

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/92000

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92000
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Developing Graph-based Co-scheduling

Algorithms with GPU Acceleration

by

Huanzhou Zhu

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

PhD

Department of Computer Science

The University of Warwick

May 2016

Abstract

On-chip cache is often shared between processes that run concurrently on dif-

ferent cores of the same processor. Resource contention of this type causes

the performance degradation to the co-running processes. Contention-aware

co-scheduling refers to the class of scheduling techniques to reduce the perfor-

mance degradation. Most existing contention-aware co-schedulers only consider

serial jobs. However, there often exist both parallel and serial jobs in comput-

ing systems. This thesis aims to tackle these issues. We start with modeling

the problem of co-scheduling the mix of serial and parallel jobs as an Inte-

ger Programming (IP) problem. Then we construct a co-scheduling graph to

model the problem, and a set of algorithms are developed to find both optimal

and near-optimal solutions. The results show that the proposed algorithms can

find the optimal co-scheduling solution and that the proposed approximation

technique is able to find the near optimal solutions. In order to improve the

scalability of the algorithms, we use GPU to accelerate the solving process. A

graph processing framework, called WolfPath, is proposed in this thesis. By

taking advantage of the co-scheduling graph, WolfPath achieves significant per-

formance improvement. Due to the long preprocessing time of WolfPath, we

developed WolfGraph, a GPU-based graph processing framework that features

minimal preprocessing time and uses the hard disk as a memory extension to

solve large-scale graphs on a single machine equipped with a GPU device. Com-

paring with existing GPU-based graph processing frameworks, WolfGraph can

achieve similar execution time but with minimal preprocessing time.

iii

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Dr. Ligang

He, whose guidance, encouragement and support have been invaluable to me

during my time at the Department of Computer Science at the University of

Warwick. I would like to thank you for encouraging my research and for allowing

me to grow as a research scientist. Your advice on my research have been

priceless.

It is my great pleasure to work with all my lab-mates, particularly Bo Gao

Chao Chen, Zhuoer Gu, Peng Jiang, Shenyuan Ren, Xufeng Lin, Chen Gu,

Matthew Bradbury, Stephen Roberts and Nentawe Gurumdimma, for their stim-

ulating discussions in science and technology and for all the fun we have had in

the last four years.

I would like to thank all my friends, especially Wolfy Wang, Zihao Chen,

Qiwei Jin, Yuxuan Zhan, Ye Kuang, Hui Xu, Dake Xu,Yibing Chen.

I would also like to say a heartfelt thank you to my parents for always

believing in me and supporting me and encouraging me in all my pursuits.

In the end, I would like to give my special thanks to Momofuku Ando, the

inventor of instant noodles. This invention saves me uncountable amount of

time and liberates me from thinking one of the biggest problem in my life: what

to eat. Without instant noodles, I am very likely died of the starvation long

before I complete my PhD.

iv

Declarations

Parts of this thesis have been previously published by the author in the following:

• Huanzhou Zhu, Ligang He, Stephen. A. Jarvis Optimizing job schedul-

ing on multicore computers IEEE International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems

2014 (MASCOTS’2014) [149]

• Huanzhou Zhu, Ligang He, Bo Gao, Kenli Li, Jianhua Sun, Hao Chen,

Keqin Li Modelling and Developing Co-scheduling Strategies on Mul-

ticore Processors 2015 International Conference on Parallel Processing

(ICPP’2015). [150]

• Ligang He, Huanzhou Zhu, Stephen Jarvis Developing graph-based co-

scheduling algorithms on multicore computers IEEE Transactions on Par-

allel and Distributed Systems (TPDS). [52]

In addition, the following works are in progress of being submitted:

• ”WolfPath: Accelerating iterative graph searching algorithms on GPUs”

• ”WolfGraph: Wolf Graph: Edge-Centric graph processing on GPUs”

v

Abbreviations

BFS Breadth First Search

BSP Bulk Synchronous Parallel

CPI Cycles Per Instruction

CMR Cache Miss Rate

CW Concatenated Window

CEL Concatenated Edge List

CSR Compressed Sparse Row

CDF Cumulative Distribution Function

DI Distributed Intensity

EVM Edge Vertex Message

GAS Gather Apply Scatter

IP Integer Programming

LLC Last Level Cache

LPD Least Performance Degradation

MRC Miss Rate Curves

MPP Multi Process Parallel

MTP Multi Thread Parallel

MER Maximum Effective Rank

O-SVP Optimised Shortest Valid Path

PSW Parallel Sliding Window

PE Embarrassingly Parallel

PC Process Communication

vi

RDD Resilient Distributed Dataset

RDG Resilient Distributed Graph

SSSP Single Source Shortest Path

SDP Stack Distance Profile

SVP Shortest Valid Path

SVPPE Shortest Valid Path for Embarrassingly Parallel

SVPPC Shortest Valid Path for Process Communication

SM Streaming Multiprocessor

VWC Virtual Warp Centric

Contents

Abstract iii

Acknowledgements v

Declarations vi

Abbreviations vii

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Contention aware co-scheduling 2

1.2 Parallel Graph Processing . 5

1.3 Research Contributions . 6

1.4 Thesis Organisation . 8

2 Literature Review 9

2.1 Introduction . 9

2.2 Job Co-scheduling . 11

2.2.1 Overview of Co-Scheduling Problems 11

2.2.2 Performance Prediction 12

2.2.3 Co-scheduling strategies 14

2.3 Graph processing systems . 18

viii

2.3.1 Challenges in Graph Processing 18

2.3.2 Distributed Graph Processing System 20

2.3.3 Graph Processing Systems on a single machine 24

2.4 Graph Processing Systems Accelerated by the GPU 28

2.5 Summary . 33

3 Co-Scheduling of Serial and Parallel Jobs 34

3.1 Introduction . 34

3.2 Formalizing the job co-scheduling problem 36

3.2.1 Formalizing the co-scheduling of serial jobs 37

3.2.2 Formalizing the co-scheduling of serial and parallel jobs . 38

3.3 The graph model for co-scheduling 42

3.3.1 The graph model . 43

3.3.2 Intuitive strategies to solve the graph model 44

3.4 Shortest valid path for serial jobs 46

3.4.1 The SVP algorithm . 46

3.4.2 Further optimization of SVP 51

3.5 Shortest valid path for parallel jobs 51

3.5.1 Co-scheduling PE jobs . 52

3.5.2 Co-scheduling PC jobs . 55

3.6 Co-scheduling jobs on multi-processor computers 58

3.7 Co-scheduling multi-thread jobs 60

3.8 The A*-search-based algorithm 61

3.8.1 Traditional A*-search algorithm 62

3.8.2 SVPPC-A* . 63

3.8.3 Case studies for the A*-search based algorithm 65

3.9 Heuristic A*-search Algorithm 65

3.10 Clustering approximation for finding the shortest valid path . . . 68

3.11 Evaluation . 70

3.11.1 Evaluating the O-SVP algorithm 72

3.11.2 The O-SVPPE algorithm 73

3.11.3 The O-SVPPC algorithm 75

3.11.4 Scheduling in Multi-processor Computers 78

3.11.5 Scheduling Multi-threading Jobs 80

3.11.6 The A*-search-based algorithms 82

3.11.7 Heuristic A*-search algorithm 86

3.11.8 Efficiency of OA* and IP 88

3.11.9 The optimization techniques 89

3.12 Summary . 91

4 WolfPath: Accelerating Iterative Graph Searching Algorithm

on GPU 93

4.1 Introduction . 93

4.2 Representing Co-Scheduling Graph in GPU 95

4.3 WolfPath Framework . 98

4.3.1 Motivation: the limitation of current approach 98

4.3.2 Computation model of WolfPath 103

4.3.3 Finding Optimal Co-scheduling solution with WolfPath . 104

4.4 General Graph representation in WolfPath 106

4.4.1 Preprocessing . 107

4.4.2 Edge List Combination 108

4.4.3 Out of GPU memory processing 110

4.5 Experimental Evaluation . 112

4.5.1 Performance comparison with CPU based A* algorithm . 112

4.5.2 Performance evaluation with general graphs 113

4.5.3 Memory occupied by different graph representation 117

4.5.4 Pre-processing time . 117

4.6 Summary . 119

5 WolfGraph: an Edge-Centric graph processing framework on

GPUs 120

5.1 Introduction . 120

5.2 An Overview of Edge Centric Processing on GPU 122

5.2.1 Edge centric Graph data structure 123

5.2.2 Computation model . 124

5.3 In-memory processing Engine in WolfGraph 124

5.3.1 Parallel processing in WolfGraph 125

5.3.2 Two-level GPU processing and memory access pattern . . 132

5.3.3 Implementing GPU-based graph processing algorithms us-

ing WolfGraph . 135

5.4 Out of GPU memory processing 138

5.4.1 Graph Partition and Computation 138

5.4.2 Concatenate Edge List representation 142

5.5 Out-of-Core Graph processing . 146

5.5.1 Out-of-Core graph partitioning 146

5.5.2 Out-of-Core processing . 148

5.6 Implementation of WolfGraph . 149

5.6.1 Loading Engine . 149

5.6.2 Data Transfer Engine . 150

5.6.3 Computation Engine . 151

5.7 Evaluation . 151

5.7.1 Performance Evaluation 153

5.7.2 Global Memory efficiency 158

5.7.3 Memory occupied by different graph representation 159

5.7.4 Sensitivity Analysis of WolfGraph 161

5.8 Summary . 163

6 Conclusions and Further Work 164

6.1 Developing Graph-based Methods to Find Optimal or Near-optimal

Co-Scheduling solutions . 165

6.2 WolfPath: Accelerating the graphs with layered structure by GPU166

6.3 WolfGraph: A General Purpose GPU-based Large-Scale Graph

Processing Framework . 166

6.4 Discussion . 167

6.5 Further Work . 170

Bibliography 172

List of Figures

1.1 An illustration example for the difference between serial and par-

allel jobs in calculating the performance degradation 4

2.1 The Vertex State Machine in Pregel 21

2.2 The execution model of Graphlab 23

2.3 Shard Representation of the Graph 25

2.4 GraphChi Execution model . 26

2.5 Edge Centric Execution model 27

2.6 GPGPU architecture and thread execution model in Cuda 29

3.1 An illustrative example for modelling the communication time . 42

3.2 The exemplar co-scheduling graph for co-scheduling 6 jobs on

Dual-core machines; the list of numbers in each node is the node

ID; A number in a node ID is a job ID; The edges of the same

color form the possible co-scheduling solutions; The number next

to the node is the node weight, i.e., total degradation of the jobs

in the node. 44

3.3 The graph model for a mix of serial and parallel jobs 54

3.4 The example of communication-aware process condensation . . . 57

3.5 Cumulative Distribution Function (CDF) of MER 67

3.6 Comparing the degradation of serial jobs under O-SVP, IP, HPM

and GR . 73

xiii

3.7 Comparing the degradation under SVPPE and O-SVP for a mix

of PE and serial benchmark programs 75

3.8 Comparing the Communication-Combined Degradation (CCD)

obtained by SVPPC and SVPPE 77

3.9 Impact of the number of parallel jobs and parallel processes . . . 77

3.10 Comparing the degradation caused by the straightforward method

and the LPD method . 80

3.11 Comparing the degradation under LPD-SVP and LPD-SVPPE

for a mix of PE and serial benchmark programs 80

3.12 Comparing the Communication-Combined Degradation (CCD)

obtained by LPD-SVPPC and LPD-SVPPE 81

3.13 Comparing the solving times of the LPD and the MNG method,

coupled with SVPPE and SVPPC 81

3.14 Comparing performance degradations of benchmarking applica-

tions on Quad-core machines under OA*, HA* and PG 86

3.15 Comparing performance degradations of benchmarking applica-

tions on 8-core machines under OA*, HA* and PG 87

3.16 Comparing the degradation under HA* and PG algorithms . . . 87

3.17 Scalability of HA* on Quad-core and 8-core machines 88

3.18 Scalability of OA* . 90

3.19 Solving time with and without process condensation as the num-

ber of processes per parallel job increases. The total number of

parallel processes and serial jobs is 72. 90

4.1 The example co-scheduling graph from Chapter 3 and after reor-

ganisation . 96

4.2 An Example of layered edge list structure for graph in Figure 4.3a 97

4.3 An Example graph and its Layered tree representation 107

4.4 Execution time comparison between WolfPath and A*-Search . . 113

4.5 Speedup of WolfPath over CuSha and VWC 114

4.6 Execution time breakdown of WolfPath, CuSha and VWC on

different algorithms and graphs. Reported times are in milliseconds.115

4.7 Speedup of WolfPath over GraphChi and X-Stream 116

4.8 Memory occupied by each graph using CSR, CuSha-CW, WolfPath118

5.1 An exemplar graph and its edge centric representation 123

5.2 The Edge block representation of graph in Figure 5.1a 128

5.3 The run-time of the benchmark program with different synchro-

nization degree in shared memory and global memory 130

5.4 Maximum conflict among all thread blocks 132

5.5 Conflict writes to global memory with and without using shared

memory . 133

5.6 Execution time per iteration. (ms) 133

5.7 The process procedure inside edge blocks of graph shown in Figure

5.2 . 134

5.8 An example of partitioning graph in Figure 5.1a into 2 sub-graphs140

5.9 An example of building the concatenate edge list from 2 sub-

graphs. The gray area represent the edges used to build the

concatenate edge list in each iteration. 145

5.10 Architecture of WolfPath framework. 149

5.11 The speedup of WolfGraph over GraphChi and X-stream 153

5.12 Execution time breakdown of WolfGraph, GraphChi and X-Stream

on out-of-GPU-memory graphs. Reported times are in seconds. . 154

5.13 Execution time breakdown of WolfGraph, CuSha and VWC on

in-GPU-memory graphs. Reported times are in milliseconds. . . 157

5.14 Average profiled efficiencies of WolfGraph with CuSha and VWC

on liveJournal graph. 159

5.15 Memory occupied by each graph using CSR, CuSha-CW, Wolf-

Graph Edge list representations over all benchmarks. 160

5.16 Execution time of WolfGraph when Changing graph size with

graph degree equal to 16. A x × y graph has around x million

vertices and y million edges . 162

List of Tables

3.1 The summary of all symbols used in this Chapter 36

3.2 Comparison of IP and O-SVPpe for serial and parallel jobs . . . 74

3.3 Comparison of IP and O-SVPPC for serial and parallel jobs . . . 76

3.4 Schedule result for Multi-threading program 82

3.5 Comparing the solving time between MTP and SVPPE 82

3.6 The optimality of SVP-A* . 83

3.7 The optimality of SVPPC-A* . 83

3.8 Comparison of the strategies for setting h(v) with serial jobs . . 85

3.9 Comparison of the strategies for setting h(v) with parallel jobs . 85

3.10 Efficiency of different methods on Quad-core machines 89

3.11 Comparing the clustering method with O-SVP 91

4.1 Real world graphs used in the experiments 101

4.2 The computation time comparison of Original CuSha and Modi-

fied CuSha . 102

4.3 Memory to Computation . 102

4.4 Co-scheduling graphs used in the experiments 112

4.5 Real world graphs used in the experiments 114

4.6 Execution time WolfPath, GraphChi and X-Stream on different

algorithms and graphs. Reported times are in seconds. 117

4.7 Preprocessing Time (Seconds) . 119

xvii

5.1 Real world graphs used in the experiments 152

5.2 Execution time of WolfGraph, GraphChi and X-Stream on out-

of-core graphs. Reported times are in seconds. 156

5.3 The execution time of out-of-GPU memory WolfGraph and in-

GPU memory VWC on different algorithms and graphs. 160

5.4 The break down processing time with different thread block size

on amazon0601 measured in miliseconds 162

5.5 The break down processing time with different thread block size

on Hollywood-2011 measured in seconds 162

Chapter 1

Introduction

Multicore processors have now become a mainstream product in CPU industry.

In a multicore processor, multiple cores reside and share the resources on the

same chip. However, running multiple applications on different cores could cause

resource contention, which leads to performance degradation. Many studies have

shown that it is possible to isolate some resources, such as disk bandwidth [142]

[103], network bandwidth [47] [24] for the co-running jobs. However, it is very

difficult to isolate the on-chip last level cache (LLC). This problem is known as

the shared cache contention and has been studied extensively in the literature

[71], [61], [152], [21]. The existing approaches to addressing on-chip shared cache

contention fall into three categories: 1) Architecture-level solutions to improve

hardware and provide isolation among threads[102] [121] [68], 2) System-level

solutions to partition the cache for each application[143] [79] [69] [20], and 3)

Software-level solutions to develop schedulers to reduce the contention [35] [38]

[92] [60]. In these three categories, the architecture-level solution is still under

active development by the processor vendors. The cache partitioning solution

requires many changes in the existing system-level software (such as operating

system) and therefore incurs high implementation cost. The third approach,

developing contention-aware schedulers, is a fairly lightweight approach, and

therefore attracts many researchers’ attention, which is also the focus of this

1

1. Introduction

work.

1.1 Contention aware co-scheduling

Existing studies of the co-scheduling problem can be classified into two cate-

gories. Research in the first category aims at developing practical job scheduling

systems that produce solutions on a best effort basis [127] [132], [153], [12],[51]

[137]. Algorithms developed in this category are often heuristics-based in order

to reduce computation cost. The work in the second category aims to develop

the algorithms to either compute or approximate the optimal co-scheduling

strategy (referred to as the optimal co-scheduling problem in the rest of this

thesis) [28] [128] [59]. Due to the NP-hard nature [61] of this class of problems,

obtaining an optimal solution is often a computation-expensive process and is

typically performed offline. Although an optimal solution is not suitable for

direct uses in online job scheduling systems, its solution provides the engineer

with a unique insight into how much performance can be extracted if the system

were best tuned. Additionally, knowing the gap between current and optimal

performance can help the scheduler designers to weight the trade-off between

efficiency and quality.

There are some research studies in contention-aware co-scheduling [11][38].

To the best of our knowledge, the existing methods that aim to find the optimal

co-scheduling only consider the serial jobs [61]. The work in [61] modelled

the optimal co-scheduling problem for serial jobs as an integer programming

problem. However, there typically exists both serial and parallel jobs in the

computing systems, such as clusters and clouds [139], [32], [114].

Some conventional systems disallow co-scheduling of parallel jobs and serial

jobs in the same multicore machine. Take PBS [123] as an example. Although

all jobs can share the same node in PBS (that is, parallel and serial jobs will

share nodes without any configuration to the batch system), some sites decide

to configure the PBS in the way that this does not happen. The main purpose

2

1. Introduction

for this is to avoid the performance interference between different types of jobs

since the performance degradation caused by interference is either unknown or

its prediction is inaccurate.

This also happens in some data centers (clouds). When a task is submitted

to a data center, a configuration file for the task is created to specify the rules

for the cluster manager to run the task. By default, data centers do not restrict

the sharing of the same node between different jobs. But the users can disallow

co-locate this task with other tasks in the task configuration file[95]. However,

disallowing job co-locations through either configuration or resource reservation

is a major contributor to low machine utilization. For example, in the produc-

tion clusters at Twitter with thousands of servers, managed by Mesos [55], the

CPU utilization is consistently below 20%, and a 12,000-server Google cluster

managed by Borg consistently achieves CPU utilization of 25-35% [32].

In order to improve resource utilization, it is necessary to consider both

parallel jobs and serial jobs when designing co-scheduling systems. However,

the existing methods of finding the optimal co-scheduling cannot be applied to

the system that contains both parallel and serial jobs.

We use Figure 1.1 to illustrate why different considerations should be taken

when co-scheduling parallel jobs. The figure considers two co-scheduling sce-

narios. In Figure 1a, 4 serial jobs (i.e., 4 processes p1, ..., p4) are co-scheduled

on two dual-core nodes, while in Figure 1b a serial job (p4) and a parallel job

with 3 processes (i.e., p1, p2 and p3) are co-scheduled. Di drawn above pi is

the degradation of pi in the co-scheduling solution. The arrows between p1 and

p2 as well as between p2 and p3 represent the interactions between the parallel

processes. In Figure 1a, the objective is to minimize the sum of the performance

degradation suffered by each process (i.e.,D1 + D2 + D3 + D4). In Figure 1b,

the performance degradation (i.e., increased execution time) of the parallel job

is dependent on the processes that has been affected the most and therefore

completing the execution last. Therefore, the performance degradation of the

parallel job should be computed by max(D1, D2, D3). The objective in Figure

3

1. Introduction

1b is to find the co-scheduling solution that minimizes max(D1, D2, D3) +D4.

Core2 Core1 Core2 Core1 Core2 Core1 Core2 Core1

Node1 Node2

 (a)	
 Serial	
 Jobs	

Node1 Node2

(b)	
 A	
 mix	
 of	
 Parallel	
 Jobs	
 and	
 serial	
 job

P1 P2 P3 P4 P1 P2 P3 P4

D3 D1 D2 D4 D1 D2 D3 D4

Figure 1.1: An illustration example for the difference between serial and parallel
jobs in calculating the performance degradation

In order to address this problem, this thesis proposes a graph-based method

to find the optimal co-scheduling solution for a mix of serial and parallel jobs.

Two types of parallel job are considered in this thesis: Multi-Process Parallel

(MPP) jobs, such as the jobs written in MPI (Message Passing Interface), and

Multi-Thread Parallel (MTP) jobs, such as the jobs written in OpenMP.

The graph model presented in this thesis aims to provide theoretical insights

into co-scheduling problems. That is, the optimal result founded by our model

is used to compare with the scheduling results generated from other scheduling

systems. However, due to the high complexity of finding the optimal schedul-

ing solution, this process is timing consuming. Thus, the solving process of

the graph model is performed offline. We argue that accelerating the solving

process can relieve the model user from the long waiting time. Therefore, in

this thesis, we also explore the possibility of accelerating the solving process

by using GPU, this is because compare to other parallel processing platforms,

GPU has the following advantages: first, GPU can bring high parallelism degree

and performance to a single machine. Second, it is more energy-efficient than

distributed systems.

4

1. Introduction

1.2 Parallel Graph Processing

Many studies have shown that the graph theory can be used to solve scheduling

problems [74], [130] [75] [28] [126] [25]. However, as shown in [150] [52] [149],

when modelling optimal scheduling problem into graph problem, the graph size

increases exponentially. For example, when using the method presented in [52]

to schedule 64 jobs to 16 quad-core machines, the graph size is 16,777,216 nodes

and 3,450,553,937 edges. It is challenging to process graphs of such a scale.

The demand for processing large-scale graphs efficiently has been growing

recently. This is because graphs can be used to describe a wide range of ob-

jects, and computations on graph-based data structures are the core of many

applications. Motivated by the need to process very large graphs, many frame-

works have been developed for processing large graphs on distributed systems.

Such frameworks include GPS [113] MocGraph [147] Trinity [116] Chaos [110]

Chronos [48] Gram [138]. However, since developing distributed graph algo-

rithms is challenging, some research studies aim to design the graph processing

systems that can handle large graphs (with billions of edges) on a single PC. The

results of these studies are FlashGraph [145], PathGraph [140], GraphQ[133],

LLAMA [90], Ligra [118][119], Ringo [105]. However, these systems suffer from

the limited degree of parallelism provided by conventional processors. To over-

come this problem, a lot of research employs GPU to accelerate graph processing

due to its massively parallel architecture, such as Medusa[146], Gunrock [135],

CuSha [65] and MapGraph [40] [66] [117].

However, using GPU for efficient graph processing remains a challenging

and open problem due to the following reasons. First, although GPU provides

a massive degree of parallelism compared to CPU, its hardware architecture

requires regular data access pattern to achieve the peak performance. However,

most graphs are of highly irregular structure, which leads to the problems of

irregular memory accesses and underutilization of GPU and consequently limits

the performance of graph algorithms on GPU. For example, most existing graph

5

1. Introduction

processing techniques [50] [29] [15] [82] employ the vertex-centric processing and

rely on the CSR (Compressed Sparse Row) representation of graphs. Due to the

poor locality in the CSR representation, however, visiting a node’s neighbours

usually leads to random memory accesses, which is known as non-coalesced

accesses. Second, because GPU has the limited global memory space compared

with CPU, it requires frequent data copying between device memory and host

memory, which also results in poor performance. Third, as pointed out by Guo

et al. [46], in the state-of-the-art GPU-based graph processing systems, the time

spent in reading the graph from hard disk to memory and in constructing the

data structure in memory constitute a big proportion of the total processing time

for a large graph. Reducing this pre-processing time will significantly improve

the overall performance of graph processing frameworks. Finally, Existing work

of GPU-based graph processing assumes the entire graph can fit into the global

memory of GPU. However, there are large-scale graphs that are even bigger than

the GPU memory, which makes these works infeasible to solve massive scale

graph problems. Lack of support for large-scale graphs beyond the capacity of

device memory is pointed out as one of the most critical problems of the existing

graph processing methods using GPUs.

1.3 Research Contributions

In this thesis, the problem of finding the optimal co-scheduling for a mix of

serial and parallel jobs is modelled as an Integer Programming (IP) problem

first. Then the existing IP solvers can be used to find the optimal co-scheduling

solution that minimizes the performance degradation. However, the IP-based

method suffers from long processing time and poor scalability. Therefore, a

graph-based method is further proposed in this thesis. A layered graph is con-

structed to model the co-scheduling problem on single processor machines. The

problem of finding the optimal co-scheduling solutions is then modelled as find-

ing the shortest VALID path in the graph. Moreover, this thesis develops a

6

1. Introduction

set of algorithms to find the shortest valid path for both serial and parallel

jobs. A number of optimization measures are also developed to increase the

efficiency of these proposed algorithms (i.e., accelerate the solving process of

finding the optimal co-scheduling solution). After these, the graph model and

proposed algorithms are extended to co-schedule a mix of serial and parallel

jobs on multi-processor machines.

Moreover, it has been shown that the A*-search algorithm can effectively

avoid the unnecessary searches when finding the optimal solution. In this the-

sis, an A*-search-based algorithm is developed to combine the ability of the

A*-search algorithm and the proposed optimization measures in terms of ac-

celerating the solving process. Further, a heuristic method, called heuristic

A*-search, is developed to find the near-optimal solutions efficiently. Finally, a

flexible approximation technique is proposed so that we can control the schedul-

ing efficiency by setting the requirement for the solution quality.

In order to accelerate the processing speed of our co-scheduling algorithms, a

GPU-based graph processing framework called WolfPath is designed to acceler-

ate the processing of the co-scheduling graph, by exploiting the special structure

of the co-scheduling graph. WolfPath can also be used to process general graphs

by adding the pre-processing steps to convert a general graph into a graph with

similar graph structure as in the co-scheduling graph. The design of WolfPath

concentrates on addressing the non-coalesced memory access to graph edges

and frequent data exchange between GPU and CPU memories. In addition, by

taking advantage of the graph structure, WolfPath is also able to process large

graphs that cannot fit in the GPU memory.

Due to the long pre-processing time of WolfPath, WolfGraph is finally pro-

posed in this thesis. By using the iterative graph computation model and

carefully designed data structure, WolfGraph requires the minimum graph pre-

processing. With carefully designed graph structure, WolfGraph requires less

pre-processing time than other systems. A two-level thread synchronisation

scheme, first in shared memory and then in global memory, is designed in Wolf-

7

1. Introduction

Graph, which proves to be faster than the synchronisation in global memory

only. WolfGraph can work as a general purpose graph processing framework

that can accelerate any graph algorithms. In addition, by adding the support

for the secondary storage, WolfGraph can handle the graphs that are even larger

than the host memory.

1.4 Thesis Organisation

In Chapter 1, we discuss the motivations of the research presented in this thesis

and outline the main research contributions. In Chapter 2.2, we describe two im-

portant components in designing co-scheduling systems: performance prediction

and scheduling strategy. In Chapter 2.3, we discuss the challenges of process-

ing large scale graphs and review some state-of-the-art techniques developed in

graph process systems.

In Chapter 3, we extend the existing work from co-scheduling serial jobs

to co-scheduling a mix of serial and parallel jobs. In Chapter 4, we use GPU

to parallelise the algorithms proposed in Chapter 3, and extend the algorithms

to a GPU-based graph processing framework, WolfPath. Chapter 5 presents

WolfGraph, a general purpose GPU-based graph proposing framework that aims

to reduce the graph pre-processing and support both GPU acceleration and

secondary storage device. Finally, Chapter 6 concludes the thesis and discusses

the future work.

8

Chapter 2

Literature Review

2.1 Introduction

In multicore processor architectures, multiple cores reside on a chip are not

fully independent but share resources such as caches and memory controllers

with neighbouring cores. These shared resources are managed exclusively in

hardware and are job-unaware. They treat the requests from different jobs

running on different cores as if they were all requests from one single source.

This means that they do not enforce any fairness or partitioning when different

jobs use the resources. This is resulting in performance degradation due to

competition for shared resources. Some researchers observed that an application

could slow down by multiple folds if it shares resources with processes running

on neighbouring cores, comparing with it running alone.

There has been significant interest in the research community in addressing

shared resource contention on multicore processors. The majority of work re-

quired modifications to hardware and falls into one of two classes: performance

aware cache modification [107] [58] [122] [120] [83] or performance-aware DRAM

controller memory scheduling [84] [125] [57] [101]. These proposed solutions re-

quire changes to the hardware, major changes to the operating system, or both.

As such, the majority of these techniques have only been evaluated in simula-

9

2. Literature Review

tion and, as of this writing; none of these promising solutions have yet been

implemented in commercial systems.

Another research trend tends to deal with shared resource contention on the

level of job scheduling [59] [134] [36] [11]. In this context job scheduling refers

to mapping jobs to the cores of the multicore processors. Different mappings

result in different combinations of jobs competing for shared resources. Some

job combinations compete less aggressively for shared resources than others.

Contention mitigation via job scheduling aims to find the job mappings that

lead to the best possible performance.

The most common objective optimized by contention-aware schedulers is

overall throughput. These schedulers typically aim to reduce the contention of

jobs with high resource usage and thus lower the overall performance degrada-

tion for the workload. In designing such schedulers, there are two very important

aspects that need to be considered: performance prediction and co-scheduling

strategies. The performance prediction is used to estimate the performance

when multiple jobs co-run together. The co-scheduling strategy makes the co-

scheduling decision based on the information acquired by the prediction. Exist-

ing co-scheduling strategies can be classified into two categories. Researches in

the first category aims at developing practical job scheduling systems that pro-

duce solutions based on heuristics algorithms [127] [132], [153], [12],[51] [137].

The work in the second category aims to develop the algorithms to either com-

pute or approximate the optimal co-scheduling strategy [28] [128] [59].

As discussed in the last chapter, in this thesis, the GPU has been used

to accelerate the solving process of the algorithms we proposed. Hence, in

this chapter, we also reviewed the existing work in the literature on the graph

processing techniques.

Most existing graph processing techniques can be classified into the following

three categories: the first category is distributed systems. Such frameworks in-

clude Pregel[93], GraphLab[85], PowerGraph[43], GraphX [44]. However, devel-

oping distributed graph algorithms is challenging, some research studies aim to

10

2. Literature Review

design the graph processing systems that can handle large graphs (with billions

of edges) on a single PC. The results of these studies lead to the second cate-

gory, which is single machine shared memory graph processing systems, such as

PathGraph [140], GraphQ [133], LLAMA [90] and GridGraph [151]. The third

category graph processing technique is heterogeneous processing systems. In

these systems, the accelerators (e.g., GPU, FPGA) are used to overcome the

limited degree of parallelism provided by conventional processors. The results of

these studies are Medusa[146], Gunrock [135], CuSha [65] and MapGraph [40].

This chapter contains two parts: the first part concentrates on reviewing

the co-scheduling technologies, and the second part focuses on reviewing the

graph processing systems. In the first part, we first discuss the existing per-

formance prediction technologies in Section 2.2.2. Then we review the current

co-scheduling strategies in Section 2.2.3. In the second part, we first discuss the

challenges faced by graph processing systems designer in Section . We review

the existing distributed graph systems in Section 2.3.2. We discuss the single

machine graph processing systems in Section 2.3.3. In Section 2.4, we discuss

the state-of-art GPU accelerated graph processing systems. We summarise and

conclude this chapter in Section 2.5.

2.2 Job Co-scheduling

2.2.1 Overview of Co-Scheduling Problems

Job co-scheduling has been used to address the contention problem in multi-

core systems. Its strategy is to assign jobs to cores in a way that the overall

degradation is minimized. Normally, the input to the co-scheduling system is

the performance of a job when it co-runs with other jobs. The output is the

suitable schedules decision determined by the co-scheduling strategy.

The scheduling decision produced by the co-scheduling strategy has a huge

impact on the performance of running jobs. The experiments conducted by

Jiang in [61] can be used to demonstrate the effect of different scheduling strate-

11

2. Literature Review

gies.

The experiments conducted in [61] compare four different scheduling strate-

gies, the optimal strategy; two well designed hierarchical strategies (hierarchical

perfect matching and greedy algorithms) and a random strategy. The experi-

ment results show that the optimal strategy degrades the overall average per-

formance by 5.14%. The hierarchical perfect matching algorithm reduces the

average degradation to 5.21%, whereas the greedy algorithm reduces it to 4.51%.

The schedules produced by the random strategy causes more than 20% average

performance degradation, which is about 300% worse than the optimal strategy.

On the other hand, the schedules produced by the two approximation algorithms

have 1.4% and 0.7% more degradations than the optimal strategy on average.

The above example demonstrates the importance of co-scheduling strategy

and how it can affect the performance of co-running jobs. It also shows the

needs for developing the optimal strategy. As used in the above example, the

result produced by the optimal co-scheduling can be used to benchmark other

scheduling algorithms.

2.2.2 Performance Prediction

In order to make co-scheduling decisions, it is important to know the perfor-

mance when multiple jobs co-run together. However, the search space is too

big to benchmark all job combinations beforehand. Consider a system with two

quad core CPUs, where the last level cache (LLC) is shared among all four cores

on each CPU. There are 8! = 40, 320 ways to map 8 jobs onto the 8 available

cores. Many of these mappings are redundant. For example, if cores 0,1,2 and

3 share a LLC, then in all the mappings of four jobs, A, B, C and D, to 4

cores, the mappings {(A, 0), (B, 1), (C, 2), (D, 3)} and {(A, 1), (B, 3), (C,

2), (D, 0)} are equivalent in terms of performance. Nevertheless, there are still(
8
4

)
= 70 performance-unique mappings. For a cluster with thousands of nodes,

the huge number of mappings makes it infeasible to benchmark them all to find

optimised co-scheduling decisions. As such, it is very helpful to predict the

12

2. Literature Review

performance of different mappings without actually benchmarking all possible

mapping combinations.

Many different techniques have been proposed for modelling performance

degradation when the applications share resources on multicore systems [136],

[16] [34] [148], [68], [36], [144], [19] [30] [129] [111]. The majority of the work

focuses on sharing the LLC, which many researchers believed was the primary

source of contention. The best known technique uses Stack Distance Profiles

(SDP) and Miss Rate Curves (MRC) to predict the performance of multiple

processes sharing the LLC. SDPs were first proposed by Mattson [96] and first

used for the prediction purposes by [19]. The two techniques are a concise

description of the memory reuse patterns of an application and a measure of

the benefit derived from additional cache space.

In Chandra’s method, SDP is used to record the hits and misses of each cache

line when each process is running alone. The SDC model tries to construct a

new SDP that merges the separate SDPs of individual processes that are to

be co-running together. This model relies on the intuition that a process that

reuses its cache lines more frequently will occupy more cache space than other

processes. Based on this, the SDC model examines the cache hit count of each

process’ stack distance position. For each position, the process with the highest

cache hit count is selected and copied into the merged profile. After the last

position, the effective cache space for each process is computed based on the

number of stack distance counters in the merged profile.

While SDPs were shown to be an effective tool for modelling performance

degradation in the LLC, the main limitation of this method is that it is difficult

to obtain the SDP information online on current systems. One approach to

get around the need of using SDP is to approximate the cache occupancy of

competing processes by using LLC misses and access rate, which can be easily

collected by using the hardware performance counter available in most modern

processors. In [7], they predict the performance of a process in a mapping by

calculating the cache occupancy ratio first, which is the ratio of the LLC access

13

2. Literature Review

rate of this process to the LLC access rate of all the processes that share the

same LLC cache. Then, they calculate the LLC miss rate that this process

should experience under the measured LLC miss rate and the calculated cache

occupancy ratio. A linear regression model is then used to predict the CPI

(Cycles Per Instruction) from the predicted LLC miss rate and the measured

L1 miss rate.

However, this method is rather complex. The recently proposed co-schedulers

are trying to mitigate the problem. The schedulers proposed by [70], [37] [152]

approximate performance degradation with the LLC miss rate only. Based on

the observation and experiments, they showed that the applications that suffer

from high LLC cache miss rate would suffer from high performance degrada-

tion. In addition, they also found that the jobs with high LLC cache miss would

stress the entire memory hierarchy, and therefore these applications should not

be scheduled together.

2.2.3 Co-scheduling strategies

Many co-scheduling schemes have been proposed to reduce the shared cache

contention in a multi-core processor. Different metrics can be used to indicate

the resource contention, such as Cache Miss Rate (CMR), overuse of memory

bandwidth, and performance degradation of co-running jobs. These schemes

fall into the following two classes.

The first class of co-scheduling schemes aims at improving the runtime sched-

ulers and providing online scheduling solutions. The work in in [11, 37, 152]

proposed a decision mechanism called distributed intensity (DI). The mecha-

nism first sorts all jobs to be scheduled based on their miss rates. It then begins

pairing applications from both ends of the list. The application with a higher

miss rate is paired with one with a lower rate. This process is conducted every

time when a new job enters the queue, a job terminates or in every predefined

time period.

The work in [70] proposes the decision mechanisms called OBS-L, OBS-X

14

2. Literature Review

and OBS-C. OBS-L attempts to reduce cache interference by spreading the total

misses across all cache groups (a cache group consists of the shared LLC and the

cores attached to it). Whenever a core becomes available, it selects a job whose

miss rate is most complementary to other jobs that are sharing the cache. The

OBS-X works by adding new jobs to the cache-group that has the smallest total

miss rate. In addition, by monitoring the system workload at real time, it moves

the jobs with the highest miss rate from the cache-group with the highest total

miss rate to the cache-group with the lowest miss rate, so that the miss rate

can be spread more evenly. Finally, OBS-C is based on the observation when

pairing cache-heavy and cache-light jobs together, and the cache-light jobs tend

to suffer less due to such pairing. Based on this observation, OBS-C extends

the time slices of cache-light jobs, similar to the idea proposed by [36].

Based on the activity vectors [97], the scheduler presented in [98] makes the

decision in the following way: A job’s activity vector records its usage of system

resources during the previous time slice, such as memory-bus, the LLC and the

rest of the core. This usage is normalized to the theoretical maximum usage.

The proposed scheduler performs the thread migrations, so that the jobs with

complementary activity vectors can be co-scheduled together. They formalize

this concept by measuring the variability of the activity vectors of jobs within

the run queue. Higher variability indicates that the current jobs will yield high

performance if being co-scheduled together. Another decision mechanism they

proposed is called sorted co-scheduling. It works by grouping cores into pairs

and attempts to schedule only complementary jobs on each core within the pair.

The work in [134] demonstrated that rearranging the scheduling order of

input jobs can reduce the cache contention. In their work, by monitoring the

cache miss of running jobs on each core and the jobs in the run queue, they

rearrange the order of the jobs in run queue periodically. The purpose of their

scheduler is to co-scheduler jobs with complementary cache miss rate together,

therefore, if the job current running has a high cache miss, the job with low cache

miss rate will be move to the front of the run queue and verse vice. Hence, the

15

2. Literature Review

complementary jobs will be co-scheduled together.

The work discussed above only considers the co-scheduling of serial jobs.

In some cluster systems managed by conventional cluster management software

such as PBS, the systems are configured in the way that parallel and serial

jobs cannot share different cores on the same chip. This happens too in some

data centres, where when a user submits a job, s/he can specify in the job’s

configuration file the rule of disallowing the co-scheduling of this job with other

jobs on different cores of the same chip [95]. The main purpose of doing these is

to avoid the performance interference between different types of jobs. However,

disallowing the co-scheduling of parallel and serial jobs causes very poor resource

utilization, especially as the number of cores in multicore machines increases.

Coupling with the support of accurate performance predictions, some popu-

lar cluster management systems [55] [95] [32] have been developed to co-schedule

different types of jobs, including parallel jobs and serial jobs, to improve re-

source utilization. For example, The work in [95] presents a characterization

methodology called Bubble-Up to enable the accurate prediction of performance

degradation due to interference in data centres. The work has conducted the

experiments with the real-world large-scale applications in Googles production

data centres. The results demonstrated that the proposed prediction methodol-

ogy can predict the performance interference between co-locating applications

with an accuracy within 1% to 2% of the actual performance degradation.

The work in [32] applies the classification techniques to accurately determine

the impact of interference on performance for each job. A cluster management

system called Quasar is then developed to increase resource utilization in data

centres through co-scheduling. Quasar can make better resource allocation (i.e.,

allocating the right amount of resources for each job) and resource assignment

(i.e., selecting the specific servers and cores that will satisfy a given resource

allocation) decisions to mitigate the interference between co-located workloads.

The applications managed by Quasar include multi-server parallel jobs, such as

Hadoop, Storm and Spark, and single-server jobs such as PARSEC, SPLASH-2,

16

2. Literature Review

BioParallel. A single-server job can be run on a single core or multiple cores

using multi-threading. Quasar co-schedules parallel jobs and single-server jobs

and uses the single-server jobs to fill any cluster capacity unused by parallel

jobs.

Mesos [55] is a platform for sharing commodity clusters between multiple di-

verse cluster management frameworks, such as Hadoop [10], Torque [123], Spark

[141] and etc, aiming to improve cluster utilization. Mesos has been used in pro-

duction clusters such as at Twitter. In Mesos, the tasks from different cluster

management frameworks (e.g., MPI jobs or serial jobs submitted to Torque and

MapReduce jobs submitted to Hadoop) can be co-located in the same multicore

server unless esoteric interdependencies between frameworks explicitly require

that certain tasks from two frameworks cannot be co-located. The authors also

pointed out that the situation of esoteric interdependencies is rare in practice.

The second class of co-scheduling schemes focuses on providing the basis

for conducting performance analysis. It mainly aims to find the optimal co-

scheduling performance offline, in order to provide a performance target for

other co-scheduling systems. The extensive research is conducted in [61] to find

the co-scheduling solutions. The work models the co-scheduling problem for

serial jobs as an Integer Programming (IP) problem, and then uses the existing

IP solver to find the optimal co-scheduling solution. It also applies the per-

fect matching algorithm to find the optimal co-scheduling solution on 2-core

processors. When the processor has more than 2-core (e.g., 4-core), a hierarchi-

cal perfect matching is proposed to first use perfect matching to schedule the

jobs on two groups of cores. Then each group is further partitioned into two

equal-sized subgroups of virtual cores and the perfect matching is applied again

on these two subgroups. This procedure repeats until each subgroup contains

only one physical core. They also proposes a greedy algorithm, which takes

the following steps to find a good co-scheduling solution: 1) obtaining the set

of all possible u-cardinality sets, 2) computing the politeness of a job, which

is defined as the reciprocal of the sum of the degradations of all u-cardinality

17

2. Literature Review

sets that contains that job, 3) in each round of scheduling, adding into the final

co-scheduling solution the u-cardinality that satisfies these two conditions: i) it

contains the job whose politeness is the smallest in the unallocated jobs; ii) its

total degradation is smallest.

The co-scheduling studies in the [61] only consider the serial jobs and mainly

apply the heuristic approach to find the solutions. Although it can obtain the

optimal co-scheduling solution, it is only for serial jobs.

The work presented in this thesis falls into the second class. In this thesis, a

new graph based method is developed to find the optimal co-scheduling solution

offline for both serial and parallel jobs. Moreover, this thesis develops a set of

approximation methods to find the near-optimal co-scheduling solution with

lower time complexity. In this work, we choose SDC model to predicate the

performance degradation of the co-running jobs. This is because although LLC

cache miss rate can be easily obtained using the hardware counter and this value

can be used to guide the scheduling, it is unable to show how much degradation

a job will suffer when it is co-running with other jobs. On the other hand,

as discussed above, the SDC model can predicate the performance degradation

value. In addition, our scheduling method works offline. Therefore, obtaining

SDP offline is not an issue in our work.

2.3 Graph processing systems

In this section, we first summarise the challenge in parallel graph processing,

and then review the state-of-the-art graph processing systems proposed in the

literature.

2.3.1 Challenges in Graph Processing

The problems that are abstracted as graphs have some characteristics that make

efficient parallelisation nontrivial. As stated in [88] [53], processing graph in

parallel suffers from data-driven computation, irregular and unstructured data

18

2. Literature Review

structure, poor locality and high data access to computation ratio. We discuss

these characteristics in detail in the following.

