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Abstract: Negative longitudinal magnetoresistance (NLMR) is shown to occur in topological materials in the 

extreme quantum limit, when a magnetic field is applied parallel to the excitation current. We perform pulsed 

and DC field measurements on Pb1-xSnxSe epilayers where the topological state can be chemically tuned. The 

NLMR is observed in the topological state, but is suppressed and becomes positive when the system becomes 

trivial. In a topological material, the lowest N=0 conduction Landau level disperses down in energy as a 

function of increasing magnetic field, while the N=0 valence Landau level disperses upwards. This anomalous 

behavior is shown to be responsible for the observed NLMR. Our work provides an explanation of the 

outstanding question of NLMR in topological insulators and establishes this effect as a possible hallmark of 

bulk conduction in topological matter. 

The emergence of topological insulators (TI) as novel quantum materials  [1] [2] [3] has played a key 

role in the discovery of novel physical phenomena,  [4] [5] [6] [7] [8] [9] such as the quantum spin Hall 

effect [4] [10] [11] and the quantum anomalous Hall effect [5] [12] [13]. This stems from the helical 

Dirac nature of surface-states in 3D TIs or, that of edge-states in 2D TIs. In fact, a huge amount of 

literature (for reviews [14] [15] [16] [17]) took interest in this question and investigated electronic 

transport of 2D Dirac electrons in 3D-TIs. The majority of these studies were, however, impeded by the 

significant and dominant bulk transport that occurs in TIs. On the other hand, little attention has been 

given to signatures of non-trivial band topology in 3D electron transport in a TI. 

Naively speaking, one can think of the bulk energy bands of a TI as being identical to those of 

conventional semiconductors and, thus, unlikely to generate non-conventional physical phenomena. 

However, one should not forget that the basis of a topological insulator lies in the inverted orbital 

character of these bulk energy bands. [10], [18] Most interesting is the unusual behavior of the Landau 

levels of TIs that one can analytically extract from a general Bernevig-Hughes-Zhang Hamiltonian 

(appendix of ref.  [18]). In fact, it has been both theoretically [18] [19] [20] and 

experimentally [21] [22] [23] shown, that the energy of the lowest (N=0) conduction (valence) Landau 

level in topological insulators decreases (increases) as a function of increasing magnetic field, opposite 

to what usually happens in a topologically trivial system (Fig.1(a,b)). This behavior is anomalous and 

leads to a field-induced closure of the energy gap in a TI [21] (Fig.1(b)), whereas in a trivial material, 

the energy gap usually opens with increasing magnetic field (Fig.1(a)). This anomaly is a hallmark of 

the inverted band structure of topological materials. Its implications on magnetotransport have not 

yet been considered.  



 

FIG 1. (Color Online) Sketch of the behavior of the N=0 bulk LL as a function of magnetic field for a trivial (a) and a topological 

(b) system. The k-dispersion of the energy level in the direction of the applied field is shown (kz). Topological surface states 

are shown in black in (b) at B=0. The 

6L  bands denote the band extrema of opposite parity occurring at the L-point in Pb1-

xSnxSe. (c) In-plane-MR measured with B || I at 10K in two trivial Pb1-xSnxSe epilayers (x=0.10 and x=0.14) and three topological 

ones (x=0.19, x=0.23 and x=0.3) up to B=15T. ARPES dispersions and momentum distribution curves for x=0.1 (d,e) and x=0.2 

(f,g) measured with 18eV photons at 30K and 40K, respectively. 

In the present work, we study the MR in topological insulators in the extreme quantum limit – the 

regime where only the lowest Landau level (LL) is occupied. We measure magnetotransport in pulsed 

magnetic field up to 61T in high mobility Pb1-xSnxSe epitaxial layers. We show that, when all Lorentz 

components contributing to the MR are suppressed by applying the magnetic field in-plane and parallel 

to the excitation current, a negative longitudinal MR (NLMR) emerges near the onset of the quantum 

limit. This NLMR is only observed in the topological regime of Pb1-xSnxSe (x>0.16) and is absent in trivial 

samples (x<0.16). We theoretically argue that this NLMR is a result of the anomalous behavior of the 

N=0 LL that leads to a field induced closure of the energy gap as a function of the applied magnetic 

field, thus enhancing the carriers’ Fermi velocity and reducing electrical resistivity. Our findings 

establish that NLMR is a hallmark of the topological insulating state, and may reconcile controversial 

interpretations of axial anomaly-induced NLMR in such materials. 

