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RESTRICTING UNIFORMLY OPEN SURJECTIONS

TOMASZ KANIA AND MARTIN RMOUTIL

Abstract. We employ the theory of elementary submodels to improve a recent result by
Aron, Jaramillo and Le Donne (Ann. Acad. Sci. Fenn. Math., 2017) concerning restricting
uniformly open, continuous surjections to smaller subspaces where they remain surjective.
To wit, suppose that X and Y are metric spaces and let f : X → Y be a continuous
surjection. If X is complete and f is uniformly open, then X contains a closed subspace
Z with the same density as Y such that f restricted to Z is still uniformly open and
surjective. Moreover, if X is a Banach space, then Z may be taken to be a closed linear
subspace. A counterpart of this theorem for uniform spaces is also established.

1. Introduction

Recently the problem of restricting surjective maps between metric spaces to smaller
subspaces where they remain being surjective attracted considerable attention due to a re-
newed interest in possible abstract extensions of the Morse–Sard theorem. By the Axiom
of Choice, every surjection f : X → Y admits a right inverse g : Y → X, whence the range
of g is usually a smaller subspace of X on which f remains surjective. In the case where
X carries an extra structure, the range of a (highly non-constructively chosen) g may be
still quite large in a certain sense, though. Let us then make the problem more precise.

By the density of a topological space Z, we understand the smallest cardinality densZ
of a dense subset of Z. Suppose that X and Y are metric spaces and let f : X → Y be
a function. It is natural to ask under what circumstances should it be possible to find
a subspace Z of X with densZ = densY such that f restricted to Z is still surjective
as a function into Y . Aron, Jaramillo and Ransford ([2]) proved that there exists a C∞-
function from the non-separable Hilbert space `2(R2) onto R2, which fails to be surjective
when restricted to any separable subset. On the positive side, Aron, Jaramillo and Le
Donne ([1, Theorem 1]) proved that one may choose suitable Z when the domain of X is
complete and f is continuous and uniformly open. However it does not follow from their
proof that the restriction may be taken uniformly open (or even open). (We state the
definition of a uniformly open map in the subsequent section.)
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Theorem A. Suppose that X and Y are metric spaces and let f : X → Y be a continuous
surjection. If X is complete and f is uniformly open, then X contains a closed subspace
Z with densZ = densY such that f restricted to Z is uniformly open and surjective.
Moreover, if X is a Banach space, then Z may be taken to be a closed linear subspace.

Theorem A indeed strengthens the conclusion of [1, Theorem 1] by uniform openness
of f |Z as even restrictions of uniformly open bounded bilinear maps on Banach spaces to
closed subspaces need not be uniformly open. For example, the restriction of multiplication
in the space of continuous functions on the Cantor set, which is uniformly open, to certain
closed subalgebras is no longer so (see [4, Section 3]).

When this work was at the stage of completion, Le Donne has kindly communicated
to us the claim that in joint work with Jaramillo and Rajala they were able to relax the
hypothesis of uniform openness of a continuous surjection to mere openness by reducing
the proof to the previously established uniformly open case. Our result is of different
nature though. We show that a uniformly open continuous surjection f : X → Y may be
restricted to a uniformly open map on a subspace Z of X with densZ = densY in such
a way that the range of f contains a dense subset of Y . Since the domain of f is complete
and f is uniformly open, the range of f must be complete too, so it must be the whole Y .
Thus, we shift our efforts from focusing on surjectivity of the restriction to showing mere
uniform openness which would automatically imply surjectivity.