• Data Driven computation Graph computation is completely driven

by the graph data. That being said, when executing a graph algorithm,

the computation is dictated by the vertex and edge structure of the graph

rather than being directly expressed by the code. As stated in [87] and [45],

the performance of graph processing algorithms/frameworks are highly de-

pendent on the graph structure. Hence how to design a graph processing

system that can produce the same performance on different graph struc-

tures remains an open question. In addition, another problem caused by

the data driven computation is that it is difficult to parallelise the graph

algorithm according to its computational structure. This is because the

structure of computation in the algorithm is not known beforehand.

• Irregular and Unstructured data structure The data in graph prob-

lems are typically highly irregular and unstructured. When processing

graph in parallel, the graph data need to be partitioned first. Then, de-

pending on the platform, the partitioned workload will be assigned to each

compute node, process or thread. However, the irregular graph structure

makes it difficult to evenly partition the data. The workload balance

between different computation units cannot be achieved with unevenly

partitioned data, which limits the scalability of the target system.

• Poor locality Graphs are used to represent the relationships between

objects. However, the relationship between these objects may be irregu-

lar and unstructured. Therefore, the locality of computations and data

access patterns is poor. On the modern processors, locality is the key to

achieve high performance [94] [67] [33]. Thus, it is hard to achieve high

performance for graph algorithms, especially for the graph computation

requiring to access secondary storage devices, because random access to

the hard disk is very slow compared to other components in computers.

19

2. Literature Review

Therefore, how to organise the graph data and design the corresponding

computation model to improve the data locality is the key to improve the

graph processing performance.

• High data access to computation ratio Most graph computation al-

gorithms are based on the iterative computation model. In each iteration,

the algorithms need to traverse the graph structure to fetch the data re-

quired by the computation. Most graph algorithms are computation light

[64] and their memory access to computation ratio is high. As discussed

before, the locality of the graph data is poor. Hence, the runtime is dom-

inated by the wait for the memory access.

In next three sections, we review some well known graph processing algo-

rithms and frameworks on different architectures, and discuss how these solu-

tions tackle the challenges mentioned in this section.

2.3.2 Distributed Graph Processing System

The most widespread class of parallel machines are distributed systems. A

distributed system consists of multiple processing units where each unit has its

own private memory. Data is partitioned over the separate nodes and explicit

communication (e.g. message passing) is required to synchronize computation.

Scaling out refers to adding more processing units to the system [100]. With

cloud computing this type of scaling is available through Infrastructure as a

Service (IaaS) [4].

Recently, many MapReduce [31] based general purpose data processing frame-

work such as [17] [10] [141], and graph processing frameworks such as Pegasus

[62] and GPS [113], started exploiting efficient parallel processing of large vol-

umes of data on the distributed systems. In this section, we review some well

known distributed graph processing systems proposed in the literature.

Pregel [93] is a distributed graph processing system developed by Google.

The design of its vertex centric model is based on BSP (bulk synchronous

20

2. Literature Review

Ac#ve Inac#ve

Volt	to	halt

Message	Received

Figure 2.1: The Vertex State Machine in Pregel

parallel)[131]. Pregel partitions a graph based on vertices. Each graph par-

tition contains a set of vertices and the edges associated with these vertices.

Each partition is processed by one compute node in the system. In Pregel, the

user defines the computation function. And this computation function will be

invoked iteratively until the final result is found.

The iterative process in Pregel is performed as follows: in each iteration (or

a superstep in Pregel’s term), each active vertex (the vertex that needs to be

computed) invokes the computation function. In the computation function, the

vertex first reads the message sent from by its neighbours in the last iteration,

computes the updated value based on the message received, and then sends the

updated value to its neighbours through its outgoing edges. Its neighbours will

receive this value as a message in the next iteration. Once a vertex sends the

message, its state will change to inactive. An inactive vertex will become active

when it receives a new message. The whole process terminates when there is

no active vertex in the system. This process is called Vertex State Machine in

Pregel and is illustrated in Figure 2.1.

Pregel uses message passing to communicate between different compute

nodes. In each iteration, the number of messages send from one vertex to its

neighbours is unlimited. The corresponding receiver will read these messages

in the next iteration. In the distributed environment, in order to reduce the

communication cost between compute nodes, the user can define a combination

function to group multiple messages into one message and send it to another

machine.

Giraph [5] is an open source implementation of Pregel. It is used by Facebook

21

2. Literature Review

to process the graphs with the scale of trillions of edges [23]. Facebook added the

multi-threading support to the Giraph. So the performance of graph loading,

writing and computation have been improved compare to Giraph and Pregel.

GraphLab [86] [85] is an asynchronous distributed shared-memory system.

Unlike the synchronous communication in the BSP model, the GraphLab devel-

ops an asynchronous model called GAS (gather, apply, scatter) to implement its

parallel computation in the distribute environment. A program in GraphLab

implements a user-defined GAS function for each vertex. To avoid the imbal-

anced workload caused by high-degree vertices in graphs, a recent version of

GraphLab, called PowerGraph [43], introduces a new graph partition scheme to

handle this challenge. PowerGraph uses an algorithm called Vertex-cut parti-

tioning, which partitions an input graph by cutting the vertex set, so that the

edges of a high-degree vertex will be handled by multiple compute units. As

a trade-off, vertices are replicated across compute units, and communication

among compute units are required to guarantee that the vertex value on each

replica remains consistent.

The GAS model works in the following way: in the Gather phase, each

active vertex collects information from its neighbours’ vertices and edges. In

the Apply phase, each active vertex can update its value based on the infor-

mation gathered and its old value. Finally, in the Scatter phase, each active

vertex can activate the adjacent vertices. However, unlike Pregels message pass-

ing paradigm, GraphLab can only gather information from adjacent edges and

scatter information to them, which limits the functionality of the GAS model.

GraphLab maintains a global scheduler. The compute units fetch vertices

from the scheduler for processing, and add the neighbours of these vertices into

the scheduler if needed. The GraphLab engine executes the user-defined GAS

function on each active vertex until no vertex remains in the scheduler. The

GraphLab scheduler determines the order to activate vertices, which enables

GraphLab to provide both synchronous and asynchronous scheduling.

Unlike the synchronous model, in the asynchronous execution, change made

22

2. Literature Review

Update1(v1)

Update2(v5)

Update1(v3)

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data Data Data Data 1 2 3 4

Update1(v9)

CPU1

CPU2

CPU3

Execute	Update

Shared	Data	Table

Data	Dependency	Graph

Figure 2.2: The execution model of Graphlab

to each vertex and edge during the Apply phase is committed immediately and

visible to subsequent computation. Asynchronous execution can accelerate the

convergence of some algorithms. For example, the PageRank algorithm can

converge much faster with the asynchronous execution. However, asynchronous

execution may incur the extra cost due to locking/unlocking.

GraphLab also provides synchronous execution model. In each iteration, it

executes the GAS phases in order. The GAS function of each active vertex runs

synchronously with a barrier at the end of each iteration. Changes made to the

vertex value are committed at the end of each iteration. Vertices activated in an

iteration are executed in the subsequent iteration. The whole process is shown

in Figure 2.2.

GraphX [44] is a parallel graph processing system. It supports GraphLab and

Pregel abstractions. GraphX is built on top of the more general data processing

system Spark [141]. It introduces RDG (resilient distributed graph), which is

an extension to the RDD (resilient distributed dataset) in Spark. With such

extension, many graph algorithms can be implemented easily with the Spark’s

build in operations, such as join, map and group− by. In order to use Spark’s

23

2. Literature Review

build in operation, GraphX also redesigned the vertex-cut algorithm.

Chaos [110] is a graph processing system designed for analytics on big graphs

using clusters. Chaos builds on the X-Stream (discussed in detail in next sec-

tion) [109] single-machine graph processing system, but scales out to multiple

machines. Chaos adopts an edge-centric and GAS (Gather-Apply-Scatter) pro-

gramming model. Due to the use of the edge-centric model, Chaos partitions

the graph for sequential storage access, rather than for locality and load bal-

ance, resulting in much lower pre-processing times. In Chaos, the graph data

is distributed uniformly and randomly across the cluster and does not attempt

to achieve locality, based on the observation that in a small cluster network

bandwidth far outstrips storage bandwidth. In addition, Chaos uses work steal-

ing to allow multiple machines to work on a single partition, thereby achieving

load balance at runtime. With all these features, Chaos is limited only by the

aggregate bandwidth and capacity of all storage devices in the entire cluster.

2.3.3 Graph Processing Systems on a single machine

Nowadays, with the ever increasing processing power of CPUs and large storage

capacity, it is possible to process large-scale graph on a single machine. Com-

pared to distribute systems, processing a graph on a single machine has the

following advantages. First, the communication overhead is low. On a single

machine with multiple cores/processors, the communication between these com-

puting units is achieved by the shared memory, which is much faster compared

to the network connection used in distributed systems. Second, from a user’s

perspective, managing, programming, debugging and optimising codes on a sin-

gle machine is much easier than on distributed systems. Third, hardware and

energy cost is relatively low.

Comparing with the fast growth rate of real-world problems, such as analysis

on social networks or the web graph, the increasing rate of memory size is much

slower. Therefore, processing large graphs from the persistent storage becomes

the mainstream in the graph processing design based on single machines. Since

24

2. Literature Review

0

1 2

3

4

5 6

7

(a) Input Graph

src dst value

0 1 X1

2 X2

1 4 X3

2 3 X4

3 4 X5

src dst value

1 5 X6

3 6 X7

4 5 X8

src dst value

2 6 X9

3 5 X10

5 7 X11

6 7 X12

Shard	1 Shard	2 Shard	3

(b) Shard Representation

Figure 2.3: Shard Representation of the Graph

most single machine frameworks use the hard disk as the memory extension, how

to read from and write to the hard disk efficiently becomes the primary challenge

in designing the efficient graph processing framework on these systems. In this

section, we discuss the techniques used by some representative single machine

graph processing frameworks.

GraphChi [76] is the first graph processing framework that can handle large-

scale graphs on a single PC. GraphChi uses the vertex-centric model. In order

to process the graphs from the hard disk, it introduces two new techniques to

process large graphs in a single PC.

GraphChi uses an innovative out-of-core data structure called shard to re-

duce the amount of random access to hard disk. Before the computation,

GraphChi first pre-processes the graph data. The input data will be parti-

tioned into sub-graphs, each of which is called a shard. Each shard contains a

set of vertices and all the inward edges of these vertices. In each shard, edges

are sorted in ascending order according to the source vertices ID. The partition

method used by GraphChi guarantees that the number of edges in each shard

is similar and the size of each shard should be able to fit in the memory. An

example of shard representation is shown in Figure 2.3.

GraphChi also developed a method called parallel sliding windows (PSW).

During the computation, GraphChi loads the first shard into the memory, and

then searches other shards and loads out-edges (the source vertex of these edges

25

2. Literature Review

src dst value

0 1 X1
2 X2

1 4 X3

2 3 X4

3 4 X5

src dst value

1 5 X6

3 6 X7

4 5 X8

src dst value

2 6 X9

3 5 X10

5 7 X11

6 7 X12

Shard	1 Shard	2 Shard	3

src dst value

0 1 X1
2 X2

1 4 X3

2 3 X4

3 4 X5

src dst value

1 5 X6

3 6 X7

4 5 X8

src dst value

2 6 X9

3 5 X10

5 7 X11

6 7 X12

Shard	1 Shard	2 Shard	3

src dst value

0 1 X1
2 X2

1 4 X3

2 3 X4

3 4 X5

src dst value

1 5 X6

3 6 X7

4 5 X8

src dst value

2 6 X9

3 5 X10

5 7 X11

6 7 X12

Shard	1 Shard	2 Shard	3

Interval	1 Interval	2 Interval	3

Figure 2.4: GraphChi Execution model

are destination vertex in current shard) of the current shard from other shards

into memory as well. Once the process of the current shard is finished, it moves

to the next shard, and repeats the above process. The whole computation

terminates when all the shards have been processed. Organising the graph

into shards and computing with PSW can guarantee the sequential read from

the hard disk, and hence maximises the performance of the hard disk I/O. An

example of PSW execution is shown in Figure 2.4. In this example, the edges

labelled with yellow colour represent the edges loaded into memory during that

execution interval.

Unlike vertex-centric model used in GraphChi, X-Stream [109] employs an

edge-centric computation model, and uses vertices to store the computation

state. The computation in X-Stream can be break into scatter gather phases.

The scatter phase of the computation takes the edges as the input, and produces

an output of updates. In each iteration it reads an edge, reads the data field of

its source vertex, and, if needed, appends an update to the output. The gather

phase takes the updates produced in the scatter phase as its input. It does not

produce any output. For each update in the input stream, it updates the data

value of its destination vertex.

Such model enables the sequential access to the edges stored in the hard

disk. However, the access to the vertices data is random. To solve this problem,

X-Stream introduces streaming partition. A streaming partition consists of a

vertex set, an edge list, and an update list. The vertex sets of different streaming

partitions are mutually disjoint. The edge list of a streaming partition consists

of all edges whose source vertex is in the partition’s vertex set. The update

list of a streaming partition consists of all updates whose destination vertex is

26

2. Literature Review

1.	Edge	Centric	Scater

Edges	(Sequen4al	read)

Ver4ces	(random	read/write)

Updates(Sequen4al	write)

2.	Edge	Centric	Gather

Updates(Sequen4al	read)

Ver4ces	(random	read/write)

Figure 2.5: Edge Centric Execution model

in the partition’s vertex set. Figure 2.5 illustrates the edge centric scatter and

gather.

With streaming partitions, the scatter phase iterates over all streaming par-

titions, and the gather phase also iterates over all streaming partitions. For

each streaming partition, the scatter phase reads its vertex set, iterative over

its edge list, and produces an output of updates. These updates need to be

re-arranged such that each update appears in the update list of the stream-

ing partition containing its destination vertex. This is called the shuffle phase.

The shuffle takes as its input the updates produced in the scatter phase, and

moves each update to the update list in the streaming partition that containing

the destination vertex of the update. After the shuffle phase is completed, the

gather phase can start.

Based on GraphChi, VENUS [22] developed a vertex-centric streamlined

computation model. In this model, the graph is partitioned into g-shard and

v-shard first. The g-shard is similar to the shard used in GraphChi. It con-

tains a vertex set and all the incoming edges of these vertices. However, unlike

GraphChi sorted the edges based on IDs, in VENUS, it places the edges that

have same destination vertex next to each other in the g-shard. Each g-shard

27

2. Literature Review

has a corresponding v-shard, which is used to store the value of the source and

destination vertex from the g-shard. VENUS also maintains a global vertex

value table, so the v-shard can read and write the vertex value from it. During

the computation, VENUS only loads one g-shard into the memory, and does

not update the outgoing edges of the current g-shard. Apart from that, the

computation can start when finish all incoming-edges of one vertex, so the com-

putation and loading the rest edges can be overlapped. Hence, the performance

of VENUS is better than GraphChi.

GridGraph [151] adopts similar streamlined processing model on a single

machine. In the GridGraph system, edges are further divided into smaller grids

rather than shards in the GraphChi system. Meanwhile, GridGraph applies a

2-level hierarchical partitioning of the grids, which organizes several adjacent

grids into a larger virtual grid. In this way, GridGraph can not only ensure data

locality but also reduce the amount of disk I/O.

TurboGraph [49] is another disk-based graph processing system, which pro-

poses a novel parallel model, pin-and-slide. It contains a list of slotted pages.

Each page contains the outgoing edges of several vertices. TurboGraph system

uses a buffer pool in the memory to store several pages. It also divides the ver-

tices into several chunks to ensure data access locality. Each chunk is loaded into

memory in sequence and updated by each edge in the buffer pool. TurboGraph

requires SSD to ensure its performance because it uses parallel I/O.

2.4 Graph Processing Systems Accelerated by

the GPU

The single machine graph processing systems suffer from the limited degree of

parallelism provided by conventional processors. To overcome this problem,

much research employs GPU to accelerate graph processing due to its massively

parallel architecture. However, due to the irregular natural of the graph struc-

ture, using GPU for efficient graph processing remains a challenging and open

28

2. Literature Review

DRAM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

(a) The simple Cuda Hardware archi-
tecture

GPU	
 Device

Block	
 	

(0,0)

Block	
 	

(1,0)

Block	
 	

(0,1)

Block	
 	

(1,1)

Block	
 	

(0,2)

Block	
 	

(1,2)

Grid

Block	
 (0,1)
Thread	

(0,0)

Thread	

(0,1)

Thread	

(0,2)

Thread	

(0,3)

Thread	

(1,0)

Thread	

(1,1)

Thread	

(1,2)

Thread	

(1,3)

Thread	

(2,0)

Thread	

(2,1)

Thread	

(2,2)

Thread	

(2,3)

(b) The simple Cuda programming
model

Figure 2.6: GPGPU architecture and thread execution model in Cuda

problem due to the following reasons. Because GPU’s hardware architecture

requires regular data access pattern to achieve the peak memory performance,

also, the irregular structure will cause workload imbalance across threads/thread

block and intra-warp divergence. In this section, we first briefly describe the

GPGPU architecture and CUDA’s programming model, and then we review

some existing methods and frameworks that designed to overcome the above

problem.

GPGPU and CUDA

Using GPU as a general computing unit has attracted considerable attention.

GPU provides massive parallel processing power. As the host for the GPU

device, CPU organizes and invokes the kernel functions that execute on GPU.

As shown in Figure 2.6a, A GPU device consists of a number of streaming

multiprocessors (SM), each comprising simple processing engines, called CUDA

cores in the NVIDIA terminology [27]. Each SM has its own shared memory,

which is equally accessible by all CUDA cores in the SM. At any given cycle,

the CUDA cores in a SM execute the same instruction on different data items.

SMs communicate with each other through the global memory of GPU.

From the programmers’ perspective, the CUDA model [27] is a collection

of threads running in parallel. A collection of threads (called a block) runs on

29

2. Literature Review

a multiprocessor at a given time. Multiple blocks can be assigned to a single

multiprocessor and their execution is time-shared. A single execution on a device

generates a number of blocks. A collection of all blocks in a single execution

is called a grid (Figure 2.6b). All threads of all blocks executing on a single

multiprocessor divide its resources equally amongst themselves. Each thread

and block is given a unique ID that can be accessed within the thread during

its execution. The code running on GPU is actually executed in groups of 32

threads, what NVIDIA calls a warp. The threads within the same warp can run

simultaneously on a streaming multiprocessor (SM). The programmer decides

the number of blocks and threads to be executed. If the number of threads is

more than the warp size, they are time-shared internally on the multiprocessor.

Graph processing with GPGPU

Using GPU for graph processing was first introduced by Harish et al. [50].

Since then, the CSR format has become the mainstream representation to store

graphs on GPU. Merrill et al. [99] present a work efficient BFS algorithm. They

also use different approaches to minimize the workload imbalance. Virtual Warp

Centric has been proposed in [56] to tackle the workload imbalance problem and

reduce the intra-warp divergence.

Medusa [146] is a graph processing framework designed to help programmers

use the GPU computing power with writing only sequential code. To achieve

this goal, Medusa provides a set of user-defined APIs to hide the GPU pro-

gramming details. Medusa can support multiple GPUs. Medusa extends the

Bulk Synchronous Parallel (BSP) model by applying an Edge-Vertex-Message

(EMV) model. The EMV model breaks down the vertex-centric workload into

separate chunks, each chunk contains vertices, edges, and messages. Compared

with a vertex-centric programming model, the EMV model can achieve better

workload balance of threads. In addition, a graph-aware message buffer scheme

is designed by Medusa to achieve better performance of processing messages

between vertices. To maintain this buffer, a message index needs to be stored

30

2. Literature Review

for each edge.

Totem [42] is a graph processing system that can leverage both the CPU and

the GPU (hybrid) as computing units by assigning graph partitions to them.

Totem can also support multiple GPUs (with or without the CPU). Totem uses

a vertex-centric programming abstraction under the BSP model. Totem strictly

uses CSR to represent graphs in-memory. To alleviate the cost of communi-

cation between partitions, Totem uses user-provided aggregation to reduce the

amount of messages and maintains two sets of buffers on each computing unit

for overlapping communication and computation. Totem implements other op-

timizations to improve the performance, for example, partitioning graphs by the

vertex degrees and placing higher degree vertices on CPU. However, as graph

size increases, only a fixed portion of graph able to fit in GPUs memory, resulting

in GPU underutilization.

MapGraph [40] is an open-source project to support high-performance graph

processing. MapGraph uses a modified Gather-Apply-Scatter model to present

each iteration of graph processing algorithms. In the Gather phase, vertices

collect updated information from incoming edges and/or outgoing-edges. During

the Apply phase, every active vertex in the current iteration updates its value.

In the Scatter phase, vertices send out messages to their neighbours. For each

iteration, MapGraph maintains an array called frontier, which consists of active

vertices, to reduce the computation. The frontier for the next iteration is created

in the Scatter phase of the current iteration. MapGraph stores graph in CSR

format. MapGraph adapts two strategies, dynamic scheduling and two-phase

decomposition, to balance the workload of different threads.

The graph processing solutions described above use the CSR format to repre-

sent the graph, and hence suffer from the random access to the graph data. Un-

like systems described before, CuSha [65] uses G-Shards and CW (concatenated

window) representation to avoid warp execution inefficiencies and non-coalesced

memory access. The G-shards representation is same as shard structure used in

GraphChi. Because each G-shard is processed by one thread block in CuSha,

31

2. Literature Review

the threads within one threads block will update the outgoing edges’ value in

other thread blocks after the computation, however, updating vertex value in

this way will cause GPU underutilization. To overcome this problem, CuSha

develops CW representation, which is an array that combines all the incoming

and outgoing edges of each G-shard. Similar to G-shard, each CW is processed

by one thread block, because all the edges are grouped together, the threads do

not need to access other thread blocks’ data to update their value. Although

CuSha’s methods are effective, such representations consume 2 to 2.5 times

more space than CSR, which can hinder the framework from processing very

large graphs.

The works described above assume that the entire graph can fit into the

global memory of GPU. However, there are large-scale graphs that are even

bigger than GPU memory, which makes these works infeasible to solve massive

scale graph problems. To overcome this problem, GraphReduce [115], the most

stat-of-art framework that aims to process graphs exceeds the GPU memory

capacity. It computation model is similar to GraphChi and CuSha. To per-

form computation, it first partitions the graph into shards, unlike shard used

in GraphChi, each shard in GraphReduce contains a set of vertex and all the

edges associated with these vertices. Within a shard, the in-edges are sorted

in the order of their destinations, and the out-edges are sorted in the order of

their sources. The size of each shard should be able to fit in GPU’s global mem-

ory. During the computation, it loads one or more shards into GPU memory,

and uses GAS model to perform the graph computation. However, GraphRe-

duce requires that the entire graph fit in host (CPU) memory, which limited it

processing capability. In addition, it has a long pre-processing time because it

requires sorting both in and out edges within a shard.

The graph processing method presented in this thesis uses GPU to accelerate

the processing speed on a single machine. To overcome the limited memory on

a single machine, our work uses the hard disk as an extension to the memory. In

addition, our work carefully analyses the benefits that the graph pre-processing

32

2. Literature Review

conducted by the existing work brings. We then develop a new GPU-based

method to accomplish the efficient execution with minimal pre-processing time.

2.5 Summary

The scheduling system plays an important role in modern cluster/cloud systems

and has the huge impact on the performance of these systems. In this chapter,

we first provided a comprehensive survey of the various scheduling systems/al-

gorithms. Most of the co-scheduling systems discussed in this chapter are based

on heuristics algorithms. The problem that faces these co-scheduling systems

is the computation of optimal solutions. Without knowing optimal schedules,

it is hard to precisely determine how good a scheduling algorithm is. However,

the existing optimal co-scheduling system reviewed in this chapter only consid-

ers the serial jobs and mainly apply the heuristic approach to find the optimal

solutions. We address these problems in this thesis by presenting a set of graph

based co-scheduling algorithms. The co-scheduling algorithms we present in this

thesis is the first to explore the optimal co-scheduling with a mixture of both

serial and parallel jobs.

Because the algorithms we present in this thesis are based on graph theory,

therefore, we also studied the graph processing techniques in this chapter. We

first discussed the challenges in designing graph processing system in detail

and presented a thorough survey of the state-of-the-art of the graph processing

frameworks. Based on the review, we discovered two major problems of current

GPU based solutions: the non-coalesced memory access and expensive pre-

processing. In this thesis, we also present a new graph processing framework to

overcome these problems.

33

Chapter 3

Co-Scheduling of Serial and

Parallel Jobs

3.1 Introduction

Co-schedulers in the literature that proport to be optimal only consider serial

jobs (each of which runs on a single core). For example, the work in [61] modelled

the optimal co-scheduling problem for serial jobs as an integer programming

problem. However, in modern multi-core systems, especially those in cluster and

cloud platforms, both parallel and serial jobs co-exist[139], [32], [55], [114]. In

order to address this problem, this chapter proposes a new method to determine

the optimal co-scheduling solution for a mix of serial and parallel jobs. Two

types of parallel jobs are considered in this chapter: Multi-Process Parallel

(MPP) jobs, such as MPI jobs, and Multi-Thread Parallel (MTP) jobs, such as

OpenMP jobs. In this chapter, we first propose a method to co-schedule MPP

and serial jobs, and then extend this method to handle MTP jobs.

Resource contention presents different features in single processor and multi-

processor machines. In this chapter, a layered graph is first constructed to model

the co-scheduling problem on single processor machines. The problem of finding

34

3. Co-Scheduling of Serial and Parallel Jobs

the optimal co-scheduling solutions is then modelled as finding the shortest valid

path in the graph. Further, this chapter develops a set of algorithms to find the

shortest valid path for both serial and parallel jobs. A number of optimization

measures are also developed to increase the scheduling efficiency of these pro-

posed algorithms (i.e., to accelerate the solving process of finding the optimal

co-scheduling solution). After these, the graph model and proposed algorithms

are extended to co-scheduling parallel jobs on multi-processor machines.

It has been shown that the A*-search algorithm is able to effectively avoid

unnecessary searches when finding optimal solutions. In this chapter, an A*-

search-based algorithm is also developed to combine the ability of the A*-search

algorithm and the proposed optimization measures in terms of accelerating the

solving process. Finally, a flexible approximation technique is proposed so that

we can control the scheduling efficiency by setting the requirement for the solu-

tion quality.

We conduct experiments with real jobs to evaluate the effectiveness of the

proposed co-scheduling algorithms. The results show that i) the proposed al-

gorithms can find the optimal co-scheduling solution for both serial and paral-

lel jobs, ii) the proposed optimization measures can significantly increase the

scheduling efficiency, and iii) the proposed approximation technique is effective

in the sense that it is able to balance the scheduling efficiency and the solution

quality.

The remainder of this chapter is organized as follows. Section 3.2 formalizes

the co-scheduling problem for both serial and MPP jobs, and presents a graph-

based model for the problem. Section 3.4 presents methods and optimization

measures to determine the optimal co-scheduling solution for serial jobs. Section

3.5 extends the methods proposed in Section 3.4 to incorporate MPP jobs and

presents an optimization technique for the extended algorithm. In Section 3.6,

we extend the graph-based model and proposed algorithms for multi-processor

machines; Section 3.7 then adjusts the graph model and the algorithms for

MTP jobs. Section 3.8 presents the A*-search-based algorithm; a clustering

35

3. Co-Scheduling of Serial and Parallel Jobs

Table 3.1: The summary of all symbols used in this Chapter
n The number of jobs to be scheduled.
u The number of cores per processor.
m The number of processors.
ji The job i of all jobs.
cti The computation time when job i runs alone.
Si The set of jobs that job i co-run with.

cti,S
The computation time when job i co-runs
with job set S.

di,S
The performance degradation when job i
co-runs with job set S.

xi,Si

The binary variable indicating whether or
not the job Si is in the final scheduling.

δj The parallel job j.
pi The process i of a parallel job.
P The number of parallel jobs.

dδj
The maximum performance degradation of
parallel job j among all processes.

γi
The number of the neighbouring processes
that pi has.

αi(k)
The amount of data that process i needs to
communicate with its k-th process.

B The bandwidth for inter processor communication.
bi(k) The k-th neighbouring process of process pi

β(k, Si)
The binary variable indicating whether or not
the job bi(k) is in job set Si

approximation technique is proposed in Section 3.10 to control the scheduling

efficiency according to the required solution quality. Experimental results are

presented in Section 3.11 and finally, Section 3.12 concludes the chapter.

3.2 Formalizing the job co-scheduling problem

First, in Subsection 3.2.1, we briefly summarize the approach in [61] to for-

malizing the co-scheduling of serial jobs. Subsection 3.2.2 then formalizes the

objective function for co-scheduling a mix of serial and MPP jobs, and Sub-

section 3.3 presents a graph model for the co-scheduling problem. This section

focusses on single processor machines, i.e., all CPU cores reside on the same

chip. For convenience purposes, we listed all the symbols used in this chapter

in Table 3.1.

36

3. Co-Scheduling of Serial and Parallel Jobs

3.2.1 Formalizing the co-scheduling of serial jobs

The work in [61] shows that due to resource contention, co-running jobs generally

run slower on a multi-core processor than if they run alone. This performance

degradation is called the co-run degradation. When a job i co-runs with the

jobs in a job set S, the co-run degradation of job i can be formally defined as in

Eq. 3.1, where cti is the computation time when job i runs alone, S is a set of

jobs and cti,S is the computation time when job i co-runs with the set of jobs

in S. Typically, the value of di,S is a non-negative value.

di,S =
cti,S − cti

cti
(3.1)

In the co-scheduling problem considered in [61], n serial jobs are allocated to

multiple identical u-core processors so that each core is allocated with one job.

m denotes the number of u-core processors needed, which can be calculated as

n
u (if n cannot be divided by u, we can simply add (u−n mod u) imaginary jobs

which have no performance degradation with any other jobs). The objective of

the co-scheduling problem is to find the optimal way to partition n jobs into m

u-cardinality sets, so that the sum of di,S in Eq.3.1 over all n jobs is minimized.

This objective can be formalized as the following IP problem shown in Eq.3.2,

where xi,Si
is the decision variable of the IP and Si is a job set that co-runs

with job ji. The decision constraints of the IP problem are shown in Eq.3.3 and

Eq.3.4. Note that the number of all job sets that may co-run with job ji (i.e.,

the number of all possible Si) is
(
n−1
u−1

)
.

min

n∑
i=1

di,Si
xi,Si

(3.2)

xi,Si
=


1 if ji is co-scheduled with Si,

0 otherwise.

1 ≤ i ≤ n (3.3)

37

3. Co-Scheduling of Serial and Parallel Jobs

∑
∀Si

xi,Si
= 1, 1 ≤ i ≤ n (3.4)

3.2.2 Formalizing the co-scheduling of serial and parallel

jobs

We first model the co-scheduling of embarrassingly parallel (PE) jobs (i.e., those

with no dependency between parallel processes), and then extend the model to

co-schedule parallel jobs with inter-process dependencies (denoted by the term

PC). An example of a PE job is parallel Monte Carlo simulation [108]. In such an

application, multiple slave processes are running simultaneously to perform the

Monte Carlo simulations. After a slave process completes its portion of work, it

sends the result back to the master process. After the master process receives the

results from all slaves, it reduces the final result (i.e., by calculating the average).

An example of a PC job is an MPI application for matrix multiplication. In

both types of parallel job, the completion time of a job is determined by the

slowest process in the job.

IP model for PE jobs

Eq.3.2 cannot be used as the objective for finding the optimal co-scheduling of

parallel jobs. This is because Eq.3.2 will sum up the degradation experienced

by each process of a parallel job. However, as explained above, the slowest

process determines the finish time of a parallel job. In the case of the PE jobs,

a bigger degradation of a process indicates a longer execution time for that

process. Therefore, no matter how small degradation other processes have, the

execution flow in the parallel job has to wait until the process with the biggest

degradation finishes. Thus, the finish time of a parallel job is determined by the

biggest degradation experienced by all its processes. Therefore, co-scheduling a

mix of serial jobs and PE jobs can be modelled as the following IP problem.

38

3. Co-Scheduling of Serial and Parallel Jobs

min(

P∑
j=1

(max
pi∈δj

(di,Si
× xi,Si

)) +

n−P∑
i=1

di,Si
× xi,Si

) (3.5)

subject to:

∑
∀Si

xi,Si
= 1, 1 ≤ i ≤ n (3.6)

In above equations, Eq.3.7 denotes the maximum degradation of a parallel

job. The total degradation is calculated using Eq. 3.5, where n is the number

of all processes (a serial job has one process and a PE has multiple processes),

δj is a parallel job, P is the number of parallel jobs, Si is the set of processes

that may co-run with process pi. Eq. 3.6 lists the decision constraints of Eq.3.5,

which are the same as those for the IP modelling for serial jobs, i.e., Eq.3.3 and

Eq.3.4.

dδj = max
pi∈δj

di,Si
(3.7)

The max operation in Eq 3.5 can be eliminated by introducing an auxiliary

variable yj for each parallel job δj . Each yj has the following inequality relation

with the original decision variables.

for all pi ∈ δj , di,Si
xi,Si

≤ yj (3.8)

Therefore, the objective function in (3.5) is transformed to

min(

P∑
j=1

yj +

n−P∑
i=1

(di,Si
× xi,Si

)) (3.9)

IP model for PC jobs

In the case of the PC jobs, the slowest process in a parallel job is determined

by both performance degradation and communication time. Therefore, we de-

fine the communication-combined degradation, which is expressed using Eq.3.10,

39

3. Co-Scheduling of Serial and Parallel Jobs

where ci,S is the communication time taken by parallel process pi when pi

co-runs with the processes in Si. As with di,Si
, ci,Si

also varies with the co-

scheduling solutions. We can see from Eq.3.10 that for all processes in a parallel

job, the one with the biggest sum of performance degradation (in terms of the

computation time) and the communication has the greatest value of di,Si , since

the computation time of all processes (i.e., cti) in a parallel job is the same when

a parallel job is evenly balanced. Therefore, the greatest di,Si
of all processes in

a parallel job should be used as the communication-combined degradation for

that parallel job.

When the set of jobs to be co-scheduled includes both serial jobs and PC

jobs, we use Eq.3.10 to calculate di,Si for each parallel process pi, and then we

replace di,Si
in Eq.3.5 with that calculated by Eq.3.10 to formulate the objective

of co-scheduling a mix of serial and PC jobs.

di,Si
=
cti,Si

− cti + ci,Si

cti
(3.10)

Whether Eq.3.5 replaced with di,Si
calculated by Eq.3.10 still makes an IP

problem depends on the form of ci,Si
. Next, we first present the modelling of

ci,Si , and then use an example for illustration.

Assume that a parallel job has regular communication patterns among its

processes. ci,Si can be modelled using Eq.3.11 and 3.12, where γi is the number

of the neighbouring processes that process pi has corresponding to the decom-

position performed on the data set to be calculated by the parallel job, αi(k)

is the amount of data that pi needs to communicate with its k-th neighbouring

process, B is the bandwidth for inter-processor communication (typically, the

communication bandwidth between the machines in a cluster is same), bi(k)

is pi’s k-th neighbouring process, and βi(k, Si) is 0 or 1 as defined in Eq.3.12.

βi(k, Si) is 0 if bi(k) is in the job set Si co-running with pi. Otherwise, βi(k, Si)

is 1.

Essentially, Eq.3.11 calculates the total amount of data that pi needs to

40

3. Co-Scheduling of Serial and Parallel Jobs

communicate, which is then divided by the bandwidth B to obtain the commu-

nication time. βi(k, Si) in Eq.3.11 is further determined by Eq.3.12. Note that

pi’s communication time can be determined by only examining which neigh-

bouring processes are not in the job set Si co-running with pi, no matter which

machines that these neighbouring processes are scheduled to. Namely, ci,Si can

be calculated by only knowing the information of the local machine where pro-

cess pi is located. Therefore, such a form of ci,Si
makes Eq.3.10 still be of an

IP form that can solved by the existing IP solvers.

ci,Si =
1

B

γi∑
k=1

(αi(k)× βi(k, Si)) (3.11)

βi(k, Si) =


0 if bi(k) ∈ Si

1 if bi(k) /∈ Si
(3.12)

We use an example as shown in Figure 3.1 to illustrate the calculation of

ci,Si . Figure 3.1a represents a data set to be calculated on. Assume that a

typical 2-dimensional decomposition is performed on the data set, resulting in

9 subsets of data. And 9 processes are used to calculate these 9 subsets in

parallel (e.g., using MPI). The arrows between the data subsets in Figure 3.1a

represent the communication pattern between the processes. Assume that the

parallel job is labelled as δ1 and the 9 processes in δ1 are labelled as p1...p9.

Also assume that these 9 processes are scheduled on 2-core machines as shown

in Figure 3.1b. Now consider process p5. It has intra-processor communication

with p6 and inter-processor communications with p2, p4 and p8. Since the

intra-processor communication can occur simultaneously with inter-processor

communication and the intra-processor communication is always faster than

the inter-processor communication, the communication time taken by process

p5 in the schedule, i.e., c5,{p6}, is 1
B (α5(1)+α5(3)+α5(4)). Note that in typical

1D, 2D or 3D decompositions, the data that a process has to communicate with

41

3. Co-Scheduling of Serial and Parallel Jobs

P11 P12 P13

P14 P15 P16

P17 P18 P19

α15(1)

α15(2)

α15(3)

α15(4)

(a) An exemplar parallel job δ1 and its inter-process communication pattern

P6 P5 P2 P1

m1 m3 m4 m5 m2	

P4 P3 P8 P7 P9

α5(1)

α5(4)

α5(3)

α5(2)
P10

(b) A schedule of the parallel job δ1 and a serial job p10 on 2-core machines

Figure 3.1: An illustrative example for modelling the communication time

the neighbouring processes in the same dimension are the same. In Figure 3.1,

for example, α5(1) = α5(3) and α5(2) = α5(4).

3.3 The graph model for co-scheduling

This chapter proposes a graph-based approach to find the optimal co-scheduling

solution for both serial and parallel jobs. In this section, the graph model is

first presented, and the intuitive strategies to solve the graph model are then

discussed.

42

3. Co-Scheduling of Serial and Parallel Jobs

3.3.1 The graph model

As formalized in Section 3.2.1, the objective of solving the co-scheduling problem

for serial jobs is to find a way to partition n jobs, j1, j2, ..., jn, into m u-

cardinality sets, so that the total degradation of all jobs is minimized. The

number of all possible u-cardinality sets is
(
n
u

)
. In this chapter, a graph is

constructed, called the co-scheduling graph, to model the co-scheduling problem

for serial jobs (we will discuss in Section 3.5 how to use this graph model to

handle parallel jobs). There are
(
n
u

)
nodes in the graph and a node corresponds

to a u-cardinality set. Each node represents a u-core processor with u jobs

assigned to it. The ID of a node consists of a list of the IDs of the jobs in

the node. In the list, the job IDs are always placed in an ascending order.

The weight of a node is defined as the total performance degradation of the u

jobs in the node. The nodes are organized into multiple levels in the graph.

The i-th level contains all nodes in which the ID of the first job is i. At each

level, the nodes are placed in ascending order of their ID’s. A start node and

an end node are added as the first (level 0) and the last level of the graph,

respectively. The weights of the start and the end nodes are both 0. The edges

between the nodes are dynamically established as the algorithm of finding the

optimal solution progresses. Such organization of the graph nodes will be used

to help reduce the time complexity of the co-scheduling algorithms proposed in

this chapter. Figure 3.2 illustrates the case where 6 jobs are co-scheduled to

dual-core processors. The figure also shows how to code the node IDs in the

graph and how to organize the nodes into different levels. Note that for clarity

we do not draw all edges.

In the constructed co-scheduling graph, a path from the start to the end node

forms a valid co-scheduling solution if the path does not contain duplicated jobs;

this we call a valid path. The distance of a path is defined as the sum of the

weights of all nodes on the path. Finding the optimal co-scheduling solution is

equivalent to finding the shortest valid path from the start to the end node. It

is straightforward to know that a valid path contains at most one node from

43

3. Co-Scheduling of Serial and Parallel Jobs

	
 1,2

	
 1,3

	
 1,4	

	
 1,5

	
 1,6

	
 2,3

	
 2,4

	
 2,5

	
 2,6

	
 3,4

	
 3,5

	
 3,6

	
 4,5

	
 4,6

	
 5,6 	
 start 	
 end
0

7

10

3

11

9

9

7

3

5
4

1

7
7

4

6

Figure 3.2: The exemplar co-scheduling graph for co-scheduling 6 jobs on Dual-
core machines; the list of numbers in each node is the node ID; A number
in a node ID is a job ID; The edges of the same color form the possible co-
scheduling solutions; The number next to the node is the node weight, i.e., total
degradation of the jobs in the node.

each level in the graph.

3.3.2 Intuitive strategies to solve the graph model

We first try to solve the graph model using Dijkstra’s shortest path algorithm

[26]. However, we find that Dijkstra’s algorithm can not be directly applied to

find the correct solution. This can be illustrated using the example in Figure

3.2. In order to quickly reveal the problem, let us consider only five nodes in

Figure 3.2, 〈1, 5〉, 〈1, 6〉, 〈2, 3〉, 〈4, 5〉, 〈4, 6〉. Assume the weights of these nodes

are 11, 9, 9, 7 and 4, respectively. Out of all these five nodes, there are two valid

paths reaching node 〈2, 3〉: 〈〈1, 5〉, 〈2, 3〉〉 and 〈〈1, 6〉, 〈2, 3〉〉. Since the distance

of 〈〈1, 6〉, 〈2, 3〉〉, which is 18, is shorter than that of 〈〈1, 5〉, 〈2, 3〉〉, which is 20,

the path 〈〈1, 6〉, 〈2, 3〉〉 will not been examined again according to Dijkstra’s

algorithm. In order to form a valid schedule, the path 〈〈1, 6〉, 〈2, 3〉〉 has to

connect to node 〈4, 5〉 to form a final valid path 〈〈1, 6〉, 〈2, 3〉, 〈4, 5〉〉 with the

44

3. Co-Scheduling of Serial and Parallel Jobs

distance of 25. However, we can see that 〈〈1, 5〉, 〈2, 3〉, 〈4, 6〉〉 is also a valid

schedule and its distance is less than that of 〈〈1, 6〉, 〈2, 3〉, 〈4, 5〉〉. However,

the schedule 〈〈1, 5〉, 〈2, 3〉, 〈4, 6〉〉 is dismissed by Dijkstra’s algorithm during the

search for the shortest path.

The main reason for this problem is that Dijkstra’s algorithm only records

the shortest subpaths reaching a certain node and dismisses other optional sub-

paths. This is fine for searching for the shortest path, but in our problem we

have to search for the shortest valid path. Dijkstra’s algorithm searches up to a

certain node in the graph, recording only the shortest subpath up to that node.

As such, not all nodes among the unsearched nodes can form a valid schedule

with the current shortest subpath, which may cause the shortest subpath to

connect to nodes with bigger weights. As illustrated, a subpath that has been

dismissed by Dijkstra’s algorithm may be able to connect to the unsearched

nodes with smaller weights and therefore generate a shorter final valid path.

In order to address the above problem, an intuitive strategy is to revise

Dijkstra’s algorithm so that it will not dismiss any subpath, i.e., to allow the

algorithm to record every visited subpath. Then, the path with the smallest

distance among all examined and complete paths is the optimal co-scheduling

result. This strategy is equivalent to enumerating all possible subpaths in the

graph. The time complexity of such a strategy is very high, which will be

discussed when we compare it with the SVP algorithm presented in Subsection

3.4.1. This time complexity motivates us to design more efficient algorithms to

find the shortest valid path. In the next section, we propose a more efficient

algorithm to find the shortest valid path; this we call the SVP (Shortest Valid

Path) algorithm.

45

3. Co-Scheduling of Serial and Parallel Jobs

3.4 Shortest valid path for serial jobs

3.4.1 The SVP algorithm

In order to tackle the problem highlighted in the application of Dijkstra’s algo-

rithm, the following dismiss strategy is adopted by the SVP algorithm:

SVP records all jobs that an examined sub-path contains. Assume a set of

sub-paths, S, each of which contains the same set of jobs (the set of graph nodes

that these paths traverse are different). SVP only keeps the path with the smallest

distance and other paths are dismissed in further searches for the shortest path.

This strategy will clearly demonstrate improved efficiency compared with

the intuitive, enumerative strategy, i.e., the SVP algorithm examines far fewer

subpaths than the enumerative strategy. This is because, for all different sub-

paths that contain the same set of jobs, only one subpath (the shortest) will

spawn further subpaths and all other subpaths will be discarded.

