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ABSTRACT

Context. Coronal rain composed of downfalling cool plasma condensations occurs in thermally unstable loops as a consequence of
catastrophic cooling. Such loops contain significant quantities of dense plasma out of hydrostatic equilibrium. Transverse oscillations
traced by coronal rain blobs are often observed in rainy loops.
Aims. We aim to investigate the possibility of excitation of loop oscillations by the presence of condensation plasma.
Methods. We carried out 2.5D magnetohydrodynamic simulations of a coronal loop containing a cool and a dense condensation
region near the loop apex and investigated the properties and evolution of the resulting oscillatory motion of the loop.
Results. The presence of dense condensation region at the apex of the coronal loop is found to excite fundamental harmonic of a
vertically polarised kink mode. As the condensations fall towards the loop footpoints under the influence of gravity, the fundamental
mode period decreases as a result of the change in distribution of mass along the loop.
Conclusions. We propose coronal rain as a possible excitation mechanism for transverse loop oscillations.
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1. Introduction

Coronal loops are commonly subject to transverse oscillations
(e.g. Aschwanden et al. 1999; Nakariakov et al. 1999; Verwichte
et al. 2004; White & Verwichte 2012). The basic properties
of observed transverse oscillations can be modelled by assum-
ing homogeneous flux tube model (Nakariakov & Verwichte
2005). This approximation works reasonably well for predict-
ing basic oscillation characteristics such as fundamental mode
period; however for more complex oscillatory loop behaviour,
the effects of the density variation within the loop should be
considered.

The effect of longitudinal density stratification on the pe-
riod and spatial structure of the fundamental kink mode has been
studied for straight flux-tube coronal loop models (Andries et al.
2005a,b; Dymova & Ruderman 2005, 2006). For line-tied flux
tubes, the effect of the density structuring on the fundamental
kink mode properties is most significant when it is located near
the loop apex and almost negligible in the case of the density
structuring near the loop footpoints (Díaz et al. 2006).

The transverse loop oscillations have been observed to
occur in two polarisations; horizontal (Aschwanden et al.
2002; Schrijver et al. 2002) and vertical (Wang & Solanki
2004; Mrozek 2011; White et al. 2013). The horizontally po-
larised oscillations are typically excited by a nearby flare (e.g.
Aschwanden et al. 1999; Verwichte et al. 2004), while the source
of excitation of the vertical oscillations remains unclear. They
are usually explained by placing an external driver below the
loop, by the reconnection process or by footpoint motion (Brady
& Arber 2005; Gruszecki & Murawski 2008; Selwa et al. 2010;
White et al. 2013). Subsonic siphon flows have also been pro-
posed as a possible excitation mechanism (Ofman et al. 2012).

Recent observations show that many coronal loops are
subject to thermal instability undergoing catastrophic cooling
(Antolin & Rouppe van der Voort 2012). This leads to the for-
mation of coronal rain which consists of numerous cool and
dense plasma condensations formed near the top of the unsta-
ble loop. These condensations then fall towards the solar surface
under the influence of gravity, often with sub-ballistic speeds
due to effects of plasma pressure and magnetic field (Mackay
& Galsgaard 2001; Oliver et al. 2014; Kohutova & Verwichte
2017). The thermally unstable loops are therefore likely to con-
tain an overdense region in the part of the loop where the con-
densation occurs which is typically near the loop apex. Small
amplitude transverse oscillations are often present in rainy coro-
nal loops (Antolin & Verwichte 2011; Kohutova & Verwichte
2016; Verwichte & Kohutova 2017), with the observed loops in
question typically tilted with respect to the photospheric normal.

A one-dimensional (1D) mechanical model for the excita-
tion of small amplitude transverse oscillations by the coronal
rain condensations via their concentrated mass was proposed
by Verwichte et al. (2017). These authors also showed that
small amplitude transverse oscillations observed by Kohutova
& Verwichte (2016) could be excited by the coronal rain. In the
special case of a coronal loop lying in a plane perpendicular to
solar surface, this mechanism would lead to the excitation of os-
cillation polarised in vertical direction only.

