A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/91757

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/91757
mailto:wrap@warwick.ac.uk

ANVIVIVINMIV
VALY

Programming Dynamic Nonlinear Biomolecular
Devices using DNA Strand Displacement
Reactions
by

Rucha Anil Usha Sawlekar

Thesis
Submitted to the University of Warwick
for the degree of

Doctor of Philosophy

School of Engineering

September 2016

THE UNIVERSITY OF

WARWICK



To my parents, Anil and Usha Sawlekar,
To my grandfather, Jaysingh Pawar,
To my partner Sumeet Satpute,

...and to the fond and loving memory of my uncle, Prof. Sunil Sawlekar.

i



Acknowledgments

First of all, I express my profound gratitude to my guide Prof. Declan G. Bates for
his valuable guidance and unflinching support. I was fortunate to have a supervisor
like him, without which it would not have been possible for me to complete the
project qualitatively and on time. I also wish to acknowledge with deep gratitude
the significant help extended to me by Dr. Vishwesh Kulkarni in this endeavour.

I take this opportunity to thank Dr. Mathias Foo and Dr. Francesco Monte-
fusco, for all the crucial discussions and providing important tips and literature that
contributed extensively towards my learning process and academic publications. I
am also grateful to all my fabulous friends and lab-mates in our Biomedical Engi-
neering lab for making my time in lab so wonderful and memorable.

During my time at Coventry, I have been fortunate to have fantastic friends
who are more like family. Atul Kamath, Anup Das, Nida Siddiqui and Francesco
Montefusco have always been there for me and without whose encouragement this
journey would have been very difficult. I thank all of them cordially for their friend-
ship, care and our backpacking together!

In conclusion, I thank my family for everything. I thank my late uncle Prof.
Sunil Sawlekar who certainly would have been happier and proud to see the com-
pletion of my doctoral studies. I thank my granfather Jaysingh Pawar for all his
love, blessings and care. I thank my best friend and life partner Sumeet Satpute
for all his love, unflinching support and companionship. Whether near or far, it has
always been and will be an awesome journey together! Finally, I must acknowl-
edge my incredible parents Anil and Usha Sawlekar for their endless love, efforts
and being a warm, close-knit, and super-supportive family. They have loved and
supported me constantly, regardless of my faults and flaws. They have been with
me through all the good and worse times. Their contribution to my life and career
remains incomparable.

1l



Declarations

I declare that the work presented in this thesis is my own except where stated other-
wise, and was carried out entirely at the University of Warwick, during the period of
September 2013 to September 2016, under the valuable supervision of Prof. Declan
G. Bates and significant help from Dr. Vishwesh Kulkarni. The research reported
here has not been submitted, either wholly or in part, in this or any other academic
institution for admission to a higher degree.

Some parts of the work reported and other work not reported in this thesis
have been published. Further parts of this work will be submitted for publication in
due course.

v



Abstract

Recent advances in DNA computing have greatly facilitated the design of
biomolecular circuitry based on toehold-mediated DNA strand displacement (DSD)
reactions. The synthesis of biomolecular circuits for controlling molecular-scale
processes is an important goal of synthetic biology with a wide range of in vitro
and in vivo applications. In this thesis, new results are presented on how chemical
reaction networks (CRNs) can be used as a programming language to implement
commonly used linear and nonlinear system theoretic operators that can be further
utilised in combination to form complex biomolecular circuits. Within the same
framework, the design of an important class of nonlinear feedback controller, i.e.
a quasi sliding mode (QSM) feedback controller, is proposed. The closed loop
response of the nonlinear QSM controller is shown to outperform a traditional lin-
ear proportional+integrator (P1) controller by facilitating much faster tracking re-
sponse dynamics without introducing overshoots in the transient response. The
resulting controller is highly modular and is less affected by retroactivity effects
than standard linear designs. An important issue to consider in this design process
for synthetic circuits is the effect of biological and experimental uncertainties on
the functionality and reliability of the overall circuit. In the case of biomolecular
feedback control circuits, such uncertainties could lead to a range of adverse effects,
including achieving wrong concentration levels, sluggish performance and even in-
stability. In this thesis, the robustness properties of two biomolecular feedback con-
trollers; PI and QSM, subject to uncertainties in the experimentally implemented
rates of their underlying chemical reactions, and to variations in accumulative time
delays in the process to be controlled, are analysed. The simulation results show
that the proposed QSM controller is significantly more robust against investigated
uncertainties, highlighting its potential as a practically implementable biomolecu-
lar feedback controller for future synthetic biology applications. Finally, the thesis
presents new results on the design of biomolecular feedback controllers using the
set of chemical reactions underlying covalent modification cycles.