The SVP algorithm is outlined in Algorithm 3.1. The main differences be-

tween SVP and Dijkstra’s algorithm lie in three aspects: 1) The invalid paths,

which contain the duplicated jobs, are disregarded by SVP during the search-

ing; 2) The dismiss strategy is implemented; 3) No edges are generated between

nodes before SVP starts and the node connections are established as SVP pro-

gresses. In this way, only the node connections spawned by the recorded sub-

paths will be generated and this will therefore further improve performance.

In Algorithm 3.1, Graph is implemented as a two-dimensional linked list with

the first dimension linking the graph levels and the second linking all nodes in

a level. Q is a list of objects and, an object v, has four attributes: a job set

(v.jobset), the current shortest valid path relating to the job set (v.path), the

distance of the shortest path (v.distance) and the level of the last node in the

shortest path (v.level). Q is initialized as having the object for the start node

(Lines 2-3). Each iteration, SVP selects from Q such an object v that has the

smallest distance (Lines 4 and 30). In contrast, in Dijkstra’s algorithm we find a

data structure (denoted by Q′) which is similar to Q. In Q′, each element holds

46

3. Co-Scheduling of Serial and Parallel Jobs

Algorithm 3.1: The SVP Algorithm

1:SVP(Graph)
2: v.jobset = {Graph.start}; v.path = Graph.start; v.distance = 0; v.level = 0;
3: add v into Q;

4: Obtain v from Q;

5: while Graph.end is not in v.jobset
6: for every level l from v.level + 1 to Graph.end.level do

7: if job l is not in v.jobset
8: valid l = l;
9: break;

10: k = 1;

11: while k ≤
(n−valid l

u−1

)
12: if nodek.jobset ∩ v.jobset = φ
13: distance = v.distance+ nodek.weight;
14: J = v.jobset ∪ nodek.jobset;
15: if J is not in Q
16: Create an object u for J;
17: u.jobset = J;
18: u.distance = distance;
19: u.path = v.path+ nodek;
20: u.level = nodek.level
21: Add u into Q;

22: else

23: Obtain u′ whose u′.jobset is J;
24: if distance < u′.distance
25: u′.distance = distance;
26: u′.path = v.path+ nodek;
27: u′.level = nodek.level
28: k+ = 1;
29: Remove v from Q;

30: Obtain the v with smallest v.distance from Q;

31: return v.path as the shortest valid path;

a node and the shortest distance up to that node. In each iteration, Dijkstra’s

algorithm selects the node with the shortest distance among all nodes stored in

Q′ and extends the subpath to that node.

At Line 5, our SVP algorithm enters a loop which visits every node and

finds the shortest valid path in the graph. Given a v obtained in Line 4, since a

valid path cannot contain duplicated jobs, there should not exist edges between

nodes at the same level. Therefore, the algorithm starts from v.level + 1 (Line

6) to search for a valid level, which is a level that contains at least one node

that can form a valid path with the current subpath.

After a valid level is found, the algorithm continues to search this level

for valid nodes that can append to the current subpath and form a new valid

subpath (Lines 10-11). Lines 12-26 implement our so-called dismiss strategy.

47

3. Co-Scheduling of Serial and Parallel Jobs

If a valid node, k, is found, the algorithm calculates the distance after the

current subpath extends to node k and constructs a new job set J that is

v.jobset ∪ k.jobset (Lines 12-14). If J is not in Q (Line 15), an object u′ is

created for J and added to Q (Lines 16-21). If J is in Q, then the algorithm

checks whether this new subpath has a shorter distance than the one recorded

for the job set J (Line 24). If so, the attributes of the object corresponding to

J are updated (Lines 25-27).

The termination condition of SVP is when the v obtained from Q contains

the Graph.end (Line 5). This is because when v contains Graph.end, it means

v.path is already a complete valid path. Moreover, since v.path has the smallest

distance in Q, all subpaths recorded in Q will form longer complete paths than

v.path. Therefore, v.path is the shortest valid path.

We now present an example to illustrate the workings of the SVP algorithm.

In order to simplify the description, we only consider how to find the shortest

path from five nodes in Figure 3.2, i.e., 〈1, 5〉, 〈1, 6〉, 〈2, 3〉, 〈4, 5〉, 〈4, 6〉. Assume

the weights of these nodes are 11, 9, 9, 7 and 4, respectively. At the beginning of

Algorithm 1, we initialize Q with node 〈start〉 (Lines 2-3). In the first iteration

of the while loop (Line 5), the algorithm examines the nodes 〈1, 5〉, 〈1, 6〉, and

adds two job sets, (1,5) and (1,6), in Q with the weights 11 and 9 respectively.

At the end of the first iteration, the algorithm selects the job set (1,6) from

Q since it is the job set with the smallest weight in Q (Line 30). Then the

algorithm enters into the second iteration and searches for the valid level (Lines

6-9). In this case, the second level is selected, since job 2 does not exist in the job

set (1,6). The algorithm starts searching for valid nodes within this level. The

node 〈2, 3〉 is found as the valid node in this level, since none of the jobs in this

node exist in the job set (1,6) (Line 12). Therefore, the distance between nodes

〈1, 6〉 and 〈2, 3〉 is computed (Line 13), which is 18, and a new job set (1,2,3,6)

is created (Line 14). Since job set (1,2,3,6) does not exist in Q, the algorithm

creates a new element u for it (Line 16). The job set (1,2,3,6) is assigned to

u.jobset (Line 17). The distance of 18, path 〈〈1, 6〉, 〈2, 3〉〉 and the level of the

48

3. Co-Scheduling of Serial and Parallel Jobs

node 〈2, 3〉 are assigned to u.distance, u.path and u.level, respectively (Lines

18-20). The algorithm then removes the job set (1,6) from Q (Line 29). At the

end of the current iteration, the algorithm selects the job set (1,5), which is the

job set with the smallest weight, from Q (Line 30) and enters the next iteration.

In the new iteration, the algorithm repeats the above procedure and the job set

(1,2,3,5) with the weight of 20 will be added into Q.

In the following iterations, the algorithm selects the job set (1,2,3,6), adds

a new job set (1,2,3,4,5,6) with the distance of 25 into Q and removes job

set (1,2,3,6) from Q in the same manner as that described above. After this,

the job set (1,2,3,5) is selected from Q, and the algorithm will construct the

job set (1,2,3,4,5,6), which already exists in Q. But this time, the distance

associated with this job set is 24. Since the job set (1,2,3,4,5,6) has already

been stored in Q, the algorithm compares this newly computed distance with

the one saved in Q (Line 24). Since this new distance is smaller, the algorithm

updates the attributes saved in Q with the new distance (Lines 22-27). The

algorithm reaches the end node in the next iteration (Line 5) and returns the

shortest valid path, which is 〈〈1, 5〉, 〈2, 3〉, 〈4, 6〉〉.

The time complexity of Algorithm 3.1 is O
(m∑
i=1

(
n−i

i·(u−1)

)
·((n−u+1)+

(n
u)

n−u+1 +

log
(
n
u

)
)
)
, where m is the number of u-core machines required to run n jobs.

When the problem is to schedule n jobs on u-core machines, the constructed

graph has
(
n
u

)
nodes and n−u+1 levels. Therefore, the average number of nodes

per level is
(n
u)

n−u+1 . In each iteration, the worst-case time complexity for finding

the next valid level is O
(
n−u+1

)
(Lines 6-8), while the average time complexity

for finding a valid node in a level is O
((n

u)
n−u+1

)
(Lines 11-14). The time com-

plexity for obtaining an element with the smallest distance from Q is O
(
log
(
n
u

))
(Line 30). Other operations in each iteration take time O

(
1
)
. Therefore, each

iteration is bounded by O
(
(n−u+1)+

(n
u)

n−u+1 + log
(
n
u

))
. The maximum number

of iterations of the outer-most loop (Line 5) equals the maximum length of Q,

which in turn equals the number of all possible job sets that can form a valid

sub-path in the graph. This can be calculated by
m∑
i=1

(
n−i

i·(u−1)

)
, where m is the

49

3. Co-Scheduling of Serial and Parallel Jobs

number of u-core machines required. The calculation is explained as follows.

All subpaths start from the first level in the graph. The number of job sets that

can form a valid subpath whose length is 1 (i.e., the subpath contains only one

node in the graph) equals the number of nodes in the first level, which in turn

equals the probability of placing n− 1 jobs into u− 1 positions and is therefore(
n−1
u−1

)
. Now let us calculate the number of job sets that can form a valid subpath

whose length is 2 (i.e., the subpath contain two nodes in the graph). Because of

the layout of the graph, the valid subpath whose length is 2 must contain jobs 1

and 2. Therefore, the number of such job sets equals the probability of placing

n− 2 jobs into 2 · (u− 1) positions, which is
(

n−2
2·(u−1)

)
. Thus, there are in total

m∑
i=1

(
n−i

i·(u−1)

)
job sets which can form valid subpaths whose lengths are 1 or 2.

The maximum length of a valid path is m (i.e., the number of u-core machines

required). Therefore, the total number of job sets that form a valid subpath is
m∑
i=1

(
n−i

i·(u−1)

)
.

Now we discuss the difference between SVP and the intuitive method from

the algorithm’s perspective. In SVP, the maximum length of Q is the number

of all possible job sets that can form a valid subpath in the graph, which is
m∑
i=1

(
n−i

i·(u−1)

)
. However, the maximum length of Q in the intuitive method is the

number of all valid subpaths in the graph, which is
m∑
k=1

k−1∏
i=0

(
n−(i·u)−1

u−1

)
, while

the steps in each iteration of the intuitive method, i.e., the steps used by the

intuitive method to find the next valid level and a valid node in the level can

be similar as those by SVP. Therefore, essentially, SVP accelerates the solving

process by significantly reducing the length of Q in the algorithm, i.e., reducing

the number of iterations of the search loop. For example, when u is 4 and n

is 8, 12 and 16, the maximum length of Q is 35, 376 and 4174, respectively, in

SVP, while the maximum length of Q is 280, 46365 and 5330780, respectively,

in the intuitive method.

50

3. Co-Scheduling of Serial and Parallel Jobs

3.4.2 Further optimization of SVP

One of the most time-consuming steps in Algorithm 3.1 is to scan every node

in a valid level to find a valid node for a given subpath v.path (Line 11 and 28).

By carefully examining the Algorithm 3.1 and the structure of co-scheduling

graph. We noticed that once the algorithm locates a node that contains a job

appearing in v.path, the number of the nodes that follow that node and also

contains that job can be calculated since the nodes are arranged in the ascending

order of node ID. These nodes are all invalid and can therefore be skipped by

the algorithm.

Based on the above discussion, the O-SVP (Optimal SVP) algorithm is

proposed to further optimize SVP. The only difference between O-SVP and

SVP is that in the O-SVP algorithm, when the algorithm gets to an invalid

node, instead of moving to the next node, it calculates the number of nodes

that can be skipped and jumps to a valid node. Effectively, O-SVP can find

a valid node in the time O(1). Therefore, the time complexity of O-SVP is

O
(m∑
i=1

(
n−i

i·(u−1)

)
· ((n − u + 1) + log

(
n
u

)
)
)
. The outline algorithm for O-SVP is

omitted in this chapter.

In summary, SVP accelerates the solving process over the enumerative method

by reducing the length of Q in the algorithm, while O-SVP further accelerates

SVP by reducing the time spent in finding a valid node in a level.

3.5 Shortest valid path for parallel jobs

The SVP algorithm presented in the last section considers only serial jobs. This

section addresses the co-scheduling of both serial and parallel jobs. Subsection

3.5.1 presents how to handle embarrassingly parallel (PE) jobs, while Subsection

3.5.2 further extends the work in Subsection 3.5.1 to handle parallel jobs with

inter-process communications (PC).

51

3. Co-Scheduling of Serial and Parallel Jobs

3.5.1 Co-scheduling PE jobs

In Subsection 3.5.1, the SVPPE (SVP for PE) algorithm is proposed, extend-

ing SVP to incorporate PE jobs. Subsection 3.5.1 presents the optimization

techniques used to accelerate the solving of SVPPE.

The SVPPE algorithm

When Algorithm 3.1 finds a valid node, it calculates the new distance after the

current path extends to that node (Line 13). This calculation is adequate for

serial jobs, but cannot be applied to parallel jobs. As discussed in Subsection

3.2.2, the completion time of a parallel job is determined by Eq. 3.10. In order

to incorporate parallel jobs, we can treat each process of a parallel job as a serial

job (therefore the graph model remains the same) and extend the SVP algorithm

simply by changing the means by which we calculate the path distance.

In order to calculate the performance degradation for PE jobs, a number

of new attributes are introduced. First, two new attributes are added to an

object v in Q. One attribute stores the total degradation of all serial jobs on

v.path (denoted by v.dg serial). The other attribute is an array, in which each

entry stores the largest degradation of all processes of a parallel job pi on v.path

(denoted by v.dg pi). Second, two similar new attributes are also added to a

graph node nodek. One stores the total degradation of all serials jobs in nodek

(denoted by nodek.dg serial). The other is also an array, in which each entry

stores the degradation of a parallel job pi in nodek (denoted by nodek.dg pi).

SVPPE is outlined in Algorithm 3.2. The only differences between SVPPE

and SVP are: 1) Changing the means by which we calculate the subpath distance

(Line 13-19 in Algorithm 3.2), and 2) Updating the newly introduced attributes

for the case where J is not in Q (Line 28-30) and the case otherwise (Line 38-40).

The maximum number of iterations of all for-loops (Line 14, 28 and 38) is

u, because there are at most u jobs in a node. Each iteration takes constant

time. Therefore, the worst-case complexity of computing the degradation (the

first for-loop) and updating the attributes (the two other for-loops) are O
(
u
)
.

52

3. Co-Scheduling of Serial and Parallel Jobs

Algorithm 3.2: The SVPPE algorithm

1: SVPPE(Graph , start , end):

2-12: ... //same as Line 2-12 in Algorithm 1;

13: total dg serial = v.dg serial + nodek.dg serial
14: for every parallel job , pi, in nodek:
15: if pi in v.jobset:
16: dg pi=max(v.dg pi, nodek.dg pi);
17: else

18: dg pi = nodek.dg pi;
19: distance =

∑
dg pi + total dg serial;

20-26: ... //same as Line14 -20 in Algorithm 1

27: u.dg serial = total dg serial;
28: for every parallel job , pi, in nodek do

29: u.dg pi = dg pi;
30-36: ... //same as Line21 -27 in Algorithm 1

37: u′.dg serial = total dg serial;
38: for every parallel job , pi, in nodek do

39: u′.dg pi = dg pi;
40-43: ... //same as Line28 -31 in Algorithm 1

Therefore, combined with the time complexity of Algorithm 3.1, the worst-case

complexity of Algorithm 3.2 is O
(m∑
i=1

(
n−i

i·(u−1)

)
·((n−u+1)+u · (n

u)
n−u+1 + log

(
n
u

)
)
)
.

Process condensation for optimizing SVPPE

An obvious optimization measure for SVPPE is to skip the invalid nodes in a

similar way to that given in O-SVP algorithm, which is not repeated in this

Subsection. This subsection focuses on proposing another important optimiza-

tion technique that is only applicable to PE jobs. The optimization technique is

based on the following observation: different processes of a parallel job should

have the same mutual effect with other jobs. So it is unnecessary to differentiate

different processes of a parallel job, treating them as individual serial jobs.

Therefore, the optimization technique, which is called the process conden-

sation technique in this chapter, labels a process of a parallel job using its job

ID, that is, it treats different processes of a parallel job as the same serial job.

We illustrate this below using Figure 3.2. Now assume the jobs labelled 1, 2, 3

and 4 are four processes of a parallel job, whose ID is set to be 1. Figure 3.2

can be transformed to Figure 3.3 after deleting the same graph nodes in each

level (the edges are omitted). Compared with Figure 3.2, it can be seen that

the number of graph nodes in Figure 3.3 is reduced. Therefore, the number of

53

3. Co-Scheduling of Serial and Parallel Jobs

subpaths that need to be examined and consequently the time spent in finding

the optimal solution is significantly reduced.

SS 1,5

1,1

1,6

1,5

1,1

1,6

1,5

1,1

1,6

1,5

1,6

5,6

Figure 3.3: The graph model for a mix of serial and parallel jobs

We now present the O-SVPPE (Optimal SVPPE) algorithm, which adjusts

SVPPE so that it can find the shortest valid path in the optimized co-scheduling

graph. The only difference between O-SVPPE and SVPPE is that a different

mechanism is used to find 1) the next valid level and 2) a valid node in a valid

level for parallel jobs.

Lines 6-9 in Algorithm 3.1 capture the mechanism used by SVPPE to find

the next valid level. In O-SVPPE, for a given level l, if job l is a serial job, the

condition of determining whether level l is valid is the same as that in SVPPE.

However, since the same job ID is now used to label all processes of a parallel

job, the condition of whether a job ID appears on the given subpath can no

longer be used to determine a valid level for parallel jobs. The revised method

is discussed next.

Several new attributes are added for the optimized graph model. proci

denotes the number of processes that parallel job pi has. For a given subpath

v.path, v.proci is the number of times a process of parallel job pi appears on

v.path. v.jobset is now a bag (not a set) of job IDs that appear on v.path, that is,

there are v.proci instances of that parallel job in v.jobset. As in the case of serial

jobs, the adjusted v.jobset is used to determine whether two subpaths consist

of the same set of jobs (and parallel processes). A new attribute, nodek.jobset,

is also added to a graph node nodek, where nodek.jobset is also a bag of job

IDs that are in nodek. nodek.proci is the number of processes of parallel job pi

that are in nodek. nodek.serialjobset is a set of all serial jobs in nodek.

54

3. Co-Scheduling of Serial and Parallel Jobs

Algorithm 3.3: The O-SVPPE algorithm

1: O-SVPPE(Graph)

2-6: ... //same as Line 2-6 in Algorithm 1;

7: if job l is a serial job

8-10: ...// same as Line 7-9 in Algorithm 1;

11: else if v.procl < procl
12: validl = l;
13: break;

14-15: ... //same as Line 10-11 in Algorithm 1

16: if nodek.serialjobset ∩ v.jobset = φ & ∀pi, v.proci + nodek.proci ≤ proci
17-48: ... //same as Line13 -44 in Algorithm 2

The following condition is used to determine whether a level is a valid level

for a given path. Assume job l is a parallel job. For a given subpath v.path,

level l (l starts from v.level + 1) is a valid level if v.procl < procl. Otherwise,

level l is not a valid level.

After a valid level is found, O-SVPPE needs to find a valid node in that level.

When there are both parallel and serial jobs, O-SVPPE uses two conditions to

determine a valid node: 1) the serial jobs in the node do not appear in v.jobset,

and 2) ∀ parallel job pi in the node, v.proci + nodek.proci ≤ proci.

O-SVPPE is outlined in Algorithm 3.3, in which Lines 7-13 implement the

way of finding a valid level and Line 16 checks whether a node is valid, as

discussed above.

3.5.2 Co-scheduling PC jobs

We now extend the SVPPE algorithm to handle PC jobs, which is called SVPPC

(SVP for PC jobs). We first adjust SVPPE to handle PC jobs. Moreover, since

the further optimization technique developed for PE jobs, i.e., the O-SVPPE

algorithm, presented in Subsection 3.5.1 cannot be directly applied to PC jobs,

the O-SVPPE algorithm is extended to handle PC jobs in Subsection 3.5.2, and

termed O-SVPPC.

Recall that the communication time, cij,S , can be modelled with Eq. 3.10.

We now adjust SVPPE to incorporate the PC jobs. In the graph model for serial

and PE jobs, the weight of a graph node is calculate by summing up the weights

55

3. Co-Scheduling of Serial and Parallel Jobs

of the individual jobs/processes, which is the performance degradation. When

there are PC jobs, a process belongs to a PC job, the weight of a process pij in

a PC job should be calculated by Eq. 3.10 instead of Eq. 3.1. The remainder

of the SVPPC algorithm is exactly the same as SVPPE.

Communication-aware process condensation for optimizing SVPPC

The reason why the process condensation technique developed for PE jobs can-

not be directly applied to PC jobs is because different processes in a PC job

may have different communication patterns and therefore cannot be treated as

identical processes. After carefully examining the characteristics of the typical

inter-process communication patterns, a communication-aware process conden-

sation technique is developed to accelerate the solving process of SVPPC, which

is called O-SVPPC (Optimized SVPPC) in this chapter.

We can construct the co-scheduling graph model as we did in Figure 3.2

for finding the optimal solution of co-scheduling PC and serial jobs. We then

define the communication property of a parallel job in a graph node as the

number of communications that the processes of the parallel job in the graph

node has to perform in each decomposition direction with other nodes. In the

communication-aware process condensation, multiple graph nodes in the same

level of the graph model can be condensed to one node if the following two

conditions are met: 1) these nodes contain the same set of serial jobs and

parallel jobs, and 2) the communication properties of all PCs in these nodes are

the same.

We now present an example to illustrate the communication-aware process

condensation for SVPPC. Consider Figure 3.1 again. We construct the co-

scheduling graph model as we did in Figure 3.2 for finding the optimal solution

for co-scheduling the 9 processes in p1 and a serial job p2 on 2-core machines.

The IDs for the 9 processes are labelled as 1, ..., 9 and that of p2 as 10. Figure

3.4 shows all graph nodes in the first level of the graph model (the level is drawn

horizontally to save space). Node 〈1, 2〉 means that processes p11 and p12 are

56

3. Co-Scheduling of Serial and Parallel Jobs

co-scheduled to the same physical machine. According to the communication

pattern shown in Figure 3.1, node 〈1, 2〉 will have one x-direction communication

with other nodes in the graph model in any possible co-scheduling solution due

to the communication between processes p12 and p13. Similarly, due to the com-

munications between p11 and p14 and between p12 and p15), node 〈1, 2〉 will have

two y-direction communications with other nodes. We define the communica-

tion property of a parallel job in a graph node as the number of communications

that the processes of the parallel job in the graph node has to perform in each

decomposition direction with other nodes. Then the communication property

of p1 in node 〈1, 2〉, termed (cx, cy) (since it is the 2-D decomposition), is (1, 2).

Similarly, we can calculate the communication property of p1 in other nodes,

which are shown under the corresponding nodes in Figure 3.4.

According to the communication-aware process condensation technique, the

level of nodes shown in the top part of Figure 3.4 can be condensed into the form

shown in the bottom part of the figure (i.e., node 〈1, 7〉 and 〈1, 9〉 are condensed

with 〈1, 3〉. Consequently, the number of nodes in the graph model is reduced,

and therefore the solving process is accelerated.

1,10

(1,2) (2,2) (2,1) (3,3) (2,3) (2,2) (3,2) (2,2) (1,1)

1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2

1,10

(1,2) (2,2) (2,1) (3,3) (2,3) (3,2) (1,1)

1,8 1,6 1,5 1,4 1,3 1,2

Figure 3.4: The example of communication-aware process condensation

57

3. Co-Scheduling of Serial and Parallel Jobs

3.6 Co-scheduling jobs on multi-processor com-

puters

In order to add more cores to a multicore computer, there are two general ap-

proaches: 1) increase the number of cores on a processor chip and 2) install more

processors, with the number of cores in each processor remaining unchanged;

both approaches are often simultaneously applied.

The co-scheduling graph previously presented is for multicore machines each

of which contains a single multi-core processor, which we term a single processor

multicore machine (or a single processor for short). If there are multiple multi-

core processors in a machine (which we term a multi-processor machine) the

resource contention, such as cache contention, is different. For example, only

the cores on the same processor share the Last-Level Cache (LLC) on the chip,

while the cores on different processors do not compete for cache. In a single pro-

cessor machine, the job-to-core mapping does not affect the tasks’ performance

degradation. This is not the case in a multi-processor machine, as illustrated in

the following example.

Consider a machine with two dual-core processors (processors p1 and p2) and

a co-run group with 4 jobs (j1, ..., j4). Now consider two job-to-core mappings.

In the first mapping, jobs j1 and j2 are scheduled on processor p1, while j3 and

j4 are scheduled on p2. In the second mapping, jobs j1 and j3 are scheduled

on processor p1, while j2 and j4 are scheduled on p2. The two mappings may

generate different total performance degradations for this co-run group. In the

co-scheduling graph in previous sections, a graph node corresponds to a possi-

ble co-run group in a machine, which is associated with a single performance

degradation value. This holds for a single processor machine. As shown in

the above discussions, however, a co-run group may generate different perfor-

mance degradations in a multi-processor machine, depending on the job-to-core

mapping within the machine. This subsection presents how to adjust the meth-

ods presented in previous sections to find the optimal co-scheduling solution in

58

3. Co-Scheduling of Serial and Parallel Jobs

multi-processor machines.

A straightforward method is to generate multiple nodes in the co-scheduling

graph for a possible co-run group, with each node having a different weight that

equals a different performance degradation value (which is determined by the

specific job-to-core mappings). We call this method MNG (Multi-Node for a co-

run Group) method. For a machine with p processors with each processor having

u cores, it can be calculated that there are

p−1∏
i=0

((p−i)·u
u)

p! different job-to-core

mappings that may produce different performance degradations. The algorithms

presented in previous sections can be used to find the shortest path in this

co-scheduling graph, where the shortest path must correspond to the optimal

co-scheduling solution on the multi-processor machines. In this straightforward

solution, however, the scale of the co-scheduling graph (i.e., the number of graph

nodes) increases

p−1∏
i=0

((p−i)·u
u)

p! fold, and consequently the solving time increases

significantly compared with that for the case of single processor machines.

We now propose a method, called the Least Performance Degradation (LPD)

method, to construct the new co-scheduling graph. Using this method, the

optimal co-scheduling solution for multi-processor machines can be computed

without increasing the scale of the co-scheduling graph. The LPD method is

explained below.

As discussed above, in the case of multi-processor machines, a co-run group

may produce different performance degradation in a multi-processor machine.

Instead of generating multiple nodes (each being associated with a different

weight, i.e., a different performance degradation value) in the co-scheduling

graph for a co-run group, the LPD method constructs the co-scheduling graph

for multi-processor machines in the following way: A node is generated for a

co-run group and the weight of the node is set to be the smallest performance

degradation among all possible performance degradations generated by the co-

run group. The remainder of the construction process is exactly the same as

that for the case of single processor machines.

59

3. Co-Scheduling of Serial and Parallel Jobs

Assume the jobs are to be co-scheduled on multi-processor machines. Using

the LPD method defined above to construct the co-scheduling graph, the algo-

rithms that have been proposed to find the optimal co-scheduling solutions on

single processor machines will still find the optimal co-scheduling solutions on

multi-processor machines.

3.7 Co-scheduling multi-thread jobs

A parallel job considered so far in this chapter is one consisting of multiple

processes, such as an MPI job. In this subsection, we adapt the proposed graph

model and algorithms so that they can handle parallel jobs consisting of multiple

threads, such as OpenMP jobs. We call the former parallel jobs Multi-Process

Parallel (MPP) jobs and the latter Multi-Thread Parallel (MTP) jobs.

In the co-scheduling graph, a thread in an MTP job is treated in the same

way as a parallel process in an MPP job. Compared with MPP jobs, however,

MTP jobs have the following different characteristics: 1) multiple threads of

a MTP job must reside in the same node, and 2) the communication time

between threads can be largely ignored. Accordingly, the co-scheduling graph

model is adjusted as follows to handle the MTP jobs. For each node (i.e., every

possible co-run group) in the co-scheduling graph, we check whether all threads

belonging to the MTP are on node. If not, the node is deleted from the graph

since it does not satisfy the condition that all threads of a MTP job must reside

in the same node. We call the above process the validity check for MTP jobs.

Since the communication time between the threads in MTP jobs can be

ignored, the performance degradation of a MTP job can be calculated using Eq.

3.7 that is used to compute the performance degradation of a PE job. Also, since

the communication time of an MTP job is not considered, an intuitive method

to find the optimal co-scheduling solution in the presence of MTP jobs is to use

the algorithm for handling PE jobs, i.e., Algorithm 3.3. However, after closer

inspection into the features of MTP jobs, it is apparent that Algorithm 3.3 can

60

3. Co-Scheduling of Serial and Parallel Jobs

be adjusted to improve the performance of managing MTP jobs, a feature which

is explained next.

After the validity check for MTP jobs, all threads belonging to a MTP job

must only appear in the same graph node. Therefore, there is no need to perform

the process condensation as we do in the presence of PE jobs. Consequently, the

SVPPE algorithm (i.e., Algorithm 3.2) can be used to handle MTP jobs. Next,

when the current path expands to a new node in the SVPPE Algorithm, for

each parallel job pi in the new node, SVPPE needs to check whether pi appears

in the current path. However, all threads in a MTP job only reside in the same

node. Therefore, if a new node that the current path tries to expand to contains

an MTP job, it is unnecessary to check whether threads of the MTP job appear

in the current path.

In order to differentiate this approach from SVPPE, the algorithm for finding

the optimal co-scheduling solution for the mix of serial and MTP jobs is denoted

as SVPPT (where T stands for thread). The only difference between SVPPT

and SVPPE is that Lines 15-17 in SVPPE (i.e., Algorithm 3.2) are removed

from SVPPT.

From the above discussions, it is possible to determine if it would be much

more efficient to find the optimal co-scheduling solution for MTP jobs than for

PE jobs. This is because 1) the number of nodes in the co-scheduling graph for

SVPPT is much less than that for PE jobs (because of the validity check for

MTP jobs) and 2) SVPPT does not execute Lines 15-17 in SVPPE.

Note that the method discussed above for handling MTP jobs is applica-

ble to both single processor machines and multi-processor machines, as defined

previously.

3.8 The A*-search-based algorithm

The dismiss strategy designed for the SVP algorithm in Subsection 3.4.1 and

the optimization strategies developed in O-SVPPE and O-SVPPC can avoid

61

3. Co-Scheduling of Serial and Parallel Jobs

unnecessary searches in the co-scheduling graph. It has been shown that the

A*-search algorithm is also able to find the optimal solution and during the

searching, effectively prune the graph branches that will not lead to the optimal

solution. In order to further accelerate the solving process, an A*-search-based

algorithm is developed in this section to combine the ability of avoiding the

unnecessary searches in the traditional A*-search algorithm and the algorithms

presented in this chapter so far (SVP, O-SVP, O-SVPPE and O-SVPPC).

This section presents how to design the A*-search-based algorithm to find the

optimal co-scheduling solution in the co-scheduling graph. We only consider the

co-scheduling of serial and PC jobs for the sake of generality. The presented A*-

search-based algorithm is called SVPPC-A*. SVP-A* (i.e., co-scheduling serial

jobs), SVPPE-A* (i.e., co-scheduling both serial and PE jobs) and SVPPT-A*

can be developed in a similar way.

3.8.1 Traditional A*-search algorithm

Given a graph in which every node has a weight, the objective of the A*-search

algorithm is to find the shortest path (the path with the smallest total weight)

from the start to the end node. In A*-search, each node v has two functions,

denoted as g(v) and h(v). Function g(v) computes the actual length from the

start node to the node v. Function h(v) estimates the length of the shortest path

from node v to the end node. Therefore, the sum of g(v) and h(v), denoted as

f(v), is the estimated length of the shortest path from the start to the end node

that passes the node v. Initially, the priority list contains only the start node.

Each iteration, A*-search removes the node with the shortest distance from the

priority list and expands that node. The algorithm then uses the f(v) function

to estimate the length of all the nodes generated by expansion, and inserts them

into the priority list according to their distances, which is f(v). This process

terminates when the node with the shortest distance is the end node, which

indicates that a shortest path has been found. Note that when setting h(v) to

be 0, the A*-search algorithm is equivalent to Dijkstra’s algorithm for finding

62

3. Co-Scheduling of Serial and Parallel Jobs

the shortest path.

The A*-search based algorithm has the same structure and logic as the SVP

algorithm. However, in the A*-search based algorithm, each node v has two

functions, denoted as g(v) and h(v). Function g(v) computes the actual length

from the start node to the node v. Function h(v) estimates the length of the

shortest path from node v to the end node. Therefore, the sum of g(v) and h(v),

denoted as f(v), is the estimated length of the shortest path from the start to

the end node that passes node v.

3.8.2 SVPPC-A*

The traditional A*-search algorithm, which is briefly overviewed in the supple-

mentary notes, cannot be directly applied to obtain the optimal co-scheduling

solution for the same reasons discussed in the presentation of the SVP and the

SVPPE algorithms; namely, i) the optimal co-scheduling solution in the con-

structed co-scheduling graph corresponds to the shortest valid path, not the

shortest path, and ii) since the jobs to be scheduled contain parallel jobs, the

distance of a path is not the total weights of the nodes on the path, as calculated

by the traditional A*-search algorithm.

Three functions are defined in the traditional A*-search algorithm. Function

g(v) is the actual distance from the start node to node v and h(v) is the estimated

length from v to the end node, while f(v) is the sum of g(v) and h(v). In

SVPPC-A*, we use the exactly same methods proposed for the SVP algorithm

(i.e., the dismiss strategy) to handle and expand the valid subpaths and avoid

the unnecessary searches. Also, we use the method proposed for the SVPPC

algorithm to calculate the distance of the subpaths (i.e., Eq. 3.7 and Eq. 3.10)

that contain the PC jobs. This technique can be used to obtain the value of g(v).

Note that the communication-aware process condensation technique proposed

in Subsection 3.5.2 can also be used to accelerate SVPPC-A*.

The estimation of h(v) is one of the most critical parts in designing an A*-

search algorithm. The following two properties reflect the importance of h(v)

63

3. Co-Scheduling of Serial and Parallel Jobs

[61]: i) The result of an A* search is optimal if the estimation of h(v) is not

higher than the lowest cost to reach the end node, and ii) the closer the result

of h(v) is from the lowest cost, the more effective A* search is in pruning the

search space.

Therefore, in order to find the optimal solution, the h(v) function must

satisfy the first property. In our problem, if there are q jobs on the path corre-

sponding to g(v), then the aim of setting the h(v) function is to find a function

of the remaining n − q jobs such as the value of the function is less than the

shortest distance from node v to the end node. The following two strategies are

proposed to set the h(v) function.

Strategy 1 for setting h(v): Assume node v is in level l, we construct a set R

that contains all the nodes from l+1 to the last level in the co-scheduling graph,

and sort these nodes in ascending order of their weights. Then, regardless of the

validity, the first (n− q)/u (u is the number of cores) nodes are selected from R

to form a new subpath; the distance of this subpath is h(v).

Strategy 2 for setting h(v): Assume node v is in level l. We find all valid

levels from level l + 1 to the last level in the co-scheduling graph. The total

number of valid levels obtained must be (n−q)/u. We then obtain the node with

the least weight from each valid level. (n− q)/u nodes will be obtained. We use

these (n− q)/u nodes to form a new subpath and use its distance as h(v).

It is easy to prove that h(v), obtained through the above strategies, must

be less than the actual shortest distance from v to the end node; this is the

case because it uses the nodes with the smallest weights from all remaining

nodes in Strategy 1 or from all valid levels in Strategy 2. We will show in the

experiments that Strategy 2 is much more effective than Strategy 1 in terms of

pruning unnecessary searches.

64

3. Co-Scheduling of Serial and Parallel Jobs

3.8.3 Case studies for the A*-search based algorithm

Strategy 1

In this example, we use all nodes from Figure 3.2. First, consider the node 〈1, 2〉

in the first level of the graph, the function g(v) corresponding to this node is

the actual distance from the start node. In this example, g(v) = 7. To compute

function h(v), the algorithm first creates a set that contains all nodes from the

next level, which is level 2 in this example, to the last level. The algorithm

then sorts these nodes in ascending order of their weights. The function h(v)

is computed by adding together the weights of the first (n − q)/u nodes from

this set. In this example, (n− q)/u is 2 and therefore the first two nodes, which

are 〈2, 5〉, 〈3, 5〉 with weights 1 and 3, are selected to calculate h(v). Therefore,

h(v) = 4, and f(v) = g(v) + h(v) = 11 for node 〈1, 2〉.

Strategy 2

In strategy 2, we change the way we compute the function h(v). In this strategy,

the h(v) function is computed in the following way. The algorithm first finds

all valid levels and then selects the node with the least weight from each valid

level and adds their weights together.

Consider the node 〈1, 2〉 in Figure 3.2. As in the previous example, g(v) = 7.

To compute h(v), the algorithm finds the first valid level, which is level 3, and

selects node 〈3, 5〉, since this node has the smallest weight in level 3. The next

valid level is level 4, and the selected node is 〈4, 6〉. Therefore, h(v) = 1+4 = 5,

and f(v) = 7 + 5 = 12.

This example also shows that Strategy 2 provides a tighter estimation bound

of f(v) than Strategy 1.

3.9 Heuristic A*-search Algorithm

In this section, a heuristic method is proposed to further trim the searching

in the co-scheduling graph. The resulting search space is much smaller than

65

3. Co-Scheduling of Serial and Parallel Jobs

the original one and therefore the co-scheduling solution, which is sub-optimal,

can be computed more efficiently by order of magnitude than the extended

A*-search algorithm proposed in previous section to find the optimal solution,

which we now call the Optimal A*-search (OA*) method.

The principle of trimming the co-scheduling graph is based on the following

insight. We re-arrange the nodes in each level of the co-scheduling graph in the

ascending order of node weight. We then apply OA* to find the shortest path

from the sorted graph. For each node on the shortest path, we record its rank

in the graph level that the node is in (the i -th node in a level has the rank of i).

Assume that a node on the computed shortest path has the rank of i in its level.

We also record how many invalid nodes the algorithm has to skip from rank 1 to

rank i in the level before locating this valid node of rank i. Assume the number

of invalid nodes is j. Then (i-j) is the number of nodes that the algorithm has

attempted in the level before reaching the node that is on the shortest path. We

call this number, i− j, the effective rank of the node of rank i in the level. We

calculate the effective rank for every node on the shortest path and obtain the

maximum of them, which we denote by MER (Maximum Effective Rank of the

shortest path). If we had known the value of MER, assuming it is k, before we

apply the OA*-search algorithm, we can instruct the algorithm to only attempt

the first k valid nodes in each level and the algorithm will still be able to find

the shortest path of the algorithm.

Given the above insight, we designed the following benchmarking experiment

to conduct the statistical analysis for the value of MER. The numbers of jobs

we used are 24, 32, 48 and 56 jobs. For each job batch and u-core machines, we

randomly generated K different cache misses for a job (the cache miss rate of a

job is randomly selected from the range of [15%, 75%]) and construct K different

co-scheduling graphs. We then used OA* to find the shortest path of each graph

and record the value of MER. Figure 3.5a and 3.5b depict the Cumulative

Distribution Functions (CDF) of MER with 1000 graphs (i.e., K =1000) on

Quad-core machines and 8-core machines, respectively.

66

3. Co-Scheduling of Serial and Parallel Jobs

5 10 15 20

10

20

30

40

50

60

70

80

90

100

98.1%

MER=6
99.8%

MER=8

99.6%

MER=12
98.7%

MER=14

MER

P
e
rc

e
n
ta

g
e

o
f

g
ra

p
h
s

(%
)

(a) On Quad-core machines

2 4 6 8

10

20

30

40

50

60

70

80

90

100

97.2%

MER=3

99.2%

MER=4

99.9%

MER=6

99.7%

MER=7

MER

24 Jobs

32 Jobs

48 Jobs

56 Jobs

(b) On 8-core machines

Figure 3.5: Cumulative Distribution Function (CDF) of MER

As shown in Figure 3.5a, when the number of jobs is 24, the value of MER

is no more than 6 for 98.1% of graphs. Similarly, when the numbers of jobs are

32, 48 and 56, the values of MER are no more than 8, 12 and 14 for 99.8%,

99.6% and 98.7% of graphs, respectively. The corresponding figures for the case

where the jobs are co-scheduled on 8-core machines are shown in Figure 3.5b.

From these benchmarking results, we find that we can use the function

MER = n
u , where n is the number of jobs and u is the number of cores in

a machine, to predict the value of MER. With this MER function, the actual

value of MER will be no more than the predicted one in almost all cases. The

reason why such a MER function generates very good results can be explained

in principle as follows, although we found that it was difficult to give rigorous

proof. We know that the nodes with too big weights have less chance to appear

on the shortest path. Therefore, when OA* attempts the nodes in a level to

expand the current path, if a node’s effective rank is more than n
u , which is the

number of machines that is needed to co-run this batch of jobs, the node will

not be selected even if a poor greedy algorithm is used to map the node to one

of the n
u machines.

Based on the above statistical analysis, we adjust the co-scheduling graph

and trim the searching for the shortest path in the following way. In each level

of the graph, the nodes are arranged in the ascending order of node weight.

When OA* searches for the shortest path, it only attempts n
u valid nodes in

67

3. Co-Scheduling of Serial and Parallel Jobs

each level to expand the current path, if n
u is less than the number of valid

nodes in the level. This way, the graph scale and consequently the number of

operations performed by the algorithm are reduced by order of magnitude. We

call the A*-search algorithm operating in this fashion the Heuristic A*-search

(HA*) algorithm.

It is difficult to analyze the time complexity of the A*-search algorithm since

it depends on the design of the h(v) function. However, the time complexity of

our A*-search algorithm mainly depends on how many valid nodes the algorithm

have to attempt when extending a current path to a new graph level, which can

be used to analyze the complexity difference between OA* and HA*. Assume

that OA* is searching for co-scheduling solutions of n jobs on u-core machines

and that the current path includes k nodes. When OA* extends the current

path to a new level, the number of valid nodes that OA* may have to attempt

in the new level can be calculated by
(

(n−1)−k·u
u−1

)
, since all nodes that contain

the jobs that appear in the current path are not valid nodes. Under the same

assumptions, the number of valid nodes that HA* needs to attempt is only

n
u . The following example is given to show the difference between these two

numbers. When n is 100, u is 4 and k is 2,
(

(n−1)−k·u
u−1

)
is 121485 while n

u is 25.(
(n−1)−k·u

u−1

)
is only less than 25 when k is bigger than 23 (

(
(n−1)−k·u

u−1

)
is 35 when

k is 23). But the biggest value of k is 24 since there are total 25 nodes in a

complete path when co-scheduling 100 jobs on Quad-core machines. This means

that in almost all cases (except the last graph level)
(

(n−1)−k·u
u−1

)
is bigger than

n
u by orders of magnitude. This is the reason why HA* is much more efficient

than OA*.

3.10 Clustering approximation for finding the

shortest valid path

We have presented methods and optimization strategies for solving the graph

model for the shortest valid path. In order to further shorten the solving time

68

3. Co-Scheduling of Serial and Parallel Jobs

and strike a balance between solving efficiency and solution quality, this section

proposes a flexible technique called the clustering technique, to rapidly find an

approximate solution. The clustering technique is flexible because the solving

efficiency can be adjusted by setting the desired solution quality. It can be

applied to both O-SVP, O-SVPPE and O-SVPPC.

As discussed in introduction and related work, the reason why co-scheduling

causes performance degradation is because the co-running jobs compete for

shared cache. SDC (Stack Distance Competition) is a popular technique for

calculating the impact when multiple jobs are co-running; this uses the SDPs

(Stack Distance Profile) of the multiple jobs as input. Therefore, if two jobs

have similar SDPs, they will have a similar effect on other co-running jobs. The

fundamental idea of the proposed clustering technique is to class the jobs with

similar SDPs together and treat them as the same job. Reflected in the graph

model, the jobs in the same class can be given the same job ID. In so doing,

the number of different nodes in the graph model will be significantly reduced.

The resulting effect is the same as when different parallel processes are given

the same job ID in the O-SVPPE algorithm in Subsection 3.5.1.

We now introduce a method of measuring the SDP similarity between two

jobs. Given a job ji, its SDP is essentially an array, in which the k -th element

records the number of cache hits on the k -th cache line (which is denoted by

hi[k]). The following formula is used to calculate the Similarity Level (SL) in

terms of SDP when comparing another job jj against ji.

SL =

√∑cl
k=1(hi[k]− hj [k])2∑cl

k=1 hi[k]
(3.13)

When SL is larger, more jobs will be classed together. Consequently, there

will be fewer nodes in the graph model and hence less scheduling time is needed

to calculate an accurate solution.

The O-SVP clustering algorithm is the same as the O-SVP algorithm except

in the way a valid level is found; finding a valid node in a valid level is the same

69

3. Co-Scheduling of Serial and Parallel Jobs

as that for O-SVPPE (Algorithm 3.3). The clustering technique can also be

applied to O-SVPPE and O-SVPPC in a similar way. Detailed discussion of

this process is not repeated.

3.11 Evaluation

This section evaluates the effectiveness and the efficiency of the proposed meth-

ods: O-SVP, O-SVPPE, O-SVPPC, A*-search-based algorithms (i.e., SVPPC-

A* and SVP-A*) and the clustering approximation technique. In order to carry

out this evaluation, we compare the algorithms proposed in this chapter with

existing co-scheduling algorithms proposed in [61]: Integer Programming (IP);

Hierarchical Perfect Matching (HPM), and Greedy (GR).

