

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/92013

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/96894453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92013
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

LnCm Fault Model: Complexity and Validation

by

Fatimah Adamu-Fika

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

September 2016

Abstract

Computer systems are ubiquitous in most aspects of our daily lives, as such the

reliance of end users upon their correct and timely functioning is on the rise.

With technology advancement, the functionality of these systems is increasingly

being defined in software. On the other hand, feature sizes have drastically de-

creased, while feature density has increased. These hardware trends will keep

happening as technology continues to advance. Consequently, power supply

voltage is ever-decreasing and clock frequency and temperature hotspots are

increasing. This steady reduction of integration scales is increasing the sensi-

tivity of computer systems to different kinds of hardware faults. In particular,

the likelihood of a single high-energy ion to cause double bit upsets (DBUs,

due to its energy) or multiple bit upsets (MBUs, due to the incident angle) in-

stead of single bits upsets (SBUs) is increasing. Furthermore, the likelihood of

perturbations occurring in the logic circuits is also increasing. Owing to these

hardware trends it has been projected that computer systems will expose such

hardware faults to the software-level and accordingly the software is expected

to tolerate such perturbations to maintain correct operations, i.e., the software

needs to be dependable. Thus, defining and understanding the potential impact

of such faults is required to propose the right mechanisms to tolerate their oc-

currence. To ascertain that software is dependable, it is important to validate

the software system. This is achieved through the emulation of the type of

faults that are likely to occur in the field during execution of the system, and

through studying the effects of these faults on the system. Often, this validation

process is achieved through a technique called fault injection, that artificially

perturbs the execution of the system through the emulation of hardware faults.

i

Traditionally, the single bit-flip (SBF) model is used for emulating single event

upsets (SEUs) and single event transients (SETs) in dependability validation.

The model assumes that only an SEU or SET occurs during a single execution

of the system. However, with MBUs becoming more prominent, the accuracy of

the SBF model is limited. Hence, the need for including MBUs in software sys-

tem dependability validation. MBUs may occur as multiple bit errors (MBEs)

is a single location (memory word or register) or as single bits errors (SBEs) in

several locations. Likewise, they may occur as MBEs in several locations.

In the context of software-implemented fault injection (SWIFI), the injection of

MBUs in all variables is infeasible due to the exponential size of the fault space,

thereby making it necessary to carefully select those fault injection points that

maximises the probability of causing a failure. A fault space, is the set of all

possible fault under a given fault model. Consequently, research have started

looking at a more tractable model, double bit upsets (DBU) in the form of

double bit-flips within a single location, L1C2. However, with evidence of the

possibility of corruption occurring chip wide, the applicability and accuracy of

L1C2 is restricted. Following, this research focuses on MBUs occurring across

multiple locations whilst seeking to address the exponential fault space problem

associated with multiple fault injections.

In general, the thesis analyses the complexity of selecting efficient fault-injection

locations1 for injecting multiple MBUs. In particular, it formalises the problem

of multiple bit-flip injections and found that the problem is NP-complete. There

are various ways of addressing this complexity: (i) look for specific cases, (ii)

look for heuristic and/or (iii) weaken the problem specification.

Next, the thesis presents one approach for each of the aforementioned means of

addressing complexity:

• for the specific cases approach, the thesis presents a novel DBU fault

1injection points that would uncover vulnerabilities and/or cause system failure.

ii

model, that manifest as two single bit-flips across two locations. In par-

ticular, the research examines the relevance of the L2C1 fault model for

system validation. It is found that the L2C1 fault model induces failure

profile that is different from profiles induced by existing fault models.

• for the heuristic approach, the thesis uses an approach towards depen-

dency aware fault injection strategies to extend the L2C1 fault model and

the existing L1C2 fault model into LnCm (multiple location, multiple cor-

ruption) fault model, where n is the number of locations to target and

m the maximum number of corruptions to inject in a given location. It

proposes two heuristics to achieve this: first, select the set of potential

locations and then select the subset of variables within these locations,

and it examines the applicability of the proposed framework.

• for the weakening of the problem specification approach, the thesis further

refines the fault space and proposes a data mining approach to reduce the

cost of multiple fault injections campaigns (in terms of number of multiple

fault injections experiments performed). It presents an approach to refine

the multiple fault injection points by identifying a subset of these points,

whereby injection into this subset alone would be as efficient as injection

into the entire set.

These contributions are instrumental to advance multiple fault injections and

make it an effective and practical approach for software system validation.

iii

To my Mamah and Baba,

For their endless love, support and encouragement.

Also to the memory of

my dear Iya, Khadijah Tasalla Fika,

my favourite uncles, Emir Abali Ibn Muhamad

& Mallam Jibril Amfani,

my darling aunt, Zainabu “Ya Abu” Amfani,

and

my dear cousins, Bilkisu Fika,

Adamu “Taju” Bala Fika & Haruna Abali.

Acknowledgements

First and foremost, I give my utmost gratitude to God for letting me reach this

point of my graduate education.

I am forever indebted to Islamic Development Bank for granting me a scholar-

ship to undertake my graduate studies, and also to Yobe State government for

their financial aid. Without these grants it wouldn’t have been possible to be

writing this thesis now.

Throughout my graduate education Dr. Arshad Jhumka has been an excellent

supervisor, mentor and most of all friend. He saw what I did not see in myself

and pushed me hard to achieve what he knew I could. I doubt very much I

would gotten to this stage with out his guidance and support. I would also like

to thank my former supervisor, Sarab Singh, for accepting me as a student, and

for being a friend and mentor.

I am especially thankful to my mentors Dr. Ardo Bamanga, Mr. Musa Maina

Mshelia and Mr. Lekan Muyiwa Ogedengbe, for their unwavering support and

advise. I thank you all from the bottom of my heart. My sincerest gratitude to

keen sounding boards Hadiza Fika, Hadi Fika and Hassana Fika-Mohammed,

for always having time for (and never getting irritated by) my constant whining

and nagging.

I would also like to express my gratitude to my colleagues who turned friends,

who motivated me through out my graduate journey - especially, Saima Arif,

Nentawe Gurumdimma, Adekunle Shonola, Daniel Onah and Daniel Nwaigwe.

I am also thankful to the entire staff of the Computer Science Department,

v

especially the members of the Systems and Software group.

To my friends, old and new - most especially, Maryam Uwani Abdullahi, Safiya

& Sharif Abdullahi, Nana & Jonathan Lyamgohn, Asmau “Aims” Smaila, Sani

Sidi, Alheri Loma, Fatima Goje, Ibrahim Muazzam, Abdul Isa Waziri, Jamilla

Bello and my LIS ’95 and Gwags tribes - I say a big thank you! You all helped

my sanity remain sane through this arduous journey.

Not least of all, I owe so much to my whole family and family friends for their

undying support, their unwavering belief that I can achieve so much. Unfortu-

nately, I cannot thank everyone by name because it would take a lifetime but, I

just want you all to know that you count so much. Had it not been for all your

prayers and benedictions; were it not for your sincere love and help, I would

never have completed this thesis. So thank you all.

vi

Declarations

This thesis include and extends materials from the following works:

[2] F. Adamu-Fika and A. Jhumka. An investigation of the impact of dou-

ble single bit-flip errors on program executions. In P. Lorenz and F. P.

Dini, editors, DEPEND 2015, The Eight International Conference on De-

pendability, pages 15 – 22, Venice, Italy, August 2015. IARIA. ISBN

978-1-61208-429-9. URL http://www.thinkmind.org/index.php?view=

article&articleid=depend_2015_1_40_50038

[1] F. Adamu-Fika and A. Jhumka. Algorithms and Architectures for Par-

allel Processing: 15th International Conference, ICA3PP 2015, Zhangji-

ajie, China, November 18-20, 2015, Proceedings, Part IV, chapter An

Investigation of the Impact of Double Bit-Flip Error Variants on Pro-

gram Execution, pages 799–813. Springer International Publishing, Cham,

2015. ISBN 978-3-319-27140-8. doi: 10.1007/978-3-319-27140-8 55. URL

http://dx.doi.org/10.1007/978-3-319-27140-8_55

vii

http://www.thinkmind.org/index.php?view=article&articleid=depend_2015_1_40_50038
http://www.thinkmind.org/index.php?view=article&articleid=depend_2015_1_40_50038
http://dx.doi.org/10.1007/978-3-319-27140-8_55

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• Islamic Development Bank:

Merit Scholarship Programme for High Technology (MSP)

(2011–2014)

• Yobe State, Nigeria:

PhD Scholarship Grant

(2014–2015)

viii

Abbreviations

ARFF Attribute-Relation File Format

ALU Arithmetic Logic Unit

AUC Area Under ROC Curve

CFG Control Flow Graph

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

DBU Double Bit Upsets

DF Dominance Frontier

DRAM Dynamic Random Access Memory

EXP Exponential Time

FI Fault Injection

FIT Failures-In-Time

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

IC Intergrated Circuit

ILS Injection Location Selection

ISA Instruction Set Architecture

LnCm Multiple-Locations Multiple Corruptions

LLFI Low Level FI

LLVM Low Level Virtual Machine

MATLAB MATrix LABoratory

MBF Multiple Bit-Flips

ix

MBU Multiple Bit Upsets

MDS Minimum Dominating Set

MDT Mean Down Time

MEU Multiple Event Upsets

MET Multiple Event Transients

MRI Magnetic Resonance Imaging

MSB Multiple Single Bit-Flips

MTBF Mean Time Between Failures

MTVS Minimum TVS

MVC Minimum Vertex Cover

NP Non-deterministic Polynomial Time

P Polynomial Time

PGM Portable Gray Map

SER Soft-Error Rate

SEU Single Event Upset

SBF Single Bit-Flip

SBU Single Bit Upset

SD Standard Deviation

SDC Silent Data Corruption

SEU Single Event Upset

SEU Single Event Transient

SFI Software FI

SRAM Static Random Access Memory

SWIFI Software-Implemented FI

SIHFT Software-Implemented Hardware Fault Tolerance

ROC Receiver Operating Characteristic

TN True Negative

TNR True Negative Rate

TP True Positive

x

TPR True Positive Rate

TVS Target Variable Set

xi

Contents

Abstract i

Dedication iv

Acknowledgements v

Declarations vii

Sponsorship and Grants viii

Abbreviations ix

List of Figures xxi

List of Tables xxv

List of Algorithms xxvi

1 Introduction 1

1.1 Motivations . 3

1.2 Thesis Contributions . 4

1.3 Thesis Structure . 6

xii

2 (Software) Dependability Concepts and Terminology 8

2.1 The Fundamentals of Dependability 8

2.1.1 Dependability Attributes 9

2.1.2 Dependability Threats . 12

2.1.3 Type of Faults . 13

2.1.4 Dependability Means . 15

2.2 Fault Tolerance Validation . 17

2.2.1 Formal Method . 18

2.2.2 Fault Injection . 19

2.2.3 Dependability Analysis 22

3 System and Faults Models and Target Systems 23

3.1 System Model . 23

3.1.1 Extended-CFG for a Program 25

3.2 Fault Model . 26

3.2.1 Single Fault . 27

3.2.2 Multiple Faults . 27

3.3 Target Systems . 29

3.3.1 Flight Control . 29

3.3.2 SUSAN (Smallest Univalue Segment Assimilating Nucleus) 30

3.3.3 MiBench Suite . 30

xiii

3.4 Fault Injection Analysis . 34

3.4.1 LLVM . 34

3.4.2 LLVM Fault Injection (LLFI) Tool 34

3.4.3 Failure Scheme . 37

4 Problem Statements 38

4.1 Selecting Potential Injection Blocks Locations 39

4.2 Identifying Candidate Variables to Target 39

4.2.1 Error Propagation Masking 40

4.2.2 Error Propagation Amplification 42

4.3 Selecting Choice Bit-Positions . 44

4.4 Roadmap of Thesis Statement . 45

5 Towards Selecting Locations for Multiple Soft-Errors Injection 48

5.1 Basic concepts of Computational Complexity Theory 50

5.1.1 Reducibility, NP-hardness and NP-completeness 51

5.2 Selecting Locations for Mulitple Fault Injections 53

5.3 Injection Location Selection (ILS) 54

5.3.1 Complexity Analysis of ILS 55

5.4 Target Variable Selection (TVS) 59

5.4.1 Complexity Analysis of TVS 59

xiv

5.5 Summary and Conclusions . 62

6 Double Single Bit-Flips (L1C2) Fault Model 64

6.1 Evaluation of Fault Models and Failure Modes 66

6.2 Case Studies . 67

6.2.1 System Instrumentation 68

6.2.2 Experimental Procedure 69

6.3 Impact of Fault Models . 72

6.3.1 L2C1 vs. L1C2 vs L1C1 76

6.4 Impact of Injection Location . 81

6.4.1 Block Location . 82

6.4.2 Register Instruction Type 86

6.4.3 Register Data Type . 87

6.5 Correlations . 89

6.5.1 Testing Monotonic Relationships 93

6.5.2 Testing Linear Relationships 95

6.6 Implication and Limitation . 96

6.7 Summary and Conclusions . 96

7 Towards Efficient Multiple Soft-Errors Injection 98

7.1 Selecting Locations for Mulitple Fault Injections 100

xv

7.2 Injection Location Selection (ILS) 101

7.2.1 Heuristic for ILS . 102

7.3 Target Variable Selection (TVS) 105

7.3.1 Heuristic for TVS . 106

7.4 Case Studies . 107

7.5 Experiment Setup . 109

7.5.1 Application of the Proposed Framewwork 110

7.5.2 Experiment Procedure . 117

7.6 Evaluation of the Case Studies 118

7.6.1 Variable Selection Method Effects 120

7.6.2 Fault Model Effects . 131

7.7 Implication and Limitation . 134

7.8 Summary and Conclusions . 136

8 Learning Bits Patterns 138

8.1 Data Mining in Software Dependability 139

8.2 Data Mining Concepts . 140

8.2.1 Fundamentals of Data Mining 140

8.3 Assessment Metrics for Model Quality 145

8.4 Addressing Class Imbalance . 150

8.5 Generating Fault Injection Points 153

xvi

8.5.1 Stage 1: Data Preparation 154

8.5.2 Stage 2: Model Fitting . 156

8.5.3 Stage 3: Model Optimisation 157

8.6 Case Studies . 157

8.6.1 Stage 1: Data Preparation 158

8.6.2 Stage 2: Model Fitting . 159

8.6.3 Stage 3: Optimising Model 167

8.6.4 Bit-position and injection efficiency 171

8.7 Implication and Limitation . 176

8.8 Summary and Conclusions . 177

9 Conclusions 179

9.1 Research Contribution Summary 179

9.1.1 Complexity Analysis and Formalisation of ILS and TVS

Problem . 180

9.1.2 Double Single Bit-Flips Fault Model 180

9.1.3 Heuristics for the Injection Locations and Target Vari-

ables Selection . 180

9.1.4 Efficient Bit Locations . 181

9.2 Applications . 181

9.3 Future Work . 182

xvii

Bibliography 184

xviii

List of Figures

2.1 Dependability tree. [7] . 9

2.2 An overview of fault and error terminology focused on the tran-

sient hardware fault. 14

2.3 An overview of the relationshipship of an 8-bit MBU and a 3-bit

data word with an 8-bit interleave. 15

2.4 Block diagram of propagation of soft-error impacting software. . 15

2.5 Overview of fault tolerance coverage [7]. 18

2.6 An overview of a basic fault injection environment. 20

2.7 An overview of fault tolerance validation. 20

2.8 An overview of dependability analysis. 22

3.1 Example of basic blocks for a dummy program and its corre-

sponding CFG. 24

3.2 LLFI workflow [156]. 35

4.1 An overview of the thesis contributions. 45

6.1 An overview of double faults. 65

6.2 Error sensitivity distribution of the various fault models for each

programs. 73

xix

6.2 Error sensitivity distribution of the various fault models for each

program. 74

6.2 Error sensitivity distribution of the various fault models for each

program. 75

6.3 Error sensitivity distribution of instruction type for the fault

models over all target programs. 86

6.3 Error sensitivity distribution of instruction type for the fault

models over all target programs. 87

6.3 Error sensitivity distribution of instruction type for the fault

models over all target programs. 88

6.4 Error sensitivity distribution of data type for the fault models

over all target programs. 89

6.4 Error sensitivity distribution of data type for the fault models

over all target programs. 90

6.4 Error sensitivity distribution of data type for the fault models

over all target programs. 91

7.1 Example of a dominator tree for a CFG and its corresponding

dominance relationships. 104

7.2 An overview for the execution of the proposed framework to select

efficient target variables. 108

7.3 (Extended) CFG for Isqrt . 111

7.4 Dominator tree for Isqrt . 113

xx

7.5 Dependency graph superimposed on dominator tree for Isqrt over

its potential injection location set. 114

7.6 Variable Graph for Isqrt . 115

7.7 Average error sensitivity distribution over all target programs for

different variable selection methods. 128

7.7 Average error sensitivity distribution over all target programs for

different variable selection methods. 129

7.7 Average error sensitivity distribution over all target programs for

different variable selection methods. 130

8.1 Workflow for generating efficient fault injection points. 154

8.2 An overview of generated data set. 159

xxi

List of Tables

6.1 Register classificaiton scheme . 70

6.2 Error resilience distribution of all fault models 77

6.3 Null hypotheis test results for fault model effect on error resilience 78

6.4 Estimated marginal means for error resilience of all fault models 79

6.5 Pairwise comparisons between mean for all fault models 80

6.6 Confidence interval of error resilience for all blocks 83

6.7 Error sensitivity distribution for different block locations under

L1C1. 83

6.8 Error sensitivity distribution for different block locations under

L1C2. 84

6.9 Error sensitivity distribution for different block locations under

L2C1. 85

6.10 Spearman’s rank-order correlations 92

6.11 Pearson product moment correlations 93

7.1 Number of target variables selected for the different target programs117

7.2 Total number of fault injection experiments conducted over all

target programs . 118

xxii

7.3 Average error sensitivity distributions for different programs for

L1C1 . 120

7.4 Average error sensitivity distributions for different programs for

L1C2 . 121

7.5 Average error sensitivity distributions for different programs for

L1C3 . 122

7.6 Average error sensitivity distributions for different programs for

L1C4 . 123

7.7 Average error sensitivity distributions for different programs for

L2C1 . 124

7.8 Average error sensitivity distributions for different programs for

L3C1 . 125

7.9 Average error sensitivity distributions for different programs for

L4C1 . 126

7.10 Average error sensitivity distributions for different programs for

L2C2 . 127

8.1 The general form of a confusion matrix for binary classification. 146

8.2 (Double) Injection points efficiencies for näıve Bayes with no sam-

pling . 162

8.3 (Triple) Injection points efficiencies for näıve Bayes with no sam-

pling . 163

8.4 (Quadruple) Injection points efficiencies for näıve Bayes with no

sampling . 164

xxiii

8.5 (Double) Injection points efficiencies for rule induction with no

sampling . 164

8.6 (Triple) Injection points efficiencies for rule induction with no

sampling . 165

8.7 (Quadruple) Injection points efficiencies for rule induction with

no sampling . 165

8.8 (Double) Injection points efficiencies for decision tree induction

with no sampling . 166

8.9 (Triple) Injection points efficiencies for decision tree induction

with no sampling . 167

8.10 (Quadruple) Injection points efficiencies for decision tree induc-

tion with no sampling . 167

8.11 (Double) Injection points efficiencies for näıve Bayes with sampling169

8.12 (Triple) Injection points efficiencies for näıve Bayes with sampling 169

8.13 (Quadruple) Injection points efficiencies for näıve Bayes with

sampling . 170

8.14 (Double) Injection points efficiencies for rule induction with sam-

pling . 170

8.15 (Triple) Injection points efficiencies for rule induction with sampling170

8.16 (Quadruple) Injection points efficiencies for rule induction with

sampling . 171

8.17 (Double) Injection points efficiencies for decision tree induction

with sampling . 171

xxiv

8.18 (Triple) Injection points efficiencies for decision tree induction

with sampling . 172

8.19 (Quadruple) Injection points efficiencies for decision tree induc-

tion with sampling . 172

8.20 (Double) Injection points efficiencies for näıve Bayes with no sam-

pling using full bit set . 174

8.21 (Double) Injection points efficiencies for rule induction with no

sampling using full bit set . 174

8.22 (Double) Injection points efficiencies for decision tree induction

with no sampling using full bit set 174

8.23 (Double) Injection points efficiencies for näıve Bayes with sam-

pling using full bit set . 175

8.24 (Double) Injection points efficiencies for rule induction with sam-

pling using full bit set . 175

8.25 (Double) Injection points efficiencies for decision tree induction

with sampling using full bit set 176

xxv

List of Algorithms

7.1 Heuristic for Injection Location Selection (ILS) 105

7.2 Heuristic for Target Variables Selection 107

7.3 Algorithm to obtain a variable graph 116

xxvi

CHAPTER 1

Introduction

Modern computer systems are now an inextricable part of the structure of mod-

ern societies. Part of these systems is often a computer control system, a mi-

crocontroller. A microcontroller is usually a self-contained system having a

processor, memory and peripherals and can be used as an embedded system.

Often microcontrollers are embedded in other machinery, such as automobiles,

telephones, appliances, and peripherals for computer systems. Embedded sys-

tems range from portable devices, such as tablets and digital watches, to large

stationary infrastructures, such as traffic lights, industrial process controllers

and largely complex systems like hybrid vehicles, Magnetic Resonance Imaging

(MRI) and avionics. Integral part of virtually all modern computer systems

are integrated circuits (ICs). An IC is an electronic circuits on small plate of

semiconductor device, usually silicon. As technology advances, IC scaling trans-

lates to a shrinkage in the feature size, reduction in supply voltage levels and

increase in feature density and operation frequency. A microprocessor is an IC,

or at most a few ICs, that contains all, or most of, the functions of a central

processing unit (CPU) of a computer; and it is sometimes called a logic chip.

Microprocessors are designed to perform binary, logic and arithmetic, operations

that employs the usage of small number-holding areas called registers. Typical

microprocessor operation include adding, subtracting, comparing two numbers,

and writing and reading numbers to and from one area to another. These oper-

ations are the result of a set of instructions that are part of the microprocessor

design. This set of instructions is called instruction set architecture (ISA), i.e.,

1

CHAPTER 1. INTRODUCTION 2

the ISA provides commands to the processor, to tell it what it requires to do.

The ISA consist of different components which include (processor) registers. A

register is one of a small set of data and it may hold an instruction, a storage

address, or any kind of data (e.g., a bit sequence or individual characters). The

low cost of IC made it possible for modern computer systems to pervade our

everyday life. As such, this pervasive nature of these systems has increased our

reliance upon such systems to provide correct and timely service.

However, these current hardware trends has exacerbated the unreliability of

modern computer systems. As technology scales down, their sensitivity to their

environment increases, as a result the probabilities of transient faults and soft-

errors are increasing. A soft-error is an issue that causes a temporary condition

in memory that alters stored data in an unintended way. This means, emerging

technology are error prone to ionising radiation normally caused by low-energy

neutrons coming from cosmic rays and alpha particles coming from packaging

materials. Similarly, soft-error rate (SER) in logic circuits is increasing [111]

and now comparable to the SER in unprotected memory, and the probability

of multiple faults occurring in such devices is equally on the rise. Futhermore,

these emerging technology are projected, in the near-future, to cause computer

systems to expose hardware faults to the information-level, and to ensure that

the software performs as specified [24, 28, 98, 114, 138]. Similarly, it has been

demonstrated that many hardware faults manifest as multiple soft-errors [19].

All of these and the concomitant high cost associated with exclusively tolerating

such faults at the hardware-level necessitate the design of software error resilient

mechanisms and evaluating them under such hardware faults.

The type of fault tolerance to adopt and how to implement it is directly related

and strongly dependent upon the underlying fault assumption. One of the

major issues of designing fault tolerant systems is ensuring such systems meets

their reliability requirements, that is, validating them. This is usually done

with respect to the inputs, i.e., class(es) of faults, they were designed to cope

1.1. MOTIVATIONS 3

with [7, 124]. For a large part of applications, especially safety criical system,

it is important to ascertain the coveragw of the fault inection process. There

are other types of application that are not safety critical but may be prone

to dervice degradation as a result of MBU, e.g., an image processing software

rendering a blurry image. This motivates the need of multiple soft-errors model

for designing and evaluating fault tolerant software systems.

1.1 Motivations

Research has shown assumptions about the types of faults that impact a soft-

ware system and how they may affect the system are crucial in the design of a

fault tolerant software system. Thus, dictating the relevant fault tolerance to

implement. Similarly, such assumptions are relevant for the evaluation of the

efficacy of the implemented fault tolerance mechanisms. As such, the emergence

of multiple soft-errors and the eventuality of these errors increasing in the near

future limits the accuracy of the traditional single fault model assumed during

software dependability assessment. Similarly, the manifestation of soft-errors in

several locations, including in logic circuits, constricts the applicability of the

existing double faults model, emulating two soft-errors originating from a single

location, assumed during software system dependability evaluation. Following,

this motivates the need to define a multiple-locations multiple-corruptions fault

model, to emulate multiple soft-errors occurring in several points, during de-

pendable software assessment, which is the focus of the research presented in

this thesis.

However, to assume a multiple-locations multiple-corruptions fault model for

SWIFI three related issues arises; the problem of determining: (i) the injection

location, i.e where to inject, (ii) the injection time, i.e., when to inject, and (iii)

injection latency, i.e., how long to inject. The focus of the research presented

in this thesis is on the problem of selecting the injection location, i.e., selecting

1.2. THESIS CONTRIBUTIONS 4

efficient injection points for multiple soft-error fault model. The contributions

made in this thesis towards selecting efficient injection points for multiple soft-

error are summarised in the next section and are based on the following thesis:

“There exists a computational feasible bits set to explore

under multiple bit-flip faults that will induce a wider fail-

ure profile.”

1.2 Thesis Contributions

In general, this thesis works to address the challenges associated with multiple

fault injection in terms of the type of faults to inject, where to inject them and

the cost of fault injection in terms of number of experiments to perform. Specif-

ically, this thesis contributes to the advancement of multiple fault injections

by:

• Examining the problem of selecting efficient fault injection locations (in

terms of inducing wider failure profile) in complex software and formalising

this complexity. The formalisation is achieved by applying static analysis

techniques and graph theory concepts on the software source or byte code.

To formalise the complexity of selecting these locations, the work split the

problem into two (i) injection location selection and (ii) target variable

selection over all possible locations. The work proves both problems to be

NP-complete.

• Proposing a novel fault model meant to be representative of emerging

transient hardware faults that are due to hardware scaling and that may

lead to multiple bit-flips in contrast to the single fault model traditionally

assumed. This research studies the influence of such faults once converted

into errors in software. The work extends the traditional model of sin-

gle faults to multiple faults. The multiple faults are modelled as single

1.2. THESIS CONTRIBUTIONS 5

faults in combinations of several locations. The viability of the proposed

fault model for software system validation is demonstrated in an extensive

experimental fault injection analysis (more than 17 million individual ex-

periments in thirteen embedded software modules). The research shows

that, the novel fault model uncovers more vulnerabilities than the tradi-

tional single fault model, and causes more severe failures than a variant

existing multiple fault model.

• Proposing an approach for selecting efficient fault injection (variable) lo-

cations in complex software, which take into account the relationship be-

tween program variables or states. The methodology is contrived to dis-

cern key variables for multiple-bits fault injections. The identification is

done by applying static analysis techniques and graph theory concepts on

the software source or byte code. To determine these locations, it pro-

vides two heuristic, the first to identify potential injection locations and

the second, to identify minimal set of variables (in the potential injection

location) to target. Further, this framework yields the multiple-locations

multiple-corruptions fault model, LnCm. The work has also demonstrated

the applicability of the framework and the validity of the LnCm fault model

on several case studies.

• Proposing and evaluating an approach to refine the faultload for multiple-

bits fault injections by selecting a subset of fault injection points. This

filtering is essential to reduce the fault space and cost (in terms of number)

of multiple fault injection campaigns in embedded software modules. The

proposed methodology is base on classification algorithms. In addition

to the key bits identification, the methodology shows that fault injection

done using these subset of key bits achieves similar efficiency as those done

exhaustively with the entire set of bits.

1.3. THESIS STRUCTURE 6

1.3 Thesis Structure

This chapter has detailed the main motivations, contributions and thesis of the

research to be presented in this thesis. The remainder of the thhesis will be

structured as follows:

Chapter 2 provides basic dependability and fault tolerance validation concepts,

principles and terminology that are central to the work presented in this disser-

tation. This account includes an overview of dependability attributes, threats

and means, as well as discussion of fault assumptions and fault injection analy-

sis, and the role they play in the design and assessment of fault tolerant software

systems.

Chapter 3 describes the models under which the contributions made in this

thesis have been developed, including details of the assumed model of the soft-

ware systems, the fault models under which software dependability validation

was considered and description of the fault injection tool and target programs

adopted in the dependability evaluations.

Chapter 4 states the problem statements and provides a roadmap to the re-

search presented in this thesis. The chapter elaborates on the potential problems

of multiple fault injections addressed by the work presented in this thesis and

maps this to the thesis contributions.

Chapter 5 analyses the complexity associated with the selection of efficient

injection locations for injecting multiple soft-errors. Further, it formalises this

complexity as two sub-problems and proves both problems to be NP-complete.

The complexity is analysed in order to discover whether systematically obtaining

an efficient tractable fault space for multiple soft-errors injections is possible.

Chapter 6 presents an empirical assessment of the limitations of the traditional

single and current multiple fault models emulating software errors due single and

1.3. THESIS STRUCTURE 7

multiple hardware transient faults respectively, and proposes a variant multiple

fault model for improving fault representativeness during dependable software

validation. In addition, the chapter analyses the influence of the proposed fault

model on software execution. To keep the fault injection experiments tractable,

only double faults are considered.

Chapter 7 develops an approach for the careful selection of fault injection lo-

cations for each of the two associated problems presented in Chapter 5. The

approach also considers the observations made in Chapter 6 to systematically

identify injection locations for the LnCm fault model.The approach is proposed

in order to assist in streamlining the exponential fault space associated with

multiple-soft-error injections with the goal to reveal as many software vulner-

abilities as possibles. Following its development, the proposed approach is ap-

plied and the efficiency of the selected target variables in terms of uncovered

vulnerabilities is measured.

Chapter 8 focuses on narrowing down the fault space for multiple soft-error

injections. As such, it proposes an approach that applies data mining tech-

niques to datasets obtained during multiple fault injection analysis. Following

its development, the proposed approach is applied and the injection efficiency

of the selected injection points is demonstrated.

Chapter 9 concludes the thesis with final remarks, summary of the research

contributions and indication of applications area and future research directions.

CHAPTER 2

(Software) Dependability Concepts and Terminology

The prevalence of modern computer systems in all aspect of our daily lives,

from consumer-oriented systems, such as automobiles and mobile phones, to

high-end systems, such as nuclear power-plants and aircrafts etc, has prompted

the increase in our dependence on such systems to render correct and timely

service. Further, as technology advances, there is a concomitant increase of

system functionality being defined in software and rise in frequency of faults

and errors impacting these systems. Hence, it becomes crucial that software be

dependable. In order to give an appropriate and consistent context presented

in this thesis, this chapter describes and introduces the fundamentals and ter-

minology in software dependability in general and topics that will be developed

in subsequent chapters in particular.

2.1 The Fundamentals of Dependability

The fundamental concepts of dependability used throughout this disseration are

adopted directly from the comprehensive compilation of concepts made by [7].

The dependability of a system is defined as the ability of the system to deliver

service that can justifiably be trusted. The ability to avoid service failures

that are more frequent and more severe than is acceptable is also defined as

dependability of a system. Dependability of a system is characterised by a set

of attributes, impaired by a set of threats and imparted by a set of means.

8

2.1. THE FUNDAMENTALS OF DEPENDABILITY 9

Dependability Threats

Means

Attributes

Faults
Errors
Failures

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Figure 2.1: Dependability tree. [7]

2.1.1 Dependability Attributes

The dependability of a given system is characterised and profiled by the de-

pendability attributes. These attributes are as follows:

Availability: The probability that the system is operational and providing its

service at any given time is measured by availability. The higher the availability,

the higher the likelihood that the system provides its service at the time that

the service is requested. Or formally, availability is defined as a function of

time representing the probability a service provided by a computer system is

operating correctly and able to perform its designated function at a given time.

Three frequently used availability terms are explained as follows:

Inherent availability, as seen by maintenance personnel, (excludes preventive

maintenance outages, supply delays, and administrative delays) is defined as in

Equation 2.1:

Ai =
MTTF

MTTF + MTTR
(2.1)

2.1. THE FUNDAMENTALS OF DEPENDABILITY 10

where MTTF and MTTR represents the mean time to failure and the mean

time to repair for the service respectively.

Achieved availability, as seen by the maintenance department, (includes both

corrective and preventive maintenance but does not include supply delays and

administrative delays) is defined as in Equation 2.2:

Aa =
MTBF

MTBF + MDT
(2.2)

where MTBF and MDT represents the mean time between failure and the mean

down time for the service respectively.

Operational availability, as seen by the user, is defined as in Equation 2.3:

Ao =
uptime

operatingcycle
(2.3)

where operating cycle is the overall time period of operation being investigated.

Reliability: The probability that a system provides the service it was originally

set to provide during a finite period of time is measured by reliability. This

means that the higher the reliability, the higher the likelihood that the response

given by a system is correct. Reliability is concerned with reducing the frequency

of failures over a time interval and is a measure of the probability for failure-free

operation during a given interval, i.e., it is a measure of success for a failure free

operation. It is often expressed as in Equation 2.4:

R(t) = exp−
t

MTTF = 1 − exp−λt (2.4)

where λ is constant failure rate.

Safety: The extent to which a system provides a service that is safe to its

environment, i.e., it does not endanger the user, is measured by safety [7]. The

safety measure may be higher than the reliability measure, in the sense that

2.1. THE FUNDAMENTALS OF DEPENDABILITY 11

the system may provide a service which was not originally intended, and this

service may still be safe for users.

Confidentiality: The extent to which a system will allow those without suf-

ficient privilege to obtain information that should not be made available is

measured by confidentiality. The higher the confidentiality the higher the prob-

ability that it will not disclose undue information to non-authorised entities.

Integrity: The extent to which a system prevents alterations by unauthorised

entity, or ensures an unauthorised entity does not prevent authorised modifi-

cations (including causing information interruption) by authorised entities is

measured by integrity. Integrity is the absence of improper system alteration.

The higher the integrity measure the higher the probability that a system will

ensure that there is absence of improper systems alterations, with respect to

withholding, modification and deletion of information.

Maintability: Maintainability is the measure of how long it takes to achieve

(in terms of ease and speed) to restore outages to services provided by a sys-

tem. Maintainability is the ability for a process to undergo modifications and

repairs. The maintainability measurement is often the MTTR and a limit for

the maximum repair time. Formally, maintainability is defined as a function of

time representing the probability that a failed computer system will be repaired

in t time or less. The maintainability attribute is conventionally denoted by

M(t). Where a constant rate of repair, µ, can be assumed, the maintainability

of a system can be estimated by Equation 2.5:

M(t) = 1 − exp−
t

MTTR = 1 − exp−µt (2.5)

2.1. THE FUNDAMENTALS OF DEPENDABILITY 12

2.1.2 Dependability Threats

During the development and operation of a dependable system, events may

occur that may impair the trustworthiness of the system by introducing faults

into the system. A fault is a defect in system, i.e., a fault may be a software

bug or effect of hardware fault. A system is said to provide correct service when

the service is originally the one it set to provide, i.e., the service it provides

complies with its functional specification. On the contrary, a system is said to

provide incorrect service, i.e., a system failure is said to have occurred, when

the service it provides differs from its functional specification. Typically, such

system failure occurs due to the presence of threats to dependability. As shown

in Figure 2.1, dependability threats are faults, errors and failures. However,

the mere presence of faults is not sufficient to impair the dependability of the

a system. A fault must become active, i.e., the part of the system the fault

is located must be referenced in some way during the system execution. The

activation of a fault may result in an error occurring. An error is a discrepancy

between the intended behaviour of a system and its actual behaviour inside the

system boundary, i.e., an error is erroneous state in the system. An active error

may cause other errors to occur in the system. This process in called error

propagation. Error propagation may result in system failure by preventing the

system from providing correct services. That is failure occurs when error(s)

propagate beyond the system boundary. i.e., if the error(s) become visible to

the environment of the system.

The fault-error-failure error causality cycle is known as the fundamental chain

an it is represented as follows:

fault → error → failure

The fundamental chain is recursive in nature. Thus what can be seen as a failure

at one level of the system can be seen as a fault on the next level. Therefore,

2.1. THE FUNDAMENTALS OF DEPENDABILITY 13

these repetitive sequence leads to the definition extended chains of causality to

represent the error propagation process, such as the following causality chain:

· · · fault activation−−−−−−−→ error
propagation−−−−−−−−→ failure

causation−−−−−−→ fault · · ·

A fundamental capability of any dependable system is to limit the extent of

error propagation. Given the nature of the fundamental chain it is possible to

develop means to break these chains and thereby increase the dependability of

a system.

2.1.3 Type of Faults

A fault can be classified into a hardware or a software fault according to where

it occurs. A hardware fault is classified into a permanent, an intermittent, or

a transient fault as indicated by the extent of its existence in a system (see

Figure 2.2). This thesis focuses on hardware faults, which do not originate

due to hardware damage and impact the execution flow of software and/or

program. A permanent fault (stuck-at, stuck-open, and bridging faults) remains

permanently in the system, an intermittent fault introduces repetitive broken

data in a specific place because of hardware damage and a transient fault appears

and disappears within a brief time. Permanent and intermittent faults occur

because of inaccurate specifications, implementation mistakes, or component

defects. A transient fault usually occurs because of internal and external noise.

The data errors that result from a hardware fault include hard- and soft-errors.

A hard-error causes data corruption as a result of permanent and intermittent

faults. A soft-error causes data corruption because of transient faults resulting

from environmental disturbances, such as alpha particles or neutrons. As op-

posed to a hard error, a soft-error occurs under conditions where the device is

not damaged. A soft-error can be divided into single and multiple bit-flips. A

2.1. THE FUNDAMENTALS OF DEPENDABILITY 14

Hardware	
Fault

Software	
Fault

Intermittent	
Fault

Permanent	
Fault

Transient	
Fault

Hard	Error Single	Bit-
Flip

Event	
Upset

Soft	Error Multiple	Bit-
Flips

Event	
Transient

Fault Data Error

Figure 2.2: An overview of fault and error terminology focused on the transient
hardware fault.

single bit-flip (SBF) consists of one bit-flip, and multiple bit-flips (MBF) consist

of several bit-flips. Further, a bit-flip can be categorised into an event upset or

an event transient, depending on where it manifests. An event upset manifests

in storage element, e.g., in the latch or flip-flop, whereas an event transient oc-

curs in combinational logic. Thus an SBF can be either be a Single Event Upset

(SEU) or a Single Event Transient (SET); and an MBF is either a Multiple

Event Upset (MEU) or a Multiple Event Transient (MET). It is common for

the bits in a data word to not be physically adjacent, but interleaved with bits

of other data words, i.e., bits in the same data word are physically number of

bits apart from each other. This means that when an n-bit MBU occur, it may

not affect bits in the same word. For it to translate into a data word MBU the

following two condition must be true: (i) at least two of the failing bits in the

MBU must belong to the same row, and (ii) the physical MBU must spread over

more than the interleaved space. This interleaving architecture, typically makes

physical MBUs manifest as data word SBUs [130]. For circuits protected with

Error Correction Codes (ECC), such physical MBUs do not necessarily affect

the performance of these circuits. Figure 2.3 shows an overview of MBU and

Static Random Access Memory (SRAM) bits interleaving relationship. This

thesis, thusly, focuses on MBUs that originate in the ISA registers (however, it

does not consider errors in registers holding instructions).

The soft-error rate (SER) is defined as the occurrence rate of a soft-error in a

2.1. THE FUNDAMENTALS OF DEPENDABILITY 15

Co
l.

0
Co

l.
1

Co
l.

2
Co

l.
3

Co
l.

4
Co

l.
5

Co
l.

6
Co

l.
7

Co
l.

0
Co

l.
1

Co
l.

2
Co

l.
3

Co
l.

4
Co

l.
5

Co
l.

6
Co

l.
7

Co
l.

0
Co

l.
1

Co
l.

2
Co

l.
3

Co
l.

4
Co

l.
5

Co
l.

6
Co

l.
7

Row. 5
Row. 4
Row. 3
Row. 2
Row. 1

Row. 0

IO0 IO1 IO2

Figure 2.3: An overview of the relationshipship of an 8-bit MBU and a 3-bit
data word with an 8-bit interleave.

device. The number of failures-in-time (FIT) or the mean time between failures

(MTBF) are commonly used to express the SER.

In this thesis, an impactful error is considered to be those soft-errors that affect

the software behaviour. Figure 2.4 depicts an overview of impactful errors and

their propagation from the circuit level to the application level.

Circuit	Level

Architectural	Level

Operating	System	Level

Application	Level

Impactful Errors

Figure 2.4: Block diagram of propagation of soft-error impacting software.

2.1.4 Dependability Means

When developing dependable systems, there are a number of means by which de-

pendability can be achieved and analysed. As shown in Figure 2.1 and described

as follows, the four dependability means are fault prevention, fault tolerance,

2.1. THE FUNDAMENTALS OF DEPENDABILITY 16

fault removal and fault forecasting:

Fault Prevention is the process of preventing faults being incorporated into

a system. Fault prevention techniques focus on hindering and obstructing the

occurrence, introduction and spread of faults. Established examples of such

techniques include modular software design, software development methodolo-

gies and process quality assurance.

Fault Tolerance is the process of putting mechanisms in place that will allow

a system to still deliver the required service in the presence of faults, although

that service may be at a degraded level. Generally, such fault tolerance tech-

niques focus on the recognition of an erroneous state in a system and restoring

a suitably correct state, or at least a safe system state, following the occurrence

of an error.

Fault Removal is the process of mitigating the number and seriousness of

faults in a system. Fault removal techniques focus on reducing the number,

likelihood of activation and wider consequences of faults in a computer system.

Fault removal is generally a three stage process, where these steps are valida-

tion, diagnosis and system correction. Particularly, the validation stage focus

on determining whether a system adheres to a set of defined properties, the

diagnosis stage focus on identifying faults, which prevent these properties from

being fulfilled and the system correction stage focus on modifying the system

to allow the defined properties to be fulfilled.

Fault Forecasting is the process of predicting likely faults so that they can

be removed or their effects can be circumvented. Fault forecasting techniques

focus primarily on estimating the number, likelihood of activation and wider

consequences of faults in a computer system. The fault forecasting process

typically involves the identification, classification and analysis of modes by which

a system can fail, as well as an evaluation of dependability attributes using

probabilistic and analytical approaches. Fault injection analysis is a common

2.2. FAULT TOLERANCE VALIDATION 17

technique in usage when attempting to establish dependability measures and

forecast fault proneness. Fault injection is a dependability validation approach

whereby the behaviour of a system to the artificial insertion of faults or errors

is analysed so that insights can be gained with respect to the dependability of

the system

The contributions made in this thesis are generally related to the areas of fault

tolerance and fault forecasting. In particular, the research presented in this

thesis is focuses on improving the fault tolerance and fault forecasting mecha-

nism dependability assessment and validation. More specifically, the research is

concerned with demonstrating that the dependability assessment and validation

process can be enhanced through the design of multiple fault model based on a

set of candidate variables and candidate bits.

2.2 Fault Tolerance Validation

Fault tolerance techniques are not equally effective. The measure of efficacy

of any given fault tolerance technique is called its coverage. The imperfections

of fault tolerance, i.e., the lack of fault tolerance coverage, constitute a dras-

tic impediment to the increase in dependability that can be achieved. Such

imperfections of fault tolerance arise due to either:

• development faults that affect the fault tolerance mechanisms with respect

to the fault assumptions specified during the development, the upshot of

which lack of error and fault handling coverage, defined with respect to

a class of errors or faults, (e.g., single errors, multiple errors etc), as the

conditional probability that the technique is effective, given that the errors

of faults have occurred,

• fault assumptions that are not representative of the fault that actually

occur in operation, i.e the fault assumptions differ from the faults really

2.2. FAULT TOLERANCE VALIDATION 18

occurring in operation, resulting in a lack of fault assumption coverage,

that can in turn be due to either (i) lack of failure mode coverage, i.e.,

the assumption on how failure occurs and (ii) lack of failure independence

coverage, i.e., assuming components failure occur independently whereas

they have a common failure trigger and vice vera.