Contents

Acknowledgments iii
Declarations iv
Abstract v
List of Tables ix
List of Figures X
Abbreviations xiii
Chapter 1 Introduction 1

1.1 Research motivation and the context of molecular programming . . 1

1.2 DNA based circuits in synthetic biology . . . . . . ... ... ... 2

1.3 Summary of contributions and thesis organisation . . . . . .. .. . 4

Chapter 2 Chemical Reaction Networks and DNA Strand Displacement 9

2.1 Chemical reaction networks . . . . . ... ... ... ... 9
2.1.1 Mapping biomolecular reactions to differential equations . . 11
2.1.2 Realising dynamical systems using CRNs . . . . ... ... 13
2.1.3  Modelling covalent modification cycles . . . . .. .. ... 15
2.2 Implementation using toehold mediated DNA strand displacement . 19
2.2.1 The architecture and mechanism . . . . . . ... ... ... 20
2.2.2  Software design tool: Visual DSD . . . ... ... .. ... 21

vi



Chapter 3 Biomolecular Implementation of Nonlinear System Theoretic

Operators 29
3.1 Background results on linear operators . . . . . .. . ... ..... 29
3.1.1 Gain, summation and integration . . . . . . . ... ... .. 30
3.2 Nonlinear operators . . . . . . . . . . . ..o 32
3.2.1 Multiplication, division and polynomial operators . . . . . . 33
3.3 Forming functional circuits using linear/nonlinear operators . . . . . 39
3.3.1 Fractionalexponent. . . . . . .. ... .. ......... 39
332 Absolutevalue . .. ... ... ... ... . ... 41
3.3.3 Logarithm of arbitrarybase . . . ... .. ... ... ... 45

Chapter 4 Design and Implementation of a Biomolecular Quasi Sliding

Mode Controller 49
4.1 Saturation nonlinearity . . . . . . . . . .. ... 50
4.2 Implementing Nonlinear Feedback Controllers . . . . . . . ... .. 52
4.2.1 Biomolecular Quasi-sliding mode controller . . . . . . . .. 52
4.2.2 Nonlinear process to be controlled . . . . . ... ... ... 55
423 Subtractor . . . . . ... 56
424 PlController . . . ... ... ... ... ... ... ... 57
4.3  Performance comparison of the linear and nonlinear controllers . . . 61
4.3.1 Simulation results with modularity . . . . . ... ... ... 61
4.4 Retroactivity . . . . . v v v i e e e e e e e e 63
4.4.1 Simulation results with retroactivity . . . . . ... ... .. 65
45 Conclusions . . . . . . . L. 66

Chapter 5 Robustness Analysis of Biomolecular Controllers to Paramet-

ric and Time Delay Uncertainties 68
5.1 Robustnessanalysis . . . . . .. ... ... L 68
5.2 System description and methodology . . . . . ... ... ... ... 69
52.1 QSMcontroller . . . . . ... ... ... .. 70
52.2 Plcontroller . . ... ... ... .. ... ... ... ... 71
5.2.3 Processtobecontrolled . .. ... ... ... ... .. .. 72
5.24 Subtractor . . . . ... 73

vil



5.3 Simulationresults . . . . . . . .. ... 73

54 Conclusions . . . . . . . . e e e e e 77

Chapter 6 Exploiting the Dynamic Properties of a Covalent Modification

Cycle for Nonlinear Controller Design 80
6.1 Designing a covalent modification cycle controller. . . . . . . . .. 81
6.1.1 Chemical reactions . . . . . . .. ... ... ........ 81
6.1.2 System of ordinary differential equations . . . .. ... .. 84
6.2 Simulationresults . . . . . ... L. Lo 85
6.2.1 Performance analysis of controllers with a linear process . . 85