We conduct the experiments with real jobs. Serial jobs are taken from the

NASA benchmark suit NPB3.3-SER [6] and SPEC CPU 2000 [54]. NPB3.3-

SER has 10 serial programs and each program has 5 different problem sizes.

The problem size used in the experiments is size C. The PC jobs are selected

from the ten MPI applications in the NPB3.3-MPI benchmark suite. As for

PE jobs, 5 embarrassingly parallel programs are used: PI [77], Mandelbrot

Set(MMS) [91], RandomAccess(RA) from the HPCC benchmark [89], EP from

NPB-MPI [6] and Markov Chain Monte Carlo for Bayesian inference (MCM)

[72]. In all these 5 embarrassingly parallel programs, multiple slave processes are

used to perform calculations in parallel and a master process reduces the final

result after it gathers the results from all slaves. This set of parallel programs

are selected because they contains both computation-intensive (e.g, MMS and

PI) and memory-intensive programs (e.g, RA).

Four types of machines, Dual core, Quad core, 8 core and 16 core machines,

are used to run the benchmarking programs. The dual-core machine has an Intel

Core 2 Dual processor and each core has a dedicated 32KB L1 data cache and

a 4MB 16-way L2 cache shared by the two cores. The Quad-core machine has

an Intel Core i7 2600 processor and each core has a dedicated 32KB L1 cache

70

3. Co-Scheduling of Serial and Parallel Jobs

and a dedicated 256KB L2 cache. A further 8MB 16-way L3 cache is shared by

the four cores. The 8 core machine has two Intel Xeon L5520 processors with

each processor having 4 cores. Each core has a dedicated 32KB L1 cache and

a dedicated 256KB L2 cache, and an 8MB 16-way L3 cache shared by 4 cores.

The 16 core machine has two Intel Xeon E5-2450L processors with each proces-

sor having 8 cores. Each core has a dedicated 32KB L1 cache and a dedicated

256KB L2 cache, and a 16-way 20MB L3 cache shared by 8 cores. The network

interconnecting the dual-core and quad-core machines is a 10 Gigabit Ether-

net, while the network interconnecting the 8-core and 16-core Xeon machines

is QLogic TrueScale 4X QDR InfiniBand. In the remainder of this section, we

label the 8 core and 16 core machines as 2*4 core and 2*8 core machines, to

highlight the fact that they are dual-processor machines.

The single-run computation times of the benchmarking programs are mea-

sured. Then the method presented in [104] is used to estimate the co-run com-

putation times of the programs, According to [104], CPU Time is calculated

using Eq.3.14.

CPU Time = (CPU Clock Cycle+

Memory Stall Cycle)× Clock Cycle T ime
(3.14)

Memory Stall Cycle in Eq.3.14 is computed by Eq.3.15, whereNumber of Misses

is the number of cache misses.

Memory Stall Cycle = Number of Misses×

Miss Penalty

(3.15)

The values of CPU Clock Cycle and Number of Misses for a single-run

program can be obtained using perf [1] in Linux. Then the value ofMemory Stall Cycle

for a single-run program can be obtained by Eq.3.15. CPU Time for a single-

71

3. Co-Scheduling of Serial and Parallel Jobs

run program can also be obtained by perf.

The value of CPU Time for a co-run program can be estimated in the

following way. We use the gcc-slo compiler suite [9] to generate the SDP

(Stack Distance Profile) for each benchmarking program offline, and then apply

the SDC (Stack Distance Competition) prediction model in [19] to predicate

Number of Misses for the co-run programs. Then Eq.3.15 and Eq.3.14 are

used to estimate Memory Stall Cycle and CPU Time for the co-run programs.

With the single-run and co-run values of CPU Time, Eq.3.1 is used to com-

pute the performance degradation.

In order to obtain the communication time of a parallel process when it

is scheduled to co-run with a set of jobs/processes, i.e., cij,S in Eq.3.11, we

examined the source codes of the benchmarking MPI programs used for the

experiments and obtained the amount of data that the process needs to com-

municate with each of its neighbouring processes (i.e., αij(k) in Eq.3.11). Then

Eq.3.11 is used to calculate cij,S .

3.11.1 Evaluating the O-SVP algorithm

In this subsection, we compare the O-SVP algorithm with the existing co-

scheduling algorithms in [61].

These experiments use all 10 serial benchmark programs from the NPB-SER

suite. The results are presented in 3.6a and 3.6b, which show the performance

degradation of each of the 10 programs plus their average degradation under

different co-scheduling strategies on Dual-core and Quad-core machines.

The work in [61] shows that IP generates the optimal co-scheduling solutions

for serial jobs. As can be seen from Figure 3.6a, O-SVP achieves the same

average degradation as that under IP. This suggests that O-SVP can find the

optimal co-scheduling solution for serial jobs. The average degradation produced

by GR is 15.2% worse than that of the optimal solution. It can also been

seen from Figure 3.6a that the degradation of FT is the biggest among all 10

benchmark programs. This may be because FT is the most memory-intensive

72

3. Co-Scheduling of Serial and Parallel Jobs

BT CG DC EPFT IS LU MG SP UA AVG
0

1

2

3

4

5

6

7

8
D

e
g
ra

d
a
ti

o
n
(%

)

O-SVP IP GR

(a) Dual Core

BT CG DC EPFT IS LU MG SP UA applu art ammpequakegalgel vpr AVG
0

1

2

3

4

5

6

7

8

D
e
g
ra

d
a
ti

o
n
(%

)

O-SVP IP HPM GR

(b) Quad Core

Figure 3.6: Comparing the degradation of serial jobs under O-SVP, IP, HPM
and GR

program among all, and therefore endures the biggest degradation when it has

to share the cache with others.

Figure 3.6b shows the results on Quad-core machines. In this experiment,

in addition to the 10 programs from NPB-SER, 6 serial programs (applu, art,

ammp, equake, galgel and vpr) are selected from SPEC CPU 2000. In Figure

3.6b, O-SVP produces the same solution as IP, which shows the optimality of

O-SVP. Also, O-SVP finds the better co-scheduling solution than HPM and

GR. The degradation under HPM is 7.7% worse than that under O-SVP, while

that of GR is 25.5% worse. It is worth noting that O-SVP does not produce the

least degradation for all programs. The aim of O-SVP is to produce minimal

total degradation. This is why O-SVP produced bigger degradation than GR

and HPM in some cases.

3.11.2 The O-SVPPE algorithm

This section first reports the results for validating the optimality of O-SVPPE

proposed in this chapter. We first compare O-SVPPE with the IP model devel-

73

3. Co-Scheduling of Serial and Parallel Jobs

oped for co-scheduling mix of serial and PE jobs on Dual-core and Quad-core

machines. In our experiments, we employ the IP solver, CPLEX [3], to compute

the optimal co-schedules. The experiments use those 5 embarrassively parallel

programs and the serial jobs are from NPB-SER plus art from SPEC CPU 2000.

The results are listed in Table 3.2. In these experiments, the processes of each

parallel application vary from 2 to 4. The detailed combinations of serial and

parallel programs are listed below:

• In the case of 8 processes, PI and RA are combined with DC, UA, BT

and IS.

• In the case of 12 processes, PI and RA are combined with applu, art, DC,

UA, BT and IS.

• In the case of 16 processes, PI and RA are combined with applu, art,

ammp, vpr, DC, UA, BT and IS.

Table 3.2: Comparison of IP and O-SVPpe for serial and parallel jobs
Number of Jobs Average Degradation (%)

Dual Core Quad Core
IP O-SVPPE IP O-SVPPE

8 2.85 2.85 2.89 2.89
12 2.69 2.69 2.94 2.94
16 2.91 2.91 3.15 3.15

As can be seen from Table 3.2, O-SVPPE achieves the same performance

degradation as that by the IP model. These results verify the optimality of

O-SVPPE.

The reason why we propose O-SVPPE is because 1) none of the existing co-

scheduling methods is designed for parallel jobs; 2) we argue that if applying the

existing co-scheduling methods designed for serial jobs to schedule parallel jobs,

it will not produce the optimal solution. In order to investigate the performance

discrepancy between the method for serial jobs and that for PE jobs, we apply O-

SVP to solve the co-scheduling for a mix of serial and parallel jobs and compare

the results with those obtained by O-SVPPE. In the mix of serial and parallel

74

3. Co-Scheduling of Serial and Parallel Jobs

jobs, the parallel jobs are those 5 embarrassively parallel programs and the serial

jobs are from NPB-SER plus art from SPEC CPU 2000. The experimental

results are shown in Figure 3.7a (for the Dual-core case) and 3.7b (for Quad-

core), in which each parallel program has 10 processes.

As can be seen from the figures, SVPPE produces smaller average degra-

dation than O-SVP in both Dual-core and Quad-core cases. In the Dual-core

case, the degradation under O-SVP is worse than that under SVPPE by 9.4%,

while in the Quad-core case, O-SVP is worse by 35.6%. These results suggest

it is necessary to design the co-scheduling method for parallel jobs.

P
I

M
M

S

E
P

R
A

M
C
M

D
C

U
A

B
T

IS

A
V
G

0

2

4

6

8

10

D
e
g
ra

d
a
ti

o
n

(%
) O-SVPPE

O-SVP

(a) Dual Core

P
I

M
M

S

E
P

R
A

M
C
M

D
C

U
A

B
T

IS

A
V
G

0

2

4

6

8

10 O-SVPPE

O-SVP

(b) Quad Core

Figure 3.7: Comparing the degradation under SVPPE and O-SVP for a mix of
PE and serial benchmark programs

3.11.3 The O-SVPPC algorithm

This section first reports the results for validating the optimality of O-SVPPC

proposed in this chapter. We first compare O-SVPPC with the IP model on

Dual-core and Quad-core machines. In our experiments, we employ the IP

solver, CPLEX [3], to compute the optimal co-schedules. The results are listed

in Table 3.3. In these experiments, two MPI applications (i.e., MG-Par and

LU-Par) are selected from the NPB3.3-MPI and combined with serial programs

chosen from NPE-SER and SPEC CPU 2000. The processes of each parallel

application vary from 2 to 4. The detailed combinations of serial and parallel

programs are listed below:

• In the case of 8 processes, MG-Par and LU-Par are combined with applu,

75

3. Co-Scheduling of Serial and Parallel Jobs

art, equake and vpr.

• In the case of 12 processes, MG-Par and LU-Par are combined with applu,

art, ammp, equake, galgel and vpr.

• In the case of 16 processes, MG-Par and LU-Par are combined with BT,

IS, applu, art, ammp, equake, galgel and vpr.

Table 3.3: Comparison of IP and O-SVPPC for serial and parallel jobs
Number of Jobs Average Degradation (%)

Dual Core Quad Core
IP O-SVPPC IP O-SVPPC

8 0.07 0.07 0.098 0.098
12 0.05 0.05 0.074 0.74
16 0.12 0.12 0.15 0.15

As can be seen from Table 3.3, O-SVPPC achieves the same performance

degradation as that by the IP model. These results verify the optimality of

O-SVPPC.

Figure 3.8a and 3.8b show the Communication-Combined Degradation (CCD)

(i.e., the value of Eq.3.10) of the co-scheduling solution obtained by the SVPPC

algorithm when the applications are run on Dual-core and Quad-core, respec-

tively. In this set of experiments, 5 MPI applications (i.e., BT-Par, LU-Par,

MG-Par, SP-Par and CG-Par) are selected from the NPB3.3-MPI suite and

each parallel application is run using 10 processes, while the serial jobs remain

the same as those used in Figure 3.7b. In order to demonstrate the effectiveness

of the SVPPC, SVPPE is also used find the co-scheduling solution for the mix

of MPI jobs and serial jobs, by ignoring the inter-process communications in the

MPI jobs. We then use Eq.3.10 to calculate CCD of the co-scheduling solution

obtained by SVPPE. The resulting CCD is also plotted in Figure 3.8a and 3.8b.

As can be seen from these figures, the CCD under SVPPE is worse than that

under SVPPC by 18.7% in Dual-core machines, while in Quad-core machines,

the CCD obtained by SVPPE is worse than that by SVPPC by 50.4%. These re-

sults justify the need to specially develop the algorithm to find the co-scheduling

76

3. Co-Scheduling of Serial and Parallel Jobs

solution for PC jobs.

B
T
-P

a
r

L
U
-P

a
r

M
G

-P
a
r

S
P
-P

a
r

C
G

-P
a
r

D
C

U
A

F
T

IS

A
V
G

0

5

10

15

20

25

30

C
C

D
(%

)

O-SVPPC

O-SVPPE

(a) Dual Core

B
T
-P

a
r

L
U
-P

a
r

M
G

-P
a
r

S
P
-P

a
r

C
G

-P
a
r

D
C

U
A

F
T

IS

A
V
G

0

5

10

15

20

25

30

O-SVPPC

O-SVPPE

(b) Quad Core

Figure 3.8: Comparing the Communication-Combined Degradation (CCD) ob-
tained by SVPPC and SVPPE

We further investigate the impact on CCD as the number of parallel jobs or

the number of parallel processes increases. The experimental results are shown

in Figure 3.9a and 3.9b (on Quad-core machines). In Figure 3.9a, the number

of total jobs/processes is 64. The number of parallel jobs is 4 (i.e., LU-Par,

MG-Par, SP-Par and CG-Par) and the number of processes per job increases

from 12 to 16. Other jobs are serial jobs. For example, 8+4*12 represents a job

mix with 8 serial and 4 parallel jobs, each with 12 processes.

8 + 4 ∗ 12 4 + 4 ∗ 14 0 + 4 ∗ 16

14

16

18

C
C

D
(%

)

O-SVPPC

O-SVPPE

(a) Increasing the number of processes

16 + 1 ∗ 4 12 + 2 ∗ 4 8 + 3 ∗ 4 4 + 4 ∗ 4

20

30

40

O-SVPPC

O-SVPPE

(b) Increasing the number of jobs

Figure 3.9: Impact of the number of parallel jobs and parallel processes

In Figure 3.9a, the difference in CCD between SVPPC and SVPPE becomes

bigger as the number of parallel processes increases. This result suggests that

SVPPE performs increasingly worse than SVPPC (increasing from 11.8% to

21.5%) as the proportion of PC jobs increases in the job mix. Another obser-

vation from this figure is that the CCD decreases as the proportion of parallel

77

3. Co-Scheduling of Serial and Parallel Jobs

jobs increases. This is simply because the degradation experienced by multiple

processes of a parallel job is only counted once. If those processes are the serial

jobs, their degradations will be summed and is therefore bigger. In Figure 3.9b,

the number of processes per parallel job remains unchanged and the number of

parallel jobs increases. For example, 12+2*4 represents a job mix with 12 serial

jobs and 2 parallel jobs, each with 4 processes. The detailed combinations of

serial and parallel jobs are: i) In the case of 16+1*4, MG-Par is used as the

parallel job and all 16 serial programs are used as the serial jobs; ii) In the case

of 12+2*4, LU-Par and MG-Par are the parallel jobs and the serial jobs are SP,

BT, FT, CG, IS, UA, applu, art, ammp, equake, galgel and vpr; iii) In the case

of 8+3*4, BT-Par, LU-Par, MG-Par are parallel jobs and the serial jobs are SP,

BT, FT, DC, IS, UA, equake, galgel; iv) In the case of 4+4*4, BT-Par, LU-Par,

SP-Par, MG-Par are parallel jobs and the serial jobs are IS, UA, equake, galgel.

The results in Figure 3.9b show the similar pattern as those in Figure 3.9a. The

reasons for these results are also the same.

3.11.4 Scheduling in Multi-processor Computers

In this section, we investigate the effectiveness of the LPD method proposed

to handle the co-scheduling in multi-processor machines. In the experiments,

we first use the MNG method discussed in Section 3.6 (i.e., generating multiple

graph nodes for a co-run group with each node having a different weight) to

construct the co-scheduling graph. As we have discussed, from the co-scheduling

graph constructed by the MNG method, the algorithm must be able to find the

optimal co-scheduling solution for multi-processor machines. Then we use the

LPD method to construct the graph and find the shortest path of the graph.

The experimental results are presented in Figure 3.10a and 3.10b, in which a

mix of 4 PE jobs (PI, MMS, RA and MCM, each with 31 processes) and 4

serial jobs (DC, UA, BT and IS) are used. It can be seen that the performance

degradations obtained by two methods are the same. This result verifies that

the algorithms can produce the optimal co-scheduling solutions using the LPD

78

3. Co-Scheduling of Serial and Parallel Jobs

method.

Following the same logic as in Figure 3.7, we conducted the experiments

to investigate the performance discrepancy between the method for serial jobs

and that for PE jobs on multi-processor machines. The LPD method is used to

generate the co-scheduling graphs (therefore, the ”LPD” prefix is added to the

algorithms in the legends in the figures). In these experiments, we use the same

experimental settings as in Figure 3.10a and 3.10b. The results are shown in

Figure 3.11a and 3.11b. As can be seen from the figures, LPD-SVPPE produces

smaller average degradation than LPD-SVP in both 8-core and 16-core cases.

In the 8-core case, the degradation under LPD-SVP is worse than that under

LPD-SVPPE by 31.9%, while in the 16-core case, LPD-SVP is worse by 34.8%.

These results verify the effectiveness of the LPD method for co-scheduling PE

jobs.

Similarly, following the same logic as in Figure 3.8, we conducted the exper-

iments to run PC jobs using SVPPC and SVPPE on multi-processor machines

and compare the performance discrepancy in terms of CCD. The same experi-

mental settings as in Figure 3.8 are used and the results are presented in Figure

3.12a and 3.12b. In this set of experiments, 4 MPI applications (i.e., BT-Par,

LU-Par, MG-Par, and CG-Par) are selected from the NPB3.3-MPI suite and

each parallel application is run using 31 processes, while the same serial jobs

as in Figure 3.10a are used. As can be seen from these figures, the CCD under

LPD-SVPPE is worse than that under LPD-SVPPC by 36.1% and 39.5% in

2*4-core and 2*8-core machines, respectively. These results justify the necessity

of using SVPPC to handle PC jobs and show that the LPD method works well

with the SVPPC algorithm.

As discussed in Section 3.6, the reason why we propose the LPD method is

because using the MNG method, the scale of the co-scheduling graph increased

significantly in multi-processor systems. The LPD method can reduce the scale

of the co-scheduling graph and consequently reduce the solving time. Therefore,

we also conducted the experiments to compare the solving time obtained by LPD

79

3. Co-Scheduling of Serial and Parallel Jobs

and the MNG method. The experimental results are presented in Figure 3.13,

in which Figure 3.13a and 3.13b are for PE and PC jobs, respectively. It can

be seen from the figure that the solving time of LPD is significantly less than

that of the straightforward method and the discrepancy increases dramatically

as the number of jobs increases. These results suggest that LPD is effective in

reducing solving time compared with the MNG method.

P
I

M
M

S

R
A

M
C
M

D
C

U
A

B
T

IS

A
V
G

0

2

4

6

8

10

D
e
g
ra

d
a
ti

o
n
(%

) MNG

LPD

(a) 2*4 Core

P
I

M
M

S

R
A

M
C
M

D
C

U
A

B
T

IS

A
V
G

0

2

4

6

8

10 MNG

LPD

(b) 2*8 Core

Figure 3.10: Comparing the degradation caused by the straightforward method
and the LPD method

P
I

M
M

S

R
A

M
C
M

D
C

U
A

B
T

IS

A
V
G

0

2

4

6

8

10

D
e
g
ra

d
a
ti

o
n
(%

) LPD-SVPPE

LPD-SVP

(a) 2*4 Core

P
I

M
M

S

R
A

M
C
M

D
C

U
A

B
T

IS

A
V
G

0

2

4

6

8

10
LPD-SVPPE

LPD-SVP

(b) 2*8 Core

Figure 3.11: Comparing the degradation under LPD-SVP and LPD-SVPPE for
a mix of PE and serial benchmark programs

3.11.5 Scheduling Multi-threading Jobs

In Section 3.7, in order to schedule the MTP jobs correctly, we need to guarantee

that the threads from the same MTP job are scheduled in the same machine.

In order to handle this, the SVPPT algorithm is proposed to construct the co-

scheduling graph and find the shortest path. In this subsection, we first conduct

80

3. Co-Scheduling of Serial and Parallel Jobs

B
T
-P

a
r

L
U
-P

a
r

M
G

-P
a
r

C
G

-P
a
r

D
C

U
A

F
T

IS

A
V
G

0

5

10

15

20

C
C

D
(%

)
LPD-SVPPC

LPD-SVPPE

(a) 2*4 Core

B
T
-P

a
r

L
U
-P

a
r

M
G

-P
a
r

C
G

-P
a
r

D
C

U
A

F
T

IS

A
V
G

0

5

10

15

20

LPD-SVPPC

LPD-SVPPE

(b) 2*8 Core

Figure 3.12: Comparing the Communication-Combined Degradation (CCD) ob-
tained by LPD-SVPPC and LPD-SVPPE

1
6

2
4

3
2

0

5

10

E
x
e
c
u
ti

o
n

T
im

e
(s

e
c
o
n
d
s)

MNG-SVPPE

LPD-SVPPE

(a) SVPPE

1
6

2
4

3
2

0

5

10

15

20

MNG-SVPPC

LPD-SVPPC

(b) SVPPC

Figure 3.13: Comparing the solving times of the LPD and the MNG method,
coupled with SVPPE and SVPPC

the experiments to examine the co-scheduling solution obtained by SVPPT. In

the experiments, we chose 4 MTP programs (each with 2 threads on 4 Core and

3 threads on 8 Core) from NPB3.3-OMP (BT, MG, EP and FT) and 4 serial

jobs from NPB-SER (DC, UA, LU and SP). The experiments are conducted on

two types of processors, Xeon L5520 (4 cores) and Xeon E5-2450L (8 cores).

The results are presented in Table 3.4. It can be seen that all threads from the

same MTP program are mapped to the same machine, which verifies SVPPT

can find correct co-scheduling solutions for MTP jobs.

As discussed in Section 3.7, SVPPT is supposed to be more efficient than

SVPPE in finding the shortest path. Therefore, we also conducted the exper-

iments to compare the solving time of SVPPT and SVPPE. The results are

presented in Table 3.5. The experiments are conducted on 4-core and 8-core

machines. It can be seen that SVPPT spends much less time than SVPPE and

81

3. Co-Scheduling of Serial and Parallel Jobs

the gap increases as the number of jobs/threads increases. These results verify

the efficiency of SVPPT.

Table 3.4: Schedule result for Multi-threading program
Processor Jobs on each chip
4 Core bt,bt, ep,ep mg,mg, lu, sp ft,ft,dc, ua
8 Core bt,bt,bt, ep,ep,ep, dc, sp mg, mg,mg, ft,ft,ft,ua, lu

Table 3.5: Comparing the solving time between MTP and SVPPE
Number Solving Time (seconds)
of Jobs 4 Core

MTP SVPPE
24 0.0011 0.0025
36 0.013 0.034
48 0.13 0.38
64 1.11 3.89

Number Solving Time (seconds)
of Jobs 8 Core

MTP SVPPE
24 0.0013 0.0022
32 0.004 0.011
48 0.078 0.15
64 0.26 1.35

3.11.6 The A*-search-based algorithms

This section reports the results for validating the optimality of the proposed

A*-search-based algorithms. We first compare the SVP-A* algorithm with the

O-SVP algorithm in terms of the optimality in co-scheduling serial jobs. The

experiments use all 10 serial benchmark programs from the NPB-SER suite

and 6 serial programs (applu, art, ammp, equake, galgel and vpr) selected from

SPEC CPU 2000. The experimental results are presented in Table 3.6. We also

compare the SVPPC-A* algorithm with the O-SVPPC algorithm in terms of

optimality in co-scheduling a mix of serial and parallel programs. The exper-

iments are conducted on Quad-core machines. The results are listed in Table

3.7. In these experiments, 2 MPI applications (i.e., MG-Par and LU-Par) are

selected from the NPB3.3-MPI and mixed with serial programs chosen from

NPE-SER and SPEC CPU 2000. The process of each parallel application varies

from 2 to 4. The detailed combinations of serial and parallel programs are:

i) In the case of 8 processes, MG-Par and LU-Par are combined with applu,

art, equake and vpr; ii) In the case of 12 processes, MG-Par and LU-Par are

combined with applu, art, ammp, equake, galgel and vpr; iii) In the case of 16

82

3. Co-Scheduling of Serial and Parallel Jobs

processes, MG-Par and LU-Par are combined with BT, IS, applu, art, ammp,

equake, galgel and vpr.

Table 3.6: The optimality of SVP-A*
Number of Jobs Average Degradation (%)

Dual Core Quad Core
O-SVP SVP-A* O-SVP SVP-A*

8 0.12 0.12 0.34 0.34
12 0.22 0.22 0.36 0.36
16 0.13 0.13 0.27 0.27

Table 3.7: The optimality of SVPPC-A*
Number of Average Degradation (%)
Processes Dual Core Quad Core

O-SVPPC SVPPC-A* O-SVPPC SVPPC-A*

8 0.07 0.07 0.098 0.098
12 0.05 0.05 0.074 0.74
16 0.12 0.12 0.15 0.15

As can be seen from Table 3.6 and 3.7, SVP-A* and SVPPC-A* achieve the

same performance degradations as those by O-SVP and O-SVPPC, respectively.

These results verify the optimality of the A*-search-based algorithms. Indeed,

SVPPC-A* combines the functionalities of SVPPC and the A*-search algorithm

and is expected to generate the optimal solution.

Table 3.8 and 3.9 show the scheduling efficiency of our A*-search-based algo-

rithms under the two different strategies of setting the h(v) function proposed in

Section 3.8. SVP-A*-1 (or SVPPC-A*-1) and SVP-A*-2 (or SVPPC-A*-2) are

the SVP-A* (or SVPPC-A*) algorithm that uses Strategy 1 and 2, respectively,

to set h(v). Table 3.8 shows the results for synthetic serial jobs, while Table 3.9

shows the results for parallel jobs. In Table 3.9, 4 synthetic parallel jobs are used

and the number of processes of each parallel job increases from 10 to 50. Recall

that the O-SVP algorithm is equivalent to SVP-A* with the h(v) function being

set to 0, while O-SVPPC is equivalent to SVPPC-A* with h(v) being set to 0.

Therefore, we also conducted the experiments to show the scheduling efficiency

of O-SVP and O-SVPPC, which can be used to demonstrate the effectiveness

of the strategies of setting h(v). The underlying reason why SVPPC-A* and

83

3. Co-Scheduling of Serial and Parallel Jobs

SVP-A* could be effective is because they can further avoid the unnecessary

searches in the constructed co-scheduling graph. Therefore, we also recorded

the number of paths visited by each algorithm and present them in Table 3.8

and 3.9.

It can be seen from both tables that the strategies used to set h(v) play

a critical role in our A*-search-based algorithms. Both Strategy 1 and 2 pro-

posed in Section 3.8 can reduce the number of visited paths dramatically and

therefore reduce the solving time compared with the corresponding O-SVP and

O-SVPPC. These results suggest that the strategies proposed in this chapter

can greatly avoid the unnecessary searches.

Further, as observed from Table 3.8 and 3.9, the algorithms under Strategy 2

visited the less number of paths by orders of magnitude than their counterparts

under Strategy 1. Therefore, SVP-A*-2 and SVPPC-A*-2 are more efficient by

orders of magnitude than SVP-A*-1 and SVPPC-A*-1, respectively, in finding

the optimal co-scheduling solution. This is because the estimation of h(v) pro-

vided by Strategy 2 is much closer to the actual shortest path of the remaining

nodes than that Strategy 1, and consequently Strategy 2 is much more effective

than Strategy 1 in avoiding unnecessary searches.

The scalability of the proposed algorithms can also be observed from Table

3.8 and 3.9. It can be seen that SVPPC-A*-2 (or SVP-A*-2) show the best scal-

ability against SVPPC-A*-1 and O-SVPPC (or SVP-A*-1 and O-SVP). This

can be explained as follows. Although the scale of the constructed co-scheduling

graph and the possible searching paths increase rapidly as the number of job-

s/processes increases, SVPPC-A*-2 can effectively prune the graph branches

that will not lead to the optimal solution. Therefore, the increase in the graph

scale will not increase the solving time of SVPPC-A*-2 as much as for other

two algorithms.

84

3. Co-Scheduling of Serial and Parallel Jobs

Table 3.8: Comparison of the strategies for setting h(v) with serial jobs
Number Solving time (seconds)
of Jobs SVP-A*-1 SVP-A*-2 O-SVP
16 0.72 0.014 1.01
20 12.88 0.047 17.52
24 190.79 0.14 234.5

Number The number of visited paths
of Jobs SVP-A*-1 SVP-A*-1 O-SVP
16 31868 122 49559
20 546603 436 830853
24 6726131 1300 9601465

Table 3.9: Comparison of the strategies for setting h(v) with parallel jobs
Number of Solving time (seconds)
Processes SVPPC-A*-1 SVPPC-A*-2 O-SVPPC
40 0.43 0.037 0.61
80 2.44 0.17 3.38
120 10.93 0.33 17.93
160 40.05 0.64 66.85
200 99.13 0.88 212.79

Number of The number of visited paths
Processes SVPPC-A*-1 SVPPC-A*-2 O-SVPPC
40 18481 414 27349
80 261329 1952 422025
120 1275799 4452 2105706
160 3990996 7050 6585938
200 8663580 16290 15991561

85

3. Co-Scheduling of Serial and Parallel Jobs

3.11.7 Heuristic A*-search algorithm

The experiments presented in this subsection aim to verify the effectiveness of

HA*. We conducted the experiments to compare the solutions obtained by HA*

and those by OA*. We also compared HA* with the heuristic algorithm (denoted

by PG) developed in [61] for finding co-scheduling solutions. PG first calculates

the politeness of each job based on the degradation that the job causes when it

co-runs with other jobs, and then applies the greedy algorithm to co-schedule

“polite” jobs with “impolite” jobs.

In the experiments, we choose 12 applications from NPB3.3-SER and SPEC

CPU 2000 (BT, CG, EP, FT, IS, LU, MG, SP, UA, DC, art and ammp) and

co-schedule them on Quad-core machines using OA*, HA* and PG. We also

conducted the similar experiments on 8-core machines, in which 16 applications

were used from NPB3.3-SER and SPEC CPU 2000 (BT, CG, EP, FT, IS, LU,

MG, SP, UA, DC, art, ammp, applu, equake, galgel and vpr). The experimental

results for Quad-core and 8-core machines are presented in Figure 3.14 and

Figure 3.15, respectively. Note that the algorithms aim to optimize the average

performance degradation of the batch of jobs, which is labelled by ”AVG”, not

to optimize performance degradation of each individual job.

BT CG EP FT IS LU MG SP UA DC art ammp AVG
0

5

10

15

20

25

30

D
e
g
ra

d
a
ti

o
n

(%
)

OA* HA* PG

Figure 3.14: Comparing performance degradations of benchmarking applica-
tions on Quad-core machines under OA*, HA* and PG

In Figure 3.14 and 3.15, the average performance degradation obtained by

HA* is worse than OA* only by 9.8% and 4.6% on Quad-core and 8-core ma-

chines, respectively, while HA* outperforms PG by 12.6% and 14.6% on Quad-

core and 8-core machines, respectively. These results show the effectiveness

86

3. Co-Scheduling of Serial and Parallel Jobs

BT CG EP FT IS LU MG SP UA DC applu art equakegalgel vpr ammpAVG
0

5

10

15

20

25

30

D
e
g
ra

d
a
ti

o
n

(%
)

OA* HA* PG

Figure 3.15: Comparing performance degradations of benchmarking applica-
tions on 8-core machines under OA*, HA* and PG

of the heuristic approach, i.e., using the MER function, in HA* and that the

heuristic method can deliver the near-optimal performance.

We also used the synthetic jobs to conduct larger-scale experiments and

compare HA* and PG. The synthetic jobs are generated in the same way as

in Figure 3.5a and 3.5b. The results on Quad-core and 8-core machines are

presented in Figure 3.16a and 3.16b, respectively. It can be seen from the tables

that HA* outperforms PG in all cases, by 20%-25% on Quad-core machines and

16%-18% on 8-core machines).

1
2
0

4
8
0

7
2
0

1
2
0
0

0

5

10

D
e
g
ra

d
a
ti

o
n

(%
)

(a) 4 Core

1
2
0

4
8
0

7
2
0

1
2
0
0

0

2

4

6

8

10

HA*

PG

(b) 8 Core

Figure 3.16: Comparing the degradation under HA* and PG algorithms

We further investigated the scalability of HA* in terms of the time spent

in finding the co-scheduling solutions. Figure 3.17 shows the scalability for co-

scheduling synthetic jobs on Quad-core and 8-core machines. The synthetic jobs

in this figure are generated in the same way as in Figure 3.5a and 3.5b.

By comparing the scalability curve for Quad-core machines in Figure 3.17

with that in Figure 3.18b, it can be seen that HA* performs much more effi-

87

3. Co-Scheduling of Serial and Parallel Jobs

48 144 240 336 432 528 624 720 816 912 1008 1208

0

50

100

150

200

250

300

Number of Jobs

T
im

e(
se

co
n

d
s)

Quad-Core

8-Core

Figure 3.17: Scalability of HA* on Quad-core and 8-core machines

ciently than OA*. Another interesting observation from Figure 3.17 is that HA*

spends much less time to find solutions on 8-core machines than on Quad-core

machines. This is because we use the MER function, n
u , to trim the searching

in HA*. When there are more cores in a machine (consequently, less machines

are needed to run the same batch of jobs), less number of valid nodes will be ex-

amined in each level of the co-scheduling graph and therefore less time is taken

by HA*. The scalability trend of OA* is different as shown in Figure 3.18a and

3.18b. In OA*, when the jobs are scheduled on machines with more cores, the

co-scheduling graph becomes bigger with more graph nodes. OA* will examine

all nodes in the graph in any case. Therefore, the solving time of OA* increases

as the number of cores in a machine increases.

3.11.8 Efficiency of OA* and IP

This subsection investigates the efficiency of OA* and IP, i.e., the time spent

by the methods in finding the optimal co-scheduling solutions. We used various

IP solvers, CPLEX [3], CBC [39], SCIP [41] and GLPK [2], to solve the same

IP model. The results are shown in Table 3.10. As can be observed from Table

3.10, CPLEX is the fastest IP solver. Note that when the number of processes

is 16, the solving times by SCIP are all around 1000 seconds. This is only

because the SCIP solver gave up the searching after 1000 seconds, deeming that

it cannot find the final solution. It can be seen that the IP solvers are not

efficient in solving the optimal co-scheduling problem. In fact, our records show

88

3. Co-Scheduling of Serial and Parallel Jobs

that none of these IP solvers can manage to solve the IP model for more than

24 processes. We also used O-SVP to find the co-scheduling solutions in the

experiments and present the solving times in Table 3.10.

It can be seen that OA* finds the optimal solution much more efficiently

than O-SVP and that the time gap becomes increasingly bigger as the number

of jobs increases. Note that we did not even use the process condensation

technique in OA* for handling parallel processes due to the small problem scale.

We also used synthetic jobs to conduct the comparison with more jobs. The

experimental results are shown later in Table 3.8 when we compare the effect of

different strategies for setting the h(v) function in OA*.

The results in Table 3.10 (and in Table 3.8) show that OA* is much faster

than IP. These results show the significant advantage of OA* over IP in terms

of efficiency. The reason for this superiority is because 1) the layout of the

co-scheduling graph is carefully designed so that it is fast to find the next valid

node for node expansion and 2) the design of h(v) can effectively avoid the

searching space that cannot lead to the optimal solution.

Figure 3.18a and 3.18b show the scalability of OA* on Dual-core and Quad-

core machines, respectively, as the number of serial processes increases.

Table 3.10: Efficiency of different methods on Quad-core machines
Number of Jobs Solving time (seconds)

CPLEX CBC SCIP GLPK OA* O-SVP

8(se) 0.086 0.19 0.28 0.049 0.004 0.004
8(pe) 0.33 0.26 0.21 0.041 0.005 0.006
8(pc) 0.48 0.45 0.24 0.038 0.006 0.07

12(se) 3.44 72.74 51.09 51.58 0.15 0.5
12(pe) 0.998 13.56 30.32 15.97 0.24 0.94
12(pc) 2.23 21.09 29.82 16.42 0.2 0.97

16(se) 33.4 704 1000 33042 0.63 1.26
16(pe) 32.52 303 1001 1231 1.52 2.89
16(pc) 11.76 313 1001 1170 1.63 2.93

3.11.9 The optimization techniques

This section tests the efficiency of the communication-aware process condensa-

tion techniques and the clustering approximation proposed in this chapter. The

experiments are conducted on the Quad-core machines.

89

3. Co-Scheduling of Serial and Parallel Jobs

12 24 36 48 60 72 84 96 108 120

0

0.5

1

1.5

2

Number of Processes

T
im

e
(s

e
c
o
n
d
s)

(a) On dual-core machines

12 24 36 48 60 72 84 96

0

20

40

60

80

Number of Processes

T
im

e
(s

e
c
o
n
d
s)

(b) On Quad-core machines

Figure 3.18: Scalability of OA*

1 4 6 8 10 12

0

5

10

15

20

25

Number of processes per parallel job

T
im

e(
se

co
n

d
s)

Without Condensation

With Condensation

Figure 3.19: Solving time with and without process condensation as the number
of processes per parallel job increases. The total number of parallel processes
and serial jobs is 72.

We first test the effectiveness of the communication-aware process condensa-

tion technique. The experiments are conducted on the Quad-core machines with

synthetic jobs. In this set of experiments, the number of total jobs/processes

is 72, in which the number of parallel jobs is 6 with the number of processes

per job increasing from 1 to 12 and the remaining jobs are serial jobs. These

jobs are scheduled using SVPPC-A* with and without applying the process

condensation. The solving times are plotted in Figure 3.19.

It can be seen from the Figure 3.19 that after applying the process con-

densation technique, the solving time decreases dramatically as the number of

processes increase. This is because the number of nodes with the same com-

munication pattern in the graph increases as the number of processes increases.

Therefore, the condensation technique can eliminate more nodes from the co-

scheduling graph and consequently reduce the solving time.

90

3. Co-Scheduling of Serial and Parallel Jobs

The clustering approximation algorithm is tested with 32 synthetic serial

jobs. These jobs are first scheduled using O-SVP. Then these jobs are grouped

into 8, 4 and 2 classes by setting the Similarity Level (SL). The experimental

results are presented in Table 3.11. It can be observed from Table 3.11 that when

the jobs are grouped into 8 classes, the degradation increases slightly, compared

with that achieved by O-SVP. But the scheduling time under the clustering

technique is reduced significantly. Moreover, as the number of class decreases,

the degradation increases further and the scheduling time continue to decrease.

These results show that our clustering technique is effective. This table also

lists the number of the subpaths visited by the co-scheduling algorithms, which

decreases by orders of magnitude as the number of class decreases. This is

the underlying reason why the scheduling time decreases after applying the

clustering approximation technique.

Table 3.11: Comparing the clustering method with O-SVP
Algorithm visited path Degradation (%) time (seconds)
O-SVP 181267889 19.97 708
8 class 2115716 21.23 14.25
4 class 141508 23.75 1.18
2 class 17691 25.96 0.31

3.12 Summary

In this chapter, we explore the problem of finding the optimal co-scheduling

solutions for a mix of serial and parallel jobs on multi-core processors. The

co-scheduling problem is first modelled as an IP problem and then the existing

IP solvers can be used to find the optimal co-scheduling solutions. Then we pro-

poses a graph-based method to co-schedule jobs in multi-core processors. Then

finding the optimal co-scheduling solution is modelled as finding the shortest

valid path in the graph. A basic algorithm for finding the shortest valid path

for serial jobs is first developed and then the optimization strategy is proposed

to reduce the scheduling time. Further, the algorithm for serial jobs is extended

91

3. Co-Scheduling of Serial and Parallel Jobs

to incorporate parallel jobs, so that it can find the optimal co-scheduling so-

lution for a mix of serial and parallel jobs. The algorithm for parallel jobs is

also optimized to reduce the scheduling time. An Optimal A*-search algorithm

(OA*) is developed to find the shortest valid path efficiently. Based on OA*,

we proposes a heuristic A*-search algorithm to find the near-optimal solutions

with much less time. Moreover, a flexible approximation technique, called the

clustering technique, is proposed to strike the balance between solving efficiency

and solution quality. The experiments have been conducted to verify the effec-

tiveness of the algorithms proposed in this chapter.

92

Chapter 4

WolfPath: Accelerating

Iterative Graph Searching

Algorithm on GPU

4.1 Introduction

A lot of research have shown that the graph theory can be used to solve schedul-

ing problems [74] [28] [126] [25]. However, due to the NP-Hard nature of the

scheduling problem, the size of graph increased exponentially, which leads to

poor scalability. When processing large-scale graphs, parallel processing tech-

niques are widely used. Many frameworks have been developed to process large

graphs in parallel. According to hardware architecture, these frameworks can

be classified into the following three classes: The distributed systems [93] [85]

[43], the single machine systems [76] [140] [109] and GPU-accelerated systems

[146] [65] [40].

Many of these graph processing frameworks employ iterative processing tech-

niques. Namely, graph processing involves many iterations. Some iterative

graph processing algorithms use the threshold value (e.g., in the PageRank al-

93

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

gorithm) or the number of vertices/edges (e.g., in the Minimum-cut algorithm)

to determine the termination of the algorithms. In these algorithms, the itera-

tion count is known beforehand.

However, in iterative traversing-based graph processing algorithms (such as

the connected component and the shortest path algorithms), the algorithm is

driven by the graph structure and the termination of the algorithm is determined

by the states of vertices/edges. Therefore, these algorithms need to check the

state of vertices/edges at the end of every iteration to determine whether to

run the next iteration. In each iteration of an iterative traversing-based graph

processing algorithm, either synchronous (such as Bulk Synchronous Parallel

used by Pregel [93]) or asynchronous (such as Parallel Sliding Window used

by GraphChi [76]) methods can be used to compute and update the values of

vertices or edges in the graph. The processing terminates when all vertices meet

the termination criteria.

The aforementioned termination criteria are application-specific (e.g., the

newly computed results of all vertices remain unchanged from the previous iter-

ation). The number of iterations is unknown before the algorithm starts. Such

a termination method has the following limitation in GPU-accelerated systems:

In GPU-accelerated systems, all the threads in different thread blocks need to

synchronize their decision at the end of each iteration. However, current GPU

devices and frameworks (CUDA [27] and OpenCL [124]) do not support syn-

chronization among different thread blocks during the execution of the kernel.

Therefore, to synchronize between different thread blocks, the program has to

exit the kernel, and copy the data back to the host and use the CPU to deter-

mine whether the computation process is complete. This frequent data exchange

between host and GPU introduces considerable overhead.

To address this problem, we present WolfPath, a framework that is designed

to improve the iterative traversing-based graph processing algorithms (such as

BFS and SSSP) on GPU. Compare to other graph systems, WolfPath has the

following features: First, a graph in WolfPath is represented by a tree structure.

94

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

In doing so, we manage to obtain very useful information, such as the graph

diameter, the degree of each vertex and the traversal order of the graph, which

will be used by WolfPath in iterative graph computations. Second, we design

a layered graph structure, which is used by WolfPath to optimize GPU compu-

tations. More concretely, for all vertices in the same depth of the graph tree,

we group all the edges that use these vertices as source vertex into a layer. All

the edges in the same layer can be processed in parallel, and coalesced memory

access can be guaranteed. Last but not least, based on the information we gain

from the graph model, we design a computation model that does not require

frequent data exchange between host and GPU.

The rest of this Chapter is organised as follows. Section 4.2 presents the data

structure used by WolfPath to store the co-scheduling graph in GPU memory.

Section 4.3 presents the computation model used by WolfPath. Section 4.4

extends the WolfPath to a general graph processing framework. Experimental

evaluation is presented in Section 4.5.

4.2 Representing Co-Scheduling Graph in GPU

Recall the co-scheduling graph we proposed in Chapter 3 (For convenience pur-

pose, we list the co-scheduling graph in Figure 4.1a again). In the co-scheduling

graph, the vertices are organised in a layered structure, and the edges are estab-

lished as the algorithm progress. However, this structure is not suitable for GPU

processing due to the following reason: Since there are no edges in the graph,

when processing the co-scheduling graph in GPU, the only option is to assign

one vertex to each thread, and then each thread iterates over the next valid

level, finds all valid vertices and computes the results. However, this strategy

not only limits the parallelism degree on GPU but also causes random access to

global memory and thread divergence.

