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Abstract—Recent work have used both failure logs and re-
source use data separately (and together) to detect system failure-
inducing errors and to diagnose system failures. System failure
occurs as a result of error propagation and the (unsuccessful)
execution of error recovery mechanisms. Knowledge of error
propagation patterns and unsuccessful error recovery is im-
portant for more accurate and detailed failure diagnosis, and
knowledge of recovery protocols deployment is important for im-
proving system reliability. This paper presents the CORRMEXT
framework which carries failure diagnosis another significant
step forward by analyzing and reporting error propagation
patterns and degrees of success and failure of error recovery
protocols. CORRMEXT uses both error messages and resource
use data in its analyses. Application of CORRMEXT to data
from the Ranger supercomputer have produced new insights.
CORRMEXT has: (i) identified correlations between resource
use counters that capture recovery attempts after an error, (ii)
identified correlations between error events to capture error
propagation patterns within the system, (iii) identified error
propagation and recovery paths during system execution to
explain system behaviour, (iv) showed that the earliest times of
change in system behaviour can only be identified by analyzing
both the correlated resource use counters and correlated errors.
CORRMEXT will be installed on the HPC clusters at the Texas
Advanced Computing Center in Autumn 2017.

Index Terms—Large cluster system; Correlation; Variance
extraction; Error Recovery and propagation; Cluster log data

I. INTRODUCTION

There has been much fruitful research on failure-inducing
error detection and the analysis and diagnosis of system fail-
ures. This research is summarized briefly below and analyzed
in Section V. HPC and data center operators face challenges
on a day by day basis. Recent work that studied HPC and
data center failures [1], [2] have shown that the mean time
between failures is decreasing and it is important for the
system administrators to identify errors quickly. However,
these high-performance systems generate a massive amount of
data. The different types of data are not necessarily structured.
Therefore, finding the right types of data and rapidly analyzing
the data to diagnosis system problems is a challenging task
while at the same time important for improving the HPC
system performance and uptime. A significant body of research
has shown the value of message logs for error detection [3]–

[5], failure prediction [6]–[12] and failure diagnosis [13]–[15].
Another significant body of research has shown the value of
resource use data to detect anomalies and characterize errors
[16]–[18], predict failures [19] and recovery [20]. The use of
resource use data and message logs separately has provided
important methods and tools that help manage these systems.

Recent work which use resource use data and message logs
for failure diagnosis [21], [22] and error detection [23], [24]
has shown increased accuracy over using message logs alone.
[21] provides partial diagnosis of system failures by using
resource use data to identify resource anomalies, and provides
a more precise diagnosis by using message log-analysis. [24]
combines analyses of message logs and resource use data
but the focus is on error detection. [23] uses message logs
and resource use data to increase the error handling time
window, and [22] is focused on correlating resource usage and
message logs with system failures. [25] combines analysis of
RAS logs and job logs but the focus is on identifying failure
characteristics in a cluster system. Previous work [21], [22],
[26] have correlated errors only with failures, but there is
little work which focuses on other dependability-related issues
such as error propagation and error recovery. The knowledge
of error propagation paths can be useful to system designers
and implementators for improving the effectiveness of error
recovery protocols.

A system failure occurs due to error propagation from one
component to another until the error reaches system boundary.
This error propagation to system boundary is either due to
the unsuccessful execution of error recovery mechanisms or
the lack of it. State-of-the-art techniques on failure diagnosis
correlates a given error event (e.g., segmentation fault) with
system failure, i.e., the techniques return the most likely cause
of the failure. Though important, this information may not
provide enough details to a system administrator. Differently,
capturing the error propagation paths and/or understanding
the reason behind the unsuccessful execution of the recovery
mechanisms provides the system administrators with more
details. For example, information such as “An inode failure led
to communication errors, which were not recovered, and which
led to failure” provides more details than “system failure is
due to communication errors” as the recovery can now target



inodes (rather than communication errors).
This paper introduces the CORRMEXT framework to

identify possible error propagation paths and provide more
dependability-oriented system diagnosis. CORRMEXT uses
the TACC Stats [27] resource monitoring system and Ra-
tionalized message logging [28] to resolve resource use and
system messages by job, node and time for open-source
Linux clusters. CORRMEXT identifies and links groups of
resource use and events patterns on a given date. It applies
multiple correlation algorithms. CORRMEXT implements a
three-phase approach where: (i) correlations are performed on
the resource use counters, (ii) correlations are performed on
the message logs, (iii) variance extraction is performed on
time-bins associated with the correlated resource use counter
groups and correlated error groups.

The benefit of combining analysis of resource use and
message logs is given in the following example: When cor-
relations of process and NUMA1 resource use counters, and
correlations of memory errors occur on the same date, it
shows that memory allocation activities are associated with
the generation of memory errors. Therefore, the correlated
NUMA and process counters can be used to monitor the
state of memory allocation and the correlated memory errors
can be used to identify the application which caused the
error. In this paper, we will show that CORRMEXT provides
a pathway to the root-cause of successful and failed error
recovery mechanisms which alternative diagnostics tools can
not provide.

The main contributions of this paper include:

• A new framework (CORRMEXT) that combines resource
use data and message logs for detailed dependability-
oriented system diagnosis.

