proc. ACM DMSN, 2005.

[29] K. Zhao, S. Zhou, K.-L. Tan, and A. Zhou.
Supporting ranked join in peer-to-peer networks. In
Proc. DEXA, 2005.

504