Figure 2.5 summarises the relationship of fault tolerance of coverage. Fault

tolerance coverage of a given technique is evaluated by means of validation

techniques with respect to the fault tolerance assumptions the technique design

is based on. There are several validation techniques, including formal methods,

fault injection, and dependability analysis. Validation usually takes place at the

end of the development cycle, and looks at the complete system as opposed to

verification, which focuses on smaller sub-systems. Verification is the process of

checking that the system conforms to its specification

Fault Tolerance
Coverage

Error and Fault Handling
Coverage

Fault Assumption
Coverage

Failure Mode
Coverage

Failure Independence
Coverage

Figure 2.5: Overview of fault tolerance coverage [7].

2.2.1 Formal Method

Formal methods are concerned with the use of mathematical and logical tech-

niques to express, investigate, and analyse the specification, design, documen-

tation, and behaviour of both hardware and software. Formal methods are orig-

inally used as verification techniques, however, they are now being employed

2.2. FAULT TOLERANCE VALIDATION 19

in validation of fault tolerance techniques. For example Ayache et al. [8] de-

fines a methodological framework applicable to the early life cycle phases of

fault-tolerant systems engineering. The framework focuses on the verification

of fault tolerance properties using model-based formalisms. Lecocke et al. [86]

describes an approach to fault tolerant design and implementation that uses a

formal model to automatically generate fault detection and response methods.

The approach is designed for resource-constrained embedded systems with high

reliability requirements such as manned or critical space assets. Fey et al. [44]

propose the use of formal methods to assess the robustness of a digital circuit

with respect to transient faults. The formal model uses a fixed bound in time

to cope with the complexity of the underlying sequential equivalence check.

2.2.2 Fault Injection

As has been mentioned in the previous chapter, fault injection is the inten-

tional activation of faults by either hardware or software techniques to observe

the system operation under the effect of the fault. Fault injection is adopted

to evaluate the dependability of a system. Fault injection may be used to de-

termine vulnerable parts of a system in order to design, assess and improve

fault tolerant systems. The fault injection system interacts with the target sys-

tem for fault activation, process control, and fault analysis. Figure 2.6 depicts

fundamental fault injection workflow and Figure 2.7 summarises a basic fault

tolerance validation process. Fault injections techniques can be classified as

hardware-based, software-based, simulation-based and emulation-based. These

are briefly described in the following sections.

Hardware-Based Fault Injection

Hardware-implemented fault injection is also called physical fault injection be-

cause faults are actually injected into the physical hardware [5, 21, 46, 74].

2.2. FAULT TOLERANCE VALIDATION 20

Fault	analyser

Controller

Fault	Workload

Fault Injection System

Target
System

Figure 2.6: An overview of a basic fault injection environment.

Insert	fault	
tolerance	

mechanisms	in	
the	application

Inject	faults	into	
application	

protected	with	
fault-tolerance	
mechanisms	

Is	
obtained	
coverage	
sufficient

?	

NO

YES

Figure 2.7: An overview of fault tolerance validation.

Hardware fault injection introduces a direct stimulus at the pins or socket. The

circuit is tested using the change in the operating power or temperature or the

external shocks that cause transient errors. The testing speed is fast owing to

the real-time fault injection structure. By directly changing the environment, a

wide range of circuits can be evaluated through these disturbances. However, its

processes are difficult to monitor and control because the exact moment when

a fault is injected by the disturbance is not known. A drawback of hardware-

based fault injection is there exists a possibility of damaging the target system

as actual circuits cannot be restored after testing.

Software-Based Fault Injection

Traditionally, software-based fault injection involves the modification of the soft-

ware executing on the system under analysis in order to provide the capabil-

2.2. FAULT TOLERANCE VALIDATION 21

ity to modify the system state according to the programmer’s modelling view

of the system. This is done as a possible way to assess the consequences of

software bugs. However, software-based fault injection have been extended to

assess not just software bugs, but other faults that can impact the operation

of system at the application level. All types of faults may be injected, from

register and memory faults, to dropped or replicated network packets, to er-

roneous error conditions and flags to transient hardware faults. These faults

may be injected into simulations of complex systems where the interactions are

understood though not the details of implementation, or they may be injected

into operating systems to examine the effects. Fault injection is a widely used

technique in software dependability evaluation, e.g., [58, 73, 103, 156, 163]. The

work presented in this thesis falls under the area of SWIFI.

Simulation-based and Emulation-Based Fault Injection

Simulation-based fault injection is concerned with the construction of a simula-

tion model of the system under analysis, including a detailed simulation model of

the processor in use [29, 45, 95, 135, 145]. This means that the errors or failures

of the simulated system occur according to predetermined distribution. The

simulation models are designed using a hardware description language such as

the Very high speed integrated circuit Hardware Description Language (VHDL).

Faults are injected into VHDL models of the design and activated by a set of

input patterns. Emulation-based fault injection are designed to cope with the

time limitations imposed by simulation and to take into account the effect due to

the circuit environment in the application, in system emulation using hardware

prototyping on FPGA-based logic emulation systems [20, 94].

2.2. FAULT TOLERANCE VALIDATION 22

Risk	Analysis

Hazard	Analysis

Causes

Mitigation	
Actions

Consequences

Risk	Reduction	
Strategies

Hazard

Safety	
Requirements

Figure 2.8: An overview of dependability analysis.

2.2.3 Dependability Analysis

Dependability analysis is the process identifying hazards and then proposing

methods that reduces the risk of the hazard occurring. Dependability is cate-

gorised into hazard analysis and risk analysis. Hazard analysis is the process

of recognising hazards that may arise from a system or its environment, doc-

umenting their unwanted consequences and analysing their potential causes.

Hazard analysis involves using guidelines to identify hazards, their root causes,

and possible countermeasures. Risk analysis takes hazard analysis further by

identifying the possible consequences of each hazard and their probability of oc-

curring. Dependability analysis is being used in the validation of fault-tolerant,

e.g., [116, 140, 153, 167, 168]. Figure 2.8 summarises the basic dependability

analysis workflow.

CHAPTER 3

System and Faults Models and Target Systems

To be able to perform dependable software validation, the software system model

along with fault model considered has to be specified. This chapter describes the

software model assumed in the development of the contributions made in this

thesis, and the fault models under which they were assessed. This chapter also

introduces all target systems together with their associated input set, system

failure modes, software system instrumentation procedures and dependability

validation techniques used to evaluate and illustrate the approaches presented

in this thesis.

3.1 System Model

This thesis considers modular software, i.e., software consisting of a number of

discrete software functions called modules, that interact to deliver the requisite

functionality. A module is considered as a generalised white-box, having possibly

multiple inputs and outputs and whose codebase is available.

Modules communicate with each other in some specified way using different

forms of signalling, such as, shared memory, parameter passing etc. A software

module performs computations using the inputs received on its input channels

to generate outputs, which are then placed on the requisite output channels. At

the lowest level, such a module may be a procedure or a function and a process at

the highest level. A software consists of such modules that interact via signals.

23

3.1. SYSTEM MODEL 24

Signals can originate (or end) from hardware or from another module. Such

type of software is common place nowadays, and can be seen in many different

application areas, such as embedded systems. In this thesis, henceforth, modules

is used interchagebly with software systems, unless otherwise specified, and a

software system is modelled as an extended control flow graph (extended-CFG).

A control flow graph (CFG) is a representation, using graph notation, of all

paths that might be traversed through a program during its execution. In a

CFG, a node in the graph represents a sequence of statements called basic

block (or block for short), i.e. a straight-line piece of code with branching only

allowed at the end. Directed edges are used to represent possible transfer of

control. There are, in most presentations, two specially designated blocks: the

entry block, through which control enters into the flow graph, and the exit block,

through which all control flow exits.

v	:=	3;	
w	:=	5;	

L1:	x	:=	v	+	w;	
y	:=	x	−	v;	
if(···)	goto L2;	

y	:=	v	−	w;
z	:=	z	−	2;	
if(···)	goto L3;	

L2:	w	:=	v	+	w;	z	:=	x	−	v;	
if(···)	goto L1;	

L3:	v	:=	w	+	y;	
w	:=	v	−	y;	

(a) Sample Program

† v	:=	3;	
w	:=	5;	

† L3:	v	:=	w	+	y;
w	:=	v	−	y;	

† L2:	w	:=	v	+	w;	
z	:=	x	−	v;	
if(···)	goto L1;	

† y	:=	v	−	w;
z	:=	z	−	2;	
if(···)	goto L3;	

† L1:	x	:=	v	+	w;	
y	:=	x	−	v;	
if(···)	goto L2;	

† = header

BB1

BB2

BB3

BB4

BB5

(b) Basic Blocks

Entry

BB1

BB2

BB3

BB4

BB5

Exit

(c) CFG

Figure 3.1: Example of basic blocks for a dummy program and its corresponding
CFG.

The first statement in a basic block is a header, the target of any branch is a

header, and the statement following any branch is a header. Thus each basic

block is consist of a header at the entry and the ensuing sequence of statements

between it and the next header. In a CFG, there exists a directed edge from

3.1. SYSTEM MODEL 25

basic-block1, BB1 to basic-block2, BB2, i.e BB1 −→ BB2, if: (i) there exist a

branch from the last statement in BB1 to the header of BB2 and/or (ii) BB1

does not end in an unconditional loop and it immediately precedes BB2. There

is at most one edge for any given direction between BB1 and BB2, i.e, not

more than one edge exists for BB1 −→ BB2. There is an edge From Entry

to the initial basic block, there is an edge from each final basic block to Exit.

Figure 3.1 shows a sample program code, and an overview of its basic blocks

and CFG.

In this thesis, an extended-CFG is obtained from its CFG by ensuring each node

does not contain a program variable that is depended upon another program

variable within the said node, i.e., no self-loop exists in any given block. In the

next section, an extended-CFG is formally defined.

3.1.1 Extended-CFG for a Program

An Extended CFG for a program P is a labeled weighted directed graph GP =

〈V, v0, A,W,Φ〉, where

• V : is a set of vertices, with each vertex v ∈ V representing a block in

P , and each block represents a sequence of consecutive instructions or

statements in P .

• v0: is the root vertex, representing the starting block in P . It has an

in-degree of 0.

• A: is a set of arcs (u, v), where u, v ∈ V . An arc exists between u and v

if execution of block u can directly lead to block u.

• W : is a function W : A → N, that defines a weight for each arc (u, v) in

GP . In this thesis, it is assumed that assume the weight to represent the

number of steps or statements of the blockv.

3.2. FAULT MODEL 26

• In a given block, whenever there is a data dependency between two vari-

ables, the block is split into two such that the dependency is across blocks.

Thus, there is no data dependency within a block. This is done based on

the assumption that error propagation occurs across blocks, rather than

within a block.

Extended-CFG under Multiple Soft-Error

The extended-CFG used for Multiple-bits errors have this additional property:

• Φ: is a function Φ : V → B, where B is a function that assigns a boolean

value to each vertex v ∈ V . The vertex is assigned a value 1 if it is a

potentially vulnerable block, 0 otherwise (details are provided in Chap-

ter 5.3).

Notation: The set of paths in G is denoted by ρG and the set of paths between

two vertices u, u′ ∈ V by ρu,u
′

G . Given a path ρ = u · v . . . v′ · u′, then ρ̂ =

{a|a ∈ v . . . v′}. The length of a path ρ in G, denoted by Length(ρ), is given by∑
(u,v)∈ρW (u, v).

3.2 Fault Model

This thesis considers the transient hardware faults originating at the transistor

level, that ultimately impact on the software modules. As previously mentioned,

these faults are aggravated by current hardware trends. These faults impact

on the program state by altering the content of CPU registers and memory,

and through the process of error propagation causes errors [7] to exist in the

software system. These errors are usually mimicked by injecting bit-flip errors1

1In this thesis bit-flip errors are taken to mean the same as corruptions, and from this
point, both would be used interchangeably unless specified otherwise.

3.2. FAULT MODEL 27

in registers and memory. The general assumption is any number of bit-flip

errors may occur in any number of locations. This thesis considers single bit-

flips and multiple bit-flips errors occurring. As mentioned, this thesis focuses

on soft-errors in register locations only.

3.2.1 Single Fault

Traditionally a single fault assumption has been used for fault injection analysis.

This means in a given location a single bit is flipped in a single execution of

the program. Research has shown multiple bits errors 2 occurring in the field as

single-cell, single-row, single-column, multiple-rows, multiple-columns or chip-

wide errors [51, 97, 150]. This pinpoints the need for considering multiple-bits

errors in software dependable validation. This thesis adopts the Single Bit-Flip

or L1C1 fault model as baseline for evaluating the efficiency of the adopted

multiple-bits errors models.

3.2.2 Multiple Faults

In consideration of the potential of multiple soft-errors affecting the running

software, research have begun studying the impact of double-bits errors on soft-

ware for dependability evaluation [9]. In [163], the double-bits fault model has

also been shown to mimic the presence of software bugs. The mentioned research

focused on a version of double-bits errors occurring within a single location. In

this thesis, this fault model is modelled as two bits flipped within a single loca-

tion, and referred to as model as Double Bit-Flips or L1C2 (which is a specific

case of the LnCm fault model) . Lu et. al. [103] adopted the double-bits errors

to show the applicability of their fault injection tool. This thesis adopts the

L1C2 fault model to evaluate the viability of the proposed variant double-bits

models in terms of its ability to induce programs to fail differently. This thesis

2In this thesis bits errors is short for bit-flips errors.

3.2. FAULT MODEL 28

adopts a second pattern of double hardware faults occurring as single faults in

a pair of locations. This thesis models this fault model as double single bit-flip

errors in two different locations, and this is refered to as L2C1 (which is also a

specific case of the LnCm fault model). The thesis proposes this model in order

to ascertain the need to adopt it for the purposes of dependable software valida-

tion. The model assumes in any run of the program only two errors can occur,

as such it selects two locations and flip one bit in each. It should be mentioned

that the work presented in [103] tested the applicability of their fault injection

tool with both the L1C2 and L2C1 fault models, and their work post dates that

presented in [2] which serves as the basis of some of the work presented in this

thesis.

This thesis generalises the double faults model to allow multiple faults to be

introduced in a single run instead of two. This model assumes any number of

errors can occur in a single execution of a program, as such several locations

are selected and a minimum of a single bit is flipped in each location. This new

multiple faults model is referred to as Multiple Locations Multiple Multiple

Corruptions (LnCm, where n is the number of injection locations and m the

maximum number of faults to inject in each location) fault model.

From the extended-CFG perspective of a program, it means that (i) several

variables in a given block can be corrupted, (ii) several blocks can be corrupted,

with a single variable being corrupted in each block or (iii) several variables

being corrupted in several blocks of the program. As this thesis focuses on

capturing the impact of multiple hardware faults on a program, it is important

to (i) determine the location (block) where the fault will be injected and (ii)

determine the variables in which the faults will be injected into. At one extreme,

the entry block (root of the control flow graph) can be chosen and all variables

in that block being selected as target variables. At the other extreme, every

variable within every block can be target variables. However, the computational

cost of validation will be prohibitive.

3.3. TARGET SYSTEMS 29

This thesis only evaluates LnCm having a maximum of four faults. That is,

in addition to the aforementioned double-bits errors, L1C2 and L2C1,the thesis

also assumes triple faults models, where (i) three bits are flipped in a single

location (L1C3) and (ii) three single bits are flipped in three different locations

(L3C1), and quadruple bits errors, where (i) fours bits are flipped in a single

location (L1C4), (ii) four single bits are flipped in four different locations (L4C1)

and (iii) double bits are flipped in a pair of locations (L2C2).

3.3 Target Systems

An overview of each target program used in this thesis is provided in following

sections. From this point onwards, program is used interchangeably with module

and software system (or system for short), unless it is otherwise stated.

3.3.1 Flight Control

Flight Control is a safety-critical system, Mathwork’s implementation of a flight

control system for the longitudinal motion of an aircraft [109]. First order

linear approximations of the aircraft and actuator behaviour are connected to

an analog flight control design that uses the pilot’s stick pitch command as the

set point for the aircraft’s pitch attitude and uses aircraft pitch angle and pitch

rate to determine commands. To perturb the system, a simplified Dryden wind

gust model is incorporated. Within the flight control system, two programs

were used for instrumentation:

• Derivatives: This program updates derivatives for the root system

• Step: This program updates the model step

The input data for these programs is a pilot frequency in rads/secs.

3.3. TARGET SYSTEMS 30

3.3.2 SUSAN (Smallest Univalue Segment Assimilating -

Nucleus)

SUSAN is an image recognition package, developed for noise filtering and for

recognising corners and edges in Magnetic Resonance Image (MRI) of the brain [152].

SUSAN is available as a self-contained C program from [53]. SUSAN is also

available as a program in the automotive package of the MiBench suite [53]. It

is typical of a real world program that would be employed for a vision based qual-

ity assurance application. For example, it may be used for digitally processing

images to determine the position of edges and/or corners therein for guidance

of unmanned vehicle. In SUSAN, three different programs were targeted:

• Corners: Performs corner (two feature) detection.

• Edges: Performs edge (one feature) detection.

• Smoothing: Performs structure preserving noise reduction (noise filter-

ing).

The input data for SUSAN are set of Netpbm grayscale image format (PGM).

3.3.3 MiBench Suite

MiBench [53] suite consists of a benchmark suite targeting embedded process-

ing environments. In the MiBench suite, programs from these packages were

instrumented:

Automotive and Industrial Control Package

Benchmarks in the Automotive and Industrial Control (Automotive for short)

package are intended to show use of embedded processors in embedded control

3.3. TARGET SYSTEMS 31

systems. These processors require performance in basic math abilities, bit ma-

nipulation, data input/output and simple data organisation. Typical real appli-

cations for these programs are air bag controllers, engine performance monitors

and sensor systems.

Two benchmarks from the Automotive package were chosen to be used for fault

injection. These programs are selected because they perform simple, usually

necessary, mathematical calculations that mostly do not have dedicated support

in embedded systems. For example, cubic function solving and integer square

root are all necessary calculations for calculating road speed or other vector

values.

• Cubic Equation Calculator (Cubic): This program calculates the

square root of the input.

• Square Root Calculator (Isqrt): This program calculates the roots

of a cubic equation using floating point arithmetic implemented in the

software.

The input data for these programs is a fixed set of constants.

Telecommunications Package

With the explosive growth of the Internet, many portable consumer devices are

integrating wireless communication. These benchmarks consist of voice encod-

ing and decoding algorithms, frequency analysis and a checksum algorithm. The

programs chosen from the Telecommunications package are as follows:

• CRC: This program performs a 32-bit Cyclic Redundancy Check (CRC)

on a file. CRC checks are often used to detect errors in data transmission.

The input data for CRC are speech samples.

3.3. TARGET SYSTEMS 32

• FFT: This programs performs a Fast Fourier Transform and its inverse

transform on an array of data. Fourier transforms are used in digital signal

processing to find the frequencies contained in a given input signal. The

input data is a polynomial function with pseudorandom amplitude and

frequency sinusoidal components.

Network Package

The benchmarks in this package represent embedded processors in network de-

vices like switches and routers. The work done by these embedded processors in-

volves shortest path calculations, tree and table lookups and data input/output.

The algorithms used to show the networking category include finding a shortest

path in a graph and creating and searching a Patricia trie data structure. The

following programs are chosen in the Network package:

• Dijkstra: The Dijkstra program constructs a large graph in an adjacency

matrix representation and then calculates the shortest path between every

pair of nodes using repeated applications of Dijkstra’s algorithm. Dijk-

stra’s algorithm is a well known solution to the shortest path problem and

completes in O(n2) time.

• Patricia: A Patricia trie is a data structure used in place of full trees

with very sparse leaf nodes. Branches with only a single leaf are col-

lapsed upwards in the trie to reduce traversal time at the expense of code

complexity. Usually, Patricia tries are used to represent routing tables

in network applications. The input data for this benchmark is a list of

IP traffic from a highly active web server for a two hour period. The

IP numbers are disguised. The following algorithms are targeted from

Patricia:

– insert: This program performs insertion operations, i.e., it adds new

element(s) in the trie.

3.3. TARGET SYSTEMS 33

– remove: This program performs deletions operations by deleting the

specified element(s) from the trie.

– search: This program performs lookup operations in order to deter-

mine if an element exists in the trie.

Security Packages

As the Internet continues to gain popularity in e-commerce activities, the impor-

tance of data security is also increasing. The Security package includes several

common algorithms for data encryption, decryption and hashing. One pro-

gram is chosen to be targeted, rijndael, the new Advanced Encryption Standard

(AES). AES is based on a design principle known as a substitution-permutation

network, combination of both substitution and permutation, and is fast in both

software and hardware.

• Rijndael: Rijndael was selected as the National Institute of Standards

and Technologies Advanced Encryption Standard (AES). It is a block

cipher with the option of 128-, 192-, and 256-bit keys and blocks. The

input data sets are ASCII text file of articles found online. The following

algorithms are targeted:

– encfile: This program performs encryption operations, i.e, it en-

crypts the input data.

– decfile: This program performs decryption operations on an en-

crypted input.

Each program have nine inputs, of three varying sizes.

3.4. FAULT INJECTION ANALYSIS 34

3.4 Fault Injection Analysis

This thesis uses the LLVM Fault Injection Tool (LLFI) [156] to introduce faults

into target programs. LLFI is a LLVM-based fault injection tool that works at

the LLVM [84] compiler’s intermediate representation (IR) level.

3.4.1 LLVM

Low Level Virtual Machine (LLVM) [84] is a compiler infrastructure designed as

a set of reusable libraries with well-defined interfaces for program analysis and

optimisation. LLVM consists of (i) a front-end to translate program code written

in a high-level language such as C/C++ to an intermediate representation and

(ii) a backend to translate the intermediate representation (IR) into machine

code for specific platforms. The IR is a low-level programming language similar

to assembly. The IR is a strongly typed RISC instruction set which abstracts

away details of the target. It can be transformed by multiple optimisation

passes before being converted to the machine code by the backend. The LLVM

intermediate representation is a typed language in which source-level constructs

can be easily represented. It preserves the variable and function names, making

source mapping feasible. Further, LLVM has extensive support for program

analysis and transformations which makes it easier to study the effect of fault

injection at a higher level than assembly language.

3.4.2 LLVM Fault Injection (LLFI) Tool

On the account that LLFI target programs at the IR code, it allows fault-

injections to be performed at specific program points and into specific instruc-

tions. The effect can then be easily tracked back to the source code. LLFI

supports various fault injection customisations, and enables tracing the propa-

gation of the resulting error among instructions in the program [156].

3.4. FAULT INJECTION ANALYSIS 35

PyYaml
configuration file

Target	system	
source	code

IR	
bytecode

Run	LLVM	
compiler

Run	LLFI	
instrument

Fault	injection	
executables

Profiling	
executables

Run	LLFI	
profile

Dynamic	count	
of	injection	
location

Run	LLFI	
inject	fault

Fault	injection	
output

Statistics	and	logs	of	
injected	faults	and	

experiments

Run-time	options

Compile-time	
options

Figure 3.2: LLFI workflow [156].

LLFI Workflow and System Instrumentation

Figure 3.2 shows the working of LLFI, which consists of three compulsory stages.

First stage, entails running LLFI instrument. In this step, LLFI takes the

program byte-code as input, and applies a configuration instructions specified

the fault injection configuration script written in PyYaml format. The config-

uration file contains both (i) compile-time options, including injection location

and register to target in the specified injection location, and (ii) the run-time

options, consisting of the fault model, i.e the type of fault to inject, number

of experiments to run and time out definitions. The LLFI instruments target

injection locations with calls to fault injection functions. Call-backs functions

are also instrumented for profiling. Running the LLFI instruments produces as

output fault-injection and profiling executables, a dynamic count of injection

locations is also logged.

3.4. FAULT INJECTION ANALYSIS 36

Secondly, the LLFI profile runs the profiling executables produced in Step 1

in order to create a golden run of the target program, where a golden run is

a reproducible fault free execution of the system. This is done in provide a

baseline for comparisons with fault injection executions. This step also create

more fault injection setup text files.

Thirdly, the fault injection executables created in Step 1 is executed at runtime,

and LLFI randomly selects one runtime instance of the instrumented instruc-

tions to trigger the fault injection function and inject into the selected instruc-

tion operand value leveraging the information in setup files created in Step 2.

Because hardware faults occur randomly at runtime, LLFI picks a random in-

struction from the set of all dynamically executed instructions at runtime to

inject into. This is possible because the fault injection function is invoked at

runtime, and can hence choose which invocation of an instruction to inject into.

The output of the fault-injector is the fault injection experiments, including

program output, log and stat file. The log files captures execution information

including program exceptions and system crashes etc, while the stat files stores

execution information such as injected fault type, injection location etc.

Further, by instrumenting the program once with the set of all fault-injection

functions, and injecting the fault at runtime, LLFI ensures that the same ex-

ecutable file (with the instrumentation in it) is used in all the fault injection

runs. Finally, this method makes it unnecessary to recompile the code for each

fault injection. Other work on high-level fault injection has followed a similar

approach [16, 59, 73]. The result is then logged (i.e., where the fault was in-

jected, what type) and the program allowed to continue. The final output of the

program is also logged. This requires the profiling step to have completed suc-

cessfully and the corresponding stat file to have been created. However, when

any compile-time options is changed, the process has to start from Step 1.

In an optional final step, LLFI traces the propagation of faults in the IR code

3.4. FAULT INJECTION ANALYSIS 37

and allows visualisation how the IR code are mapped to the source code. Trace

is collected only if specified in Step 1. This generates an execution trace after

the profiling and fault-injection steps, for each fault injected. The traces can be

compared to identify how the fault propagated.

3.4.3 Failure Scheme

To better understand the failure profile of the targeted program, the outcome

of the fault injection experiments are categorised, using a purpose-built tool, as

follows:

• No Impact: If the program execution terminates normally, and the out-

put produced is identical to the output produced by the fault-free execu-

tion of the program, the outcome is labelled as No Impact. This fault-free

execution of the program is referred to as Golden Run.

• Exception Failure (Exception): The outcome is classified as an Ex-

ception Failure, if the program execution encounters an unexpected error

that does not result in the program crashing or hanging, i.e., the program

terminates normally but does not produce any output.

• Silent Data Corruption (SDC): If the program execution terminates

normally, but produced an output that deviates from that produces by the

golden runs, the outcome is classified as Silent Data Corruption (SDC).

• Time Out Failure (Time Out): The outcome is classified as a Time

Out failure, if the program execution hangs, i.e. fails to terminate within

predefined time. This time is arbitrary set to be approximately 15 times

larger than the execution time of the golden run.

• Crash Failure (Crash): If the program execution is terminated unex-

pectedly when it encounters an unexpected error, the outcome is classified

as a Crash failure.

CHAPTER 4

Problem Statements

Fault tolerance mechanisms have traditionally been validated through the use of

software-implemented fault injection (SWIFI). Several SWIFI frameworks exist,

however most of them are based on single-fault assumption, i.e., they assume

that a single fault will occur in any execution run of the system. During the

validation process, this assumption translates into a single fault being injected

into an execution of the system, overlooking any potential interactions between

simultaneous independent faults. Such a fault assumption has become less ap-

propriate and limited as (i) software systems containing more than a single

fault are more often the norm rather than the exception [14], (ii) current safety

standards require the consideration of multi-point faults [62] and (iii) it has

been shown that simultaneous fault injections can efficiently detect robustness

vulnerabilities [163].

In general, during fault injection, (i) the type of faults to inject, (ii) which

variable to inject in (referred to as the injection location) and (iii) the time

at which the fault injection occurs, are usually considered. Under the single

soft-error assumption, i.e., single bit-flip, the fault space is linearly large (in the

size of the word or register and in the number of variables), making exhaustive

fault injection feasible. Generally, when multiple fault injections are considered:

(i) several variables can be targeted at any given point, and/or (ii) several

different locations can be target at a given time. When multiple soft-errors are

considered, important challenges arises, the most important ones being to deal

38

4.1. SELECTING POTENTIAL INJECTION BLOCKS LOCATIONS 39

with the exponential size (in the number of variables, variables combinations

and the bit-positions) of the fault space. To make the multiple fault injection

process efficient, it is important to inject fault combinations that are likely

to convey more information and uncover more vulnerabilities, i.e., cause the

system to fail. Moreover, the values to inject at the injection location is also

an important dimension to consider for multiple faults assumption. Thus, the

following challenges are identified in support of the thesis statement:

“There exists a computational feasible bits to explore un-

der multiple bit-flip faults that will induce a wider failure

profile.”

4.1 Selecting Potential Injection Blocks Loca-

tions

Does a set of locations (blocks) exists which will be suitable can-

didate blocks for multiple faults injections? How can these blocks

(potential injection locations) be identified?

Having addressed this problem, it is important to discern the best combination

of variables to target. Thus following problem needs to be considered.

4.2 Identifying Candidate Variables to Target

Does a set of candidate variables exists within the set of potential

injection locations that will be suitable for injecting multiple faults?

How can they be identified? To what extent is dependability val-

idation improved? That is, what is the probability of uncovering

vulnerabilities?

4.2. IDENTIFYING CANDIDATE VARIABLES TO TARGET 40

To address this problem, the nature of interactions between variables needs to be

understood and thus the associated problem of error propagation when multiple

faults are considered for injections arises.

4.2.1 Error Propagation Masking

Does an activated fault nullify the effect of a previously activated

fault? Does an activated fault prevent another fault from being acti-

vated? Can faults that may potentially mask another be identified?

If multiple faults are injected, an activated fault f1 can potentially mask another

fault (or error) f2 if, for instance, either f1 prevented f2 from being activated

or f1 cancelled the effect of f2. The following illustrations elaborate on error

masking:

Prevention of Fault Activation: Considering the following program code,

the following is a typical problem that can occur during multiple fault injections:

22 Z = X + Y ;

44 if Z ≤ v2 then

66 Y = v2 − X;

88 else

1010 Y = v1 − X;

1212 c = Y ;

Assuming that at a given point during the program’s execution at Line 2, v2 = 7,

X = 1 and Y = 0; in this instance, in the absence of any fault, the value of Z

will be 1, the program execution will true for the branching condition in Line 4

and thus the value of Y would be updated at Line 6, and in turn C will assume

the value of Y at Line 12. Also, assuming each variable is 4-bit long, and Y

is targeted at Line 2. Any fault injection that causes the state of Z to assume

a value between 0 to 7 will be masked, this means the injected fault will not

4.2. IDENTIFYING CANDIDATE VARIABLES TO TARGET 41

change the execution flow, and the state of Y and C would be updated with

the correct value at Line 6 and Line 12, respectively. Further, any injected fault

that changes the state of Z to become a value in the range of 8 to 15 would

cause the execution flow to change and consequently the state of Y and C will be

incorrectly updated at Line 10 and Line 12 respectively, which may likely lead

to some sort of system failure. This means, some injections would be wasteful,

i.e., certain injections exercise the system in the same way, and faults targeted

at locations whose state may be used to determine branching conditions may

not likely get activated.

However, assuming Y is instead targeted after the program execution have ex-

ited the loop at Line 12, the state of C will be updated with the corrupted Y

value. Thus, targeting Y at that location ensures the fault will be activated,

and subsequently increasing the probability of causing a system failure.

Nullification of the Effect of Activated Fault: Considering another dummy

program, another typical problem associated with multiple fault injections could

occur as follows:

22 a1 = a2;

44 b1 = getB();

5
...

...

77 E = a1 − b1;

8
...

...

Supposing that during a given program execution a2 = 2 at Line 2 and b1 = 0

at Line 7, this means during a fault free execution a1 and E will assume the

values 2, at Line 2 and 2, at Line 7, respectively. Assuming also, that double

single faults are injected if: location a2 is targeted at Line 2 and location b1 is

targeted at Line 7. Supposing each location is 4-bit long, and at Line 2, the

fault corrupted the first bit position in a2 thus changing its state from 2 to 3.

Consequently, at Line 7, E will be computed as 3. Assuming the second fault is

4.2. IDENTIFYING CANDIDATE VARIABLES TO TARGET 42

activated at this location and the first position is corrupted, thereby changing

the state of E from 3 to 2. Thus, the second activated fault in E will mask the

first corruption in a2, i.e., the effect of the second fault cancels the effect of the

first fault.

4.2.2 Error Propagation Amplification

Does an activated fault increase the effect of a previously activated

fault? Would flipping a single bit be more impactful than flipping

multiple bits in a given location? Can faults that may potentially

amplify the effect of each other or another be identified?

Another ambiguity that can occur during multiple fault injections is reduction

of the impact of an error when another fault gets activated. However, when the

effect of an activated fault is increased by a another fault being activated then

amplification has occurred. If multiple faults are injected, an activated fault f2

can potentially reduce the impact of another error f1, if, for instance, f1 leads

to a corrupted value in location l that deviates with a large difference from the

supposedd correct value l at that point, and f2 updates the state of l with a

corrupt value that deviates with the a small difference of the correct value of l.

Considering the following sample code illustrates the concept of amplification:

1
...

...

33 a := getA();

55 c := getC();

77 b := c + a;

8
...

...

Assuming all the variables are 4-bits long integers, and at a given execution

cycle of the program, getA() returns a value 4 at Line 3. In the absence of fault,

an error the value of a at that point will be 4, and let c = 5 at Line 5. In a fault

4.2. IDENTIFYING CANDIDATE VARIABLES TO TARGET 43

free execution of the program b = 9 at Line 7. If, a fault is activated at Line 3,

and it corrupts the state of a by making a = 0, without the activation of any

other, the corruption will propagate to b at Line 7 (b = 5, deviating from its

fault-free value by −4). Supposing a second fault is activated at Line 7 that led

c to have a corrupted value of 8, with both faults activated at Line 7 (b = 8, just

1 less than its fault-free value). In this scenario, the activation of the second

fault has reduced the deviation introduced by the first fault activated, thus the

second fault did not amplify the effects of the second fault, and thereby reducing

the likelihood of system failure. However, supposing at Line 5, the state of c

is corrupted with the value 13 rather than 8, this will result in b assuming a

corrupted value of 13 (4 more than its fault-free value) instead of 8. In this

second scenario, the second error have increased the effect of the first error, i.e.,

amplification has occurred, and the likelihood of a system failure is increased.

Another type of amplification effect that may potentially occur is when multiple

bit-flips are considered within a single location. Still considering the preceding

source code, maintaining the assumptions of each variable being 4-bits long

integers and in a given point of a fault-free execution of the program getA()

returns a value of 4 at Line 3 and getC() returns a value of 5 at Line 5, then

b = 9 at Line 7. Considering a at Line 3 to be the only target location, where

any number of faults can be injected, i.e., any number of bits can be flipped. In

a fault-free execution, a will be represented as 0100. If, the first bit from left is

flipped, a will become 1100 (12), when the error propagates to b at Line 7, b will

be 17 (8 more than its fault-free value). Supposing, three faults are introduced

into a in the first, second and third bit-positions from right; a then becomes

0011 (3), and when the error propagates to b at Line 7, b will be 8 (just −1 less

than its fault-free value). In this scenario, injecting multiple faults is less likely

to induce a system failure than the injecting single fault. On the hand, if a single

fault is introduced in the first bit-position from the right, (a = 0101 (5)), and

multiple fault are injected in the first, second and third bit-positions from the

4.3. SELECTING CHOICE BIT-POSITIONS 44

left, (a = 1010 (10)), then at Line 7, b = 10 (just 1 less than its fault-free value)

and b = 15 (6 more than its fault-free value), respectively. In this scenario, the

impact of multiple faults is more likely to induce a system failure. This implies

that in the case of multiple faults within a single location, amplification may or

may not occur when multiple bits are flipped as opposed to flipping a single bit

in the said location.

Having identified a set of good injection candidates, it is desirable to have ef-

ficient bit-positions to perturb. As it has been highlighted above, some bit-

positions may not be good injection points. Moreover, the fault space remains

exponentially large in terms of variable and bit-position combinations, 2n · 2m,

where n is the number of candidate variables and m the number of bits. Thus,

the final problem statement to be considered is:

4.3 Selecting Choice Bit-Positions

Does an efficient set fault injection point exists? If so, how can the

most suitable points for injecting multiple faults be identified? How

well do the proposed injection points uncover vulnerabilities? That

is, how high is their probability of inducing a system failure?

These problem statements have guided the work that is now presented in this

thesis, and hopefully, some light can be shed upon these problems. How these

problems maps to the main thesis contributions are briefly described in the next

section.

4.4. ROADMAP OF THESIS STATEMENT 45

Variables
(Exponential number
of variable selections)

Polynomial number
of variable locations

Complexity analysis
Chapter 5

Main thesis goal:
Minimise multiple

FI-bit-flips
whilst maintaining
injection efficiency

(Exponential size of fault space)

Where When What

Locations

Time

Bit-position
(Exponential number

of injection points)

Heuristics
Chapter 7

Tractable, 2-bits
Chapter 6

Tractable, bits patterns
Chapter 8

Blocks
Chapter 6

Polynomial
number

of variable
and bits

combinations

Figure 4.1: An overview of the thesis contributions.

4.4 Roadmap of Thesis Statement

This thesis seeks to address the problems associated with multiple soft-error

injections in general, and in particular it aims to minimise the cost of fault in-

jection campaigns while maximising injection efficiency1, in terms of uncovering

vulnerabilities. Thus, the main objective of the thesis is to discover a set of

bit-positions that exists within a set of variable locations which when flipped

will uncover as much vulnerabilities as if the entire bits set is flipped. The major

problems associated with multiple faults injections include determining what to

inject, where to inject, when to inject and how long to inject. What to inject,

1This thesis considers injection efficiency of a location as its ability to induce a failure
when a fault or an error is injected into it.

4.4. ROADMAP OF THESIS STATEMENT 46

where to inject and when to inject are the hurdles this thesis must overcome in

order to achieve its main goal. Figure 4.1 summaries the objective of the the-

sis, the problem statements associated with this goal, the chapters that address

these problems and the outcome of addressing the problems.

Knowing where to inject will help in determining suitable injection locations

that will potentially induce a high proportion of system failures. Finding these

candidate locations requires understanding how program variables interact with

one another and how these interactions ultimately effect the program execution.

These issues are elaborated as Problem Statements 4.2.1 and 4.2.2, addressing

these problems involves understanding a program’s control flow and data de-

pendencies. Understanding these relationship highlights that there exists an

intuition that will guide in choosing candidate variables. This, also highlights

the challenge of dealing with an exponential space, in the number of variables

to consider and in the number of possible variable combinations. To address

this challenge, first, the associated complexity of identifying candidate vari-

ables needs to be understood. Chapter 5 addresses some of the issues stated in

Problem Statements 4.1 and 4.2, by analysing and formalising the complexity

of finding suitable variable candidates. To fully tackle the exponential space

challenge, when dimension of injecting faults needs to be concomitantly investi-

gated. Thus, Chapter 6 investigated the effect of locations in terms of variable

placement hierarchy in both the control and execution flows of the program.

However, the aspect of when to inject the fault, in terms of relative time spent

in executing the program, i.e., faults being triggered by timing-triggers, is a com-

ponent not considered in this thesis. Leveraging, the information uncovered in

Chapters 5 and 6, the remainder issues stated in Problem Statements 4.1 and 4.2

are addressed in Chapter 7 by creating a framework, to first identify locations

that can potentially improve fault injection efficiency, and then to choose the

subset of candidate variables that would circumvent the issues stated in Prob-

lem Statements 4.2.1 and 4.2.2. The solutions, up to this point, have narrowed

4.4. ROADMAP OF THESIS STATEMENT 47

down the fault injection space by making the variable locations space polyno-

mial. However, the fault space remains exponentially large in terms of number

of variables and bits combinations, this brings about the issues stated in Prob-

lem Statement 4.3 and highlights the what dimension of injecting faults. To

address this challenge, this aspect of the combinatorial space of variables and

bit-position needs to be made tractable by identifying choice bit-positions that

can potentially uncover as much vulnerabilities as if the entire set of bit-positions

(in terms of variables-bits combinations) have been used. The need to identify

bit-position is implicitly highlighted in Problem Statement 4.2.2, and Chapter 6,

attempts to achieve bits space tractability by considering only double bits, al-

beit, bits and variables choice are not systematically determined. Chapter 8

addresses this issue by applying data mining algorithms to fault injection data

generated by targeting the identified candidate variables in Chapter 7. Thus,

achieving the objective of this thesis of minimising multiple bit-flips fault injec-

tions and maximising injection efficiency, in terms inducing as much failures as

using entire bits combinations.

CHAPTER 5

Towards Selecting Locations for Multiple Soft-Errors

Injection

As emphasised in earlier chapters, the main objective of the work presented

in this thesis is to find and evaluate new approaches for reducing exponential

size of multiple fault injection point space whilst selecting those points that will

induce a similar profile as in exhaustive fault injection with all points. Thus far,

importance on how soft-error manifests in a system including when and where

they appear and how long they remain in the system has been shown. However,

before the duration and occurrence-timing dimensions can be considered, it is

crucial to determine when, where and how they occur. It should be mentioned

that the duration and timing dimensions are not investigated in this thesis.

In Chapter 4, potential problems associated with multiple fault injections are

stated. One of these problems highlights the importance of the location dimen-

sion of multiple fault injections, in terms of selecting locations that would en-

hance the efficiency of injections whilst minimising the overall injections. How-

ever, very few works have addressed this complexity problem in a systematic

way [9, 103, 163]. For example, Winter et al. [163], to handle this large fault

space, target the variables at the input interface, and either randomly chooses

a small subset from the fault space (for fuzzing fault type) or flips only a small

number bits (for the bit-flip fault type), to keep the fault space polynomial

in size. Also to circumvent the exponential fault space for multiple bit-flips

fault type, randomly chooses a small subset of locations and then, either flips

48

CHAPTER 5. TOWARDS SELECTING LOCATIONS FOR MULTI-FI 49

only a small number of bits in one location [1, 2, 9, 103] or flips one bit in a

small number of locations [1, 2, 103]. Thus, current state-of- the-art techniques

in SWIFI-based software validation using MBFs either flip a small number of

bits (e.g., [9, 156, 163]) or use a small number of random values (for fuzzing

fault type) to assign to chosen variables [163] or target a small number of vari-

ables [156]. However, the efficiency of MBFs in uncovering vulnerabilities is

better than that of fuzzing1 [163], indicating the need for a systematic way to

determine the multiple-bits combinations to flip during fault injection. The re-

search in [163] focuses of injecting software bugs and the works in [1, 2, 9, 103]

focus of injecting soft-errors. Some of work presented in this thesis is based on

the work in [1, 2].

This generally means that when multiple fault injections is considered, at one

extreme, similar to the single fault model, a fault is injected only in one location

and let it effect propagate through the program execution. And at the other

extreme, a fault is injected in each location, which may likely cancel earlier

injections and is also computationally intractable. This means, there is a need

to inject fault in a subset of locations, as injection in every single location is

infeasible and injection in a single location may not produce accurate results.

However, some intuition may need to be considered when selecting candidate

injection locations as injecting in some location may also lead to the undesirable

occurrence of a later injection cancelling the effect of an earlier injection. This

occurs if, for example, a fault f1 leads to a corrupted value in a location, and by

activation of a different fault f2 that particular location is never referenced, the

effect of f1’s activation never becomes visible although it would have if f2 had

not been activated. Or if, for instance, a fault f1 leads to a corrupted value in

a location l1, and by activation of a different fault f2 resets the corrupted value

in l1 (See Chapter 4).

1Fuzzing, also fuzz testing, is a software testing technique used to discover coding er-
rors and security loopholes in software, operating systems or networks by inputting massive
amounts of random data, called fuzz, to the system in an attempt to make it crash.