• A demonstration that CORRMEXT can: (i) identify error
propagation paths leading to failure, (ii) explain instances
of error recovery, (iii) explain the causes of failed error
recovery mechanisms.

• CORRMEXT shows that more correlated errors associ-
ated with error propagation and recovery can only be
identified by applying different correlation algorithms.

• CORRMEXT includes a detailed statistical analysis step
to ensure accurate dependability diagnosis. In our case
studies, we show that all the correlations are statistically
significant by applying the Bonferroni correction.

• CORRMEXT shows that the earliest times of change in
system behaviour can only be identified by analyzing both
the correlated resource use counters and correlated errors
on all dates.

The remainder of this paper is structured as follows: We
define the system and fault models in Section II, present the
problem description and framework in Section III, evaluate
CORRMEXT in Section IV, review the related work in Section
V, conclude with a summary and future work in Section VII.

1Non-Uniform Memory Access (NUMA)

II. SYSTEM AND FAULT MODELS

The class of systems to which CORRMEXT can be applied
is specified in terms of a generic model of cluster systems
given in [21] and we summarize here: A cluster system
consists of a set of nodes and jobs and a scheduler that
assigns jobs to nodes. Each component of a node or a job
can output log-messages which are recorded in a message log-
file. In addition, system resources used by the various jobs are
recorded at regular intervals. The resource usage is recorded
in a resource use log-file.

Fault Model: System failure2 occurs when the system
output deviates from the expected one. To increase the de-
pendability of such systems, it is important to tolerate those
errors that occur shortly before a system failure. Knowing
the nature of these errors will ease error detection or failure
diagnosis, thus helping with debugging or maintenance. We
assume faults can occur at any level in the system, at the
lowest level, e.g., register level to the highest level such as file
systems. Execution of these faults will lead to errors which,
if not handled, may lead to system failure.

III. SYSTEM ISSUES, PROBLEM SPECIFICATION AND
FRAMEWORK

An illustration of resource use and error messages by
time is shown in Fig. 1. In the resource use data, we ob-
served that user processor utilization (CPU user) and memory
pages not accessed recently (MEM Inactive) are correlated. We
also observed that user processor utilization (CPU user) and
memory pages accessed recently (MEM Active) are correlated.
In the rationalized message logs, we observed that chipset
error (Northbridge Error), memory error (ECC error) and
processor core (core) messages are correlated.

message logs
Rationalized

Resource
use data

Time

00

0

0

0

0

ECC error

core

Northbridge error

0
0user

CPU

0 0

0 0

MEM Inactive

MEM Active

Fig. 1. An illustration of user processor utilization, memory pages not
accessed recently, memory pages accessed recently, chipset, memory error
and processor core messages.

Capturing these correlations is important as these can pro-
vide insights into the behaviour of the system. For example, a
resource counter r1 may capture the existence of an error in
the system while another counter r2 may capture the execution
of some recovery procedure. A correlation between r1 and r2

shows that a recovery procedure was triggered following an
error. Similarly, a correlation between different event groups

2A node crash or operating system hang-up is a system failure.



will provide insights into the system state. However, under-
standing the occurrence of groups of errors from message logs
alone is challenging. The framework we present in this paper
seeks to determine the occurrence of these patterns to enable
study of various dependability-oriented processes such as error
recovery and error propagation .

A. Problem Specification

The problem that we address in this paper is given as
follows: Given (i) a set of resource use data, (ii) a set of
message logs, (iii) a list of resource use counter names, (iv) a
list of messsage types, and (v) a date, then:

1) Identify groups of resource use counters that are linearly
or monotonically correlated on the specified date,

2) Identify groups of errors that are linearly or monotoni-
cally correlated on the specified date,

3) Identify the time-bin(s) that are associated with the
correlated resource use counter groups and correlated
error groups on the date specified.

The date specified captures the date where deeper insights
are sought. To achieve this, we develop the CORRMEXT
(CORrelating Resource use data and Message logs and
EXtracting Time-bins) framework as shown in Fig. 2. Next,
we describe in detail, each of the three modules used within
the CORRMEXT framework.

Message Logs

Data Type
Extraction

Correlated Resource
use counters

Correlated
events

Validation Validation

Time−bins of correlated
resource use counters

Time−bins of
correlated events

List of
message types

use counter
names

List of resource
MTExtRUExt

Resource
Use Data

Resource use
counters

Message types

Unique Unique

Correlation

CorrelatorCorrelator

Time−bin
Extraction

Variance Extractor Variance Extractor

Date

Fig. 2. The workflow of the CORRMEXT framework. The CORRMEXT
framework is composed of three modules: (1) Data Type Extraction, (2)
Correlation, (3) Time-bin Extraction. The workflow automatically process the
resource use and message logs through the Data Type Extraction, Correlation
and Time-bin Extraction modules. The output of each module are sets of
reports which can be used for diagnosis.

B. Data Type Extraction

CORRMEXT targets processing of TACC Stats resource
use data [27], Syslogs [29] and Rationalized message logs

[28]. TACC Stats [27] is a job-oriented and logically struc-
tured version of the conventional Sysstat system performance
monitor. The Rationalized message log [28] is a special type of
message log that incorporates a logical structure and additional
content such as job-identification to the POSIX formatted logs.
The resource use data and message logs contain hundreds
of different resource use counters and thousands of message
types. In addition, the messages in the message logs may
be ambiguous and unstructured. We developed a Data Type
Extractor module that extracts: (i) resource use counters from
the resource use data, and (ii) message types from the standard
Syslogs and Rationalized message logs.