Magnetotransport measurements are performed on [111] oriented Pb1-xSnxSe epilayers grown on 

(111) BaF2 substrates with different x. Growth by molecular beam epitaxy and characterization are 

described in our previous works [24]  [25] [26]. A 15T/4.2K superconducting cryostat setup is used for 

in-house measurements. Further measurements are performed  at 10K up to 61T using a 200ms 

pulsed-field coil at the Dresden High Magnetic Fields Lab. Angle-resolved-photoemission (ARPES) 

experiments are performed with linearly-polarized undulator radiation at the UE112-PGM1 beamline 

of the synchrotron BESSY-II in Berlin. 

Figure 1(c) shows the longitudinal MR measured at 10K, up to 15T for five Pb1-xSnxSe samples, with the 

magnetic field applied in-plane parallel to the current (I//B//[1-10]) (Fig. S2). For trivial samples having 

x<0.16,  [24] the MR rises fast. In non-trivial samples having x>0.16,  [24]  [27] [28]  although initially 

positive, the MR turns negative, and remains so over a wide field range. The sign of the MR hence 

depends on the topological character of the sample.  

ARPES measurements [Figs. 1(d)-1(g)] for x=0.10 and x=0.20 below 50K clearly indicate the changing 

topological character for compositions across x=0.16. A gapped state is observed in the ARPES 

dispersion and momentum distribution curves for x=0.10 (Fig.1(d,e)) whereas for x=0.20 a gapless 



topological Dirac surface state is clearly resolved (Fig.1(f,g)), in agreement with previous ARPES 

studies. [27] [28]. This ties the occurrence of the NLMR to the topologically non-trivial regime in Pb1-

xSnxSe. 

 

FIG 2. (Color Online). (a) In-plane MR measured up to 60T using pulsed magnetic field for Pb1-xSnxSe with x=0.14 (blue) and 

x=0.19 (red). (b) Low-field Shubnikov-de-Haas oscillations and (c) Landau index versus 1/B shown for both samples. Arrows 

mark the field at which the quantum limit is reached (BQL). (d) NLMR onset extracted from Fig. 1(c) versus BQL for the three 

topological samples considered in this work. The dashed grey line is obtained for an onset exactly equal to BQL. The Sn 

concentration ‘x’ corresponding to each sample is shown above the data points. 

In order to confirm the robustness of the MR trend on either side of the topological phase transition, 

transport measurements for fields up to 61T are performed on two selected samples with 

compositions close to the transition. Results are shown in Fig. 2(a). Comparing the sample x=0.14 to 

x=0.19 confirms that the MR in the trivial regime is robustly positive up to 60T, whereas in the 

topological regime, the MR is initially positive, then turns negative and reaches a plateau-like behavior 

at intermediate fields, then increases again at very high fields.  

We correlate the appearance of the NLMR to the crossing of the N=1 LL with the Fermi energy (Ef), by 

looking at 3D Shubnikov-de-Haas (SdH) oscillations measured in the same geometry as the MR (I // B 

// [1-10]). Fig.2(b) shows SdH oscillations in the second derivative of the resistance for x=0.14 and 

x=0.19 at 10K. The last oscillation minimum is observed at BQL≈5T (0.2T-1) for x=0.19 and 2.8T (0.35T-1) 

for x=0.14; this is the onset of the extreme quantum limit (arrows in Fig.2(b)). The SdH frequency 

extracted from the plot of the Landau index N versus 1/B (Fig.2(c)) comes out close to 5T for x=0.19 

and 2.6T for x=0.14. For x=0.19, this yields a 3D carrier density of about 6x1016cm-3 per valley or a total 

carrier density of 2.4x1017cm-3 for the four valleys of Pb1-xSnxSe. This also agrees with nHall≈3x1017cm-