The first observational evidence of excitation and evolu-
tion of vertical coronal loop oscillations caused by catastrophic
cooling and coronal rain formation was shown in Verwichte
& Kohutova (2017). The observations presented therein also
showed a change of the oscillation period over the duration of
the loop evolution caused by the drainage of the coronal loop
mass by the coronal rain.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A120, page 1 of 7

https://doi.org/10.1051/0004-6361/201731417
http://www.aanda.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 606, A120 (2017)

−100 −50 0 50 100
x (Mm)

0

50

100

150

200

y
(M

m
)

0 50 100 150 200 250 300
s (Mm)

0

200

400

600

800

1000

V
A

(k
m

s−
1
)

10-12

10-11

10-10

10-9

10-8

10-7

ρ
(k
g
m
−3
)

Fig. 1. Left: initial density configuration of the coronal loop with cool condensation region for µ = 0.7. The white lines show the B-field direction.
Right: Alfvén speed profile along the centre of the coronal loop.

We carried out 2.5D magnetohydrodynamic (MHD) simu-
lations of a coronal loop with cool plasma condensation region
at the loop apex. This is found to excite sustained, small ampli-
tude, vertically polarised transverse loop oscillations. We anal-
ysed the oscillation parameters as a function of condensation
region mass. We further calculated the expected change in the
period of the fundamental mode due to changing density pro-
file along the loop. This change is a result of the condensations
falling down towards the loop footpoints under the influence of
gravity.

2. Numerical model

We solved the nonlinear MHD equations using Lare2d (Arber
et al. 2001) assuming perfectly ionised, fully conductive plasma
and using the ideal equation of state. We included the effect of
gravity and shock viscosity. The role of shock viscosity is to
introduce dissipation at strong gradients only, preventing false
oscillations behind the shock that would arise from applying
second order accurate finite difference scheme when the pres-
sure difference exceeds the jump condition. Thermal conduc-
tion and radiative transport terms were not included in the en-
ergy equation. The equations were solved on a square, uniform
1024 × 1024 grid with the extent −100 Mm 6 x 6 100 Mm
in horizontal direction and 0 Mm 6 y 6 200 Mm in the ver-
tical direction. Grid convergence study has been carried out in
order to check the convergence of the numerical results. We
set up the problem so as to represent a relatively long coronal
loop embedded in a magnetic arcade which contains a high-
density, low-temperature condensation region at its apex (Fig. 1).
The gravity was assumed to be uniform and along negative y-
direction. Both the coronal loop and the ambient plasma are
gravitationally stratified.

The equilibrium magnetic field is given by current-free
magnetic arcade model determined by the potential A =
−B0HB cos(x/HB)e(−y/HB)ŷ (Priest 1982) such that the magnetic
field components are given by:

(Bx, By, Bz) = B0[cos(x/HB),− sin(x/HB), 0]e−y/HB , (1)

where HB is the magnetic scale height given by HB = W/π with
W = 200 Mm being the horizontal extend of the arcade and

B0 = 70 G is the magnetic field at y = 0. This results in the mag-
netic field of ∼20 G at coronal heights, which is representative
of real coronal conditions.

We assumed the background temperature to be constant in
the x-direction and in the y-direction we create a smoothed step
function temperature profile representative of an atmosphere
consisting of a cool chromosphere, transition region layer and
hot corona (Cargill et al. 1997):

T (y) =
1
2

(Tcor + Tph) +
1
2

(Tcor − Tph) tanh
(
y − yt

∆y

)
, (2)

with photospheric temperature Tph = 6× 103 K, coronal temper-
ature Tcor = 106 K, yt = 4 Mm and ∆y = 1 Mm. The temperature
variation controls the pressure scale height Λ(y):

Λ(y) =
kbT (y)
mg�

, (3)

where g� = 274 m s−2 is the average solar surface gravity and
m is the mean particle mass. The density profile for the non-
isothermal stratified atmosphere is then determined by numeri-
cally solving for a hydrostatic pressure balance:

p(y) = p0 exp
(
−

∫ y

0

dy′

Λ(y′)