Taking co-scheduling graph in Figure 4.1a as an example, there are 5 vertices

in the first level (the level with job 1), when processing these vertices in parallel

95

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

with the strategy we discussed above, the maximum number of threads need

to be launched is 5. However, during computation, each vertex will establish

3 edges, which gives 15 edges in total. If all these edges can be processed in

parallel, we can improve parallelism degree by 3. In addition, consider the first

level again. The thread that is processing vertex 〈1, 2〉 will access the memory

location start with vertex 〈3, 4〉, and thread with vertex 〈1, 3〉 will search from

the location start with vertex 〈2, 3〉. Because only vertices in the same level

are stored contentiously in the memory, the coalesced memory access cannot be

guaranteed. In addition, each thread needs to determine if a vertex is valid or

not (Algorithm 3.1), therefore, the threads diverged after this step which could

lead to bad performance [112].

To avoid these problems, we re-organise the co-scheduling graph in following

ways: first, we add edges between vertices. Second, for vertices in the same

level, we place their destination vertices in the same level as well. With these

modifications, the re-organised co-scheduling graph of Figure 4.1a is shown in

Figure 4.1b.

	
 1,2

	
 1,3

	
 1,4	

	
 1,5

	
 1,6

	
 2,3

	
 2,4

	
 2,5

	
 2,6

	
 3,4

	
 3,5

	
 3,6

	
 4,5

	
 4,6

	
 5,6 	
 start 	
 end
0

7

10

3

11

9

9

7

3

5
4

1

7
7

4

6

(a)

1,2

1,3	

1,4

1,5

1,6

2,3

2,4

2,5

2,6

3,4

3,5

4,5

4,6

5,6

3,6

3,6

3,5

3,4

(b)

Figure 4.1: The example co-scheduling graph from Chapter 3 and after reor-
ganisation

Organising co-scheduling graph in this way provides two advantages: First,

because the graph edges are already established, it is possible to process all

96

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Level	0
1,2 1,2 1,2 1,3 1,3 1,3 1,4 1,4 1,4 1,5 1,5 1,5 1,6 1,6 1,6

3,4 3,5 3,6 2,4 2,5 2,6 2,3 2,5 2,6 2,3 2,4 2,6 2,3 2,4 2,5

3,4 3,5 3,6 2,4 2,5 2,6 2,3 2,5 2,6 2,3 2,4 2,6 2,3 2,4 2,5

5,6 4,6 4,5 5,6 4,6 4,5 5,6 3,6 3,5 4,6 3,6 3,4 4,5 3,5 3,4
Level	1

1,2 1,3 1,4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6 Global	Vertex	Array

Figure 4.2: An Example of layered edge list structure for graph in Figure 4.3a

edges at the same level in parallel. Hence, a better parallelism degree can be

achieved. Second, with carefully designed graph data structure, it is possible to

achieve coalesced memory access to GPU global memory.

Due to the space efficiency provided by CSR representation, most graphs al-

gorithms/frameworks use this format to represent graphs in memory. However,

as shown in [65], CSR will cause random access to graph data. Therefore, when

using this format, the memory access to global memory is not coalesced, which

will limit the performance. Therefore, it is important to design a data structure

to store the graph in the GPU so that the coalesced global memory access can

be guaranteed.

Based on the re-organised co-scheduling graph structure, we design a layered

edge list structure to store the graph in the memory. In this design, each

level in the co-scheduling graph is represented by two arrays, source array and

destination array, which are used to store the source and destination vertexes

of each edge in that level respectively. The i-th entry in the source array and

the i-th entry in the destination array form an edge in the level. We also create

a global vertex array to store the updated values of the destination vertices. An

example is shown in Figure 4.2

It provides the following benefits to using this structure to store a graph in

memory. First, the consecutive threads can read/write the consecutive elements

from/to the source and destination arrays in the global memory. Therefore the

97

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

coalesced global memory access can be guaranteed. Second, because all the

edges in each layer are independent of each other, we can process them in

parallel. In addition, if one layer is too big to fit in the GPU global memory,

we can split it into multiple smaller edge lists. Third, multiple layers can be

combined to fully utilise the computation power of GPU. We will discuss the

last two advantages in more detail in a later section.

4.3 WolfPath Framework

In this section, we first discuss the limitation of current graph processing ap-

proach, and then we describe how WolfPath executes graph searching algorithm

in parallel based on the co-scheduling graph structure. In the end, we demon-

strate how to use WolfPath to implement the shortest path algorithm to find

the optimal co-scheduling solution in the co-scheduling graph.

4.3.1 Motivation: the limitation of current approach

Many parallel graph processing frameworks are based on the iterative process-

ing model. In this model, the computation goes through many iterations. In

each iteration, either synchronous (such as Bulk Synchronous Parallel used by

Pregel) or asynchronous (Parallel sliding window used by GraphChi) methods

can be used to compute and update the vertex or edge values. The computation

terminates when all vertices meet the application specific termination criterion

(e.g., the results of all vertices remain unchanged).

In order to determine if all processes/threads meet the termination condi-

tion, the processes/threads need to communicate with each other. On CPU

based parallel graph processing systems, the processes/threads can communi-

cate through messaging passing or shared memory. On GPU, the threads are

organised in thread blocks and the communication can be divided into two types:

intra- and inter-block communication.

Intra-communication refers to the communications between the threads within

98

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

a block, which is achieved via shared memory or global memory in GPU. On the

contrary, the inter-block communication is the communications across different

thread blocks. However, there is no explicit support for data communication

across different thread blocks. Currently, inter-block data communication is re-

alized through the GPU global memory followed by a barrier synchronization

in CPU [27] [124]. The barrier is implemented by terminating the execution of

the current kernel and re-launching the kernel.

The reason for the lack of support for inter-block communications on GPU

is as follows. On GPU, the number of thread blocks launched by an application

is normally much larger than the number of Streaming Multiprocessors (SM).

However, When a large number of threads try to communicate between different

blocks, it can cause the deadlock. An example is given as follows to illustrate

the deadlock issue. Suppose that there are 5 thread blocks and only 4 SMs and

that each thread block will occupy all resources on a SM. Assume blocks 1 to

4 execute on 4 SMs. When synchronization occurs, blocks 1-4 will wait until

block 5 finishes. However, block 5 will never be executed on any SM since all

SMs are busy and there are no resources available. Consequently, the deadlock

occurs.

Due to the lack of support for inter-block communications, implementing

iterative graph computation algorithm on GPU is much more challenging than

on CPU. To demonstrate this, let us first consider how the iterative computa-

tion is implemented on CPU. Algorithm 4.1 shows the high level structure of

the iterative computation on CPU. The loop is controlled by the flag variable,

which is set to be true at the beginning. Next, all processes/threads execute a

user-defined function, compute(), and then invoke the update condition function

to check if the user-specified termination condition is met. Each process/thread

has its own flag variable, which is updated by update condition function. The

update condition function returns false if the program reaches the termination

condition and returns true if otherwise. The flag variable is synchronised be-

tween all the processes/threads. If its value is false, the iteration terminates.

99

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Algorithm 4.1: Iterative Computation on CPU

1 flag = true

2 do

3 {

4 for all processes/threads in parallel:

5 compute ();

6 flag = update_condition ();

7

8 synchronise flag between all process

9 }while(flag == true)

Algorithm 4.2: Iterative processing kernel

1 update_kernel(bool flag){

2 for all thread in parallel:

3 d_flag = update_condition ()

4 synchronise d_flag with thread block;

5 if d_flag for thread block i is false

6 flag = false;

7 }

When executing the above code in parallel on a CPU-based system, the syn-

chronization of the flag variable can be easily achieved through shared memory

or message passing. However, due to the fact that the current GPUs do not

support synchronisation between different thread blocks, it takes more efforts

to achieve the synchronization on GPU. The only solution that can ensure that

the shared variable is properly synchronized across all thread blocks is to exit

the kernel. To implement the iterative processing on GPU, many state-of-the-

art graph processing frameworks use the following approach. The flag variable

is stored in the global memory of GPU. Each thread also has a local d flag

variable. If a thread meets the termination condition in the current iteration, it

sets its own d flag to false. Then d flag is synchronised between all the threads

within a thread block. One thread in each thread block updates the global flag

variable if the value of d flag in this thread block is false. Next, the program

exits the kernel and copies the value of flag back to the host, which is used by

the host program to determine whether another kernel should be launched (i.e.,

continuing to perform the computation). This technique is outlined Algorithms

4.2 and 4.3.

100

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Algorithm 4.3: Iterative processing host

1 flag = true;

2 do{

3 copy_flag_to GPU;

4 update_kernel ();

5 copy_flag_to_CPU;

6 }while(flag==true)

Table 4.1: Real world graphs used in the experiments
GPU In memory Graph
Graph Vertices Edges
RoadNet-CA [80] 1965206 5533214
amazon0601 [80] 403394 3387388
Web-Google [80] 875713 5105039
LiveJournal [80] 4847571 68993773

Clearly, in order to decide whether to launch the next iteration, the value of

flag needs to be exchanged between host and GPU frequently. These operations

incur a significant overhead. If the number of iterations needed to complete the

graph computation is known beforehand, the exchange of flag between host

and GPU can be eliminated, which can potentially improve the performance.

We conduct the experiments to investigate the extra overhead caused by

exchanging the flag variable. Four real world graphs, which are listed in Table

4.1, are used in this experiment. For each graph, we run the BFS algorithm

implemented on the CuSha framework [27]. We record the computation time

and the number of iterations it takes to complete the algorithm. Then, we de-

termine the diameter of the graph using the BFS algorithm. We can prove that

the number of iterations the iterative graph computation has to perform must

be less than the graph diameter. Instead of using the flag value to determine

the termination condition of the graph computation, we use the graph diameter

as the termination condition, i.e., we terminate the computation when the num-

ber of iterations equals to the graph diameter. We re-run the modified program

and record the computation time. The results are listed in Table 4.2.

As can be seen from Table 4.2, the computation time of modified program

is much faster than the original version. We also noticed that the original

101

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Table 4.2: The computation time comparison of Original CuSha and Modified
CuSha

Graph
Original Modified

Time (ms) Iteration Time(ms) Iteration
RoadNet-CA 195.97 551 1.98 554
amazon0601 22.3 35 0.15 35
web-Google 12.83 21 0.14 32
LiveJournal 70.96 9 0.076 14

Table 4.3: Memory to Computation
Graph Memory copy (ms) Computation
RoadNet-CA 0.36 0.004
amazon0601 0.63 0.004
Web-Google 0.6 0.004
LiveJournal 7.9 0.005

program takes a fewer number of iterations than the modified version in some

cases. This is because the computation converges fast in those cases. Therefore,

using the graph diameter as the termination condition in those cases causes the

extra overhead of performing unnecessary computations. In order to compare

these two types of overhead, we measured the average time for performing data

copying and the average computation time per iteration in the experiments.

The results are listed in Table 4.3:

The results from Table 4.3 show that the data copy time is greater than

the computation time by 90 to 1500 times. These results indicate that it is

worth performing the excessive iterations, comparing with copying data. We

observe another interesting point in Table 4.3. No matter which graph the

algorithm is processing, only one integer (i.e., the value of the flag variable) is

copied between GPU and host. However, the average memory copying time per

iteration is different for different graphs. This is because the synchronisation

cost between thread blocks is different for different graphs. More threads are

involved in synchronisation, the longer the synchronization takes.

All these results support our proposed strategy. Namely, it can improve

performance to use the maximum number of iterations as the termination con-

dition so as to eliminate the need of data copying between GPU and CPU.

However, a question arises from the strategy: how to know the number of iter-

102

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

ations needed for different graphs before the graph processing algorithm starts?

This question motivates us to design a new graph representation that helps de-

termine the graph diameter and further develop the novel and GPU-friendly

graph processing methods.

4.3.2 Computation model of WolfPath

The experimental results shown in thw last section suggest that using the num-

ber of iterations can improve the performance in graph processing. However,

because graph processing algorithms are data driven, it is difficult to determine

the number of iterations for different graph inputs before the program starts.

Much research [93] [62] [78] [63] have been conducted to tackle this problem.

The research shows that when processing graph algorithms iteratively, the upper

bound of the number of iterations is the diameter of a graph, i.e., the number

of the nodes on the path corresponding to the graph diameter [106].

Determine the graph diameter is challenging on general graphs. However, in

the co-scheduling graph, the graph diameter is number of layers in the graph,

which can be computed easily. Hence, we can explicitly define the iteration

number of the algorithm.

The computation process of WolfPath is as follows. In WolfPath, the graph

is processed layer by layer. For each layer, three operations are performed by

GPU in parallel: the read, compute and write operations. For i-th level in

the graph, the read operation reads the updated vertex value from the global

vertex array. The compute operation acts on each edge and uses the data

gathered from the read operation to compute the value for its edge/vertices.

The write operation writes the updated value to the global vertex value array.

So the updated values can be used in next iteration by the read operation.

Hence, The computation model in WolfPath is synchronous and guarantees

that all updates from a previous compute phase are seen only after the write

operation is completed and before the next read operation starts. The whole

process terminates when all the levels have been processed, that is, the number

103

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Algorithm 4.4: Computation process of WolfPath

1 processing(graph G)

2 {

3 i = 0;

4 v_rt = DEFAULT_VALUE;

5 while(i<G.level)

6 {

7 parallel for all vertices in level i:
8 read vertex value from global memory

9 parallel for all edges in level i:
10 compute update value;

11 parallel for all vertices in level i:
12 write update value to global memory;

13 }

14 }

of iterations is equal to the number of levels of the graph. This process is

outlined in Algorithm 4.4

4.3.3 Finding Optimal Co-scheduling solution with Wolf-

Path

The reason for us to design WolfPath is to accelerate the co-scheduling algorithm

we proposed in the last Chapter. In this Section, we show how to use WolfPath

to find the optimal co-scheduling solution.

In the last Chapter, finding the optimal co-scheduling solution has been

modelled as finding the shortest path in the co-scheduling graph. Therefore,

in this Section, we demonstrate how to implement the shortest path algorithm

with WolfPath on re-organised co-scheduling graph. We assume that entire

graph can fit into GPU memory. The host program is listed in Algorithm 4.5

and the kernel function is listed in Algorithm 4.6

In host function, the global vertex array d[V] is first created to store the

updated value of each vertex. The size of this array is equal to the number of

vertices in the graph. At the beginning of the algorithm, the source vertex is set

to 0, and the rest vertices are set to infinite (Line 3-4). In order to reduce data

transfer time between GPU and host, we copy the entire graph data G and d[V]

to GPU (Line 5-6). Then the program enters the main loop (Line 8). In each

104

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Algorithm 4.5: Host function of SSSP implementation with WolfPath

1 SSSP_host(graph G, v_rt)

2 {

3 d[v] = INF;

4 d[v_rt] = 0;

5 cudaMemCpy(copy G to GPU);

6 cudaMemCpy(copy d[V] to GPU);

7 i = 0;

8 while(i<G.level)

9 {

10 SSSP_Kernel(G, i, v_rt , d[V]);

11 }

12 cudaMemCpy(copy d[V] to host)

13 }

Algorithm 4.6: Kernel function SSSP implementation with WolfPath

1 SSSP_kernel(graph G, l, v_rt , d[V])

2 {

3 parallel for all edges e in G[l] do:

4 {

5 source = e.v;

6 destination = e.u;

7 weight = e.weight;

8 update_value = d[source]+ weight;

9 atomicMin(d[u], update_value);

10 }

11 }

iteration, it invokes the kernel function, which does the actual computation. The

number of iterations is guided by the level of the co-scheduling graph G.level.

(Line 8-11). Once the computation is done, the result is copied back to the host.

The kernel function takes graph data G, the level number l, root vertex and

global vertex array as input. In each kernel call, the kernel processes all edges

in lth level in parallel. Each edge in level l is assigned to a thread. The thread

first reads the source and destination vertex ID of edge e from global memory,

then it fetches the edge weight (Line 5-7). The thread then uses source ID to

read the source vertex value from the array d[], and compute the update value

for destination vertex (Line 8). At the end of the kernel, it uses atomicMin

function provide by CUDA to write the results back to the array d[] (Line 9).

105

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

4.4 General Graph representation in WolfPath

As discussed before, the layered structure of the co-scheduling graph can help to

eliminate the time consuming memory operations in iterative graph processing.

However, most real world graphs are stored in an unordered manner. In order to

use WolfPath to process general graphs, these graphs need to be converted into

a layered structure that is similar to the co-scheduling graph. In this section,

we first describe how to convert general graphs into a co-scheduling graph like

structure. Then we discuss how WolfPath handles the GPU under utilisation

and how to partition the graph if it cannot fit in the GPU memory.

In WolfPath, we model the graph as a layered tree structure. That is, we

first represent the graph as a tree-like structure, then group the vertices that in

the same depth into one layer. By modelling the graph this way, the diameter

of the graph is the distance from the root vertex to the deepest leaf vertex.

If some vertices in the same layer are connected, we duplicate these vertices

in the next level. By duplicating these vertices, the vertex value updated in the

current level can be sent to the next level. The reason for this design is as follow.

The vertices in the current level and the next level form a group of edges. If

a vertex is both source and destination of different edges, the calculated values

of their neighbouring vertices may not settle (i.e., the calculated values are not

final values of the vertices) after one iteration. Therefore, by duplicating these

vertices in the next level, the updated value of their neighbouring vertices will

be recomputed.

Based on the above description, given a graph G = (V,E), a layered tree

T = (Vt, Et) is defined as follows. Vt ⊆ V and Et ⊆ E. The root vertex

of the tree, denoted by vrt ∈ Vt, is the vertex which does not have in-edges.

degreein(v) denotes the in-degree of vertex v. Then degreein(vrt) = 0.

∀vt ∈ Vt, if degreein(vt) is greater than 0, then ∃v ∈ Vt s.t. (v, vt) ∈ Et. If

the out-degree of vertex vt, denoted by degreeout(vt), is 0, then vt is called a

leaf vertex of T . Given a level Li, ∀vt ∈ Li, if ∃v ∈ Li s.t. et = (vt, v), then v

106

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

0

1 2

3

4

5 6

7

(a) Example Graph

0

1 2

3 5

7 4

4 6

5 6 7

7 7 5

7

5

7

(b) Layered Tree representation

Figure 4.3: An Example graph and its Layered tree representation

is also in the level Li+1.

Figure 4.3b gives the tree structure of the graph shown in Figure 4.3a.

4.4.1 Preprocessing

In this work, a preprocessing program is developed to transform a general graph

format into a layered tree. This program first reads the general graph format

into the CPU memory and converts it into the CSR format. Next, it uses

Algorithm 4.7 to build the layered tree, and then writes the layered tree back

to a file stored in the disk. It is worth noting that this program is only run once

for a graph. When processing a graph, WolfPath will first check if there exists

a corresponding layered tree file. If the file exists, WolfPath will use it as the

input. Otherwise, it will convert the graph into this new format. Algorithm 4.7

is used to build the layered tree.

Algorithm 4.7 is based on the breadth-first algorithm (BFS). The algorithm

constructs a layered tree T for graph G (Line 3). It also creates Queue Q (Line

4). The algorithm starts with adding the vertex vrt into Q (Line 5). In order to

quickly retrieve the level information of each node, the algorithm also maintains

an array called node level (Line 6), which is used to store the level information of

107

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Algorithm 4.7: Building layered tree

1 build_tree(graph G, v_rt)

2 {

3 Tree T = NULL;

4 Queue Q= NULL;

5 Q.enqueue(v_rt)

6 node_level[V] = {0};

7 while(Q != NULL)

8 {

9 v= Q.dequeue ();

10 level = node_level[v];

11 for all neighbors u of v:
12 if(u not in T)

13 T.add_node(v, u);

14 Q.enqueue(u);

15 node_level[u]+=1;

16 else if(u in T && u in w ∈ T |w.level = level)
17 T.add_node(v, u);

18 Q.enqueue(u);

19 node_level[u]+=1;

20 }

21 }

each node. The size of this array is equal to the number of vertices (denoted by

V) in the graph G. This array is indexed by vertex id. The algorithm initialises

all vertices in this array to 0 (Line 6). Then the algorithm performs the following

steps iteratively (Line 7): it pops out the first vertex v from the queue (Line 9),

and reads its level information from node level (Line 10). ∀e : v → u ∈ E (Line

11), if u /∈ T (Line 12), or u has already been added into T but is in the same

level as v (Line 16), the algorithm adds edge 〈v, u〉 in T (Line 13, 17). Next,

the algorithm puts u in the queue by performing enqueue(u) (Line 14, 18), sets

the level of u to the current level plus 1 (Line 15 and 19). This process repeats

until Q becomes empty.

4.4.2 Edge List Combination

By representing the graph in the layered tree format, we can gain the knowledge

about how many layers there are in the graph and use it to determine the number

of iterations needed for most graph algorithms. However, because WolfPath

processes the graph layer by layer and the graphs have the nature of irregular

data structure, such representation may cause the under-utilisation of GPU.

108

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Algorithm 4.8: Processing Combinaed Edge list

1

2 processing(Tree T)

3 {

4 CES = build_CES(T);

5 i = 0;

6 v_rt = DEFAULT_VALUE;

7 while(i<CES.count)

8 {

9 levle = CES[i]. level;

10 while(j<level)

11 parallel process all edges in CES[i]

12 }

13 }

Each layer in the graph may have different numbers of edges. This number

varies dramatically between levels. For instance, consider the graph shown in

Figure 4.3. The first layer has 2 edges only. on the other hand, the second

and third layer have 4 and 6 edges respectively. Hence, the number of threads

required to process the first level is far less than the computing power (i.e., the

number of processing cores) of GPU.

To overcome this problem, we propose the combined edge list, which is a large

edge list that is constructed from multiple layers of edge lists. The combined

edge list is constructed in the following way. We first define a number ME,

which is the minimum amount of edges to be processed by GPU. Then we add

the number of edges level by level starting from the first level of the layered

tree. Once the total number of edges is greater or equal to ME, we group these

levels together and then re-count the edges from the next level. This process

repeats until all levels have been processed.

The way of building the combined edge list ensures that each combined edge

list is formed by consecutive edge lists from the layered tree. Hence, each com-

bined edge list can be treated as a sub-graph of the original graph. Therefore,

the number of iterations required to process a combined edge list is equal to

the number of levels used to form this tree. So Algorithm 4.4 is re-designed as

Algorithm 4.8.

It is very important that we group the consecutive levels together to form

109

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

a combined edge list. Because the result of the vertices in level i depends on

those in level i − 1, the results from the previous iteration need to be passed

to the next iteration, which can be easily achieved by grouping the consecutive

levels together. If we group the non-consecutive levels into a list, passing results

between different levels requires lot of data transferring between host and GPU

memory, which will harm the performance.

There remains one question: how do we choose the value for ME? If the

number of ME is too small, the resulting edge list may not fully occupy the

GPU. On the contrary, if it is too large, the size of the edge list may exceed the

size of the GPU memory. Since it is desired that the GPU is fully occupied,

the maximum active threads can be used to determine the minimum number of

edges per combined edge list. The maximum number of active threads is the

number of threads that a GPU can run simultaneously in theory, which can

be found by Equation 4.1, where Nsm is the number of multiprocessors (SMs),

MWpsm is the maximum number of resident warps per SM and the Tpw is the

threads per warp.

Nsm ∗MWpsm ∗ Tpw (4.1)

4.4.3 Out of GPU memory processing

Comparing with the host platform, the GPU has a limited memory space. The

size of real world graphs may be from few gigabytes to terabytes, which are too

large to fit in the GPU global memory. Therefore, in this section, we develop

an out-of-GPU-memory engine that can process such large scale graphs.

The general process of developing an out-of-GPU-memory engine is to first

partition the graph into sub-graphs that can fit into GPU memory, and then

process these sub-graphs in GPU one at a time. Therefore, our first objective in

designing such an engine is to achieve good performance in graph partitioning.

Ideally, the performance of this process should be as close as possible to the

performance of loading the graph into memory. The second objective is that

110

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

after partitioning the graph, the graph framework has to deal with the frequent

data exchange between GPU and host memory. Otherwise, the performance

will take hit.

Based on the design of Layered Edge List, these two goals can be achieved.

The process of partitioning the graph is similar to building the combined edge

list. We start with the first layer and accumulate the vertices in the layers until

the size of accumulated vertices becomes larger than the GPU globa memory.

We group all the accumulated vertices as a sub-graph and start the accumulating

process again from the current layer. The partitioning process is complete when

we have processed all layers in the graph.

The complexity of such partitioning method is O
(
N
)
, where N is the number

of layers in the graph. Given the fact that most real world graphs, especially

the social network graphs, do not have a big diameter, the number of N will

not be very large.

After partitioning the graph, each sub-graph is processed in order based on

their positions in the graph. That is, the processing starts with the sub-graph

that contains the first layer. The next sub-graph to be processed is the one that

follows the first sub-graph. In addition, the updated values of the vertices in the

last layer of the current sub-graph need to be passed to the next sub-graph. This

can be achieved by retaining the updated vertex values in the global memory

after the computation is finished. Therefore, when next sub-graph is loaded

into the GPU global memory, the data needed by the sub-graph is in the global

memory. To process each sub-graph, we use the same method as that for in-

GPU-memory processing. Combining multiple layers into a sub-graph enables

us to fully utilise the GPU.

It is possible that the size of one layer is larger than the GPU memory. in

this case, we can split this layer into multiple parts and compute one part at

a time. This works because all the edges in a layer are independent to each

other and it is therefore safe to partition a layer into multiple small chunks and

process them separately.

111

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Table 4.4: Co-scheduling graphs used in the experiments
GPU In memory Graph
Graph Vertices Edges
24 10626 2677118
36 58905 64238082
48 194580 564309075

4.5 Experimental Evaluation

In this section, we first compare the performance of the shortest path algorithm

implemented using WolfPath with A* algorithm we developed in last Chapter.

Then we evaluate the performance of WolfPath with general graphs. The exper-

iments were conducted on a system with a Nvidia GeForce GTX 780Ti graphic

card, which has 12 SMX multiprocessors and 3GB GDDR5 RAM. On the host

side, we use the Intel Core i5-3570 CPU operating at 3.4 GHZ with 32 GB

DDR3 RAM. The WolfPath were implemented using CUDA 6.5 on Fedora 21.

All the programs were compiled with the highest optimisation level flag (-O3).

4.5.1 Performance comparison with CPU based A* algo-

rithm

In this section, we evaluate the performance of the shortest path algorithm

implemented in Section 4.3.3. In this experiment, we use this algorithm to find

the optimal co-scheduling solution in the co-scheduling graph generated from

synthetic jobs. The co-scheduling graphs are generated from 24, 36, 48 jobs

on a quad-core machine and re-organised into the format we proposed in this

chapter. The graph size is listed in Table 4.4. We compare the execution time of

WolfPath’s implementation with the A*-search algorithm proposed in the last

chapter.

Figure 4.4 shows the execution time of both algorithms. In these experi-

ments, we record both data transfer and computation time of WolfPath. As

shown in this Figure, though WolfPath suffers from the unavoidable data trans-

fer overhead, it still much faster than the A*-search algorithm. In this exper-

112

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

24 36 48
0

500

1,000

1,500

2,000

2,500

E
x
e
c
u
ti

o
n

ti
m

e
(m

s)

WP A*

Figure 4.4: Execution time comparison between WolfPath and A*-Search

iments, WolfPath achieves nearly 20X speedup over A* on 36 jobs and 10X

speedup on 48 jobs. These performance gain achieved by WolfPath is due to

the massive parallelism degree provided by the GPU.

4.5.2 Performance evaluation with general graphs

We evaluate the performance of WolfPath on general graphs using two types

of graph dataset: small sized graphs that can fit into the GPU global memory

(called in-memory graphs in the experiments) and large scale graphs that do

not fit (out-of-memory graphs). The size of a graph is defined as the amount

of memory required to store the edges, vertices, and edge/vertices values in

user-defined datatypes.

Small graphs are used to evaluate WolfPath’s performance in in-memory

graph processing against other state-of-the-art in-memory graph processing sys-

tems (e.g., CuSha [65] and Virtual-Warp-Centric [56], and the large graphs are

used to compare WolfPath with other out-of-core frameworks that can process

large graphs on a single PC (e.g., GraphChi and X-Stream).

The eight graphs listed in Table 4.1 and Table 4.5 are publicly available.

They cover a broad range of sizes and sparsity and come from different real-world

origins. For example, Live-Journal is directed social networks, which represent

friendship among the users. RoadNetCA is the California road network, in

which the edges represent roads and the vertices represent the intersections.

WebGoogle is a graph released by Google, in which vertices represent web pages

and the directed edges are links. orkut is an undirected social network, in which

113

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Table 4.5: Real world graphs used in the experiments
GPU Out-of-memory Graph
Graph Vertices Edges
orkut [80] 3072441 117185083
hollywood2011 [13] 2180653 228985632
arabic2005 [14] 22743892 639999458
uk2002 [13] 18520486 298113762

vertices and edges represent the friendship between users. uk-2002 is a large

crawl of the .uk domains, in which vertices are the pages and edges are links.

We choose two widely used searching algorithms to evaluate the performance,

namely Breadth First Search (BFS) and Single Source Shortest Paths (SSSP).

Comparison with existing In-memory Graph Processing Frameworks

In this section, we compare WolfPath with the state-of-the-art in-memory pro-

cessing solutions such as CuSha [65] and Virtual Warp Centric [56]. In the

experiments, we use the CuSha-CW method, because this strategy provides

the best performance in all CuSha strategies. Both CuSha and Virtual Warp

Centric apply multi-level optimisations to the in-memory workloads.

We first compare the computation times among WolfPath, CuSha and VWC.

Figure 4.5a and Figure 4.5b show the speedup of WolfPath over CuSha and

VWC.

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

A
V
G

0

50

100

150

200

250

S
p

e
e
d
u
p

BFS SSSP

(a) Speedup over CuSha

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

A
V
G

0

200

400

600

800

1,000

1,200

S
p

e
e
d
u
p

BFS SSSP

(b) Speedup over VWC

Figure 4.5: Speedup of WolfPath over CuSha and VWC

We also list the break down performances in Figure 4.6. In these experi-

114

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

ments, the Data Transfer is time taken to move data from host to GPU; the

computation refers to the time taken for actual execution of the algorithm.

The number above each bar indicates the total execution time (data transfer +

computation).

As can be seen from these results, WolfPath outperforms CuSha and Virtual

Warp Centric. The average speedup of WolfPath over CuSha is more than

100X, and 400X over VWC. TThis is due to the elimination of memory copy

operations. On the other hand, the other two systems rely on frequent data

exchange between GPU and host to process the algorithms. These experiments

also suggest that when processing graph algorithms with GPU, the execution is

bounded by memory operations rather than computation. Therefore, reducing

the memory operations can improve the performance significantly.

Also, the performance of VWC is the worst among 3 systems, because VWC

does not guarantee the coalesced memory access. On the other hand, with

carefully designed data structures, both WolfPath and CuSha can access graph

edge in a sequential manner, hence memory performance is much better.

W
o
lf
P
a
t
h

W
o
lf
P
a
t
h

W
o
lf
P
a
t
h

W
o
lf
P
a
t
h

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

V
W

C

V
W

C

V
W

C

V
W

C

0

1,000

2,000

8
.1

3

2
.2

1

3
.2

7

4
8
.2

2

2
0
3
.7

8

2
6
.6

8

1
9
.5

8

1
5
9
.8

2

2
,4

8
9
.2

8

2
8
.7

6
6
.0

2

2
1
6
.2

8

E
x
ec

u
ti

o
n

ti
m

e
b

re
a
d

k
d

o
w

n
(m

il
li
se

co
n

d
s) Data Transfer Computation

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
-G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

(a) BFS

W
o
lf
P
a
t
h

W
o
lf
P
a
t
h

W
o
lf
P
a
t
h

W
o
lf
P
a
t
h

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

V
W

C

V
W

C

V
W

C

V
W

C

0

1,000

2,000

3,000

8
.7

1

2
.3

3

3
.8

4

4
9
.7

9

2
7
8
.7

8

5
1
.9

2

2
4
.9

3

3
0
7
.3

1

3
,0

0
3
.7

3

6
6
.2

5

9
4
.4 4
5
1
.3

8

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
-G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

(b) SSSP

Figure 4.6: Execution time breakdown of WolfPath, CuSha and VWC on dif-
ferent algorithms and graphs. Reported times are in milliseconds.

115

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Comparison with GPU Out-of-memory Frameworks

The results shown in the last section demonstrate WolfPath’s performance in

processing in-memory graphs. However, many real-world graphs are too large

to fit in GPU memory. In this section, we examine the WolfPath’s ability to

process large graphs which cannot fit into GPU memory. To the best of our

knowledge, the state-of-the-art GPU-based graph processing frameworks [65]

[146] [40] assume that the input graphs can fit in the GPU memory. Therefore,

in this work, we compare WolfPath (WP) with two CPU-based, out-of-memory

graph processing framework: GraphChi (GC) [76] and X-Stream (XS)[109]. To

avoid disk I/O overhead in systems such as GraphChi and X-Stream, the dataset

selected in the experiments can fit in host memory but not in GPU memory.

As shown in Figure 4.7a and 4.7b, WolfPath achieves an average speedup

of 3000X and 4000X over GraphChi and X-Stream (running with 4 threads),

respectively, despite its need to move the data between GPU and CPU. We

also list the computation time and iteration counts of three systems in Table

4.6. Since X-Stream does not require any pre-processing and the computation is

overlapped with I/O operations, we use the total execution time of the system

as the comparison.

o
r
k
u
t

h
o
ll
y
w
o
o
d
2
0
1
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

A
V
G

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500

S
p

e
e
d
u
p

BFS SSSP

(a) Speedup over GraphChi

o
r
k
u
t

h
o
ll
y
w
o
o
d
2
0
1
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

A
V
G

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

S
p

e
e
d
u
p

BFS SSSP

(b) Speedup over X-Stream

Figure 4.7: Speedup of WolfPath over GraphChi and X-Stream

As can be seen from the Table 4.6, although WolfPath performs more itera-

tions than GraphChi and X-stream, it still outperforms them. This performance

116

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

improvement is due to the massive parallel processing power provided by GPU,

while GraphChi and X-Stream are CPU-based and their degrees of parallelism

are limited.

Table 4.6: Execution time WolfPath, GraphChi and X-Stream on different al-
gorithms and graphs. Reported times are in seconds.

BFS
Computation Iteration

WolfPath GraphChi X-Stream WolfPath GraphChi X-Stream
orkut 0.02 30.88 21.88 7 2 2

hollywood2011 0.09 209.86 282.17 16 8 13
arabic2005 0.2 164.92 166.18 51 3 3

uk2002 0.15 715.38 1323.59 49 28 48

SSSP
Computation Iteration

WolfPath GraphChi X-Stream WolfPath GraphChi X-Stream
orkut 0.02 49.38 88.02 7 3 3

hollywood2011 0.1 362.56 432.24 16 9 16
arabic2005 0.23 160.56 340.94 51 3 7

uk2002 0.16 974.83 1170.32 49 31 42

4.5.3 Memory occupied by different graph representation

From Figure 4.6, we can see that VWC has the shortest data transfer time.

This is because it represents the graph in the CSR format, which is memory

efficient. However, in order to have sequential access to the edges, both WolfPath

and CuSha represent graphs with edges, which consume more memory space

than CSR. In this section, we evaluate the cost of using the Layered Edge list

representation in terms of required memory space against CSR and CuSha’s

CW representation.

Figure 4.8 shows the memory consumed by WolfPath’s Layered Edge List,

CuSha-CW and CSR. The Layered Edge List and CuSha-CW need 1.37x and

2.81x more space on average than CSR. CuSha uses 2.05x more memory than

WolfPath, because it represents each edge with 4 arrays.

4.5.4 Pre-processing time

Table 4.7 shows the preprocessing time of WolfPath, CuSha, and GraphChi.

The preprocessing time refers to the time taken to convert the graph from the

raw data to the framework specified format (e.g., the layered tree in WolfPath

117

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

RoadNet-CA amazon0601 webGoogle LiverJournal
0

400

800

1,200

1,600

2,000

O
cc

u
p
ie

d
S
p
a
ce

(M
B

)

CSR Wolf CuSha-CW

Figure 4.8: Memory occupied by each graph using CSR, CuSha-CW, WolfPath

or Shard in GraphChi). It consists of the graph traversing time and the time to

write the data into the storage. Because CuSha is unable to process the graph

larger than GPU memory, the corresponding cells in the table are marked as

NA.

The first observation from the table is that 1) for in-memory graphs, CuSha

preprocesses the data faster than other two systems, and 2) WolfPath is the

slowest system. This is because CuSha does not write the processed data back

to the disk. GraphChi will only write a copy of data into a shard. In contrast,

WolfPath traverses the data using the BFS-based algorithm and then writes

the data into a temporary buffer before it writes the data to the hard disk.

Therefore, the workload of WolfPath is heavier than two other systems.

For graphs larger than GPU memory, WolfPath performs better than GraphChi

when processing uk2002 and arabic2005. This is because GraphChi generates

many shard files for these two graphs, and hence it takes longer to write to the

disk.

From this experiment, we argue that in WolfPath, although the preprocess-

ing is time-consuming, the pre-processing is worthwhile because of the following

reasons: First, for each graph, WolfPath only needs to convert it once. Second,

the resultant format provides better locality and performance for iterative graph

computations.

118

4. WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU

Table 4.7: Preprocessing Time (Seconds)
WolfPath CuSha GraphChi

Amazon0601 0.79 0.24 0.58
LiverJournal 14.68 3.8 10.15
WebGoogle 1.46 0.44 0.79

orkut 21.4 NA 22.07
hollywood 38.6 NA 34

uk2002 59.78 NA 69
arabic2005 120.3 NA 151.5

4.6 Summary

In this chapter, we develop WolfPath, which is a GPU-based graph processing

framework designed to process iterative traversing-based graph processing algo-

rithms efficiently. In ordered to accomplish the GPU memory access pattern, we

reorganised the co-scheduling graph to make it suitable for GPU processing. By

benchmarking the state-of-the-art GPU-based graph processing systems, we ob-

served that in iterative graph processing systems, the operation that consumes

most time is the data movement between GPU and host memory. Therefore,

a new data structure called Layered Edge List is introduced to represent the

graph. With this structure, the graph diameter is known before the graph

processing starts, which is used to guide the iterative process and hence elim-

inates the frequent data exchange between host and GPU. We also propose a

graph preprocessing algorithm that can convert an arbitrary graph into the lay-

ered structure. The experimental results show that WolfPath achieves the sig-

nificant speedup over the state-of-the-art in-GPU-memory and out-of-memory

graph processing frameworks.

119

Chapter 5

WolfGraph: an

Edge-Centric graph

processing framework on

GPUs

5.1 Introduction

In the last chapter, we proposed WolfPath graph processing framework. To

achieve high performance, WolfPath first converts the input graph into a lay-

ered graph, and then use this layered graph as input. However, this conversion

consumes a significant amount of time, and this is because it requires running

an algorithm that is based on BFS algorithm. Similar to WolfPath’s approach,

in most existing works, the graph is pre-processed before the graph processing

algorithm is applied. The idea is that although it takes the time to pre-process a

graph, the execution of the graph processing algorithm will take much less time

than without pre-processing and therefore the overall execution time will be

120

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

reduced significantly. However, this approach has following drawbacks. First,

as pointed out by Guo et al. [46], in the state-of-the-art GPU-based graph pro-

cessing systems, the time spent in reading a graph from hard disk to CPU mem-

ory and constructing the necessary data structure in memory for processing the

graph, which is called the pre-processing time, constitutes a big proportion of the

total processing time for a large graph. Reducing this pre-processing time will

significantly improve the overall performance of graph processing frameworks.

Second, existing work of GPU-based graph processing assumes the entire graph

can fit into the global memory of GPU. However, some large-scale graphs are

even bigger than GPU memory, which makes these work infeasible to process

those graphs.

In this chapter, we present WolfGraph, a framework for processing large

graphs on GPUs, to address the above problems. WolfGraph adapts a recently

introduced graph processing model, known as edge-centric processing [109] to

efficiently process the graphs on GPUs. In this model, the graph is represented

as an unordered list of edges. The processing iterates over edges rather than

vertices. More specifically, after the graph is split into edge blocks, each edge

block contains an unordered list of edges that are contiguously stored in memory

and a set of vertices associated with the edges of this block. Each edge block is

processed by a thread block in GPU, and multiple thread blocks are processed

by edge blocks in parallel. Within each thread block, the edges are processed in

parallel by the threads. Such allocation of edge blocks to thread blocks enables

the coalesced memory access to the edges in GPU global memory. In WolfGraph,

the access to vertices is still random. However, the data structure for holding

vertices is placed in the shared memory of GPU, the access to which is much

faster than to the global memory. Moving the data structure of vertices to the

shared memory also significantly reduces the synchronization overhead among

threads during the graph processing.

The above processing handles the graph that can fit into the GPU global

memory, which is called ”in-memory” graph processing. For a graph larger than

121

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

the global memory of GPU, we develop the ”out-of-memory” processing. We

first partition the graph into sub-graphs with minimal efforts. Each sub-graph

can fit into the global memory. Each sub-graph is processed in the edge-centric

manner by GPU. The advantage of such method is its minimal pre-processing

time. However, it is at the expense of potential frequent exchange of sub-graphs

between GPU global memory and host memory. To address this problem, we

develop a new method called the Concatenate Edge List (CEL), which is inspired

by GraphChi. When the CEL method loads a sub-graph into GPU global

memory, for each vertex that is the destination vertex in this sub-graph, it also

loads into GPU the edges that have this vertex as a source. With the CEL

method, we only need load each sub-graph into GPU once.

The rest of this chapter is organised as follows. Section 5.2 presents the

edge-centric processing model on GPU for the graphs that can fit into GPU

memory. Section 5.3 presents the details of the WolfGraph framework including

how to split the graph into edge blocks, the allocation of edge blocks to thread

blocks and the core APIs provided by WolfGraph. Section 5.4 presents the

graph partition and CEL methods for the graphs larger than GPU memory.

Section 5.5 describes how to process graph that is larger than host memory.

Experimental results are presented and analyzed in Section 5.7.

5.2 An Overview of Edge Centric Processing on

GPU

It has been shown that because it allows sequential access to the edges, the edge-

centric approach can improve I/O performance for disk-based graph processing,

which requires frequent disk accessing during the execution [109]. Similarly, the

sequential access to the GPU memory is critical to the performance of GPU

applications [65]. This is because the sequential access guarantees the coalesced

access to the global memory on the GPU device [65]. This section first gives

an overview of edge centric graph processing on GPU and introduces the data

122

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

42

31

50

(a) Graph structure

0 0 1 2 2 2 3 3 4

1 2 3 4 3 1 4 5 5

1 0 0 0 0 0

Source	
 Array

Des3na3on	
 Array

Vertex	
 Array

(b) Edge centric representation

Figure 5.1: An exemplar graph and its edge centric representation

structure used to represent the graph, and then further presents the computation

model used in WolfGraph.

5.2.1 Edge centric Graph data structure

The input data of the edge centric processing is an unordered set of directed

edges (an edge in undirected graphs can be represented by a pair of directed

edges, one in each direction). A graph is represented in memory by an edge

list, which consists of three one-dimensional arrays: the vertex array, the source

array and the destination array. The vertex array is used to store the state of

each vertex. This array is indexed by the vertex ID, that is, ith entry of the

vertex array contains the state of the vertex with ID i (e.g., the distance of

the path connecting to vertex i). The source array and the destination array

are used to store the source and destination vertices of each edge respectively.

The ith entries in the source array and the destination array form an edge in

the graph. In addition, if it is needed, an array of edge weights can be added

to this graph representation structure. Figure 5.1 illustrates the edge-centric

representation of a sample graph, in which there are 6 vertices and 9 edges.

Unlike other data structure for graphs, the edge-centric graph representation

does not require any pre-processing of the data because of the way the edge list

is constructed in the memory. When constructing the edge list, an edge is read

from the raw data in the disk each time. The edge is stored in the same order

in the edge list as it is in the raw data. Therefore, the raw data is only read

sequentially once to construct the edge list in the memory. Consequently, the

time spent in constructing the graph data structure in memory is minimized.

123

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

5.2.2 Computation model

The read-compute-write iterative processing model has been used in literature

to process graphs. The advantage of this model is that the graph edges can

be processed in any order without affecting the correctness of the final result.

Therefore, the graph processing can be parallelized.

The read-compute-write model works in the following way. The model runs a

loop of iterations to update the vertex/edge values until none of the vertex/edge

values in the graph changes in an iteration. Each iteration consists of three

phases: read, compute and write. The read phase first gathers the source and

destination vertex for each edge (stored in the source and destination arrays

in the edge list), and then uses the IDs of the fetched vertices to obtain the

corresponding vertex values from the vertex array. The compute phase uses

the data gathered in the read phase to update the values of corresponding

edges/vertices. The write phase writes the updated values back to the vertex

array so that the updated values can be used in next iteration.