5.1. COMPUTATIONAL COMPLEXITY THEORY CONCEPTS 50

This necessitates selecting meaningful candidate variables for multiple faults in-

jections. Following, to systematically select such efficient variables, the following

problems have to be addressed: (i) choosing the locations in which faults can be

injected and (ii) choosing the variables in which faults will be injected. In order

to do so, it is necessary to understand the complexity associated with achieving

these task. And this complexity can be understood by applying computational

complexity theory concepts to analyse the complexity.

5.1 Basic concepts of Computational Complex-

ity Theory

Computational complexity theory is a subfield of theoretical computer science

that is concerned with the study of the intrinsic complexity of computational

tasks. Its most important goals include determining the complexity of any well-

defined task and obtaining an understanding of the relations between various

computational concepts, i.e., it focuses on classifying computational problems

according to their inherent difficulty, and relating those classes to each other.

A computational problem is a problem that may be solved by systematic appli-

cation of mathematical steps, such as an algorithm or a heuristic. A problem

is regarded as inherently difficult if its solution requires significant resources in

terms of whatever the algorithm used, including time and space [147]. Consider

the following instances: (i) Given two natural numbers n and m, are they rela-

tively prime, i.e., do n and m posses greatest common divisor 1?, (ii) Given a

propositional formula Φ, does it have a satisfying assignment? And (iii) Given

a chess board of size n × n, does white have a winning strategy if play is

started from a given initial position? These problems are equally difficult from

the perspective of classical computability theory in the sense that they are all

effectively decidable. Yet they still seem to differ significantly in practical diffi-

culty. For having been supplied with a pair of numbers m > n > 0, it is possible

5.1. COMPUTATIONAL COMPLEXITY THEORY CONCEPTS 51

to determine their relative primality by a method which requires a number of

steps proportional to log(n), e.g., Euclid’s algorithm. On the other hand, all

known methods for solving the latter two problems necesitate a ‘brute force’

search through a large space of cases which increase at least exponentially in

the size of the problem instance.

Complexity theory attempts to emphasise such distinctions by proposing a for-

mal criterion for what it means for a mathematical problem to be feasibly de-

cidable, i.e., that it can be solved by a conventional Turing machine in a number

of steps which is proportional to a polynomial function of the size of its input.

The class of problems with this property is known as P, polynomial time, and

includes the first of the three problems described above. P can be formally

shown to be distinct from certain other classes such as EXP, exponential time,

which includes the third problem from above. The second problem from above

belongs to a complexity class known as NP, non-deterministic polynomial time,

consisting of those problems which can be correctly decided by some compu-

tation of a non-deterministic Turing machine in a number of steps which is a

polynomial function of the size of its input. A famous conjecture, often regarded

as the most fundamental in all of theoretical computer science, states that P

is also properly contained in NP, i.e., P ⊆ NP . Many complexity classes are

defined using the concept of a reducibility and completeness.

5.1.1 Reducibility, NP-hardness and NP-completeness

A reduction is the mapping of one problem into another problem, i.e., a trans-

formation of one problem into another problem. It captures the informal notion

of a problem being at least as difficult as another problem. For example, if a

problem X can be solved using an algorithm for solving Y , that denotes that

solving Y is at least as difficult as solving X, and that X is reducible to Y .

There are many different types of reductions, based on the method of reduc-

5.1. COMPUTATIONAL COMPLEXITY THEORY CONCEPTS 52

tion, such as Cook reductions [25], Karp reductions [75], and the bound on the

complexity of reductions, such as polynomial-time reductions or log-space re-

ductions. The most common reduction in usage is polynomial-time reduction,

i.e., the reduction process takes polynomial time. For instance, the problem of

squaring an integer can be reduced to the problem of multiplying two integers.

This means an algorithm for multiplying two integers can be used to square an

integer. Indeed, this can be done by giving the same input to both inputs of

the multiplication algorithm. Thus, it can be seen that squaring is not harder

than multiplication, since squaring is reducible to multiplication. This moti-

vates the concept of NP-hardness, i.e the concept of a problem being hard for a

complexity class. A problem X is understood to be hard for a complexity class

C, if every problem in C, is reducible to X. This means that an algorithm for

solving X can be used to solve every problem in C and solving X is at least

as difficult as solving any problem in C. The set of problems that are hard for

NP is the set of NP-hard problems, i.e., a problem is NP-hard if it is a member

of NP and if an algorithm for solving it can be translated into one for solving

a known NP-hard problem. If a problem Y is a member of a complexity class

C and hard for C, i.e., all problems in C are reducible to Y , then Y is said to

be complete for C. The completeness of Y for C may thus be understood as

demonstrating that Y is representative of the most difficult problems in C. The

set of problems that are complete for NP is the set of NP-complete problems,

i.e., a problem is NP-complete, if it is a member of NP and is it also in NP-hard.

This chapter, focuses on capturing the complexity of (i) choosing the locations in

which faults can be injected and (ii) choosing the variables in which faults will be

injected. This chapter formalises each problem as an optimisation problem, and

shows them to be NP-complete. Specifically, the problem of injection selection

is formalised and its intractability is shown by proving the The minimum vertex

cover (MVC) problem is reducible to it (See Section 5.3.1). A vertex cover of

a graph G can simply be thought of as a set S of vertices of G such that every

5.2. SELECTING LOCATIONS FOR MULITPLE FAULT INJECTIONS 53

edge of G is incident to at least one member of S, i.e., each edge of G has at

least one member of S as an endpoint. The vertex set of a graph is therefore

always a vertex cover. The smallest possible vertex cover for a given graph G

is known as an MVS, and its size is called the vertex cover number, denoted

τ(G) [121]. Finding an MVC of a general graph is a classical NP-complete

decision problem in computational complexity theory [75]. Formalised also, is

the problem of target variables selection and its complexity is proven by showing

that the minimum dominating set (MDS) is reducible to it (See Section 5.4.1).

For a graph G, the dominating set of G is a subset S of the vertex set V (G), such

that every vertex in V that is in S is adjacent to at least one member of S. The

domination number γ(G) is the number of vertices in a smallest dominating

set for G. The MDS problem concerns finding a minimum such S and it is

a known NP-complete problem [48] . The dominating set problem concerns

testing whether γ(G) ≤ K for a given graph G and input K; it is a classical

NP-complete decision problem in computational complexity theory [49].

It should be mentioned that this chapter does not consider the number of cor-

ruptions that can occur within a given variable or location. However, this aspect

of the research will be addressed in later chapters.

5.2 Selecting Locations for Mulitple Fault Injec-

tions

SWIFI is an experimental technique that has been extensively used to evaluate

the robustness and dependability of software systems, e.g., [58, 73, 156, 163].

Software systems that have been experimented on range from safety-critical

embedded systems, e.g., [58, 159] to non-critical operating system’s compo-

nents [40, 137]. Most of them assume a single bit upset to emulate hardware

faults that occur. With single bit upsets, the size of the fault space varies

5.3. INJECTION LOCATION SELECTION (ILS) 54

linearly with the word or register size, making exhaustive bit-flips possible,

e.g., [58, 67, 91].

However, the single fault assumption rules out multiple faults and their possible

interactions during execution. It has been shown that multiple fault injections

can be very effective in detecting software vulnerabilities [163]. Furthermore,

research has found that many hardware faults manifest as multiple bit-flips in

the program, and hence traditional single bit-flip injection may not be sufficient

to model these faults [19, 97]. The impact of overlooking multiple fault injec-

tions is wide ranging: the software may appear to be more dependable than it

is [163] and hence, the error handling mechanisms designed for the software may

only have limited coverage or efficiency. In spite of these important problem,

few works are addressing mulitple fault injections because of concomitant com-

putational cost associated with it. To make multiple fault injection tractable it

becomes neccessary to identify a minimal set of locations that can be corrupted

such that wider system failure occurs. This neccesitates understanding the com-

plexity associated with selecting efficient injection points. The remainder of this

chapter, shows the complexity analysis of selecting injection points for multiple

fault injections.

5.3 Injection Location Selection (ILS)

For multiple fault injections to work, first, a set of potential locations for injec-

tions need to identified. However, selecting such a set of potential locations at

which to inject faults is very difficult. This chapter formalises the problem, anal-

yses its complexity and shows it to be NP-complete by mapping the ILS problem

into minimum vertex cover problem. The following section (Section 5.3.1) shows

the formalisation and the proofs.

5.3. INJECTION LOCATION SELECTION (ILS) 55

5.3.1 Complexity Analysis of ILS

Given a program P as its CFG2 GP = 〈V, v0, A,W,Φ〉 of P , where Φ represents

the labelling (or tagging) of locations as vulnerable or not. The amplification

factor is denoted by A. The amplification factor captures the rate at which

faults are injected in a given run. For a high amplification factor, then the rate

is high, i.e., the number of blocks between successive fault injection locations

is very small. On the other hand, for a low amplification factor, the number of

blocks is high. For example, for the highest amplification factor, a fault can be

injected in every single block. On the other hand, for the smallest amplification

factor, a fault is injected in a single block (as in traditional fault injection).

Thus, it is considered that the length of a path between two successive potential

injection locations as a measure of amplification, with the shorter the length,

the higher the amplification. Thus, for multiple fault injections, the objective

is to select the smallest number of potential locations at which faults can be

injected that satisfies A.

Now, depending on the inputs to the program P , execution may follow different

paths in P . Since it is difficult to know which execution path the system will

follow, it is imperative then that the set of potential locations spans every

possible execution path of P , i.e., every possible execution path of P has several

selected potential locations.

From a graph perspective, the injection location selection problem is as follows:

select a set V l ⊆ V such that, for any two vertices u, u′ ∈ V l, the length of the

longest path between u and u′ that does not go through a distinct node u′′ ∈ V l

does not exceed A. The set V l captures the set of possible injection locations.

Thus, A has to be set such that A is at least equal to twice the longest distance

between two successive potential locations as it may be possible that one such

location is overlooked when choosing target variables.

2CFG, here means an extended-CFG and henceforth CFG is used interchangeably with
extended-CFG unless specified otherwise.

5.3. INJECTION LOCATION SELECTION (ILS) 56

Formally, the problem is defined as follows:

Definition 5.1 (Injection Location Selection (ILS)). Given a CFG GP =

〈UP , u0, A,W,Φ〉 of program P , an amplification factor A, and a positive in-

teger KP ≤ |V |, then does there exist U l ⊆ UP such that:

• |U l| ≤ KP

• v0 ∈ U l

• ∀u ∈ U l : Φ(u) = 1

• ∀u, u′ ∈ U l :

∀p ∈ ρu,u
′

G :
U l ∩ p̂ = ∅ :

Length(p) ≤ A

Lemma 5.1.1 (ILS). ILS is in NP.

Proof. To prove this, the correctness of the solution set U l is required to be

verified in polynomial-time. So, given an instance of ILS and a solution set U l,

correctness of U l is verified as follows: The first three conditions can be trivially

verified.

For the fourth condition, it is needed to verify that, from any vertex u ∈ U l,

all paths originating from u will contain another vertex u′ ∈ U l with distance

at most A away. This is done follows: First, a node u ∈ U l is selected, and a

spanning tree of depth A rooted at u constructed, by doing a depth-first traversal

on G. This tree is denoted by U t. Now, given graph U t, it is required to verify

whether for every path p originating from u and ending at a leaf has at least

one vertex u′ ∈ U l. If the answer is negative, then U l is not a solution for ILS.

On there other hand, if the answer is true for U , then the process is repeated

for all other vertices u ∈ U l. The complexity of this verification procedure is

O(|U |2).

Lemma 5.1.2 (NP-hardness). ILS is NP-hard.

5.3. INJECTION LOCATION SELECTION (ILS) 57

Proof. To prove this, a known NP-hard problem, the MVC problem [48] is

reduced to ILS. First, the MVC problem is defined:

MVC: Given a graph G = (V,E) and a positive integer K, find a set V ′ ⊆ V

such that:

• |V ′| ≤ K

• ∀(u, v) ∈ E : u ∈ V ′ ∨ v ∈ V ′

With this definition of MVC, the work now develops the mapping between ILS

and MVC.

Mapping

It is assumed that graph for MVC has a vertex with in-degree 0, denoted by v0,

which do not change the complexity of MVC.

• UP = V

• u0 = v0

• A = E

• W (a) = 1,∀a ∈ A

• A = 2

• KP = K

• Φ(u) = 1,∀u ∈ U

Reduction

It is now imperative to show that a solution to MVC exists if and only if a

solution of ILS exists.

(⇒) Let V ′ ⊆ V be a solution to MVC with graph G = (V,E). Let U l

be a solution to the instance of ILS as defined under the mapping, for

graph G′ = (UP , u0, A,W,Φ), with amplification factor A = 2, such that

5.3. INJECTION LOCATION SELECTION (ILS) 58

U l = V ′. It has been shown that this solution U l is valid for ILS. First,

since V ′ is a solution to MVC and U l = V ′, then |U l| ≤ K. Secondly,

since Φ(u) = 1,∀u ∈ U , then ∀v ∈ U l : Φ(v) = 1. Finally, for every edge

(m,n) ∈ E ⇒ m ∈ V ′ ∨ n ∈ V ′. For the case where only one disjunct

is satisfied, i.e., (m ∈ V ′), then the maximum distance to another vertex

u ∈ V ′ is at most 2, which is equal to the amplification factor A. In the

case of both disjuncts being satisfied, then the distance between 2 vertices

in V ′ is 1, which is less than A. Hence, the maximum distance between

any pair of vertices in V ′ is at most 2, thus not violating A. Since U l = V ′,

V ′ is a solution to ILS.

(⇐) Let U l ⊆ UP be a solution to the instance of ILS defined under the previous

mapping for graph G′ = (UP , u0, A,W,Φ) with amplification factor A = 2.

Now, it is assumed a graph G = (V,E) for MVC, with solution set V ′ ⊆ V .

It has been shown that V ′ is a solution to MVC, when V ′ = U l. Given

that U l is a solution to ILS, (|U l| ≤ KP) ∧ V ′ = U l ⇒ |V ′| ≤ KP .

Secondly, since the maximum distance between any pair of vertices (m,n)

on the same path in G′ that are in V ′ is at most 2, then it means that

either (m,n) ∈ E or ∃k : (m, k) ∈ E ∧ (k, n) ∈ E. Since V ′ = U l, U l is a

solution to ILS

Theorem 5.1.1 (NP-completeness). ILS is NP-complete.

Proof. The proof follows trivially from Lemmas 5.1.1 and 5.1.2.

It has thus been shown that the selection of fault injection locations is NP-

complete. To circumvent this high complexity, a heuristic that select a set of

potential locations is proposed and studied in later chapter of this thesis.

5.4. TARGET VARIABLE SELECTION (TVS) 59

5.4 Target Variable Selection (TVS)

Once the set of potential locations has been identified, it is then necessary

to determine the set of variables into which faults will be actually injected.

Specifically, there may be locations at which no fault will be injected and other

locations where several faults may be injected.

The challenge in selecting target variables set from the fact that when a variable

u is overlooked, then it means either that a variable v on which it depends has

been selected (and selecting u will override the effect of propagating error from

v to u) or a variable w that depends on v has been selected. Thus, the decision

of selecting a variable is not a local one. This problem then is very similar to the

problem of generating dominating sets. Thus, this chapter proceeds to prove

that the problem of target variables selection (TVS) is NP-complete.

5.4.1 Complexity Analysis of TVS

The problem of target variables selection is formally defined as an optimisation

problem.

Definition 5.2 (Target Variables Selection (TVS)). Given a graph GDP =

(U,A,U0,W,L), where U0 ⊆ U , a positive integer N , a positive integer A,

does there exist a set UV ⊆ U such that:

• |UV | ≤ N

• ∀u, u′ ∈ UV :

∀p ∈ ρu,u
′

G :
UV ∩ p̂ = ∅ :

length(p) ≤ A

It should be observed here that the amplification factor is carried over from

the injection location selection problem (ILS). Specifically, given that no two

5.4. TARGET VARIABLE SELECTION (TVS) 60

successive potential locations are no more than distance A apart, the selection

of target variables should not violate this requirement.

Lemma 5.2.1 (NP membership). TVS is in NP.

Proof. To prove this, the correctness of the set Uv is shown in polynomial-

time. So, given an instance of TVS as described and a solution set Uv, the

verification is performed as follows: The first condition is trivially verified. For

the second condition, it is required to verify that, from any vertex u ∈ Uv, all

paths originating from u will contain another vertex u′ ∈ Uv with distance at

most A away. This is done as follows: It first select a node u ∈ Uv, and construct

a spanning tree of depth A, rooted at u, by doing a depth-first traversal on G.

This tree is denoted by U t. Now, given graph U t , it is needed to verify whether

for every path p originating from u and ending at a leaf has at least one vertex

u′ ∈ Uv. If the answer is negative, then Uv is not a solution for TVS. On the

other hand, if the answer is true for U , then the process is repeated for all other

vertices u ∈ Uv. The complexity of this verification procedure is O(|U |2).

Lemma 5.2.2 (NP-hardness). TVS is NP-hard.

Proof. To prove this, MDS problem [48] is reduced to the TVS problem. Before

defining the MDS problem, it is denoted by U1, the set of vertices adjacent to

a node u ∈ V . Then, the MDS problem is defined as follows:

MDS: Given a graph G = (V,E), a positive integer K, find a set V ′ ⊆ V such

that

• |V ′| ≤ K

• ∀u 6∈ V ′ : ∃v ∈ U1 : v ∈ V ′

With this definition of MDS, now the mapping between MDS and TVS is de-

veloped.

5.4. TARGET VARIABLE SELECTION (TVS) 61

Mapping

It is assume that the graph for MDS has a set of vertices with in-degree 0,

denoted by V0, which does not affect the complexity of MDS.

• U = V

• U0 = V 0

• A = E

• N = K

• W (a) = 1,∀a ∈ A

• A = 3.

Reduction

It now has to be to shown that a solution to MDS exists if and only if a solution

of TVS exists.

(⇒) Let V ′ ⊆ V be a solution to MDS with graph G = (V,E). Let Uv be a

solution to the instance of TVS as defined under the mapping, for graph

G′ = (U,U0, A,W) with amplification factor A = 3, such that Uv = V ′. It

is shown that this solution Uv is valid for TVS. First, since V ′ is a solution

to MDS and Uv = V ′, then |Uv| ≤ K. Secondly, for ∀n 6∈ V ′ : ∃m ∈ N1 :

m ∈ V ′. Now, assume there is a edge (p, q) ∈ A such that p, q 6∈ V ′. Then,

there are two extreme cases: (i) if ∃m ∈ P 1 : m 6= q ∧m 6∈ Q1 : m ∈ V ′

and ∃n ∈ Q1 : n 6= p ∧ n 6∈ P 1 : n ∈ V ′, then the distance between

nodes m and n is at most 3, satisfying A, and (ii) ∃m ∈ P 1 : m 6= q and

∃n ∈ Q1 : n 6= p, then if m = n, then the distance is 0, which is less than

A. Hence, the maximum distance between any pair of vertices in V ′ is at

most 3, thus not violating A. Since U l = V ′, V ′ is a solution to TVS.

(⇐) Let Uv be a solution to the instance of TVS as defined under the mapping,

for graph G′ = (U,U0, A,W) with amplification factor A = 3. Let V ′ ⊆ V

be a solution to MDS with graph G = (V,E) such that V ′ = Uv. Now,

5.5. SUMMARY AND CONCLUSIONS 62

since Uv is a solution for the defined instance of TVS and |Uv| ≤ k, then

|V ′| ≤ k. Further, since no node n ∈ V ′ is more than distance = 3 from

some other node m ∈ V ′, then it means that there is at most two nodes

between nodes m and n that are not in V ′, i.e., ∀p 6∈ V ′ : ∃q ∈ P 1 : q ∈ V ′.

Since V ′ = Uv, then Uv is a solution to MDS.

Theorem 5.2.1 (NP-completeness). TVS is NP-complete.

Proof. The proof follows trivially from Lemmas 5.2.1 and 5.2.2.

To circumvent the complexity of target variables selection, a heuristic is devel-

oped and investigated later in this thesis.

5.5 Summary and Conclusions

This chapter investigates the complexity associated with selecting efficient lo-

cations for injecting multiple soft-errors. To understand the problem associated

with selecting the efficient injection locations, the problem is split into two:

(i) injection location selection and (ii) target variables selection at the poten-

tial locations. Following, this thesis formalises each problem and proved both

problems to be NP-complete using graph theory concepts.

To prove the NP-completeness of the injection location selection, first, the prob-

lem is formally defined as a graph optimisation problem, ILS using the CFG for

programs. Second, the correctness of the ILS problem is verified in polynomial-

time with complexity of O(|U |2). Thus proving ILS to be in NP. Third, MVC

problem is mapped and reduced to ILS problem, thereby proving ILS is NP-

hard. Thus proving the ILS problem to be NP-complete.

5.5. SUMMARY AND CONCLUSIONS 63

Solving the problem of target variables selection follows from solving the ILS

problem. Thus, assuming that a graph exists for potential injection locations,

the problem of selecting target variables is formally defined as an optimisation

problem, TVS problem. The complexity of the verifying the correctness of the

TVS problem has been proved to be O(|U |2), hence TVS is proven to be in NP.

Next, the NP-hardness of the TVS problem is proved, by mapping and reducing

the MDS problem to TVS problem. Thus, showing that the TVS problem is

in NP and is NP-hard, and in turn proves the NP-completeness of the TVS

problem.

Following, this implies that exponential fault space for multiple soft-error injec-

tions can be made efficiently tractable in polynomial time. In subsequent chap-

ters of this thesis, three approaches were developed to address the complexity

formalised in this chapter: (i) In Chapter 6 the multiple soft-error injections

fault space is made tractable by injecting only a maximum of two faults, the

viability of the DBU faults for the LnCm fault model was investigated, (ii) In

Chapter 7, heuristics to solve the ILS problem and TVS problem for LnCm

fault model is developed, and (iii) In Chapter 8, the problem specification is

weakened using data mining approach to further minimise the fault injection

points.

CHAPTER 6

Double Single Bit-Flips (L1C2) Fault Model

The suppositions of the kind of faults a system is prone to and the way these

assumed faults may influence the system is key to the design of fault tolerance

mechanisms for the system. Fault tolerance mechanisms are evaluated with

respect to the assumptions their design was based on. Should any assumptions

on which a supposedly fault tolerant system design is based prove to be false, the

system may likely fail to achieve its fault tolerance objectives. In the previous

chapter, complexity analysis for selecting fault injection locations for multiple

faults was done and it demonstrated that the fault space for multiple fault

injections may be tractable. Thus, this chapter attempts to ascertain whether

it is worth considering multiple faults for fault tolerance validation, i.e., to

determine if the failure profile induced by the multiple fault model deviates

from the failure profile single faults induce. To this end, this chapter proposes a

double fault model for soft-errors that can be used for the design and validation

of fault tolerance for embedded software systems. As mentioned, the main goal

of this chapter is to consider whether the LnCm fault model may potentially be

a viable fault model to be considered for software dependability validation. As

such, the double faults error is considered because it is a tractable version of

the LnCm fault model, and has been mentioned double faults error can occur

either as double bit-flips in a single location, L1C2 or as two separate single

bit-flips in two different locations, L2C1, (see Figure 6). Research has started

looking at the former version of the double faults, thus the work presented in

this chapter focused on the latter version in order to determine whether both

64

CHAPTER 6. DOUBLE SINGLE BIT-FLIPS (L1C2) FAULT MODEL 65

versions of double faults are the same (in terms of the failure profile they induce).

Moreover, to keep the injection location space tractable, the chapter focuses

on 3-dimension location space, i.e., early block, central block and late block.

In order to demonstrate the viability of this fault model for fault tolerance

validation, the fault model is introduced into seven embedded modules and

analysed for error resilience with respect to failure mode. Analysis of the results

presented indicates that the failure profile induced by the new fault model differs

from the profile induced by existing fault models, indicating that the proposed

fault model in this chapter is relevant during software dependability validation.

Thus, the next chapter develops heuristics to address the problems associated

with selecting efficient locations for multiple soft-errors injections presented in

Chapter 5, by leveraging the information presented in this chapter.

x

0 0 1 1

y

1 0 0 1

z	=	x	+	y

1 1 0 0

Location	1 Location	2

(a) Fault-Free

x

0 1 1 1

y

0 0 0 1

z	=	x	+	y

1 0 0

Location	1 Location	2

(b) L2C1 injects double faults in two loca-
tions: flip only 1-bit in location 1 and only
1-bit in location 2.

x

0 1 0 1

y

1 0 0 1

z	=	x	+	y

1 1 0

Location	1 Location	2
x

0 0 1 1

y

0 0 1 1

z	=	x	+	y

1 0

Location	1 Location	2

(c) L1C2 injects double faults in one location only: either flip 2-bits in location 1 or flip
2-bits in location 2.

Figure 6.1: An overview of double faults.

6.1. EVALUATION OF FAULT MODELS AND FAILURE MODES 66

6.1 Evaluation of Fault Models and Failure -

Modes

As previously mentioned, fault injection is a widely used technique in depend-

ability evaluation. Recent research have shown that multiple fault injections

can be very effective in detecting software vulnerabilities [9, 163]. Other works

have investigated impact of device-level fault injections that manifest as single

bit-upsets in registers and main memory [30, 32, 139].

Current techniques in SWIFI-based FI for multiple bit-flips make use of sim-

plifying decisions to keep the size of the fault space tractable. Recently, the

effects of MBUs on SRAMs and DRAMs have been studied. In [78], the authors

investigated DRAM disturbance errors that manifests as multiple bit-upsets in

memory. On the other hand, the authors of [141] investigated the geometric ef-

fects of multiple bit-upsets injected into DRAMs. The main difference between

the study in this thesis and these studies is the level of abstraction focused on.

While these studies focus on fault effect on the circuit level, the work presented

here is concerned with faults impacting the application level. The fault model

under investigation in [141] is MBUs in multiple cells within the same memory

location while that under investigation in [78] is MBUs in different memory lo-

cations. In spite of the fundamental differences between these works [78, 141]

and the work presented here, they all showed higher rate of No Impact under

the single bit-flip model. In addition, under the double bit-flip model, higher

crash failure rate is observed. However, in these works [78, 141], it is reported

that the proportion of SDCs is higher under the double bit-flip model, this is

contrary to the findings of the work presented in this chapter. The work pre-

sented here reported a lower proportion of SDCs under the variant of double

bit-flip model studied here than when compared with the single bit-flip model.

Another difference between these works and the work presented here is, while

in [141] and [78] the target location is the memory, the research presented here

6.2. CASE STUDIES 67

target the ISA registers.

Similar to the work presented in this chapter, Ayatolahi et al. [9] mimicked bit-

flips in registers of a real hardware platform. In addition, they investigated the

impact of L1C1 and L1C2 on program execution. The work presented here differs

from that presented in [9] mainly in the DBU fault model assumed. The DBU

fault model in [9] selects a single location and flips two bits in that location,

while in this work, in addition to the L1C1 model assumed in [9], the L2C1

fault model that chooses two locations and flips one bit in each location is also

assumed. Another difference is: in [9], faults are also injected in memory words

and the bit-error sensitivity for different target locations is investigated, in order

to provide an insight regarding the results. Both the work presented here and

that presented in [9] reported a higher level of benign (No Impact) executions

for SBUs and a higher proportion of crash failures for DBUs.

6.2 Case Studies

As an assessment on how fault models impact on program executions, a series

of experiments is conducted, using soft-error injections on seven embedded soft-

ware systems where single bit and double bits errors were injected into CPU

registers of the target systems. The aim of the study is to investigate how failure

mode varies for different fault models. The first set of evaluations focused on

how error resilience and error sensitivity varies for the different fault models,

and the second set of evaluations focused how error error resilience and error

sensitivity varies for different target locations. Error sensitivity is taken to be

the probability that a fault causes software system failure as defined in Chap-

ter 3 and error resilience taken to be the probability that a fault does not result

in a program failure defined under the failure scheme in Chapter 3.4.3 .

The target programs used and fault models assumed are described in Chapter 3

6.2. CASE STUDIES 68

(See Section 3.2). This section describes the parameters adopted for the target

programs to use them with the fault injection tool described in Chapter 3 (See

Section 3.4.2.

6.2.1 System Instrumentation

The LLFI tool was used for all fault injection experiments conducted in this the-

sis. The fault injection experiments reported in this chapter are undertaken on

seven programs: derivatives, step, cubic, Isqrt, Corners, Step and Smoothing.

To perform fault injection with LLFI, the source code of the software system is

first compiled into a single IR byte-code. Twelve variables were instrumented in

each target program. A golden run was created for each program. Three fault

models, L1C1, L1C2 and L2C1 (See Chapter 3.2), were adopted for the fault

injections experiments in this chapter. In line with the fault models assumed in

this chapter, bit-flip faults were injected into bit-positions for all instrumented

program variables. Nine different input sets are selected for each target pro-

gram. The combination of input and target program is called an execution flow.

This means, for each target program under each fault model experiments were

conducted for nine execution flows. The target systems and their input data

are described in Section 3.3.

For the L1C1 model, each fault injection input execution flow entailed a single

bit-flip in a program variable at one bit-position, i.e., no multiple fault are in-

troduced in any single input execution flow. For the L1C2 model, each fault

injection input execution flow entailed a double bit-flip in a program variable

at two bit-positions, i.e., not more than two faults are introduced in any single

program execution, and only a single variable can be targeted. For the L2C1

model, each fault injection input execution flow entailed single bit-flip in two

program variables at one bit-position each, i.e., exactly two variables are tar-

geted in any single input execution flow, and no multiple faults can be inserted

6.2. CASE STUDIES 69

in any variable.

6.2.2 Experimental Procedure

Before commencing the fault injection experiments, the CFG of IR byte-code of

the program was partitioned into three parts, namely: (i) early, (ii) central and

(iii) late. These partitions are defined as block locations (or blocks for short).

From each block location, four target locations, were choosen at random, i.e.,

target locations are partitioned and selected according to their placement in

the IR byte-code of the program, and also according to their execution location

in the program. A target location (or location for short) is defined as a given

register used by the program. When an L1C1 error is injected, a single location

is selected. On the other hand, two locations are selected for L2C1 errors. A

fault injection experiment is the injection of an error under the assumed fault

model in a given target location or pair of locations. A fault injection campaign

for a fault model is a set of experiments for a given input and program, i.e., a

set of experiments for an execution flow.

Once a location (or pairs of locations) have been selected, bit-flip errors were

then injected exhaustively in the locations to cover all possible combination.

Errors are only injected in target location(s) immediately before the target lo-

cation is read to avoid unnecessary overwrites. For each selected location, fault

is injected only once during the execution of the program. For L1C1 and L1C2

errors, there are twelve target locations for each campaign and for L2C1 errors

there are
(
x
r

)
target locations pairs, x = 12 being the number of all chosen target

locations and r = 2, the number of locations to target in any given experiment.

Under the L1C1 fault model, n experiments were conducted in each target loca-

tion, n being the length of the register. A total 48, 384 L1C1s were introduced

in the various programs. For L1C2 errors,
(
n
r

)
experiments were performed in

each location, n being the size of the target location and r = 2 (the number of

6.2. CASE STUDIES 70

bits to flip in the said location). A total of 1, 524, 096 L1C2 errors were injected

across the different target programs. Under the L2C1 model, for each location

pair, n ×m experiments were undertaken, m,n being the length of the target

locations. Overall, a total of 17, 031, 168 L2C1 errors were injected into the

target programs.

Table 6.1: Register classificaiton scheme

Register Operation
Instruction

Type
Data
Type

ADD/FADD Returns the sum of its two operands. Binary
Control
or Other

SUB/FSUB Returns the difference of its two operands. Binary
Control
or Other

MUL/FMUL Returns the product of its two operands. Binary
Control
or Other

DIV/FDIV Returns the quotient of its two operands. Binary
Control
or Other

SHL
Shifts a value to the left a specified number
of its, and returns the shifted value.

Binary Other

BITCAST
Converts a value to a second type
without changing any bits.
It returns the converted value.

Casting Other

SITOFP
Converts a signed integer value
to a floating point value.
It returns the converted value.

Casting Other

ZEXT

Zero extends its operand to a larger size,
i.e., fills the higher order bits of the
value with zero until it reaches the size
of the destination type.

Casting Other

LOAD
Specifies the memory address form
which to load. The location of the memory
pointed is loaded.

MAAC
Control
or Other

ALLOCA
Allocates memory on the stack frame
of the currently executing function
and returns a pointer.

MAAC Pointer

GETELEM

Gets the address of a subelement
of an aggregate data structure.
It performs address calculations
only and does not access memory.
It returns a pointer to an element.

MAAC Pointer

Further, target locations were categorised based on register instruction type

and the type of data held in the register. Table 6.1 depicts register classification

scheme.

6.2. CASE STUDIES 71

Register Instruction Type Categorisation

A target location is classified based on the type of operation it performs (see

Table 6.1) as follows:

• Binary: If it performs binary or bitwise binary operations in a program,

i.e., it performs computaions, such as adding, on two operands and returns

the results of the operation.

• Casting: If it performs bit conversions operations, such as casting, con-

verting value of one data type to another data type.

• Memory Access and Address Computation (MAAC): If it loads

data from memory, allocates memory on stack or gets address of a subele-

ment of an aggregate data structure.

For L2C1 errors, target location pairs are classified as above only if both loca-

tions belong to the same category, and locations of mixed categories are classified

as follows:

• Binary and Casting: If one location is Binary and the second is Casting.

• Binary and MAAC: If one target location is Binary and the other is

MAAC.

• Casting and MAAC: If the target location is made of Casting and

MAAC pair.

Register Data Type Categorisation

A target location is classified based on the type of data it holds (see Table 6.1)

as follows:

6.3. IMPACT OF FAULT MODELS 72

• Pointer: If it holds data that affects memory allocation or address com-

putation. Pointer data include pointer, address computations for array

and struct data items

• Control: If it holds data that would affect control flow. Control data

items are usually loop termination condition and branching condition.

• Other: If it holds general value data that are neither pointer nor control.

The data under this category are usually general value data such as signed

and unsigned integer numbers etc.

For L2C1 errors, similar to instruction type categorisation, target location pairs

are classified as any of the above only if both locations belong to the same

category, and locations of mixed categories are classified as follows:

• Pointer and Control: If one target location holds Pointer data and the

second holds Control data.

• Pointer and Other: If one location is Pointer and the other is Control.

• Control and Other: If the target location is made of Pointer and Control

pair.

6.3 Impact of Fault Models

Three types of errors are injected into seven target programs. It should be

mentioned that all target programs are without fault tolerance mechanisms.

Further, a system without any specific fault tolerance implemented often ex-

hibits a certain level of error tolerance (robustness) due to the fact that errors

can be overwritten or that the system has a built-in resiliency against errors.

Hence, experiments resulting as No impact may be due to this internal robust-

ness of the program. The investigation shows that the different fault models do

induce different failure profiles, it reveals that:

6.3. IMPACT OF FAULT MODELS 73

0.
00
%

0.
00
%

5.
87
%

6.
68
%

35
.6
7%

43
.2
4%

32
.9
7%

27
.8
3% 31
.0
7%

44
.5
8% 47

.9
6%

8.
53
%

0.
00
%

10
.0
5%

0.
00
%

0.
00
%

8.
45
%

9.
33
%

16
.4
7%

0.
00
%

0.
01
%

0.
00
%

0.
05
%

0.
34
%

0.
34
%

0.
08
%

0.
39
%

17
.1
9%

72
.1
7%

68
.8
8%

40
.7
7%

35
.6
8% 39

.2
5%

56
.3
6%

39
.7
8%

DERIVATIVES STEP CUBIC ISQRT CORNERS EDGES SMOOTHING

No	Impact Exception SDC Time	Out Crash

(a) L1C1

Figure 6.2: Error sensitivity distribution of the various fault models for each
programs.

1. Double faults uncover more failures than the single faults,

2. L1C2 faults induce more SDCs than L2C1,

3. L2C1 faults cause more severe failures than L1C2.

Thus, motivating the need to adopt various fault models in software depend-

ability validation and to extend these specific cases of the LnCm fault model.

The remainder of this section presents and further discuses the results of impact

of the different fault models investigated.

6.3. IMPACT OF FAULT MODELS 74

0.
00
%

0.
00
% 2.
28
%

2.
76
%

39
.5
3%

45
.8
8%

17
.5
0%

34
.2
8% 36
.2
7%

43
.3
7%

62
.0
6%

5.
69
%

0.
00
%

42
.6
1%

0.
00
%

0.
00
%

5.
22
%

6.
30
%

16
.6
4%

0.
00
%

0.
01
%

0.
00
%

0.
03
%

0.
04
%

0.
18
%

0.
06
%

0.
24
%

8.
40
%

65
.7
2%

63
.6
9%

49
.1
0%

28
.7
0%

38
.0
8%

53
.8
7%

31
.4
9%

DERIVATIVES STEP CUBIC ISQRT CORNERS EDGES SMOOTHING

No	Impact Exception SDC Time	Out Crash

(b) L1C2

Figure 6.2: Error sensitivity distribution of the various fault models for each
program.

Figures 6.2a–6.2c show the error sensitivity distribution for each fault model over

the different programs. The vertical axis shows the percentage of experiments

that fall in different failure classification for different target program represented

in the horizontal axis.

Table 6.2 shows a summary of error resilience for the different failure classes

under the different fault models. Each row shows the percentage of experi-

ments that results in different error classifications for the different fault models.

Table 6.3 shows the result for one way analysis of variance (ANOVA) tests per-

6.3. IMPACT OF FAULT MODELS 75

0.
00
%

0.
00
%

1.
85
%

1.
87
%

45
.4
1%

37
.0
6%

30
.8
4%

18
.5
4%

45
.7
3%

45
.3
5%

79
.2
8%

3.
37
%

0.
00
%

20
.7
7%

0.
00
%

0.
00
% 2.
59
%

2.
62
%

7.
61
%

0.
01
%

0.
02
%

0.
00
%

0.
01
%

0.
01
%

0.
27
%

0.
02
%

0.
08
% 4.

54
%

81
.4
6%

54
.2
6%

50
.2
1%

15
.9
6%

43
.6
0%

62
.8
5%

43
.8
3%

DERIVATIVES STEP CUBIC ISQRT CORNERS EDGES SMOOTHING

No	Impact Exception SDC Time	Out Crash

(c) L2C1

Figure 6.2: Error sensitivity distribution of the various fault models for each
program.

formed to statistical test the effect of fault models on fault outcomes. Each row

depicts the results of the significance of the effect of fault model on the fault

outcome under the Dependent Variable column, it should be mentioned that

the first row shows the results of fault model on no particular fault outcome.

The p-value column determines whether the effect of the model is significant

with 99% of confidence interval, the null hypothesis is accepted if the the p-

value is greater than 0.01 and rejected otherwise. The F column depicts the

Wilks’ lambda value for the ANOVA test. The test are based on the linearly

6.3. IMPACT OF FAULT MODELS 76

independent pairwise comparisons among the estimated marginal means, the

difference between these means is shown in Table 6.5. Negative mean difference

denotes under the fault model J, the mean of the percentage of error resilience

for the given error is higher than under the fault model I. The p-value column

determines whether the mean difference is significant with 99% of confidence in-

terval. The mean difference is significant when the p-value is less than 0.01 and

insignificant otherwise. Table 6.4 shows the means, standard errors and confi-

dence interval of experiments that fail in different error classifications over all

programs for the fault models. Due to the large number of experiments (≈ 48000

for L1C1 errors, over 1.5 million for L1C2 errors and excess of 17 million for

L2C1 errors), the 99% confidence interval for the measures in this section varies

from ±1.02% to ±4.49% for L1C1 and L1C2 errors and from ±0.65% to ±2.84%

for L2C1 errors.

6.3.1 L2C1 vs. L1C2 vs L1C1

Figures 6.2a, 6.2b and 6.2c present the overall error sensitivity for L1C1, L1C2

and L2C1 errors respectively. The error sensitivity for a fault outcome is calcu-

lated as shown in equation 6.1.

ES =
Ff
FN

(6.1)

Here FN is the total number of faults injected, i.e., total number of experiments,

and Ff is the total number of experiments that results in the given fault outcome

class.

The results from these figures show that observed failures are not uniform across

the different programs. For example, errors injected into Derivatives consistently

ended up as either Exception or Crash. Further, campaigns with Step never

resulted in No impact or SDC. On another hand, the proportion of Time out

6.3. IMPACT OF FAULT MODELS 77

Table 6.2: Error resilience distribution of all fault models
Fault
Model

Target
Program

Fault Outcome (%)

No Impact Exception SDC Time Out Crash

L1C1

Derivatives 100.00 72.17 100.00 100.00 27.83
Step 100.00 68.93 100.00 99.95 31.12
Cubic 94.13 55.42 85.65 99.66 59.23
Isqrt 93.32 52.04 85.42 99.66 64.32
Corners 64.33 91.47 72.86 99.92 60.75
Edges 56.76 100.00 99.99 99.61 43.64
Smoothing 67.03 89.95 99.98 82.81 60.22

L1C2

Derivatives 100.00 65.72 100.00 100.00 34.28
Step 100.00 63.73 100.00 99.97 36.31
Cubic 97.72 56.63 89.74 99.96 50.90
Isqrt 97.24 37.94 91.14 99.82 71.30
Corners 60.47 94.31 73.09 99.94 61.92
Edges 54.12 100.00 99.99 99.76 46.13
Smoothing 82.50 57.39 99.99 91.60 68.51

L2C1

Derivatives 100.00 81.46 100.00 100.00 18.54
Step 100.00 54.27 100.00 99.99 45.74
Cubic 98.15 54.65 94.80 99.99 49.79
Isqrt 98.13 20.72 96.87 99.73 84.04
Corners 54.59 96.63 86.50 99.98 56.40
Edges 62.94 100.00 99.98 99.92 37.15
Smoothing 69.16 79.23 99.96 95.46 56.17

is predominantly higher when L1C1s are injected and fewest when L2C1s are

injected. Similarly, the observed rate of No impact is often highest for L1C1 error

experiments and lowest for L2C1 errors. The percentage of Crash was almost

consistently highest for experiments under the L2C1 fault model. Similarly,

frequency of Exception is almost regular highest when L2C1 errors are injected.

Further, the results denote SDCs to results less from L2C1 errors.

Table 6.2 shows a summary of error resilience results under each fault model.

The error resilience for a fault outcome is calculated as in equation 6.2.

ER = 1− ES (6.2)

If the error resilience of a program to a given fault outcome is considered to

be distributed as a normal variable with a mean value equals to the quotient

6.3. IMPACT OF FAULT MODELS 78

Table 6.3: Null hypotheis test results for fault model effect on error resilience

Dependent
Variable

F
P-value

(α = 0.01)
Result

62.933 0.000 Reject

No Impact 0.648 0.523 Accept
Exception 10.128 0.000 Reject
SDC 15.059 0.000 Reject
Time Out 244.816 0.000 Reject
Crash 9.120 0.000 Reject

The F tests the effect of fault models on fault outcomes.
This test is based on the linearly independent pairwise
comparisons among the estimated marginal means
(see Table 6.5).

between the number of experiments in the said fault outcome category and the

total number of experiments, ANOVA can be performed. ANOVA is performed

to test whether there are error resilience rate difference between the programs

under the three fault models by testing the null hypothesis H0 which states: “the

fault outcome of an experiment does not depend on the fault model assumed for

the experiment”. The results of ANOVA in Table 6.3 allows the the rejection of

H0 with a confidence of 99%, this means that there is a statistically significant

difference in error resilience based on an assumed fault model. However, the

results also allows the acceptance of H0 that states: “the probability of an

experiment resulting in No impact is dependent on the assumed fault model”.

Table 6.5 presents a pairwise comparisons of mean difference between error

resilience of the programs to the different fault classes. Considering the first

row, for example, the mean difference between error resilience to No Impact

under L1C1 (fault model I) and L1C2 (fault model J) is −2.1352. This means

on the average the there’s a higher propbaibilty of programs being error resilient

to No Impact for L1C1 errors than for L1C2 errors.