)
, ρ(y) =

mp(y)
kbT (y)

· (4)

The coronal loop was modelled as a density enhancement along
a magnetic field line defined by:

yL(x) =
1
2

HB

[
log

(cos(x/HB)
cos(h/HB)

)
+ log

( cos(x/HB)
cos((h − a)/HB)

)]
, (5)

where h = 90 Mm and a = 3 Mm is the loop scale width. The
density variation between the loop and the background medium
in is given by the symmetric Epstein profile (Nakariakov &
Roberts 1995):

ρ(x, y) = ρe(x, y) + (ρi(x, y) − ρe(x, y)) sech2
( (y − yL(x))

a

)
, (6)

where ρe and ρi are external and internal densities respectively.
We assumed a constant density contrast χ = ρi/ρe = 10 along
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the whole loop. The density stratification was calculated using
base density ρ0 = 5 × 10−8 kg m−3, resulting in the densities in
the upper half of the loop of the order of 10−11 kg m−3, that is,
representative of coronal values.

The plasma condensation region was represented as den-
sity enhancement superimposed on top of the equilibrium den-
sity profile, accompanied by the corresponding low temperature
region necessary to maintain the plasma pressure balance and
to prevent rapid initial expansion. The two-dimensional (2D)
Gaussian density enhancement is positioned at x0 = 0 Mm
and y0 = yL(x0) and has widths σx = 7 Mm in horizon-
tal direction and σy = 1 Mm in vertical direction and height
ρblob = rbcρbg(x0, y0), with rbc being the density contrast be-
tween the peak condensation density and the density ρbg of the
hot background plasma at the loop axis at the same position in
height. The bottom domain boundary was fixed to create a line-
tied loop and the boundary conditions along the remaining three
boundaries are symmetric (i.e. gradients set to zero).

Without the presence of the condensation region, the whole
system is in near-equilibrium state (it should be noted that we are
not explicitly forcing plasma pressure balance inside and outside
of the coronal loop, this is however negligible, since the plasma-
β is small and the magnetic pressure dominates, preventing loop
expansion). The finite mass of the condensation region, however,
displaces the axis of the coronal loop downwards which triggers
vertically polarised transverse loop oscillations.

3. Vertical loop oscillations

The excitation of the vertical oscillations is studied for six differ-
ent values of peak density of the condensation region, with the
density contrast ranging from rbc = 10 (ρ = 9.2 × 10−11 kg m−3)
to rbc = 200 (ρ = 1.8 × 10−9 kg m−3). This corresponds to frac-
tion of rain mass relative to total loop mass including rain rang-
ing from µ = 0.19 to µ = 0.83.

Initially, the loop top is displaced downwards by the mass
of the condensation region, resulting in onset of a vertically po-
larised transverse loop oscillation. For low condensation region
densities (µ = 0.19 to µ = 0.54) the cool plasma is confined to
the loop top by combination of the pressure from the underly-
ing plasma and the ponderomotive force resulting from the loop
oscillations directed towards the antinode of the oscillation, that
is, the loop apex for the fundamental harmonic (Verwichte et al.
2017). The amplitude and period of the loop oscillation stays
approximately constant for the duration of the simulation. For
the high condensation region densities (µ = 0.62 to µ = 0.83)
the cool plasma falls towards the loop footpoints along both
sides of the loop similar to a real coronal rain shower scenario.
This results in long period, large amplitude oscillations transi-
tioning into persistent, smaller amplitude, shorter period oscil-
lations once the condensations have fallen into the lower loop
legs, where their mass has negligible effect on the loop oscil-
lation period. The downfalling plasma blobs elongate as they
fall due to the differential effective gravity component acting
along the finite length of the blob. The blobs develop elongated
wings, leaving an evacuated region behind. The development of
this v-shape is likely caused by the fact that the motion of the
blob is subsonic in the background plasma but supersonic for its
own temperature, leading to shock behaviour. The blobs are then
gradually slowed down and ultimately rebound multiple times
in the lower loop leg due to the combined effect of the under-
lying plasma pressure and magnetic tension force counteracting
the effective gravity (Mackay & Galsgaard 2001). This type of
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Fig. 2. Top: ripples due to Rayleigh-Taylor instability formed at the in-
terface between the condensation region and ambient coronal plasma
near at the top of the loop at t = 5544 s. Bottom: subsequent fragmenta-
tion of tails of downfalling plasma condensations at t = 6720 s.