In each iteration of the read-compute-write model, all edges in the graph need

to be processed and the edge/vertex values are updated. The computations of

the edges are unordered, i.e., independent of each other. Therefore, the edge

computations in each iteration can be performed in parallel. It is straightforward

to evenly distribute the workload across threads in such an unordered model.

Note that on the contrary, the vertex-centric model, which visits the graph by

vertex and represents the graph by the adjacency list, is inherently difficult to

be load-balanced among threads, because each vertex is connected to a different

number of edges.

5.3 In-memory processing Engine in WolfGraph

The in-memory engine is designed for processing the graphs which can be fitted

in the global memory of GPU. When designing the in-memory engine, the key

is to achieve a good degree of parallelism. Therefore, in this section, we first

124

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

describe how to map the workload to the GPU threads and parallelize the

computation process, and then discuss how to exploit the memory hierarchy

of GPU to improve the performance. We also present the APIs provided by

Wolf Graph and demonstrate how to program with these APIs at the end of the

section. The in-memory processing engine will serve as the core component for

processing the graphs whose size are bigger than the global memory of GPU,

which we call out-of-memory graph processing and will be discussed in Section

5.4.

5.3.1 Parallel processing in WolfGraph

As discussed in the previous section, WolfGraph is based on the read-compute-

write iterative processing model, and the edge computations in each iteration

can be processed in parallel on GPU. To facilitate efficient graph processing, it is

crucial to develop a suitable strategy to allocate the workload to GPU threads.

In WolfGraph, an edge is allocated to a thread and the continuously indexed

threads process the edges that are stored in the contiguous memory space. This

way, the coalesced memory access to the edges can be achieved in GPU. Once

a thread completes the computation in an iteration (i.e., updates the value of

a vertex), it writes the updated vertex values to the corresponding locations in

the vertex array.

We identify two problems that need to be addressed in the write phase.

First, since a single vertex array is shared by all GPU threads, multiple threads

may write to the same memory location during the write phase. To address this

problem. WolfGraph uses the CUDA atomic operation to synchronize potential

simultaneous writes by threads.

Second, the vertex array is constructed in the CPU memory and copied to

the GPU global memory at the beginning of the graph processing. When the

threads write the newly computed data to the corresponding locations in the ver-

tex array in each iteration, these locations may not be contiguous, which causes

the random access to the vertex array in global memory. Our benchmarking ex-

125

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

periments show that this is a factor that impairs the performance. To mitigate

the performance degradation caused by the random access to global memory,

WolfGraph does not write the newly updated data directly to the global mem-

ory, but write them (and synchronize, if necessary) to the shared memory first

and then launch a separate kernel to write the new data to the global memory. It

has two benefits by doing so. First, the number of random accesses to the global

memory is significantly reduced. Although the writes to the shared memory is

still random access, they are much faster than the random access to the global

memory. Therefore, the overall performance is significantly improved compared

with writing the new data directly to the global memory. This benefit is an-

alyzed in detail later in this section and is also supported by our experiments

in the later part of this chapter. Second, by writing the new data first to the

shared memory, some of the necessary data synchronizations are moved from

the global memory to the shared memory. We have conducted the benchmark-

ing experiments about this. We made two observations from the experimental

results: 1) synchronization in shared memory is faster than synchronization in

global memory when the degree of synchronization (i.e., the number of threads

that write the data simultaneously to the same location in memory) is less than

a threshold ; 2) caching the new data in the shared memory can reduce both the

degree of synchronization and the number of synchronizations in global memory.

In memory data structure of WolfGraph

Our research shows that the graph representation presented in Section 5.2.1 does

not exploit the GPU memory hierarchy effectively. In this section, we present

the extension to the data structure and also discuss the memory .

One aim of this work is to minimize the pre-processing time of a graph. We

have discussed in Section 5.2.1 that the time spent in constructing the edge list

is minimized. We also discussed that the read-compute-wirte iterative model

enables us to process the edges in an unordered way, i.e., the processing of the

edges can be parallelized.

126

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Once the size of the edge block (i.e., the number of edges in an edge block)

is known, the edge list can be split with minimal effort. We will present the

method of determining the edge block size later in this chapter.

In the hard disk, the graph is stored as a list of edges. When WolfGraph

reads the graph from the hard disk, it constructs an edge list (containing three

arrays: src index, dest index and edge value arrays) and a vertex-value array

in the CPU memory as shown in Section 5.1 (Figure 5.1), which will be copied

from CPU memory to global memory of GPU. In a GPU, WolfGraph splits the

edge list into smaller edge blocks (We will introduce the method of determining

the size of edge blocks later in this chapter), each of which consists of a set

of edges. The threads that are processing the graph are organized in thread

blocks. A thread block processes an edge block. Multiple thread blocks process

the edge blocks in parallel. Within a thread block, an edge is processed by

a thread in parallel. When a thread in a thread block processes an edge, it

obtains its global thread index (assuming the thread index is i) in GPU and

reads from the i-th element in the edge-value array to obtain the edge value.

Then the thread obtains the index of the source node of the edge by reading the

i-th element of the src index array and reads the value of the source node from

the vertex-value array using the source index. After applying the user-defined

graph processing algorithm (e.g., shortest path algorithm), it will generate an

updated value for the destination node of the edge. In order to achieve the

benefits discussed at the beginning of section 5.3 (i.e., reducing the number of

random access to GPU global memory and also reducing the number of and

the degree of data synchronization in global memory), the thread writes the

updated value of the destination node first to the shared memory. In order to

facilitate this, WolfGraph adds two new data structures: a shared-index array

for the whole graph and a local-vertex-value array for each thread block. The

local-vertex-value array is stored in local memory and used to hold the updated

values of the destination nodes after processing the edges, while the shared-index

array is in global memory and used to indicate to the thread which position the

127

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

2 0 1 2 0 3 4 2 3

3 1 3 4 2 5 5 1 4

1 3 5 6 12 9 2 6 7

Src Index
Dest Index

Shared	Index
Edge	Value

Edge	Block	0 Edge	Block	1

Global	vertex
value	array

Global	Memory

Thread	Block	0

tid0 tid1 tid2 tid3 tid4

X‘3 X‘1 X‘4 X‘2
Shared	Memory
Local	vertex	value
array

tid0 tid1 tid2 tid3 tid4

X‘5 X‘1 X‘4

Thread	Block	1

Shared	Memory
Local	vertex	value
array

x0 x1 x2 x3 x4 x5

0 1 0 2 3 0 0 1 2

Figure 5.2: The Edge block representation of graph in Figure 5.1a

updated value of the corresponding destination node should be written into in

the local-vertex array. As an example, the data structure and memory allocation

for the graph in Figure 5.1 are shown in Figure 5.2. In the figure, the graph

is divided into two edge blocks with 5 edges in block 0 and 4 edges in block 1,

which are processed by thread block 0 and thread block 1, respectively (tidx in

the thread blocks represents the thread id). The first element of the Share-index

array is 0, which means that the updated value of the destination node of the

edge < 2, 3 > (the updated value is denoted by x′3) should be written in the

location with the index of 0 in the local vertex array (i.e., the first element of

the array) in the shared memory.

Analysis of thread synchronization

As discussed above, our design requires the thread synchronisation in global

memory. The thread synchronisation is implemented by the atomic operations.

When designing applications on GPU, shared memory has been widely used to

improve the performance due to its higher access speed than global memory.

However, executing atomic operations on shared memory is rather uncommon.

There has been the research indicating that thread synchronisation in shared

memory is slower than that in global memory [27]. We studied this phenomenon

and found that although Nvidia does not reveal the implementation details of

128

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

the atomic operations in global memory and shared memory, the underlying

reason for this performance discrepancy may be because the atomic operations in

global memory and shared memory are implemented in different ways. In shared

memory, the atomic operations are implemented using the explicit lock and

unlock. When multiple threads access the same location in shared memory, they

are put in a mechanism like a loop and their atomic operations are processed

in sequence. When a thread invokes the atomic operation to access the data, it

locks the memory location, accesses the data and unlocks it after the operation

is completed. In the global memory, however, the atomic operation is optimised

and implemented with a single hardware instruction [27].

We reason that since multiple threads that are calling atomic operations are

put in a loop and processed in sequence, the number of these threads should

have the impact on synchronisation performance. Based on this reasoning, we

conducted the benchmarking experiments, and we have new findings.

We wrote a benchmarking program. The key kernel of the program is shown

in Algorithm 5.1. In the kernel, each thread performs the atomicMin operation

to write data into shared memory or global memory. The atomicMin operation

takes two parameters as input. The second parameter is the data that the

operation is writing while the first is the memory location which the data is

written into. The atomicMin operation compares the data of the first parameter

with the data in the memory location of the second parameter, and then the

memory location will store the smaller value between them two. There are two

arrays, result and location, in the program. An element in the location array

holds a location that the data should be written in the result array. When the

arrays are defined in global memory (or shared memory), the program accesses

the global memory (or shared memory). The kernel is run with a single block of

1024 threads, which is the maximum number of threads that a thread block can

support in our GPU device (GTX 780TI). The synchronisation degree (i.e., the

number of threads that are storing the data in the same location in the result

array) is controlled by setting the element values of the location array. The

129

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Algorithm 5.1: Mini Benchmark

1 __device__ void benchmark(int *location , int *values , int *result)

2 {

3 int v = values[thread_id];

4 int l = location[thread_id];

5 atomicMin (& result[l], v);

6 }

synchronisation degree varies from 2 to 512. When the degree is 2, every two

threads write to the same location of the result array. When the conflict degree

is 512, a half of threads in the 1024 threads all write to a same location of the

result array and the other half write to another same location. The kernel was

run 10 times for both accessing shared memory and accessing global memory.

The average time for running the kernel with different synchronisation degrees

is plotted in 5.3.

4 8 16 32 64 128 256 512

0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

Number of Conflicts

T
im

e
(m

il
li
se

c
o
n
d
s)

global

shared

Figure 5.3: The run-time of the benchmark program with different synchroniza-
tion degree in shared memory and global memory

As can be observed from Figure 5.3, the average time spent in writing the

data remains approximately unchanged in global memory as the synchronisation

degree increases, while the time for writing data to shared memory increases as

the synchronisation degree increases. When the synchronisation degree is higher

than a certain value, writing data in shared memory takes longer than writing

in global memory. This result can be explained as follows. The CUDA kernel

runs in groups of 32 threads, which is called a warp. When they invoke the

atomic operation for accessing shared memory, their operations are processed

in sequence by the CUDA library. If some threads are accessing the same

memory location, they need to wait for the lock of the memory location to be

130

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

released. When more threads are accessing the same memory location (i.e.,

the synchronisation degree is higher), the longer the threads potentially have

to wait and therefore delay the processing of other threads’ atomic operations

in the same warp. Although threads access the shared memory faster than the

global memory, the longer delay caused by higher synchronisation degree will

eventually cancel the speed advantage of share memory.

Our GPU device, GTX 780TI, supports running maximum 2048 threads and

32 thread blocks in a SM. Since a thread block is allocated with the separate

shared memory space, running a GPU kernel with a higher number of thread

blocks will lead to a lower synchronisation degree. If the maximum number of

thread blocks is used, the number of threads in each thread block is 2048/32 =

128, which means that the maximum synchronisation degree is 128. As shown

in Figure 5, only when the synchronisation degree is more than approximately

256, will the synchronisation overhead in shared memory become higher than

that in global memory. Therefore, we hypothesise that caching data access (and

therefore synchronisation) in shared memory will benefit the performance when

32 thread blocks are used to run the GPU kernel in a SM. The number 128 is the

maximum synchronisation degree in theory. We also conducted the following

experiments to gain the insight into the realistic synchronisation degree in graph

processing. In these experiments, we are running the single source shortest path

(SSSP) algorithm with following 3 real world graphs, amazon0601, webGoogle

and liverJournal. The number of thread blocks is set to be 32.

In the first experiment, we record for each graph the highest number of syn-

chronisation among all thread blocks in each iteration, i.e., the highest number

of threads that write the data simultaneously to the same shared memory lo-

cation. The results are shown in Figure 5.4. It can be seen from the figure

that the highest synchronisation degrees are only 12, 10 and 16 for the three

graphs. This result suggests that when processing the three graphs, the actual

synchronisation degree is much less than the threshold (256) shown in Figure

5.3.

131

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

After caching the data access and synchronisation in shared memory, the

synchronised data access to global memory should be reduced. We conducted

the experiments to show the reduction of the synchronised writes to the global

memory. In the experiments, we processed the three graphs by using the shared

memory and also by only using the global memory, and then recorded the num-

ber of writes in each iteration that refer to the same memory location in both

cases. The results are shown in Figure 5.5. It can be seen from the figure that

by caching the data access in shared memory, the synchronised writes to global

memory, which is random writes, are significantly reduced.

When we ran the experiments for Figure 5.5, we also recorded the execution

time of each iteration in both cases. The results are plotted in Figure 5.6. As can

be seen from the figure, caching the data access in the shared memory leads to

much less execution time, compared with performing atomic operations entirely

in global memory. These results verify our earlier hypothesis, i.e., caching the

data access and synchronisation in shared memory can improve the performance.

1 5 10 15 20 25 30 35
0

2

4

6

8

10

12

iterationH
ig

h
e
se

n
u
m

b
e
r

o
f

C
o
n
fl
ic

t

(a) amazon0601

1 2 3 4 5 6 7 8 910111213141516

0
1
2
3
4
5
6
7
8
9

10
11

iteration

(b) web-Google

1 2 3 4 5 6 7 8

0
2
4
6
8

10
12
14
16

iteration

(c) LiverJournal

Figure 5.4: Maximum conflict among all thread blocks

5.3.2 Two-level GPU processing and memory access pat-

tern

Based on the finding above, we propose a two-level execution mode as follows

to reduce random access and the synchronisation overhead in global memory.

The iterative graph processing goes through a number of iterations to cal-

culate the vertex values. In each iteration, a kernel, called the edge-processing

132

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

1 5 10 15 20 25 30 35

0

50,000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

3 · 105

iteration

C
o
n
fl
ic

t
W

ri
te

s
n
u
m

b
e
r

global

shared

(a) amazon0601

1 2 3 4 5 6 7 8 910111213141516

0

20,000

40,000

60,000

80,000

1 · 105

iteration

global

shared

(b) webGoogle

1 2 3 4 5 6 7 8

0
5 · 105
1 · 106

1.5 · 106
2 · 106

2.5 · 106
3 · 106

3.5 · 106
4 · 106

iteration

global

shared

(c) liverjournal

Figure 5.5: Conflict writes to global memory with and without using shared
memory

1 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

iteration

T
im

e
p

e
r

it
e
ra

ti
o
n
(m

s)

global

shared

(a) amazon0601

1 2 3 4 5 6 7 8 910111213141516

0

0.5

1

iteration

global

shared

(b) webGoogle

1 2 3 4 5 6 7 8

0

5

10

15

iteration

global

shared

(c) Liverjournal

Figure 5.6: Execution time per iteration. (ms)

kernel, is launched with multiple thread blocks. A thread block processes an

edge block. In a thread block, each thread processes one edge and calculates

the value of the vertex associated with the edge in parallel. When a thread in a

thread block obtains a new value for the vertex in the edge block, it accesses the

shared index array and applies the atomic operation to write the new data to the

local vertex-array of the edge block in shared memory. The atomic operation

will perform synchronisation if more than one thread updates the data in the

same location. Then the edge-processing kernel exits and another kernel, called

global-updating kernel, is invoked to write the new values of the vertices in each

local vertex array to the corresponding locations of the global vertex array in

the global memory. In the global updating kernel, multiple thread blocks are

generated, each block is used to write the data in a local vertex array to the

global vertex array. In a thread block, a thread calls the atomic operation to

write a data item to the global memory. Synchronisation is performed when the

133

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

2 0 1 2 0 3 4 2 3

3 1 3 4 2 5 5 1 4

1 3 5 6 12 9 2 6 7

x0 x1 x2 x3 x4 x5Src Index
Dest Index

Shared	Index

Edge	Value

Edge	Block	0 Edge	Block	1

Global	vertices
value	array

Thread	Block	0

tid0 tid1 tid2 tid3 tid4

X‘3 X‘1 X‘4 X‘2
Shared	Memory
Local	vertex	value
array

tid0 tid1 tid2 tid3 tid4

X‘5 X‘1 X‘4

Thread	Block	1

Shared	Memory
Local	vertex	value
array

Global	Memory

Step	1

Step	3

Step	4
Step	1

Step	3

Step	4

Step	1Step	3

0 1 0 2 3 0 0 1 2

Step	2

Step	2

Step	2

Figure 5.7: The process procedure inside edge blocks of graph shown in Figure
5.2

threads in different thread blocks update the data simultaneously to the same

location in the global memory. After the updating is completed, the global

updating kernel exits. Note that the synchronisation in global memory is not

guaranteed before the global updating kernel exits.

With this two-level execution mode, each edge block is processed by a thread

block in the GPU in the following 4 steps, which is shown in Figure 5.7. First,

threads within each thread block read all information in the edge block in par-

allel. The threads with consecutive thread ID in a thread block read the edge

information residing in contiguous global memory locations, thus providing the

coalesced global memory access. In the second step, based on the vertex infor-

mation fetched in the first step, the threads fetch the vertex values from the

global vertex array to the shared memory of the thread block. Here, the access

to the Global-Vertex array is random. In Step three, the threads compute the

updated value for the destination vertex of each edge and write the result back to

the shared memory. Synchronisation is performed when multiple simultaneous

data writing refers to the same location. The last step performs the synchroni-

sation between different thread blocks by writing the local vertex values to the

global vertex value array. As can be seen, the memory access in the steps except

step 1 is not coalesced. Although the random memory access can be eliminated

134

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

by more sophisticated graph partitioning methods, these partitioning methods

will increase the pre-processing time significantly. For example, in CuSha, the

graph is first partitioned into disjoint sets of vertices. Each partition (shard)

stores all the edges whose destinations are in that set. Then, the edges in a par-

tition are sorted based on the ID of source vertices. By partitioning the graph in

this way, the consecutive threads can access the consecutive memory locations

in the global memory when reading/writing the values of destination vertices

into/from the shared memory. However, such partitioning method incurs much

longer pre-processing time due to the activities of sorting the edges and finding

the appropriate partition sizes.

5.3.3 Implementing GPU-based graph processing algorithms

using WolfGraph

Users can implement a broad range of graph processing algorithms with Wolf-

Graph. In this section, we take the Single Source Shortest Path (SSSP) al-

gorithm as an example to show how to write a GPU-based graph processing

program using WolfGraph.

The edge-centric approach to implementing SSSP is to iteratively update

the value of the destination vertex of every edge by adding the value of an edge

to the value of the source vertex of the edge. The calculation repeats until the

values of the destination vertices of all edges do not change anymore. Algorithm

5.4 presents the pseudo code of the SSSP functions.

Algorithm 5.2 shows the part of the pseudo code that runs on the host/CPU.

The host iteratively launches the GPU kernels until the results converge (i.e.,

not converge is true). In SSSP, convergence means that the path distance from

the source to every vertex does not change anymore. At the end of each iteration,

the device copies the value of the not converge variable back to the host memory

(line 8) and the CPU then determines whether the graph processing is completed

according to the value of not converge.

Algorithm 5.3 shows the kernel functions in WolfGraph. Each edge block is

135

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Algorithm 5.2: Pseudo code of host function

1 /*host function */

2 not_converge = true;

3 while(not_converge){

4 not_converge = false;

5 copy not_converge to GPU;

6 process_edge ();

7 update_vertex ();

8 copy not_converge back to CPU;

9 }

processed by a thread block. In the first kernel process edge, the consecutive

threads read the edge information and use this information to initialize the ver-

tex data. (Line 5-12). The access pattern to the Global memory in these steps

is shown in Figure 5.7. The computation is performed by invoking the compute

method defined by the user. Since multiple threads within the block may simul-

taneously update the same location in the shared memory, the atomic function

is used to update the destination vertex. Because the order of function invo-

cations is non-deterministic, the compute function must be both commutative

and associative.

Then a second kernel update vertx is launched. In this kernel, a flag called

value updated is used to indicates whether or not the vertex values are updated.

It is initially set to false (line 23). Each thread invokes the is update method

(lines 24), which is another user defined function to check whether or not to

write the updated value back to global memory. The threads will update the

contents of global memory and set values updated to true if the not update

method returns true. If values updated flag is set to true, the vertices in the

global vertex array are updated atomically with the newly computed value and

the not converge flag is set to true. Even though the memory accesses to global

vertex array are not fully coalesced in this case, it requires less number of mem-

ory transactions than directly write to global vertex array.

Algorithm 5.4 presents the functions required to compute SSSP on a graph.

In SSSP, every vertex holds a value (initially set to a very large number repre-

senting ∞) standing for the shortest distance from the source. Source vertex

136

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Algorithm 5.3: Pseudo code of kernel function

1 __global__ process_edge(src_index , dest_index ,shared_index ,

edge_values){

2 /* parallel for edge blocks:*/

3 shared share_local_vertex[N];

4 /* step 1 fetch edge information , coalesced access */

5 source_vertex = src_index[tid];

6 destination_vertex = dest_index[tid];

7 shared_index = shared_index[tid];

8 edge_value = edge_values[tid];

9

10 /* step 2 initialise vertex value , non -coalesced access */

11 share_local_vertex[shared_index] = global[destination_vertex

];

12 src_value = global_vertex[source_vertex];

13 __synchronize;

14

15 /* step 3 compute the update vertex value*/

16 parallel for each thread invoke:

17 compute(src_value , share_local_vertex[shared_index],

edge_value);

18 }

19

20 __global__ update_vertex(global_vertex , shared_local_vertex);

21 /* step 4 write back and check if the computation is converged

*/

22 /* parallel for vertex in shared_local_vertex:*/

23 value_updated = false;

24 if(is_updated(shared_local_vertex[tid], global_vertex[

destination_vertex])

25 {

26 atomicMin (& global_vertex[destination_vertex],

shared_local_vertex[tid]);

27 value_updated = true;

28 }

29

30 if(value_updated == true)

31 {

32 not_converge = true;

33 }

value is set to 0. At the beginning of each iteration, the init shared vertex

method loads the most updated vertex values into the block’s shared memory.

The compute function is act on every edge, it first computes the new distance

for a destination vertex, then atomically choosing the minimum distance be-

tween the current and the calculated distances. The is update function notifies

the caller to execute the next iteration if the new distance of the destination

vertex is smaller than its old value. As we can see, the user only need to pro-

vide the compute and is update functions; hence making it easier to code graph

processing algorithms using WolfGraph.

137

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Algorithm 5.4: Pseudo code of SSSP implementation in WolfGrahp

1 __device__ void compute(src_value , share_local_vertex , edge_value)

2 {

3 if(share_local_vertex != INF)

4 {

5 atomicMin (&(share_local_vertex , src_value+edge_value));

6 }

7 }

8

9 __device__ bool is_updated(shared_local_vertex , global_vertex)

10 {

11 if(shared_local_vertex < global_vertex)

12 {

13 return true;

14 }

15 return false;

16 }

5.4 Out of GPU memory processing

In the last section, we presented the design and implementation of in-memory

processing of WolfGraph, i.e., the case where the entire graph can fit into the

global memory of GPU. However, the size of GPU global memory is much

smaller than the host memory. The sizes of real world graphs can vary from

few gigabytes to terabytes, which are too large to be loaded into GPU global

memory all at once. Therefore, in this section, we design an out-of-memory

graph processing framework that can process such large-scale graphs.

5.4.1 Graph Partition and Computation

The general idea of designing an out-of-memory graph processing framework

is to partition the graph into sub-graphs that can fit into the GPU memory

and process these sub-graphs in GPU one at a time. There are two key issues

that need to be addressed properly. First, we still want to reduce the pre-

processing time as we do for in-memory graph processing. So the graph partition

should not incur many pre-processing efforts. Second, a common problem of

processing sub-graphs one at a time is that when a sub-graph is being processed

or after it has been processed, the graph processing algorithm needs to access

the previously processed sub-graph to update the newly calculated results. In

138

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

the GPU environment, however, this requires the data exchanges between GPU

global memory and CPU main memory, which will incur high overhead and

should be minimised as much as possible. Next, we present the methods that

we develop to address the above two issues.

As the graph data is read into the CPU memory, the data structure such

as the one in Figure 5.2 is constructed in the CPU memory, including the edge

list and the global-vertex-value array. To address the first issue, i.e., to min-

imise the time spent in graph partitioning, the out-of-memory graph processing

framework splits the edge list into chunks (each chunk is a subgraph) in the

similar way as we split the graph into edge blocks in the in-memory graph pro-

cessing. Namely, a graph is partitioned into the equal-sized subgraphs in each of

which the edges are in the same order as they are in the graph raw data. There-

fore, there is no need to pre-process the graph. In the out-of-memory graph

processing, we do not partition the global-vertex-value array. The reasons are

two folds. First, to obtain the vertices for a subgraph, we have to search the

global-vertex-value array to construct the vertex sub-array that contains the

vertices in a subgraph, which incurs the pre-processing. Second, we argue there

is no practical need to partition the global-vertex-value array. Since compared

to the memory space occupied by edges, the memory space required by vertices

is small. For example, in the graph arabic2005 [81], the edges take 10.24 GBytes

memory space while the vertices only occupy 90.98 MBytes space (each vertex

value is stored as an integer). The vertices of an entire graph can be easily

accommodated in GPU global memory, even for very large-scale graphs.

The size of each subgraph is determined in the following way. Assume the

size of GPU global memory size is G, and the entire graph has |N | vertices

and |E| edges. Because we put the whole vertex array into the GPU global

memory, the remaining memory space for holding the edge list of a subgraph is

then G−|N | ∗sizeof(vertex) (a vertex is represented as an integer or a floating

point number depending on the graph processing algorithms). As shown in

Figure 5.2, an edge is represented by 4 elements: source index, destination

139

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

0 3 2 1

1 4 4 3

Source	Array

Des2na2on	Array

2 2 0 3 4

3 1 2 5 5

Sub	Graph	0 Sub	Graph	1

Figure 5.8: An example of partitioning graph in Figure 5.1a into 2 sub-graphs

index, edge value and shared index value. Therefore the size of an edge is

3 ∗ sizeof(int) + sizeof(edge value) (an edge value is an integer or a floating

point number depending on graph processing algorithms). The number of edges

that GPU global memory can hold, denoted by e, can then be calculated by

e = b G− |V | ∗ sizeof(vertex)

3 ∗ sizeof(int) + sizeof(edge value)
c (5.1)

Therefore, this graph partition method does not require any pre-processing.

It simply puts the first e edges in the graph data in the first sub-graph, next e

edges in the second sub-graph, etc., as WolfGraph reads the graph data from

the hard disk into the CPU memory. This process requires only one sequential

read of the graph from the hard disk. An example is shown in Figure 5.8.

This graph partition method does not require any pre-processing. It simply

puts the first e edges in the edge list in the first subgraph, next e edges in the

second subgraph, etc., as Wolfgraph reads the raw graph data from the hard

disk into the CPU memory. This process requires only one sequential read of

the graph from the hard disk. As an example, the graph in Figure 5.1a can be

partitioned into subgraphs shown in Figure 5.8.

Although the graph partition method presented above does not require pre-

processing, the partition may cause frequent data exchange between GPU mem-

ory and host memory during the graph processing of the graph, which will

hamper the performance. For example, Consider Figure 5.8. Let us focus on

consider the edges 〈1, 3〉 in subgraph 0 and edge 〈2, 1〉 in subgraph 1.

WolfGraph first loads sub-graph 0 into GPU global memory and processes

it. A thread is responsible for processing one edge, i.e., taking the value of the

140

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

source vertex of the edge to update the value of the destination vertex. Since

it is an iterative processing, the threads may need to go through a number

of iterations to update the destination vertices until the values do not change

anymore. In this example, when every thread processes its edge in the first

iteration, thread 0, which processes edge 〈0, 1〉, uses the value of vertex 0 to

update the value of vertex 1, thread 1 updates vertex 4, thread 2 updates

vertex 4 and thread 3 updates vertex 3. Since vertex 1 is updated in the first

iteration and its new value will be different from the one that is used by thread

3 to update vertex 3 in the first iteration, thread 3 needs to go into another

iteration to update vertex 3 again. After vertex 3 is updated, thread 1 needs

to run another iteration to update vertex 4 again. After that, the value of all

vertices will remain unchanged. Then, the processing of sub-graph 0 is regarded

complete. The global vertex array will have the latest values of all vertices in

sub-graph 0. Next, WolfGraph clears the memory space occupied by the edge

list of sub-graph 0 and loads sub-graph 1 into from CPU memory to GPU

global memory. WolfGraph goes through the same process to update the values

of the destination vertices in sub-graph 1. During the process, thread 3 takes

the latest value of vertex 3, which is updated when processing sub-graph 0, to

update vertex 5. Similarly, thread 4 takes the most recent value of vertex 4.

Since vertex 1 is the destination vertex of edge 〈2, 1〉 in sub-graph 1, vertex 1

will have new value after the processing of sub-graph 1 is completed. Therefore,

we need to load sub-graph 0 into GPU again and re-process sub-graph 0. Such a

process repeats until the values of all vertices in the entire graph do not change.

WolfGraph first loads subgraph 0 into GPU global memory and processes

it. A thread is responsible for processing one edge, i.e., taking the value of the

source vertex of the edge to update the value of the destination vertex. Since

it is an iterative processing, the threads may need to go through a number

of iterations to update the destination vertices until the values do not change

anymore. In this example, when every thread processes its edge in the first

iteration, thread 0, which processes edge 〈0, 1〉, uses the values of vertex 0 and

141

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

the edge to update the value of vertex 1. Thread 1 updates vertex 4, thread 2

updates vertex 4 and thread 3 updates vertex 3. Since vertex 1 is updated in

the first iteration and its new value will be different from the one that is used

by thread 3 to update vertex 3 in the first iteration, thread 3 needs to go into

another iteration to update vertex 3 again. After vertex 3 is updated, thread 1

needs to runs another iteration to update vertex 4 again. After that, the values

of all vertices will remain unchanged. Then, the processing of subgraph 0 is

regarded complete. The global-vertex-value array will have the latest values of

all vertices in subgraph 1. Next, WolfGraph clears the memory space occupied

by subgraph 0 and loads subgraph 1 from CPU memory to GPU global memory.

Wolfgraph goes through the same process to update the values of the destination

vertices in subgraph 1. During the process, thread 3 takes the latest value of

vertex 3, which is updated when processing subgraph 0, to update vertex 5.

Similarly, thread 4 takes the most recent value of vertex 4 to update vertex 5.

Since vertex 1 is the destination vertex of edge 〈2, 1〉 in subgraph 1, vertex 1

will have new value after the processing of subgraph 1 is completed. Vertex 1

is the source vertex of an edge in subgraph 0, and therefore, we need to load

subgraph 0 to GPU again and re-process subgraph 0. Such a process repeats

until the values of all vertices in the entire graph do not change anymore.

The fundamental reason behind the repetitive loading of a sub-graph is be-

cause the graph partitioning method essentially partitions the graph randomly

and it may put an edge and its child edges (Edge A is called the child of edge

B if B’s destination vertex is A’s source vertex) in different sub-graphs. If an

edge’s child edges are processed before the edge, then the sub-graph that con-

tains the child edges needs to be loaded and re-processed again after the edge

is processed.

5.4.2 Concatenate Edge List representation

After identifying the reason behind the repetitive loading of sub-graphs, a

method called Concatenated Edge List (CEL) is designed in WolfGraph to

142

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

reduce the frequent data exchange between host and GPU’s memory. With

CEL method, instead of transferring the sub-graph into GPU, we transfer the

concatenate edge list into GPU.

For each graph being processed, we first build the sub-graphs with the

method described in the last section. During the computation, before trans-

ferring a sub-graph into GPU, we build the CEL for this sub-graph. The CEL

is built in the following way, for each destination vertex in the sub-graph, we

search all the sub-graphs that have been processed already since we process

sub-graphs according to their sub-graph ID, the processed sub-graphs are those

sub-graphs with smaller ID than the current one. Then from these sub-graphs,

we select all child edges of the current destination vertices set and append these

edges to the current sub-graph. Then we transfer this concatenate edge list to

the GPU, and process it with the in-GPU-memory engine.

As discussed in the last subsection, if a destination vertex in the current

sub-graph has child edge in another sub-graph, and if this sub-graph has been

processed already, it needs to be re-processed because the value of some edges

in it may change after processing the current graph. On the other hand, if

the sub-graph with the child edges has not been processed, there is no need to

process it immediately after processing the current sub-graph since it will be

computed later and the updated vertex value can be used directly. Therefore,

when constructing the CEL, there is no need to consider the sub-graphs that

haven’t been computed.

The CEL can be built with Algorithm 5.5. The function takes a list of sub-

graphs and the ID of the sub-graph that currently being processed as input.

It first adds the size of each sub-graph that has been computed together to

find out the pe, which is the number of edges that has been processed. Then a

temporary array offset is created, the size of this array is the number of sub-

graphs has been computed plus 1. In this array, each element corresponds to a

sub-graph, so the sub-graph ID is used to index this array. The content of this

array is the offset of the first edge in the corresponding sub-graph to the first

143

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

edge in the first sub-graph. An extra element is needed to store the offset of the

last sub-graph being processed (Line 3-7). Consider graph in Figure 5.9 as an

example. When processing sub-graph 1, the size of offset array is 2, the content

of two elements is 0 and 4 respectively, because the offset of the first edge to

itself is 0, and the size of first sub-graph is 4, the offset of the first edge in the

second sub-graph is 4.

After building the offset. The algorithm iterates over the destination ver-

tices in the current sub-graph. For each destination vertex, the algorithm first

locates its corresponding link-list from the mapping array (Line 8-9). Then the

algorithm iterates the elements stored in the link-list (Line 10). For each el-

ement in link-list, the algorithm compares its value gi with pe, if gi is larger

than pe, that means the edge corresponds to this index is in the sub-graph that

hasn’t been processed, so there is no need to processed this link-list (Line 11).

If the global index is smaller than pe, the algorithm searches the offset array

(Line 12). For location i in offset array, it compares value gi with value stored

in location i − 1 and i + 1 (except for first and last element, we only compare

i+1 and i−1 respectively). If the value gi is greater than i−1 and smaller than

i+ 1, then the edge corresponds to the gi value is in sub-graph i, and location

of this edge in sub-graph i can be computed with gi-offset[i-1]. In the end, the

edge stored in this location is appended to the CEL (Line 13-18).

For example, consider the destination vertex 3 in sub-graph 1 in Figure 5.9,

by looking at mapping array, we can get its corresponding link-list with element

[1, 7], then we start comparing 1 with first element in array offset, which is 0.

Since 1 is greater than 0 and this is the first element, we know the corresponding

edge with gi value 1 is in sub-graph 0. Hence, we can locate the edge in sub-

graph 0 with index 1 − 0 = 1, which is edge 〈3, 4〉, and append this edge to

CEL.

The complete example is shown in Figure 5.9. In this example, the graph

from Figure 5.1a is partitioned into two sub-graphs. The sub-graph 0 is pro-

cessed in the first iteration. Because it is the first sub-graph, there is no need

144

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Algorithm 5.5: Build CEL with Mapping array

1 build_cel(sub -graphs s, id)

2 {

3 pe = 0;
4 offset[] = malloc(id+ 1 ∗ sizeof(int));
5 for i < id do:

6 pe+ = s[id].size;
7 offset[i+ 1] = s[i].size;
8 for destination vertices u in s[id] do:

9 link list l = mapping array[u]
10 gi = l.head.value;
11 while gi < pe:
12 for i in offset[]:
13 if i == 0 and gi < offset[i+ 1]:
14 l.append(s[0][gi]);
15 else if i == id -1 and gi > offset[i− 1]:
16 l.append(s[id− 1][gi− offset[i− 1]]);
17 else if gi > offset[i− 1] and gi < offset[i+ 1]
18 l.append(s[i][gi− offset[i− 1]]);
19 gi=l.next.value;
20 }

to build the CEL. The sub-graph 1 is processed in the second iteration, the

destination vertices in sub-graph 1 are 1,2, 3 and 5. Since the sub-graph 0 does

not have vertex 5, the algorithm appends all edges start with vertices 1,2 and 3

from sub-graph 0 to it, which are edges 〈3, 4〉, 〈2, 4〉 and 〈2, 4〉.

0 1
3 4
2 4
1 3

2 3

2 1

0 2

3 5

4 5

0 1
3 4
2 4
1 3

2 3

2 1

0 2

3 5

4 5

0 3 2 1
1 4 4 3

2 2 0 3 4 1 2 3
3 1 2 5 5 3 4 4

Src

Dest

Src

Dest

Concatenate	edge	list Concatenate	edge	list

Itera*on	2 Itera*on	1

Src

Dest

Src

Dest

Sub	graph	1 Sub	graph	0 Sub	graph	0 Sub	graph	1

Sub	graph	0 Sub	graph	0	Sub	graph	1

0 1 2 3 4 5
0 6 3 2 4 5 1 7 8

0

1

2

3

4

5

6

7

8

Mapping	Array

Figure 5.9: An example of building the concatenate edge list from 2 sub-graphs.
The gray area represent the edges used to build the concatenate edge list in
each iteration.

If the constructed CEL is too large to fit into GPU memory, we evenly split

the sub-graph into two sub-graphs, and build the CEL with these two small sub-

graphs. If the CEL is still too larger to fit in GPU, we split the small sub-graph

145

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

into two even smaller sub-graphs to build CEL. This process will be repeated

until constructed CEL can fit into GPU memory.

5.5 Out-of-Core Graph processing

In the last few sections, we assumed that the host memory is large enough

to store the entire graph. However, nowadays, the size of real-world graphs

increasing at an exponential rate, and this increasing rate is much faster than

the increasing of memory size. Hence, we cannot assume the graph can always

fit in the system memory.

The solution to this problem is to use the hard disk as an extension of

the memory. In this section, we extend the WolfGraph with an out-of-core

processing engine, so it can be used to process such graphs.

5.5.1 Out-of-Core graph partitioning

The idea to process large scale graph from disk is to partition the graph into

sub-graphs, then store the sub-graphs on the hard disk, and process one sub-

graph at a time. To achieve good performance when processing from hard disk,

we made the following design requirements. First, the partitioning algorithm

should only iterate graph once. Moreover, the access to the graph data has to be

in the sequential order; this is because hard disk operation is time-consuming,

and therefore, it should be minimised. Also, random access to the hard disk

is much slower compare to the sequential access. Second, as we discussed in

the last section, after partitioning the graph, each sub-graph should only be

processed once in the memory. Therefore, both I/O and processing time can be

reduced.

To meet these requirements, we propose the following algorithm to partition

the graph. We first compute the number of partitions based on the graph size

and GPU’s memory size. We use GPU’s memory size instead of host memory

size is due to following reasons: First, in WolfGraph, the GPU is used to accel-

146

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Algorithm 5.6: Graph partitioning

1 Graph_partition(Graph G)

2 {

3 partition no = G.size
GPU memory size

4 v sets = partition_vertics(G.v)
5 buffers[][] = new[partition no][v sets.size]
6 while(read edge e from G)

7 {

8 i = find partition(e.src);
9 j = find partition(e.dest);

10 write_to_buffer(i, e);
11 write_to_buffer(j, e);
12 }

13 }

14

15 write_to_buffer(location, edge)
16 {

17 if buffers[location] not full

18 buffers[location].append(edge);
19 else

20 flush_to_disk(buffers[location]);
21 buffers[location].append(edge);
22 }

erate the computation. Hence, if the size of each sub-graph can fit into GPU,

it can be transferred into GPU directly. Otherwise, the engine will build the

concatenate edge list to split the sub-graph, which will introduce overhead to

execution time. Once the number of sub-graph has been decided, we can evenly

split the vertices into disjoint sets, and assign one set to a sub-graph. After this

step, for each vertex, we assign both in and out edges of this vertex to the same

sub-graph. Once the partition is complete, each partition will be written to a

binary file. Also, to reduce the memory usage during the graph partitioning,

we create a buffer for each sub-graph and write the edge into the buffer during

the main iteration, once the buffer is full, we flush its content to the hard disk.

The whole algorithm is outlined in Algorithm 5.6.

It is clear that our algorithm only needs to iterate the graph once (line 6-

11). Hence, the disk accessing time is minimised. Also, by putting the edges

that have either a destination or a source vertex in the same sub-graph, the

resultant sub-graph is effectively a big concatenated edge list. As we discussed

in the last section, each concatenated edge list only need to be processed once

in the memory.

147

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

5.5.2 Out-of-Core processing

In WolfGraph, the out-of-core processing is done through invoking the in-memory

processing engine introduced in Section 5.2. If the sub-graph cannot fit into

GPU memory, we can use the method described in Section 5.4 to process it.

The major difference between out-of-core processing and in-memory processing

is how we synchronise updated vertex values between different sub-graphs.

When synchronising between the various sub-graphs, there are two scenarios

need to be considered. In the first situation, after loading one sub-graph into

the memory, the memory still has enough space to store all vertices from this

graph. In this case, we load the entire vertices into the memory, which will

be shared between all sub-graphs. Each sub-graph reads the updated vertices

value from this shared memory space before processing and writes the newly

computed result back to the memory when the computation is done.

In the second case, when all vertices cannot fit into the memory, we create

a vertex file for each sub-graph, which is used to store the update vertex values

of this sub-graph. During the execution, we load both sub-graph and vertex file

into memory, fetching the updated vertex values from the vertex file and assign

these values to the corresponding edges in the sub-graph. Once the processing

is complete, we keep the updated vertex values in the memory, then iteratively

load the vertex file of unprocessed sub-graphs into the memory, updates the

vertices in these files and writes the result back to the disk. Once vertex files

from all unprocessed sub-graphs have been updated, the current results are

written back to the disk. However, not all unprocessed sub-graphs need to be

updated in each iteration. For example, some sub-graphs may not share any

vertices with the sub-graph that currently processed. In such case, it should

not be loaded. To solve this problem, another file is created for each sub-

graph. This file keeps track of other sub-graphs that has common vertices with

it associated sub-graph. Hence, by reading this file, only the sub-graphs that

have the common vertices will be loaded into memory.

Because the sub-graphs are partitioned based on the GPU memory size,

148

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Graph

Data	Transfer	Engine Loading	Engine Compute	Engine

GPU

Pa99on	Graph Synchronize	data

Transfer	data Compute

Figure 5.10: Architecture of WolfPath framework.

so one or more partitions can fit in host memory. Hence, the disk I/O and

the in-memory computation can be overlapped. To achieve this, the execution

engine loads a sub-graph first, after this sub-graph is loaded into the memory,

the engine will launch another thread to load the next sub-graph. At the mean

time, the current thread is transferring the data to the GPU, waiting for the

GPU to finish its job, and then updating the vertex values. This process will

repeat until all the sub-graphs have been computed.

5.6 Implementation of WolfGraph

The WolfGraph consists of three main components: Loading Engine, Data

Transfer Engine, and Compute Engine. Figure 5.10 shows the general soft-

ware architecture of WolfGraph. In this section, we describe selected details of

these components.

5.6.1 Loading Engine

The Loading Engine is responsible for (1) load-balanced edge block creation and

(2) providing graph partitioning logics.

Designing an efficient format for storing the Edge Block is paramount for

good performance. In WolfGraph, we store the Edge Block in the following way.

We first create an array called Edge Block List, which is a flat array of

pointers, each pointer points to an Edge Block. The Edge Block consists of four

arrays as described in Section 5.3.1. The size of Edge Block List array and each

Edge Block are determined by the number of edges in the graph and number of

149

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

thread blocks used in graph processing.

WolfGraph uses user defined thread block size T to determine the size of

Edge Block List array and each Edge Block. Assume the input graph has E

edges, the size of Edge Block List B is dET e, and the size of each Edge Block are

dEB e. By computing the size of each array, we can statically allocate memory for

them, which can reduce the significant amount of time that used in resizing and

reallocating in dynamic memory allocation. Then WolfGraph reads the graph

data from the hard disk sequentially, and stores the edge information in each

Edge Block in the same order. Once it fills all edges in one Edge Block, it moves

to the next Edge Block. Therefore, we only need to iterate the entire graph once

to construct the Edge Blocks.

5.6.2 Data Transfer Engine

The data transfer engine aims to transfer data between GPU/host memory and

construct the Concatenate Edge List if necessary.

In data transfer engine, the data is transferred through the memory-copy op-

eration provided by CUDA. We use CUDA stream operation to overlap the data

transfer and the computation. For different Edge Block, each Stream created

by the StreamCreator inside the Data Transfer Engine typically issues multi-

ple MemcpyAsync() operations and graph computation kernels asynchronously.