Our seemingly overcomplicated proof is based on the method of elementary submodels,
a part of model theory. It is fair to say that the proof itself could be modelled on the
proof of Theorem 2.4, and the machinery from logic could possibly be avoided. However
we have good reasons not to do this. The advantage of our approach is the ease with which
we may impose further requirements on Z, if needed. For example, if X carries an extra
structure that can be expressed in terms of first-order logic (e.g., if X is a normed space
or a normed algebra), f can be restricted to a closed substructure (a closed subspace or
a closed subalgebra, respectively) and remain uniformly open. In this case, avoiding using
elementary submodels could bring the danger of being quickly lost in the obscurity of
notation and other technical difficulties. Secondly, the problem itself appears to be tailor-
made for the use of elementary submodels. Let us then take our proof as an opportunity
for advertising the powerful method of elementary submodels; given its relative simplicity,
the reader interested more in elementary submodels themselves than in our result, may
regard the proof as a tutorial of the method.

2. Preliminaries

A map f : X → Y between metric spaces is uniformly open when it has the property
that for each ε > 0 there is δ > 0 such that for each x ∈ X one has

B(f(x), δ) ⊆ f(B(x, ε)).

It seems that the notion of uniform openness was first distilled by Michael [9]; however,
it had been employed already by Schauder ([10, p. 6]) en route to the proof of his open-
mapping theorem for complete metric vector spaces.
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Let us record Schauder’s lemma in its modern form (see, e.g., [8, Lemma 3.9] for an el-
ementary proof).

Lemma 2.1 (Schauder). Let X and Y be metric spaces such that X is complete. Suppose
that f : X → Y is a continuous map. If for each ε > 0 there exists δ > 0 such that for any
x ∈ X one has

B(f(x), δ) ⊆ f(B(x, ε)),

then f is uniformly open.

Remark 2.2. We shall need a formally stronger version of Schauder’s lemma requiring that
the postulated inclusion holds only for x in a fixed, dense subset D ⊂ X. This is however
sufficient. Indeed, let ε > 0 and δ > 0 corresponding to ε/2 be given. Take x ∈ X and
x′ ∈ D such that d(x, x′) < ε/2 and d

(
f(x), f(x′)

)
< δ/2. We then have

B(f(x), δ/2) ⊆ B(f(x′), δ) ⊆ f(B(x′, ε/2)) ⊆ f(B(x, ε)).

We trust that the following basic property of uniformly open maps requires no explana-
tion.

Lemma 2.3. Let X and Y be metric spaces. Suppose that X is complete. If f : X → Y
is a uniformly open map with dense range, then f is surjective.

Our method of proof uses elementary submodels; let us therefore describe some of the
basic notions and facts we use. By formula we shall always mean a formula in the language
of ZFC. Let N be a set and φ be a formula. The relativisation of φ to N is the formula φN ,
which is obtained from φ by replacing each quantifier of the form ∀x by ∀x ∈ N and each
quantifier of the form ∃x by ∃x ∈ N . Let ϕ(x1, . . . , xn) be a formula, where x1, . . . , xn are
all the free variables of φ. We say that φ is absolute for N if

∀a1, . . . an ∈ N : (φN(a1, . . . , an)↔ φ(a1, . . . , an)).

We shall employ the following theorem (see, e.g., [7, Chapter IV, Theorem 7.8]).

Theorem 2.4. Let φ1, . . . , φn be formulae and let A be a set. Then there exists a set
M ⊇ A such that φ1, . . . , φn are absolute for M and |M | 6 max(ω, |A|).

We refer the reader without background in logic to [6, Chapter 24] for a leisurely expo-
sition of elementary substructures and their applications outside set theory.

3. Proof of Theorem A

Proof of Theorem A. It suffices to find a closed subset Z ⊂ X with the same density as Y
so that f |Z is uniformly open and its range is dense in Y ; indeed the surjectivity is then
automatic by Lemma 2.3.

We may suppose that Y is infinite as otherwise the statement is trivial. Take a set
D ⊆ X such that f(D) is dense in Y and |D| = densY , and set

A = D ∪ f(D) ∪Q ∪ {f,X, dX , Y, dY , <},
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where dX and dY are the metrics on X and Y , respectively, and < is the order relation in
the real line (we consider the relation < as a set, which we include into A as an element,
not a subset; similarly for f,X, dX , Y, dY ). Then A has the same cardinality as D. Let φ
be the following formula:

∀ε ∈ Q+ ∃δ ∈ Q+ ∀x ∈ X ∀y ∃z ∈ X : (dY (f(x), y) < δ → dX(x, z) < ε & y = f(z)).