3. [20] For x=0.14, we find 2x1016cm-3 per valley. The Hall data yields pHall=1x1017cm-3 for four valleys in 

agreement with SdH data. We also note that the SdH results nicely agree with our previous 



magnetooptical measurements on the same samples. [24] Even though the two samples studied here 

in detail have different carrier type, the other samples examined in Fig.1(c) rule out any link between 

this and the NLMR. [20]  

In x=0.19, BQL is close to the onset of the NLMR seen in Fig.2(a). In x=0.14, even though BQL is small, no 

NLMR is observed up to 60T. We consolidate the relation between the NLMR and the entrance into 

the quantum limit in the topological state by further investigating the behavior of the LL in two 

additional samples (x=0.23 and x=0.3). Detailed SdH and magnetooptical IR spectroscopy data shown 

in the supplement allow us to extract BQL for both. [20] The onset of the NLMR extracted from Fig.1(c) 

is plotted versus BQL for x=0.19, x=0.23 and x=0.3 in Fig.2(d). A clear correlation of the onset of NLMR 

with BQL is observed, as indicated by the dashed line, confirming that the NLMR occurs in the quantum 

limit. 

We next elucidate the origin of the NLMR occurring in topological materials in the quantum limit by 

investigating transport in this regime. We have shown that the LL in IV-IV TCIs can be well described 

by a massive Dirac spectrum that includes spin-splitting [24] [29] [30] [31], resulting from a 6-band k.p 

Hamiltonian. [30] If the contributions from the far-bands are neglected a 2-band k.p Hamiltonian 

results, the solution of which is an ideal massive Dirac model  [32].  

We use the 6-band Mitchell-Wallis Hamiltonian to describe the field dependence of the N=0 level and 

its wavevector dispersion  [20] [30] [33] [34] [35] [36]:  
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The ± sign refers to the trivial and topological regime respectively. 𝛥 is the half-band gap, zk  is 

wavevector in the z-direction (z||B), zv  is the Dirac velocity in the z-direction, and meB ~/~  . m~ and 

g~ are the mass and effective g-factor terms resulting from interactions between the band edges, and 

far-bands located about 1eV above and below the energy-gap in IV-VI semiconductors. [30][31] We 

highlight, that the Mitchell-Wallis Hamiltonian is similar to the Bernevig-Hughes-Zhang (BHZ) 

Hamiltonian [18] [10] [37] that generally describes topological systems. Our treatment (Eq. (1)) can 

thus be generalized to any topological system exhibiting the N=0 behavior shown in Fig.1(b). The m~

contribution also appears on the diagonal of the BHZ Hamiltonian as 
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2~ 0 ). [38] Far-band terms vary little (<10%) with Sn content up to about 

x= 0.3, according to laser emission measurements in magnetic fields. [21] Using this result, we simplify 

Eq.(1) to: 
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In Eq. 2, the ~  term describes whether the energy-gap closes (–) or opens (+) as a function of 

increasing magnetic field. At very high fields such that ~ , for both the topological and trivial 

regime, the energy gap opens with increasing field and the N=0 LL varies as given in Eq. 2 for the (+) 

case. [20] The field-induced gap closure in the topological regime, is most likely accompanied by a 

topological phase transition. This effect has been treated theoretically for the QSH state in 2D [39] but 

not yet for 3D-TIs and TCIs.  



The LL energies are plotted versus magnetic field in Fig.3(a,b) for x=0.19 and x=0.14, respectively, (and 

in the supplement for x=0.23 and x=0.3). The parameters are given in the caption and in table I. For 

N=0, Eq.(2) is used. Notice that the N=0 level is non-spin degenerate in both the topological and trivial 

regimes, carriers are thus fully spin-polarized in the quantum limit in Pb1-xSnxSe. The magnetic-field 

dependence of Ef is plotted in Fig.3(a,b) using: 


N

zzNSdH dkkEf
eB

n ),(
4 2

 (3) 

SdHn is the valley carrier density, ),( zN kEf is the Fermi-Dirac function, NE  is the LL energy. From 

Eq.(3), we also get )(Bkz  in the quantum limit: 
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The magnetoconductivity for a 3D electron gas in the quantum limit, in the presence of point-like 

impurities, has recently been treated by Goswami et al. [40] Although ref.  [40] has also treated the 

problem of scattering by long-range ionized impurities, we neglect their impact in Pb1-xSnxSe because 

of its very large dielectric constant (>280). [41] [42] In IV-VI systems, the scattering rate from ionized 

impurities is thus expected to be at least two-orders of magnitude smaller than that of narrow-gap III-