Therefore, the data transfer and the computation is overlapped.

When building the Concatenate Edge List, each Edge Block needs to access

edges stored in other sub-graphs. Hence, to enable fast access to edges from

other Edge Block, we give a global index to each edge and use a mapping

array to build the relationship between each destination vertex and the edges

that start with this vertex. The mapping array is constructed while loading

the graph from disk to memory. We first construct an array indexed by the

vertex ID, each array element points to a link list. Because we read edges from

disk sequentially and write them in Edge Blocks in exact same order, we use

a counter to keep track its global index, that is, every time we add an edge to

150

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

the Edge Block, we increment the counter by 1. For each edge added to the

Edge Block, we use its source vertex ID to locate its position in mapping array

and append its global index value to the corresponding link list. Therefore, the

global index value stored in each link list is in ascending order.

5.6.3 Computation Engine

The Computation Engine is mainly responsible for GPU in-memory computa-

tion and to send feedback information to the Data Transfer Engine about the

results and termination condition used for the next iteration. The detail of

Computation Engine is discussed in Section 5.3.2.

5.7 Evaluation

In this section, we evaluate the performance of WolfGraph using three types of

graph dataset: small graphs that can fit into the GPU memory (called in-GPU-

memory graphs in the experiments), middle size graphs that can fit into the

CPU memory, but cannot fit in the GPU memory (called out-of-GPU memory

graphs) and large graphs that cannot fit into the CPU memory (called out-of-

core graphs). The size of a graph is defined as the amount of memory required

to store the edges, vertices, and edge/vertices values in user-defined datatypes.

In-GPU-memory graphs are used to evaluate WolfGraph against other state-

of-the-art GPU-based in-memory graph processing systems, including Cusha

[65] and Virtual-Warp-Centric [56]. Out-of-GPU memory and out-of-core graphs

are used to compare WolfGraph with other out-of-core frameworks that can pro-

cess large graphs on a single PC (e.g., GraphChi and X-Stream).

The twelve graphs listed in Table 4.1 are publicly available. They cover a

broad range of sizes and sparsity and come from different real-world origins. For

example, Live-Journal is directed social networks, which represent friendship

among the users. RoadNetCA is the California road network, in which the

edges represent roads and the vertices represent the intersections. WebGoogle

151

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Table 5.1: Real world graphs used in the experiments
In-GPU-memory Graph
Graph Vertices Edges
RoadNet-CA [80] 1965206 5533214
amazon0601 [80] 403394 3387388
Web-Google [80] 875713 5105039
LiveJournal [80] 4847571 68993773

Out-of-GPU memory Graph
Graph Vertices Edges
orkut [80] 3072441 117185083
hollywood2011 [13] 2180653 228985632
arabic2005 [14] 22743892 639999458
uk2002 [13] 18520486 298113762

Out-of-Core Graph
Graph Vertices Edges
twitter [73] 41652230 1468365182
FriendSter [80] 65608366 1806067135
sk2005 [14] 50636154 1949412601
uk2005 [14] 39459925 936364282

is a graph released by Google, in which vertices represent web pages and the

directed edges are links. orkut is an undirected social network, in which vertices

and edges represent the friendship between users. uk-2002 is a large crawl of

the .uk domains, in which vertices are the pages and edges are links.

We choose three widely used graph processing algorithms to evaluate the

performance, namely Breadth First Search (BFS), Single Source Shortest Paths

(SSSP) and PageRank(PG). The PageRank algorithm was set to run 10 itera-

tions.

The experiments were conducted on a system with a Nvidia GeForce GTX

780Ti graphic card, which has 12 SMX multiprocessors and 3GB GDDR5 RAM.

On the host side, we use the Intel Core i5-3570 CPU operating at 3.4 GHZ with

32 GB DDR3 RAM. The benchmarks were evaluated using CUDA 6.5 on Fedora

21. All the programs were compiled with the highest optimisation level (-O3).

152

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

5.7.1 Performance Evaluation

Comparison with Out-of-GPU memory Frameworks

In this section, we examine the WolfGraph’s ability to process large graphs

which cannot fit into GPU memory. To the best of our knowledge, the state-

of-the-art GPU-based graph processing frameworks [65] [146] [40] assume that

the input graphs can fit in the GPU memory. Therefore, in this work, we com-

pare WolfGraph (WG) with two CPU-based, out-of-memory graph processing

framework: GraphChi (GC) [76] and X-Stream (XS)[109]. To avoid the disk

I/O overhead in systems such as GraphChi and X-Stream, the dataset selected

in the experiments can fit in host memory but not in GPU memory.

o
r
k
u
t

h
o
ll
y
w
o
o
d
2
0
1
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

A
V
G

0

5

10

15

20

S
p

e
e
d
u
p BFS SSSP PG

(a) Speedup over GraphChi

o
r
k
u
t

h
o
ll
y
w
o
o
d
2
0
1
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

A
V
G

0

5

10

15

20

25

S
p

e
e
d
u
p

(b) Speedup over X-Stream

Figure 5.11: The speedup of WolfGraph over GraphChi and X-stream

Figures 5.11a and 5.11b show the speedup of WolfGraph over GraphChi

and X-Stream, respectively. It can be seen from these figures that WolfGraph

achieves an average speedup of 7.48 and 8.55 over GraphChi and X-Stream

(running with 4 threads), respectively, despite its need to move the data between

GPU and CPU. To analyse the performance in detail, Figure 5.12 shows the

detailed time breakdown of three frameworks. We define the pre-processing time

as the time spent in loading the graph from the hard disk to the CPU memory

and constructing the designed data structures. Computation time refers to the

time taken in actual execution of the algorithm. The time of building CEL

records the time spent in building the concatenated edge list. Data Transfer

is time taken by WolfGraph in transferring the data between host and GPU.

153

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

X
S
t
r
e
a
m

X
S
t
r
e
a
m

X
S
t
r
e
a
m

X
S
t
r
e
a
m

0

500

1,000

1
8
.2

5

3
3
.6

2

1
0
9
.3

4

5
1
.9

6

6
6
.9

9
0
.1

5

4
0
8
.4

4

8
2
7
.4

4

2
1
.8

8

2
8
2
.1

7

1
6
6
.1

8

1
,3

2
3
.5

9

E
x
ec

u
ti

o
n

ti
m

e
b

re
a
d

k
d

o
w

n
(m

il
li
se

co
n

d
s)

Pre-Processing Build Edge List

Data Transfer Computation

o
r
k
u
t

h
o
ll
y
w
o
o
d
0
6
0
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

(a) BFS

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

X
S
t
r
e
a
m

X
S
t
r
e
a
m

X
S
t
r
e
a
m

X
S
t
r
e
a
m

0

500

1,000

2
5
.0

3

4
6
.0

6 1
4
6

7
0
.0

9

8
8
.0

2

4
3
2
.2

4

4
5
3
.1

9

1
,1

7
0
.3

2

3
9
.6

3

1
,2

6
5
.8

9

1
,1

6
4

1
,2

1
0

o
r
k
u
t

h
o
ll
y
w
o
o
d
0
6
0
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

(b) SSSP

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

G
r
a
p
h
C
h
i

X
S
t
r
e
a
m

X
S
t
r
e
a
m

X
S
t
r
e
a
m

X
S
t
r
e
a
m

0

500

1,000

2
6
.2

2

4
8
.4

3

1
4
6
.2

5

6
9
.4

3

1
0
1
.5

6

1
3
0
.4

5

4
5
6
.9

3

1
7
5
.7

6

2
4
8
.3

4

4
7
8
.3

1
,2

4
6

6
4
1
.2

1

o
r
k
u
t

h
o
ll
y
w
o
o
d
0
6
0
1

a
r
a
b
ic

2
0
0
5

u
k
2
0
0
2

(c) PAGERANK

Figure 5.12: Execution time breakdown of WolfGraph, GraphChi and X-Stream
on out-of-GPU-memory graphs. Reported times are in seconds.

Since X-Stream does not require any pre-processing and the computation is

overlapped with I/O operations, we use the total execution time of the system

as the comparison.

154

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

As can be observed from the time breakdown shown in the Figure 5.12, in

most cases, pre-processing time dominates the execution time in both Wolf-

Graph and GraphChi. Therefore, reducing the pre-processing can improve the

overall performance significantly. In detail, the performance improvement of

WolfGraph over GraphChi and X-Stream is attributed to the following factors.

First, the computation time of WolfGraph is shorter than that of GraphChi by

orders of magnitude. The edge-centric processing model used by WolfGraph

can fully utilise the massive parallel processing power provided by GPU, while

the GraphChi and X-Stream are CPU-based, which limits the degree of paral-

lelism. Second, the pre-processing time in WolfGraph is less than half of the

pre-processing time in GraphChi. The pre-processing time of WolfGraph is al-

most equal to the graph loading time, and no other pre-processing operations

are needed while GraphChi needs to convert the raw graph into the graph stored

in the ”shard” structure and sort the edges in each shard.

Comparison with Out-of-Core memory Frameworks

We then evaluate the WolfGraph (WG)’s out-of-core performance with GraphChi

(GC) and X-Stream (XS). In these experiments, we use four out-of-core graphs

from Table 5.1. These graphs have billions of edges, which make them unable

to fit into host memory. In these experiments, we recorded the total execution

time of both frameworks. The results are listed in Table 5.2.

As shown in these Tables, compare with GraphChi and X-Stream, the Wolf-

Graph achieves 2-3X average speedup, this is because when processing large-

scale graphs from secondary storage, the execution time is dominated by the

disk I/O. For example, when running BFS algorithm on graph twitter with

GraphChi, the execution time of BFS algorithm is around 600 seconds out of

2715 total execution time. Therefore, the performance gain due to paralleliza-

tion is not as significant as processing small/middle size graphs.

155

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Table 5.2: Execution time of WolfGraph, GraphChi and X-Stream on out-of-
core graphs. Reported times are in seconds.

BFS WolfGraph GraphChi X-Stream
Twitter 1415.69 2501.2 1843.45
FriendSter 2418.99 3415.58 7743.9
sk-2005 869.05 2159.11 11178.4
uk-2005 1332.46 24360 15033.7

SSSP WolfGraph GraphChi X-Stream
Twitter 1589.32 2715.47 3672.7
FriendSter 2613.29 3593.23 13980.3
sk-2005 983.35 2347.24 16896.6
uk-2005 1732.54 24960 21534.8

PageRank WolfGraph GraphChi X-Stream
Twitter 1654.67 3036.8 1900.83
FriendSter 2952.48 4594.75 3296.23
sk-2005 1034.38 2847.15 2653.49
uk-2005 729.4 996.32 1241.8

Comparison with GPU In memory Frameworks

The results shown in the last two sections demonstrated the WolfGraph’s ability

to process large graphs that do not fit into GPU memory and CPU memory.

Recall that the other design objective of WolfGraph is that it should perform as

good as other existing In-GPU-memory graph processing frameworks. In this

section, we examine the WolfGraph’s in-memory performance for small graphs

by comparing it with the state-of-the-art in-GPU-memory processing solutions

like CuSha [65] and Virtual Warp Centric [56]. In the experiments, we use

the CuSha-CW method, because this strategy provides the best performance in

all CuSha strategies. Both CuSha and Virtual Warp Centric apply multi-level

optimisations to the in-memory workloads.

The breakdown performances are listed in Figure 5.13. As can be seen from

these figures, WolfGraph outperforms CuSha and Virtual Warp Centric; this

is due to following reasons: First, in all three frameworks, WolfGraph has the

shortest pre-processing time. Because in WolfGraph, the pre-processing is only

responsible for reading the data from hard disk and stores these data into Edge

List structure. On the other hand, CuSha and VWC require more complicated

pre-processing, such as sorting the data, counting the edge degree, etc. Second,

156

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

V
W

C

V
W

C

V
W

C

V
W

C
0

0.5

1

1.5

2

·104
1
,1

9
8
.5

5

6
3
4
.6

6

9
2
0
.7

6

1
2
,3

7
7
.1

8

1
,6

7
6
.5

7

1
,0

4
5
.6

1
,6

7
0
.8

7

2
0
,1

1
6
.5

3

3
,7

2
3
.7

7

8
4
5
.0

4

1
,3

8
6
.2

6

1
7
,0

5
6
.3

7

E
x
ec

u
ti

o
n

ti
m

e
b

re
a
d

k
d

o
w

n
(m

il
li
se

co
n

d
s)

Pre Processing Data Transfer

Computation

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
-G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

(a) BFS
W

o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

V
W

C

V
W

C

V
W

C

V
W

C

0

1

2

·104

1
,5

2
9
.4

7

8
0
5
.2

6

1
,1

9
3
.4

3

1
5
,9

5
7
.8

2

1
,9

5
7
.5

7

1
,2

1
7
.4

9

1
,8

2
9
.8

1

2
3
,5

9
3
.1

7

4
,4

5
7
.2

2

1
,0

1
0
.2

9

1
,5

2
3
.9

1

1
9
,5

6
4
.0

2

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
-G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

(b) SSSP

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

W
o
lf
G

r
a
p
h

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

C
u
S
h
a

V
W

C

V
W

C

V
W

C

V
W

C

0

1

2

·104

1
,2

6
7
.4

3

7
9
1
.2

6

1
,1

7
3
.5

5

1
5
,7

3
8
.3

1
,7

2
0
.9

4

1
,1

8
6
.0

8

1
,9

1
4
.2

5

2
3
,7

5
8
.3

8

1
,6

9
4
.4

6

9
9
0
.0

3

1
,4

8
9
.5

7

1
9
,9

7
2
.4

R
o
a
d
N
e
t
-C

A

a
m

a
z
o
n
0
6
0
1

w
e
b
-G

o
o
g
le

L
iv

e
J
o
u
r
n
a
l

(c) PAGERANK

Figure 5.13: Execution time breakdown of WolfGraph, CuSha and VWC on
in-GPU-memory graphs. Reported times are in milliseconds.

the data structure designed in WolfGraph can guarantee the coalesced memory

access to the global memory, and maximise the GPU utilisation due to the use

of edge-centric processing model. Third, due to the two-level synchronisation

157

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

strategy used in WolfGraph, the computation time between WolfGraph and

CuSha are very similar. However, the graph representation employed by CuSha

incurs the longest pre-processing time among three solutions. Hence, the overall

execution time of WolfGraph is much shorter than CuSha.

All three sets of experiments conducted above show an interesting fact, com-

pare with pre-processing time, the computation time and data transfer time are

much shorter. Based on this finding, we argue that when designing modern

parallel graph processing system, especially on GPU, it is more important to

improve the performance of pre-processing than computation.

5.7.2 Global Memory efficiency

The reason we adopt edge-centric computation and representing the graph as

edge list is to enforce the coalesced access to the global memory. This section

evaluates this design decision by comparing the average global memory load

efficiency, the average global memory store efficiency and warp execution effi-

ciency of WolfGraph with CuSha and Virtual Warp Centric while processing

LiveJournal graph. The algorithms used in these experiments are BFS, SSSP

and PageRank. The results are shown in Figure 5.14.

The global memory load efficiency is the ratio of requested global load

throughput to required global load throughput. It indicates how well the threads

within a kernel read from the global memory: a high value shows that more read

operations are performed. As can be seen from Figure 5.14a, VWC has the low-

est load efficiency (41.4% on average); this is due to the non-coalesced access to

the global memory. CuSha and WolfGraph achieve 89.6% and 93.6% average

global memory load efficiency respectively, this is because both of these two

frameworks provide coalesced access to the global memory.

The global memory store efficiency indicates the ratio of the global memory

write throughput achieved by the kernel to the global memory store throughput

that is needed by the kernel. This value shows how well the threads within a

kernel write to the global memory. As we can see from Figure 5.14b, the average

158

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

store efficiency achieved by VWC is 12.8%. On the other hand, the store effi-

ciency achieved by CuSha and WolfGraph are 42.8% and 42.5% respectively. In

both WolfGraph and CuSha, the store operation is performed in parallel, how-

ever, in VWC, within each virtual warp, only one thread is used to update the

vertex value, which results in a lower store efficiency. For both three solutions,

the average global memory store is lower than load mainly because of the store

operation is not fully coalesced.

Warp execution efficiency is defined as the ratio of average active threads in

a warp to the maximum possible active threads per warp supported by multipro-

cessor. It indicates how well the GPU hardware resources are utilised. As shown

in Figure 5.14c, compare to CuSha (85.5% on average) and WolfGraph (96.7%

on average), the VWC has much lower warp execution efficiency (36.9%), this

is due to the imbalance work distribution among the thread blocks in VWC.

On the other hand, both CuSha and WolfGraph evenly distribute the workload

to thread blocks, hence improve the warp execution efficiency. Also, in CuSha,

the warp execution efficiency is bounded by the window size (the set of edges

in shard j that are involved during processing of shard i [65]). WolfGraph does

not have such limitation because of each thread block only responsible for the

edge block assigned to it.

BFS SSSP PR

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

(a) Load Efficiency

BFS SSSP PR

VWC CuSha Wolf

(b) Store Efficiency

BFS SSSP PR

(c) Warp Efficiency

Figure 5.14: Average profiled efficiencies of WolfGraph with CuSha and VWC
on liveJournal graph.

5.7.3 Memory occupied by different graph representation

We evaluate the cost of using Edge list representation in terms of memory

requirement over CSR and CuSha’s CW representation.

159

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

Table 5.3: The execution time of out-of-GPU memory WolfGraph and in-GPU
memory VWC on different algorithms and graphs.

Graph BFS SSSP

orkut
Wolf 18.25 25.03
VWC 31.38 35.26

hollywood
Wolf 33.62 46.06
VWC 45.98 59.58

uk-2002
Wolf 51.96 70.1
VWC 58.42 74.58

The Edge List representation takes 3 ∗ |E| ∗ sizeof(index) + (2 ∗ |E|+ |V |) ∗

sizeof(V alue), which is same as the CuSha’s CW representation. However,

the CSR representation only requires (|E|+ |V |) ∗ sizeof(index) + (|E|+ |V |) ∗

sizeof(value). The Figure 5.15 shows the actual memory consumed by Wolf-

Graph Edge List, CuSha-CW and CSR. WolfGraph and CuSha-CW take 2.45x

and 2.46x more space on average than CSR. The CuSha uses a little bit more

memory than WolfGraph, which is due to the dynamic data structure overhead

over the ordinary array.

RoadNet-CA amazon0601 webGoogle LiverJournal
0

400

800

1,200

1,600

2,000

O
cc

u
p
ie

d
S
p
a
ce

(M
B

)

CSR Wolf CuSha-CW

Figure 5.15: Memory occupied by each graph using CSR, CuSha-CW, Wolf-
Graph Edge list representations over all benchmarks.

The increased memory consumption leads to the following situation: it is

possible that some graphs can fit into GPU memory with CSR representation,

but unable to do so with WolfGraph or CuSha’s representation. To test the

WolfGraph’s performance in this scenario, we conduct the following experiment.

We choose three graphs, orkut, hollywood2001 and uk-2002, all these graphs can

fit into GPU with CSR representation but need to split into two Concatenate

Edge List in WolfGraph’s representation, the benchmark algorithms we use are

BFS and SSSP, the results are list in Table 5.3.

160

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

As can be seen from the Table, although build concatenate edge list and

transfer data to GPU add extra overhead, WolfGraph still outperformed the

VWC in both cases. This is because WolfGraph has shorter pre-processing

time, and faster computation performance due to the GPU friendly graph rep-

resentation.

5.7.4 Sensitivity Analysis of WolfGraph

In this section, we examine the sensitivity of WolfGraph across different graph

characteristics. We first examine the performance of WolfGraph under different

graph size. The synthetic graphs are created with SNAP graph library [81] and

the RMAT [18] model are used to ensure the generated graphs are scale free

and resemble the characteristics of real-world graphs.

We conduct this experiment with BFS algorithm on WolfGraph with ten

synthetically created RMAT graphs across the range of different sizes and spar-

sities. The experiment result is shown in Figure 5.16. In this experiment, we

only record the kernel computation time.

Figure 5.16 shows the execution time when increasing the number of edges

and vertices in the graph. In this experiment, the degree of the graphs is fixed

to 16. As can be seen from the figure, increasing the graph size will cause

longer computation time, this is because as the graph size increase, it increases

the amount of data that need to be fetched from and written back to global

memory. Therefore, the number of conflicts writes to both shared and global

memory is increased as well, which will reduce the performance.

We then examine how block size can affect the performance of WolfGraph.

We conduct two experiments with BFS algorithm on two real world graphs

amazon0601 and hollywood-2011. In these experiments, we change the block

size from 32 to 1024, the breakdown execution time of these experiments are

listed in Table 5.4 and 5.5.

As shown in these results, changing the block size does not affect the pre-

processing time, data transfer time and time spend on building CEL, this is

161

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

0.5 × 8 1 × 16 2 × 32 4 × 64 8 × 128

0

50

100

150

200

250

300

Graph size

T
im

e(
m

il
li

se
co

n
d

s)

Figure 5.16: Execution time of WolfGraph when Changing graph size with graph
degree equal to 16. A x × y graph has around x million vertices and y million
edges

Table 5.4: The break down processing time with different thread block size on
amazon0601 measured in miliseconds

Block Size Preprocessing Data Transfer Computation
32 626.6 4.45 14.06
64 625.29 4.45 8.37
128 624.47 4.45 7.36
256 623.66 4.43 7.48
512 623.48 4.49 7.91
1024 625.36 4.44 8.31

Table 5.5: The break down processing time with different thread block size on
Hollywood-2011 measured in seconds

Block Size Preprocessing Build CEL Data Transfer Computation
32 33.42 0.74 0.31 0.36
64 33.35 0.73 0.31 0.21
128 33.43 0.73 0.32 0.14
256 33.49 0.74 0.33 0.15
512 33.41 0.73 0.32 0.16
1024 33.23 0.73 0.32 0.18

162

5. WolfGraph: an Edge-Centric graph processing framework on GPUs

because the CPU performs these operations. On the other hand, the block

size affects the computation time. In both graphs, the computation time first

decreases as we increase the block size, this is because the block size 32 and

64 cannot fully utilise the GPU’s computation power. For example, on GTX

780Ti, the maximum number of thread blocks supported by one SM is 16 and

the maximum number of threads that the SM can execute is 2048. With 32

thread per block, the GPU can launch 16 thread blocks per SM. However, the

total threads number per SM is 32 ∗ 16 = 512, which is only a quarter of the

maximum computation power a SM can provide.

When block size is larger than 128, the computation time starts increas-

ing, this is because increasing block size will also increase the edge block size.

Therefore, the number of conflicts within a thread block will increase, which

will decrease the performance.

5.8 Summary

In this chapter, we introduce a new graph framework called WolfGraph for

processing large graphs that are unable to fit into memory. The core design

principle of WolfGraph is to reduce the pre-processing time. To achieve this

objective, the framework uses edge-centric computation model, and edge list is

used to represent the graph in memory. Through the experiments, we argue

that in modern parallel graph processing systems, the performance bottleneck

is reading data from hard disk and pre-processing the data to meet the system’s

requirement. We also demonstrated that reducing the pre-processing time can

improve the overall execution time significantly.

163

Chapter 6

Conclusions and Further

Work

The work described in this thesis has been concentrated on developing co-

scheduling strategies in multicore systems. Multicore processors have now be-

come a mainstream product in the CPU industry. In a multicore processor,

running multiple applications on different cores could cause performance degra-

dation. One key technique applied in reducing performance degradation in a

multicore system is contention-aware co-scheduling. In this thesis, we extend

existing scheduling model to find the optimal solution when both serial and

parallel jobs exist in the system.

We construct a graph to represent the co-scheduling problem and convert the

problem of finding good co-scheduling solutions to the problem of finding the

shortest valid path in the graph. A set of algorithms and optimization techniques

are proposed to find either optimal or near-optimal co-scheduling solutions. We

also proposed WolfPath, a graph processing framework that uses GPU to accel-

erate the graph processing algorithms. In order to reduce pre-processing time

in WolfPath, we developed WolfGraph, a general purpose GPU-based graph

processing framework that aims to minimize the graph pre-processing.

164

6. Conclusions and Further Work

The key contributions of this thesis are summarised in the first three sections

of this chapter. Discussion and Further works are then presented in section 6.4

and 6.5.

6.1 Developing Graph-based Methods to Find

Optimal or Near-optimal Co-Scheduling so-

lutions

In chapter 3, a graph-based method is developed to find the optimal co-scheduling

solution for serial jobs, and then extended to incorporate parallel jobs. A number

of optimization measures are developed to accelerate the solving process. It has

been shown that the A*-search algorithm can effectively avoid the unnecessary

searches when finding the optimal solution. In this thesis, an A*-search-based

algorithm is developed to combine the ability of the A*-search algorithm and

the proposed optimization measures in terms of accelerating the solving process.

Further, a heuristic method, called heuristic A*-search algorithm, is developed

to find the near-optimal solutions more efficiently. Finally, a flexible approxi-

mation technique is proposed so that we can control the scheduling efficiency by

setting the requirement for the solution quality. We conducted the experiments

to evaluate the effectiveness of the proposed co-scheduling algorithms. The re-

sults show that i) the proposed algorithms can find the optimal co-scheduling

solution for both serial and parallel jobs, ii) the proposed optimization mea-

sures can significantly increase the scheduling efficiency, and iii) the proposed

approximation technique is effective in the sense that it is able to balance the

scheduling efficiency and the solution quality.

165

6. Conclusions and Further Work

6.2 WolfPath: Accelerating the graphs with lay-

ered structure by GPU

In chapter 4, we investigate the use of GPU to accelerate our co-scheduling algo-

rithms. Most GPU-based parallel graph processing frameworks employ iterative

processing model. However, by benchmarking the state-of-the-art GPU-based

graph processing frameworks, we observed that the performance of iterative

traversing-based graph algorithms on GPU is limited by the frequent data ex-

change between host and GPU. In order to tackle the problem, we develop a

GPU-based graph framework called WolfPath to accelerate the processing of

iterative traversing-based graph processing algorithms. In WolfPath, the iter-

ative process is guided by the graph diameter to eliminate the frequent data

exchange between host and GPU. To accomplish this goal, WolfPath proposes

a data structure called Layered Edge list to represent the graph, from which

the graph diameter is known before the start of graph processing. In order to

enhance the applicability of our WolfPath framework, a graph preprocessing

algorithm is also developed in this work to convert any graph into the format

of the Layered Edge list. We conducted extensive experiments to verify the ef-

fectiveness of WolfPath. The experimental results show that WolfPath achieves

significant speedup over the state-of-the-art GPU-based in-memory and out-of-

memory graph processing frameworks.

6.3 WolfGraph: A General Purpose GPU-based

Large-Scale Graph Processing Framework

Similar to WolfPath, most existing graph processing frameworks require graph

pre-processing before the graph processing algorithm can be applied. The idea

is that although it takes the time to pre-process a graph, the execution of the

graph processing algorithm will take much less time than without pre-processing

and therefore the overall processing time will be reduced significantly. However,

166

6. Conclusions and Further Work

in the state-of-the-art GPU-based graph processing systems, the time spent in

reading the graph from hard disks to memory and in constructing the data

structure in memory constitute a big proportion of the total processing time for

a large graph. Reducing this pre-processing time will improve the overall perfor-

mance of graph processing frameworks. Based on this observation, we proposed

WolfGraph in chapter 5. The main novelty and contribution of WolfGraph are

designing a GPU-based graph processing framework that endures minimal pre-

processing. The WolfGraph adopts the edge-centric processing model, which

iterates over the edges rather than over vertices. The data structure and graph

partition are carefully crafted in WolfGraph so as to reduce the pre-processing

time and to avoid the irregular access to graph edges and allow the fully coa-

lesced memory accesses. Moreover, WolfGraph fully utilizes the GPU power by

processing all edges in parallel. We also developed a new method, called Con-

catenated Edge List (CEL) to process a graph that is bigger than the global

memory of GPU or host memory. Comparing with the existing GPU-based

framework, Wolf Graph can achieve similar execution time while minimal pre-

processing is carried out. Therefore, WolfGraph reduces the overall processing

time significantly.

6.4 Discussion

The co-scheduling work presented in this thesis can benefit the practice of co-

scheduling in two ways. First, it can be used to evaluate various co-scheduling

systems. Most current evaluation of a co-scheduling system compares the system

only to random schedulers. But in the design of a practical co-scheduling system,

it is important to know the room left for improvement. The optimal solution

provides the engineer with a unique insight into how much performance can

be extracted if the system were best tuned. Additionally, knowing the gap

between current and optimal performance can help the scheduler designers to

weight the trade-offs between efficiency and quality. Through the techniques

167

6. Conclusions and Further Work

presented in this work, the optimal schedules can be either attained precisely or

approximated accurately. Second, proactive co-scheduling may directly benefit

from the algorithms proposed in this work. With accurate predictions, the

proactive schedulers may benefit from this work by applying the co-scheduling

algorithms to determine the optimal or near-optimal schedules.

In this thesis, we assume that all co-run performance is given. This assump-

tion can be met in following ways: First, when using our algorithm in evaluating

other co-scheduling systems. This is because the evaluation process can typi-

cally afford the time for collecting all co-run performance. Second, proactive

co-schedulers can predict co-run performance. Although obtaining co-run per-

formance is a time consuming process, but we argue that the time for brute-forth

search for optimal schedules will dominate for large-size problems, because the

search time grows exponentially. On the other hand, the number of co-runs

grows polynomially as the number of jobs increases.

Many programs contain multiple phases during the execution, and each

phase may have different performance (e.g., MapReduce program). In this

work, we assumed that the program execution contains only one phase. But

when using our algorithms for evaluation purpose, the user can simply use one

phase of the programs and consider the co-run parts of their executions only.

The graph processing frameworks presented in this thesis represent two dif-

ferent research directions. WolfPath focuses on improving the computation per-

formance through data pre-processing. On the other hand, WolfGraph tends to

improve the overall execution time by reducing the pre-processing time.

As demonstrated in this thesis and many other researches [76] [146] [90], pre-

processing can improve the computation performance significantly. This is be-

cause through pre-processing, the system designer can enhance the data locality,

which can improve the memory access performance. During the pre-processing,

useful information can be extracted from the data to optimise computation per-

formance. In addition, in distributed system, pre-processing can help reduce the

communication cost. However, the pre-processing will introduce the extra over-

168

6. Conclusions and Further Work

head to the system. As shown in chapter 4, WolfPath achieved 100X speedup

over other state-of-the-art graph processing systems through pre-processing, but

other systems beat the WolfPath in overall execution time. This is because in

WolfPath, pre-processing takes much longer than other systems.

Therefore, extra care needs to be taken when using pre-processing. In fact,

we argue that the pre-processing should only be used when it can improve the

overall performance except following two cases: First, when the data only need

to be pre-processed once. In such situation, the pre-processing is affordable even

it is time consuming, because once it is done, all the subsequently computation

can benefit from it in the future. Second, when the computation cannot proceed

without pre-processing.

The WolfGraph is designed based on the above principle. In WolfGraph,

the pre-processing is limited to read and store the input graph from hard disk

to memory. On the other hand, WolfGraph replies on the carefully designed

data structure, optimised parallel processing model specific to GPU and take

advantage of GPU hardware features to ensure its computation performance is

competitive with other state-of-the-art graph processing systems.

The biggest advantage of the second strategy is that it can guarantee the

sequential access to the hard disk, and fully utilise the storage bandwidth. How-

ever, such strategy is only suitable for shared memory system or distributed sys-

tem with low communication cost. This is because the data locality cannot be

guaranteed in this strategy. Therefore, it requires frequent data exchange/syn-

chronization to ensure correctness of the result. On shared memory system, the

overhead of data exchange/synchronization is relatively low and can be opti-

mised through the carefully designed data structure. For example, X-Stream

[109] uses shuffle buffer to reduce the communication cost in shared memory

systems. On the other hand, in distributed systems, the communication cost is

bounded by network bandwidth, and is much slower than memory access speed.

To our knowledge, Chaos [110] is the only distributed graph processing system

that adapts the second strategy, and it is designed for the small cluster. This is

169

6. Conclusions and Further Work

because the network bandwidth in the small cluster is greater than hard disk’s

I/O bandwidth.

6.5 Further Work

The co-scheduling strategies developed in chapter 3 assume that the underlying

system is homogeneous. However, nowadays the heterogeneous architectures

that bring together CPUs and multiple domain-specific GPUs and FPGAs pro-

vide dramatic speedup for many applications. In such systems, the applications

not only compete for multicore resources, but also compete for accelerators. For

example, when multiple GPU accelerated applications are running on the same

node, the GPU is time shared among these applications, because GPU can-

not execute the kernels from different context concurrently. In such situation,

the challenge lies in utilizing these heterogeneous processors to optimize overall

application performance by minimizing workload completion time [8]. In the

future, we plan to explore the possibility to extend our models to tackle such

systems. Also, given the popularity of cloud systems, we plan to extend our co-

scheduling methods to solve the optimal mapping of virtual machines (VM) on

physical machines. The main extension is to allow the VM migrations between

physical machines.

The graph processing systems can be extended in the following ways: first,

although being accelerated with GPU, the processing capacity of a single ma-

chine is still limited. Some problems require the processing power or storage

capacity of a cluster. The intuitive method to process a graph in a cluster is to

assign an edge block to a node in the cluster. After one iteration, the synchroni-

sation is performed among all cluster nodes. The problem for such design is that

the amount of data transferred over the network is very large. Although using

advanced graph partitioning methods can solve this problem, this also leads to

long pre-processing time, which contradicts to the design philosophy of Wolf-

Graph. Hence, we plan to investigate how to reduce the network communication

170

6. Conclusions and Further Work

without introducing too much pre-processing overhead.

It has been shown that the graphs in real-world applications exhibit signif-

icant topological differences [82]. The graph topology affects the performance

of specific GPU implementations. This feature of graph data makes it dif-

ficult to design a GPU implementation that is optimal on a large variety of

datasets. Therefore, we plan to explore the possibility of using an adaptive

approach that takes into account the topological characteristics of the graphs

to dynamically select the most suitable graph representation, graph partition,

computation model and so on.

171

Bibliography

[1] perf: Linux profiling with performance counters.

https://perf.wiki.kernel.org/. URL https://perf.wiki.kernel.

org/index.php/Main_Page. Accessed: 18.04.2014.

[2] GLPK (GNU linear programming kit), 2006. URL http://www.gnu.org/

software/glpk.

[3] IBM ILOG CPLEX Optimizer. http://www-

01.ibm.com/software/integration/optimization/cplex-optimizer/, Last

2010.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of

cloud computing. Commun. ACM, 53(4):50–58, Apr. 2010. ISSN 0001-

0782. doi: 10.1145/1721654.1721672. URL http://doi.acm.org/10.

1145/1721654.1721672.

[5] C. Avery. Giraph: Large-scale graph processing infrastructure on hadoop.

Proceedings of the Hadoop Summit. Santa Clara, 2011.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, et al. The nas parallel benchmarks. International Journal

of High Performance Computing Applications, 5(3):63–73, 1991.

[7] M. Banikazemi, D. Poff, and B. Abali. Pam: A novel performance/power

172

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672

BIBLIOGRAPHY

aware meta-scheduler for multi-core systems. In Proceedings of the 2008

ACM/IEEE Conference on Supercomputing, SC ’08, pages 39:1–39:12,

Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9. URL

http://dl.acm.org/citation.cfm?id=1413370.1413410.

[8] M. E. Belviranli, L. N. Bhuyan, and R. Gupta. A dynamic self-

scheduling scheme for heterogeneous multiprocessor architectures. ACM

Trans. Archit. Code Optim., 9(4):57:1–57:20, Jan. 2013. ISSN 1544-

3566. doi: 10.1145/2400682.2400716. URL http://doi.acm.org/10.

1145/2400682.2400716.

[9] K. Beyls and E. H. D’Hollander. Refactoring for data locality. Computer,

42(2):62–71, Feb. 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.57. URL

http://dx.doi.org/10.1109/MC.2009.57.

[10] A. Bialecki, M. Cafarella, D. Cutting, and O. OMALLEY. Hadoop: a

framework for running applications on large clusters built of commodity

hardware. Wiki at http://lucene. apache. org/hadoop, 11, 2005.

[11] S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contention-aware schedul-

ing on multicore systems. ACM Trans. Comput. Syst., 28(4):8:1–8:45,

Dec. 2010. ISSN 0734-2071. doi: 10.1145/1880018.1880019. URL

http://doi.acm.org/10.1145/1880018.1880019.

[12] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali. A case for

numa-aware contention management on multicore systems. In Proceed-

ings of the 19th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’10, pages 557–558, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0178-7. doi: 10.1145/1854273.1854350.

URL http://doi.acm.org/10.1145/1854273.1854350.

[13] P. Boldi and S. Vigna. The WebGraph framework I: Compression tech-

niques. In Proc. of the Thirteenth International World Wide Web Confer-

ence (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

173

http://dl.acm.org/citation.cfm?id=1413370.1413410
http://doi.acm.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/2400682.2400716
http://dx.doi.org/10.1109/MC.2009.57
http://doi.acm.org/10.1145/1880018.1880019
http://doi.acm.org/10.1145/1854273.1854350

BIBLIOGRAPHY

[14] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propaga-

tion: A multiresolution coordinate-free ordering for compressing social

networks. In S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra,

E. Bertino, and R. Kumar, editors, Proceedings of the 20th international

conference on World Wide Web, pages 587–596. ACM Press, 2011.

[15] F. Busato and N. Bombieri. Bfs-4k: An efficient implementation of bfs for

kepler gpu architectures. IEEE Transactions on Parallel and Distributed

Systems, 26(7):1826–1838, July 2015. ISSN 1045-9219. doi: 10.1109/

TPDS.2014.2330597.

[16] C. Cascaval, L. D. Rose, D. A. Padua, and D. A. Reed. Compile-time

based performance prediction. In Proceedings of the 12th International

Workshop on Languages and Compilers for Parallel Computing, LCPC

’99, pages 365–379, London, UK, UK, 2000. Springer-Verlag. ISBN 3-540-

67858-1. URL http://dl.acm.org/citation.cfm?id=645677.663790.

[17] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,

and J. Zhou. Scope: Easy and efficient parallel processing of massive data

sets. Proc. VLDB Endow., 1(2):1265–1276, Aug. 2008. ISSN 2150-8097.

doi: 10.14778/1454159.1454166. URL http://dx.doi.org/10.14778/

1454159.1454166.

[18] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for

graph mining. In Proceedings of the 2004 SIAM International Conference

on Data Mining, pages 442–446. doi: 10.1137/1.9781611972740.43. URL

http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43.

[19] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread

cache contention on a chip multi-processor architecture. In Proceedings

of the 11th International Symposium on High-Performance Computer Ar-

chitecture, HPCA ’05, pages 340–351, Washington, DC, USA, 2005. IEEE

174

http://dl.acm.org/citation.cfm?id=645677.663790
http://dx.doi.org/10.14778/1454159.1454166
http://dx.doi.org/10.14778/1454159.1454166
http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43

BIBLIOGRAPHY

Computer Society. ISBN 0-7695-2275-0. doi: 10.1109/HPCA.2005.27.

URL http://dx.doi.org/10.1109/HPCA.2005.27.

[20] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip mul-

tiprocessors. In Proceedings of the 21st Annual International Conference

on Supercomputing, ICS ’07, pages 242–252, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-768-1. doi: 10.1145/1274971.1275005. URL

http://doi.acm.org/10.1145/1274971.1275005.

[21] X. E. Chen and T. Aamodt. Modeling cache contention and throughput

of multiprogrammed manycore processors. IEEE Trans. Comput., 61(7):

913–927, July 2012. ISSN 0018-9340. doi: 10.1109/TC.2011.141. URL

http://dx.doi.org/10.1109/TC.2011.141.

[22] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, and C. He. Venus: Vertex-

centric streamlined graph computation on a single pc. In 2015 IEEE 31st

International Conference on Data Engineering, pages 1131–1142, April

2015. doi: 10.1109/ICDE.2015.7113362.

[23] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrish-

nan. One trillion edges: Graph processing at facebook-scale. Proc.

VLDB Endow., 8(12):1804–1815, Aug. 2015. ISSN 2150-8097. doi: 10.

14778/2824032.2824077. URL http://dx.doi.org/10.14778/2824032.

2824077.

[24] C.-L. Chou and R. Marculescu. Contention-aware application mapping

for network-on-chip communication architectures. In Computer Design,

2008. ICCD 2008. IEEE International Conference on, pages 164–169, Oct

2008. doi: 10.1109/ICCD.2008.4751856.

[25] T. Clinkenbeard and A. Nica. Job scheduling with minimizing data

communication costs. In Proceedings of the 2015 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’15, pages

175

http://dx.doi.org/10.1109/HPCA.2005.27
http://doi.acm.org/10.1145/1274971.1275005
http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.14778/2824032.2824077
http://dx.doi.org/10.14778/2824032.2824077

BIBLIOGRAPHY

2071–2072, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-

9. doi: 10.1145/2723372.2764943. URL http://doi.acm.org/10.1145/

2723372.2764943.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN

0262033844, 9780262033848.

[27] N. Corporation. NVIDIA CUDA C Programming Guide. NVIDIA Cor-

poration, 2701 San Tomas Expressway, Santa Clara, CA 95050, ver-

sion 7.5 edition, 2015. URL http://developer.download.nvidia.com/

compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf.

[28] S. Darbha and D. P. Agrawal. Optimal scheduling algorithm for

distributed-memory machines. IEEE Trans. Parallel Distrib. Syst., 9

(1):87–95, Jan. 1998. ISSN 1045-9219. doi: 10.1109/71.655248. URL

http://dx.doi.org/10.1109/71.655248.

[29] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient par-

allel gpu methods for single-source shortest paths. In Proceedings of the

2014 IEEE 28th International Parallel and Distributed Processing Sym-

posium, IPDPS ’14, pages 349–359, Washington, DC, USA, 2014. IEEE

Computer Society. ISBN 978-1-4799-3800-1. doi: 10.1109/IPDPS.2014.45.

URL http://dx.doi.org/10.1109/IPDPS.2014.45.

[30] T. de Gooijer and K. E. Harper. Experiences with modeling memory

contention for multi-core industrial real-time systems. In Proceedings of

the 10th International ACM Sigsoft Conference on Quality of Software

Architectures, QoSA ’14, pages 43–52, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-2576-9. doi: 10.1145/2602576.2602584. URL http://

doi.acm.org/10.1145/2602576.2602584.

[31] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, Jan. 2008. ISSN 0001-

176

http://doi.acm.org/10.1145/2723372.2764943
http://doi.acm.org/10.1145/2723372.2764943
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://dx.doi.org/10.1109/71.655248
http://dx.doi.org/10.1109/IPDPS.2014.45
http://doi.acm.org/10.1145/2602576.2602584
http://doi.acm.org/10.1145/2602576.2602584

BIBLIOGRAPHY

0782. doi: 10.1145/1327452.1327492. URL http://doi.acm.org/10.

1145/1327452.1327492.

[32] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-

aware cluster management. In Proceedings of the 19th International Con-

ference on Architectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’14, pages 127–144, New York, NY, USA, 2014.

ACM. ISBN 978-1-4503-2305-5. doi: 10.1145/2541940.2541941. URL

http://doi.acm.org/10.1145/2541940.2541941.

[33] M. Diener, E. H. M. Cruz, and P. O. A. Navaux. Locality vs. balance:

Exploring data mapping policies on numa systems. In 2015 23rd Euromi-

cro International Conference on Parallel, Distributed, and Network-Based

Processing, pages 9–16, March 2015. doi: 10.1109/PDP.2015.11.

[34] D. Eklov, D. Black-Schaffer, and E. Hagersten. Fast modeling of shared

caches in multicore systems. In Proceedings of the 6th International Con-

ference on High Performance and Embedded Architectures and Compil-

ers, HiPEAC ’11, pages 147–157, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0241-8. doi: 10.1145/1944862.1944885. URL http:

//doi.acm.org/10.1145/1944862.1944885.

[35] A. Fedorova, M. Seltzer, and M. Smith. Cache-fair thread scheduling

for multicore processors. Division of Engineering and Applied Sciences,

Harvard University, Tech. Rep. TR-17-06, 2006.

[36] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance isola-

tion on chip multiprocessors via an operating system scheduler. In Pro-

ceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques, PACT ’07, pages 25–38, Washington, DC, USA,

2007. IEEE Computer Society. ISBN 0-7695-2944-5. doi: 10.1109/PACT.

2007.40. URL http://dx.doi.org/10.1109/PACT.2007.40.

[37] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing contention for

177

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/2541940.2541941
http://doi.acm.org/10.1145/1944862.1944885
http://doi.acm.org/10.1145/1944862.1944885
http://dx.doi.org/10.1109/PACT.2007.40

BIBLIOGRAPHY

shared resources on multicore processors. Commun. ACM, 53(2):49–57,

Feb. 2010. ISSN 0001-0782. doi: 10.1145/1646353.1646371. URL http:

//doi.acm.org/10.1145/1646353.1646371.