oscillatory motion of plasma condensations in longitudinal di-
rection was studied in detail in Kohutova & Verwichte (2017).

The density difference between the condensation region and
the background plasma leads to onset of the Rayleigh-Taylor in-
stability at the loop apex. Ripples of cool plasma are formed
in the condensation region and later lead to fragmentation of
the tails of the downfalling plasma blobs (Fig. 2). A similar
phenomenon can be seen in coronal rain observations, which
typically show a lot of structuring in the longitudinal direc-
tion, resulting in a clumpy appearance of the downfalling coro-
nal rain material (e.g. Antolin & Rouppe van der Voort 2012;
Antolin et al. 2015). Small fraction of the cool condensation
plasma remains confined at the loop apex. This is caused by
the action of the ponderomotive force pushing the plasma in
the vicinity of the loop top towards the apex point where the
effective gravity is zero. As the simulation setup is symmet-
ric, the plasma remains trapped here for the duration of the
simulation.

In order to analyse the evolution of the oscillation in detail,
at each timestep we take a cut along the domain centre perpen-
dicular to the loop axis to create density time-distance plots. The
loop displacement time series is obtained by fitting a Gaussian
to the density profile at each timestep. For the two peak profile
seen at the higher condensation densities due to evacuation of the
loop centre this approach leads to tracking one of the loop edges.
Damped sine function of the form ξ(t) = ξ0 exp(−t/τ) sin(ωt+φ)
is fitted to the loop top displacement timeseries at the beginning
and end of the simulation to obtain oscillation periods and am-
plitudes shown in Table 1. The periods and amplitudes of the os-
cillation during the initial phase increase with increasing mass of
the condensation region (Fig. 3). After most of the condensation
mass has fallen from the loop top towards the loop footpoints, the
oscillation period decreases to less than half of the original value.
This is a result of change in the longitudinal density distribution
along the loop, even though the total mass of the plasma in the
loop remains conserved. A small degree of periodic modulation
of the period can be observed during the latter half of the sim-
ulation as the plasma blobs oscillate in lower loop legs. The os-
cillation displacement profile of the fundamental harmonic also
evolves with time, starting with a concentrated peak at the loop
top and gradually broadening into a sine-like profile as the dense
plasma moves towards loop footpoints (Fig. 4).

A120, page 3 of 7

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731417&pdf_id=2


A&A 606, A120 (2017)

Table 1. Blob oscillation parameters.

rbc µ Ps1 ξ0s1 Ps2 ξ0s2 Ps1/Ps2 Ptube1 Ptube2 Ptube1/Ptube2 Pslab1 Pslab2 Pslab1/Pslab2
(s) (Mm) (s) (Mm) (s) (s) (s) (s)

1 × 101 0.19 356 0.16 354 0.15 1.0 758 – 1.0 555 – 1.0
3 × 101 0.41 459 1.01 460 0.77 1.0 931 – 1.0 850 – 1.0
5 × 101 0.54 537 1.79 554 1.13 1.0 1079 – 1.0 1068 – 1.0
7 × 101 0.62 602 2.56 341 1.97 1.8 1210 712 1.7 1248 474 2.6
1 × 102 0.70 711 3.76 311 2.69 2.3 1385 735 1.9 1478 532 2.8
2 × 102 0.83 902 7.01 409 3.68 2.2 1853 809 2.3 2068 697 3.0