Resource Use Extractor (RUExt): We implemented the
Resource Use Extractor to organize the resource use counters.
RUExt extracts resource use counters from a major new
version of TACC Stats and presents the resource use counters
in the form of a matrix of counts on which standard analysis
algorithms can be applied. In addition to hardware perfor-
mance monitoring data, Lustre file-system operation counts
and InfiniBand device usage collected by an earlier version,
the new TACC Stats collects a comprehensive range of metrics
that spans all system resources including energy consumption,
vectorization, I/O and network activity. An example of a
resource use log is shown below:

2066522 Aug 11 12:50:01 i150-412 mem 2 MemTotal
8273920 MemFree 5466616 MemUsed 2807304 ...

The sources of this resource use log can be identified from
the job (2066522) and node (i150-412). The time that this
resource use log was recorded can be identified from the
timestamp (Aug 11 12:50:01). The main component associ-
ated with this resource use log can be identified from the
word (mem) that follows immediately after the node identifier;
in this example, the main component is the onboard memory
system of the node i150-412. A second-level component can
be identified from the word (2) that follows immediately after
the first component identifier; in this example, the second-
level component is memory bank number 2. The resource
use counters can be identified from the key-value pairs (e.g.
MemFree 5466616) that follow after the second component
identifier. We define a parameter name, param-name, as a
triple which comprises of the main component, second-level
component and resource use counter key; in this example, the
param-name is “mem 2 MemFree”. A list of resource use
counters and their components is given in Table I.

Currently, RUExt generates a data matrix DRtimebins con-
taining counts of resource use counters by time-bins. In
the matrix, each row represents a param-name, each column
represents a time-bin of one hour tbj and each cell contains
the count of param-name within time-bin tbj . The data matrix
is generated using a process which is given as follows:

• Step 1: Split the resource usage logs into individual hours
by the given date.

• Step 2: For each log entry, extract the param-name and
store it in a list.



TABLE I
SYSTEM METRICS GROUPS AND RESOURCE USE COUNTERS.

Metric Qty. Resource use counters
group
Lustre 6 tx msgs, rx msgs, rx msgs dropped, tx bytes,

network rx bytes, rx bytes dropped
Lustre read bytes, write bytes, direct read, direct write,
/work, 23 dirty pages hits, dirty pages misses, ioctl, open,
/share, 23 close, mmap, seek, fsync, setattr, truncate, flock,
/scratch 23 getattr, statfs, alloc node, setxattr, getxattr,

listxattr, removexattr, inode permission
Virtual 21 pgpgin, pgpgout, pswpin, pswpout, pgalloc normal

memory pgfree, pgactivate, pgdeactivate, pgfault, pgmajfault
pgrefill normal, pgsteal normal, pgscan kswapd

normal, pgscan direct normal, pginodesteal,
slabs scanned, kswapd steal, kswapd inodesteal,
pageoutrun, allocstall, pgrotated

Block 11 rd ios, rd merges, rd sectors, rd ticks, wr ios,
md0, 11 wr merges, wr sectors, wr ticks, in flight, io ticks,
hdd time in queue
Cpu 112 user, nice, system, idle, iowait, irq, softirq

0 to 15
Mem 80 MemTotal, MemFree, MemUsed, Active, Inactive,
0 to 3 HighTotal, HighFree, LowTotal, LowFree, Dirty,

Writeback, FilePages, Mapped, AnonPages,
PageTables, NFS Unstable, Bounce, Slab,
HugePages Total, HugePages Free

Net ib0, 23 collisions, multicast, rx bytes, rx compressed, rx crc
lo, 23 errors, rx dropped, rx errors, rx fifo errors, rx

eth0, 23 frame errors, rx length errors, rx missed errors,
rx over errors, rx packets, tx aborted errors,
tx bytes, tx carrier errors, tx compressed, tx

dropped, tx errors, tx fifo errors, tx heartbeat
errors, tx packets, tx window errors

Numa 24 numa hit, numa miss, numa foreign, interleave hit,
0 to 3 local node, other node

Ps 7 ctxt, processes, load 1, load 5, load 15, nr running,
nr threads

• Step 3: Identify the unique param-names in the list and
obtain the param-name types.

• Step 4: For each param-name type in a resource use
log which match the given list of resource use counter
names, if the values associated with the param-name
types of two consecutive log entries are different, obtain
the difference and add the difference to the value obtained
in the preceding operation and store the value.

Message Types Extractor (MTExt): We implemented the
Message Types Extractor to extract structured message tem-
plates from large quantities of message logs. MTExt extracts
sequences of messages from the message logs and presents
these messages in the form of a matrix of counts on which
standard analysis algorithms can be applied. An example of a
message log is shown below:

2055415 Aug 3 00:00:03 i120-306 kernel X Northbridge
Error, node %d ...

The date and time that this message log was recorded can be
identified from the timestamp (Aug 3 00:00:03). The sources
that generated this message log can be identified from the job
(2055415) and node (i120-306). The message constant part in
this message log can be identified from a sequence of English-
only words (X Northbridge Error, node). The message type

can be identified from the message constant; in this message
log, the message type is a Northbridge error.