For example, the results show there is no significant mean difference in resilience

to No impact between the three fault models (see Table 6.5). However, the

6.3. IMPACT OF FAULT MODELS 79

Table 6.4: Estimated marginal means for error resilience of all fault models

Dependent Variable Fault
Model

Mean
(%)

Std. Error

Confidence
Interval
(99%)

Fault Outcome
Lower
Bound

Upper
Bound

No Impact
L1C1 82.371 1.331 78.936 85.805
L1C2 84.506 1.331 81.071 87.941
L2C1 83.562 0.842 81.390 85.734

Exception
L1C1 74.464 1.369 70.931 77.997
L1C2 67.944 1.369 64.411 71.476
L2C1 75.082 0.866 72.847 77.316

SDC
L1C1 95.233 0.511 93.913 96.552
L1C2 95.975 0.511 94.656 97.295
L2C1 92.989 0.323 92.155 93.823

Time Out
L1C1 97.376 0.396 96.355 98.397
L1C2 98.714 0.396 97.693 99.735
L2C1 89.787 0.250 89.142 90.433

Crash
L1C1 50.557 1.738 46.071 55.042
L1C2 52.862 1.738 48.376 57.347
L2C1 58.581 1.099 55.744 61.418

results (see Table 6.2) shows that error resilience to No Impact is often lower

for L1C1 errors than for either L1C2 or L2C1 errors. This implies L1C1 errors are

more likely to end in No Impact than either L1C2 or L2C1 errors. On the other

hand, the results indicate that all three error types have similar percentage

of error resilience to Time Out failures. This implies that likelihood of an

Experiment causing a Time out is low irrespective of the error type.

The results (see Table 6.5) also depict the mean error resilience to Exception is

significantly lower for L1C2 errors than for both L1C1 and L2C1 errors, however

they do not show significant difference between means under L1C1 and L2C1

fault models. The results further depict that for both L1C1 and L1C2 errors,

average percentage of error resilience to Exceptions is significantly lower than for

L2C1 errors (see Table 6.2). Thus, implying that the likelihood of an experiment

causing an Exception is higher when injected with either L1C1 or L1C2 errors

than when a L2C1 was injected . The results also show that across the programs,

6.3. IMPACT OF FAULT MODELS 80

Table 6.5: Pairwise comparisons between mean for all fault models

Dependent
Variable
(Fault

Outcome)

Fault Model Mean
Difference

(I-J)

Std.
Error

P-value
(α = 0.01)

Confidence
Interval
(99%)

I J
Lower
Bound

Upper
Bound

No Impact

L1C1
L1C2 -2.1352 1.88248 0.493 -7.6311 3.3606
L2C1 -1.1914 1.57500 0.730 -5.7895 3.4068

L1C2
L1C1 2.1352 1.88248 0.493 -3.3606 7.6311
L2C1 0.9439 1.57500 0.821 -3.6543 5.5420

L2C1
L1C1 1.1914 1.57500 0.730 -3.4068 5.7895
L1C2 -0.9439 1.57500 0.821 -5.5420 3.6543

Exception

L1C1
L1C2 6.5205* 1.93617 0.002 0.8679 12.1731
L2C1 -0.6175 1.61991 0.923 -5.3468 4.1118

L1C2
L1C1 -6.5205* 1.93617 0.002 -12.1731 -0.8679
L2C1 -7.1380* 1.61991 0.000 -11.8673 -2.4086

L2C1
L1C1 0.6175 1.61991 0.923 -4.1118 5.3468
L1C2 7.1380* 1.61991 0.000 2.4086 11.8673

SDC

L1C1
L1C2 -0.7429 0.72312 0.560 -2.8540 1.3683
L2C1 2.2437* 0.60501 0.001 0.4774 4.0100

L1C2
L1C1 0.7429 0.72312 0.560 -1.3683 2.8540
L2C1 2.9865* 0.60501 0.000 1.2202 4.7528

L2C1
L1C1 -2.2437* 0.60501 0.001 -4.0100 -0.4774
L1C2 -2.9865* 0.60501 0.000 -4.7528 -1.2202

Time Out

L1C1
L1C2 -1.3379 0.55958 0.045 -2.9715 0.2958
L2C1 7.5887* 0.46818 0.000 6.2219 8.9556

L1C2
L1C1 1.3379 0.55958 0.045 -0.2958 2.9715
L2C1 8.9266* 0.46818 0.000 7.5597 10.2934

L2C1
L1C1 -7.5887* 0.46818 0.000 -8.9556 -6.2219
L1C2 -8.9266* 0.46818 0.000 -10.2934 -7.5597

Crash

L1C1
L1C2 -2.3048 2.45845 0.617 -9.4821 4.8726
L2C1 8.0240* 2.05688 0.000 -14.0290 -2.0189

L1C2
L1C1 2.3048 2.45845 0.617 -4.8726 9.4821
L2C1 5.7192 2.05688 0.015 -11.7242 0.2858

L2C1
L1C1 -8.0240* 2.05688 0.000 2.0189 14.0290
L1C2 -5.7192 2.05688 0.015 -0.2858 11.7242

Based on estimated marginal means. (see Table 6.4
The error term is Mean Square(Error) = 761.538.
* The mean difference is significant

error resilience to Exception is often lower under L1C2s than under L1C1s. This

implies that L1C2 errors are more likely to cause Exceptions than either L1C1

errors or L2C1 errors.

6.4. IMPACT OF INJECTION LOCATION 81

Table 6.5 also shows that mean percentage of error resilience to SDC is signifi-

cantly higher under the L2C1 fault model than under either L1C1 or L1C2 fault

models, and no significant mean difference for L1C1 and L1C2 errors. Similarly,

the results demonstrate that for majority of the programs percentage error re-

silience is higher under L2C1s than under both L1C1s and L1C2s (see Table 6.2).

This means that the occurrence of SDCs are more probable under both L1C1

and L1C2 fault models than under L2C1 fault. However, for Edges and Smooth-

ing the percentage of error resilience to SDCs is similar across the three fault

models. On the hand, similar percentage of error resilience has been observed

under L1C1s and L1C2s.

On another hand, the results have shown there is a significant overall lower

mean error resilience to Crash when L1C1 or L1C2 errors are injected than for

L2C1 errors (see Table 6.5). The results also show (see Table 6.2), percentage

of error resilience to Crash is almost consistently lower under L2C1 than under

either L1C2 or L1C1 across the different programs with the exception of Step

and Isqrt, which shows the reverse. Hence, this means experiments subjected

to L2C1 errors had higher probability of ending in Crash than those imparted

with L1C1 and L1C2 errors.

The overall reduction of No impact and SDC under L2C1s may be due to L2C1

errors causing more severe failures resulting in the system exiting prematurely.

Similarly, because L2C1 and L1C2 errors mostly causes the program to prema-

turely exit, little and no executions tend to hang.

6.4 Impact of Injection Location

This section investigates the effect of injection location on failure mode. Hence,

the effect on block locations, instruction type and data type are analysed. The

impact of blocks on failure groups is measured with respected to error sensitivity

6.4. IMPACT OF INJECTION LOCATION 82

rate as described in the preceding section. Percentage of error resilience is used

to measure the effects of register instruction type and data type on experiments.

The investigation demonstrates that injection location do affect the failure pro-

file, this means, injection in certain locations are more efficient in uncovering

vulnerabilities and are likely to cause failures. This motivates the need for a

systematic approach to select injection locations for the LnCm fault model. The

remainder of the section presents and further discuses these results.

Table 6.7, Table 6.8 and Table 6.9 present the percentage error sensitivity ob-

served under the L1C1, L1C2 and L2C1 fault models respectively. Each row

represents the percentage of error sensitivity for the different failure classes un-

der the fault outcome column for a given block location and target program.

Table 6.6 depicts the confidence interval at 99% for the observed error sensitiv-

ity.

Figures 6.3a–6.3c depict effects of instruction type on the error sensitivity rate

to the different failure classes with respect to the assumed fault model. The

vertical axes represent the percentage of error sensitivity plotted against the

failure classes.

Figures 6.4a–6.4c present the results of the effect of error injections into the

different register data types on the different failure classes. Similar to the in-

struction type charts, the horizontal axes depicts percentage error sensitivity

over the different failure classes represented on the vertical axes.

6.4.1 Block Location

This section evaluates the impact of faults with respect to their block location in

the program execution. Tables 6.7–6.9 show the percentage of error sensitivity

observed for the different fault models over the different target programs and

Table 6.6 shows confidence interval ranging from ±3.34% to ±6.44% for L1C1

6.4. IMPACT OF INJECTION LOCATION 83

and L1C2 errors and from ±0.45% to ±9.10% L2C1 errors.

Table 6.6: Confidence interval of error resilience for all blocks
Fault
Model

Block
Location

Confidence Interval (99%)

No Impact Exception SDC Time Out Crash

L1C1

Early
±3.34% ±5.62% ±1.76% ±0.63% ±6.44%Central

Late

L1C2

Early
±3.34% ±5.62% ±1.76% ±0.63% ±6.44%Central

Late

L2C1

Early ±4.72%
±5.62% ±2.49% ±0.90% ±9.10%

Central ±7.95%

Late

±2.36%
±3.97% ±1.25% ±0.45% ±4.55%Early + Central

Early + Late ±3.98% ±1.24%

Central + Late ±7.95% ±0.63% ±0.90% ±9.10%

Table 6.7: Error sensitivity distribution for different block locations under L1C1.

Target
Program

Block
Location

Fault Outcome (%)

No Impact Exception SDC Time Out Crash

Derivatives
Early 0.00 25.30 0.00 0.00 74.70
Central 0.00 28.88 0.00 0.00 71.13
Late 0.00 29.33 0.00 0.00 70.68

Step
Early 0.00 12.27 0.00 0.05 87.68
Central 0.00 54.15 0.00 0.05 45.80
Late 0.00 26.80 0.00 0.05 73.15

Cubic
Early 5.50 43.00 5.95 0.43 45.13
Central 4.60 47.40 10.69 0.30 37.01
Late 7.50 43.33 8.70 0.30 40.18

Isqrt
Early 7.94 16.43 8.59 0.43 66.61
Central 4.60 65.77 10.69 0.05 18.89
Late 7.50 61.70 8.70 0.55 21.55

Corners
Early 28.38 7.40 16.53 0.25 47.45
Central 68.08 10.85 3.78 0.00 17.30
Late 10.55 7.35 29.10 0.00 53.00

Edges
Early 8.72 0.00 0.01 1.17 90.10
Central 54.22 0.00 0.00 0.00 45.78
Late 66.79 0.00 0.00 0.00 33.20

Smoothing
Early 5.58 30.16 0.00 2.35 61.91
Central 75.83 0.00 0.01 0.00 24.17
Late 17.50 0.00 0.02 49.22 33.26

The results show that block location exhibits both similar and contrasting be-

haviours for the three types of errors. For example, it is observed that overall,

6.4. IMPACT OF INJECTION LOCATION 84

Table 6.8: Error sensitivity distribution for different block locations under L1C2.

Target
Program

Block
Location

Fault Outcome (%)

No Impact Exception SDC Time Out Crash

Derivatives
Early 0.00 33.53 0.00 0.00 66.47
Central 0.00 34.75 0.00 0.00 65.25
Late 0.00 34.55 0.00 0.00 65.45

Step
Early 0.00 4.85 0.00 0.03 95.12
Central 0.00 69.43 0.00 0.03 30.53
Late 0.00 34.53 0.00 0.03 65.43

Cubic
Early 2.39 41.90 3.18 0.11 52.42
Central 2.54 44.16 6.37 0.00 46.93
Late 1.91 44.04 6.10 0.00 47.95

Isqrt
Early 2.90 39.20 3.87 0.13 53.90
Central 3.07 73.99 7.70 0.00 15.24
Late 2.30 72.99 7.33 0.42 16.96

Corners
Early 33.67 4.93 12.10 0.17 49.13
Central 75.47 7.23 3.60 0.00 13.70
Late 9.45 4.90 34.23 0.00 51.42

Edges
Early 8.70 0.00 0.01 0.73 90.56
Central 51.04 0.00 0.00 0.00 48.96
Late 77.91 0.00 0.00 0.00 22.09

Smoothing
Early 1.84 37.32 0.00 1.47 59.38
Central 41.01 43.98 0.01 0.00 15.00
Late 9.64 46.53 0.01 23.72 20.09

irrespective of the error type, early injections terminates with a Crash, and late

injections results in higher proportion of Time outs. Further, the results also

denote that failure mode for individual target programs tend to vary under all

three fault models. This may be possibly be on the account of early injections

increasing the likelihood of error propagation. Additionally, the results show

an almost consistent concomitant increase in proportion of Crash with reduc-

tion of Exception rate and vice versa across the block locations. On the other

hand, the results depict late injections of L1C1 and L1C2 errors induces higher

percentage of SDCs whereas the opposite is the case for late injection of L2C1

errors. L2C1 error can be injected at different times. For, L2C1 errors injection

in Central blocks rarely causes Crash, whereas injecting a L2C1 error in target

combination of central and block of another location type greatly increase the

proportion of Crash.

6.4. IMPACT OF INJECTION LOCATION 85

Table 6.9: Error sensitivity distribution for different block locations under L2C1.

Target
Program

Block
Location

Fault Outcome (%)

No Impact Exception SDC Time Out Crash

Derivatives

Early 0.00 0.15 0.00 0.00 99.85
Central 0.00 13.63 0.00 0.00 86.38
Late 0.00 13.35 0.00 0.00 86.65
Early & Central 0.00 21.38 0.00 0.00 78.63
Early & Late 0.00 22.04 0.00 0.00 77.96
Central & Late 0.00 40.73 0.00 0.00 59.28

Step

Early 0.00 6.82 0.00 0.02 93.15
Central 0.00 77.08 0.00 0.03 22.90
Late 0.00 76.48 0.00 0.00 23.53
Early & Central 0.00 11.76 0.00 0.02 88.22
Early & Late 0.00 25.78 0.00 0.00 74.22
Central & Late 0.00 76.48 0.00 0.00 23.53

Cubic

Early 1.42 44.64 1.54 0.02 52.38
Central 2.01 43.52 2.95 0.00 51.51
Late 2.03 48.64 3.17 0.00 46.16
Early & Central 1.74 44.64 2.38 0.01 51.23
Early & Late 1.73 43.52 2.25 0.01 52.49
Central & Late 2.14 47.15 3.24 0.00 47.48

Isqrt

Early 1.48 79.02 1.60 0.02 17.88
Central 2.06 81.28 3.02 0.00 13.64
Late 2.06 81.92 3.22 0.30 12.50
Early & Central 1.79 81.36 2.44 0.01 14.40
Early & Late 1.77 70.15 2.31 0.49 25.29
Central & Late 2.08 81.92 3.16 0.78 12.05

Corners

Early 15.80 2.96 10.56 0.10 70.58
Central 81.88 4.34 0.76 0.00 13.02
Late 6.73 4.46 0.76 0.00 88.05
Early & Central 44.64 2.00 8.86 0.00 44.51
Early & Late 39.79 1.98 23.82 0.00 34.42
Central & Late 83.63 4.46 0.91 0.00 10.99

Edges

Early 0.00 0.00 0.00 0.37 99.63
Central 16.46 0.00 0.00 0.00 83.54
Late 88.17 0.00 0.00 0.00 11.83
Early & Central 8.52 0.00 0.01 0.10 91.36
Early & Late 40.47 0.00 0.02 0.00 59.52
Central & Late 68.75 0.00 0.00 0.00 31.25

Smoothing

Early 0.00 24.83 0.00 0.85 74.33
Central 89.71 0.00 0.01 1.08 9.20
Late 17.74 0.00 0.08 14.69 67.49
Early & Central 7.32 43.94 0.00 0.31 48.43
Early & Late 0.96 55.85 0.01 4.69 38.50
Central & Late 69.31 0.00 0.02 5.63 25.04

6.4. IMPACT OF INJECTION LOCATION 86

No	Impact Exception SDC Time	Out Crash
Binary 13.26% 25.39% 9.95% 7.02% 44.38%
Casting 29.37% 24.01% 2.81% 0.10% 43.71%
MA-AC 16.11% 25.45% 3.85% 1.68% 52.90%

(a) L1C1

Figure 6.3: Error sensitivity distribution of instruction type for the fault models
over all target programs.

6.4.2 Register Instruction Type

Figure 6.3a presents the impact of instruction type of the target location when

imparted with L1C1 errors. The results, for example, implies that Crash rate

is higher in MAAC operations. It may be argued that errors injected in these

type of locations are more severe because these instructions are most probably

pointers to stack and other register addresses. On the hand, the results show

that SDC rate are most probably when injected in Binary locations. This may

be on the account of Binary targets are usually value which may likely affect

the output program. In Figure 6.3b, the result showing how injecting L1C2

errors into the different instruction type affect the failure classes is presented.

The results show that subjecting the different instruction types to L1C2 errors

causes similar failure mode.

Figure 6.3c depicts the failure mode when the different instruction type are tar-

6.4. IMPACT OF INJECTION LOCATION 87

No	Impact Exception SDC Time	Out Crash
Binary 13.19% 25.49% 10.75% 3.53% 47.04%
Casting 24.91% 31.90% 2.11% 0.03% 41.05%
MA-AC 13.87% 30.80% 2.73% 0.94% 51.66%

(b) L1C2

Figure 6.3: Error sensitivity distribution of instruction type for the fault models
over all target programs.

geted with L2C1 errors. Similar to block locations, L2C1 errors have instruction

type combination unique to them, because, they can have one target in an in-

struction type of one category and the second target in instruction type of a

different category. The results show, dissimilar to L1C1 and L1C2 errors, Crash

rate is higher when injection is in a combination of Binary and Casting location.

6.4.3 Register Data Type

The results in Figure 6.4a depict the effect of L1C1 error injections into the

different data types on the different failure classes. The results, for example,

show that L1C1 errors in Pointer often result in Crash, L1C1 errors in Control

cause higher proportion of No impact and in Other induce more SDC rate.

Arguably, L1C1 errors in pointers tend to cause more severe failures. Figure 6.4b

demonstrates that the effect of the different data types on the fault outcome

6.4. IMPACT OF INJECTION LOCATION 88

No	Impact Exception SDC Time	Out Crash
Binary 23.33% 15.75% 3.21% 2.70% 55.02%
Casting 28.93% 20.70% 4.25% 0.97% 45.14%
MA-AC 40.85% 21.23% 2.03% 0.66% 35.24%
Binary	&	Casting 23.03% 6.43% 2.76% 2.70% 65.09%
Binary	&	MA-AC 28.66% 17.43% 3.87% 0.90% 49.13%
Casting	&	MA-AC 40.80% 17.13% 2.00% 0.64% 39.43%

(c) L2C1

Figure 6.3: Error sensitivity distribution of instruction type for the fault models
over all target programs.

when imparted with L1C2 errors is similar to the effect caused by injecting L1C1

errors.

Figure 6.4c show how injecting L2C1 errors into the various data type impact

on failure mode. The results show that, similar to L1C2 and L1C1 errors, L2C1s

cause higher Exception rate when injected into Other. The results demonstrate,

dissimilar to L1C2 and L1C1 errors, L2C1s cause higher No impact rate when

injected into Other or when inserted into combination of Control and Other. The

results also show that although injecting L2C1 in Pointer cause high proportion

of Crash, injecting L2C1 errors into a Pointer and Control target combination

induces higher proportion of Crash.

6.5. CORRELATIONS 89

No	Impact Exception SDC Time	Out Crash
Pointer 9.85% 18.91% 3.68% 0.51% 67.05%
Control 29.62% 29.58% 3.60% 0.06% 37.15%
Other 15.69% 24.07% 6.65% 7.16% 46.43%

(a) L1C1

Figure 6.4: Error sensitivity distribution of data type for the fault models over
all target programs.

6.5 Correlations

In this section two sets of correlations analysis was done to test: (i) the linear

relationship between failure classifications, and (ii) testing the monotonic rela-

tionship between injection locations with respect to error sensitivity rate and

failure classes. Correlation coefficient is used to measure the correlation rela-

tionships, i.e., correlation coefficient is used as a measure to test the extent to

which two variables tend to change together. A correlation coefficient describes

both the strength and the direction of the association. Pearson correlation co-

efficient is adopted to measure linearity between failure classes, and Spearman’s

rank-order correlation coefficient to test association between injection locations

with respect to failure classes and their rate. To this the percentage of error sen-

sitivity is ranked starting from 1 being the highest. when more than one sample

share the same error sensitivity percentage, they are then given the same rank.

6.5. CORRELATIONS 90

No	Impact Exception SDC Time	Out Crash
Pointer 4.86% 20.20% 2.41% 0.23% 72.30%
Control 20.81% 44.01% 2.18% 3.45% 29.55%
Other 19.32% 34.16% 5.63% 1.08% 39.81%

(b) L1C2

Figure 6.4: Error sensitivity distribution of data type for the fault models over
all target programs.

Spearman’s rank-order correlation coefficient: The Spearman’s correla-

tion evaluates the monotonic relationship between two continuous or ordinal

variables. In a monotonic relationship, the variables tend to change together,

but not necessarily at a constant rate. There are two methods to calculate

Spearman’s rank-order correlation depending on whether: (i) the data does not

have tied ranks or (ii) the data has tied ranks. The formula in equation 6.3

measures the ρ when there are no tied ranks:

ρ = 1− 6
∑
di

n(n2 − 1)
(6.3)

where di = difference in paired ranks and n = number of cases. Equation 6.4

shows the formula to calculate ρ when there are tied ranks:

6.5. CORRELATIONS 91

No	Impact Exception SDC Time	Out Crash
Pointer 20.76% 12.03% 1.50% 0.79% 64.91%
Control 17.81% 14.79% 3.77% 2.90% 60.74%
Other 45.64% 29.88% 1.89% 1.29% 21.30%
Pointer	&	Control 20.53% 5.13% 1.22% 0.76% 72.36%
Pointer	&	Other 17.55% 11.67% 3.43% 2.90% 64.46%
Control	&	Other 45.75% 23.83% 2.03% 1.21% 27.18%

(c) L2C1

Figure 6.4: Error sensitivity distribution of data type for the fault models over
all target programs.

ρ =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

(6.4)

where i = paired score. The ρ is based on the ranked values for each variable

rather than the raw data. A ρ of +1 indicates a perfect association of ranks, a ρ

of zero indicates no association between ranks and a ρ of −1 indicates a perfect

negative association of ranks. The stronger the association of the two ranks,

the closer ρ will be to either +1 or −1 depending on whether the relationship

is positive or negative, respectively.

Table 6.10 shows the ρ and how significant (p−value) is the association between

ranks. ρ is the correlation between the two variables (one listed in the row, the

other in the column). ρ marked with ∗∗ means the association is significant at

α = 0.01.

6.5. CORRELATIONS 92

Table 6.10: Spearman’s rank-order correlations

Instruction
Type

Data
Type

Block
Location

Fault
Model

Instruction
Type

ρ 1.000 0.270** 0.332** 0.498**
p-value . 0.000 0.000 0.000

Data Type
ρ 0.270** 1.000 0.462** 0.576**
p-value 0.000 . 0.000 0.000

Block
Location

ρ 0.332** 0.462** 1.000 0.619**
p-value 0.000 0.000 . 0.000

Fault
Model

ρ 0.498** 0.576** 0.619** 1.000
p-value 0.000 0.000 0.000 .

** Correlation is significant at the 0.01 level (2-tailed).

Pearson product moment correlation: The Pearson correlation evaluates

the linear relationship between two continuous variables, X, Y . A correlation is

linear when a change in one variable is associated with a proportional change in

the other variable. The Pearson correlation coefficient can take a value between

+1 and −1 inclusive, where +1 is total positive correlation, zero is no correla-

tion, and −1 is total negative correlation. A value greater than zero indicates

a positive relationship; i.e., as the value of one variable increases, so does the

value of the other variable. A value less than 0 indicates a negative association,

i.e., as the value of one variable increases, the value of the other variable de-

creases. Pearson’s correlation coefficient when applied to a sample is commonly

represented by the letter r. Equation 6.5 shows how r is measured:

r =
n
∑
xiyi − x̄ȳ√

(
∑
xi2 − nx̄2)(

∑
yi2 − nȳ2)

(6.5)

where n = number of cases. Similar to the Spearman’s correlation coefficient,

the closer r is to zero, the weaker the association between the variables.

Table 6.11 depicts the r and the significance (p − value) of the association

between variables. r the linear correlation between the two variables (one listed

in the row, the other in the column). Similar with the Spearman’s rank-order,

6.5. CORRELATIONS 93

Table 6.11: Pearson product moment correlations

No Impact Exception SDC Time Out Crash

No Impact
r 1.000 -0.373** -0.133** -0.162** -0.328**
p-value 0.000 0.000 0.000 0.000

Exception
r -0.373** 1.000 -0.183** -0.254** -0.426**
p-value 0.000 0.000 0.000 0.000

SDC
r -0.133** -0.183** 1.000 0.530** -0.371**
p-value 0.000 0.000 0.000 0.000

Time Out
r -0.162** -0.254** 0.530** 1.000 -0.368**
p-value 0.000 0.000 0.000 0.000

Crash
r -0.328** -0.426** -.0371** -0.368** 1.000
p-value 0.000 0.000 0.000 0.000

** Correlation is,significant at the 0.01 level (2-tailed).

p− value of r marked with ∗∗ means the association is significant at α = 0.01.

6.5.1 Testing Monotonic Relationships

The Spearman’s rank-order correlation coeffient was used to measure the as-

sociation between injection locations and models (see Table 6.10). It should

be mentioned that statistical significance does not indicate the strength of the

Spearman’s rank-order correlation. In fact, the statistical significance testing of

the Spearman’s correlation does not provide you with any information about the

strength of the relationship. Thus, achieving a value of p = 0.001, for example,

does not mean that the relationship is stronger than if a value of p = 0.04 is

achieved. This is because the significance test is investigating whether one can

reject or fail to reject the null hypothesis, H0. For example, setting α = 0.05,

achieving a statistically significant Spearman’s rank-order correlation means

that one can be sure that there is less than a 5% chance that the strength of the

relationship found (ρ) happened by chance if the H0 are true. Also note that,

by definition, any variable correlated with itself has a correlation of 1.

Following are the H0
i tested for the correlation relationships:

• H0
1: There is no relationship between fault model and block location

6.5. CORRELATIONS 94

with respect to failure classes and their error sensitivity rate.

• H0
2: There is no relationship between fault model and instruction type

with respect to failure classes and their error sensitivity rate.

• H0
3: There is no relationship between fault model and data type with

respect to failure classes and their error sensitivity rate.

• H0
4: There is no relationship between block location and instruction type

with respect to failure classes and their error sensitivity rate.

• H0
5: There is no relationship between block location and instruction with

respect to failure classes and their error sensitivity rate.

• H0
6: There is no relationship between instruction type and data type

with respect to failure classes and their error sensitivity rate.

Here, strength of relationship is considered to be: (i) positively small or nega-

tively small, if the value of ρ falls between 0.1 to 0.3 or between −0.1 to −0.3

respectively; (ii) positively medium or negatively medium, if ρ measures between

0.3 to 0.5 or −0.3 to −0.5 respectively, and (iii) positively large or negatively

large, if ρ ranges between 0.5 to 1 or −0.5 to −1 respectively.

Table 6.10 denotes that H0
1 through H0

6 are rejected and the results show that

the strength of correlation varies from small to large. For example, the results

show that there is small positive association between instruction type and data

type (ρ = 0.277), a medium positive relation between data type and block

location (ρ = 0.462) and a large positive correlation between block location

and fault model (ρ = 0.619). This implies that error sensitivity rate for failure

classes is effected by (i) relationship of the instruction and data type of target

locations, (ii) relationship of the data type and block location of target locations

and (iii) relationship of the block location and fault model of target locations

respectively.

6.5. CORRELATIONS 95

6.5.2 Testing Linear Relationships

Pearson product moment correlation is used to measure the linear correlation

between failure groups (see Table 6.11). Similar with the Spearman’s rank-order,

the significance level does not show indicate strength of the linear association is

between the two variables. Further, the strength of relationship for r is classified

similarly to how the strength of association for ρ is defined. However, for r, only

associations of medium and large strength are considered. A variable correlated

with itself will always have a correlation coefficient of 1. The null hypotheses

are tested, one for each pairwise comparisons between failure classifications. For

example, a null hypothesis to test the relationship between SDC and No impact

states: “There is no linear relationship between error sensitivity rate of SDC

and error sensitivity of No impact”.

Table 6.11 shows that often the failure classes have statistically significant nega-

tive linear relationships with 99% confidence interval, which is expected. Thus,

the analysis set criterion for acceptable correlation as r > 0.3 or r > −0.3

for positive and negative correlations respectively. The results show Crash to

predominantly have statistically significant negative linear correlation with all

other failure classes. For example, Crash strongest linear association is with

Exception, r = −0.426, p − value < 0.0001. This means, overall Crash rate

increases when Exception rate decreases, and vice versa.

Based on the correlation criterion adopted, the result depicts few linear as-

sociations between the other class of failures. For example, the results show

a medium negative linear correlation between Exception and No impact, r =

−0.373, p − value < 0.0001. The results also denote a positive linear associ-

ation based on the analysis criterion set. For example, a large positive linear

correlation between SDC rate and Time out, r = 0.530, p− value < 0.0001 was

observed. This implies that SDC rate increases when Time out increases.

6.6. IMPLICATION AND LIMITATION 96

6.6 Implication and Limitation

The case studies presented have demonstrated that the fault model assumed

have an impact on program execution. However, it should be noted that the

results presented in this chapter are specific for the target programs, the fault

models and input sets selected. For other programs, fault models, and/or input

sets the results may vary. A second limitation in the results presented here is

that, to the best of our knowledge, there is scarcity of field data that shows

how multiple bit upsets will manifest themselves in registers. There is however

increasing evidence that the rate of hardware errors is increasing. The relevance

of the results presented in this chapter is only relevant as far as the field data

matches the pattern of errors injection used. Another implication of the results

is that it does not matter for the SDC rate of the program whether L1C1 or

L1C2 faults are injected. This implies that if the primary focus is on SDCs, then

L1C1 fault models may be sufficient for analysing the resilience of the program,

compared to the double fault models.

6.7 Summary and Conclusions

In this chapter the failure modes for soft-error models is investigated. Two vari-

ants of double bit-flip errors have appeared in dependability evaluation recently.

The objective, in this chapter, is to determine whether there is relevance in us-

ing both variants during validation. A range of errors injected into register are

considered and the impact of the type of locations on failures investigated. The

results presented in this chapter are statistically significant, especially after con-

ducting ≈ 10.5 million fault injection experiments on seven embedded software.

The analyses shows both variants are relevant as they induce different failure

profile in software and, in some cases, the failures are unique to a given variant.

Thus, the Double Single Bit-Flip (L2C1) fault model is proposed as novel fault

6.7. SUMMARY AND CONCLUSIONS 97

model for soft-error dependability evaluation and as a specific case of the LnCm

fault model.

The results presented in this chapter indicate certain instruction type and cer-

tain data type (held in the register) are more resilient to certain errors than

others. Similarly, certain block locations are more sensitive to errors than oth-

ers. Further, fault models to be considered for validation, may be influenced by

the failure class under focus.

To this point it has been shown that the injection location have an impact on

failure profile of a software, and will provide insight into selecting potential tar-

get locations under a multiple locations multiple corruptions fault model. The

next chapter develops an approach, using the information obtained in this chap-

ter, to address the complexity issues associated with selecting potential locations

and target variables for multiple fault injections, identified in Chapter 5.

CHAPTER 7

Towards Efficient Multiple Soft-Errors Injection

In this chapter, the problem of injecting multiple faults during an execution of

a software system is addressed. Traditionally, for a single bit-flip, a location

in the software is selected and a variable at that location is targeted for fault

injection. During execution, when the location is reached, a fault is injected

into that target variable.

On the other hand, when multiple fault injection is considered, there is both

a spatial and temporal dimension that have to be taken into account [163].

In general, it means that more than one variable can be targeted at a given

location (spatial dimension) or fault injection can happen in several locations

at different times (temporal dimension). Illustrated here is one typical problem

that can occur during multiple fault injections: variables v1 and v2 are targeted

at locations l1 and l2 respectively, and v2 depends on v1. Now, a fault injection

in v2 may override the effect of the error propagating from v1 to v2. There are

extreme solutions: (i) to inject in one location and allow for error propagation

(this is the traditional approach with single bit-flip model) or (ii) to inject in

every single location, potentially overriding the effect of previous fault injections

in that run, which is also computationally expensive.

Thus, as fault injection at every single location is not viable and fault injection

at a single location may not yield accurate results, a, possibly optimal, set of

possible locations should be chosen. There is a trade-off to be made then: to

inject early but potentially overriding the propagating error later during the

98

CHAPTER 7. TOWARDS EFFICIENTMULTIPLE SOFT-ERRORS INJECTION99

execution or to inject late but with reduced error propagation (this is taken to

mean a lesser number of variables with corrupted values). To guide the selection

of variables, two pieces of information are leveraged:

1. Locations based upon their perceived impact on the output are considered

2. Variables based upon their potential combined effect when corrupted are

chosen

For the first problem, the perceived impact of a location on the output may be

estimated by detecting the invariants at various locations in the software. This

can be possibly achieved by approximating the predicate at various locations

through the use of abstract interpretation-based techniques, as proposed in [68].

Overall, it is possible then to tag or label locations with a boolean value, with a

value of 1, indicating that the location can impact on the output. This does not

mean that all fault injection runs will lead to a deviation, but rather that there

is some fault injection run that will lead to some problem. Here, such locations

are referred to as vulnerable locations.

However, not all vulnerable locations are suitable for fault injection. For exam-

ple, a vulnerable location can exist within a branch and, if a variable is selected

for fault injection at that location, the variable may not be corrupted at runtime

as the execution may not follow the said branch. Thus, selecting vulnerable lo-

cations that will always be reached and that are reached earlier is better since

these locations will provide a higher probability of error propagation and hence

of causing a system failure. Henceforth, these locations are called potential lo-

cations. These locations are referred to as potential locations since, when target

variables are selected, no variable may be a chosen at the given location. They

merely indicate that such locations are good candidates.

For the second problem, given a set of potential locations, variables are chosen

according to the potential combined effect when corrupted.

7.1. SELECTING LOCATIONS FOR MULITPLE FAULT INJECTIONS 100

If a variable v is not targeted, then it means that either it is dependent on a

variable that has already been targeted (injecting a fault in v would overwrite

the propagating error) or a variable that depends on it has been targeted. Thus,

the objective is to target a small set of variables while maximising the number

of possible deviations (failures).

Earlier in Chapter 5 each problem is formalised as an optimisation problem, and

is shown to be NP-complete. Later in this chapter, a methodology to solve each

problem is developed. Specifically, the heuristics for injection locations selection

and target variables selection are developed and their usability is demonstrated.

7.1 Selecting Locations for Mulitple Fault Injec-

tions

As previously mentioned, the single fault that is traditionally assumed by SWIFI

techniques has become limited as it does not take into account multiple faults

and their possible interactions during executions. Few works have addressed

multiple fault injections [43, 79] and recently [103, 163], which addressed the

problem in a more systematic way. Aspects of mutation testing [70], through

the use of higher order mutants, can be considered as instances of multiple fault

injections.

Although there are works that studied the impact of multiple faults [1, 9, 103] in

the form of double faults, there is a dearth of work that addresses the problem

selecting the injection locations for multiple fault injections in a systematic way.

Lu et al. [103], to test the applicability of their fault injection tool, considered

double faults models. Similar to other work that adopted the L1C2 models,

they random flip two bits in a random target location. However, for the L2C1

fault, they selected the first target location randomly and use a time window, in

terms of execution cycle, to select the second injection location. They used time

7.2. INJECTION LOCATION SELECTION (ILS) 101

windows between 1 to 4. Similar to Lu et al. [103]’s work, the work here injects

into register, and considered the L1C2 and L2C1 as two of the specific cases of

the LnCm fault model evaluated in this chapter. However, the work here differs

from the work in Lu et al. [103], not only in objective but in the approach

selecting the fault injection points. The work, uses the proposed framework to

systematically select candidate variables to target.

Perhaps the work closest in spirit to that proposed here is that in [72], where

the authors develop a fault injection tool for cloud environment where multiple

failures are assumed to occur. To handle the exponential fault space, the au-

thors proposed pruning strategies that are based on static properties of specific

systems such as HDFS. Also, the fault type assumed in [72] is different to what

is assumed in this work, i.e., this work assumes bit-flips whereas Joshi et al.

[72] assume component failures. Further, the pruning strategies are developed

at an early stage whereas in this chapter, pruning strategies are developed at

“runtime”.

7.2 Injection Location Selection (ILS)

One disadvantage of SWIFI is that of intrusiveness. The impact of the use of

multiple fault injections on software systems, such as control software for real-

time embedded systems, will cause a high temporal overhead, causing deviation

in the program’s behaviour. Thus, the trade-off is that, on one hand, choosing

several potential fault injection locations may help to uncover vulnerabilities

but, on the other hand, the intrusiveness may cause the program to significantly

deviate from its original behaviour.

Thus, for multiple fault injections to work, this thesis seek to reduce the number

of fault injections to be performed while increasing the effect of each one, i.e., it

is counter-productive to inject into two variables where the respective effects are

7.2. INJECTION LOCATION SELECTION (ILS) 102

cancelled. To bound the number of possible fault injections, the number of po-

tential locations selected for injection are minimised with the aim of maximising

their effect. This is done by requiring the selected locations to be close to each

other, resulting in increased error propagation (i.e., a potentially greater number

of variables with corrupted values). This thesis capture this notion of location

closeness by a parameter, which is called amplification. However, selecting such

a set of potential locations at which to inject faults is very difficult.

7.2.1 Heuristic for ILS

To develop a heuristic for injection location selection, the concept of dominators

and dominance is adopted [92, 126]. First, the dominators concept will be briefly

outlined before explaining the heuristic. In a CFG G = 〈V, v0, A〉, where v0 is

the entry node, a node M is said to dominate a node N , (M dom N), if and

only if every path from v0 to N goes through M . Based on this basic dominance

concept, several other concepts can be developed, namely:

• By definition the dominance relationship is:

– Reflexive, i.e., every node dominates itself. Thus (N dom N) is

always true. Note a node is said to trivially dominates itself.

– Transitive, i.e, if a node M dominates a node N and N dominates a

node R, then M dominates R. Thus if (M dom N) and (N dom R)

then (N dom R) is always true.

– Anti-symmetric, i.e., if a node M dominates a node N and N dom-

inates node M , this implies that M = N . Thus if (M dom N) and

(N dom M) then M = N is true.

• M strictly dominates N, (M sdom N), if and only if (M dom N) and

M 6= N . Thus, a node cannot strictly dominates itself, i.e., (N sdom N)

is never true.

7.2. INJECTION LOCATION SELECTION (ILS) 103

• A node M immediately dominates a node N , (M idom N), if and only if

(M sdom N) and there does not exist a node D such that (D sdom N) and

(M sdom D). Thus if a node has more than one dominator, there is always

a unique ”nearest” strict dominator called its immediate dominator. Note

all nodes except the entry node have immediate dominators.

• The dominance frontier of a node M , DFM , is the set of all nodes that

are immediate successors to nodes dominated by M, but which are not

themselves strictly dominated by M. This means the dominance frontier

of M is the set of nodes where M ’s dominance stops, i.e., the set of nodes

where M lies only in some of the paths in G from v0 to the these nodes.

Thus DFM = {Z | (N idom Z) ∧ (M dom N) ∧ ¬(M sdom Z)}. Note a

node can be in its own dominance frontier.

• The dominator tree of G DomTree(G) is a tree created using immediate

dominators, where a parent node has as its children the nodes it imme-

diately dominates and the entry node v0 is the root of the tree. Thus

M → N exists in the DomTree(G) if and only if (M idom M). Note:

A node in a dominator tree dominates all its descendants in the tree, and

immediately dominates all its children.

It should be mentioned that dominators reveals which basic block in a CFG

must be executed prior to a block N , they also reveal blocks that are not always

executed. The complexity of generating the dominator tree is O(|U |2). The

dominator tree for the example CFG shown in Figure 3.1c is illustrated in

Figure 7.1a; Figure 7.1b depicts the dominance relationship for the dominator

tree. The coloured nodes depicts dominator nodes, i.e., nodes that strictly

dominate one or more nodes.

Given a CFG GP = 〈V, v0, A,W,Φ〉 of program P with amplification factor

A, the heuristic works as in Heuristic 7.1: first, the dominator tree of GP ,

DomTreeG(P), is generated, and the edges are labelled with the corresponding

7.2. INJECTION LOCATION SELECTION (ILS) 104

Entry

BB1

BB2

BB3 BB4 BB5

Exit

(a) Dominator Tree

Basic Block Immediate	
Dominator

Dominates Dominance	Frontier

Entry None {Entry,	BB1,	BB2, BB3,
BB4,	BB5, Exit}

{Ø}

BB1 Entry {BB1,	BB2, BB3, BB4,	
BB5, Exit}

{Ø}

BB2 BB1 {BB2, BB3,BB4,	BB5,
Exit}

{Ø}

BB3 BB2 {BB3, Exit} {BB2, BB4,	BB5}

BB4 BB2 {BB4} {BB2,	,	BB5}

BB5 BB2 {BB5, Exit} {Ø}

Exit BB5 {Exit} {Ø}

(b) Dominance Relationships

Figure 7.1: Example of a dominator tree for a CFG and its corresponding
dominance relationships.

weights from GP . Each node are tagged with their dominance frontier as dic-

tated by GP . The set of possible locations U l is initially set to V . Then, all leaf

nodes of DomTreeP are removed from U l, and any node n that is not deemed

vulnerable, i.e., any node n of DomTreeP with a non-empty dominance frontier

(DFn 6= {∅}), were also removed from U l.

The set U l represents the set of potential fault injection locations. It does not

represent the actual locations where faults will be injected, but rather where

faults could potentially be injected. Given that A is set to twice the longest

distance between two successive potential locations - which can be obtained

7.3. TARGET VARIABLE SELECTION (TVS) 105

input : GP = (UP , u0, A,W,Φ)
output: Set of locations/blocks
begin

1 Generate the DomTreeG(P) of GP ,
label edges in DomTreeG(P) from GP ,
tag nodes in DomTreeG(P) with dominance frontier from GP ;

2 Initially, set U l to be UP ;

3 Remove all leaf nodes of DomTreeG(P) from U l and all nodes
that immediately dominate the exit node.;

4 Remove any node n in DomTreeG(P) where DFn 6= {∅} from U l;

5 Remove every node u such that Φ(u) = 0 from U l;

end

Heuristic 7.1: Heuristic for Injection Location Selection (ILS)

from a software engineer, this distance is equal to twice the longest distance

between two dominator nodes. Thus, the set of potential locations obtained

from Heuristic 7.1 satisfies the amplification factor A. Also, the reason the leaves

of the dominator tree are removed is that injection of faults at these locations

do not guarantee error propagation. The complexity of the ILS heuristic is

O(|U |2).

7.3 Target Variable Selection (TVS)

Following the identification of the set of potential locations, it is necessary to

identify the set of variables to target for fault injection. This means, there may

be potential locations at which no fault will be injected and others where more

than one fault may be injected.

To determine this target variable set, the dominator tree generated by the

heuristic presented in Chapter 7.2.1 (see Heuristic 7.1) is used and transformed

into a weighted graph, where a dependency graph is superimposed upon the

dominator tree. In this thesis, such a dependency graph for a program P upon

its dominator tree is modelled as follows: the dependency graph for P is denoted

as GDP = 〈U,A,U0,W,L〉, where U is the set of nodes (representing variables

7.3. TARGET VARIABLE SELECTION (TVS) 106

of P), A representing the set of arcs, where (u, v) ∈ A means that variable u

depends on variable v, U0 is the set of nodes with no outgoing arcs (variables

which do not depend on any other variables), W is the function that returns the

weight on the arcs, and L is a function (called level) that maps a variable to a

given block in the dominator tree DP . The dependency graph of P is extended

in such a way that A is augmented to include arcs between nodes at the same

level with a weight 0. The significance of this is that if there are two variables

v1, v2 in the same block in the dominator tree, then it means that it is irrelevant

if a fault is injected in v1 first and v2 second or vice-versa.

The challenge in selecting target variables stems from the fact that when a

variable u is overlooked, then it means either that a variable v on which it

depends has been selected (and selecting u will override the effect of propagating

error from v to u) or a variable w that depends on v has been selected. Thus,

the decision of selecting a variable is not a local one. In Chapter 6, it has

been demonstrated that early injections have a potential of uncovering more

vulnerabilities. As such, the TVS heuristic is made biased towards selecting

variables in earlier blocks.