Notes. Initial and final oscillation periods and amplitudes for different condensation region masses determined from the simulation (Ps1, Ps2) and
calculated using the thin flux-tube model (Ptube1, Ptube2) and slab model (Pslab1, Pslab2). We do not include 1D model final state periods for the low
condensation region masses as there is no significant mass redistribution during the simulation.
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Fig. 3. Dependence of amplitudes (left) and periods (right) of the verti-
cal oscillation on the rain mass fraction µ at the beginning (ξ01, P1) and
end (ξ02, P2) of the simulation. Values for low mass condensation re-
gions for which the plasma remains trapped at the loop apex are shown
in red. The solid line shows amplitudes predicted by 1D mechanical
model by Verwichte et al. (2017).

Using an expression from Verwichte et al. (2017) for the am-
plitude of a vertical oscillation excited by a dense plasma blob ξ0
based on a 1D mechanical coronal rain model:

ξ0 = (5.0 ± 0.6) × 10−3

√
1 −

2θ
π
µL, (7)

where θ is the angle between the loop plane and the photospheric
normal, µ is the rain mass fraction and L is the length of the loop
we estimate expected oscillation amplitudes for all condensation
masses. We find that amplitude values predicted by this model
agree with the oscillation amplitudes determined from the sim-
ulation for lowest masses of the condensation region, while at
higher masses the two diverge and the 1D mechanical model un-
derestimates the oscillation amplitude (Fig. 3). Here we note that
the simulated scenario does not comply with number of assump-
tions made in the 1D mechanical model, namely the assumption
of small size of the plasma blobs and the constant loop length.
The size of the condensation region used in the simulation is
extended in the longitudinal direction, that is, along the loop
axis and therefore cannot be approximated by a point-like mass.
Similarly the coronal loop is significantly deformed in the sim-
ulation, thus violating the constant loop length assumption. The
applicability of the 1D kinematic model to the cases with high
condensation region masses studied here is therefore limited. It
is however encouraging that the two models agree within their
common range of validity at low condensation region masses.
Furthermore, these results not only confirm that the presence
of coronal rain is a possible excitation mechanism of transverse
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Fig. 4. Loop axis displacement from its original position as a function
of time and position along the loop for µ = 0.7.

loop oscillations but also show that its effect is even greater than
originally predicted.

We further determine the dependence of the loop oscilla-
tion periods on the longitudinal density profile of the loop semi-
analytically using a 1D model. The vertical oscillation of a loop
with longitudinal density dependence can be modelled in the thin
flux tube limit using the equation (Dymova & Ruderman 2005,
2006):

d2ξ

ds2 +
ω2

C2
k

ξ = 0, (8)

where ξ(s) is the loop displacement, ω is the mode frequency,
C2

k = 2B2/µ0(ρi(s) + ρe(s)) and s is the coordinate along the
loop. To model a line-tied coronal loop, ξ(s) must satisfy the
boundary conditions ξ(0) = ξ(L) = 0. Equation (8) is derived
for the case of the uniform magnetic field. In the case of mag-
netic field variation in the longitudinal direction ξ(s) in Eq. (8)
modifies to ξ(s)/

√
B(s) (Ruderman et al. 2008). This change of

the normalisation however only affects the displacement profile
of the oscillation; the oscillation period remains unchanged.

Equation (8) for the thin flux tube model is solved numeri-
cally, with the mode frequency subsequently determined using
a shooting method. Internal and external plasma density and
magnetic field strength profiles along the loop are determined
using the same magnetic field and density configuration as de-
scribed in Sect. 2 and by averaging along the transverse direction
of the loop. We solve the equation for all condensation region
masses and for each mass we use two different density profiles;
one corresponding to the initial state of the loop with density
enhancement located at the loop apex, and one with the den-
sity enhancement split into two components each located in one
loop leg, representative of the final state of the loop, where the
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Fig. 5. Time-distance plots at the loop apex for different values of condensation region masses. White solid lines show the centre of the loop profile
determined by Gaussian fitting. Black dotted lines show best-fit damped sine function.
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Fig. 6. Internal density profiles used for the calculation of the oscillation
period in thin flux tube approximation for the µ = 0.7 case. Solid and
dashed line show initial and final state of the loop respectively.