Currently, MTExt generates a data matrix DMtimebins

containing counts of message types by time-bins. In the
matrix, each row represents a message type mti, each column
represents a time-bin of one hour tbj and each cell contains
the count of a message type mti within time-bin tbj . The data
matrix is generated using a process which is given as follows:

• Step 1: Split the message logs into logs of individual
hours by the given date.

• Step 2: For each message log, extract the message con-
stant part and store it in a list.

• Step 3: Identify the unique message constants in the list
and obtain the message types.

• Step 4: Given a list of message types, count the number
of message types by hour for the given date in the logs.

C. Correlation

Once the Data Type Extractor module has generated the
time-bin data matrices, the Correlation module computes: (i)
the correlation coefficients between the resource use counters
contained in the time-bin (DRtimebins) data matrix and ex-
tracts a smaller set of resource use counters for analysis, and
(ii) the correlation coefficients between the events contained in
the time-bin (DMtimebins) data matrix and extracts a smaller
set of message logs for analysis. We implemented Pearson
correlation as the base algorithm to identify linear patterns and
Spearman-Rank correlation to identify patterns that increase
monotonically.

Pearson correlation [30] draws a line of best fit through
the data of two variables and it assumes a linear relationship
between the data of two variables. The Pearson correlation
coefficient, r is defined as the mean of the products of the
standard scores, i.e., r = 1

n−1

∑n
i=1

(
xi−x̄
sx

)(
yi−ȳ
sy

)
where(

xi−x̄
sx

)
is the standard score of x,

(
yi−ȳ
sy

)
is the standard

score of y, x and y are two datasets containing n values
of a pair of resource use counters or a pair of events,
sx =

√
1

n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation

of x, sy =
√

1
n−1

∑n
i=1(yi − ȳ)2 is the sample standard

deviation of y, x̄ and ȳ is the sample mean of x and y.
Spearman-Rank correlation [30] assumes a monotonic rela-

tionship that does one of the following: (i) when the value
of one variable increases, the value of the other variable
increases, (ii) the value of one variable remains, the value
of the other variable remains. The Spearman-Rank correlation
coefficient, ρ is defined as the Pearson correlation coefficient
between a pair of ranked variables. To rank the variables, we
implemented a standard technique called the tied rank average
method [30]. The process is given as follows:

• Rank order the values in the dataset x with the smallest
value getting a rank of 1.

• If more than one value has the same rank in dataset x,
assign the average rank to these values.



• Rank order the values in the dataset y with the smallest
value getting a rank of 1.

• If more than one value has the same rank in the dataset
y, assign the average rank to these values.

Our objective is to identify patterns in the resource use data
and message logs which are strongly positive correlated. The
correlation algorithms require that a pair of datasets contain
the same number of data points on the x-axis. The resource
use data and message logs are generated by different open
source software tools and the log entries in the resource use
data and message logs may contain different timestamps. As
a result, the dataset for a resource use counter and a message
type may contain different numbers of data points. It is for this
reason that we do not apply our Correlation module directly
on a pair of resource use counter and message type dataset.
Having said that, our objective is to identify correlations of
resource use counters and correlations of events. Hence, we
apply our Correlation module separately on the resource use
data and message logs as shown in Fig. 2.

Once the correlation matrices have been generated, we apply
a process given in [21] to generate the lists of strongly cor-
related resource use counters and strongly correlated events.
The process automatically identifies a correlation threshold
rth and uses rth to extract the strongly correlated resource
use counters, strongly correlated events and their correlation
coefficients. We use the following rules to interpret the strength
of the correlation coefficient: (a) 0.9 to 1: Very strong positive
correlation, (b) 0.7 to 0.9: Strong positive correlation, (c)
0.5 to 0.7: Moderate positive correlation, (d) 0.3 to 0.5:
Weak positive correlation, (e) 0.1 to 0.3: Very weak positive
correlation.
Validation: To test the significance of the correlation co-
efficient, we apply a standard technique called Fisher’s z-
transform [30] F (r) = 1

2 ln
(

1+r
1−r

)
on the correlation co-

efficient to obtain a z-score. We define the null hypothe-
ses as: (i) H0r that a pair of resource use counters are
very weakly positive correlated, and (ii) H0e that a pair of
events are very weakly positive correlated. We define the
alternate hypotheses as: (i) Har that a pair of resource use
counters are strongly positive correlated, and (ii) Hae that
a pair of events are strongly positive correlated. Under the
null hypothesis H0r, F (r) approximately follow a normal
distribution with mean uz = F (H0r) = 0 and standard error
SE = 1√

nr−3
, where nr is the number of time-bins in the

pair of resource use counters. Under the null hypothesis H0e,
F (r) approximately follows a normal distribution with mean
uz = F (H0e) = 0 and standard error SE = 1√

ne−3
, where

ne is the number of time-bins in the pair of message types.
Then, we obtain the z-score for all correlation coefficients,
i.e., zr = F (r)−uz

SE = (F (r)− F (H0r)) ×
√
nr − 3 and

ze = F (r)−uz

SE = (F (r)− F (H0e)) ×
√
ne − 3 where zr is

the z-score for a pair of correlated resource use counters and
ze is the z-score for a pair of correlated events.