7.3.1 Heuristic for TVS

This Chapter presents a heuristic (See Heuristic 7.2) that returns a list of vari-

ables, together with their corresponding locations, that solves the TVS problem.

A function called level that maps a given variable onto the block it appears in

the dominator tree is assumed. The heuristic then works as follows: A variable

block is defined, which is set to 1 initially, to capture the block being visited in

the dominator tree. The heuristic takes as input the dependency graph of the

dominator tree and outputs a set of variables at given locations. It starts at

level 1 of the dominator tree and considers all the nodes at that level.

7.4. CASE STUDIES 107

Input: Input weighted dependency graph G = (U,A,U0,W,L)
Output: Set of variables for fault injection with their location
begin

1 block : = 1; // keeps track of the blocks from the

dominator tree

2 NotAllowed: set of (variable, block) init ∅;
// keeps track of the location of the variable in the

dominator tree

3 SelectedV ars: set of (variable, block) init ∅;
// selects the variable and its location in the program

4 while(block ≤ N)
do {

5 forall n ∈ {m | level(m) = block}
do {

6 if(∃l : ((n, l) ∈ A ∧ [(l, level(l)) ∈ SelectedV ars ∨
((l, level(l)) 6∈ NotAllowed)]))
then:

7 NotAllowed := NotAllowed ∪ {(n, level(n))};
8 elseif(∃k : ((k, n) ∈ A ∧ (level(k) > level(n))))

then:
9 SelectedV ars := SelectedV ars ∪ {(n, level(n))};

} od
10 block + +;

} od

end

Heuristic 7.2: Heuristic for Target Variables Selection

A variable n at a given location x is not selected (i.e., (n, x) ∈ NotAllowed) if

there is a variable l on which it depends has already been selected as a target

variable for fault injection or l is not allowed (i.e., injecting in v can override

the impact of the injection in l or error propagating from l) . Variable n is

otherwise selected (i.e., (n, x) ∈ SelectedV ars) if there is at least one variable

k that depends on it. The complexity of the TVS heuristic is O(|U |2).

7.4 Case Studies

Ten programs are used as case studies: Cubic, Isqrt, CRC, FFT, Dijkstra, In-

sert, Remove, Search, Encfile, Decfile. Description of these program and their

7.4. CASE STUDIES 108

input data is presented in Chapter 3.3. Fault injection experiments are per-

formed to evaluate the viability of the proposed injection locations framework.

LLFI (See Chapter 3.4.2) is used for all experiments. The proposed approach fo-

cuses on efficient selection of injection location. However, even with the heuristic

proposed, there is still an exponential number of bits to flip. To keep the experi-

ments tractable the work presented here only consider flipping maximum of four

bits. Thus only single, double, triple and quadruple fault models as described

in Chapter 3.2 are adopted for the evaluation of the case studies. Henceforth in

this chapter, Multiple Fault Injections (MFI) is assumed to mean double bits

or triple bits or quadruple bits fault injection, unless specified otherwise.

Source/byte
code

Generate	CFG Generate	Dependency	
Graph

Execute	ILS	Heuristic

Generate	Dominator	Tree

Prune	Dominator	Tree

Potential	Injection	
Locations (Blocks)

Execute	TVS	Heuristic

Superimpose	 Dependency	
Graph	on	Pruned	Dominator	
Tree	(Generate	Vargraph)	

Target	
Variable	Set

Figure 7.2: An overview for the execution of the proposed framework to select
efficient target variables.

Figure 7.2 summarises the workflow of the ILS and TVS heuristics (for identi-

fying injection locations) for the LnCm fault model .

7.5. EXPERIMENT SETUP 109

7.5 Experiment Setup

The experimental procedure adopted was to address the following research ques-

tions:

• Does MFI in variables identified by the TVS heuristics uncover more vul-

nerabilities than MFI in interface variables?

• Does MFI in variables identified by the TVS heuristics uncover more vul-

nerabilities than MFI in randomly selected variables?

• Does MFI in variables identified by the TVS heuristics uncover more vul-

nerabilities than injecting single bit-flip (L1C1) faults in the same vari-

ables?

• How does MFI as multiple bit-flips faults in a single variable or MFI as

single bit fault in multiple variables affect the the fault injection outcome?

The fault injections experiments performed focused on processor faults that

impact on the program state by altering the content of ISA registers. Hence-

forth, variables denote states defined by the registers. Fault injection location

is defined according to the assumed fault model under investigation as follows:

• L1C1: Single bit-flip error in a single location is considered, i.e., one bit

is flipped in a single location.

• L1C2: Double bit-flips error in a single location is considered, i.e., two

bits are flipped in a single location.

• L1C3: Triple bit-flips error in a single location is considered, i.e., three

bits are flipped in a single location.

• L1C4: Quadruple bit-flips error in a single location is considered, i.e., four

bits are flipped in a single location.

7.5. EXPERIMENT SETUP 110

• L2C1: Double single bit-flip error in a pair of locations is considered, i.e.,

two locations are chosen and a single bit is flipped in each location.

• L3C1: Triple single bit-flip error in a triad of location is considered, i.e.,

three locations are chosen and a single bit is flipped in each location.

• L4C1: Quadruple single bit-flips error in a quad of location is considered,

i.e., four locations are chosen and a single bit is flipped in each location.

• L2C2: Double bit-flips error in a pair of locations is considered, i.e., Two

locations are chosen and two bit is flipped in each location.

Variable selection is done randomly from internal program variables or at pro-

gram interface or by using TVS heuristics. It should be mentioned that variables

selected at the program interface are done exclusively at the entry point, i.e.,

input interface.

7.5.1 Application of the Proposed Framewwork

The heuristics presented in preceeding sections are executed for the case studies

as follows:

Step 1: Executing ILS

To apply the ILS heuristic (See Heuristic 7.1), first, the CFG (as described in

Chapter 3.1 is generated. Since faults are injected into registers, the CFG for

the IR byte-code of the program is generated rather than for its source code.

Figure 7.3 shows the CFG for Isqrt. Due to space limitations, only graphs for

Isqrt are presented and adopted to provide an overview of the execution flow of

the heuristics.

Next, the generated CFG is converted into its dominator graph by applying the

dominance concept defined earlier on in this chapter. The dominator tree for

Isqrt is shown in Figure 7.4. Then, the set of potential injection locations, Ul,

7.5. EXPERIMENT SETUP 111

Entry

Block 1
0

Block 2
6

Block 3
6

Block 4
1

Block 5
1 T

Block 29
1F

Block 6
1

Block 7
2

Block 8
1

Block 9
1

Block 10
1

Block 11
2

Block 12
1

Block 13
2

Block 14
1

Block 15
1

Block 16
1

Block 17
1

Block 18
1

Block 19
3

Block 20
1T

Block 25

1

F

Block 21
2

Block 22
1

Block 23
2

Block 24
1

1

Block 26
1

Block 27
1

Block 28
1

1

Block 30
1

Block 31
3

Block 32
1

Block 33
1

Block 34
1

Exit
0

Figure 7.3: (Extended) CFG for Isqrt

7.5. EXPERIMENT SETUP 112

is set to contain all nodes of the dominator graph. Thus:

Ul = {block1, . . . , block34}

Next, block24 and block28, being leaf nodes, are taken out from Ul, nodes dom-

inating the exit block is also removed, in this case block34. Finally, all nodes

with non-empty dominance frontier set are taken out Ul, thus block5 through

block23 and block25 through block27 are removed and the following set of blocks

is returned.

Ul = {block1, . . . , block4, block29, . . . , block34}

Step 2: Execute TVS

To apply the TVS heuristic (see Heuristic 7.2), the dependency graph for the

program is superimposed on its dominator tree generated in Step 1. The super-

imposed graph is condensed to only include nodes (blocks) returned by the ILS

heuristics.

In Figure 7.5 the superimposed dependency graph over the dominator tree (of

blocks set returned by ILS heuristics) for Isqrt is depicted.

Figure 7.6 simplifies the superimposed dependency graph as a variable graph

(vargraph) and Heuristic 7.3 shows the Heuristic for generating a vargraph. The

complexity of this heuristic is O(|U |2).

Then, the TVS heuristic is applied on the vargraph of Isqrt to obtain the MTVS.

MTVS is initialised to be null and the process is started in block1. All variables

in block1 are added to the MTVS, since the MTVS is empty, i.e., there are no

variable in MTVS that any of block1 variables are dependent on. Thus variables

%1, %2, %a, %r, %e and %i are added to MTVS. Moving to block2, because

variables %1, %2, %a, %r, %e and %i are dependent on %1, %2, %a, %r, %e

7.5. EXPERIMENT SETUP 113

Entry

Block 1

0

Block 2

6

Block 3

6

Block 4

1

Block 5

1T

Block 29

1F

Block 6

1

Block 7

2

Block 8

1

Block 9

1

Block 10

1

Block 11

2

Block 12

1

Block 13

2

Block 14

1

Block 15

1

Block 16

1

Block 17

1

Block 18

1

Block 19

3

Block 20

1T

Block 25

1F

Block 21

2

Block 22

1

Block 23

2

Block 24

1

Block 26

1

Block 27

1

Block 28

1

Block 30

1

Block 31

3

Block 32

1

Block 33

1

Block 34

1

Exit

0

Figure 7.4: Dominator tree for Isqrt

7.5. EXPERIMENT SETUP 114

Bl
oc

k
33

Bl
oc

k
1

Bl
oc

k
31

Bl
oc

k
32

Bl
oc

k
2

Bl
oc

k
3

en
try

Bl
oc

k
29

Bl
oc

k
4

Bl
oc

k
30

in
te

rfa
ce

 v
ar

ia
bl

es

6
sto

re
 i6

4
%

x,
 i6

4*
 %

1,
 a

lig
n

8

6

7
sto

re
 %

str
uc

t.i
nt

_s
qr

t*
 %

q,
 %

str
uc

t.i
nt

_s
qr

t*
*

%
2,

 a
lig

n
8

6
0

%
1

=
al

lo
ca

 i6
4,

 a
lig

n
8

45
%

34
 =

 lo
ad

 %
str

uc
t.i

nt
_s

qr
t*

*
%

2,
 a

lig
n

841

48
%

37
 =

 lo
ad

 %
str

uc
t.i

nt
_s

qr
t*

*
%

2,
 a

lig
n

8

42

6

1
%

2
=

al
lo

ca
 %

str
uc

t.i
nt

_s
qr

t*
, a

lig
n

8

6

2
%

a
=

al
lo

ca
 i6

4,
 a

lig
n

8

8
sto

re
 i6

4
0,

 i6
4*

 %
a,

 a
lig

n
86

47
%

36
 =

 b
itc

as
t i

64
*

%
a

to
 i8

*

42

3
%

r =
 a

llo
ca

 i6
4,

 a
lig

n
8

9
sto

re
 i6

4
0,

 i6
4*

 %
r,

al
ig

n
8

6

4
%

e
=

al
lo

ca
 i6

4,
 a

lig
n

8

10
sto

re
 i6

4
0,

 i6
4*

 %
e,

 a
lig

n
8

6

5
%

i =
 a

llo
ca

 i3
2,

 a
lig

n
4

11
sto

re
 i3

2
0,

 i3
2*

 %
i,

al
ig

n
4

6

12
%

4
=

lo
ad

 i3
2*

 %
i,

al
ig

n
4

6

13
%

5
=

ic
m

p
slt

 i3
2

%
4,

 3
2

1

46
%

35
 =

 b
itc

as
t %

str
uc

t.i
nt

_s
qr

t*
 %

34
 to

 i8
*

1

51
%

40
 =

 c
al

l i
8*

 @
__

m
em

cp
y_

ch
k(

i8
*

%
35

, i
8*

 %
36

, i
64

 8
, i

64
 %

39
) #

1

5

49
%

38
 =

 b
itc

as
t %

str
uc

t.i
nt

_s
qr

t*
 %

37
 to

 i8
*

3

5

50
%

39
 =

 c
al

l i
64

 @
llv

m
.o

bj
ec

tsi
ze

.i6
4.

p0
i8

(i8
*

%
38

, i
1

fa
lse

)

1 1

Le
ge

nd

N
or

m
al

 C
on

tro
l F

lo
w

 so
lid

 a
rro

w

D
at

a
D

ep
en

da
nc

y
 d

as
he

d
ar

ro
w

Figure 7.5: Dependency graph superimposed on dominator tree for Isqrt over
its potential injection location set.

7.5. EXPERIMENT SETUP 115

entry

b1

b2

b3

b4

b29

b30

b31

b32

b33

Int1:=%x

V7:=%1

6

Int2:=%q

V8:=%2

6V1:=%1

V15:=%34

41

V18:=%37

42

6

V2:=%2

6

V3:=%a

V9:=%a

6

V17:=%36

42

V4:=%r

V10:=%r

6

V5:=%e

V11:=%e

6

V6:=%i

V12:=%i

6

V13:=%4

6

V14:=%5

1

V16:=%35

1

V21:=%40

5

V19:=%38

3

5

V20:=%39

1

1

Figure 7.6: Variable Graph for Isqrt

and %i in block1 respectively, they are not added to MTVS. However, variables

%1 and %2 are dependent on the interface variables x and q respectively. Thus,

as x and q are not dependent on any variable in MTVS they are added to the set.

Moving through the remainder blocks, no eligible variable is found for MTVS

as all variables encountered are dependent on at least one variable contained in

MTVS.

Thus executing the TVS heuristic on Isqrt returned the following variables at

the following locations:

7.5. EXPERIMENT SETUP 116

Input: Dominator dependency graph G = (U,A,U0,W,L)
Output: Variable graph G′ = (V ′, A′, U0,W

′)
begin

1 block, A′, V ′ := 1, ∅, ∅ ; // keep track of the blocks from

the dominator tree

2 while(block ≤ N)
do {

3 forall n ∈ {m | level(m) = block}
do {

4 if(∃l : ((l, n) ∈ A))
then:

5 V ′ := V ′ ∪ {n};
fi

} od
6 if(block = 1)

then:
7 U0 := V ′;

fi
8 block + +;

} od
9 forall m ∈ V ′

do {
10 if(∃n ∈ V ′ : (m,n) ∈ A)

then:
11 A′ := A′ ∪ {(n,m)};

fi

} od
12 W ′ := W ;

end

Heuristic 7.3: Algorithm to obtain a variable graph

{(%1, block1), (%2, block1), (%a, block1), (%r, block1),

(%e, block1), (%i, block1), (%x, block2), (%q, block2), }

It should be mentioned that in all the case studies, all interface variables are

returned as subsets of the variables set returned by the TVS heuristic.

7.5. EXPERIMENT SETUP 117

7.5.2 Experiment Procedure

It should be mentioned that the programs are instrumented using the instru-

mentation process explained in Chapter 6.2.1, however, the variables are chosen

using the three different variable selection methods and the errors injected are

based on the different fault models adopted in this chapter. It should also be ob-

served execution flow, campaign and experiment are as defined in Chapter 6.2.1.

To answer the four research questions posed earlier in this chapter, a number

of fault injection experiments into a number of different variables (or combi-

nations of variables) identified by different selection methods was conducted.

Before running these experiments, internal program variables were selected ran-

domly for the different target programs. Table 7.1 presents the total number of

variables chosen for the three different variable selection methods.

Table 7.1: Number of target variables selected for the different target programs

Programs
Variable Selection Method Program Variables

(Total #)Interface Heuristic Random

CRC 4 11 6 38
FFT 7 33 17 212
Dijkstra 4 7 4 70
Insert 2 10 5 76
Remove 2 13 7 277
Search 3 9 5 60
Encfile 5 15 8 105
Decfile 6 21 11 126
Cubic 2 8 4 171
Isqrt 6 19 10 39

For each execution flow, fault injection at locations corresponding to interface

variables was executed at source registers of Store instructions. All other injec-

tions were done into destinations registers of their respective locations. Variables

are grouped according to their selection method. For each group of variables,

errors injections consisting of double, triple and quadruple locations, were done

in every pairwise, triadwise and quadwise combination of variables, respectively.

For each campaign, 1000, 2000, 3000 and 4000 random experiments were con-

7.6. EVALUATION OF THE CASE STUDIES 118

ducted for each single errors, each double errors, each triple errors and each

quadruple errors, respectively. A total of 53, 163, 000 fault injections was con-

ducted (See Table 7.2).

Table 7.2: Total number of fault injection experiments conducted over all target
programs

Per Fault Model

L1C1 2340000
L1C2 4023000
L1C3 6363000
L1C4 8703000
L2C1 5994000
L3C1 7020000
L4C1 9360000
L2C2 9360000

Per Variable
Selection Method

Interface 8487000
Heuristic 30222000
Random 14454000

To better understand the profile of the software the failure scheme defined in

Chapter 3.4.3 is adopted to categorise the outcomes of the fault injection ex-

periments.

7.6 Evaluation of the Case Studies

This section sought to answer the research question introduced earlier in this

chapter (see Chapter 7.5). First, in the following section, the impact of variable

selection on experiments outcome is discussed and the various selection meth-

ods used in the experiments are compared, as reported in Chapter 7.5. The

experiments outcome shows:

1. Interface variables are subset of TVS of variables, and injections in inter-

face variables cause more SDCs.

7.6. EVALUATION OF THE CASE STUDIES 119

2. Injections in the full set of TVS cause more severe failure,

3. Injections in random internal variables show no consistent failure pattern,

4. Injecting LnCm faults causes more failures than injecting single faults,

5. Injecting L1Cm faults causes more SDCs and the higher the number of

corruptions the higher the proportion of SDCs,

6. injecting LnC1 faults causes more severe failures and the higher the num-

ber of corruptions the higher the proportion of SDCs.

This and following sections further analyse and discuss the impact of fault

model on experiments outcome. Analyses will be based on the data shown

in Tables 7.3–7.10 and in Figures 7.7a–7.7c.

Tables 7.3–7.10 depicts the percentage of error sensitivity for the different pro-

grams for each fault model under consideration. Each row shows the error sen-

sitivity to a particular failure class for a particular variable selection method.

Figures 7.7a–7.7c shows the average error sensitivity for the three variable selec-

tion methods across the different fault models. In each figure, the vertical axis

denotes the average error sensitivity to the failure classes (over all the programs)

and the horizontal axis depicts the different fault models.

Table 7.3, Table 7.4, Table 7.5, Table 7.6, Table 7.7, Table 7.8, Table 7.9 and

Table 7.10 shows the results under L1C1, L1C2, L1C3, L1C4, L2C1, L3C1, L4C1,

and L2C2, respectively. Figure 7.7a, Figure 7.7b, and Figure 7.7c shows the

results for variables selected randomly, variables selected at the interface and

variables selected by the TVS heuristic. In this analysis the variables selected

by the three methods will be referred to as random variables, interface variables

and TVS variables.

7.6. EVALUATION OF THE CASE STUDIES 120

Table 7.3: Average error sensitivity distributions for different programs for L1C1

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 8.95 7.17 3.99 55.64 30.22 26.17
dijkstra 33.85 20.66 10.94 0.00 0.00 0.00
fft 10.74 9.02 4.50 50.94 31.43 22.23
search 64.48 36.50 10.97 0.00 0.00 0.00
insert 40.78 26.94 6.89 0.00 0.00 0.00
remove 9.98 7.99 2.76 0.00 0.00 0.00
encfile 14.09 9.49 3.42 43.80 26.69 22.46
decfile 14.13 9.57 3.38 43.92 26.90 22.20
isqrt 12.50 2.70 6.71 23.90 31.63 22.22
cubic 17.50 15.62 15.32 24.90 31.53 23.82

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 12.06 9.66 5.37 4.28 3.43 1.91
dijkstra 6.77 42.15 30.21 0.00 0.00 0.00
fft 13.59 11.62 5.67 3.92 3.56 1.62
search 12.90 37.23 18.18 0.00 0.00 0.00
insert 16.31 43.97 19.02 0.00 0.00 0.00
remove 19.97 48.88 22.89 0.00 0.00 0.00
encfile 23.74 17.06 8.07 3.37 3.03 1.64
decfile 23.80 17.19 7.97 3.38 3.05 1.62
isqrt 19.10 27.33 15.22 0.20 0.00 0.00
cubic 15.60 15.52 8.51 0.00 0.10 0.20

Program
Crash
(%)

Random Interface Heuristic

crc 19.07 49.53 62.56
dijkstra 59.38 37.19 58.85
fft 20.81 44.36 65.98
search 22.62 26.28 70.85
insert 42.91 29.09 74.10
remove 70.05 43.13 74.34
encfile 15.01 43.74 64.42
decfile 14.78 43.29 64.83
isqrt 44.20 38.34 55.96
cubic 41.90 37.24 52.25

7.6.1 Variable Selection Method Effects

Figure 7.6 shows the distribution of the fault injection outcomes over all pro-

grams, grouped by fault model. These results were obtained through injections

into interface variables, random variables or TVS variables. The failure modes

7.6. EVALUATION OF THE CASE STUDIES 121

Table 7.4: Average error sensitivity distributions for different programs for L1C2

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 4.55 3.54 1.68 57.95 25.00 15.23
dijkstra 24.40 1.32 2.60 0.00 0.00 0.00
fft 6.67 4.56 2.37 51.93 23.81 14.78
search 56.22 2.03 2.60 0.00 0.00 0.00
insert 31.87 0.94 1.55 0.00 0.00 0.00
remove 6.86 0.21 0.48 0.00 0.00 0.00
encfile 7.75 4.90 1.64 49.39 23.06 14.88
decfile 7.75 4.90 1.64 49.39 23.06 14.88
isqrt 5.89 0.40 2.10 17.88 27.20 15.72
cubic 7.89 18.10 15.32 22.68 16.70 9.01

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 8.52 6.64 3.15 1.70 1.33 0.63
dijkstra 4.85 39.80 24.28 0.00 0.00 0.00
fft 10.23 7.51 3.80 1.53 1.26 0.61
search 11.18 61.55 24.28 0.00 0.00 0.00
insert 12.67 56.94 28.88 0.00 0.00 0.00
remove 13.63 62.69 45.14 0.00 0.00 0.00
encfile 18.16 12.24 5.39 1.45 1.22 0.62
decfile 18.16 12.24 5.39 1.45 1.22 0.62
isqrt 20.68 26.70 13.41 0.00 0.00 0.00
cubic 23.28 19.50 9.81 0.00 0.00 0.80

Program
Crash
(%)

Random Interface Heuristic

crc 27.27 63.50 79.31
dijkstra 70.75 58.88 73.12
fft 29.63 62.85 78.44
search 32.60 36.42 73.12
insert 55.45 42.12 69.58
remove 79.52 37.10 54.38
encfile 23.24 58.57 77.48
decfile 23.24 58.57 77.48
isqrt 55.54 45.70 68.77
cubic 46.15 45.70 65.07

of each fault model are calculated as the mean across all programs.

Injection in TVS Variables vs. Injection in Interface Variables

The observations from Figure 7.7b, and Figure 7.7c are as follows:

7.6. EVALUATION OF THE CASE STUDIES 122

Table 7.5: Average error sensitivity distributions for different programs for L1C3

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 1.94 2.41 0.99 38.83 24.82 11.13
dijkstra 19.60 0.00 0.96 0.00 0.00 0.00
fft 3.60 3.48 1.51 36.04 23.65 10.89
search 51.04 0.00 0.96 0.00 0.00 0.00
insert 27.00 0.00 0.57 0.00 0.00 0.00
remove 5.42 0.00 0.18 0.00 0.00 0.00
encfile 3.76 3.53 0.98 37.56 24.24 11.09
decfile 3.76 3.53 0.98 37.56 24.24 11.09
isqrt 2.57 0.06 0.61 12.35 22.49 10.28
cubic 3.24 19.00 13.40 18.81 8.01 2.98

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.97 1.20 0.49 0.00 0.00 0.00
dijkstra 3.40 35.67 21.48 0.00 0.00 0.00
fft 2.70 2.33 1.03 0.00 0.00 0.00
search 8.85 58.09 21.48 0.00 0.00 0.00
insert 9.37 52.58 25.57 0.00 0.00 0.00
remove 9.40 58.09 40.84 0.00 0.00 0.00
encfile 2.35 2.35 0.86 0.00 0.00 0.00
decfile 2.35 2.35 0.86 0.00 0.00 0.00
isqrt 20.66 25.08 10.94 0.00 0.00 0.00
cubic 31.64 22.20 9.90 0.00 0.00 2.80

Program
Crash
(%)

Random Interface Heuristic

crc 58.25 71.57 87.39
dijkstra 77.00 64.33 77.56
fft 57.66 70.55 86.57
search 40.10 41.91 77.56
insert 63.64 47.42 73.86
remove 85.18 41.91 58.98
encfile 56.34 69.88 87.07
decfile 56.34 69.88 87.07
isqrt 64.42 52.37 78.17
cubic 46.31 50.79 70.91

Overall, injection in TVS variables tend to induce more severe failure than

injection at only interface variables. On the other hand, injection at interface

variables are more susceptible to SDCs and Exception failures than injection in

TVS variables. With the exception of L1C4 and L2C1, injections into interface

variables are more probable to result in No impact than injections into the TVS

7.6. EVALUATION OF THE CASE STUDIES 123

Table 7.6: Average error sensitivity distributions for different programs for L1C4

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 3.17 2.41 1.63 63.49 24.82 0.49
dijkstra 24.53 0.00 0.16 0.00 0.07 0.32
fft 5.63 3.48 1.65 56.34 23.65 0.49
search 57.21 0.01 0.18 0.00 0.11 0.32
insert 32.49 0.01 0.11 0.00 0.10 0.38
remove 6.99 0.06 0.06 0.00 0.11 0.62
encfile 6.02 3.53 1.62 60.15 24.24 0.48
decfile 6.02 3.53 1.62 60.15 24.24 0.48
isqrt 1.06 0.01 0.17 8.12 18.19 6.42
cubic 1.25 18.90 10.68 14.67 3.64 0.90

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 1.59 1.20 0.81 0.00 0.00 0.00
dijkstra 4.07 32.20 19.32 0.00 0.00 0.00
fft 4.23 2.33 0.84 0.00 0.00 0.00
search 9.48 54.24 19.32 0.00 0.00 0.00
insert 10.77 48.68 23.03 0.00 0.00 0.00
remove 11.59 54.21 37.33 0.00 0.00 0.00
encfile 3.76 2.35 1.41 0.00 0.00 0.00
decfile 3.76 2.35 1.41 0.00 0.00 0.00
isqrt 19.66 23.06 8.52 0.00 0.00 0.00
cubic 40.41 23.94 9.10 0.00 0.00 8.94

Program
Crash
(%)

Random Interface Heuristic

crc 31.75 71.57 97.07
dijkstra 71.40 67.73 80.20
fft 33.80 70.55 97.03
search 33.30 45.64 80.18
insert 56.74 51.21 76.47
remove 81.41 45.62 61.99
encfile 30.08 69.88 96.48
decfile 30.08 69.88 96.48
isqrt 71.15 58.74 84.89
cubic 43.67 53.51 70.38

heuristic variables. There is negligible difference in time out failures induced.

Injecting L1C1, L1C2, L1C3, L1C4, L2C1, L3C1, L4C1 and L2C2 errors in TVS

variables and interface variables mirrors the overall trend observed for each fault

outcome.

7.6. EVALUATION OF THE CASE STUDIES 124

Table 7.7: Average error sensitivity distributions for different programs for L2C1

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 9.97 14.02 3.93 59.12 8.03 4.89
dijkstra 10.76 0.00 2.18 0.00 0.00 0.00
fft 11.56 14.19 4.14 52.87 7.91 4.84
search 31.03 0.00 2.18 0.00 0.00 0.00
insert 14.36 0.00 1.33 0.00 0.00 0.00
remove 2.60 0.00 0.46 0.00 0.00 0.00
encfile 18.06 19.55 3.93 53.54 7.47 4.89
decfile 18.06 19.55 3.93 53.54 7.47 4.89
isqrt 8.10 0.00 1.50 3.30 12.60 8.19
cubic 4.50 20.68 13.30 15.60 0.00 0.00

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.30 0.51 0.14 0.00 0.00 0.00
dijkstra 7.59 36.35 13.03 0.00 0.00 0.00
fft 2.91 0.90 0.38 0.00 0.00 0.00
search 21.88 58.81 13.03 0.00 0.00 0.00
insert 20.26 53.32 15.90 0.00 0.00 0.00
remove 18.36 58.81 27.63 0.00 0.00 0.00
encfile 0.68 0.95 0.25 0.00 0.00 0.00
decfile 0.68 0.95 0.25 0.00 0.00 0.00
isqrt 56.40 13.20 6.79 0.00 0.00 0.00
cubic 19.30 17.08 9.20 0.00 0.10 0.30

Program
Crash
(%)

Random Interface Heuristic

crc 30.61 77.44 91.03
dijkstra 81.65 63.65 84.78
fft 32.66 77.00 90.63
search 47.09 41.19 84.78
insert 65.38 46.68 82.76
remove 79.03 41.19 71.90
encfile 27.72 72.02 90.93
decfile 27.72 72.02 90.93
isqrt 32.20 74.20 83.52
cubic 60.60 62.14 77.20

From the results in Tables 7.3–7.10, it is deduced that: on program level, sim-

ilar to the already observed failure trend, injecting faults into TVS variables

causes higher crash rate than injection in interface variables, with observable

percentage difference ranging from 13.03% to 45.00%, 14.24% to 36.70%, 13.23%

to 35.65%, 12.47% to 34.54%, 9.32% to 43.59%, 5.73% to 36.02%, 0.90% to

7.6. EVALUATION OF THE CASE STUDIES 125

Table 7.8: Average error sensitivity distributions for different programs for L3C1

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.10 1.05 0.05 52.99 4.22 0.50
dijkstra 0.68 0.00 0.12 8.49 7.55 0.99
fft 2.60 2.62 0.07 50.03 8.72 0.50
search 3.10 1.30 0.17 23.88 25.98 0.99
insert 2.25 1.22 0.13 24.99 24.47 1.23
remove 1.04 4.38 0.15 17.93 8.77 2.37
encfile 0.20 2.89 0.05 52.86 7.71 0.50
decfile 0.20 3.11 0.05 53.09 8.29 0.50
isqrt 5.53 0.00 0.26 2.25 5.25 1.43
cubic 2.40 9.51 2.47 8.32 0.00 0.00

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.10 1.05 0.05 0.00 0.00 0.00
dijkstra 8.15 3.02 1.74 0.00 0.00 0.00
fft 2.60 2.62 0.07 0.00 0.00 0.00
search 24.12 11.69 1.79 0.00 0.00 0.00
insert 25.24 11.01 2.22 0.00 0.00 0.00
remove 18.11 3.95 4.29 0.00 0.00 0.00
encfile 0.25 3.85 0.09 0.00 0.00 0.00
decfile 0.25 4.15 0.09 0.00 0.00 0.00
isqrt 38.50 5.50 1.19 0.00 0.00 0.00
cubic 10.29 7.86 1.71 0.00 0.05 0.06

Program
Crash
(%)

Random Interface Heuristic

crc 46.81 93.67 99.40
dijkstra 82.68 89.43 97.15
fft 44.78 86.05 99.35
search 48.90 61.03 97.06
insert 47.52 63.29 96.42
remove 62.92 82.90 93.20
encfile 46.69 85.55 99.36
decfile 46.46 84.45 99.36
isqrt 53.72 89.26 97.12
cubic 78.99 82.58 95.76

19.95%, 1.49% to 36.46% for L1C1, L1C2, L1C3, L1C4, L2C1, L3C1, L4C1 and

L2C2 errors, respectively .

While there is not much difference in proportion of time out rate, injection at

interface variables are more prone to No impact, exception failures and SDCs

than injection in TVS variables.

7.6. EVALUATION OF THE CASE STUDIES 126

Table 7.9: Average error sensitivity distributions for different programs for L4C1

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.20 0.20 0.40 0.00 0.00 0.00
dijkstra 0.00 0.00 0.20 0.00 0.00 0.00
fft 0.63 0.80 0.40 0.00 0.00 0.00
search 0.00 0.00 0.20 0.00 0.00 0.00
insert 0.00 0.00 0.12 0.00 0.00 0.00
remove 0.00 0.00 0.05 0.00 0.00 0.00
encfile 1.64 0.37 0.40 0.00 0.00 0.00
decfile 1.74 0.38 0.40 0.00 0.00 0.00
isqrt 3.44 0.00 0.04 1.40 1.84 0.22
cubic 1.13 3.17 0.39 3.92 0.00 0.00

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 1.58 2.20 0.20 0.00 0.00 0.00
dijkstra 1.58 2.20 1.10 0.00 0.00 0.00
fft 5.05 8.84 0.20 0.00 0.00 0.00
search 16.72 15.79 1.10 0.00 0.00 0.00
insert 13.84 9.28 1.37 0.00 0.00 0.00
remove 11.81 15.79 2.71 0.00 0.00 0.00
encfile 16.45 8.22 0.35 0.00 0.00 0.00
decfile 17.35 8.64 0.35 0.00 0.00 0.00
isqrt 13.33 7.51 0.18 0.00 0.00 0.00
cubic 4.04 17.43 0.27 0.00 0.02 0.01

Program
Crash
(%)

Random Interface Heuristic

crc 98.22 97.60 99.40
dijkstra 98.42 97.80 98.70
fft 94.32 90.36 99.40
search 83.28 84.21 98.70
insert 86.16 90.72 98.50
remove 88.19 84.21 97.24
encfile 81.91 91.40 99.25
decfile 80.91 90.99 99.25
isqrt 81.83 90.64 99.56
cubic 90.92 79.39 99.34

One possible reason for injections in interface variables leading to more SDCs,

and leading to severe failure less frequently may likely be faults in one or more

of these variables only gets activated in a looping structure. We surmise that,

should this hold true, error propagation is limited to a part of the state only

when faults are injected in these structures, thereby not disturbing the state

7.6. EVALUATION OF THE CASE STUDIES 127

Table 7.10: Average error sensitivity distributions for different programs for
L2C2

Program
No Impact

(%)
Exception

(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.08 0.17 0.07 69.38 1.83 0.20
dijkstra 4.11 0.00 0.37 0.00 0.00 0.00
fft 3.12 0.26 0.08 60.93 1.82 0.20
search 14.95 0.00 0.38 0.00 0.00 0.00
insert 5.96 0.00 0.23 0.00 0.00 0.00
remove 0.98 0.00 0.09 0.00 0.00 0.00
encfile 0.16 0.25 0.07 69.24 1.81 0.20
decfile 0.16 0.25 0.07 69.24 1.81 0.20
isqrt 1.58 0.00 0.01 0.64 0.53 0.03
cubic 0.49 0.74 0.05 1.69 0.00 0.00

Program
SDC
(%)

Time Out
(%)

Random Interface Heuristic Random Interface Heuristic

crc 0.08 0.17 0.07 0.00 0.00 0.00
dijkstra 5.29 28.25 9.21 0.00 0.00 0.00
fft 3.12 0.26 0.08 0.00 0.00 0.00
search 19.22 12.87 6.63 0.00 0.00 0.00
insert 15.32 10.56 8.17 0.00 0.00 0.00
remove 12.61 12.87 11.29 0.00 0.00 0.00
encfile 0.20 0.82 0.12 0.00 0.00 0.00
decfile 0.20 0.86 0.12 0.00 0.00 0.00
isqrt 6.11 24.05 6.82 0.00 0.00 0.00
cubic 1.75 45.45 9.68 0.00 0.00 0.00

Program
Crash
(%)

Random Interface Heuristic

crc 30.46 97.84 99.67
dijkstra 90.60 71.75 90.42
fft 32.84 97.67 99.65
search 65.83 87.13 92.99
insert 78.72 89.44 91.60
remove 86.41 87.13 88.62
encfile 30.39 97.11 99.62
decfile 30.39 97.08 99.62
isqrt 91.67 75.42 93.14
cubic 96.07 53.81 90.27

enough to cause a crash, but only enough to cause data failures (SDCs and

exception failures).

However, it should be noted that failures observed with interface variables are

a subset of the failures induced by the TVS heuristic, on the account of the

7.6. EVALUATION OF THE CASE STUDIES 128

L1C1 L1C2 L1C3 L1C4 L2C1 L3C1 L4C1 L2C2
Crash 39.84 48.93 62.58 53.09 50.08 55.79 89.94 69.36
Time-Out 1.40 0.54 0.00 0.00 0.00 0.00 0.00 0.00
SDC 16.11 14.84 12.46 14.71 19.59 15.81 8.27 6.50
Exception 25.91 25.07 17.67 23.77 21.82 26.09 0.89 22.11
No	Impact 16.75 10.62 7.30 8.43 8.52 2.32 0.90 2.03

(a) Random

Figure 7.7: Average error sensitivity distribution over all target programs for
different variable selection methods.

interface variables are contained in the TVS heuristic variables. This means,

the failures uncovered by injections in interface variables are a subset of failures

uncovered by injections in the TVS variables. The trend is noticed across the

different fault models. Henceforth, interface variables and interface variables

subset will be used interchangeably.

Injection in TVS Variables vs. Injection in Random Variables

First the overall observations shown in Figure 7.7a, Figure 7.7b and Figure 7.7c

are presented: Very negligible difference between time out failures are observed.

While proportions of Exception failures are higher when injecting in random

program variables, the proportions of crash failures are ≈ 41% higher when

injecting in TVS variables. However, considering interface as a subset of TVS

variables and comparing injections into them with injections in random vari-

7.6. EVALUATION OF THE CASE STUDIES 129

L1C1 L1C2 L1C3 L1C4 L2C1 L3C1 L4C1 L2C2
Crash 40.28 49.49 55.77 58.53 63.11 82.96 88.82 83.55
Time-Out 1.18 0.43 0.00 0.00 0.02 0.01 0.00 0.00
SDC 26.16 30.00 26.91 25.57 23.97 5.33 10.17 15.56
Exception 20.80 15.45 13.16 11.75 4.76 8.57 0.31 0.70
No	Impact 11.57 4.62 4.16 4.14 8.15 3.13 0.69 0.19

(b) Interface

Figure 7.7: Average error sensitivity distribution over all target programs for
different variable selection methods.

ables, The most difference observed being ≈ 13% higher crash rate for injections

in interface variables, and ≈ 7% in favour of injections in program variables,

under L3C1 and L1C3 respectively. Similarly, random internal injections are

mostly more prone to exception failures than interface injections.

Observations on fault model level: the most noticeable difference is in the rate

of crash failures ranging from 13% to 41%, the lowest and highest difference are

observed under L1C3 and L3C1 errors respectively. There is almost no difference

in time out failure rate. Injections in random program variables are more prone

to exception failure and more probable to result in No impact than injections in

TVS variables. Similar trend is observed for injections into a interface variable

compared to injections in random variables. Injections into TVS variables is

often slightly more resilient to SDCs. However, injections into the interface

variables subset is more sensitive to SDCs.

7.6. EVALUATION OF THE CASE STUDIES 130

L1C1 L1C2 L1C3 L1C4 L2C1 L3C1 L4C1 L2C2
Crash 64.18 69.26 75.98 81.31 82.84 96.87 98.91 93.82
Time-Out 0.62 0.34 0.47 1.49 0.05 0.01 0.00 0.00
SDC 12.78 17.37 14.79 13.27 10.01 1.59 0.82 6.02
Exception 15.73 9.12 5.88 1.55 2.99 1.00 0.04 0.07
No	Impact 6.69 3.92 2.88 2.38 4.11 0.52 0.23 0.09

(c) TVS Heuristic

Figure 7.7: Average error sensitivity distribution over all target programs for
different variable selection methods.

Observations on program level: the following can be inferred from Tables 7.3–

7.10: while injection into TVS variable is more prone to crashes than injection

into random variables (with difference ranging from ≈ 0.18% to ≈ 69.22%), in-

jections in random variables are often more prone to SDCs (with most observed

difference of ≈ 11%) compared to injections in the full set of TVS variables and

consistently more resilient to the same SDCs when compared to the interface

variables subset. However, under certain errors for certain program injection

into the full set of TVS errors is more prone to SDCs than injections into ran-

dom variables. For example, under L1C2 for remove (patricia), injecting in full

set of TVS variables induced ≈ 32% higher SDCs and for Isqrt under L2C2

errors, injecting into random variables observed ≈ 50% higher SDC rate.

We conjecture, the tendency for injections in TVS variables to induce more

severe failure than injections in randomly selected program variables may be

7.6. EVALUATION OF THE CASE STUDIES 131

explained by the TVS heuristic bias towards selecting target locations that

will always be reached during normal program execution. This means faults

inserted in TVS variables will mostly be activated, i.e will be read by another

instruction in the program, except in instances where another activated fault

has either change the flow of execution or cause the program to prematurely

terminate.

7.6.2 Fault Model Effects

At a glance, L2C1, L3C1, L4C1 and L2C2 errors seem to consistently cause more

severe failures than L1C4, L1C3, L1C2 and L1C1 errors, they also tend to be less

susceptible to exception faults and less prone to SDCs. There is almost no differ-

ence between the eight models for time out failures. The multiple fault models

induces less benign faults than the single fault model. The proportion of no

impact faults is almost constant as corruption increases for the multiple corrup-

tions in single location fault models (L1C2, L1C3 and L1C4) and decreases with

corruption increase for the single corruption across multiple locations (L2C1,

L3C1 and L4C1) and for L2C2.

L1C1 faults vs. LnCm faults

Injecting LnCm faults cause higher crashes than injecting L1C1 faults, irrespec-

tive of variable selection method or fault type. Most crash rate difference are

observed under L4C1 faults, ≈ 50% for random variables, ≈ 49% for interface

variables subset and ≈ 35% for TVS variables full set. Whereas the least ob-

served rate difference are under L1C2 errors, ≈ 9% for random variables and

interface variables subset, and ≈ 5% for TVS variables full set.

Proportion of exception failures is lower under LnCm than under L1C1 faults,

irrespective of variable selection method. No impact rates observed under LnCm

7.6. EVALUATION OF THE CASE STUDIES 132

are almost halved, in some cases more, as compared to L1C1 errors. While SDCs

are less under errors injected across multiple locations (LnC1 and L2C2) than

under L1C1 errors, SDCs are slightly more under multiple errors injected into a

single variable than under L1C1 errors, for interface variables subset and TVS

variables (full) set. Most difference observed is for L2C1 errors, ≈ 4% and ≈ 5%

for interface variables subset and TVS heuristic (full) set, respectively. However,

for injections in random variables there is no distinct pattern in SDC rate. And

there is almost no observable difference between the LnCm models and the L1C1

model for time out failure mode.

Thus, the results show that LnCm faults tend to cause:

1. Higher proportion of failures,

2. Higher proportion of SDCs under L1Cm faults,

3. A higher proportion of severe failures under the LnC1 faults.

We conjecture that the reason for the higher proportion of crashes is due to the

fact that the impact of each individual fault is amplified, causing a big enough

perturbation in system state to cause a crash.

L1Cm faults vs. LnC1 faults vs. L2C2 faults

While injecting LnC1 faults cause more crashes and less no impact rates than

L1Cm faults, L1Cm causes more SDCs and exception failure rates than LnC1.

For injections in TVS variables, L1Cm causes negligibly higher proportion of

time out failures than LnC1.

Proportion of crash rate increases with number of corruptions, irrespective of

selection method. SDC decreases with number of corruptions for TVS vari-

ables, whereas for interface variables subset SDC rates increase with number of

corruptions under L1Cm faults and decrease with number of corruptions under

7.6. EVALUATION OF THE CASE STUDIES 133

LnC1 faults. However, for random variables, while SDC rate under L1Cm faults

slightly varied in no definitive way and under LnC1 it decreases as corruption

increases.

L1Cm injections in interface variables subset causes exception rate to slightly

decrease as number of corruption increases and no definitive change rate for in-

jecting LnC1. Injecting L1Cm faults in interface variables subset causes decrease

in exception failure rate as number of corruptions increases, whereas injecting

LnC1 causes slight decrease. There are no observable pattern for injecting ei-

ther L1Cm or LnC1 in random variables. Proportion of no impact rate decreases

with number of corruptions under either L1Cm or LnC1 irrespective of variable

selection method.