6.2.2 Performance analysis of the controllers with a nonlinear

PIOCESS . v v v v e e e e e e e e e e e e e e e 89

6.3 Flexible input-output mapping improves robustness . . . . . . . . . 92
6.4 Conclusions . . . . . . . . ... e 95
Chapter 7 Conclusions and Future Work 97

viil



List of Tables

3.1

4.1

4.2

5.1

5.2

6.1

6.2

DNA Implementation reactions, CRNs and the corresponding ODEs

for the implementation of linear and nonlinear system theoretic op-

CratoOrsS . . . . . o o e e e e e e e e e e e e e e e e e e

DNA implementation reactions, CRNs and relevant ODEs for the

cloed-loop feedback system components . . . . . .. ... ... ..

Process to be controlled — parameter values . . . . . . . ... ...

Step response characteristics and worst-case parameter ranges for

the Pl controller. . . . . . . . . . . . . . . . ...

Step response characteristics and worst-case parameter ranges for

Step response characteristics and worst-case parameter ranges for

the PI and CMC controllers + the linear process. . . . . . . .. ...

Step response characteristics and worst-case parameter ranges for

PI and CMC controllers + nonlinear process. . . . . . . . . ... ..

1X



List of Figures

1.1

2.1
2.2
2.3

24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
33
34
3.5

3.6

3.7

3.8
39

Approach to design synthetic biochemical devices illustrated con-

ceptually . . . . . . ..

DNA reactions — chemical reaction (or CRN) — ODE . . . . . ..
The minimal representation of signal x . . . . . ... ... ... ..
The covalent modification cycle and its steady state behaviour of
the fourregimes . . . . . . . . .. .. Lo
DNA strand displacement reaction mechanism . . . . . . . ... ..
DNA implementation of catalysis reaction X f — X2i + X3i .....
DNA implementation of catalysis reaction X* — X* +Y* . . . ..
DNA implementation of bimolecular reaction XljE + X2i — X3jE

DNA implementation of degradation reaction X* —¢ . . ... ..

DNA implementation of annihilation reaction X*T+X~ —¢ . . . .

A block diagram representing scalargain . . . . . . ... ... ..
A block diagram representing summation or subtraction . . . . . . .
A block diagram representing integration . . . . . .. ... .. ..
A block diagram representing multiplication . . . . . . . ... ...
A block diagram representation of the feedback system .7p that

computes theratioy=wu/z . . . . . . ... ... ..
The input-output system derived to compute the univariate polyno-

mial f(x) =Y gaix’ . ..
Computing fractional exponent using Newton-Raphson block . . . .
Computation of §» shown with two examples . . . . . . .. ... .

Computing absolute value using combination of operators . . . . . .



3.10
3.11
3.12

3.13
3.14

4.1

4.2
4.3

4.4

4.5

4.6

4.7

4.8
4.9

5.1

5.2

5.3

54

Computing the absolute value using covalent modification cycle

TEZIMES .« v v v v v e e e e e e e e e e e e e e e e 43
Simulation results for the computation of absolute value . . . . .. 44
Comparison between ideal and simulated signal-transducing response 45
Computation of logarithm of arbitrary base . . . . ... ... ... 46
Simulation results of natural logarithm and logarithm of arbitrary

base . . .. L e 47

Input-output characteristic curve producing saturation nonlinearity
using: (a) covalent modification cycle, (b) chemical reactions . . . 50
Saturation nonlinearity using chemical reactions . . . . . . . . . .. 51
A prototype embedded biomolecular closed loop feedback control
SYSEBIML. & . v v e e e e e e e e e e e e e 52
Comparing input-output characteristics of an ideal SMC and QSM
controller . . . . . ... 54
Closed loop tracking response of QSM controller with parameters
and their nominal values . . . . . .. ... ... ... ... 61
Closed loop responses comparison of quasi and ideal sliding mode
controllers . . . . . . ... 62
Closed loop tracking response of PI controller with parameters and
their nominal values . . . . .. .. ... ... L. 63
Retroactivity effect forasystem S . . .. ... .. ... ...... 64
Closed loop tracking response comparison of QSM and PI con-

troller after accounting for retroactivity effects . . . . . . . ... .. 66

The biomolecular closed-loop feedback control system with the ac-
cumulative process time delay. . . . . . ... ... ... 70
Comparing system performance of QSM controller with the PI con-
troller fort=1000s . . . ... ... ... ... ... ... ... . 74
System performance with the PI controller for 20% uncertainty in
parameters . . . . ... ... e e 75
System performance with the QSM controller for 20% uncertainty