A large absolute value of z, e.g., 2.64 at 99% confidence
level, will reject the null hypotheses in favour of the alter-

nate hypotheses that a pair of resource use counters and a
pair of events are correlated. We are interested in strongly
positive correlated resource use counters and strongly positive
correlated events. To test the probability of rejecting the null
hypothesis when it is true, we apply a one-sided test and
use the significance level, α = 0.01 to obtain a P -value
for all hypothesis tests. Since this is a one-sided test, the
P -value is equal to the probability of observing a value
greater than zr or ze in the standard normal distribution, or
P (Z > zr) = 1−P (Z ≤ zr) or P (Z > ze) = 1−P (Z ≤ ze).
A P -value less than 0.01 indicates that it is highly unlikely
the result would be observed under the null hypothesis.
Implementation of significance testing: We implemented a
process to test the significance of all the correlation coeffi-
cients. The process is given as follows: The number of hours
for each date of logs is generated by RUExt and MTExt and
the number of dates processed is generated by the Data Type
Extractor (DTE). The total number of hours in each date
of logs is given to the validation sub-component by RUExt
and MTExt and the correlation coefficients are given to the
validation sub-component by the Correlation module shown
in Fig. 2. The correlation coefficients and number of hours
are then used to compute Fishers z-scores for all correlation
coefficients. Then, the unadjusted P -values are obtained by
mapping the z-scores to P -values using a Z-table which is
implemented in the validation sub-component. The adjusted
P -value is then obtained by multiplying the unadjusted P -
value by the total number of dates.
Bonferroni Correction: Given d number of hypotheses, the
probability of observing at least one significant result just due
to chance is 1−(1−P )d where P is the p-value obtained from
each test. If there is only one hypothesis to test and the P -value
obtained is 0.01, then there is a 1% probability that it is a false
positive. When there is more than one hypothesis to test, for
example 26 hypotheses and a P -value of 0.01 is obtained for
each test, the probability that there is at least one false positive
is 1− (1− 0.01)26 = 1− 0.9926 = 0.22 or 22%. To account
for inflation in false positive due to multiple independent tests,
we apply a standard technique called Bonferroni correction to
counteract the problem of multiple comparisons [31]. We use
the Bonferroni correction on the unadjusted P -value obtained
for each test to obtain an adjusted P -value. Given d tests Ti
for hypotheses Hi(1 ≤ i ≤ d) under the null hypothesis
assumption H0 that all alternate hypotheses Hi are false,
and if the individual test critical values are ≤ α/d, then the
experiment-wide critical value is ≤ α. We obtain the adjusted
P -value for all hypothesis tests by multiplying the unadjusted
P -value by d.

D. Time-bin Extraction

Once the Correlation module has extracted the lists of
strongly correlated resource use counters and strongly cor-
related events, the Time-bin Extraction module identifies the
time-bins which have the highest variance in the correlated
resource use counters dataset and correlated events dataset.
In the correlated resource use counters dataset, each row



represents a resource use counter and each column represents a
time-bin of one-hour. In the correlated events dataset, each row
represents a message type and each column represents a time-
bin of one-hour. Our Time-bin Extraction module currently
computes the variance of both the correlated resource use
counters dataset and correlated events dataset at every hour.
The variance is s2 = 1

n−1

∑n
i=1(xi − x̄)2 where n = sample

size of x, x̄ = sample mean of x.
Our objective is to identify times of change in the system

behaviour during the day. To identify the earliest times in the
correlated resource use counters and correlated events datasets,
we implemented a process to extract the variance associated
with the time-bins. The process is given as follows:

1) Store the variance for each time-bin in a list lvar.
2) Obtain the difference in the variance between two con-

secutive time-bins and store the difference in a list
lvardiff .

3) Sort lvardiff in descending order with the first element
the largest difference in variance.

IV. CASE STUDY: RANGER SUPERCOMPUTER

Our study of error recovery and propagation is carried out
within the context of the decommissioned Ranger cluster at the
Texas Advanced Computing Center at the University of Texas
at Austin. We collected the resource use data3 and rationalized
message logs for June, July and August 2011, and a summary
is given in Table II.

TABLE II
SUMMARY OF LOG-DATA COLLECTED ON RANGER.

Resource use data Rationalized message logs
Month Size Qty. lines Size Qty. messages

June 2011 120.9 GB 603,024,456 2.7 GB 10,021,516
July 2011 124.1 GB 637,860,203 9.6 GB 64,822,682

August 2011 125.4 GB 633,396,685 14.5 GB 114,745,476

[28] reported that the lead time on occurrence of an error
to a soft lockup failure is six hours. There are 26 dates in the
rationalized message logs when soft lockups were reported.
The dates of log-data analyzed are given in Table III.

TABLE III
LIST OF DATES OF LOG-DATA ANALYZED ON RANGER.

Month Dates
June 2011 3, 5, 14, 15, 16, 21, 22
July 2011 5, 6, 7, 11, 18, 19, 23, 24, 25, 26, 27, 31

August 2011 3, 4, 11, 22, 24, 30, 31

We obtain the list of correlated resource use counters
and list of correlated events, discussed the lists of resource
use counters and events with the systems administrators and
identified three dependability use cases, and summarized them
in Table IV.

In this section, we give the details for the first use case on
recovery attempt and its impact on application and process

3The resource use on the Ranger cluster was sampled at 10-minute intervals.

TABLE IV
SUMMARY OF DEPENDABILITY USE CASES ON RANGER.