L2C2 faults cause less crashes than L4C1 faults but more crashes than the other

L1Cm and LnC1 faults, irrespective of variable selection method. Injecting L2C2

errors in interface variables subset or the full TVS variables set cause more SDC

rate than injecting multiple faults in more than two locations (L3C1 and L4C1

errors) and less SDC rates than injecting L1Cm and L2C1 faults. Whereas in-

jecting L2C2 faults in random variables cause less SDCs than either L1Cm or

LnC1 faults. Injecting L2C2 errors cause lower proportion of no impact rate than

injecting either L1Cm or LnC1, irrespective of fault variable selection method.

While injecting L2C2 faults cause negligibly higher proportion of exception fail-

ure rate for interface variables subset and full TVS variables set than injecting

L4C1 faults, for random variables L2C2 faults cause a much higher proportion

of exception failure rate than L4C1 faults. Whereas they cause less proportion

of exception failure rate in for the other types of errors. And there is almost no

observable difference between the different types of models for time out failure

mode.

Thus, the results show that:

1. Crash rate increase concomitantly with corruption increase,

7.7. IMPLICATION AND LIMITATION 134

2. SDC rate increase with number of corruption under L1Cm faults and de-

crease as number of corruption increases under LnC1 faults,

3. LnC1 faults cause more crash rate and less no impact rate than L1Cm

faults,

4. L1Cm faults cause more SDC rate and exception failure rate than LnC1

faults.

We conjecture that LnC1 faults increase error propagation in a program, thus

resulting in lower no impact rat. Secondly, they amplify the effect of errors in the

program thereby causing more crashes. Also, it is postulated that because L1Cm

are constricted to a single location they do cause perturbation great enough to

corrupt the data but may not be great enough to induce a crash. Secondly, the

nature of the LnCm fault model, prohibits the selection of variables along the

same path, as such variable location combinations that may potential amplify

the effect of SDCs are overlooked. This is also postulated to account for the

reason why the L1Cm models are causing higher SDC rate that the LnC1 fault

model.

7.7 Implication and Limitation

From the results, the key findings that emerge are:

1. Differences exist among different types of variables selection methods in a

program in terms of their failure rates,

2. Injecting faults in TVS variables leads to higher crash rates compared to

injecting into randomly selected variables,

3. Interface variables are a subset of TVS variables, and injecting into them

leads to higher SDC rates,

7.7. IMPLICATION AND LIMITATION 135

4. Difference exist among different types of soft-errors in a program in term

of their failure rates,

5. Flipping multiple bits in a single location leads to higher SDC rates as

compared to flipping single bits in multiple locations, and SDC rate in-

creases with increase in number of bits flipped,

6. Flipping single bits in a multiple location leads to higher crash rates as

compared to flipping multiple bits in a single location.

The results imply that systematic selection of variables for soft-error injections

potentially selects those locations that uncover more severe vulnerabilities in

program as compared to random variable selection. Another implication of the

results is it does not matter for the SDC rate of the program whether injections

are made in full TVS variables set or in just the interface variables subset. This

indicates that if the primary focus is on SDCs, then injections into interface

variables subset may be sufficient for analysing the resilience of the program,

compared to injections in the full TVS variables set. Similarly, the results show

adopting the L1Cm fault models may be sufficient for analysing the resilience

of the program to SDCs, compared to adopting LnC1 fault models.

The interface variables demonstrated a completely different failure profile to

that of its superset, the TVS variables. This suggests that different subset of

the target variable may potentially induce different failure profile. The approach

presented here is not readily applicable to neither black-box software as data

dependency cannot be obtained nor to software that cannot be modelled as

a control-flow graph. For such software, new techniques are required. The

target systems adopted, the input sets uses and fault models assumed may have

influenced the results shown, i.e., adopting different programs or input set or

fault model may produce a divergent result.

7.8. SUMMARY AND CONCLUSIONS 136

7.8 Summary and Conclusions

This chapter presents heuristics to systematically select the location aspect of

the LnCm, fault model. This framework selects target variables for injecting

MBF in a single software execution. To determine these variables, the problem

is split into two: (i) injection location selection and (ii) target variables selection

at the possible locations. The thesis proved, in Chapter 5, both problems to

be NP-complete and provided, in this chapter, two heuristics, one for each

problem. Case studies have been developed to show the viability of the proposed

methodology. To demonstrate the framework the chapter have shown detailed

results from injecting seven versions of LnCm errors into ten embedded control

systems.

In comparison with injection in randomly selected variables, the results show

that LnCm uncovers more vulnerabilities. Also, the results show that the frame-

work always include interface variables in the set of target variables suitable for

injection. Injecting into interface variables uncovers more SDCs than random

injections. Injecting into full set of the selected variables uncovers more severe

vulnerabilities than random injections and into its interface variables subset. In-

jections into variables selected randomly uncovers more exception failures than

injections into variables at either the interface variables subsets or the full set

of variables selected by the approach.

Secondly, the results presented demonstrate that multiple errors in a single

locations (LnCm fault models) cause higher SDC rates as opposed to single

errors in multiple locations (LnC1 fault models), and SDC rate increases as

number corruptions introduced increases for L1Cm faults, whereas single errors

in multiple locations cause more crashes and lower no impact rates as compared

to multiple errors in a single locations. Thirdly, more severe vulnerabilities are

uncovered concomitantly with increase in number of corruptions.

7.8. SUMMARY AND CONCLUSIONS 137

Finally, the results show that the fault space for multiple bit-flips fault injections

can be effectively and systematically reduced. The next chapter will explore

means of further reducing the fault space using data mining approach to discern

the bit-position combinations that would induce wider failure profile.

CHAPTER 8

Learning Bits Patterns

Thus far, the thesis has focused on determining efficient target locations for

the LnCm fault model. To this end, in the previous chapter a framework was

proposed to facilitate the selection of efficient program variables that should

be targeted during multiple soft-errors fault injections. This framework has

facilitated in the reduction of the exponential fault space (in terms of target

variables) for multiple fault injections. However, the fault injection point space

(in terms of injection points) remains enormous for the LnCm fault model.

For any given LnCm fault model, there are
(
x
n

)
variable combinations possible,

where x is the total number of all variables in the target variable set and n, the

maximum number of locations to corrupt in a given execution. And, number

of possible fault injections for a given location is
(
y
m

)
, where y is the size of the

given location (in terms of the length of bits) and m is the maximum number

of corruption to introduce in the said location. Thus, the fault space for the

LnCm fault model is
(
x
n

)
·
(
y
m

)n
.For example, adopting a L3C4 fault model over

six target variables, with each variable being 8-bits long, makes the number

of possible injections
(
6
3

)
·
(
8
4

)3
, i.e., there are 1, 410, 760, 000 possible injection

points.

This chapter attempts to fine tune the LnCm fault model by narrowing down the

fault injection points, in terms of combination of variables to inject into and the

bit-positions to perturb within a given variables combination. To this end, the

chapter develops a systematic approach for the identification of efficient injec-

138

8.1. DATA MINING IN SOFTWARE DEPENDABILITY 139

tion points for real world, embedded software. More specifically, the proposed

approach employs data mining techniques, including decision tree induction and

rule induction, for the analysis of fault injection data sets, in order to discover

efficient injection points. The results presented demonstrate that this approach

can be used to efficiently reduce the fault injection point space for the LnCm

fault model.

8.1 Data Mining in Software Dependability

Data mining techniques have been applied to address a number of other soft-

ware dependability issues. In the context of improving software reliability, the

application of data mining techniques have generally focused on the analysis

of failure data and service logs for dependable software systems. For example,

Some research [99, 101] have applied data mining techniques to improve soft-

ware bugs detection. For example, Livshits and Zimmermann [99] emplodyed

data mining techniques for learning common usage patterns from the revision

histories of large software systems. The research analyses source code check-ins

to find highly correlated method calls as well as common bug fixes in order to

automatically discover application-specific coding patterns. Lo et al. [101] first

mines a set of discriminative features capturing repetitive series of events from

program execution traces. It then performs feature selection to select the best

features for classification. These features are then used to train a classifier to

detect failures. There are studies that investigates data mining techniques for

the purposes of derivation of error detection predicates. For example, Pintér

et al. [122] used a combination of data mining techniques on data recorded

during benchmarking to identify key infrastructural factors in determining the

behaviour of systems in the presence of faults. These analyses can also serve to

help to identify weaknesses or vulnerabilities in a software system. Leeke et al.

[91] applied data mining techniques on fault injection data to discover efficient

8.2. DATA MINING CONCEPTS 140

predicates for error detection mechanism in order to enhance dependability and

address vulnerabilities in software systems.

In contrast, the data mining-based approach proposed in this chapter seeks to

discover injection points for multiple soft-errors in order to enhance dependabil-

ity validation and address vulnerabilities in software systems.

8.2 Data Mining Concepts

Technological advancement have resulted in generating and recording flood of

data, and the amount of data information in the world is constantly rising as

technology advances. These data are of no use until they are converted into

useful information. Thus, it is necessary to analyse and understand this huge

amount of data and extract useful information from it. The ability to extract

useful knowledge hidden in these data and to act on that knowledge is becoming

vital in today’s increasingly information-driven world. In the case of the research

presented in this chapter, it is important to understand behavioural patterns of

software systems that can be used for building high-level soft-error fault models.

8.2.1 Fundamentals of Data Mining

Data mining is a technology that automatically sifts through huge amount of

raw data, seeking regularities and patterns that exist therein, with the aim

of using the information obtained to forecast behaviours of future data or to

derive knowledge about the data, if the data itself is obscure. Data mining is

well-motivated in areas where processes generate vast volume of raw data and

there exist high complexity in analysing the data.

Data mining sorts through large-scale data to discover patterns and establish

relationships. Technically, data mining is the process of finding correlations or

8.2. DATA MINING CONCEPTS 141

patterns among dozens of fields in large relational databases. This process of

finding correlations or patterns is called learning. The (the patterns or corre-

lations) to be learned is called a concept or a target function or a model. The

data input used for learning the concept is a set of instances. Each instance

is an individual, independent example of the concept to be learned. It should

be mentioned that some learning tasks makes it improbable to express the raw

data as individual, independent instances and often require background knowl-

edge to be considered as part of the input. For example, learning task involving

time sequence. However, the research presented in this chapter employs simple

learning schemes and the data used can be presented in the form of individ-

ual instances. Each instance is characterised by the values of attributes that

measure different aspects of the instance. There are different types of attribute,

although the research here deals only with numeric and nominal (or categorical)

ones. The output produced by a learning scheme is called a concept description

or a target function or a model. Data mining learning styles include:

• Classification: This involves seeking novel and informative patterns. If

an existing structure is already known, data mining can be used to clas-

sify new cases into these pre-determined categories. That is, the learning

scheme called a classifier, is presented with classified instances from which

it is expected to learn a way of classifying previously unseen instances.

Classified instances are labelled with class values, and class values for new

instances are determined. In the case of the research presented in this

chapter, classification algorithms are applied to fault injection instances to

learn, fault injection points that may likely induce failure. In a sense, clas-

sification learning operates under supervision, as the actual outcome, i.e.,

the class, of each learning example is given. Thus, classification learning

is sometimes called supervised learning. The target function of supervised

learning is a discrete function and is also referred to as a classifier.

• Association: This seeks for insightful patterns where one event is corre-

8.2. DATA MINING CONCEPTS 142

lated with another event. This seeks association between attributes, not

just ones that predict a particular class value. Association learning differ

from classification in two ways: (i) they can determine the value of any

attribute, not just the class, and (ii) they can determine the value of more

than one attribute at a time.

• Clustering: This involves discovering and recognising distinct categories

of facts not previously known within the data. This seeks groups of in-

stances that naturally belong together. Clustering finds these clusters and

assign the instances to them, and if need be assigns new instances to the

clusters.

• Forecasting (or prediction): Finds patterns in the data that can lead to

reasonable prediction about future probabilities and trends. This area of

data mining is known as predictive analytics. It is used to predict missing

or unavailable numerical data values rather than class labels. Regression

Analysis is generally used for prediction. Prediction can also be used for

identification of distribution trends based on available data.

• Sequence (or path analysis): Is concerned with finding relevant pat-

terns between data examples where the values are delivered in a sequence,

i.e., where one event leads to another later event. The input data is a set

of sequences called data sequences. Each data sequence is a list of trans-

actions, where each transaction is a sets of items. A sequential pattern

also consists of a list of sets of items. Sequence pattern analysis aims to

find all sequential patterns with a user specified minimum support, where

the support of a sequential pattern is the percentage of data sequences

that contain the pattern.

The work in this chapter focuses on classification learning, hereafter, discussions

are focused on concepts relating to supervised learning. In a simple domain, each

instance is characterised by a set of n-attributes, the set of instances is a subset

8.2. DATA MINING CONCEPTS 143

of an n-dimensional space called an Instance Space, I. Every point in I is a

potential state of the process being modelled. In supervised learning, a data

mining algorithm is tasked with learning a good approximation, f̂ , of the target

function, given a set of instances called training data set, Ttrain, (Ttrain ⊂ I),

consisting of N pairs < xi, f(xi) >. The success of supervised learning is judged

by trying out f̂ on an independent set of instances called test data set, Ttest,

(Ttest ⊂ I), for which the true classifications are known but not made known

to the learner. The success rate on the Ttest gives an objective measure of how

efficiently the concept has been learned.

While there are many classification algorithms, most use the same workflow for

approximating a function. Data mining involves a sequence of important steps.

The steps for supervised learning include:

• Preparing data: This step include transforming the data into appro-

priate data mining format, i.e., creating data mining data sets, cleaning

data and dealing with missing values, scaling and normalising data, trans-

forming and reducing variables, partitioning data set into training, vali-

dation and test data sets, addressing class imbalance, and carrying out

exploratory data analysis using graphical and statistical techniques.

• Choosing an algorithm: Classification algorithms include regression,

decision-trees, rules induction, support vector machines (SVM), neural

networks, genetic algorithms, näıve Bayes and nearest neighbours meth-

ods. The key difference between classification algorithms is in the kind

of decision boundary that is defined between classes, i.e., their functional

form and the set of parameters they fit, and the heuristic they employ in

searching for the optimal function, also known as the hypothesis, within

the space of possible hypotheses as defined by the functional form of the

hypotheses.

• Fitting a model: This step is the learning step or the learning phase.

8.2. DATA MINING CONCEPTS 144

This involves adjusting learning parameters of the chosen classification

scheme and building the model from a training data set. The learning pa-

rameters and the type of model generated are dependent on the algorithm

used.

• Choosing a validation method: This involves selecting measures to

examine the accuracy of the resulting fitted model. The model validation is

done, in order to obtain a measure of its expected accuracy on unseen data.

Often the accuracy of a model is evaluated with respect to the percentage

of test data instances correctly classified, hence most algorithms seek to

learn hypotheses that minimise the number of errors.

• Examining fit and updating until satisfied (model refinement):

After validating the model, there might be need to change it for better

accuracy, better speed, or to use less memory.

• Using fitted model for predictions: This involves interpreting the

model and drawing conclusions.

The approach proposed in this chapter is to generate simple model to guide in

the selection of efficient fault injection points. The main goal of the approach is

is to detect the combination of multiple bit-flips that may likely result in system

failure. For example, the approach aims to be able to predict that flipping bit

6 in variable A, bit 18 in variable B and bits 11 and 29 is variable C will most

probably induce a system failure. Considering the objective of the approach

and the nature of the datasets, this chapter focuses on discriminant methods to

predict bit-flip combinations that may potentially cause the system to failure, as

such, decision trees, rule induction and näıve Bayes algorithms are considered.

The fault injection point efficiency is determined by evaluating the quality of

the model produced by the learning schemes. This is done by measuring the

prediction capabilities of the model.

8.3. ASSESSMENT METRICS FOR MODEL QUALITY 145

8.3 Assessment Metrics for Model Quality

The validation methods often employed to measure the accuracy of the approx-

imation function, implicitly assumes that all types of misclassification incur

an equal cost, this however, is not always the case. For example, considering a

model for a safety-critical software system which predicts either a system failure-

inducing or non-failure-inducing state. Predicting a failure-inducing state as

being non-failure-inducing, will typically result in a much more significant cost

than classifying a non-failure-inducing state as being failure-inducing. In such

situations, the predictions of a model on a test data set can be cross-tabulated

with the actual classes assigned to the instances by the target function to pro-

duce a confusion matrix. Table 8.1 shows the general form of a confusion matrix

for a binary classification problem (though it can easily be extended to the case

of more than two classes). Classification tasks involving two classes is known

as binary classification and the corresponding function approximation is known

as a binary function. Typically, in binary classification, one class is the class of

interest and is referred to as the “concept”. The instances belonging to this con-

cept are referred to as positive instances or positives for short. On the contrary,

all other instances not belonging to the concept are called negative instances or

negatives for short. In the context of the aforementioned example, (and in most

software dependability analysis that uses for binary classification), the function

predicts either a system state is going to lead to a system failure or a successful

execution and the positives are the instances labelled as those leading to system

failure.

In Table 8.1, TP is the number of positive correctly labelled as positives by f̂ ,

known as true positives, whilst FN is the number of positives misclassified as

negatives, known as false negatives. Further, FP is the number of negatives

incorrectly classified as positives, known as false positives, whilst TN is the

number of negatives correctly classified as negatives, known as true negatives.

8.3. ASSESSMENT METRICS FOR MODEL QUALITY 146

Finally, npos and nneg are the respective total number of positives and negatives

in the test data and n̂pos and n̂neg are the total number of instances predicted

as positives and negatives, respectively. In software dependability analysis, it is

natural to seek out models that maximise true positives and minimise false pos-

itives, not least because these correspond closely with the concepts of accuracy

and completeness. However, as a balance must be struck between these related

concerns, it is appropriate to identify an aggregated measures of model quality.

Table 8.1: The general form of a confusion matrix for binary classification.

Predicted Class

Positives Negatives Marginal Sums

Actual Class
Positives TP TN npos
Negatives FP FN nneg
Marginal Sums n̂pos n̂neg n

A variety of metrics for model assessment are derived from a confusion matrix.

The most commonly used of these metrics are the True Positive Rate (TPR),

also known as sensitivity or recall, and true negative rate (TNR), also known as

specificity. Sensitivity measures how often a model predicts an instance to be

positive, when it is actually positive and it is computed as shown in Equation 8.1.

Specificity measures how often a model predicts an instance to be negative when

it is actually negative and it is computed as shown in Equation 8.2.

TPR = sensitivity =
TP

TP + FN
(8.1)

TNR = specificity =
TN

TN + FP
(8.2)

Other commonly used model validation metric include Receiver Operating Char-

8.3. ASSESSMENT METRICS FOR MODEL QUALITY 147

acteristic (ROC) Curve (or ROC for short) and area under the curve (AUC),

F-score, precision, false positive rate (FPR), mcost, accuracy and misclassifica-

tion rate.

Accuracy measures how often the model is correct overall and it is computed as

shown in Equation 8.3. Misclassification Rate, measures how often the model

is wrong overall and it is given as shown in Equation 8.4. Misclassification rate

is also known as error rate and is equivalent to 1 minus accuracy.

accuracy =
TP + TN

TP + TN + FN + FP
(8.3)

error rate = 1 − accuracy =
FP + FN

TP + TN + FN + FP
(8.4)

FPR, measures how often a model predicts an instance to be positive, when

it is actually a negative. FPR is equivalent to 1 minus specificity, and its

computation is shown in Equation 8.5.

FPR = 1 − specificity =
FP

FP + TN
(8.5)

ROC analysis combine the FPR and the TPR into one single metric and it is

based on a 2-dimensional graph that summarises the performance of a model

over possible thresholds. It is generated by plotting the TPR (y-axis) against

the FPR (x-axis) as the threshold for assigning instances to a given class is

varied. It shows the tradeoff between sensitivity and specificity (any increase

in sensitivity will be accompanied by a decrease in specificity). The closer

the curve follows the left-hand border and then the top border of the ROC

8.3. ASSESSMENT METRICS FOR MODEL QUALITY 148

space, the more accurate the test. The closer the curve comes to the 45-degree

diagonal of the ROC space, the less accurate the test. For different thresholds,

the same classifier will produce multiple points on such a plot. The AUC it

is obtained by joining these plotted points to (0,0) and (1,1). The AUC is a

measure of expected model accuracy for the classifier. For a single model, the

simple trapezium obtained by connecting the coordinates (0,0), (FPR,TPR),

(1,1) and (1,0) has an area given by Equation 8.6. An area of 1 represents a

perfect model.

AUC =
TPR − FPR + 1

2
(8.6)

The Euclidean distance from the perfect classifier, which has coordinates (0, 1),

i.e, FPR = 0 and TPR = 1, may be used in the ranking of single models. This

measure is given by the well known formula in Equation 8.7.

euclidean distance =
√

(FPR − 0)2 + (1 − TPR)2 (8.7)

Precision measure how often a model prediction is correct when it predicts

yes and is given by Equation 8.8. Precision and Recall together with their

harmonic mean F1 measure or balanced F-Score (F1-Score) are often used as

a model quality metric in the domain of information retrieval. The F-Score is

a weighted average of the recall and precision, and it is measured as shown in

Equation 8.9.

precision =
TP

TP + FP
(8.8)

8.3. ASSESSMENT METRICS FOR MODEL QUALITY 149

F1−Score = 2 · precision · recall
precision+ recall

(8.9)

When specific classification errors are more severe than others, e.g., When the

cost associated with a false positive is different from that of a false negative, a

more appropriate measure of quality is expected, misclassification cost, rather

than the expected error. This requires the definition of a cost matrix. Assuming

there are m class labels, Li, an m×m cost matrix, C, needs to be defined such

that the value C(i, j) is the cost of misclassifying an instance of class Li to

the class Lj . Clearly C(i, i) = 0 as there should be no cost associated with

correctly classifying an instance. The model tries to avoid classification errors

with a high error weight. Weights specified must be greater than or equal to zero.

The default weight is 1. The cost matrix diagonal must be zero. Minimising the

error is a special case of minimising misclassification cost when the cost matrix

is defined as C(i, j) = 1, where i 6= j and C(i, i) = 0. The expected

misclassification cost, mcost, can then be calculated as shown in Equation 8.10,

where CM(i, j) represents index access to the associated confusion matrix using

i and j.

mcost =

m∑
i

m∑
j

C(i, j) · CM(i, j) (8.10)

The proposed approach in this chapter focuses on the generation of efficient

fault injection points, which means that the model quality is evaluated with

respect to the efficiency, i.e., the levels of accuracy and completeness, that can

be achieved by these points. With this in mind, the AUC measure, which is

an aggregate representative of accuracy and completeness in the form of TPR

and FPR, is used in measuring model quality. However, as misclassification

8.4. ADDRESSING CLASS IMBALANCE 150

costs are likely to vary in the context of dependable software systems, steps

must be taken to ensure that high AUC values are not achieved through the

neglect of accuracy or completeness. Having this in mind, TPR and FPR are

also considered when evaluating the quality of generated models.

8.4 Addressing Class Imbalance

Typically standard learning algorithms, in addition to assuming equal mis-

classification costs, expect the balanced class distributions across the training

data [56, 63]. Therefore, when presented with complex imbalanced data sets,

these algorithms fail to properly represent the distributive characteristics of the

data and resultantly provide unfavourable accuracies across the classes of the

data. To improve the performance of learning algorithms in the presence of

under represented data and severe class distribution skews, there is need to bal-

ance the data efficiently. However, there are a number of domains, such as error

detection, intrusion detection, fraud detection and software reliability, where

the class distribution is skewed. Often in a binary classification, the positive

class is the minority class and the class of interest. For example, in the con-

text generating error detection mechanisms, detecting system failures is of most

interest and it is the minority class [91].

The approach proposed here assumes that the data generated during fault injec-

tion analysis generally captures aspects of relationships between system states

and systems failures, in particular it captures relationships between bit-positions

and failure profile. Based on the sampled states and observed system behaviour

during fault injection analysis, a data mining algorithm can then determine fault

injection points through learning about these captured relationships. Typically,

data sets generated from fault injection analysis are skewed, i.e., some failure

mode occur less frequently than others. Such imbalance data sets must first

be processed for the learning process to be effective with respect to generating

8.4. ADDRESSING CLASS IMBALANCE 151

efficient fault injection points.

There are two common used approaches to overcome the effects of imbalanced

data. The first of these, modifies the imbalance data set by some sort of sam-

pling approach in order to provide a balanced distribution [63, 80, 96]. A variety

of sampling methods have been proposed. Oversampling and undersampling are

the most commonly sampling methods in usage. They are opposite and roughly

equivalent approaches. They both involve using a bias to select more samples

from one class than from another. In the case of oversampling, original data

set is increased by a set of replicated instances from the minority class, and the

these resampling can be with or without replacement. Undersampling involves

decreasing the original set by removing some instances of the majority class, and

resampling is done without replacement. These approaches introduces their own

set of issues that can potentially hinder model performance. Removing instances

of majority class can potentially cause the learning scheme miss important con-

cepts regarding the majority class. On the other hand, adding replicated in-

stances may potentially cause the learning scheme to overfit. The former is a

problem related to undersampling and the latter to oversampling [110]. To cir-

cumvent around these issues and to improve model accuracy Chawla et al. [18]

demonstrated the use of cross validation for setting the level of oversampling

and undersampling of the majority and minority classes automatically. Some

research proposed informed undersampling and oversampling methods to ame-

liorate these issues. Zadrozny et al. [166] suggest the use of a cost-proportionate

rejection sampling technique, while Kubat and Matwin [80] proposed removing

redundant and borderline negative instances during undersampling. However,

Japkowicz [63] demonstrated that oversampling from the boundary regions and

undersampling far from the decision boundary adds little value over random

sampling approaches. Chawla et al. [17] proposed a method, Synthetic Minor-

ity Oversampling Technique (SMOTE), to generate synthetic data for minority

classes along the line segment joining an instance to k minority class nearest

8.4. ADDRESSING CLASS IMBALANCE 152

neighbours rather than simply sampling with replacement. They demonstrated

that SMOTE outperforms simple sampling with replacement.

The second approach uses cost-sensitive learning methods to consider the costs

associated with misclassifying instances. Typically, they set higher cost as-

sociated with misclassifying instances of the minority class by defining a cost

matrix based on the class imbalance and then use the same error minimisation-

based concept learning algorithms. However, this approach assumes that such

a cost matrix can be incorporated by the learning process. There are some

methods that replace error minimisation metrics with cost minimisation met-

rics when searching the hypothesis space. However, Pazzani et al. [120] et al.

demonstrated that adopting misclassification costs as a greedy selection crite-

ria in decision tree induction does not provide cost minimisation for the model

generated. Further, Ting [157] using instance weighting is more effective than

using a cost minimisation-based approach. However, assigning distinct weights

to training instances, in effect, modifies the data distribution within the train-

ing data [34, 41, 120, 157]. Typically, it is necessary to convert cost matrix

into cost vector, V , and this may potentially be difficult in the case of multi-

class classification problems. Breiman et al. [12] proposed using the sum of all

misclassification costs for instances of the class. Ting [157] uses an alternative

weight, V (i) = arg max
j

(C(i, j)), to assign weight to all instances of a particular

class, Lj , based on V (j) using the formula shown in Equation 8.11, where Nj is

the number of instances in the data labelled Lj and N =
∑
iNi.

w(j) = V (j) · N∑
i V (i) ·Ni

(8.11)

Another noteworthy approach adopted for imbalanced learning problems is ac-

tive learning methods [38, 39]. Traditionally, active learning methods are used

to solve problems related to unlabelled training data. The prime concept of

8.5. GENERATING FAULT INJECTION POINTS 153

active learning is that a machine learning algorithm can achieve high accu-

racy with small amount of training labels. This is achieved by allowing the

learning algorithm to interactively query an information source to provide for

data labels [143]. Active learning approaches for imbalanced learning are of-

ten integrated into kernel-based learning methods. For instance, Ertekin et al.

[39] uses SVM-based active learning to select instances that are closest to the

current hyperplane. In [38, 39], they proposed an efficient SVM-based active

learning method which queries a small pool of data at each iterative step of

active learning instead of querying the entire data set. In this procedure, an

SVM is trained on the given training data, after which the most informative

instances are extracted and formed into a new training set according to the

developed hyperplane. Finally, the procedure uses this new training set and all

unseen training data to actively retrain the SVM using the LASVM online SVM

learning algorithm [10] to facilitate the active learning procedure.

8.5 Generating Fault Injection Points

The approach presented in this chapter generates efficient fault injection points

in three stages. The initial stage of the process is done in two steps: Step 1,

involves performing fault injection analysis by perturbing identified target vari-

ables in a program with multiple soft-errors, in order to capture the relationship

between these perturbations and their impact on the program. The logged data

can be used for generating efficient fault injection points. Step 2 involves pre-

processing the fault injection analysis data. The aim of this step is to: (i)

transform the fault injection data into an appropriate format for usage in data

mining analysis, and (ii) to address any class imbalance in the generated data

sets. Stage two of the process consists of two steps: Step 1 requires choosing an

appropriate data mining algorithm and adjusting parameters that will improve

the effectiveness of the chosen algorithm. In step 2, the chosen learner is applied

8.5. GENERATING FAULT INJECTION POINTS 154

to transformed and balanced data set, in order to produce and assess the first

fault injection points. The third and final, stage, adjusts the fitting parameters

of the learning scheme, if need be, to improve the injection efficiency in terms in-

ducing failure. An overview of the process of generating efficient fault injection

points in shown in Figure 8.1, and the process in elaborated in Sections 8.5.1-

8.5.3.

Stage	1:	Data	Preparation

Fault	
injection	
analysis

Target	
Variables

Fault	
injection	
data

Transform	
to	data	set

Balance	
data	set

Stage	2:	Model	Fitting

Learning	
process

Training	
data	set

Select	learning	
scheme

Adjust	 learning	
parameters

Stage	3:	Model	
Optimisation

Refit	model

Efficient	fault	
injection	points

Figure 8.1: Workflow for generating efficient fault injection points.

8.5.1 Stage 1: Data Preparation

The objective of this is to generate data mining sets from fault injection analy-

sis. Thus, the initial step of the proposed approach is to perform fault injection

experimentations on a target software system in order to log aspects of the rela-

tionship between system state and failure failure, specifically bits being flipped

in variables and failure mode. The precise nature of the fault injection per-

formed is dependent on the assumed fault and system models, which in-turn is

dependent on the characteristic of the target program. This means, there will

be direct relationship between the nature of the fault and system models as-

sumed and the nature of (fault injection point) model that will be derived. The

importance of fault models and input sets assumed for fault injection analysis

to make dependability enhancement meaningful cannot be overemphasised. As

8.5. GENERATING FAULT INJECTION POINTS 155

such, the relationship of systems states to system failure not captured by the as-

sumed fault model may not potentially be discerned in data mining process. For

example, in this thesis multiple soft-errors, LnCm fault model (See Chapter 7.5)

is assumed, which means that the set of variables and bit-flips combination not

captured by the adopted fault models, may not necessarily be accounted for by

the derived fault injection point model. The results presented in this chapter are

based on sampling all variables in the set returned by TVS (See Chapter 7.5.1).

However, additional sampling was performed for the assumed single and double

faults, all bit-flips combinations was considered.

Following the analysis of the fault injection data, the generated data is converted

to appropriate data data mining datasets. The motivation for this step is to:

(i) transform the fault injection analysis data to a format that can be processed

by classification algorithms, and (ii) any address any class distribution skew-

ness present in the derived datasets. In the case of the results presented in this

chapter, the data format transformation was from LLFI [103] logging format

to the Attribute-Relation File Format (ARFF) used by the Weka Data Mining

suite [54]. Often, classes have very unequal frequency, like those found within

datasets obtained through fault injection analysis. This occurs as a result of the

inherent resilience of software and difficulty of inducing system failures under

a given fault model. To generate a reliable model that will predict effective

fault injections points that might induce system failures, any such imbalance

will have to be addressed. This imbalance are usually addressed through sam-

pling approaches such as undersampling of the majority class and oversampling

with replacement of the minority class. However, with multiple fault injections

analysis the imbalance for a binary valued class is minimal and may likely yield

reliable models even if no sampling is done to balance the dataset. Oversam-

pling can be viewed as a case of SMOTE [17]. In SMOTE, synthetic instances

of the minority class are generated by operating in the “feature space” rather

than the “data space”. SMOTE creates new instances by taking samples of the

8.5. GENERATING FAULT INJECTION POINTS 156

feature space of the minority class, and its nearest neighbours, and generates

new examples that combine the features of the target case with features if its

neighbours. This approach increases the features available to each class and

makes the samples more general. The synthetic are generated as defined in

Equation 8.12.

−→s ij = −→xij + u · (−→nij − −→xij) (8.12)

with, −→xij representing the instances of the minority class, −→nij representing −→xij ’s

neighbours (randomly sampled with replacement from k of its nearest neigh-

bours), and u is a random number, such that 0 6 u 6 1. Oversampling with

replacement is a case of SMOTE where u = 0.

However, the task of addressing class imbalance can not completed until data

mining has been used to fit some initial model, hence it is an aim that is only

realised during the optimisation of the generated model, as described in Sec-

tion 8.5.3.

8.5.2 Stage 2: Model Fitting

The aim of the this stage of the approach is to generate first-attempt fault in-

jection point model from the transformed fault injection data. Following the

generation of the datasets, an appropriate data mining algorithm must be se-

lected for data analysis. To derive a discriminant model to predict combinations

of multiple bit-flips over program variables that may potentially induce system

failure. The use algorithms that generate intuitive models and are easily inter-

preted is advocated.

The next point after choosing the learning algorithm is to adjust the parame-

ters of the algorithm to improve the model’s performance and start the learning

process. At this point the aim is not necessarily to generate highly-efficient fault

8.6. CASE STUDIES 157

injection point model, but to establish a baseline model that can be optimised

and refined in the next stage of the approach. The validation of the generated

model may take place as flipping the relevant bits at the relevant program loca-

tion in the target program and observe the outcome of the program execution

or by testing the efficacy of the model’s prediction of unseen instances, i.e, in-

stances not used in generating the fault injection point model. The purpose,

in either case, is to assess the quality of the model’s prediction on previously

unseen data in order to measure efficiency properties.

8.5.3 Stage 3: Model Optimisation

Once a baseline model has been generated and evaluated, it may be refined

in order to improve its level of coverage. This can be achieved by varying the

parameters associated with the configuration of the adopted learning algorithm.

If class imbalance is present in the data set, it is useful to vary the levels of

undersampling or oversampling, including the number of nearest neighbours

used by any sampling techniques applied, in order to establish an algorithm

configuration which yields the most efficient fault injection points. An ideal and

optimal model will have TPR = 1, FPR = 0 and AUC = 1. In reality, it may

be infeasible to achieve an ideal model since the sample is severely constricted.

However, the aim of the approach is to achieve measures as close to the ideal

model as possible.

8.6 Case Studies

To demonstrate that the proposed approach for the generation of fault injec-

tion point yields efficient fault injection points prediction model, the results of

applying each stage of the approach are presented in Sections 8.6.1-8.6.3.

8.6. CASE STUDIES 158

8.6.1 Stage 1: Data Preparation

In order to generate datasets, fault injection analysis was conducted on all

target systems under the experimental conditions described in Chapters 3 and 7.

During fault injection it is possible to inject specific bit or bits combinations

in the specific program location or combination of locations and then log the

execution outcome. Broadly, the program location at which an injection is

performed and what is injected will dictate the set of erroneous states explored.

The variable locations were chosen using the framework in Figure 7.2. The

results of fault injection analysis were stored in the LLFI analysis and logging

format [103]. A purpose-built was used to convert from the LLFI analysis and

logging format to the ARFF format used by the Weka Data Mining Suite [54].

The datasets generated in this chapter are multiple class datasets. The failure

scheme adopted for labelling the instances is as defined in Chapter 3.4.3, however

No Impact outcomes are classed as non-failures in the generated datasets. As

mention earlier in this chapter, class imbalance may not be present in a multiple

fault injection data, and this proved to be true in the case of the analysis used in

this chapter. In some instances the minority class, are the negatives instances,

i.e the non-failure class. In the case of the results presented in this chapter,

the failure classes, i.e., crash, hang, sdc and exception, are considered to be

the positives. 30 datasets were generated, for ten target programs. For each

target program, three datasets were generated: (i) capturing the aspect of the

relationship of the system behaviour to injections of not more than two bit-flips

(double-bits datasets), (ii) capturing the aspect of the relationship of the system

behaviour to injections of not more than three bit-flips (triple-bits datasets),

and (iii) capturing the aspect of the relationship of the system behaviour to

injections of not more than four bit-flips (quadruple-bits datasets). This means,

that the double-bits datasets capture system behaviour related to single-bit-flips

and double-bit-flips; the triple-bits datasets are double-bits datasets extended

to also capture system behaviour relevant to triple-bit-flips; and the quadruple-

8.6. CASE STUDIES 159

bits datasets are extended triple-bits datasets capturing additional aspect of

system behaviour relevant to quadruple-bit-flips. An example of ARFF format,

consisting up to two double bits faults (one or two bit-flips injected injected in

one or two program locations) and five experiments, is depicted in Figure 8.2.

@RELATION	isqrtDouble

@ATTRIBUTE	loc1	{var1,var2,var3,var4,var5,var6,var7,none}
@ATTRIBUTE	loc2	{var1,var2,var3,var4,var5,var6,var7,none}
@ATTRIBUTE	pos1	NUMERIC
@ATTRIBUTE	pos2	NUMERIC
@ATTRIBUTE	failure	{no-impact,sdc,exception,time-out,crash}

@DATA
var1,	1,	var1,	7,	no-impact
var1,	2,	var2,	5,	sdc
var4,	23,	none,	 0,	crash
var3,	8,	var3,	9,	sdc
var6,	2,	var7,	51,	sdc

Figure 8.2: An overview of generated data set.

8.6.2 Stage 2: Model Fitting

Following the generation of the fault injection datasets and their pre-processing,

the following classification algorithms are selected to build the fault injection

points predictive models:

Näıve Bayes: The näıve Bayes classification algorithm is a probabilistic classi-

fier based on applying Bayes’ theorem. It assumes that the value of a particular

feature is unrelated to the presence or absence of any other feature, given the

class variable [71]. Despite its apparent over-simplified assumption, the näıve

Bayes classifier have worked quite-well in many complex real-world applica-

tions. The näıve Bayes classifier estimates the prior probability distribution

of the classes, i.e., crash, sdc, exception, hang and non-failure in the case of

learning error fault injection points, and the class conditional probabilities of

input vectors. It assumes conditional independence of input variables given the

class. Given an input vector, x, it assigns the class label that has the maximal

8.6. CASE STUDIES 160

posterior probability, as defined in Equation 8.13.

ci = arg max
ci

p(ci|x) = arg max
ci

n∏
j=1

p(ci|x)p(ci)∑
k

n∏
j=1

p(ck|x)p(ck)
(8.13)

In the case of continuous input attributes, kernel density estimation is used to

estimate the class conditional probability density functions as opposed to the

common assumption of a single Gaussian distribution. The implementation of

the näıve Bayes classification algorithm used to generate the results presented

in this chapter employs the gaussian kernel, g, as shown in 8.14

p(Xi = x|cj) =
1

n

∑
k

g(x;xk;σj) (8.14)

Rule Induction: Rule induction is a desirable approach to learning because

the knowledge generated is a set of conjunctive rules that are easy to under-

stand. Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is

a propositional rule inducer and it is used as the rule induction implementation

for the results presented in this chapter [22]. Rule inducers are algorithms

that iteratively generates a rule that covers a subset of the training data, and

removing all the examples covered by the rule from the training data until there

are no more examples to cover. RIPPER builds a ruleset by repeatedly adding

rules to an empty ruleset until all positive examples are covered. Starting with

an empty antecedent, rules are formed by greedily adding conditions to the

antecedent of a rule until no negative examples are covered.

Decision Trees Induction: Decision tree inducers are algorithms that auto-

matically construct a decision tree from a given dataset. Typically the goal is to

find the optimal decision tree by minimising the generalisation error. However,

other target functions can be also defined, for example, minimising the number

8.6. CASE STUDIES 161

of nodes or minimising the average depth. The decision tree induction algorithm

implementation used to generate the results in this chapter is the C4.5 [128].

The C4.5 builds decision trees from a set of training data, using the concept of

information entropy. At each node of the tree, C4.5 chooses the attribute of the

data that most effectively splits its set of examples into subsets enriched in one

class or the other. The splitting criterion is the normalised information gain

(difference in entropy). The attribute with the highest normalised information

gain is chosen to make the decision. The C4.5 algorithm then recurs on the

smaller sublists.

Following the selection of the three classification algorithms, 10-fold cross val-

idation was used in order to generate the confusion matrix for each algorithm

on each data set. In 10-fold cross validation the entries in each data set are

partitioned into 10 stratified samples, then for each cross validation run, one of

these partitions is used as a test sample, whilst the other nine are used as the

training set for a particular classification algorithm.

Tables 8.2-8.4, Tables 8.5-8.7 and Tables 8.8-8.10 summarise the results of ap-

plying the näıve Bayes, rule induction and decision tree induction data mining

algorithms respectively, to each fault injection data set. The statistics shown in

these tables relate to fault injection points predictive models generated using a

baseline configuration of each data mining algorithm, i.e., no attempt was made

to search for algorithm parameters that would yield the most effective predictive

models. In these table, the TPR and FPR columns give the mean true positive

and true false rates taken across all 10 cross validations. A false positive here

corresponds to the situation where a model incorrectly detects a state as being

failure-inducing (i.e., either as crash, hang, sdc or exception), whilst a true pos-

itive corresponds to a model correctly identifying a failure-inducing state. The

AUC column shows the area under the ROC curve, as described in Section 8.3,

whilst the SD column gives the standard deviation in AUC across all 10 cross

validations. Before proceeding with analyses of the results, the key points are

8.6. CASE STUDIES 162

summarised as follows:

1. Baseline näıve Bayes may not always produce efficient fault injection

points predictive models,

2. Baseline decision tree induction algorithm produces efficient fault injection

points predictive models, and it out performs both the rule induction and

näıve Bayes classifiers,

3. The baseline classifiers tend to generate more efficient fault injection points

predictive models from datasets derived from fault injection analysis with

higher number of corruptions.

Table 8.2: (Double) Injection points efficiencies for näıve Bayes with no sampling

Data Set TPR FPR AUC SD

crc 0.86023 0.03119 0.91452 0.02739
dijkstra 0.93890 0.09997 0.91946 0.01848
fft 0.90499 0.01005 0.94747 0.03495
search 0.95107 0.11872 0.91618 0.01436
insert 0.86747 0.04987 0.90880 0.01194
remove 0.86932 0.07048 0.89943 0.03901
encfile 0.86353 0.05394 0.90480 0.03649
decfile 0.90345 0.11794 0.89276 0.03851
isqrt 0.89714 0.04432 0.92641 0.03177
cubic 0.89510 0.06630 0.91440 0.02810

The results shown in Table 8.2 relate to fault injection points predictive models

generated by the näıve Bayes algorithm for the double-bits datasets. It can

be observed that the predictive models generated for each dataset have varied

TPR values, with entries in Table 8.2 being in the range 0.86023 to 0.95107.

The value of mean FPR for näıve Bayes are equally diverse across different

datasets, with these values being in the range 0.01005 to 0.11872. In general,

the TPR and FPR values shown in Table 8.2 mean that the worst performing

predictive model generated by näıve Bayes may not have the levels of efficiency

that are required in the context of dependable software. In contrast, the best

performing of these predictive models may be useful in the design of dependable

8.6. CASE STUDIES 163

software. For example, the predictive model associated with fft have a TRP and

FRP of 0.90499 and 0.01005 respectively, yielding a promising AUC of 0.94747.

Perhaps the most interesting characteristic of the results presented in Table 8.2

is the consistently low standard deviation in mean AUC, which indicates that

high levels of injection efficiency, i.e., TPR and FPR rates, were consistently

achieved during each of the 10 cross validations.