INparameters . . . . . . . ... e e e e e 75

X1



5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

System performance with the PI controller for 50% uncertainty in

parameters . . . . . ... L. e e e

System performance with the QSM controller for 50% uncertainty

INPArameters . . . . . . . v i e e e e e e e e e e e e

The signal-transducing mapping resembles the steady-state input-

output mapping of a Pl controller . . . . . .. ... ... ... ...

A prototype embedded biomolecular closed loop feedback control

system with CMC or Pl controller. . . . . . ... ... ... ....

Simulation results with PI controller + linear process and CMC con-

troller + linear process . . . . . . . . . ... oo

Simulation results with PI controller + nonlinear process and CMC

controller + nonlinear process . . . . .. ... .. ... ... ...

The mapping of steady-state input-output signals of the PI con-

troller and the CMC controller when controlling the linear process .

The mappings of steady-state input-output signals of the PI con-

troller and CMC controller (A) . . . . . . . .. . . ... .. ....

Xii

82



Abbreviations

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

CRISPR Clustered regularly interspaced short palindromic repeats
CRNs Chemical reaction networks
DSD DNA strand displacement
ODEs Ordinary differential equations
PI Proportional+integrator

SMC Sliding mode controller

QSM Quasi sliding mode controller
CMC Covalent modification cycle

nt Nucleotides

ssDNA Single stranded DNA

mRNA Messenger RNA

HBB Haemoglobin beta

LTI Linear time-invariant

SN Saturation nonlinearity

MIMO Multi input multi output

Xiil



Chapter 1
Introduction

By ‘life, we mean a thing that can nourish itself and grow and decay.

- Aristotle

1.1 Research motivation and the context of molecu-
lar programming

The criteria for life, as stated by the brilliant geneticist Norman Horowitz is: Life
possesses the properties of replication, catalysis, and mutability; the complexity of
multicellular organisms starts with a single cell; followed by its division, growth,
reproduction, and so on. Thus, living organisms are complex but fascinating phe-
nomena. The development of some of these complex structures performs a partic-
ular function - the heart pumps blood through the body, leaves use the energy of
sunlight by photosynthesis, fish gills help underwater breathing, etc.

If the development of functions in nature is understood as a program then the
underlying chemical reactions can be seen as their programming language. There
may exist more than one set of such chemical reactions (combinations of different
types of chemical reactions) or more than one set of parameter values - that is able
to achieve the desired biomolecular system response. However, one should select
a suitable set of chemical reactions having a minimum number of reactions which

is preferred or rather feasible for in vivo/in vitro implementations. Also, a suitable



set of parameter values can be chosen for simulations, keeping in mind that these
values are well within the practically achievable physical limits, for eg., DNA or
mRNA concentration levels, reaction rates etc.

Now, to treat biomolecular systems and software analogously, one must es-
tablish common features. First, any slight alteration in software code can affect the
program execution, and eventually the outcome. This is similar to gene mutation
that is carried out by altering the nucleotide sequence of DNA so that even a small
change in sequence causes a significant difference in growth. This change in reac-
tant and resulting product DNA can be formulated in terms of chemical reactions.
For example, developmental mutations in the fruit fly Drosophila melanogaster can
result in the growth of a leg out of the head instead of an antenna [1], or genetic dis-
orders in humans can cause autism [2]. Second, programs can be copied and edited
to get the desired results. During cell replication, cells duplicate their genetic ma-
terial to produce two identical daughter cells [3; 4]. Precise and targeted genome
editing is possible with a recently developed tool based on the clustered regularly
interspaced short palindromic repeats (CRISPR) system that relies on the protein
Cas9, from bacteria. In Streptococcus pyogenes, the re-engineered Cas9 could find
and cut the DNA target specified by the guide RNA [5]. Later, this technique was
used for genome editing in human cells, for the first time in [6-8].