Issue System Error No. of
dates

Recovery Application & process Memory allocation 25
attempt memory allocation & memory leaks

Error pro- Lustre file-system I/O & Communication & 24
pagation Infiniband file-system I/O errors
Recovery Chipset & system Chipset & memory 26
attempt memory errors

memory allocation. The details for the second and third use
cases are provided in a companion report4.

A. Capturing Recovery Attempt and its Impact

In this section, we explain how correlations between NUMA
(Non-Uniform Memory Access) and process resource use
counters and between application memory leaks can be used
to first infer error recovery, and then assess the impact of the
recovery mechanism on the system reliability.

1) Phase 1: Correlated NUMA & Processes counters:
The numa and processes resource use counters can be used
to see what happens when a node runs out of free memory
pages. If a process makes a request for memory pages on its
local node but the node is out of memory (an error), then
the numa miss counter on that node is incremented. Another
node is assigned to accommodate the process request for
memory pages and the numa foreign counter on the node
is incremented (error recovery). The ps processes counter
records the number of processes created, and the ps ctxt

counter records the total amount of context switches across all
CPUs. From Fig. 3, we observed that numa miss is strongly
correlated to ps processes with scores that range between
0.93 to 1 on 25 dates, and numa miss is strongly correlated
to ps ctxt with scores that range between 0.93 to 1 on 23
dates. From Fig. 4, we observed that numa foreign is strongly
correlated to ps processes with scores that range between
0.93 to 1 on 21 dates, and numa foreign is strongly correlated
to ps ctxt with scores that range between 0.93 to 1 on 21
dates. We observed that only Pearson correlation identified
the correlated NUMA & processes counters on two dates.
However, we observed that only Spearman-Rank correlation
identified the correlated NUMA miss & processes counters
on 17 dates and the correlated NUMA foreign & processes
counters on 16 dates. If Pearson correlation is used as the
only correlation method, the correlated NUMA & processes
counters on these 16 dates would not be identified. However,
if Spearman-Rank correlation is used as the only correlation
method, the correlated NUMA & processes counters on the
two dates would not be identified. Our results show that:
• Pearson correlation and Spearman-Rank correlation are

suitable methods. Pearson correlation identified memory
and process resource allocations that follow a linear pat-
tern and Spearman-Rank correlation identified memory

4Case Study of Error Recovery and Error Propagation on Ranger, available
at https://tinyurl.com/yb6zvnsq



and process resource allocations that follow a monotoni-
cally increasing function.

• When a process requests memory on out-of-memory
nodes, the system attempts to recover by allocating mem-
ory on another node to the process. Further, when the
system allocates memory on another node to a process,
context switching occurs across all the CPUs.

(a) June 2011.

(b) July 2011.

(c) August 2011.

Fig. 3. Correlations between “numa miss”, “ps processes” and “ps ctxt” coun-
ters. The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

2) Phase 2: Correlated Segmentation Faults & General
Protection Errors: Segmentation faults can be identified from
the segfault event. Access violations can be identified from
the general protection error event. Segmentation faults are
often caused by programs that tried to read or write a protected
memory location. When a program tries to access a protected
memory location, it can trigger the processor to issue a general
protection fault (GPF) interrupt. In most cases, the operating

(a) June 2011.

(b) July 2011.

(c) August 2011.

Fig. 4. Correlations between “numa foreign”, “ps processes” and “ps ctxt”
counters. Full-circled counters were identified by Spearman-Rank correlation
only, dot-circled counters were identified by Pearson correlation only.

system will remove the program, signal the user and continue
executing other programs. However, if the operating system
fails to catch the GPF, the processor will issue a second GPF.
If the operating system fails to catch the second GPF, the
processor stops working and will only respond to a reset.

From Fig. 5, we observed that segfault events are strongly
correlated to general protection error events with scores
that range between 0.98 and 1 on 10 dates. The dates coincide
with all the dates when NUMA miss and NUMA foreign
counters are correlated. We observed that only Pearson corre-
lation identified the correlated segmentation faults and general
protection errors on June 21 and August 22.

We identified the names of the programs which caused
segmentation faults by implementing a function to scan
the general protection error and segfault messages.



(a) June 2011.

(b) July 2011.

(c) August 2011.

Fig. 5. Correlations of “segfault” and “general protection error” events. The
dot-circled events were identified by Pearson correlation only.

The programs are: enzo.exe, preplot, charmm, fft_x,
siesta_test, lx, phParAdapt, openGR, vasp_acml and mpmc.
enzo.exe is an executable of a cosmology simulation. preplot
is a program that reformats the output of analysis programs
so that they may be plotted by Gnuplot. charmm is a molec-
ular simulation program. fft_x is a fast fourier transform
algorithm. siesta_test is a JavaScript unit testing tool.
phParAdapt is a parallel adaptive mesh method for the nu-
merical simulation of multiphase flows. openGR is a framework
that supports large numerical simulations in general relativity.
vasp_acml is a Vienna Ab initio simulation package and AMD
core maths library. mpmc is a Massively Parallel Monte Carlo
method package.
Correlations with failures: Next, we manually scanned
the list of correlated events to determine the correlation