Table 8.3: (Triple) Injection points efficiencies for näıve Bayes with no sampling

Data Set TPR FPR AUC SD

crc 0.86884 0.03088 0.92367 0.02767
dijkstra 0.94829 0.09897 0.92866 0.01866
fft 0.91404 0.00995 0.95694 0.03530
search 0.96058 0.11753 0.92534 0.01450
insert 0.87614 0.04937 0.91789 0.01206
remove 0.87802 0.06977 0.90842 0.03940
encfile 0.87216 0.05340 0.91384 0.03685
decfile 0.91249 0.11676 0.90168 0.03889
isqrt 0.90611 0.04388 0.93567 0.03209
cubic 0.90405 0.06564 0.92354 0.02838

The results presented in Table 8.3 demonstrate that the fault injection point pre-

dictive models generated by the näıve Bayes classifier for the triple-bits datasets

are comparable with, but marginally more efficient than, those generated gen-

erated for double bits, with all mean AUC values being in the range 0.86884

to 0.96058. Indeed, the predictive models generated from triple bits classifier

surpassed the classifier trained with double bits, with respect to mean AUC.

Interestingly, the standard deviation in mean AUC remains consistently low,

again indicating the consistency with which similarly efficient fault injection

point predictive models are generated during cross validation.

The results presented in Table 8.4 indicate that the fault injection point predic-

tive models generated using the näıve Bayes algorithm for the quadruple-bits

datasets marginally surpass those generated for both double-bits and triple-bits

with respect to the level of efficiency achieved, with all mean AUC values in

Table 8.3 being in the range 0.91070 to 0.96651. The standard deviation in

8.6. CASE STUDIES 164

Table 8.4: (Quadruple) Injection points efficiencies for näıve Bayes with no
sampling

Data Set TPR FPR AUC SD

crc 0.87752 0.03057 0.93290 0.02794
dijkstra 0.95777 0.09798 0.93794 0.01885
fft 0.92318 0.00985 0.96651 0.03565
search 0.97019 0.11636 0.93459 0.01465
insert 0.88490 0.04888 0.92707 0.01218
remove 0.88680 0.06907 0.91751 0.03979
encfile 0.88088 0.05286 0.92298 0.03722
decfile 0.92161 0.11559 0.91070 0.03928
isqrt 0.91517 0.04344 0.94503 0.03241
cubic 0.91309 0.06498 0.93278 0.02866

AUC is also lower than for the predictive models built with either double-bits

or triple-bits datasets, with the highest observed standard deviation being less

than the lowest value associated with with both double-bits and triple-bits . In

general, the results associated with näıve Bayes may not have the levels of effi-

ciency with respect to the generation of efficient fault injection points predictive

models, that being said, optimising the model may boost the levels of efficiency

to acceptable levels.

Table 8.5: (Double) Injection points efficiencies for rule induction with no sam-
pling

Data Set TPR FPR AUC SD

crc 0.94828 0.01933 0.96448 0.00011
dijkstra 0.93003 0.03147 0.94928 0.00217
fft 0.92317 0.07812 0.92252 0.00026
search 0.95087 0.05051 0.95018 0.00039
insert 0.97817 0.03475 0.97171 0.00116
remove 0.96485 0.03929 0.96611 0.00045
encfile 0.93927 0.01716 0.96106 0.00564
decfile 0.97961 0.05570 0.96195 0.00017
isqrt 0.92964 0.04583 0.94190 0.00017
cubic 0.94930 0.04140 0.95440 0.00120

The results presented in Table 8.5, Table 8.5 and Table 8.5 indicate that the fault

injection point predictive models generated by the decision rule inductor for the

double-bits, triple-bits and quadruple-bits datasets surpasses those generated

8.6. CASE STUDIES 165

under näıve Bayes, with all mean AUC values being in the range 0.92252 to

0.97171, 0.93175 to 0.98143 and 0.94107 to 0.99124 respectively. The standard

deviation in AUC is also markedly lower than for all the näıve Bayes classifiers.

Table 8.6: (Triple) Injection points efficiencies for rule induction with no sam-
pling

Data Set TPR FPR AUC SD

crc 0.95776 0.01913 0.97412 0.00011
dijkstra 0.93933 0.03116 0.95877 0.00219
fft 0.93241 0.07734 0.93175 0.00026
search 0.96038 0.05001 0.95968 0.00040
insert 0.98795 0.03441 0.98143 0.00117
remove 0.97450 0.03889 0.97577 0.00045
encfile 0.94866 0.01699 0.97067 0.00570
decfile 0.98940 0.05515 0.97157 0.00017
isqrt 0.93894 0.04537 0.95132 0.00017
cubic 0.95879 0.04099 0.96394 0.00121

Similar to the trend observed under näıve Bayes, the rule inducers models from

the triple-bits datasets outperformed those model from double-bits datasets,

and those trained on quadruple-bits surpassed those generated from triple-bits

datasets. The worst results observed under the rule inducers was in the double-

bits dataset for fft, having a TPR and FPR of 0.92317 and 0.07812.

Table 8.7: (Quadruple) Injection points efficiencies for rule induction with no
sampling

Data Set TPR FPR AUC SD

crc 0.96734 0.01894 0.98386 0.00011
dijkstra 0.94873 0.03085 0.96836 0.00221
fft 0.94173 0.07657 0.94107 0.00026
search 0.96998 0.04951 0.96928 0.00040
insert 0.99783 0.03406 0.99124 0.00118
remove 0.98424 0.03850 0.98553 0.00046
encfile 0.95815 0.01682 0.98038 0.00576
decfile 0.99930 0.05459 0.98129 0.00017
isqrt 0.94833 0.04491 0.96084 0.00017
cubic 0.96838 0.04058 0.97358 0.00122

In general, the results associated with rule induction are promising with respect

to the generation of fault injection point predictive models, not least because

8.6. CASE STUDIES 166

these results relate to a baseline configuration of the rule induction algorithm.

Table 8.8: (Double) Injection points efficiencies for decision tree induction with
no sampling

Data Set TPR FPR AUC SD

crc 0.95933 0.00004 0.97965 0.00579
dijkstra 0.99011 0.00143 0.99434 0.00017
fft 0.99817 0.00001 0.99808 0.00012
search 0.85785 0.00009 0.92888 0.00062
insert 0.98649 0.00010 0.99320 0.00009
remove 0.98638 0.00133 0.99253 0.00124
encfile 0.97999 0.00104 0.98947 0.00011
decfile 0.97363 0.00000 0.98681 0.00000
isqrt 0.99551 0.00011 0.99770 0.00015
cubic 0.96970 0.00050 0.98460 0.00090

Table 8.5, Table 8.7 and Table 8.7 suggest that decision tree induction is the

most effective of the classification algorithms applied to this point. Observe from

Tables 8.5-8.7 that the mean AUC of all baseline predictive models generated

through decision tree induction is greater than 0.97965. As this measure reflects

both FPR and TPR, this is an indication that the injection points generated are

effective classifiers for failure inducing injection points. Observe also that, aside

from datasets search, the mean TPR for all decision trees is greater than 0.95933

(using the double-bits datasets), with the maximum observed being 0.99937

(using the quadruple-bits datasets). Further, the mean FPR is extremely low

in all cases, with the maximum observed value being 0.00143 (in all the dijkstra

datasets).

As with näıve Bayes and rule induction classifiers, the predictive models ef-

ficiency derived from the quadruple-bits surpasses those generated from the

triple-bits, and in-turn, the classifiers models from the triple-bits datasets out-

performed those derived from the double-bits datasets.

This indicates the discriminatory nature of the injection points generated by the

decision tree induction algorithm. It is also interesting to note that the stan-

dard deviation of the injection points generated, regardless of the data mining

8.6. CASE STUDIES 167

Table 8.9: (Triple) Injection points efficiencies for decision tree induction with
no sampling

Data Set TPR FPR AUC SD

crc 0.96029 0.00004 0.98063 0.00580
dijkstra 0.99110 0.00143 0.99534 0.00017
fft 0.99917 0.00001 0.99908 0.00012
search 0.85871 0.00009 0.92981 0.00062
insert 0.98748 0.00010 0.99419 0.00009
remove 0.98737 0.00133 0.99352 0.00124
encfile 0.98097 0.00104 0.99046 0.00011
decfile 0.97460 0.00000 0.98780 0.00000
isqrt 0.99650 0.00011 0.99870 0.00015
cubic 0.97067 0.00050 0.98558 0.00090

Table 8.10: (Quadruple) Injection points efficiencies for decision tree induction
with no sampling

Data Set TPR FPR AUC SD

crc 0.96048 0.00004 0.98083 0.00580
dijkstra 0.99130 0.00143 0.99554 0.00017
fft 0.99937 0.00001 0.99928 0.00012
search 0.85888 0.00009 0.93000 0.00062
insert 0.98768 0.00010 0.99439 0.00009
remove 0.98756 0.00133 0.99372 0.00124
encfile 0.98116 0.00104 0.99066 0.00011
decfile 0.97480 0.00000 0.98800 0.00000
isqrt 0.99670 0.00011 0.99890 0.00015
cubic 0.97086 0.00050 0.98578 0.00090

algorithm applied, is consistently low, which demonstrates the consistency with

which efficient injection point predictive models can be generated when using a

decision tree induction-based approach.

8.6.3 Stage 3: Optimising Model

Following the fitting of a set of baseline fault injection points predictive models

and validating their performance, these predictive models can now be refined

by varying the parameters associated with the applied classification algorithms.

In particular, it is interesting to vary parameters that are independent of any

algorithm, such as dataset sampling levels prior to learning. This permit the

8.6. CASE STUDIES 168

same optimsation process to be applied regardless of the selected classification

algorithm. Tables 8.11-8.19 summarises the results of the model optimisation

process for the presented case studies. Tables 8.11-8.19 are similiar to those

given in Tables 8.2-8.10, except that Tables 8.11-8.19 have addition columns,

Sampling and N, which show the level of sampling and the nearest neighbours

used in sampling to generate the associated predictive models respectively. Each

entry in the Sampling column also shows the type of sampling performed, where

an O denotes oversampling and a U, undersampling. A total of 20 undersampling

and 15 oversampling percentage levels were used in model refinement. These

levels were uniformly distributed over [5, 100] and [100, 1500] for undersampling

and oversampling respectively, giving increments of 5 and 100 respectively. The

number of nearest neighbours considered in the sampling process were uniformly

distributed over [1, 15] with increments of 1. The values in the Sampling and N

columns of Tables 8.11-8.19 represent optimal observed values, with regard to

achieved AUC, across all candidate values considered.

Before proceeding with analyses of the results, the key points are summarised

as follows:

1. Optimising the classifier can improve the efficiency of the fault injection

points predictive models,

2. Similar with the baseline classifiers, optimised decision tree induction out-

performs both näıve Bayes and rule induction classifiers,

3. Similar with the baseline classiffiers, the optimised classifiers tend to pro-

duce more efficient fault injection points predictive models on datasets

derived from fault injection analysis with higher number of corruptions.

The results presented in Tables 8.11-8.13 improve on the results presented for

the näıve Bayes classifiers in Tables 8.2-8.4, clearly demonstrating that varying

the sampling parameters associated with the application of näıve Bayes can

8.6. CASE STUDIES 169

improve the efficiency of the fault injection points predictive models. More

specifically, all mean TPR and FPR values have been improved, which lead to a

increase in mean AUC. The standard deviation in AUC is consistently low and

remains comparable with the results generated under a baseline configuration

of the näıve Bayes classifiers.

Table 8.11: (Double) Injection points efficiencies for näıve Bayes with sampling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 8 0.90831 0.00363 0.95234 0.05592
dijkstra 1000 (U) 4 0.95237 0.08128 0.93555 0.03027
fft 300 (O) 3 0.93064 0.00211 0.96426 0.17206
search 200 (O) 2 0.97193 0.05788 0.95703 0.05469
insert 500 (O) 8 0.91706 0.01364 0.95171 0.04190
encfile 600 (O) 8 0.89438 0.02542 0.93448 0.05305
decfile 600 (O) 6 0.94737 0.05728 0.94505 0.06371
isqrt 600 (O) 0 0.92111 0.00476 0.95817 0.08239
cubic 500 (O) 0 0.92380 0.03140 0.94620 0.06770

Table 8.12: (Triple) Injection points efficiencies for näıve Bayes with sampling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 8 0.90922 0.00362 0.95330 0.05598
dijkstra 100 (O) 4 0.95332 0.08120 0.93648 0.03030
fft 300 (O) 3 0.93157 0.00211 0.96523 0.17223
search 200 (O) 2 0.97290 0.05782 0.95798 0.05474
insert 500 (O) 5 0.90637 0.05811 0.92457 0.05174
remove 400 (O) 8 0.91798 0.01363 0.95266 0.04195
encfile 600 (O) 8 0.89527 0.02539 0.93542 0.05311
decfile 600 (O) 6 0.94832 0.05722 0.94600 0.06378
isqrt 700 (O) 0 0.92203 0.00476 0.95913 0.08247
cubic 600 (O) 0 0.92472 0.03137 0.94715 0.06777

All entries in Tables 8.14-8.16 indicate that the optimisation process has im-

proved the efficiency properties of the fault injection points predictive models

derived with rule induction. Indeed, the results show an improved mean AUC

across all entries. The standard deviation in mean AUC is easily compara-

ble with standard deviation observed under a baseline configuration of rule

induction, with some generated predictive models even yielding a reduction in

standard deviation with respect to mean AUC.

8.6. CASE STUDIES 170

Table 8.13: (Quadruple) Injection points efficiencies for näıve Bayes with sam-
pling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 8 0.91013 0.00362 0.95425 0.05603
dijkstra 100 (O) 4 0.95427 0.08112 0.93742 0.03033
fft 300 (O) 3 0.93250 0.00211 0.96619 0.17240
search 200 (O) 2 0.97387 0.05776 0.95894 0.05480
insert 500 (O) 5 0.90728 0.05805 0.92550 0.05179
remove 400 (O) 8 0.91890 0.01362 0.95361 0.04199
encfile 600 (O) 8 0.89617 0.02537 0.93635 0.05316
decfile 600 (O) 6 0.94927 0.05716 0.94694 0.06384
isqrt 700 (O) 0 0.92295 0.00475 0.96009 0.08255
cubic 600 (O) 0 0.92565 0.03134 0.94809 0.06784

Table 8.14: (Double) Injection points efficiencies for rule induction with sam-
pling

Data Set Sampling N TPR FPR AUC SD

crc 700 (O) 2 0.96822 0.01933 0.97445 0.01780
dijkstra 500 (U) 6 0.98868 0.00889 0.98990 0.00910
fft 300 (O) 6 0.92984 0.05797 0.93594 0.00160
search 400 (O) 8 0.95420 0.03709 0.95855 0.04416
insert 700 (O) 3 0.96508 0.00473 0.98017 0.01165
remove 600 (O) 3 0.98460 0.01028 0.98716 0.02927
encfile 500 (O) 3 0.96973 0.00030 0.98472 0.00416
decfile 400 (O) 2 0.98961 0.05460 0.96751 0.00160
isqrt 400 (U) 9 0.92964 0.04583 0.94190 0.01028
cubic 500 (O) 0 0.96580 0.03000 0.96790 0.01340

Table 8.15: (Triple) Injection points efficiencies for rule induction with sampling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 2 0.96918 0.01931 0.97542 0.01782
dijkstra 100 (O) 6 0.98967 0.00888 0.99089 0.00911
fft 300 (O) 6 0.93077 0.05791 0.93687 0.00160
search 200 (O) 8 0.95516 0.03706 0.95951 0.04421
insert 500 (O) 3 0.96605 0.00473 0.98115 0.01166
remove 400 (O) 3 0.98558 0.01027 0.98814 0.02930
encfile 600 (O) 3 0.97070 0.00030 0.98570 0.00416
decfile 600 (O) 2 0.99060 0.05454 0.96847 0.00160
isqrt 700 (U) 9 0.93057 0.04578 0.94285 0.01029
cubic 600 (O) 0 0.96677 0.02997 0.96887 0.01341

Despite being the best performing algorithm under a baseline configuration, the

entries in Tables 8.17-8.19 show consistent improvements, with respect to the

8.6. CASE STUDIES 171

Table 8.16: (Quadruple) Injection points efficiencies for rule induction with
sampling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 2 0.97015 0.01929 0.97640 0.01784
dijkstra 100 (O) 6 0.99066 0.00887 0.99188 0.00912
fft 300 (O) 6 0.93170 0.05785 0.93781 0.00161
search 200 (O) 8 0.95611 0.03702 0.96047 0.04425
insert 500 (O) 3 0.96701 0.00472 0.98213 0.01167
remove 400 (O) 3 0.98657 0.01026 0.98913 0.02933
encfile 600 (O) 3 0.97167 0.00030 0.98669 0.00417
decfile 600 (O) 2 0.99159 0.05449 0.96944 0.00160
isqrt 700 (O) 9 0.93150 0.04574 0.94379 0.01030
cubic 600 (O) 0 0.96773 0.02994 0.96984 0.01343

mean AUC measure, during the fault injection point predictive models optimi-

sation process. Though, in some cases this improvement is small. In almost all

cases the standard deviation of all models is marginally decreased.

Table 8.17: (Double) Injection points efficiencies for decision tree induction with
sampling

Data Set Sampling N TPR FPR AUC SD

crc 600 (O) 8 0.99538 0.00047 0.99746 0.00290
dijkstra 800 (U) 4 0.99635 0.00007 0.99815 0.00016
fft 300 (O) 9 0.99860 0.00002 0.99929 0.00013
search 300 (U) 0 0.86068 0.00452 0.92988 0.00150
insert 200 (U) 6 0.99684 0.00004 0.99840 0.00067
remove 700 (U) 7 0.99578 0.00176 0.99702 0.00046
encfile 100 (O) 2 0.99968 0.00665 0.99652 0.00004
decfile 15 (O) 0 0.97362 0.00000 0.98682 0.00000
isqrt 50 (U) 2 0.99551 0.00000 0.99775 0.00000
cubic 400 (O) 0 0.97940 0.00160 0.98890 0.00060

8.6.4 Bit-position and injection efficiency

As mentioned, the fault injection datasets are generated from fault injection

analysis that sampled random bit-positions, i.e., faults are injected randomly.

As such the injection efficiency of the generated fault injection points, to this

point, has been based on this sample. This will serve as a baseline to assess the

validity of the approach of discerning efficient variable-bit combinations for fault

8.6. CASE STUDIES 172

Table 8.18: (Triple) Injection points efficiencies for decision tree induction with
sampling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 9 0.99558 0.00047 0.99766 0.00287
dijkstra 100 (O) 4 0.99655 0.00007 0.99835 0.00016
fft 300 (O) 9 0.99880 0.00002 0.99949 0.00013
search 200 (U) 0 0.86086 0.00452 0.93007 0.00145
insert 500 (U) 6 0.99704 0.00004 0.99860 0.00065
remove 400 (U) 7 0.99598 0.00176 0.99722 0.00043
encfile 600 (O) 2 0.99988 0.00665 0.99672 0.00003
decfile 600 (O) 0 0.97382 0.00000 0.98701 0.00000
isqrt 700 (O) 2 0.99571 0.00000 0.99795 0.00000
cubic 600 (O) 0 0.97960 0.00160 0.98910 0.00059

Table 8.19: (Quadruple) Injection points efficiencies for decision tree induction
with sampling

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 9 0.99568 0.00047 0.99776 0.00283
dijkstra 100 (O) 4 0.99665 0.00007 0.99845 0.00011
fft 300 (O) 9 0.99890 0.00002 0.99959 0.00010
search 200 (O) 0 0.86094 0.00452 0.93016 0.00141
insert 500 (O) 6 0.99714 0.00004 0.99870 0.00030
remove 400 (O) 7 0.99608 0.00176 0.99732 0.00041
encfile 600 (O) 2 0.99998 0.00664 0.99682 0.00002
decfile 600 (O) 0 0.97392 0.00000 0.98711 0.00000
isqrt 700 (O) 2 0.99581 0.00000 0.99805 0.00000
cubic 600 (O) 0 0.97969 0.00160 0.98920 0.00055

injection. As the computation cost of performing an exhaustive bit-flipping for

more than two faults is prohibitive, the comparisons is done using single and

double faults. Thus using the the process explained in Section 8.6.1, a sec-

ond version of double-bits dataset is generated from exhaustive bit-flipping for

each case study. Following the generation of the datasets, they are processed

as explained in Sections 8.6.2-8.6.3. The results of the performance of the pre-

dictive models (baseline models) generated by the process in Section 8.6.2 are

presented in Tables 8.20-8.22, and those (optimised models) by the process in

Section 8.6.3 are shown in Tables 8.23-8.25. In this section, these new datasets,

will be referred to as exhaustive (double-bits) datasets and the double-bits used

in previous section will be called random (double-bits) datasets. Before pro-

8.6. CASE STUDIES 173

ceeding with the analysis of the results, the key finding of these results can be

summarised as follows:

• fault injection points predictive models generated from a subset of the bit-

positions can be as efficient as those generated from the entire bit-positions

set.

It has been observed from Tables 8.2-8.17 and Tables 8.20-8.25 that the dif-

ference in the injection efficiency of the fault injection points predictive mod-

els generated using exhaustive bit-flipping and those generated using random

bit-flipping is small. The largest difference in AUC when comparing these re-

sults is associated with datasets fft (baseline and optimised näıve Bayes mod-

els), insert (baseline rule induction), dijstra (optimised rule induction), dec-

file (baseline decision tree induction) and isqrt (optimised decision tree induc-

tion). For these dataset the predictive models generated using exhaustive bit-

flipping have a mean AUC of 0.95884, 0.96619, 0.98337, 0.99188, 0.99866 and

0.99975, whilst those generated using random bit-flipping have a mean AUC

of 0.9474, 0.96429, 0.97171, 0.98990, 0.98681 and 0.99775 giving a difference

of just 0.01103, 0.00193, 0.01166, 0.00198, 0.01184 and 0.00200 in these worst

cases, for baseline näıve Bayes, optimise näıve Bayes, baseline rule induction,

optimise rule induction, baseline decision tree induction and optimised decision

tree induction respectively.

It should be observed also that the absolute AUC values for fault injection point

predictive models generated using only a subset of bit are consistently high, with

the maximum and minimum for baseline näıve Bayes being 0.94747 and 0.89276

respectively, for optimised näıve Bayes being 0.96426 and 0.92365 respectively,

for baseline rule induction being 0.97171 and 0.92252 respectively, for optimised

rule induction being 0.98990 and 0.93594 respectively, for baseline decision tree

induction being 0.99908 and 0.92888 respectively and for optimised decision

tree induction being 0.99929 and 0.92988 respectively. These consistently high

8.6. CASE STUDIES 174

Table 8.20: (Double) Injection points efficiencies for näıve Bayes with no sam-
pling using full bit set

Data Set TPR FPR AUC SD

crc 0.87056 0.03082 0.92549 0.02706
dijkstra 0.95016 0.09877 0.93050 0.01826
fft 0.91585 0.00993 0.95884 0.03453
search 0.96249 0.11730 0.92717 0.01418
insert 0.87788 0.04927 0.91971 0.01179
remove 0.87976 0.06963 0.91022 0.03854
encfile 0.87389 0.05329 0.91565 0.03605
decfile 0.91429 0.11652 0.90347 0.03804
isqrt 0.90791 0.04379 0.93753 0.03139
cubic 0.90584 0.06550 0.92537 0.02776

Table 8.21: (Double) Injection points efficiencies for rule induction with no
sampling using full bit set

Data Set TPR FPR AUC SD

crc 0.95966 0.01909 0.97605 0.00011
dijkstra 0.94119 0.03110 0.96067 0.00214
fft 0.93425 0.07719 0.93359 0.00025
search 0.96228 0.04991 0.96158 0.00039
insert 0.98991 0.03434 0.98337 0.00114
remove 0.97642 0.03882 0.97770 0.00044
encfile 0.95054 0.01695 0.97259 0.00558
decfile 0.99136 0.05503 0.97350 0.00016
isqrt 0.94080 0.04528 0.95321 0.00016
cubic 0.96069 0.04090 0.96585 0.00119

Table 8.22: (Double) Injection points efficiencies for decision tree induction with
no sampling using full bit set

Data Set TPR FPR AUC SD

crc 0.97085 0.00004 0.99141 0.00572
dijkstra 0.99902 0.00142 0.99583 0.00017
fft 0.99967 0.00001 0.99998 0.00012
search 0.86815 0.00009 0.94003 0.00061
insert 0.99833 0.00010 0.99508 0.00009
remove 0.99822 0.00131 0.99441 0.00123
encfile 0.99175 0.00103 0.99046 0.00011
decfile 0.98531 0.00000 0.99866 0.00000
isqrt 0.99700 0.00011 0.99870 0.00014
cubic 0.98134 0.00049 0.99642 0.00089

8.6. CASE STUDIES 175

AUC values, which are indicative of high true positive and low false positive

rates, serve to suggest that fault injection points generated using sample bits

can safeguard the functioning of a software system. Further, the fact that

standard deviation in AUC remains low, even unchanged in many cases, when

only random bits are used in the generation of fault injection points means that

efficient injection points can be consistently generated across separate cross

validations.

Table 8.23: (Double) Injection points efficiencies for näıve Bayes with sampling
using full bit set

Data Set Sampling N TPR FPR AUC SD

crc 500 (O) 8 0.91013 0.00362 0.95425 0.05581
dijkstra 1000 (O) 4 0.95427 0.08112 0.93742 0.03021
fft 300 (O) 3 0.93250 0.00211 0.96619 0.17172
search 200 (O) 2 0.97387 0.05776 0.95894 0.05458
insert 500 (O) 5 0.90728 0.05805 0.92550 0.05158
remove 400 (O) 8 0.91889 0.01362 0.95361 0.04182
encfile 600 (O) 8 0.89617 0.02537 0.93635 0.05295
decfile 600 (O) 6 0.94927 0.05716 0.94694 0.06359
isqrt 600 (O) 7 0.92295 0.00475 0.96009 0.08223
cubic 500 (O) 9 0.92565 0.03134 0.94809 0.06756

Table 8.24: (Double) Injection points efficiencies for rule induction with sam-
pling using full bit set

Data Set Sampling N TPR FPR AUC SD

crc 700 (O) 2 0.97015 0.01929 0.97640 0.01776
dijkstra 500 (O) 6 0.99066 0.00887 0.99188 0.00908
fft 300 (O) 6 0.93170 0.05785 0.93781 0.00160
search 400 (O) 8 0.95611 0.03702 0.96047 0.04408
insert 700 (O) 3 0.96701 0.00472 0.98213 0.01162
remove 600 (O) 3 0.98657 0.01026 0.98913 0.02921
encfile 500 (O) 3 0.97167 0.00030 0.98669 0.00415
decfile 400 (O) 2 0.99159 0.05449 0.96944 0.00160
isqrt 400 (O) 9 0.93150 0.04574 0.94379 0.01026
cubic 500 (O) 10 0.96773 0.02994 0.96984 0.01337

This implies that the proposed approach remains robust when using random

bits, which is particularly important given that using datasets containing fewer

bits, in effect, reduces the amount of information available during the construc-

tion of fault injection points for multiple soft-errors. This substantiate the thesis

8.7. IMPLICATION AND LIMITATION 176

Table 8.25: (Double) Injection points efficiencies for decision tree induction with
sampling using full bit set

Data Set Sampling N TPR FPR AUC SD

crc 600 (O) 8 0.99737 0.00047 0.99945 0.00283
dijkstra 800 (O) 4 0.99835 0.00007 0.99914 0.00010
fft 300 (O) 9 0.99990 0.00002 0.99999 0.00009
search 300 (O) 5 0.86240 0.00451 0.93174 0.00139
insert 200 (O) 6 0.99702 0.00004 0.99858 0.00029
remove 700 (O) 7 0.99777 0.00175 0.99901 0.00039
encfile 100 (O) 2 0.99998 0.00663 0.99851 0.00002
decfile 15 (U) - 0.97557 0.00000 0.98879 0.00000
isqrt 50 (U) - 0.99750 0.00000 0.99975 0.00000
cubic 400 (O) 2 0.98136 0.00160 0.99088 0.00053

claim that perturbing certain bits in combination of variables is as efficient as

performing an exhaustive perturbation in all variable-bit-wise combinations.

8.7 Implication and Limitation

The case studies presented have demonstrated the applicability of the proposed

approach is terms of generating predictive models for selecting efficient fault

injection points for multiple soft-errors. In particular, decision tree induction

and rule induction have, even under a baseline configuration, been shown to be

effective and consistent methods for generating predictive models for detecting

failure-inducing points which exhibit high coverage. In the case of decision tree

induction and rule induction, generated predictive models are represented as

a tree structure to be interpreted as a conjunction of disjunctions and as a

first-order predicate respectively.

Despite the presented case studies suggesting that the decision tree induction

and rule induction algorithms yield significantly more efficient fault injection

points predictive models than näıve Bayes, it is not possible to conclude that

these algorithms will consistently outperform other algorithms, including näıve

Bayes. As any two classification algorithms can differ only in the class boundary

8.8. SUMMARY AND CONCLUSIONS 177

that they define, i.e., the boundary defined to classify system failure classes and

non-failures in the generation of fault injection points predictive models, it is

not possible to determine which classification algorithm will define an boundary

that is appropriate for a particular dataset. Indeed, it is current practise in data

mining approaches to classification problems to seek out an acceptable model

through the investigation of many classification algorithms.

Even though this a approach is proposed to improve and complement and the

framework propose in Chapte 7, it is not tied to the framework, this means this

approach can be applied to any fault injection datasets regardless of the method

used in selecting the target program locations. This implies that the main cost

of applying the proposed approach is associated with the execution of data

mining algorithms, which in-turn implies that the cost of generating efficient

fault injection points using the approach is related to dataset magnitude, the

data mining algorithm applied and the comprehensiveness of the optimisation

undertaken, i.e., the number of algorithm configurations that are considered in

model optimisation. It was shown in the cases studies presented in Section 8.6.2

that using only a baseline configuration of several data mining algorithms can

yield highly-efficient failure-inducing injection points and that systematically

varying the level of sampling applied to datasets, can allow the efficiency of

those injection points to be consistently improved, often to levels that would

make them applicable in the validation of dependable software systems. Further,

as with any approach that uses fault injection data, the efficacy of the proposed

model is constrained by the assumed fault model and input set used in the fault

inject analysis the data is derived from.

8.8 Summary and Conclusions

In this chapter an approach to systematically reduce fault space for multiple soft-

errors injections has been proposed. The intuition of the proposed approach is

8.8. SUMMARY AND CONCLUSIONS 178

that, given a set of target program locations at which multiple bit-flip faults will

be injected, data mining methods can be applied to fault injection datasets to

identify efficient set of bit-positions that will induce as much system failures as if

the entire bit-position fault space has been used. Following its descriptions, the

proposed approach was applied to ten embedded software modules, for each of

these modules, fault injection points for multiple target locations was generated

and their efficiency evaluated. The results demonstrated that the proposed

approach can be effectively used to identify a number of bits to flip from a set

of target program variables, that will cause almost the same amount of system

failure if the entire bits space is considered, i.e., the injection points exhibit high

coverage.

CHAPTER 9

Conclusions

To this point, this thesis presents research, analysis and discussions to substan-

tiate the thesis statement:

“There exists a computational feasible bits to explore un-

der multiple bit-flip faults that will induce a wider failure

profile.”

In this chapter a summary of these research contributions and a discussion of

future work relating to the exponential multiple fault space problem is provided

as a conclusion to this thesis. In particular, the research contributions made

throughout Chapters 5-8 are summarised with respect to the stated thesis.

9.1 Research Contribution Summary

In support of the stated thesis, the following specific contributions were made

to the selection of efficient fault injection points for multiple soft-errors, more

detailed account can be found in the respective chapters as indicated.

179

9.1. RESEARCH CONTRIBUTION SUMMARY 180

9.1.1 Complexity Analysis and Formalisation of ILS and

TVS Problem

To circumvent around the exponential size of the fault space for multiple soft-

errors, Chapter 5 analysis the the complexity of the following sub-problems:

(i) choosing the locations in which faults can be injected and (ii) choosing the

variables in which faults will be injected. Each problem is formally defined

as an NP-problem and two known NP-complete problems, MVC and MDC,

respectively, were reduced to the former and latter sub-problems to prove their

NP-completeness respectively.

9.1.2 Double Single Bit-Flips Fault Model

In Chapter 6, a novel fault model representative of emerging hardware faults due

to technology advances is proposed. The chapter investigated the impact of such

fault once translated into soft errors. The model extend the traditional model

of simple faults to double faults in combination of two locations. The usability

of the proposed model for software dependability validation is evaluated using

fault injection analysis. The results show that the proposed model induces a

different failure profile compared with that caused by single fault model and an

existing variant double fault model.

9.1.3 Heuristics for the Injection Locations and Target

Variables Selection

Chapter 7 presents a framework for selection of efficient fault injection loca-

tions (in terms of potential injection location and target variable) in a program.

The approach takes account of relationships between block locations, program

variables and program states. The selection is done by applying static analysis

9.2. APPLICATIONS 181

and graph theory concepts on the software byte code, to first, discern potential

injection location and then to determine the most suitable combination of vari-

ables to target within these locations. The framework provided a systematic

approach for the selection component of the LnCm fault model. Furthermore,

the research evaluated the approach and validity of the LnCm fault model on

several case studies.

9.1.4 Efficient Bit Locations

In Chapter 8, a systematic approach for the selection of efficient fault injection

points for multiple soft-errors is proposed, based on the application of data

mining approaches to datasets generated from fault injection analysis. This is

done in order to refine the exponential size of the fault injection points space

(in terms of variables and bits combinations). The results demonstrate that

a subset of bits within a set of given locations can achieve similar injection

efficiency to that of the entire bits set. This results serve to substantiate the

thesis which this research is based on.

9.2 Applications

The work presented in this thesis can be used by system developers and en-

gineers for the development and validation of software-implemented hardware

fault tolerance techniques (SIHFT). For instance it can be used to aid the design

and evaluation of detectors for multiple soft-errors. The research can be used by

individuals and organisations for experimental benchmarking of the error sensi-

tivity of software components. Such benchmarking experiments is done in order

to measure the likelihood that the executable code of a software component

exhibit silent data corruptions (SDCs) for hardware errors that propagate to

ISA registers and main memory locations. The purpose of such measurements

9.3. FUTURE WORK 182

is to identify weaknesses in the executable code, and thereby finding ways of

hardening the code against hardware errors by means of SIHFT.

9.3 Future Work

The selection of efficient fault injection locations for multiple soft-errors remains

a key challenge in the development of fault tolerant software systems, partic-

ularly in the content of real-world, embedded software systems. In fact, there

is scarcity of research investigating systematic approaches in selecting injection

points for multiple fault injections. Despite the progress made by the work

presented in this thesis, there are many areas for future work relating to the

problem of multiple soft-errors injections. Fews areas for future research relating

to the work presented in this thesis are summarised as follows:

• Typical to embedded systems, programs goes though different iterations

as they execute. This produces a dominator graph instead of a dominator

tree. Capturing this structure is important, if the notion of amplification

is to effectively encapsulated for such systems. As mentioned in previous

chapters, this thesis, have not specifically address the problem of handling

looping structures in program. Since the approach for selecting potential

locations is based on a dominator tree, then there is no cycle in such a

structure, meaning that the heuristic will terminate with a set of poten-

tial injection locations. Given that the heuristic for selecting variables is

also obtained from the dominator tree and that there are no loops in the

resulting dependency graph, then the heuristic will terminate properly as

well. Thus future work will look into the design amplification metric to

decide when to inject and when not to inject faults through the different

iterations of a programs execution especially for embedded control systems

in order to enhance the applicability of the framework presented in this

9.3. FUTURE WORK 183

thesis. To Further enhance the effectiveness of the approach presented in

Chapters 5-8, comparative studies with different compiler optimisations,

hardware platforms, and different programming languages may be con-

sidered. Another important part of this work is to extend the study with

experiments on target programs that are equipped with SIHFT techniques

will be conducted.

• There are software that cannot be modelled as a control flow graph, such

as operating systems and device drivers [163]. Since applications running

on such systems make system calls to execute, we believe that such calls

can be abstracted in an inter-procedural CFG. However, the notion of

dominance and dominating graph to select best parameters (in a system

call) as target variables may not be suited to such environments. This is

an area considered for future research.

• The work indicates there are intuitions that can guide the selection of

bit-positions. As future work, such intuitions for bits-selection, will be

investigates, analysed, documented and developed.

Bibliography

[1] F. Adamu-Fika and A. Jhumka. Algorithms and Architectures for Par-

allel Processing: 15th International Conference, ICA3PP 2015, Zhangji-

ajie, China, November 18-20, 2015, Proceedings, Part IV, chapter An

Investigation of the Impact of Double Bit-Flip Error Variants on Pro-

gram Execution, pages 799–813. Springer International Publishing, Cham,

2015. ISBN 978-3-319-27140-8. doi: 10.1007/978-3-319-27140-8 55. URL

http://dx.doi.org/10.1007/978-3-319-27140-8_55.

[2] F. Adamu-Fika and A. Jhumka. An investigation of the impact of dou-

ble single bit-flip errors on program executions. In P. Lorenz and F. P.

Dini, editors, DEPEND 2015, The Eight International Conference on De-

pendability, pages 15 – 22, Venice, Italy, August 2015. IARIA. ISBN

978-1-61208-429-9. URL http://www.thinkmind.org/index.php?view=

article&articleid=depend_2015_1_40_50038.

[3] F. Adamu-Fika and A. Jhumka. Towards learning bit patterns, 2015. [Un-

der submission to IEEE Transactions on Dependable and Secure Comput-

ing, Special Issue on Data-Driven Dependability and Security].

[4] F. Adamu-Fika and A. Jhumka. Towards the efficient selection of injection

locations for multiple transient hardware faults, 2015. [Unpublished].

[5] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,

E. Martins, and D. Powell. Fault injection for dependability validation:

A methodology and some applications. IEEE Trans. Softw. Eng., 16(2):

166–182, Feb. 1990. ISSN 0098-5589. doi: 10.1109/32.44380. URL http:

//dx.doi.org/10.1109/32.44380.

184

http://dx.doi.org/10.1007/978-3-319-27140-8_55
http://www.thinkmind.org/index.php?view=article&articleid=depend_2015_1_40_50038
http://www.thinkmind.org/index.php?view=article&articleid=depend_2015_1_40_50038
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/32.44380

BIBLIOGRAPHY 185

[6] A. Arora and S. S. Kulkarni. Detectors and correctors: a theory of fault-

tolerance components. In Distributed Computing Systems, 1998. Proceed-

ings. 18th International Conference on, pages 436–443, May 1998. doi:

10.1109/ICDCS.1998.679772.

[7] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. Dependable and Se-

cure Computing, IEEE Transactions on, 1(1):11–33, Jan 2004. ISSN 1545-

5971. doi: 10.1109/TDSC.2004.2.

[8] S. Ayache, E. Conquet, P. Humbert, C. Rodriguez, J. Sifakis, and R. Ger-

lich. Formal methods for the validation of fault tolerance in autonomous

spacecraft. In Fault Tolerant Computing, 1996., Proceedings of Annual

Symposium on, pages 353–357, Jun 1996. doi: 10.1109/FTCS.1996.

534620.

[9] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson. A study

of the impact of single bit-flip and double bit-flip errors on program

execution. In F. Bitsch, J. Guiochet, and M. Kaniche, editors, Com-

puter Safety, Reliability, and Security, volume 8153 of Lecture Notes

in Computer Science, pages 265–276. Springer Berlin Heidelberg, 2013.

ISBN 978-3-642-40792-5. doi: 10.1007/978-3-642-40793-2 24. URL http:

//dx.doi.org/10.1007/978-3-642-40793-2_24.

[10] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers

with online and active learning. J. Mach. Learn. Res., 6:1579–1619, Dec.

2005. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=

1046920.1194898.

[11] S. Borkar. Designing reliable systems from unreliable components: The

challenges of transistor variability and degradation. IEEE Micro, 25(6):

10–16, Nov. 2005. ISSN 0272-1732. doi: 10.1109/MM.2005.110. URL

http://dx.doi.org/10.1109/MM.2005.110.

http://dx.doi.org/10.1007/978-3-642-40793-2_24
http://dx.doi.org/10.1007/978-3-642-40793-2_24
http://dl.acm.org/citation.cfm?id=1046920.1194898
http://dl.acm.org/citation.cfm?id=1046920.1194898
http://dx.doi.org/10.1109/MM.2005.110

BIBLIOGRAPHY 186

[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and Regression Trees. Statistics/Probability Series. Wadsworth Publishing

Company, Belmont, California, U.S.A., 1984.

[13] C. Brunk and M. J. Pazzani. Proceedings of the an investigation of noise-

tolerant relational concept learning algorithms. In 8th International Con-

ference on Machine Learning, 1991.

[14] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic failure-path

inference: A generic introspection technique for internet applications. In

Proceedings of the The Third IEEE Workshop on Internet Applications,

WIAPP ’03, pages 132–, Washington, DC, USA, 2003. IEEE Computer

Society. ISBN 0-7695-1972-5. URL http://dl.acm.org/citation.cfm?

id=832311.837386.

[15] E. H. Cannon, M. S. Gordon, D. F. Heidel, A. KleinOsowski, P. Oldiges,

K. P. Rodbell, and H. H. Tang. Multi-bit upsets in 65nm SOI SRAMs.

In Reliability Physics Symposium, 2008. IRPS 2008. IEEE International,

pages 195–201, April 2008. doi: 10.1109/RELPHY.2008.4558885.

[16] J. Carreira, H. Madeira, and J. G. Silva. Xception: Software fault injec-

tion and monitoring in processor functional units. In Proceedings of the

Fifth IFIP Working Conference on Dependable Computing for Critical

Applications, pages 135–149, September 1998.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote:

Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–

357, June 2002. ISSN 1076-9757. URL http://dl.acm.org/citation.

cfm?id=1622407.1622416.

[18] N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi. Automatically

countering imbalance and its empirical relationship to cost. Data Min-

ing and Knowledge Discovery, 17(2):225–252, 2008. ISSN 1573-756X.

http://dl.acm.org/citation.cfm?id=832311.837386
http://dl.acm.org/citation.cfm?id=832311.837386
http://dl.acm.org/citation.cfm?id=1622407.1622416
http://dl.acm.org/citation.cfm?id=1622407.1622416

BIBLIOGRAPHY 187

doi: 10.1007/s10618-008-0087-0. URL http://dx.doi.org/10.1007/

s10618-008-0087-0.

[19] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra. Quantita-

tive evaluation of soft error injection techniques for robust system design.

In Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE,

pages 1–10, May 2013.

[20] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and A. Violante.

Exploiting fpga for accelerating fault injection experiments. In On-Line

Testing Workshop, 2001. Proceedings. Seventh International, pages 9–13,

2001. doi: 10.1109/OLT.2001.937810.

[21] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and A. Violante.

Exploiting fpga for accelerating fault injection experiments. In On-Line

Testing Workshop, 2001. Proceedings. Seventh International, pages 9–13,

2001. doi: 10.1109/OLT.2001.937810.

[22] W. W. Cohen. Fast effective rule induction. In Twelfth International Con-

ference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[23] J. Cong and K. Gururaj. Assuring application-level correctness against

soft errors. In Proceedings of the International Conference on Computer-

Aided Design, ICCAD ’11, pages 150–157, Piscataway, NJ, USA, 2011.

IEEE Press. ISBN 978-1-4577-1398-9. URL http://dl.acm.org/

citation.cfm?id=2132325.2132360.

[24] J. Cong and K. Gururaj. Assuring application-level correctness against

soft errors. In Computer-Aided Design (ICCAD), 2011 IEEE/ACM In-

ternational Conference on, pages 150–157, November 2011. doi: 10.1109/

ICCAD.2011.6105319.

[25] S. A. Cook. An overview of computational complexity. Commun. ACM,

26(6):400–408, June 1983. ISSN 0001-0782. doi: 10.1145/358141.358144.

URL http://doi.acm.org/10.1145/358141.358144.

http://dx.doi.org/10.1007/s10618-008-0087-0
http://dx.doi.org/10.1007/s10618-008-0087-0
http://dl.acm.org/citation.cfm?id=2132325.2132360
http://dl.acm.org/citation.cfm?id=2132325.2132360
http://doi.acm.org/10.1145/358141.358144

BIBLIOGRAPHY 188

[26] D. Cotroneo and R. Natella. Fault injection for software certification.