V or II-VI materials. [40] [43] It is also well known that in Pb1-xSnxSe, doping is essentially caused by 

atomic vacancies that can be treated as point-like defects. From ref. [40] we get: 
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in is the impurity density, 0U is the impurity potential and )(Bv f
is the Fermi velocity as a function of 

magnetic field. Using Eq.(2) and (4), we obtain [40]: 
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SdHn222   . Using this expression for fv and plugging it into Eq.(5), we finally get, the MR and its 

derivative in the quantum limit: 
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For emBem  /~2/~  the derivative becomes negative in the topological regime and resistance 

decreases as a function of magnetic field, yielding a NLMR.  

Qualitatively, this effect can be understood as follows. In the topological regime, as the gap closes, the 

carriers’ band-edge effective mass gets smaller, and fv gets larger. The opposite occurs when the 



energy gap opens (Fig.1(a,b)). When only point-like defects are considered in the material, fv  

determines the behavior of the conductivity. Therefore, a magnetic-field-induced gap closure causes 

a decrease in the resistance, whereas a gap opening causes an increase in resistance.  

In order to plot the MR versus B using Eq.(7), a knowledge of Δ, zv and m~ is required. The valley 

degeneracy and anisotropy of IV-VI materials also need to be accounted for. When B||[1-10], the Fermi 

surface consists of two ellipsoidal valleys having their major axis tilted by θ=90⁰, and two others tilted 

by θ=35⁰ with respect to B (Fig. S2). [21] [20] Δ and )(zv  can be obtained from previous 

magnetooptical measurements. [24] Based on previous measurements of m~ , we can determine )(~ m

. [21] [24] The parameters for the angles of interest are shown in Table I.  

Pb1-xSnxSe nSdH[pervalley] |Δ|[meV] vz [105 m/s] (35O, 90O) 𝑚̃/𝑚0  (35O,  90O) Bc [T] (35O,  90O) 

x=0.14 2x1016 cm-3 10 5.0, 4.8 0.20±0.02, 0.25±0.03 N/A 

x=0.19 6x1016 cm-3 10 4.8, 4.6 0.20±0.02, 0.25±0.03 17±2, 22±3  
Table I. Parameters used to compute the MR shown in Fig. 3(d). The carrier density is determined from SdH measurements 

shown in Fig. 2. emBc /~  is the field at which the N=0 LLs cross. 

We now compute the variation of the N=0 conduction and valence LL as a function of magnetic field 

for both valleys for x=0.19 (Fig.3(c)), and calculate the MR using Eq.(7) for x=0.14 and x=0.19. In the 

trivial case for x=0.14, the MR is positive (Fig.3(d)), in agreement with the predictions of Goswami et 

al. for point defects [40] and with our data (Fig.2(a)). In the topological regime for x=0.19, the model 

yields a negative MR when emBem  /~2/~   for each valley, as seen in Fig.3(d). We get a NLMR 

between 11T and 22T for the 90⁰ valley and between 8.5T and 17T for the 35⁰ valley. Two MR minima 

are thus expected at 22T and 17T. Experimentally, we observe a wide MR minimum at around Bc=20T 

(Fig.2(a)). The model thus agrees quantitatively with both the sign of the MR and position of the MR 

minimum. The broadening of the minumum can be due to the coexistence of the two minima resulting 

from valley degeneracy [20] and an anticrossing of N=0 LL (dashed line in Fig.3(c)) near Bc. [44]  

The experimental onset of the NLMR is 5T. The model predicts an onset of about 8.5T. The onset 

calculated in the model is, however, non-universal and strongly depends on carrier population of 

different valleys. [45] For simplicity, a constant carrier population of valleys is assumed, leading to Eq. 

(4). This is not always the case in IV-VI TCIs thin films grown on BaF2 since the N=0 LL disperse 

differently for different valleys and since a slight energy offset between different valleys may occur at 

low temperatures due to the mismatch of the expansion coefficients of the epilayers and the substrate. 