Since φ is equivalent to f being uniformly open, φ is true by the hypothesis of the theorem.
By Theorem 2.4 we may find a setM ⊇ A such that φ is absolute forM and |M | = densY .
Set Z = X ∩M ; we claim that Z has the desired properties.

The validity of φ and its absoluteness for M imply that the following formula holds as
well (note that Q+ ⊆ M and that all free variables appearing in this formula are also
elements of M):

∀ε ∈ Q+ ∃δ ∈ Q+ ∀x ∈ X ∩M ∀y ∈M ∃z ∈ X ∩M :

(dY (f(x), y) < δ → dX(x, z) < ε & y = f(z)).

This translates as follows—given ε ∈ Q+, there is δ ∈ Q+ such that for each x ∈ X ∩M
we have

B(f(x), δ) ∩M ⊆ f(B(x, ε) ∩M) ∩M,

whence

B(f(x), δ) ⊆ B(f(x), δ) ∩M ⊆ f(B(x, ε) ∩M) ∩M ⊆ f(BZ(x, ε)).

Here the first inclusion follows from the fact that f(D) ⊆ A ⊆M , so M ∩Y is dense in Y ;
by BZ(x, ε) we mean simply B(x, ε) ∩ Z, which makes the last inclusion trivial. Finally,
by Lemma 2.1 (which can be applied due to the continuity of f ; see also Remark 2.2), f |Z
is uniformly open. As f(D) is dense in Y , we are in a position to apply Lemma 2.3, which
concludes the proof.

If X is a Banach space we may have enlarged A by the operation of addition in X as
well as by the operation (λ, x) 7→ λx, where λ is a scalar and x ∈ X. In this case we may
consider the formula ψ:

∀x, y ∈ X ∀λ1, λ2 ∈ Q ∃z ∈ X : (λ1x+ λ2y = z)

(or ∀λ1, λ2 ∈ Q(i) in the case of complex scalars; we would then have included Q(i) in A
too). Theorem 2.4 applied to formulae ϕ, ψ and the set A yields a set M for which ϕ, ψ
are absolute and so M ∩X is a closed linear subspace of X with the desired property. �

4. An extension to uniform spaces

The generality of the employed method allows us to extend the result to uniformly
open maps acting between uniform spaces. We refer the reader to James’ book [5] for the
unexplained terminology concerning uniform spaces.

Let X and Y be uniform spaces. A function f : X → Y is uniformly open if for every
entourage D of X there is an entourage E of Y such that E [f(x)] ⊆ f(D [x]) for each
x ∈ X. Since every uniform space carries the canonical topological structure, we may talk
about the density of a uniform space and continuity of maps defined therebetween.
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A uniform space X is super-complete if the hyperspace expX comprising all compact
subsets of X is complete when endowed with the Hausdorff uniformity; complete metric
spaces with their natural uniformity are super-complete. Dektrajev ([3]) proved that a map
f : X → Y between uniform spaces that has closed range is uniformly open as long as X
is super-complete and for every entourage D of X there is an entourage E of Y such that
E [f(x)] ⊆ f(D [x]) for every x ∈ X. Also, if f : X → Y is a uniformly open surjection,
where X is a complete uniform space, then Y is complete too. Having prepared all the
ingredients, by a completely analogous procedure, one may prove the following counterpart
of Theorem A.

Theorem B. Suppose that X and Y are uniform spaces and let f : X → Y be a continuous
surjection. If X is super-complete and f is uniformly open, then X contains a closed sub-
space Z with densZ = densY such that f restricted to Z is uniformly open and surjective.

Acknowledgements. We are most grateful to Richard Aron for having explained to us
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