condensation mass has fallen down under the influence of grav-
ity (Fig. 6). The resulting initial and final periods are shown in
Table 1. For all condensation region masses, the thin flux tube
model is found to overestimate the periods of the fundamen-
tal oscillation mode by about a factor of two compared to the
periods determined from the simulation. The simulation setup
used in this work is equivalent to modelling the loop as a curved
magnetic slab rather than thin flux tube model used in the above
calculation. We therefore attribute this difference to a different
geometry used by the two models. The initial to final period
ratios however agree with the simulation results for the higher

condensation region masses (µ = 0.62 to µ = 0.83). We refrain
from calculating the final state periods (i.e. with two density en-
hancements in the loop legs) for the low condensation region
masses (µ = 0.19 to µ = 0.54) as in these cases there is no sig-
nificant mass redistribution along the length of the loop during
the simulation.

We further proceed to 1D calculation done for the case of a
magnetic slab. The main caveat in this approach is that in the slab
case, the kink speed is not well defined and the phase speed of a
fast kink mode in a slab instead tends to external Alfvén speed
in the long wavelength limit (Edwin & Roberts 1982). External
Alfvén speed of the loop in our setup however does not contain
the information about the high density region. In order to incor-
porate the density variation inside the loop into a slab model,
Ck in Eq. (8) is replaced by VAe(s) = B(s)/

√
µρi(s)/χ, where ρi

is the density along the centre of the loop and χ = 10 as speci-
fied in Sect. 2. This is not strictly correct as it assumes constant
density contrast between the internal and external density profile
which is equivalent to assuming that the structure of the external
medium self-adjusts such that it reflects the density structuring
along the centre of the loop. This is further supported by the
fact that both the oscillation periods and period ratios calculated
using this approach diverge from the simulation values with in-
creasing mass of the condensation region (Table 1).

4. Discussion and conclusions

We presented 2.5D MHD simulations of evolution of coronal
loop with a cool and dense condensation region located at the
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loop apex. The mass of the condensation region was found to
excite vertically polarised transverse loop oscillations. We anal-
ysed the dependence of the amplitudes and periods of the excited
oscillations as a function of condensation region mass. The ob-
served shift in the fundamental kink mode period of the loop
following a coronal rain shower seen in the simulation agrees
with the period shift described in Verwichte & Kohutova (2017),
where it was explained as a consequence of the drainage of the
total loop mass by the coronal rain into the chromosphere. In this
work we have shown that period shifts can also be explained by
redistribution of the mass along the length of the coronal loop as
the cool dense plasma falls from the top of the loop.

Long term confinement of the plasma at the loop apex seen
in the simulation is not likely for real loops undergoing conden-
sation formation due to lack of symmetry being common in these
cases. This lack of symmetry can be due to a number of reasons
such as the asymmetric nature of footpoint heating mechanism
or due to siphon flows caused by the pressure difference between
the footpoints. It has indeed been observed that the latter can
lead to shifting the condensation region away from the loop apex
such that the coronal rain is seen to fall along one loop leg only
(Kohutova & Verwichte 2016).

The development of Rayleigh-Taylor instability along the
interface between the dense condensation plasma and coronal
plasma at the bottom edge of the loop apex resulting from the
density difference between the two was seen during early stages
of the loop evolution. This resulted in a formation of ripples
along the interface and subsequently lead to fragmentation of
the tails of the downfalling condensations. The Rayleigh-Taylor
instability has been observed to develop in prominence-corona
transition region in cases where dense prominence plasma is sus-
pended above a coronal cavity (Berger et al. 2010; Hillier et al.
2012). It is however unclear if such scenario is realistic in coro-
nal loops undergoing condensation formation, given the realistic
density estimates and taking into account typical magnitudes and
orientation of the magnetic field (which at the loop top is par-
allel to the fluid interface). The fragmentation of the condensed
plasma seen in our simulation resulting from the Rayleigh Taylor
instability is however in line with observed clumpy structure of
the coronal rain.