This causes a depopulation of one type of valleys and a repopulation of the other. [45] The most 

populated valley then dictates the behavior in the quantum limit, however, the carrier density in this 

valley will no longer be constant, resulting in a violation of Eq. (4). The onset of the NLMR will no longer 

be governed by the condition Bem  2/~ as inferred from Eq. (7) and will only be governed by the 

system entering the quantum limit.  



 

FIG 3. (Color Online). Massive Dirac LL (black) and spin-split LLs (red and blue) of Pb1-xSnxSe versus magnetic field for x=0.19 

(a) and x=0.14 (b). The energy gap is 2Δ=20meV and vz=4.8x105m/s for x=0.19 and 5.0x105m/s for x=0.14.
020.0~ mm  is used 

for both samples. [24] Ef versus magnetic field is shown in yellow. The energy gap is shaded in green. (c) N=0 LLs for the 35o 

and 90o valleys computed using the parameters in Table I. (d) MR calculated using Eq.(6) for parameters shown in table I, for 

x=0.14 and x=0.19 above the quantum limit. 

Finally, the magnitude of the simulated MR is smaller than what is observed experimentally due to the 

rescaling of the MR by R(B=0), assumed to be given by Eq.(5) at B=0. Nevertheless, the shape of the 

NLMR, and its minimum agree very well with our model, without the use of any fit parameters. Most 

importantly, the model elucidates that the NLMR is observed in topologically non-trivial samples, and 

absent in trivial ones, as solely determined by the behavior of the N=0 LLs. A similar effect may occur 

in Dirac and Weyl semimetals when Zeeman splitting shifts the N=0 level in energy at high magnetic 

field. [46] [40] In this situation, a NLMR may be observed even if the Fermi energy is located far away 

from the Weyl nodes, and the chirality is not well-defined. [47] 

In conclusion, we have shown that NLMR results from the anomalous behavior of the lowest bulk 

Landau level of topological materials (Fig.1). This MR and its anisotropy [20] do not  appear to be 

qualitatively different from what is observed in Dirac and Weyl semimetals, as it only appears when B 

is parallel to I. [48] [49] [50] [51] However, its origin is fundamentally different and is not related to the 

chiral anomaly. It is a result of the topologically non-trivial nature of bulk bands, the anomalous 

behavior of the N=0 Landau level and is a direct consequence of the inverted band structure of 

topological materials. Our results establish that NLMR is a hallmark of the topological insulating state, 

and can reconcile controversial interpretations of axial anomalous-like  [52] [53] NLMR in candidate 

topological insulators such as, ZrTe5,  [23] [34] [54] and possibly Pb0.75Sn0.25Te under pressure. [55] It 

may even be extended to the quasi-classical regime to explain the occurence of NLMR in Bi2Se3. [56]  
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S1. N=0 Landau level from Mitchell and Wallis Hamiltonian 

Using the Mitchell and Wallis (1966) 6-band k.p formalism, we can write the following matrix 

Hamiltonian  [1] [2]: 
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In this formalism, only the conduction and valence band edge interaction are accounted for exactly, and 4 other 

far-bands intervene perturbatively. The following simplifications are used here to simplify far-band effective mass 

and g-factor contributions: 
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The terms are defined in ref. [1].
cv is the critical Fermi velocity corresponding to each respective valley and

0m

P
v z

z  is the Fermi velocity is the z-direction (the direction of the applied field), given by the k.p matrix element 

in the z-direction (
||P in the case of the longitudinal valley). 

The lowest Landau level N=0 (σ=-1/2) is obtained by solving the inner block Hamiltonian for n = - 1. 
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The inner block reduces to: 
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We can now solve the eigenvalue problem for the N=0 (σ= - 1/2) level: 
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We get the following equation: 
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The energy eigenvalue to the lowest Landau level now rewritten as 0E is then given by: 
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For the following we will only consider the N=0 Landau level of the conduction band with the (+) sign, keeping 

in mind that the corresponding one of the valence band is simply given by its opposite. Thus, 
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When going through the topological phase transition, Δ changes sign yielding:  
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Or, 
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We make an even further simplifying assumption: 

 ~~ Bg B
. 