strength between segfault and soft lockup events, and
general protection error and soft lockup events. A sum-
mary of the strongly correlated events is given in Ta-
ble V. From Table V, we observed that the segmentation
faults and general protection errors are associated with the
programs charmm and phParAdapt, and the segfault and
general protection error events are strongly correlated to
soft lockup events on July 06 and 23. Our results suggest that
access to protected memory location by the programs charmm

and phParAdapt has led to memory location access violations
and these access violations have led to soft lockups on July
06 and 23. Further, we found that the correlated segmentation
faults and general protection errors are weakly correlated to
soft lockups on eight dates.
Detailed diagnosis: When the system was attempting a recov-
ery caused by a NUMA miss, several applications attempted
writes to protected memory locations which caused segmenta-
tion faults. On eight of ten dates the operating system removed
the faulty application. This represents a recovery rate of 80%.
However, the operating system did not catch the general
protection faults that were triggered by two applications on
two of ten dates which led to failure. This represents a failure
rate of 20%.

TABLE V
SUMMARY OF CORRELATED “SEGFAULT” AND SOFT LOCKUP, AND
CORRELATED “GENERAL PROTECTION ERROR” AND SOFT LOCKUP.

Error event Failure event Date pCorr sRank
segfault (charmm) soft lockup July 06 0.99 1
general protection soft lockup July 06 1 1

error (charmm)
segfault (phParAdapt) soft lockup July 23 0.99 1

general protection soft lockup July 23 0.99 1
error (phParAdapt)

3) Phase 3: Earliest times of change: From Fig. 6, we
observed that the earliest times of change in the correlated
NUMA & process counters and correlated segmentation faults
& general protection errors on each date are different. The
times of change: (i) occurred first in the correlated NUMA
& process counters on six dates, (ii) occurred first in the
correlated segmentation faults & general protection errors on
three dates, and (iii) occurred in both the correlated counters
and correlated errors at the same time on one date. If the
correlated errors were used as the only source, the earliest
times of change on six dates would not be identified. Having
said that, if the correlated resource use counters were used
as the only source, the earliest times of change on three
dates would not be identified. Our results show that both
the correlated resource use counters and correlated errors are
required to identify the earliest times of system behaviour
change on all dates. Further, we observed there are different
time-windows between the times of change identified on all
dates. The time-windows range from one-hour to 12-hours.

4) Validation: Next, we test the significance of: (i) the
correlation coefficient of the strongly positive correlated re-
source use counter groups, and (ii) the correlation coefficient



(a) June 2011.

(b) July & August 2011.

Fig. 6. Times of change in the correlated NUMA & process counters and
correlated segmentation faults & general protection errors.

of the strongly positive correlated error groups. We test all
the correlation coefficients against the null hypothesis and
obtained the z-scores for all the correlation coefficients and
a summary is given in Table VI.

TABLE VI
SUMMARY OF z-SCORES. n CONTAINS THE NUMBER OF HOURLY

TIME-BINS IN ONE DAY OF LOGS.

Correlated groups June 2011 July 2011 Aug 2011
NUMA & Processes zr = 10.68 6.15 ≤ zr zr = 10.68

resource counters (n = 24) ≤ 10.68
Segmentation faults & ze = 10.68 9.08 ≤ ze 9.08 ≤ ze

General protection errors ≤ 10.68 ≤ 10.68
(15 ≤ n ≤ 24)

From Table VI, we observed that the z-scores for all the
correlation coefficients range from 6.15 to 10.68. At the 99%
confidence level, under the null hypothesis z0r = 2.64 and
z0e = 2.64. Hence, we reject the null hypothesis in favour of
the alternate hypothesis.

We determine the probability of rejecting the null hypothesis
when it is true. We apply a one-sided test and use the
significance level, α = 0.01 for all given hypothesis tests
to obtain a P -value. From Table VI, we observed that the
lowest z-score is 6.15. Since this is a one-sided test, the

P -value is equal to the probability of observing a value
greater than 6.15 in the standard normal distribution, or
P (Z > 6.15) = 1− P (Z ≤ 6.15) = 1− 0.99999 = 0.00001.
The adjusted P -value is 0.00001× 25 = 0.00025 where 25 is
the number of dates. The P -value is less than 0.01, indicating
it is highly unlikely this result would be observed under the
null hypothesis. All the z-scores in Table VI are greater than
or equal to 6.15 and all the adjusted P -values are less than
0.01, indicating it is highly unlikely these results would be
observed under the null hypothesis.

V. RELATED WORK

A method that uses a feature construction scheme evaluates
Pearson correlation and Spearman-Rank correlation based
clustering to rank system log messages that are important for
problem diagnosis was presented in [32]. In contrast, COR-
RMEXT evaluates Pearson and Spearman-Rank correlations to
identify patterns of groups of resource use counters in resource
use data and groups of errors in message logs. [33] proposes
a metric that measures correlations of events and applies an
algorithm called event correlation graphs on message logs of
two HPC systems and predicted failure and non-failure events.
In [14], a time-anomaly correlation approach called SIGs was
developed to infer influences between interacting components
in the system message logs. The Wilcox Rank-sum correlation
method is applied on system performance data to monitor and
predict processor failures in [19]. CORRMEXT complements
these approaches by identifying patterns of groups of resource
use and groups of errors.