[38] J. Feliu, S. Petit, J. Sahuquillo, and J. Duato. Cache-hierarchy contention-

aware scheduling in cmps. IEEE Transactions on Parallel and Distributed

Systems, 25(3):581–590, March 2014. ISSN 1045-9219. doi: 10.1109/

TPDS.2013.61.

[39] J. Forrest and R. Lougee-Heimer. CBC User Guide, chapter Chapter 10,

pages 257–277. doi: 10.1287/educ.1053.0020. URL http://pubsonline.

informs.org/doi/abs/10.1287/educ.1053.0020.

[40] Z. Fu, M. Personick, and B. Thompson. Mapgraph: A high level api

for fast development of high performance graph analytics on gpus. In

Proceedings of Workshop on GRAph Data Management Experiences and

Systems, GRADES’14, pages 2:1–2:6, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-2982-8. doi: 10.1145/2621934.2621936. URL http://

doi.acm.org/10.1145/2621934.2621936.

[41] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch,

S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Re-

hfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, S. Vigerske,

D. Weninger, M. Winkler, J. T. Witt, and J. Witzig. The scip optimiza-

tion suite 3.2. Technical Report 15-60, ZIB, Takustr.7, 14195 Berlin, 2016.

[42] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu. A yoke

of oxen and a thousand chickens for heavy lifting graph processing. In Pro-

ceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques, PACT ’12, pages 345–354, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1182-3. doi: 10.1145/2370816.2370866.

URL http://doi.acm.org/10.1145/2370816.2370866.

[43] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:

178

http://doi.acm.org/10.1145/1646353.1646371
http://doi.acm.org/10.1145/1646353.1646371
http://pubsonline.informs.org/doi/abs/10.1287/educ.1053.0020
http://pubsonline.informs.org/doi/abs/10.1287/educ.1053.0020
http://doi.acm.org/10.1145/2621934.2621936
http://doi.acm.org/10.1145/2621934.2621936
http://doi.acm.org/10.1145/2370816.2370866

BIBLIOGRAPHY

Distributed graph-parallel computation on natural graphs. In Proceedings

of the 10th USENIX Conference on Operating Systems Design and Imple-

mentation, OSDI’12, pages 17–30, Berkeley, CA, USA, 2012. USENIX As-

sociation. ISBN 978-1-931971-96-6. URL http://dl.acm.org/citation.

cfm?id=2387880.2387883.

[44] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and

I. Stoica. Graphx: Graph processing in a distributed dataflow frame-

work. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, OSDI’14, pages 599–613, Berkeley,

CA, USA, 2014. USENIX Association. ISBN 978-1-931971-16-4. URL

http://dl.acm.org/citation.cfm?id=2685048.2685096.

[45] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L.

Willke. How well do graph-processing platforms perform? an empirical

performance evaluation and analysis. In Proceedings of the 2014 IEEE

28th International Parallel and Distributed Processing Symposium, IPDPS

’14, pages 395–404, Washington, DC, USA, 2014. IEEE Computer Society.

ISBN 978-1-4799-3800-1. doi: 10.1109/IPDPS.2014.49. URL http://dx.

doi.org/10.1109/IPDPS.2014.49.

[46] Y. Guo, A. L. Varbanescu, A. Iosup, and D. Epema. An empirical per-

formance evaluation of gpu-enabled graph-processing systems. In 2015

15th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, pages 423–432, May 2015. doi: 10.1109/CCGrid.2015.20.

[47] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing per-

formance isolation across virtual machines in xen. In Proceedings of the

ACM/IFIP/USENIX 2006 International Conference on Middleware, Mid-

dleware ’06, pages 342–362, New York, NY, USA, 2006. Springer-Verlag

New York, Inc. URL http://dl.acm.org/citation.cfm?id=1515984.

1516011.

179

http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://dx.doi.org/10.1109/IPDPS.2014.49
http://dx.doi.org/10.1109/IPDPS.2014.49
http://dl.acm.org/citation.cfm?id=1515984.1516011
http://dl.acm.org/citation.cfm?id=1515984.1516011

BIBLIOGRAPHY

[48] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,

W. Chen, and E. Chen. Chronos: A graph engine for temporal graph

analysis. In Proceedings of the Ninth European Conference on Computer

Systems, EuroSys ’14, pages 1:1–1:14, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-2704-6. doi: 10.1145/2592798.2592799.

[49] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu.

Turbograph: A fast parallel graph engine handling billion-scale graphs

in a single pc. In Proceedings of the 19th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’13,

pages 77–85, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2174-

7. doi: 10.1145/2487575.2487581. URL http://doi.acm.org/10.1145/

2487575.2487581.

[50] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the

gpu using cuda. In Proceedings of the 14th International Conference on

High Performance Computing, HiPC’07, pages 197–208. Springer-Verlag,

Berlin, Heidelberg, 2007. ISBN 3-540-77219-7, 978-3-540-77219-4. URL

http://dl.acm.org/citation.cfm?id=1782174.1782200.

[51] A.-H. Haritatos, G. Goumas, N. Anastopoulos, K. Nikas, K. Kourtis, and

N. Koziris. Lca: A memory link and cache-aware co-scheduling approach

for cmps. In Proceedings of the 23rd International Conference on Paral-

lel Architectures and Compilation, PACT ’14, pages 469–470, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2809-8. doi: 10.1145/2628071.

2628123. URL http://doi.acm.org/10.1145/2628071.2628123.

[52] L. He, H. Zhu, and S. A. Jarvis. Developing graph-based co-scheduling

algorithms on multicore computers. IEEE Transactions on Parallel and

Distributed Systems, 27(6):1617–1632, June 2016. ISSN 1045-9219. doi:

10.1109/TPDS.2015.2468223.

[53] B. Hendrickson and J. W. Berry. Graph analysis with high-performance

180

http://doi.acm.org/10.1145/2487575.2487581
http://doi.acm.org/10.1145/2487575.2487581
http://dl.acm.org/citation.cfm?id=1782174.1782200
http://doi.acm.org/10.1145/2628071.2628123

BIBLIOGRAPHY

computing. Computing in Science Engineering, 10(2):14–19, March 2008.

ISSN 1521-9615. doi: 10.1109/MCSE.2008.56.

[54] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Com-

put. Archit. News, 34(4):1–17, Sept. 2006. ISSN 0163-5964. doi: 10.

1145/1186736.1186737. URL http://doi.acm.org/10.1145/1186736.

1186737.

[55] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource

sharing in the data center. In Proceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation, NSDI’11, pages 295–

308, Berkeley, CA, USA, 2011. USENIX Association. URL http://dl.

acm.org/citation.cfm?id=1972457.1972488.

[56] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating cuda

graph algorithms at maximum warp. In Proceedings of the 16th ACM

Symposium on Principles and Practice of Parallel Programming, PPoPP

’11, pages 267–276, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0119-0. doi: 10.1145/1941553.1941590. URL http://doi.acm.org/10.

1145/1941553.1941590.

[57] I. Hur and C. Lin. Adaptive history-based memory schedulers. In Proceed-

ings of the 37th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 37, pages 343–354, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7695-2126-6. doi: 10.1109/MICRO.2004.4.

URL http://dx.doi.org/10.1109/MICRO.2004.4.

[58] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and

J. Emer. Adaptive insertion policies for managing shared caches. In

Proceedings of the 17th International Conference on Parallel Architec-

tures and Compilation Techniques, PACT ’08, pages 208–219, New York,

181

http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://doi.acm.org/10.1145/1941553.1941590
http://doi.acm.org/10.1145/1941553.1941590
http://dx.doi.org/10.1109/MICRO.2004.4

BIBLIOGRAPHY

NY, USA, 2008. ACM. ISBN 978-1-60558-282-5. doi: 10.1145/1454115.

1454145. URL http://doi.acm.org/10.1145/1454115.1454145.

[59] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approximation

of optimal co-scheduling on chip multiprocessors. In Proceedings of the

17th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’08, pages 220–229, New York, NY, USA, 2008. ACM.

ISBN 978-1-60558-282-5. doi: 10.1145/1454115.1454146. URL http://

doi.acm.org/10.1145/1454115.1454146.

[60] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with on-

line proactive job co-scheduling in chip multiprocessors. In Proceed-

ings of the 5th International Conference on High Performance Embed-

ded Architectures and Compilers, HiPEAC’10, pages 201–215, Berlin, Hei-

delberg, 2010. Springer-Verlag. ISBN 3-642-11514-4, 978-3-642-11514-1.

doi: 10.1007/978-3-642-11515-8 16. URL http://dx.doi.org/10.1007/

978-3-642-11515-8_16.

[61] Y. Jiang, K. Tian, X. Shen, J. Zhang, J. Chen, and R. Tripathi. The

complexity of optimal job co-scheduling on chip multiprocessors and

heuristics-based solutions. IEEE Trans. Parallel Distrib. Syst., 22(7):

1192–1205, July 2011. ISSN 1045-9219. doi: 10.1109/TPDS.2010.193.

URL http://dx.doi.org/10.1109/TPDS.2010.193.

[62] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale

graph mining system implementation and observations. In Proceedings of

the 2009 Ninth IEEE International Conference on Data Mining, ICDM

’09, pages 229–238, Washington, DC, USA, 2009. IEEE Computer Society.

ISBN 978-0-7695-3895-2. doi: 10.1109/ICDM.2009.14. URL http://dx.

doi.org/10.1109/ICDM.2009.14.

[63] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec.

Hadi: Mining radii of large graphs. ACM Trans. Knowl. Discov. Data, 5

182

http://doi.acm.org/10.1145/1454115.1454145
http://doi.acm.org/10.1145/1454115.1454146
http://doi.acm.org/10.1145/1454115.1454146
http://dx.doi.org/10.1007/978-3-642-11515-8_16
http://dx.doi.org/10.1007/978-3-642-11515-8_16
http://dx.doi.org/10.1109/TPDS.2010.193
http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1109/ICDM.2009.14

BIBLIOGRAPHY

(2):8:1–8:24, Feb. 2011. ISSN 1556-4681. doi: 10.1145/1921632.1921634.

URL http://doi.acm.org/10.1145/1921632.1921634.

[64] A. Khan and S. Elnikety. Systems for big-graphs. Proc. VLDB Endow.,

7(13):1709–1710, Aug. 2014. ISSN 2150-8097. doi: 10.14778/2733004.

2733067. URL http://dx.doi.org/10.14778/2733004.2733067.

[65] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha: Vertex-

centric graph processing on gpus. In Proceedings of the 23rd Interna-

tional Symposium on High-performance Parallel and Distributed Com-

puting, HPDC ’14, pages 239–252, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-2749-7. doi: 10.1145/2600212.2600227. URL http:

//doi.acm.org/10.1145/2600212.2600227.

[66] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable simd-efficient graph

processing on gpus. In Proceedings of the 2015 International Conference

on Parallel Architecture and Compilation (PACT), PACT ’15, pages 39–

50, Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-

4673-9524-3. doi: 10.1109/PACT.2015.15.

[67] H.-S. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu. Locality-

centric thread scheduling for bulk-synchronous programming models on

cpu architectures. In Proceedings of the 13th Annual IEEE/ACM In-

ternational Symposium on Code Generation and Optimization, CGO ’15,

pages 257–268, Washington, DC, USA, 2015. IEEE Computer Society.

ISBN 978-1-4799-8161-8. URL http://dl.acm.org/citation.cfm?id=

2738600.2738632.

[68] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in

a chip multiprocessor architecture. In Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques, PACT

’04, pages 111–122, Washington, DC, USA, 2004. IEEE Computer Society.

183

http://doi.acm.org/10.1145/1921632.1921634
http://dx.doi.org/10.14778/2733004.2733067
http://doi.acm.org/10.1145/2600212.2600227
http://doi.acm.org/10.1145/2600212.2600227
http://dl.acm.org/citation.cfm?id=2738600.2738632
http://dl.acm.org/citation.cfm?id=2738600.2738632

BIBLIOGRAPHY

ISBN 0-7695-2229-7. doi: 10.1109/PACT.2004.15. URL http://dx.doi.

org/10.1109/PACT.2004.15.

[69] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os obser-

vations to improve performance in multicore systems. IEEE Micro, 28

(3):54–66, May 2008. ISSN 0272-1732. doi: 10.1109/MM.2008.48. URL

http://dx.doi.org/10.1109/MM.2008.48.

[70] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os obser-

vations to improve performance in multicore systems. IEEE Micro, 28

(3):54–66, May 2008. ISSN 0272-1732. doi: 10.1109/MM.2008.48. URL

http://dx.doi.org/10.1109/MM.2008.48.

[71] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An

analysis of performance interference effects in virtual environments. In

2007 IEEE International Symposium on Performance Analysis of Systems

Software, pages 200–209, April 2007. doi: 10.1109/ISPASS.2007.363750.

[72] E. Kontoghiorghes. Handbook of Parallel Computing and Statistics. Chap-

man & Hall/CRC, 2005. ISBN 082474067X.

[73] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network

or a news media? In Proceedings of the 19th International Conference on

World Wide Web, WWW ’10, pages 591–600, New York, NY, USA, 2010.

ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772751. URL

http://doi.acm.org/10.1145/1772690.1772751.

[74] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task

graph scheduling algorithms. J. Parallel Distrib. Comput., 59(3):381–

422, Dec. 1999. ISSN 0743-7315. doi: 10.1006/jpdc.1999.1578. URL

http://dx.doi.org/10.1006/jpdc.1999.1578.

[75] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating

directed task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–

184

http://dx.doi.org/10.1109/PACT.2004.15
http://dx.doi.org/10.1109/PACT.2004.15
http://dx.doi.org/10.1109/MM.2008.48
http://dx.doi.org/10.1109/MM.2008.48
http://doi.acm.org/10.1145/1772690.1772751
http://dx.doi.org/10.1006/jpdc.1999.1578

BIBLIOGRAPHY

471, Dec. 1999. ISSN 0360-0300. doi: 10.1145/344588.344618. URL

http://doi.acm.org/10.1145/344588.344618.

[76] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph

computation on just a pc. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation, OSDI’12, pages 31–46,

Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-1-931971-96-6.

URL http://dl.acm.org/citation.cfm?id=2387880.2387884.

[77] L. L. N. Laboratory. MPI Pi Reduce, 2016 (Accessed 22 Dec.

2016). URL https://computing.llnl.gov/tutorials/mpi/samples/

C/mpi_pi_reduce.c.

[78] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: A

method for solving graph problems in mapreduce. In Proceedings of

the Twenty-third Annual ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA ’11, pages 85–94, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0743-7. doi: 10.1145/1989493.1989505. URL

http://doi.acm.org/10.1145/1989493.1989505.

[79] M. Lee and K. Schwan. Region scheduling: Efficiently using the cache

architectures via page-level affinity. In Proceedings of the Seventeenth

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVII, pages 451–462, New York,

NY, USA, 2012. ACM. ISBN 978-1-4503-0759-8. doi: 10.1145/2150976.

2151023. URL http://doi.acm.org/10.1145/2150976.2151023.

[80] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[81] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and

graph-mining library. ACM Trans. Intell. Syst. Technol., 8(1):1:1–1:20,

July 2016. ISSN 2157-6904. doi: 10.1145/2898361. URL http://doi.

acm.org/10.1145/2898361.

185

http://doi.acm.org/10.1145/344588.344618
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_pi_reduce.c
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_pi_reduce.c
http://doi.acm.org/10.1145/1989493.1989505
http://doi.acm.org/10.1145/2150976.2151023
http://snap.stanford.edu/data
http://doi.acm.org/10.1145/2898361
http://doi.acm.org/10.1145/2898361

BIBLIOGRAPHY

[82] D. Li and M. Becchi. Deploying graph algorithms on gpus: An adap-

tive solution. In Proceedings of the 2013 IEEE 27th International Sympo-

sium on Parallel and Distributed Processing, IPDPS ’13, pages 1013–1024,

Washington, DC, USA, 2013. IEEE Computer Society. ISBN 978-0-7695-

4971-2. doi: 10.1109/IPDPS.2013.101. URL http://dx.doi.org/10.

1109/IPDPS.2013.101.

[83] Y. Liang and T. Mitra. Cache modeling in probabilistic execution time

analysis. In Proceedings of the 45th Annual Design Automation Con-

ference, DAC ’08, pages 319–324, New York, NY, USA, 2008. ACM.

ISBN 978-1-60558-115-6. doi: 10.1145/1391469.1391551. URL http:

//doi.acm.org/10.1145/1391469.1391551.

[84] G. H. Loh. 3d-stacked memory architectures for multi-core processors. In

Proceedings of the 35th Annual International Symposium on Computer Ar-

chitecture, ISCA ’08, pages 453–464, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3174-8. doi: 10.1109/ISCA.2008.15.

URL http://dx.doi.org/10.1109/ISCA.2008.15.

[85] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.

Hellerstein. Graphlab: A new framework for parallel machine learning.

CoRR, abs/1006.4990, 2010. URL http://arxiv.org/abs/1006.4990.

[86] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.

Hellerstein. Distributed graphlab: A framework for machine learning and

data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, Apr. 2012.

ISSN 2150-8097. doi: 10.14778/2212351.2212354. URL http://dx.doi.

org/10.14778/2212351.2212354.

[87] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph

computing systems: An experimental evaluation. Proc. VLDB Endow., 8

(3):281–292, Nov. 2014. ISSN 2150-8097. doi: 10.14778/2735508.2735517.

URL http://dx.doi.org/10.14778/2735508.2735517.

186

http://dx.doi.org/10.1109/IPDPS.2013.101
http://dx.doi.org/10.1109/IPDPS.2013.101
http://doi.acm.org/10.1145/1391469.1391551
http://doi.acm.org/10.1145/1391469.1391551
http://dx.doi.org/10.1109/ISCA.2008.15
http://arxiv.org/abs/1006.4990
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2735508.2735517

BIBLIOGRAPHY

[88] A. LUMSDAINE, D. GREGOR, B. HENDRICKSON, and J. BERRY.

Challenges in parallel graph processing. Parallel Processing Letters, 17

(01):5–20, 2007. doi: 10.1142/S0129626407002843. URL http://www.

worldscientific.com/doi/abs/10.1142/S0129626407002843.

[89] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,

R. Rabenseifner, and D. Takahashi. The hpc challenge (hpcc) benchmark

suite. In Proceedings of the 2006 ACM/IEEE Conference on Supercom-

puting, SC ’06, New York, NY, USA, 2006. ACM. ISBN 0-7695-2700-

0. doi: 10.1145/1188455.1188677. URL http://doi.acm.org/10.1145/

1188455.1188677.

[90] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. Llama: Efficient

graph analytics using large multiversioned arrays. In 2015 IEEE 31st

International Conference on Data Engineering, pages 363–374, April 2015.

doi: 10.1109/ICDE.2015.7113298.

[91] N. Maclaren. Mandelbrot set, 2016 (Accessed 22 Dec. 2016). URL http:

//people.ds.cam.ac.uk/nmm1/MPI/Programs/mandelbrot.c.

[92] Z. Majo and T. R. Gross. Memory management in numa multicore

systems: Trapped between cache contention and interconnect overhead.

SIGPLAN Not., 46(11):11–20, June 2011. ISSN 0362-1340. doi: 10.

1145/2076022.1993481. URL http://doi.acm.org/10.1145/2076022.

1993481.

[93] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: A system for large-scale graph processing.

In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.1807184.

URL http://doi.acm.org/10.1145/1807167.1807184.

187

http://www.worldscientific.com/doi/abs/10.1142/S0129626407002843
http://www.worldscientific.com/doi/abs/10.1142/S0129626407002843
http://doi.acm.org/10.1145/1188455.1188677
http://doi.acm.org/10.1145/1188455.1188677
http://people.ds.cam.ac.uk/nmm1/MPI/Programs/mandelbrot.c
http://people.ds.cam.ac.uk/nmm1/MPI/Programs/mandelbrot.c
http://doi.acm.org/10.1145/2076022.1993481
http://doi.acm.org/10.1145/2076022.1993481
http://doi.acm.org/10.1145/1807167.1807184

BIBLIOGRAPHY

[94] E. P. Markatos and T. J. LeBlanc. Load balancing vs. locality manage-

ment in shared-memory multiprocessors. Technical report, Rochester, NY,

USA, 1991.

[95] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up:

Increasing utilization in modern warehouse scale computers via sensible

co-locations. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-44, pages 248–259, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-1053-6. doi: 10.1145/2155620.

2155650. URL http://doi.acm.org/10.1145/2155620.2155650.

[96] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation

techniques for storage hierarchies. IBM Syst. J., 9(2):78–117, June 1970.

ISSN 0018-8670. doi: 10.1147/sj.92.0078. URL http://dx.doi.org/10.

1147/sj.92.0078.

[97] A. Merkel and F. Bellosa. Task activity vectors: A new metric for

temperature-aware scheduling. SIGOPS Oper. Syst. Rev., 42(4):1–12,

Apr. 2008. ISSN 0163-5980. doi: 10.1145/1357010.1352594. URL

http://doi.acm.org/10.1145/1357010.1352594.

[98] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious scheduling for en-

ergy efficiency on multicore processors. In Proceedings of the 5th European

Conference on Computer Systems, EuroSys ’10, pages 153–166, New York,

NY, USA, 2010. ACM. ISBN 978-1-60558-577-2. doi: 10.1145/1755913.

1755930. URL http://doi.acm.org/10.1145/1755913.1755930.

[99] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.

In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’12, pages 117–128, New York,

NY, USA, 2012. ACM. ISBN 978-1-4503-1160-1. doi: 10.1145/2145816.

2145832. URL http://doi.acm.org/10.1145/2145816.2145832.

[100] M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski. Scale-up

188

http://doi.acm.org/10.1145/2155620.2155650
http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1147/sj.92.0078
http://doi.acm.org/10.1145/1357010.1352594
http://doi.acm.org/10.1145/1755913.1755930
http://doi.acm.org/10.1145/2145816.2145832

BIBLIOGRAPHY

x scale-out: A case study using nutch/lucene. In 2007 IEEE International

Parallel and Distributed Processing Symposium, pages 1–8, March 2007.

doi: 10.1109/IPDPS.2007.370631.

[101] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: En-

hancing both performance and fairness of shared dram systems. In Pro-

ceedings of the 35th Annual International Symposium on Computer Ar-

chitecture, ISCA ’08, pages 63–74, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3174-8. doi: 10.1109/ISCA.2008.7.

URL http://dx.doi.org/10.1109/ISCA.2008.7.

[102] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In

Proceedings of the 34th Annual International Symposium on Computer

Architecture, ISCA ’07, pages 57–68, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-706-3. doi: 10.1145/1250662.1250671. URL http://

doi.acm.org/10.1145/1250662.1250671.

[103] A. Nisar, W.-k. Liao, and A. Choudhary. Scaling parallel i/o perfor-

mance through i/o delegate and caching system. In Proceedings of the

2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 9:1–9:12,

Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9. URL

http://dl.acm.org/citation.cfm?id=1413370.1413380.

[104] D. A. Patterson and J. L. Hennessy. Computer Organization and Design,

Fourth Edition, Fourth Edition: The Hardware/Software Interface (The

Morgan Kaufmann Series in Computer Architecture and Design). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 4th edition, 2008.

ISBN 0123744938, 9780123744937.

[105] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison, P. Shah,

and J. Leskovec. Ringo: Interactive graph analytics on big-memory ma-

chines. In Proceedings of the 2015 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’15, pages 1105–1110, New York,

189

http://dx.doi.org/10.1109/ISCA.2008.7
http://doi.acm.org/10.1145/1250662.1250671
http://doi.acm.org/10.1145/1250662.1250671
http://dl.acm.org/citation.cfm?id=1413370.1413380

BIBLIOGRAPHY

NY, USA, 2015. ACM. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.

2735369.

[106] S. J. Plimpton and K. D. Devine. Mapreduce in {MPI} for large-scale

graph algorithms. Parallel Computing, 37(9):610 – 632, 2011. ISSN 0167-

8191. Emerging Programming Paradigms for Large-Scale Scientific Com-

puting.

[107] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for

mlp-aware cache replacement. SIGARCH Comput. Archit. News, 34(2):

167–178, 2006. ISSN 0163-5964. doi: 10.1145/1150019.1136501.

[108] J. S. Rosenthal. Parallel computing and monte carlo algorithms. Far east

journal of theoretical statistics, 4(2):207–236, 2000.

[109] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric graph

processing using streaming partitions. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,

pages 472–488, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2388-

8. doi: 10.1145/2517349.2522740. URL http://doi.acm.org/10.1145/

2517349.2522740.

[110] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos: Scale-

out graph processing from secondary storage. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15, pages 410–424,

New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3834-9. doi: 10.1145/

2815400.2815408.

[111] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath. Pac-

man: Performance aware virtual machine consolidation. In Proceed-

ings of the 10th International Conference on Autonomic Computing

(ICAC 13), pages 83–94, San Jose, CA, 2013. USENIX. ISBN 978-

1-931971-02-7. URL https://www.usenix.org/conference/icac13/

technical-sessions/presentation/roytman.

190

http://doi.acm.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2517349.2522740
https://www.usenix.org/conference/icac13/technical-sessions/presentation/roytman
https://www.usenix.org/conference/icac13/technical-sessions/presentation/roytman

BIBLIOGRAPHY

[112] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and

W.-m. W. Hwu. Optimization principles and application performance

evaluation of a multithreaded gpu using cuda. In Proceedings of the

13th ACM SIGPLAN Symposium on Principles and Practice of Paral-

lel Programming, PPoPP ’08, pages 73–82, New York, NY, USA, 2008.

ACM. ISBN 978-1-59593-795-7. doi: 10.1145/1345206.1345220. URL

http://doi.acm.org/10.1145/1345206.1345220.

[113] S. Salihoglu and J. Widom. Gps: A graph processing system. In Pro-

ceedings of the 25th International Conference on Scientific and Statistical

Database Management, SSDBM, pages 22:1–22:12, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-1921-8. doi: 10.1145/2484838.2484843.

URL http://doi.acm.org/10.1145/2484838.2484843.

[114] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega:

Flexible, scalable schedulers for large compute clusters. In Proceedings of

the 8th ACM European Conference on Computer Systems, EuroSys ’13,

pages 351–364, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1994-

2. doi: 10.1145/2465351.2465386. URL http://doi.acm.org/10.1145/

2465351.2465386.

[115] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. Graphreduce: Pro-

cessing large-scale graphs on accelerator-based systems. In Proceedings of

the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, SC ’15, pages 28:1–28:12, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3723-6. doi: 10.1145/2807591.2807655.

URL http://doi.acm.org/10.1145/2807591.2807655.

[116] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine

on a memory cloud. In Proceedings of the 2013 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’13, pages

505–516, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-

191

http://doi.acm.org/10.1145/1345206.1345220
http://doi.acm.org/10.1145/2484838.2484843
http://doi.acm.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2807591.2807655

BIBLIOGRAPHY

5. doi: 10.1145/2463676.2467799. URL http://doi.acm.org/10.1145/

2463676.2467799.

[117] K. Shirahata, H. Sato, T. Suzumura, and S. Matsuoka. A scalable imple-

mentation of a mapreduce-based graph processing algorithm for large-scale

heterogeneous supercomputers. In 2013 13th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing, pages 277–284, May

2013. doi: 10.1109/CCGrid.2013.85.

[118] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing frame-

work for shared memory. In Proceedings of the 18th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP

’13, pages 135–146, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-

1922-5. doi: 10.1145/2442516.2442530. URL http://doi.acm.org/10.

1145/2442516.2442530.

[119] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel

processing of compressed graphs with ligra+. In Proceedings of the 2015

Data Compression Conference, DCC ’15, pages 403–412, Washington, DC,

USA, 2015. IEEE Computer Society. ISBN 978-1-4799-8430-5. doi: 10.

1109/DCC.2015.8. URL http://dx.doi.org/10.1109/DCC.2015.8.

[120] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive set pinning:

Managing shared caches in chip multiprocessors. In Proceedings of the

13th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIII, pages 135–144, New

York, NY, USA, 2008. ACM. doi: 10.1145/1346281.1346299.

[121] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive set pinning: Man-

aging shared caches in chip multiprocessors. SIGARCH Comput. Archit.

News, 36(1):135–144, mar 2008. ISSN 0163-5964. doi: 10.1145/1353534.

1346299. URL http://doi.acm.org/10.1145/1353534.1346299.

[122] S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and M. Kandemir. A

192

http://doi.acm.org/10.1145/2463676.2467799
http://doi.acm.org/10.1145/2463676.2467799
http://doi.acm.org/10.1145/2442516.2442530
http://doi.acm.org/10.1145/2442516.2442530
http://dx.doi.org/10.1109/DCC.2015.8
http://doi.acm.org/10.1145/1353534.1346299

BIBLIOGRAPHY

case for integrated processor-cache partitioning in chip multiprocessors. In

Proceedings of the Conference on High Performance Computing Network-

ing, Storage and Analysis, SC ’09, pages 6:1–6:12, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-744-8. doi: 10.1145/1654059.1654066.

URL http://doi.acm.org/10.1145/1654059.1654066.

[123] G. Staples. Torque resource manager. In Proceedings of the 2006

ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA,

2006. ACM. ISBN 0-7695-2700-0. doi: 10.1145/1188455.1188464. URL

http://doi.acm.org/10.1145/1188455.1188464.

[124] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming

standard for heterogeneous computing systems. IEEE Des. Test, 12(3):

66–73, May 2010. ISSN 0740-7475. doi: 10.1109/MCSE.2010.69. URL

http://dx.doi.org/10.1109/MCSE.2010.69.

[125] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme

for memory-aware scheduling and partitioning. In Proceedings of the 8th

International Symposium on High-Performance Computer Architecture,

HPCA ’02, pages 117–, Washington, DC, USA, 2002. IEEE Computer

Society. URL http://dl.acm.org/citation.cfm?id=874076.876484.

[126] S. Sujan and R. Kanniga Devi. An Efficient Task Scheduling

Scheme in Cloud Computing Using Graph Theory, pages 655–662.

Springer India, New Delhi, 2016. ISBN 978-81-322-2674-1. doi:

10.1007/978-81-322-2674-1 62. URL http://dx.doi.org/10.1007/

978-81-322-2674-1_62.

[127] Q. Tang, T. Basten, M. Geilen, S. Stuijk, and J.-B. Wei. Task-fifo co-

scheduling of streaming applications on mpsocs with predictable memory

hierarchy. In Proceedings of the 2015 15th International Conference on

Application of Concurrency to System Design, ACSD ’15, pages 90–99,

Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-4673-

193

http://doi.acm.org/10.1145/1654059.1654066
http://doi.acm.org/10.1145/1188455.1188464
http://dx.doi.org/10.1109/MCSE.2010.69
http://dl.acm.org/citation.cfm?id=874076.876484
http://dx.doi.org/10.1007/978-81-322-2674-1_62
http://dx.doi.org/10.1007/978-81-322-2674-1_62

BIBLIOGRAPHY

7882-6. doi: 10.1109/ACSD.2015.9. URL http://dx.doi.org/10.1109/

ACSD.2015.9.

[128] K. Tian, Y. Jiang, and X. Shen. A study on optimally co-scheduling jobs

of different lengths on chip multiprocessors. In Proceedings of the 6th ACM

Conference on Computing Frontiers, CF ’09, pages 41–50, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-413-3. doi: 10.1145/1531743.

1531752. URL http://doi.acm.org/10.1145/1531743.1531752.

[129] M. Tolubaeva, Y. Yan, and B. Chapman. Predicting cache contention for

multithread applications at compile time. In 2014 IEEE International

Parallel Distributed Processing Symposium Workshops, pages 624–631,

May 2014. doi: 10.1109/IPDPSW.2014.73.

[130] H. Topcuouglu, S. Hariri, and M.-y. Wu. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE Trans.

Parallel Distrib. Syst., 13(3):260–274, Mar. 2002. ISSN 1045-9219. doi:

10.1109/71.993206. URL http://dx.doi.org/10.1109/71.993206.

[131] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,

33(8):103–111, Aug. 1990. ISSN 0001-0782. doi: 10.1145/79173.79181.

URL http://doi.acm.org/10.1145/79173.79181.

[132] J. Wang, N. Abu-Ghazaleh, and D. Ponomarev. Controlled contention:

Balancing contention and reservation in multicore application scheduling.

In Proceedings of the 2015 IEEE International Parallel and Distributed

Processing Symposium, IPDPS ’15, pages 946–955, Washington, DC, USA,

2015. IEEE Computer Society. ISBN 978-1-4799-8649-1. doi: 10.1109/

IPDPS.2015.62. URL http://dx.doi.org/10.1109/IPDPS.2015.62.

[133] K. Wang, G. Xu, Z. Su, and Y. D. Liu. Graphq: Graph query

processing with abstraction refinement—scalable and programmable an-

alytics over very large graphs on a single pc. In 2015 USENIX

Annual Technical Conference (USENIX ATC 15), pages 387–401,

194

http://dx.doi.org/10.1109/ACSD.2015.9
http://dx.doi.org/10.1109/ACSD.2015.9
http://doi.acm.org/10.1145/1531743.1531752
http://dx.doi.org/10.1109/71.993206
http://doi.acm.org/10.1145/79173.79181
http://dx.doi.org/10.1109/IPDPS.2015.62

BIBLIOGRAPHY

Santa Clara, CA, July 2015. USENIX Association. ISBN 978-

1-931971-225. URL https://www.usenix.org/conference/atc15/

technical-session/presentation/wang-kai.

[134] Y. Wang, Y. Cui, P. Tao, H. Fan, Y. Chen, and Y. Shi. Reducing shared

cache contention by scheduling order adjustment on commodity multi-

cores. In 2011 IEEE International Symposium on Parallel and Distributed

Processing Workshops and Phd Forum, pages 984–992, May 2011. doi:

10.1109/IPDPS.2011.248.

[135] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gun-

rock: A high-performance graph processing library on the gpu. In Proceed-

ings of the 20th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP 2015, pages 265–266, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3205-7. doi: 10.1145/2688500.2688538.

URL http://doi.acm.org/10.1145/2688500.2688538.

[136] J. Weinberg and A. E. Snavely. Accurate memory signatures and syn-

thetic address traces for hpc applications. In Proceedings of the 22Nd

Annual International Conference on Supercomputing, ICS ’08, pages 36–

45, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-158-3. doi: 10.

1145/1375527.1375536. URL http://doi.acm.org/10.1145/1375527.

1375536.

[137] C. Wu, J. Li, D. Xu, P. C. Yew, J. Li, and Z. Wang. Fps: A fair-

progress process scheduling policy on shared-memory multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 26(2):444–454,

Feb 2015. ISSN 1045-9219. doi: 10.1109/TPDS.2014.2306411.

[138] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and

L. Zhou. Gram: Scaling graph computation to the trillions. In Proceedings

of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 408–

195

https://www.usenix.org/conference/atc15/technical-session/presentation/wang-kai
https://www.usenix.org/conference/atc15/technical-session/presentation/wang-kai
http://doi.acm.org/10.1145/2688500.2688538
http://doi.acm.org/10.1145/1375527.1375536
http://doi.acm.org/10.1145/1375527.1375536

BIBLIOGRAPHY

421, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3651-2. doi:

10.1145/2806777.2806849.

[139] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online

qos management for increased utilization in warehouse scale computers.

In Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pages 607–618, New York, NY, USA, 2013. ACM.

ISBN 978-1-4503-2079-5. doi: 10.1145/2485922.2485974. URL http://

doi.acm.org/10.1145/2485922.2485974.

[140] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee. Fast iterative graph

computation: A path centric approach. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’14, pages 401–412, Piscataway, NJ, USA, 2014. IEEE Press.

ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.38. URL http://dx.doi.

org/10.1109/SC.2014.38.

[141] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.

Spark: Cluster computing with working sets. In Proceedings of the 2Nd

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,

pages 10–10, Berkeley, CA, USA, 2010. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1863103.1863113.

[142] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel. Storage

performance virtualization via throughput and latency control. Trans.

Storage, 2(3):283–308, Aug. 2006. ISSN 1553-3077. doi: 10.1145/1168910.

1168913. URL http://doi.acm.org/10.1145/1168910.1168913.

[143] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-

based multicore cache management. In Proceedings of the 4th ACM Eu-

ropean Conference on Computer Systems, EuroSys ’09, pages 89–102,

New York, NY, USA, 2009. ACM. ISBN 978-1-60558-482-9. doi: 10.

196

http://doi.acm.org/10.1145/2485922.2485974
http://doi.acm.org/10.1145/2485922.2485974
http://dx.doi.org/10.1109/SC.2014.38
http://dx.doi.org/10.1109/SC.2014.38
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://doi.acm.org/10.1145/1168910.1168913

BIBLIOGRAPHY

1145/1519065.1519076. URL http://doi.acm.org/10.1145/1519065.

1519076.

[144] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Ama-

rasinghe. Dynamic cache contention detection in multi-threaded ap-

plications. SIGPLAN Not., 46(7):27–38, Mar. 2011. ISSN 0362-1340.

doi: 10.1145/2007477.1952688. URL http://doi.acm.org/10.1145/

2007477.1952688.

[145] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and

A. S. Szalay. Flashgraph: Processing billion-node graphs on an ar-

ray of commodity ssds. In Proceedings of the 13th USENIX Confer-

ence on File and Storage Technologies, FAST’15, pages 45–58, Berkeley,

CA, USA, 2015. USENIX Association. ISBN 978-1-931971-201. URL

http://dl.acm.org/citation.cfm?id=2750482.2750486.

[146] J. Zhong and B. He. Medusa: Simplified graph processing on gpus. IEEE

Trans. Parallel Distrib. Syst., 25(6):1543–1552, June 2014. ISSN 1045-

9219. doi: 10.1109/TPDS.2013.111. URL http://dx.doi.org/10.1109/

TPDS.2013.111.

[147] C. Zhou, J. Gao, B. Sun, and J. X. Yu. Mocgraph: Scalable distributed

graph processing using message online computing. Proc. VLDB Endow., 8

(4):377–388, Dec. 2014. ISSN 2150-8097. doi: 10.14778/2735496.2735501.

URL http://dx.doi.org/10.14778/2735496.2735501.

[148] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Ku-

mar. Dynamic tracking of page miss ratio curve for memory management.

In Proceedings of the 11th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS XI,

pages 177–188, New York, NY, USA, 2004. ACM. ISBN 1-58113-804-

0. doi: 10.1145/1024393.1024415. URL http://doi.acm.org/10.1145/

1024393.1024415.

197

http://doi.acm.org/10.1145/1519065.1519076
http://doi.acm.org/10.1145/1519065.1519076
http://doi.acm.org/10.1145/2007477.1952688
http://doi.acm.org/10.1145/2007477.1952688
http://dl.acm.org/citation.cfm?id=2750482.2750486
http://dx.doi.org/10.1109/TPDS.2013.111
http://dx.doi.org/10.1109/TPDS.2013.111
http://dx.doi.org/10.14778/2735496.2735501
http://doi.acm.org/10.1145/1024393.1024415
http://doi.acm.org/10.1145/1024393.1024415

BIBLIOGRAPHY

[149] H. Zhu, L. He, and S. A. Jarvis. Optimizing job scheduling on mul-

ticore computers. In Proceedings of the 2014 IEEE 22Nd Interna-

tional Symposium on Modelling, Analysis & Simulation of Computer

and Telecommunication Systems, MASCOTS ’14, pages 61–70, Washing-

ton, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-5610-4.

doi: 10.1109/MASCOTS.2014.16. URL http://dx.doi.org/10.1109/

MASCOTS.2014.16.

[150] H. Zhu, L. He, B. Gao, K. Li, J. Sun, H. Chen, and K. Li. Modelling

and developing co-scheduling strategies on multicore processors. In 2015

44th International Conference on Parallel Processing, pages 220–229, Sept

2015. doi: 10.1109/ICPP.2015.31.

[151] X. Zhu, W. Han, and W. Chen. Gridgraph: Large-scale graph pro-

cessing on a single machine using 2-level hierarchical partitioning. In

2015 USENIX Annual Technical Conference (USENIX ATC 15), pages

375–386, Santa Clara, CA, July 2015. USENIX Association. ISBN

978-1-931971-225. URL https://www.usenix.org/conference/atc15/

technical-session/presentation/zhu.

[152] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared re-

source contention in multicore processors via scheduling. In Proceed-

ings of the Fifteenth Edition of ASPLOS on Architectural Support for

Programming Languages and Operating Systems, ASPLOS XV, pages

129–142, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-839-

1. doi: 10.1145/1736020.1736036. URL http://doi.acm.org/10.1145/

1736020.1736036.

[153] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto.

Survey of scheduling techniques for addressing shared resources in mul-

ticore processors. ACM Comput. Surv., 45(1):4:1–4:28, Dec. 2012. ISSN

0360-0300. doi: 10.1145/2379776.2379780. URL http://doi.acm.org/

10.1145/2379776.2379780.

198

http://dx.doi.org/10.1109/MASCOTS.2014.16
http://dx.doi.org/10.1109/MASCOTS.2014.16
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu
http://doi.acm.org/10.1145/1736020.1736036
http://doi.acm.org/10.1145/1736020.1736036
http://doi.acm.org/10.1145/2379776.2379780
http://doi.acm.org/10.1145/2379776.2379780

	Abstract
	Acknowledgements
	Declarations
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Contention aware co-scheduling
	Parallel Graph Processing
	Research Contributions
	Thesis Organisation

	Literature Review
	Introduction
	Job Co-scheduling
	Overview of Co-Scheduling Problems
	Performance Prediction
	Co-scheduling strategies

	Graph processing systems
	Challenges in Graph Processing
	Distributed Graph Processing System
	Graph Processing Systems on a single machine

	Graph Processing Systems Accelerated by the GPU
	Summary

	Co-Scheduling of Serial and Parallel Jobs
	Introduction
	Formalizing the job co-scheduling problem
	Formalizing the co-scheduling of serial jobs
	Formalizing the co-scheduling of serial and parallel jobs

	The graph model for co-scheduling
	The graph model
	Intuitive strategies to solve the graph model

	Shortest valid path for serial jobs
	The SVP algorithm
	Further optimization of SVP

	Shortest valid path for parallel jobs
	Co-scheduling PE jobs
	Co-scheduling PC jobs

	Co-scheduling jobs on multi-processor computers
	Co-scheduling multi-thread jobs
	The A*-search-based algorithm
	Traditional A*-search algorithm
	SVPPC-A*
	Case studies for the A*-search based algorithm

	Heuristic A*-search Algorithm
	Clustering approximation for finding the shortest valid path
	Evaluation
	Evaluating the O-SVP algorithm
	The O-SVPPE algorithm
	The O-SVPPC algorithm
	Scheduling in Multi-processor Computers
	Scheduling Multi-threading Jobs
	The A*-search-based algorithms
	Heuristic A*-search algorithm
	Efficiency of OA* and IP
	The optimization techniques

	Summary

	WolfPath: Accelerating Iterative Graph Searching Algorithm on GPU
	Introduction
	Representing Co-Scheduling Graph in GPU
	WolfPath Framework
	Motivation: the limitation of current approach
	Computation model of WolfPath
	Finding Optimal Co-scheduling solution with WolfPath

	General Graph representation in WolfPath
	Preprocessing
	Edge List Combination
	Out of GPU memory processing

	Experimental Evaluation
	Performance comparison with CPU based A* algorithm
	Performance evaluation with general graphs
	Memory occupied by different graph representation
	Pre-processing time

	Summary

	WolfGraph: an Edge-Centric graph processing framework on GPUs
	Introduction
	An Overview of Edge Centric Processing on GPU
	Edge centric Graph data structure
	Computation model

	In-memory processing Engine in WolfGraph
	Parallel processing in WolfGraph
	Two-level GPU processing and memory access pattern
	Implementing GPU-based graph processing algorithms using WolfGraph

	Out of GPU memory processing
	Graph Partition and Computation
	Concatenate Edge List representation

	Out-of-Core Graph processing
	Out-of-Core graph partitioning
	Out-of-Core processing

	Implementation of WolfGraph
	Loading Engine
	Data Transfer Engine
	Computation Engine

	Evaluation
	Performance Evaluation
	Global Memory efficiency
	Memory occupied by different graph representation
	Sensitivity Analysis of WolfGraph

	Summary

	Conclusions and Further Work
	Developing Graph-based Methods to Find Optimal or Near-optimal Co-Scheduling solutions
	WolfPath: Accelerating the graphs with layered structure by GPU
	WolfGraph: A General Purpose GPU-based Large-Scale Graph Processing Framework
	Discussion
	Further Work

	Bibliography