This is justified since it can be shown that  ~~ Bg B . [3][4] For PbSe, both parameters have been reported 

by Pascher et al.  [4] for the conduction band of the longitudinal valley: 15.7~  gg l

c   and 
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The findings of Pascher et al. confirm a Zeeman splitting due to far-bands almost equal to far-band mass 

contributions to the cyclotron energy. According to Calawa et al. [7], far-band contributions vary by less than 10% 

as a function of Sn content up to x= 0.28, and thus we use this fact for our analysis of Pb1-xSnSe, too. The energy 

eigenvalue of the lowest Landau level is then given by: 
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S2. Zeeman splitting and the effective g-factor in IV-VI semiconductors 

Typically, the Zeeman splitting energy is the energy difference between N+ and N- levels. As illustrated in Fig. 

S1(a), in the massive Dirac model that includes spin-splitting, this would simply imply the lifting of the degeneracy 

of the N levels due the far-band g-factor. Bear in mind, however, that for an ideal massive Dirac model (2-band 

k.p, Fig. S1(b)), the far-band contribution to the g-factor is equal to zero and the Landau levels are spin degenerate.  

Thus the spin-splitting is equal to the cyclotron energy, yielding for x=0.19: 
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0084.0

22 0 
m

m
g  

(For free electron 
0mm  and 

02g )  

Here we have used

0

2

0

2

0

m

Pmv

m

m c





 

to compute the g-factor as given by Pascher et al.  [4] without far-band 

terms. Such large g-factors, and the non-spin-degenerate character of the Landau levels, including the lowest one, 

are common in narrow gap systems such as Pb1-xSnxSe,[4] Pb1-xSnxTe and Hg1-xCdxTe. [5] 

 

Figure S1. (a) Massive Dirac Landau levels with spin-splitting from 6 band k.p model. (b) Ideal massive Dirac 

model from 2 band k.p treatment. (c) 6 band k.p model with levels indexed according Refs . [4] 

Therefore, in a massive Dirac model that includes spin splitting, both g and the far-band g-factor g~  need to be 

included. This subtlety can be better understood when the notation of Melngailis et al.[3] and Pascher et al.[4] is 

used to index the Landau levels. It can be easily seen in Fig. S1(c) that the actual g-factor for the longitudinal 

valley, contains both contributions and is written as [4]: 

g
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S3. Far-band mass correction anisotropy 

 

Figure S2. Fermi surface ellipsoids of Pb1-xSnxSe at the L-points of the bulk Brillouin zone. The magnetic field 

applied along [1-10] direction is shown. 

In our previous work on magnetooptical characterization of the band structure of Pb1-xSnxSe, we measured 

  003.024.0~ mm  for the oblique valleys in the Faraday geometry (θ=710). [6] From Calawa et al. we have 

  022.0~ mm  for the [001] valleys having (θ=530). [7] Using these two experimental results and the fact that: 
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we find the anisotropy ratio for far-band contributions: 
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tm and

lm are the transverse and 

longitudinal far-band mass correction terms as defined in ref. 1. We can now compute )(~ m for any angle. When 

B||[1-10], it can easily be shown that two oblique valleys  (the [1-11] and the [-111] valleys) are tilted by 35o with 

respect to the magnetic field and one longitudinal ([111]) and one oblique valley ([11-1]) are tilted by 90o.  
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S4. Hall effect 

For DC fields n1 [cm-3] n2 [cm-3] μ1 [cm2/Vs] μ2 [cm2/Vs] ρtot [Ω.m] 

x=0.10 3.0 x 1017 elec. 7 x 1017
 
 holes 50000 1500 4x10-7 

x=0.14 1.5 x 1017 holes 6 x 1017
 
 holes 60000 1600 4x10-6 

x=0.19 3.5 x 1017 elec. 1 x 1018
 
 holes 17000 500 1x10-6 

x=0.23 3 x 1016 elec. 8 x 1017holes 40000 2000 2 x 10-5 

x=0.30 4.5 x 1017 holes 9 x 1017 holes 8500 4500 3 x 10-5 
Table S1. Transport parameters determined from the Hall effect using a 2 parameter Drude fit. Note that all samples show two 

carrier transport. The low mobility channel is either due to a 2D Fermi surface channel or an interfacial layer. The bulk is found 



to have a low carrier density n1 and a high mobility μ1 in all samples as confirmed by the low field Shubnikov-de-Haas 

oscillations and by magnetooptical data. [6]  