The approach used here imposes the existence of the con-
densation region as an initial condition and hence the density
enhancement is introduced abruptly, which is equivalent to as-
suming that the catastrophic cooling leading to condensation
formation occurs instantaneously. Here we point out that in the
real scenario, the condensation formation process will be grad-
ual and the coronal loop can be expected to readjust to some
extent while the condensation region is being formed. This will
limit the effect of the density enhancement on the oscillatory be-
haviour of the loop. We can estimate whether the vertical oscil-
lations will still be triggered during the gradual formation pro-
cess by comparing the characteristic radiative cooling time scale
with the typical oscillation amplitude. The radiative cooling time
scale τrad can be estimated using the RTV radiative loss function:

n2
eχRTα '

kb

(γ − 1)
ne

T
τrad

, (9)

where ne is the plasma electron density, γ is the ratio of spe-
cific heats, χR and α are radiative loss function coefficients as
given in Rosner et al. (1978). Using the typical coronal values
T = 106 K and ρ = 10−11 kg m−3 as employed in the simula-
tion, we obtain τrad = 300 s, i.e. similar but less than the typical
oscillation periods of 400−900 s. This is the higher bound on
the τrad since as the condensation forms, the density increases

from coronal to chromospheric values and the characteristic ra-
diative cooling time scale will further decrease. In this particular
scenario it can be concluded that the condensation formation is
abrupt enough for the loop oscillations to be triggered. In addi-
tion, we also use the temperature and density values determined
from the observations in Verwichte & Kohutova (2017) and ob-
tain τrad ∼ 500 s as compared to the typical oscillation period
of ∼150 s observed therein, i.e. the same order of magnitude but
larger. Here it should be pointed out that the determination of
the plasma electron density from the observations depends on
the assumption of line-of-sight depth of the loop and is therefore
subject to large uncertainties. The oscillations and catastrophic
cooling can therefore be expected to occur on similar time scales,
exact balance of which is subject to specific conditions in the
loop.

A decrease in the oscillation period similar to the one studied
in this work was found in cooling loops (Morton & Erdélyi 2009;
Ruderman 2011; Magyar et al. 2015). Both have the same fun-
damental cause, the change in the longitudinal density profile of
the loop, namely the redistribution of the loop plasma from the
loop top to the loop footpoints. However, the processes leading
to the mass redistribution are different in the two cases; in our
case the cause are downfalling condensations, modelled as a re-
sult of catastrophic cooling process with short timescale τcool.
The change in period due to downfalling condensations is there-
fore abrupt and occurs on a timescales of ∼100 s, that is, the time
it takes for the condensations to move significantly under the in-
fluence of gravity. In the latter scenario it is the gradual flow of
mass from the loop top to the loop points caused by temperature
decrease leading to scale-height decrease as a result of gradual
cooling process with long τcool. The period change due to loop
cooling obviously depends on the cooling timescale, but is usu-
ally more gradual and in the above studies occurs on timescales
of ∼1000 s.

A natural extension of the work presented here is to model
the coronal rain self-consistently, that is, model the whole pro-
cess of thermal instability onset and coronal rain formation start-
ing with footpoint-heated stratified loop and look for signatures
of vertical oscillations. The excitation of the vertical oscillations
will then depend on the fraction of the total loop mass that con-
denses to form coronal rain and on the spatial distribution of the
condensed plasma as well as on the temporal evolution of the
condensation process. The approach used in this work however
enables us to carry out a parameter study. Imposing the existence
of the condensation region as an initial condition gives us control
over its properties, which makes it easier for us to understand the
conditions under which the excitation of the vertical oscillations
is significant and how the condensation mass affects the periods
and amplitudes of the excited oscillations. The self-consistent
scenario including the coronal rain formation will be addressed
in a follow-up paper.
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