Security Privacy, IEEE, 11(4):38–45, July 2013. ISSN 1540-7993. doi:

10.1109/MSP.2013.54.

[27] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation

of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages, POPL ’77, pages 238–252,

New York, NY, USA, 1977. ACM. doi: 10.1145/512950.512973. URL

http://doi.acm.org/10.1145/512950.512973.

[28] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural

framework for software recovery of hardware faults. In Proceedings of the

37th Annual International Symposium on Computer Architecture, ISCA

’10, pages 497–508, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-

0053-7. doi: 10.1145/1815961.1816026. URL http://doi.acm.org/10.

1145/1815961.1816026.

[29] T. A. Delong, B. W. Johnson, and J. A. Profeta. A fault injection tech-

nique for vhdl behavioral-level models. IEEE Design Test of Computers,

13(4):24–33, Winter 1996. ISSN 0740-7475. doi: 10.1109/54.544533.

[30] M. Demertzi, M. Annavaram, and M. Hall. Analyzing the effects of com-

piler optimizations on application reliability. In Workload Characteriza-

tion (IISWC), 2011 IEEE International Symposium on, pages 184–193,

November 2011. doi: 10.1109/IISWC.2011.6114178.

[31] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and

M. Rinard. Inference and enforcement of data structure consistency spec-

ifications. In Proceedings of the 2006 International Symposium on Software

Testing and Analysis, ISSTA ’06, pages 233–244, New York, NY, USA,

2006. ACM. ISBN 1-59593-263-1. doi: 10.1145/1146238.1146266. URL

http://doi.acm.org/10.1145/1146238.1146266.

http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/1815961.1816026
http://doi.acm.org/10.1145/1815961.1816026
http://doi.acm.org/10.1145/1146238.1146266

BIBLIOGRAPHY 189

[32] D. Di Leo, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and R. Jo-

hansson. On the impact of hardware faults — an investigation of

the relationship between workload inputs and failure mode distribu-

tions. In Proceedings of the 31st International Conference on Com-

puter Safety, Reliability, and Security, SAFECOMP’12, pages 198–209,

Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33677-5.

doi: 10.1007/978-3-642-33678-2 17. URL http://dx.doi.org/10.1007/

978-3-642-33678-2_17.

[33] A. Dixit and A. Wood. The impact of new technology on soft error rates.

In Reliability Physics Symposium (IRPS), 2011 IEEE International, pages

5B.4.1–5B.4.7, April 2011. doi: 10.1109/IRPS.2011.5784522.

[34] P. Domingos. Metacost: A general method for making classifiers cost-

sensitive. In Proceedings of the Fifth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’99, pages 155–164,

New York, NY, USA, 1999. ACM. ISBN 1-58113-143-7. doi: 10.1145/

312129.312220. URL http://doi.acm.org/10.1145/312129.312220.

[35] C. Elkan. The foundations of cost-sensitive learning. In Proceedings of

the 17th International Joint Conference on Artificial Intelligence - Vol-

ume 2, IJCAI’01, pages 973–978, San Francisco, CA, USA, 2001. Morgan

Kaufmann Publishers Inc. ISBN 1-55860-812-5, 978-1-558-60812-2. URL

http://dl.acm.org/citation.cfm?id=1642194.1642224.

[36] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically

discovering likely program invariants to support program evolution. In

Proceedings of the 21st International Conference on Software Engineering,

ICSE ’99, pages 213–224, New York, NY, USA, 1999. ACM. ISBN 1-

58113-074-0. doi: 10.1145/302405.302467. URL http://doi.acm.org/

10.1145/302405.302467.

[37] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

http://dx.doi.org/10.1007/978-3-642-33678-2_17
http://dx.doi.org/10.1007/978-3-642-33678-2_17
http://doi.acm.org/10.1145/312129.312220
http://dl.acm.org/citation.cfm?id=1642194.1642224
http://doi.acm.org/10.1145/302405.302467
http://doi.acm.org/10.1145/302405.302467

BIBLIOGRAPHY 190

Tschantz, and C. Xiao. The Daikon system for dynamic detection of

likely invariants. Science of Computer Programming, Special Issue on

Experimental Software and Toolkits, 69(3):35–45, December 2007.

[38] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on the border:

Active learning in imbalanced data classification. In Proceedings of the

Sixteenth ACM Conference on Conference on Information and Knowl-

edge Management, CIKM ’07, pages 127–136, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-803-9. doi: 10.1145/1321440.1321461. URL

http://doi.acm.org/10.1145/1321440.1321461.

[39] S. Ertekin, J. Huang, and C. L. Giles. Active learning for class imbal-

ance problem. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval, SIGIR ’07, pages 823–824, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-597-7. doi: 10.1145/1277741.1277927. URL http:

//doi.acm.org/10.1145/1277741.1277927.

[40] J.-C. Fabre, M. Rodriguez, J. Arlat, and J.-M. Sizun. Building dependable

cots microkernel-based systems using mafalda. In Proceedings of the 2000

Pacific Rim International Symposium on Dependalbe Computing, pages

85–92, August 2000.

[41] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacost: Misclassifica-

tion cost-sensitive boosting. In Proceedings of the Sixteenth International

Conference on Machine Learning, ICML ’99, pages 97–105, San Francisco,

CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-612-2.

URL http://dl.acm.org/citation.cfm?id=645528.657651.

[42] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: Probabilistic

soft error reliability on the cheap. In Proceedings of the Fifteenth Edition

of ASPLOS on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XV, pages 385–396, New York, NY, USA,

http://doi.acm.org/10.1145/1321440.1321461
http://doi.acm.org/10.1145/1277741.1277927
http://doi.acm.org/10.1145/1277741.1277927
http://dl.acm.org/citation.cfm?id=645528.657651

BIBLIOGRAPHY 191

2010. ACM. ISBN 978-1-60558-839-1. doi: 10.1145/1736020.1736063.

URL http://doi.acm.org/10.1145/1736020.1736063.

[43] C. Fetzer and Z. Xiao. An automated approach to increasing the robust-

ness of c libraries. In Proceedings of the 32nd IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 155–164, Decem-

ber 2002.

[44] G. Fey, A. Sulflow, and R. Drechsler. Computing bounds for fault

tolerance using formal techniques. In Design Automation Conference,

2009. DAC ’09. 46th ACM/IEEE, pages 190–195, July 2009. doi:

10.1145/1629911.1629963.

[45] P. Folkesson, S. Svensson, and J. Karlsson. A comparison of simulation

based and scan chain implemented fault injection. In Fault-Tolerant Com-

puting, 1998. Digest of Papers. Twenty-Eighth Annual International Sym-

posium on, pages 284–293, June 1998. doi: 10.1109/FTCS.1998.689479.

[46] E. Fuchs. An evaluation of the error detection mechanisms in mars us-

ing software-implemented fault injection. In Proceedings of the Second

European Dependable Computing Conference on Dependable Computing,

EDCC-2, pages 73–90, London, UK, UK, 1996. Springer-Verlag. ISBN

3-540-61772-8. URL http://dl.acm.org/citation.cfm?id=645331.

649805.

[47] J. Fürnkranz and G. Widmer. Incremental Reduced Error Pruning.

In W. W. Cohen and H. Hirsh, editors, Proceedings of the 11th In-

ternational Conference on Machine Learning (ML-94), pages 70–77,

New Brunswick, NJ, 1994. Morgan Kaufmann. URL http://www.ke.

informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz.

[48] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 2000.

http://doi.acm.org/10.1145/1736020.1736063
http://dl.acm.org/citation.cfm?id=645331.649805
http://dl.acm.org/citation.cfm?id=645331.649805
http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz
http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz

BIBLIOGRAPHY 192

[49] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

NY, USA, 1979. ISBN 0716710447.

[50] F. C. Gärtner and A. Jhumka. Automating the addition of fail-safe

fault-tolerance: Beyond fusion-closed specifications. In Y. Lakhnech and

S. Yovine, editors, Formal Techniques, Modelling and Analysis of Timed

and Fault-Tolerant Systems, volume 3253 of Lecture Notes in Computer

Science, pages 183–198. Springer Berlin Heidelberg, 2004. ISBN 978-3-

540-23167-7. doi: 10.1007/978-3-540-30206-3 14. URL http://dx.doi.

org/10.1007/978-3-540-30206-3_14.

[51] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Ruckerbauer.

Investigation of increased multi-bit failure rate due to neutron induced

SEU in advanced embedded srams. In VLSI Circuits, 2007 IEEE Sympo-

sium on, pages 80–81, June 2007. doi: 10.1109/VLSIC.2007.4342774.

[52] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock, J. Haid, T. Aichinger,

and C. Ulbricht. Case study on multiple fault dependability and se-

curity evaluations. Microprocessors and Microsystems, 37(2):218 – 227,

2013. ISSN 0141-9331. doi: http://dx.doi.org/10.1016/j.micpro.2012.

05.016. URL http://www.sciencedirect.com/science/article/pii/

S0141933112000932. Digital System Safety and Security.

[53] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown. MiBench: A free, commercially representative em-

bedded benchmark suite. In Proceedings of the Workload Characteri-

zation, 2001. WWC-4. 2001 IEEE International Workshop, WWC ’01,

pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society. ISBN

0-7803-7315-4. doi: 10.1109/WWC.2001.15. URL http://dx.doi.org/

10.1109/WWC.2001.15.

[54] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

http://dx.doi.org/10.1007/978-3-540-30206-3_14
http://dx.doi.org/10.1007/978-3-540-30206-3_14
http://www.sciencedirect.com/science/article/pii/S0141933112000932
http://www.sciencedirect.com/science/article/pii/S0141933112000932
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15

BIBLIOGRAPHY 193

Witten. The WEKA data mining software: An update. SIGKDD Explor.

Newsl., 11(1):10–18, Nov. 2009. ISSN 1931-0145. doi: 10.1145/1656274.

1656278. URL http://doi.acm.org/10.1145/1656274.1656278.

[55] S. K. S. Hari, S. V. Adve, and H. Naeimi. Low-cost program-level

detectors for reducing silent data corruptions. In Proceedings of the

2012 42Nd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), DSN ’12, pages 1–12, Washington, DC,

USA, 2012. IEEE Computer Society. ISBN 978-1-4673-1624-8. URL

http://dl.acm.org/citation.cfm?id=2354410.2355132.

[56] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Trans.

on Knowl. and Data Eng., 21(9):1263–1284, Sept. 2009. ISSN 1041-4347.

doi: 10.1109/TKDE.2008.239. URL http://dx.doi.org/10.1109/TKDE.

2008.239.

[57] M. Hiller. Executable assertions for detecting data errors in embedded

control systems. In Dependable Systems and Networks, 2000. DSN 2000.

Proceedings International Conference on, pages 24–33, 2000. doi: 10.1109/

ICDSN.2000.857510.

[58] M. Hiller, A. Jhumka, and N. Suri. An approach for analysing the prop-

agation of data errors in software. In Dependable Systems and Networks,

2001. DSN 2001. International Conference on, pages 161–170, July 2001.

doi: 10.1109/DSN.2001.941402.

[59] M. Hiller, A. Jhumka, and N. Suri. PROPANE: An environment for

examining the propagation of errors in software. In Proceedings of the

11th ACM SIGSOFT International Symposium on Software Testing and

Analysis, pages 81–85, July 2002.

[60] M. Hiller, A. Jhumka, and N. Suri. On the placement of software mecha-

nisms for detection of data errors. In Dependable Systems and Networks,

http://doi.acm.org/10.1145/1656274.1656278
http://dl.acm.org/citation.cfm?id=2354410.2355132
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TKDE.2008.239

BIBLIOGRAPHY 194

2002. DSN 2002. Proceedings. International Conference on, pages 135–

144, 2002. doi: 10.1109/DSN.2002.1028894.

[61] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and

tools. Computer, 30(4):75–82, Apr 1997. ISSN 0018-9162. doi: 10.1109/

2.585157.

[62] ISO. ISO 26262-1:2011, road vehicles – functional safety – part 1: Vocab-

ulary, 2011.

[63] N. Japkowicz. The class imbalance problem: Significance and strategies.

In Proceedings of the 2000 International Conference on Artificial Intelli-

gence (ICAI, pages 111–117, 2000.

[64] A. Jhumka and M. Hiller. Putting detectors in their place [program moni-

toring]. In Software Engineering and Formal Methods, 2005. SEFM 2005.

Third IEEE International Conference on, pages 33–42, September 2005.

doi: 10.1109/SEFM.2005.38.

[65] A. Jhumka and M. Leeke. Issues on the design of efficient fail-safe fault

tolerance. In Software Reliability Engineering, 2009. ISSRE ’09. 20th

International Symposium on, pages 155–164, Nov 2009. doi: 10.1109/

ISSRE.2009.31.

[66] A. Jhumka and M. Leeke. The early identification of detector locations in

dependable software. In Software Reliability Engineering (ISSRE), 2011

IEEE 22nd International Symposium on, pages 40–49, Nov 2011. doi:

10.1109/ISSRE.2011.34.

[67] A. Jhumka, M. Hiller, and N. Suri. Assessing inter-modular error propaga-

tion in distributed software. In Proceedings of the 20th IEEE Symposium

on Reliable Distributed Systems, pages 152–161, January 2001.

[68] A. Jhumka, F. C. Gärtner, C. Fetzer, and N. Suri. On systematic design

of fast and perfect detectors. Technical Report 200263, Swiss Federal

BIBLIOGRAPHY 195

Institute of Technology (EPFL), School of Computer and Communication

Sciences, Lausanne, Switzerland, Sept. 2002.

[69] A. Jhumka, M. Hiller, and N. Suri. An approach for designing and assess-

ing detectors for dependable component-based systems. In High Assurance

Systems Engineering, 2004. Proceedings. Eighth IEEE International Sym-

posium on, pages 69–78, March 2004. doi: 10.1109/HASE.2004.1281731.

[70] Y. Jia and M. Harman. Higher order mutation testing. Information and

Software Technology, 51(10):1379–1393, 2009.

[71] G. H. John and P. Langley. Estimating continuous distributions in

bayesian classifiers. In Proceedings of the Eleventh Conference on Un-

certainty in Artificial Intelligence, UAI’95, pages 338–345, San Francisco,

CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1-55860-385-9.

URL http://dl.acm.org/citation.cfm?id=2074158.2074196.

[72] P. Joshi, H. Gunawi, and K. Sen. Prefail: a programmable tool for

multiple-failure injection. In Proceedings OOPSLA, 2011.

[73] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. FERRARI: A flex-

ible software-based fault and error injection system. IEEE Transactions

on Computers, 44(2):248–260, February 1995.

[74] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using

heavy-ion radiation to validate fault-handling mechanisms. IEEE Micro,

14(1):8–11, 13–23, Feb. 1994. ISSN 0272-1732. doi: 10.1109/40.259894.

URL http://dx.doi.org/10.1109/40.259894.

[75] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–

103. Springer US, Boston, MA, 1972. ISBN 978-1-4684-2001-2.

doi: 10.1007/978-1-4684-2001-2 9. URL http://dx.doi.org/10.1007/

978-1-4684-2001-2_9.

http://dl.acm.org/citation.cfm?id=2074158.2074196
http://dx.doi.org/10.1109/40.259894
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

BIBLIOGRAPHY 196

[76] D. S. Khudia, G. Wright, and S. Mahlke. Efficient soft error pro-

tection for commodity embedded microprocessors using profile informa-

tion. In Proceedings of the 13th ACM SIGPLAN/SIGBED Interna-

tional Conference on Languages, Compilers, Tools and Theory for Em-

bedded Systems, LCTES ’12, pages 99–108, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1212-7. doi: 10.1145/2248418.2248433. URL

http://doi.acm.org/10.1145/2248418.2248433.

[77] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. Multi-bit error

tolerant caches using two-dimensional error coding. In Microarchitecture,

2007. MICRO 2007. 40th Annual IEEE/ACM International Symposium

on, pages 197–209, December 2007. doi: 10.1109/MICRO.2007.19.

[78] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,

and O. Mutlu. Flipping bits in memory without accessing them: An exper-

imental study of DRAM disturbance errors. SIGARCH Comput. Archit.

News, 42(3):361–372, June 2014. ISSN 0163-5964. doi: 10.1145/2678373.

2665726. URL http://doi.acm.org/10.1145/2678373.2665726.

[79] P. Koopman, K. DeVale, and J. DeVale. Interface robustness testing:

experiences and lessons learned from the ballista project. In K. Kanoun

and L. Spainhower, editors, Dependability Benchmarking for Computer

Systems, pages 201–226. IEEE Press, 2008.

[80] M. Kubat and S. Matwin. Addressing the curse of imbalanced training

sets: One-sided selection. In In Proceedings of the Fourteenth Interna-

tional Conference on Machine Learning, pages 179–186. Morgan Kauf-

mann, 1997.

[81] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance.

In M. Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant

Systems, volume 1926 of Lecture Notes in Computer Science, pages 82–93.

http://doi.acm.org/10.1145/2248418.2248433
http://doi.acm.org/10.1145/2678373.2665726

BIBLIOGRAPHY 197

Springer Berlin Heidelberg, 2000. ISBN 978-3-540-41055-3. doi: 10.1007/

3-540-45352-0 9. URL http://dx.doi.org/10.1007/3-540-45352-0_9.

[82] S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-

tolerance. In Distributed Computing Systems, 2002. Proceedings. 22nd

International Conference on, pages 337–344, 2002. doi: 10.1109/ICDCS.

2002.1022271.

[83] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. An empirical

study of injected versus actual interface errors. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, ISSTA 2014,

pages 397–408, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2645-

2. doi: 10.1145/2610384.2610418. URL http://doi.acm.org/10.1145/

2610384.2610418.

[84] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization, CGO ’04, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7695-2102-9. URL http://dl.acm.org/

citation.cfm?id=977395.977673.

[85] S. le Cessie and J. van Houwelingen. Ridge estimators in logistic regres-

sion. Applied Statistics, 41(1):191–201, 1992.

[86] M. B. Lecocke, J. Blount, and J. Blount. Use of formal modeling to

automatically generate correct fault detection and response methods. In

2015 IEEE Aerospace Conference, pages 1–7, March 2015. doi: 10.1109/

AERO.2015.7119245.

[87] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubrama-

nian. Partially protected caches to reduce failures due to soft errors in

multimedia applications. Very Large Scale Integration (VLSI) Systems,

http://dx.doi.org/10.1007/3-540-45352-0_9
http://doi.acm.org/10.1145/2610384.2610418
http://doi.acm.org/10.1145/2610384.2610418
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673

BIBLIOGRAPHY 198

IEEE Transactions on, 17(9):1343–1347, Sept 2009. ISSN 1063-8210. doi:

10.1109/TVLSI.2008.2002427.

[88] W. Lee, S. J. Stolfo, and K. W. Mok. A data mining framework for

building intrusion detection models. In Security and Privacy, 1999. Pro-

ceedings of the 1999 IEEE Symposium on, pages 120–132, 1999. doi:

10.1109/SECPRI.1999.766909.

[89] M. Leeke and A. Jhumka. Towards understanding the importance of

variables in dependable software. In Dependable Computing Conference

(EDCC), 2010 European, pages 85–94, April 2010. doi: 10.1109/EDCC.

2010.20.

[90] M. Leeke, S. Arif, A. Jhumka, and S. S. Anand. A methodology for

the generation of efficient error detection mechanisms. In Dependable

Systems Networks (DSN), 2011 IEEE/IFIP 41st International Conference

on, pages 25–36, June 2011. doi: 10.1109/DSN.2011.5958204.

[91] M. Leeke, A. Jhumka, and S. S. Anand. Towards the design of efficient

error detection mechanisms for transient data errors. The Computer Jour-

nal, 56(6):674–692, 2013.

[92] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in

a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

[93] N. Leveson, S. Cha, J. Knight, and T. Shimeall. The use of self checks and

voting in software error detection: an empirical study. Software Engineer-

ing, IEEE Transactions on, 16(4):432–443, April 1990. ISSN 0098-5589.

doi: 10.1109/32.54295.

[94] R. Leveugle. Fault injection in vhdl descriptions and emulation. In

Proceedings of the 15th IEEE International Symposium on Defect and

Fault-Tolerance in VLSI Systems, DFT ’00, pages 414–, Washington,

DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0719-0. URL

http://dl.acm.org/citation.cfm?id=647833.738002.

http://dl.acm.org/citation.cfm?id=647833.738002

BIBLIOGRAPHY 199

[95] R. Leveugle, R. Rochet, G. Saucier, L. Martinez, and C. Pitot. A synthesis

tool for fault-tolerant finite state machines. In Fault-Tolerant Computing,

1993. FTCS-23. Digest of Papers., The Twenty-Third International Sym-

posium on, pages 502–511, June 1993. doi: 10.1109/FTCS.1993.627353.

[96] D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for super-

vised learning. In In Proceedings of the Eleventh International Conference

on Machine Learning, pages 148–156. Morgan Kaufmann, 1994.

[97] X. Li, M. C. Huang, K. Shen, and L. Chu. A realistic evaluation of mem-

ory hardware errors and software system susceptibility. In Proceedings of

the 2010 USENIX Conference on USENIX Annual Technical Conference,

USENIXATC’10, pages 6–6, Berkeley, CA, USA, 2010. USENIX Associa-

tion. URL http://dl.acm.org/citation.cfm?id=1855840.1855846.

[98] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving

dram refresh-power through critical data partitioning. SIGPLAN Not., 46

(3):213–224, Mar. 2011. ISSN 0362-1340. doi: 10.1145/1961296.1950391.

URL http://doi.acm.org/10.1145/1961296.1950391.

[99] B. Livshits and T. Zimmermann. Dynamine: Finding common er-

ror patterns by mining software revision histories. In Proceedings of

the 10th European Software Engineering Conference Held Jointly with

13th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering, ESEC/FSE-13, pages 296–305, New York, NY, USA,

2005. ACM. ISBN 1-59593-014-0. doi: 10.1145/1081706.1081754. URL

http://doi.acm.org/10.1145/1081706.1081754.

[100] LLFI. https://github.com/dependablesystemslab/llfi.

[101] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun. Classification of

software behaviors for failure detection: A discriminative pattern min-

ing approach. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’09, pages

http://dl.acm.org/citation.cfm?id=1855840.1855846
http://doi.acm.org/10.1145/1961296.1950391
http://doi.acm.org/10.1145/1081706.1081754

BIBLIOGRAPHY 200

557–566, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-495-

9. doi: 10.1145/1557019.1557083. URL http://doi.acm.org/10.1145/

1557019.1557083.

[102] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers. SDCTune: A

model for predicting the sdc proneness of an application for configurable

protection. In Compilers, Architecture and Synthesis for Embedded Sys-

tems (CASES), 2014 International Conference on, pages 1–10, Oct 2014.

doi: 10.1145/2656106.2656127.

[103] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman. Llfi: An

intermediate code-level fault injection tool for hardware faults. In Soft-

ware Quality, Reliability and Security (QRS), 2015 IEEE International

Conference on, pages 11–16, Aug 2015. doi: 10.1109/QRS.2015.13.

[104] R. Maia, L. Henriques, D. Costa, and H. Madeira. Xceptiontm - enhanced

automated fault-injection environment. In Dependable Systems and Net-

works, 2002. DSN 2002. Proceedings. International Conference on, pages

547–, 2002. doi: 10.1109/DSN.2002.1028978.

[105] M. Maniatakos, M. K. Michael, and Y. Makris. Vulnerability-based inter-

leaving for multi-bit upset (MBU) protection in modern microprocessors.

In Test Conference (ITC), 2012 IEEE International, pages 1–8, November

2012. doi: 10.1109/TEST.2012.6401594.

[106] M. Maniatakos, M. Michael, and Y. Makris. Investigating the limits of

AVF analysis in the presence of multiple bit errors. In On-Line Testing

Symposium (IOLTS), 2013 IEEE 19th International, pages 49–54, July

2013. doi: 10.1109/IOLTS.2013.6604050.

[107] K. Z. Mao. Fast orthogonal forward selection algorithm for feature subset

selection. IEEE Transactions on Neural Networks, 13(5):1218–1224, Sep

2002. ISSN 1045-9227. doi: 10.1109/TNN.2002.1031954.

http://doi.acm.org/10.1145/1557019.1557083
http://doi.acm.org/10.1145/1557019.1557083

BIBLIOGRAPHY 201

[108] MathWorks. http://www.mathworks.co.uk/help/rtw/examples/fuel-rate-

control-system.html?refresh=true.

[109] MATLAB. version 8.3 (R2014a). The MathWorks Inc., Natick,

Massachusetts, 2014. URL http://www.mathworks.co.uk/products/

matlab/.

[110] D. Mease, A. J. Wyner, and A. Buja. Boosted classification trees and

class probability/quantile estimation. J. Mach. Learn. Res., 8:409–439,

May 2007. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?

id=1248659.1248675.

[111] N. Miskov-Zivanov and D. Marculescu. Soft error rate analysis for se-

quential circuits. In 2007 Design, Automation Test in Europe Conference

Exhibition, pages 1–6, April 2007. doi: 10.1109/DATE.2007.364500.

[112] N. Miskov-Zivanov and D. Marculescu. Multiple transient faults in com-

binational and sequential circuits: A systematic approach. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 29

(10):1614–1627, Oct 2010. ISSN 0278-0070. doi: 10.1109/TCAD.2010.

2061131.

[113] R. Moraes, R. Barbosa, J. Duraes, N. Mendes, E. Martins, and

H. Madeira. Injection of faults at component interfaces and inside the

component code: are they equivalent? In Dependable Computing Con-

ference, 2006. EDCC ’06. Sixth European, pages 53–64, Oct 2006. doi:

10.1109/EDCC.2006.16.

[114] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable stochastic

processors. In Proceedings of the Conference on Design, Automation and

Test in Europe, DATE ’10, pages 335–338, 3001 Leuven, Belgium, Bel-

gium, 2010. European Design and Automation Association. ISBN 978-

3-9810801-6-2. URL http://dl.acm.org/citation.cfm?id=1870926.

1871008.

http://www.mathworks.co.uk/products/matlab/
http://www.mathworks.co.uk/products/matlab/
http://dl.acm.org/citation.cfm?id=1248659.1248675
http://dl.acm.org/citation.cfm?id=1248659.1248675
http://dl.acm.org/citation.cfm?id=1870926.1871008
http://dl.acm.org/citation.cfm?id=1870926.1871008

BIBLIOGRAPHY 202

[115] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira. On fault

representativeness of software fault injection. Software Engineering, IEEE

Transactions on, 39(1):80–96, Jan 2013. ISSN 0098-5589. doi: 10.1109/

TSE.2011.124.

[116] K. Nguyen, J. Beugin, M. Berbineau, and M. Kassab. Modelling com-

munication based train control system for dependability analysis of the

lte communication network in train control application. In Modelling

Symposium (EMS), 2014 European, pages 320–325, Oct 2014. doi:

10.1109/EMS.2014.55.

[117] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer. Application-based met-

rics for strategic placement of detectors. In Dependable Computing, 2005.

Proceedings. 11th Pacific Rim International Symposium on, pages 8 pp.–,

December 2005. doi: 10.1109/PRDC.2005.19.

[118] K. Pattabiraman, G. Saggese, D. Chen, Z. Kalbarczyk, and R. K. Iyer.

Dynamic derivation of application-specific error detectors and their im-

plementation in hardware. In Dependable Computing Conference, 2006.

EDCC ’06. Sixth European, pages 97–108, October 2006. doi: 10.1109/

EDCC.2006.9.

[119] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer. Automated derivation of

application-aware error detectors using static analysis. In On-Line Testing

Symposium, 2007. IOLTS 07. 13th IEEE International, pages 211–216,

July 2007. doi: 10.1109/IOLTS.2007.21.

[120] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Re-

ducing misclassification costs. In Proc. 11th International Conference on

Machine Learning, pages 217–225. Morgan Kaufmann, 1994.

[121] S. Pemmaraju and S. Skiena. Computational Discrete Mathematics: Com-

binatorics and Graph Theory with Mathematica R©. Cambridge University

Press, New York, NY, USA, 2003. ISBN 0521806860.

BIBLIOGRAPHY 203

[122] G. Pintér, H. Madeira, M. Vieira, I. Majzik, and A. Pataricza. A data

mining approach to identify key factors in dependability experiments in

dependable computing. In Proceedings of the 5th European Dependable

Computing Conference, pages 263–280, March 2005.

[123] F. Pournaghdali, A. Rajabzadeh, and M. Ahmadi. Vhdlsfi: A simulation-

based multi-bit fault injection for dependability analysis. In Computer and

Knowledge Engineering (ICCKE), 2013 3th International eConference on,

pages 354–360, Oct 2013. doi: 10.1109/ICCKE.2013.6682846.

[124] D. Powell. Failure mode assumptions and assumption coverage. In Fault-

Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second

International Symposium on, pages 386–395, July 1992. doi: 10.1109/

FTCS.1992.243562.

[125] D. Powell, E. Martins, J. Arlat, and Y. Crouzet. Estimators for fault

tolerance coverage evaluation. In Fault-Tolerant Computing, 1993. FTCS-

23. Digest of Papers., The Twenty-Third International Symposium on,

pages 228–237, June 1993. doi: 10.1109/FTCS.1993.627326.

[126] R. T. Prosser. Applications of boolean matrices to the analysis of flow

diagrams. In AFIPS Joint Computer Conferences, pages 133–138, 1959.

[127] J. R. Quinlan. Learning logical definitions from relations. Mach. Learn., 5

(3):239–266, Sept. 1990. ISSN 0885-6125. doi: 10.1023/A:1022699322624.

URL http://dx.doi.org/10.1023/A:1022699322624.

[128] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

[129] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report, pages

1–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993. ISBN 978-

3-540-47597-2. doi: 10.1007/3-540-56602-3 124. URL http://dx.doi.

org/10.1007/3-540-56602-3_124.

http://dx.doi.org/10.1023/A:1022699322624
http://dx.doi.org/10.1007/3-540-56602-3_124
http://dx.doi.org/10.1007/3-540-56602-3_124

BIBLIOGRAPHY 204

[130] D. Radaelli, H. Puchner, S. Wong, and S. Daniel. Investigation of multi-

bit upsets in a 150 nm technology sram device. IEEE Transactions on

Nuclear Science, 52(6):2433–2437, Dec 2005. ISSN 0018-9499. doi: 10.

1109/TNS.2005.860675.

[131] P. M. B. Rao, M. Ebrahimi, R. Seyyedi, and M. B. Tahoori. Protecting

SRAM-based FPGAs against multiple bit upsets using erasure codes. In

Proceedings of the 51st Annual Design Automation Conference, DAC ’14,

pages 212:1–212:6, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-

2730-5. doi: 10.1145/2593069.2593191. URL http://doi.acm.org/10.

1145/2593069.2593191.

[132] R. A. Reed, M. A. Carts, P. W. Marshall, C. J. Marshall, O. Musseau, P. J.

McNulty, D. R. Roth, S. Buchner, J. Melinger, and T. Corbiere. Heavy

ion and proton-induced single event multiple upset. IEEE Transactions

on Nuclear Science, 44:2224–2229, Dec. 1997. doi: 10.1109/23.659039.

[133] R. Reicherdt and S. Glesner. Slicing MATLAB simulink models. In

Proceedings of the 34th International Conference on Software Engineer-

ing, ICSE ’12, pages 551–561, Piscataway, NJ, USA, 2012. IEEE Press.

ISBN 978-1-4673-1067-3. URL http://dl.acm.org/citation.cfm?id=

2337223.2337288.

[134] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.

Swift: software implemented fault tolerance. In Code Generation and

Optimization, 2005. CGO 2005. International Symposium on, pages 243–

254, March 2005. doi: 10.1109/CGO.2005.34.

[135] C. Rousselle, M. Pflanz, A. Behling, T. Mohaupt, and H. T. Vierhaus. A

register-transfer-level fault simulator for permanent and transient faults in

embedded processors. In Design, Automation and Test in Europe, 2001.

Conference and Exhibition 2001. Proceedings, pages 811–, 2001. doi: 10.

1109/DATE.2001.915148.

http://doi.acm.org/10.1145/2593069.2593191
http://doi.acm.org/10.1145/2593069.2593191
http://dl.acm.org/citation.cfm?id=2337223.2337288
http://dl.acm.org/citation.cfm?id=2337223.2337288

BIBLIOGRAPHY 205

[136] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V.Adve, V. S. Adve, and

Y. Zhou. Using likely program invariants to detect hardware errors. In

Dependable Systems and Networks With FTCS and DCC, 2008. DSN

2008. IEEE International Conference on, pages 70–79, June 2008. doi:

10.1109/DSN.2008.4630072.

[137] F. Salles, M. Rodriguez, J.-C. Fabre, and J. Arlat. Metakernels and fault

containment wrappers. In Proceedings of the 29th International Sympo-

sium on Fault-Tolerant Computing, pages 22–29, November 1999.

[138] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman. Enerj: Approximate data types for safe and general low-

power computation. In Proceedings of the 32Nd ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI ’11,

pages 164–174, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-

8. doi: 10.1145/1993498.1993518. URL http://doi.acm.org/10.1145/

1993498.1993518.

[139] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. A study of

the impact of bit-flip errors on programs compiled with different optimiza-

tion levels. In Dependable Computing Conference (EDCC), 2014 Tenth

European, pages 146–157, May 2014. doi: 10.1109/EDCC.2014.30.

[140] M. Santos, R. Martins, M. Santana, and S. Fernandes. An adaptive ran-

dom heuristic in virtual networks: Dependability analysis. In Network

Operations and Management Symposium (LANOMS), 2015 Latin Amer-

ican, pages 41–48, Oct 2015. doi: 10.1109/LANOMS.2015.7332668.

[141] S. Satoh, Y. Tosaka, and S. Wender. Geometric effect of multiple-bit

soft errors induced by cosmic ray neutrons on DRAMs. Electron Device

Letters, IEEE, 21(6):310–312, June 2000. ISSN 0741-3106. doi: 10.1109/

55.843160.

http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518

BIBLIOGRAPHY 206

[142] D. A. Schmidt. Data flow analysis is model checking of abstract interpreta-

tions. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’98, pages 38–48, New York,

NY, USA, 1998. ACM. ISBN 0-89791-979-3. doi: 10.1145/268946.268950.

URL http://doi.acm.org/10.1145/268946.268950.

[143] B. Settles. Active learning literature survey. Computer Sciences Technical

Report 1648, University of Wisconsin, Madison, 2009.

[144] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel. Exploiting

program-level masking and error propagation for constrained reliability

optimization. In Design Automation Conference (DAC), 2013 50th ACM

/ EDAC / IEEE, pages 1–9, May 2013.

[145] V. Sieh, O. Tschache, and F. Balbach. Verify: evaluation of reliability

using vhdl-models with embedded fault descriptions. In Fault-Tolerant

Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual

International Symposium on, pages 32–36, June 1997. doi: 10.1109/FTCS.

1997.614074.

[146] M. Sipser. Introduction to the Theory of Computation. International

Thomson Publishing, 1st edition, 1996. ISBN 053494728X.

[147] M. Sipser. Introduction to the theory of computation. Thomson Course

Technology, Boston, 2006. ISBN 0-534-95097-3. URL http://opac.

inria.fr/record=b1119335.

[148] D. Skarin and J. Karlsson. Software implemented detection and recovery

of soft errors in a brake-by-wire system. In Dependable Computing Con-

ference, 2008. EDCC 2008. Seventh European, pages 145–154, May 2008.

doi: 10.1109/EDCC-7.2008.24.

[149] D. Skarin, R. Barbosa, and J. Karlsson. Goofi-2: A tool for experimental

dependability assessment. In 2010 IEEE/IFIP International Conference

http://doi.acm.org/10.1145/268946.268950
http://opac.inria.fr/record=b1119335
http://opac.inria.fr/record=b1119335

BIBLIOGRAPHY 207

on Dependable Systems Networks (DSN), pages 557–562, June 2010. doi:

10.1109/DSN.2010.5544265.

[150] V. Sridharan and D. Liberty. A study of DRAM failures in the field. In

High Performance Computing, Networking, Storage and Analysis (SC),

2012 International Conference for, pages 1–11, Nov 2012. doi: 10.1109/

SC.2012.13.

[151] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer. Nf-

tape: a framework for assessing dependability in distributed systems with

lightweight fault injectors. In Computer Performance and Dependability

Symposium, 2000. IPDS 2000. Proceedings. IEEE International, pages

91–100, 2000. doi: 10.1109/IPDS.2000.839467.

[152] SUSAN. http://users.fmrib.ox.ac.uk/∼steve/susan/susan2l.c.

[153] K. Suyama and N. Sebe. Dependability analysis of fault-tolerant servo

systems using limited integrators. In Control Conference (ECC), 2014

European, pages 652–659, June 2014. doi: 10.1109/ECC.2014.6862235.

[154] D. D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,

and F. T. Chong. Characterization of error-tolerant applications when

protecting control data. In Workload Characterization, 2006 IEEE Inter-

national Symposium on, pages 142–149, Oct 2006. doi: 10.1109/IISWC.

2006.302738.

[155] A. Thomas and K. Pattabiraman. Error detector placement for soft com-

putation. In Dependable Systems and Networks (DSN), 2013 43rd Annual

IEEE/IFIP International Conference on, pages 1–12, June 2013. doi:

10.1109/DSN.2013.6575353.

[156] A. Thomas and K. Pattabiraman. LLFI: An intermediate code level fault

injector for soft computing applications. In Proceedings of IEEE Workshop

on Silicon Errors in Logic, System Effects (SELSE), 2013.

BIBLIOGRAPHY 208

[157] K. M. Ting. An instance-weighting method to induce cost-sensitive

trees. IEEE Trans. on Knowl. and Data Eng., 14(3):659–665, May

2002. ISSN 1041-4347. doi: 10.1109/TKDE.2002.1000348. URL http:

//dx.doi.org/10.1109/TKDE.2002.1000348.

[158] E. Touloupis, J. A. Flint, V. A. Chouliaras, and D. D. Ward. Study of

the effects of SEU-induced faults on a pipeline protected microprocessor.

Computers, IEEE Transactions on, 56(12):1585–1596, December 2007.

ISSN 0018-9340. doi: 10.1109/TC.2007.70766.

[159] J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson:. Reducing critical

failures for control algorithms using executable assertions and best effort

recover. In Proceedings Dependable Systems and Networks, pages 347–356,

2001.

[160] L. Wang, Z. Kalbarczyk, and R. K. Iyer. Formalizing system behavior

for evaluating a system hang detector. In Reliable Distributed Systems,

2008. SRDS ’08. IEEE Symposium on, pages 269–278, October 2008. doi:

10.1109/SRDS.2008.11.

[161] J. Wei, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. Com-

paring the effects of intermittent and transient hardware faults on pro-

grams. In Dependable Systems and Networks Workshops (DSN-W), 2011

IEEE/IFIP 41st International Conference on, pages 53–58, June 2011.

doi: 10.1109/DSNW.2011.5958835.

[162] M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and D. R.

Kaeli. Calculating architectural vulnerability factors for spatial multi-

bit transient faults. In Microarchitecture (MICRO), 2014 47th Annual

IEEE/ACM International Symposium on, pages 293–305, December 2014.

doi: 10.1109/MICRO.2014.15.

[163] S. Winter, M. Tretter, B. Sattler, and N. Suri. simFI: From single to

simultaneous software fault injections. In Dependable Systems and Net-

http://dx.doi.org/10.1109/TKDE.2002.1000348
http://dx.doi.org/10.1109/TKDE.2002.1000348

BIBLIOGRAPHY 209

works (DSN), 2013 43rd Annual IEEE/IFIP International Conference on,

pages 1–12, June 2013. doi: 10.1109/DSN.2013.6575310.

[164] X. Xu, W. Chen, J. Wan, and R. Yu. Distributed fault diagnosis of

wireless sensor networks. In Communication Technology, 2008. ICCT

2008. 11th IEEE International Conference on, pages 148–151, Nov 2008.

doi: 10.1109/ICCT.2008.4716155.

[165] C. Yang and A. Orailoglu. Processor reliability enhancement through

compiler-directed register file peak temperature reductionprocessor relia-

bility enhancement through compiler-directed register file peak tempera-

ture reduction. In Proceedings Dependable Systems and Networks, pages

468–477, 2009.

[166] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-

proportionate example weighting. In Proceedings of the Third IEEE In-

ternational Conference on Data Mining, ICDM ’03, pages 435–, Washing-

ton, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1978-4. URL

http://dl.acm.org/citation.cfm?id=951949.952181.

[167] Y. Zennir and R. Bendib. Modeling and dependability analysis of an

industrial plant: Case study. In Industrial Engineering and Systems Man-

agement (IESM), 2015 International Conference on, pages 1012–1018,

Oct 2015. doi: 10.1109/IESM.2015.7380278.

[168] F. Zhao, H. Jin, D. Zou, and P. Qin. Dependability analysis for fault-

tolerant computer systems using dynamic fault graphs. China Communi-

cations, 11(9):16–30, Sept 2014. ISSN 1673-5447. doi: 10.1109/CC.2014.

6969708.

http://dl.acm.org/citation.cfm?id=951949.952181

	Abstract
	Dedication
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivations
	Thesis Contributions
	Thesis Structure

	(Software) Dependability Concepts and Terminology
	The Fundamentals of Dependability
	Dependability Attributes
	Dependability Threats
	Type of Faults
	Dependability Means

	Fault Tolerance Validation
	Formal Method
	Fault Injection
	Dependability Analysis

	System and Faults Models and Target Systems
	System Model
	Extended-CFG for a Program

	Fault Model
	Single Fault
	Multiple Faults

	Target Systems
	Flight Control
	SUSAN (Smallest Univalue Segment Assimilating Nucleus)
	MiBench Suite

	Fault Injection Analysis
	LLVM
	LLVM Fault Injection (LLFI) Tool
	Failure Scheme

	Problem Statements
	Selecting Potential Injection Blocks Locations
	Identifying Candidate Variables to Target
	Error Propagation Masking
	Error Propagation Amplification

	Selecting Choice Bit-Positions
	Roadmap of Thesis Statement

	Towards Selecting Locations for Multiple Soft-Errors Injection
	Basic concepts of Computational Complexity Theory
	Reducibility, NP-hardness and NP-completeness

	Selecting Locations for Mulitple Fault Injections
	Injection Location Selection (ILS)
	Complexity Analysis of ILS

	Target Variable Selection (TVS)
	Complexity Analysis of TVS

	Summary and Conclusions

	Double Single Bit-Flips (L1C2) Fault Model
	Evaluation of Fault Models and Failure Modes
	Case Studies
	System Instrumentation
	Experimental Procedure

	Impact of Fault Models
	L2C1 vs. L1C2 vs L1C1

	Impact of Injection Location
	Block Location
	Register Instruction Type
	Register Data Type

	Correlations
	Testing Monotonic Relationships
	Testing Linear Relationships

	Implication and Limitation
	Summary and Conclusions

	Towards Efficient Multiple Soft-Errors Injection
	Selecting Locations for Mulitple Fault Injections
	Injection Location Selection (ILS)
	Heuristic for ILS

	Target Variable Selection (TVS)
	Heuristic for TVS

	Case Studies
	Experiment Setup
	Application of the Proposed Framewwork
	Experiment Procedure

	Evaluation of the Case Studies
	Variable Selection Method Effects
	Fault Model Effects

	Implication and Limitation
	Summary and Conclusions

	Learning Bits Patterns
	Data Mining in Software Dependability
	Data Mining Concepts
	Fundamentals of Data Mining

	Assessment Metrics for Model Quality
	Addressing Class Imbalance
	Generating Fault Injection Points
	Stage 1: Data Preparation
	Stage 2: Model Fitting
	Stage 3: Model Optimisation

	Case Studies
	Stage 1: Data Preparation
	Stage 2: Model Fitting
	Stage 3: Optimising Model
	Bit-position and injection efficiency

	Implication and Limitation
	Summary and Conclusions

	Conclusions
	Research Contribution Summary
	Complexity Analysis and Formalisation of ILS and TVS Problem
	Double Single Bit-Flips Fault Model
	Heuristics for the Injection Locations and Target Variables Selection
	Efficient Bit Locations

	Applications
	Future Work

	Bibliography