 

S5. Quantum oscillations in x=0.23 and x=0.3 

 
Figure S3. (a) Shubnikov-de-Haas oscillations in x=0.3 at 10K. (b) Landau index versus 1/B extracted from (a). Red and blue 

indicate the series of opposite spin as indexed in (a). (c) Magnetooptical infrared absorption spectra taken between 1T and 3T 

for x=0.23 at 4.5K. The N=0-N=1 interband transition is already visible and strong in amplitude at 2T.  

 

Shubnikov-de-Haas data shown is Fig. S3(a) for x=0.3. Spin is taken into account in the plot of N versus 1/B as 

shown Fig. S3(b) similarly to ref.  [3]. The lowest N=1 Landau level crosses the Fermi energy close to 9T. For 

x=0.23, magnetooptical Landau level spectroscopy measurements at low fields are performed. The details of these 

measurements are shown in ref. [4] The N=0 to N=1 interband Landau level transition is observed at 2T and above 

indicating that the N=1 Landau level crosses the Fermi energy at 2T (Fig.S3(c)). 

The Landau level energies for Pb1-xSnxSe derived from the Mitchell and Wallis Hamiltonian for N>0 has been 

discussed in our previous work  [6] [8] and is given by: 

𝐸𝑁>0
𝑐,± = ∓ħ𝜔̃ + √∆2 + 2𝑣𝐷

2 ħ𝑒𝐵𝑁 

𝐸𝑁>0
𝑣,± = −𝐸𝑁>0

𝑐,±
 

∆ denotes the energy gap divided by two (Eg/2), 𝑣𝐷is the Dirac velocity, and 𝜔̃ = 𝑒𝐵/𝑚̃ as discussed in the main 

text. When spin splitting is neglected (𝜔̃ = 0), we recover a classical massive Dirac dispersion. The Landau level 

dispersion versus B is plotted for x=0.23 and x=0.30 in Fig. S4. 

 



FIG S4. Landau level dispersion versus magnetic field for x=0.23 (a) and x=0.3 (d), with the field dependence of the Fermi 

energy. Landau levels from an ideal massive Dirac model (black) and a massive Dirac model that includes spin are also shown 

(red, blue). For N>0, spin splitting is relevant and taken into account for x=0.3, it is rather small in the other samples. 

 

 

S6. MR anisotropy  

 
Figure S5. (a) Resistance as a function of magnetic field for different angles θ, up to 60T at 10K for x=0.19. θ is the angle 

between the applied field and the normal. θ=0°corresponds to an out-of-plane magnetic field, normal to the sample surface 

(B//[111]). When θ=90°the magnetic field is aligned parallel to the current. The MR is highly anisotropic and positive MR is 

restored already for θ=85⁰. 

 

S7. Determination of the bulk band gaps of Pb1-xSnxSe  

ARPES measurements were performed to identify that our samples with a Sn content corresponding to x>0.16 exhibit a gapless 

Dirac cone with a linear dispersion at the  -point of the surface Brillouin zone as a sign for their topological character. The 

precise determination of the bulk band gaps from the ARPES data in the present Pb1-xSnxSe samples is a rather challenging 

task, since by varying the photon energy (i.e., momentum perpendicular to the surface) we do not observe distinct intensity 

contributions from the bulk conduction band (BCB) in the inverted regime. This is in contrast to the contribution from the 

surface state which gives a much higher photoemission intensity. Note that the exact determination of the bulk band gaps using 

ARPES requires a variation of the wave vector perpendicular to the surface with extreme precision, so that one perfectly "slices" 

the edge of the BCB (as far as it is occupied) and the one of the bulk valence band (BVB) with an overall accuracy substantially 

better than the size of the energy gap in these narrow gap systems  

We instead determine the bulk band gaps of our Pb1-xSnxSe samples from the investigation of magnetooptical interband 

transitions in Faraday geometry (B// [111]). This is discussed in detail in ref. [6] for samples x=0.14 and x=0.19, the same 

samples that were measured and analyzed in detail in this work. 
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