[34] proposes a novel way for characterizing normal and
faulty behaviour of large-scale cluster systems. The approach
uses an Event Log Signal Analyzer (ELSA) module and ap-
plies the module on the event logs of two cluster systems. The
approach uses two steps: (i) the first step identifies correlations
between events, (ii) the second step detects anomalies in the
times of the faulty signals. While both the approach and
CORRMEXT study the behaviour of cluster systems, there
are several differences. First, CORRMEXT implemented a
three-step approach. Second, CORRMEXT identifies the time-
windows of change in system behaviour by using the corre-
lated resource use counter groups and correlated error groups.
Third, CORRMEXT applies both Pearson and Spearman-Rank
correlation on the resource use data and message logs.

Several tools such as IPLOM [35], LoGs [36],
SLCT/Loghound [37] and SEC [38] have been developed to
automate processing of system message logs. Fluentd5 is an
open-source data collector that process multiple application
logs. [39] evaluates four log-parsing methods and package
them into a toolkit for reuse. CORRMEXT complements these
tools by processing standard Syslog messages, Rationalized
message logs and TACC Stats resource use data.

[25] analyze the RAS logs and job logs of a IBM Blue-
Gene/P MPP system and report several interesting observa-
tions on the failure characteristics across different jobs. While

5URL: http://www.fluentd.org/



[25] and CORRMEXT combine analysis of multiple sources
of data, there are several differences. First, CORRMEXT
analyzed patterns of resource use and events associated with
error recovery and error propagation. Second, it combined
analysis of both the resource use data and message logs. Third,
unlike the IBM BlueGene/P RAS logs the Ranger message
logs do not contain any severity-level tags.

Pivot Tracing [40] provides system diagnosis by combin-
ing dynamic instrumentation with a novel relational oper-
ator. OpenTracing6 provides system diagnosis by using a
directed acyclic graph. While Pivot Tracing, OpenTracing
and CORRMEXT all provide diagnosis of system problems,
the approach implemented by Pivot Tracing, OpenTracing
and CORRMEXT are different. First, CORRMEXT combines
correlation algorithms and variance extraction. Second, COR-
RMEXT does not require additional instrumentation. Third,
CORRMEXT identifies error propagation paths which led to
both system recovery and failure. Because CORRMEXT pro-
vided a pathway to explain the cause of successful and failed
error recovery mechanisms, better error handling techniques
can be designed by targeting specific issues such as memory
allocation and memory leaks.

[21], [22], [26] which are the predecessors of CORRMEXT,
correlate errors only to failure events. If errors are correlated
only to failure events, the recovery attempt and error propaga-
tion process would not be identified. CORRMEXT diagnosed
three new dependability cases listed in Table IV. [21], [26]
applies only Pearson correlation. In Section IV-A, we showed
that only Spearman-Rank correlation identified the NUMA &
processes resource use counters on 16 dates and only Pearson
correlation identified the NUMA & processes resource use
counters on two dates. If Pearson correlation was used as
the only correlation method, the correlated NUMA & process
resource use counters on the 16 dates would not be identified.
However, if Spearman-Rank correlation was used as the only
correlation method, the correlated NUMA & process resource
use counters on the two dates would not be identified. [21]
applies feature extraction on the resource use data and applies
Pearson correlation on the message logs, and identifies the
time-windows between error and failure events in the message
logs. [22] applies Pearson and Spearman-Rank correlation on
both the resource use data and message logs but it did not
identify the time-windows of change in system behaviour.
Differently to [21], [22], CORRMEXT applies Pearson and
Spearman-Rank correlation and variance extraction to both the
resource use data and message logs. CORRMEXT identified
the correlated groups of resource use counters and correlated
groups of errors, and it showed that Pearson correlation
and Spearman-Rank correlation are suitable methods. Further,
CORRMEXT identified the earliest times of system behaviour
change during the day and it showed that the earliest times on
all dates can only be identified by analyzing both the resource
use data and message logs.

6http://opentracing.io/

VI. DISCUSSION

In this section, we discuss one limitation of the COR-
RMEXT framework: Pearson correlation and Spearman-Rank
correlation. CORRMEXT does not take into account spikes in
resource use and error events. For example, when inodes on
a file-system are corrupted and an application sends a large
chunk of data to the file-system for writing, this can generate
a large quantity of inode failure events and write bytes on
the file-system. Further, we do not take into account relation-
ships between two events that occur in different time-bins.
Having said that, we argue that this pertains to the problem
specification described in Section III, i.e., we seek to identify
the resource use counters and events which are linearly or
monotonically correlated on the specified date.

VII. CONCLUSION AND FUTURE WORK

We presented the CORRMEXT framework that correlated
both the resource use data and message logs to identify (i) error
propagation paths, (ii) reasons of unsuccessful error recovery
and (iii) instances of successful error recovery. CORRMEXT
diagnosed three dependability-oriented system problems and
extracted the variance in the times of the correlated resource
use counter groups and correlated error groups to identify
the earliest occurrences of the problem. To ensure diagnostics
accuracy, CORRMEXT applied the Bonferroni correction and
showed that all the correlations are significant. We showed
that CORRMEXT can identify recovery attempts and error
propagation processes, and showed that knowledge of error
propagation paths can be used to aid the systems designers and
administrators to improve the effectiveness of error recovery
protocols.

In our future work, we plan to extend our analyses of error
recovery and error propagation to deal with errors other than
memory, communication and file-system I/O errors.
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