This ability and possibility to program cells that eventually might be used to
design even more complex biochemical systems in the future is the essence of mo-
tivation for this thesis. Similar to using software languages in computer coding, the
aim is to use a structured set of instructions in order to “program” DNA molecules

in vitro or in vivo.

1.2 DNA based circuits in synthetic biology

Synthetic biology is an interdisciplinary research field at the engineering-biology
interface, that encompasses extremely diverse domains such as biotechnology, molec-
ular biology, nanotechnology, biophysics, computer engineering, mathematics and
so on. Several of the proposed industrial and biomedical applications of synthetic

biology require the ability to precisely and robustly control the behaviour of syn-
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Figure 1.1: Synthetic biomolecular devices should ideally have the capability to
produce nonlinear input-output behaviour. The results illustrated in this thesis show
how biomolecular implementations of nonlinear operators can be realized by ap-
proximating the DNA strand displacement (DSD) reactions to the chemical reac-
tion networks (CRNs) and then converting into their equivalent ordinary differential
equations (ODEs).

thetic circuits or devices at a biomolecular level [9; 10]. A fundamental aim of
synthetic biology is thus to achieve the capability to design and implement robust
embedded biomolecular feedback control circuits [11]. An appropriate modelling
and design framework for tackling this problem is provided by chemical reaction
networks (CRNs), which represent a convenient and concise approach to modelling
chemical and biological processes as well as an effective tool for the analysis of
their behaviour from both deterministic [12; 13] and stochastic [14] viewpoints. It
is possible to approximate any chemical reaction by a set of suitably designed DNA
strand displacement (DSD) reactions and vice versa [15—-17] (discussed precisely
further in Chapter 2, Section 2.2.2). The conversion from CRNs to ordinary dif-
ferential equations (ODEs) also works bidirectionally because, applying the mass
action law to unimolecular CRNSs results in linear ODEs whereas, when applied to
bimolecular CRNSs, it results in nonlinear ODEs (discussed in Chapter 2, Section
2.1.1). This gives flexibility in understanding the trade-offs between such conver-
sions and helps improving the system design. This approach has opened up the
possibility of utilising nucleic acid computations for the design and implementa-
tion of various types of synthetic biological circuits - the approach is illustrated
conceptually in Fig. 1.1.

The direct use of nucleic acids for performing computation has emerged
as a promising approach for addressing such problems [17; 18]. The nucleotides

sequence of nucleic acid dictate their interactions through the well-known Watson-



Crick base-pairing mechanism, which enables a precise programming of molecular
interactions by the choice of relevant sequences. This approach has allowed the
implementation of a number of complex circuits based on DSD [19], DNA en-
zymes [20] and RNA enzymes [21], and has been used for the modelling and im-
plementation of various nucleic-acids-based circuits such as feedback controllers
[22], predator-prey dynamics [23] and also transcriptional oscillators [24]. So far,
several synthetic devices have been designed and implemented in vivo using protein
expression and gene regulation mechanisms, for example, logic gates [25], memory
elements [26], oscillators [27], filters [28; 29] and controllers of cellular differential

processes [30].

1.3 Summary of contributions and thesis organisa-
tion

The scientific contributions as presented in each chapter in this thesis are sum-
marised below.

Chapter 2 presents the background of CRNSs, and explains the DSD mecha-
nism and its underlying kinetics. The mapping of chemical reactions to ODEs, by
means of the generalised mass action law is explained, as it is an important step in
order to to build a mathematical model that can approximate the dynamic behaviour
of the biomolecular system. The methodology adopted for the system design is fol-
lowed by an overview of the toehold mediated DSD mechanism.

Chapter 3 describes the use of chemical reactions to implement a number of
linear and nonlinear system theoretic operators such as gain, integrator, summation,
polynomial functions, rational functions, and so on. The signals in the mathematical
models considered here are biomolecular, i.e. they represent chemical concentra-
tions of species. Now, being a physical quantity, chemical concentrations cannot
be negative. To overcome this difficulty, [31] represented the signal in a mathe-
matical model as a difference between the concentrations of two species labelled as
‘+’ and ‘—’, and using this approach described how a number of linear operators
could be designed and implemented in DNA-based chemistry. Chapter 3 reviews

this methodology, and then provides new results on the design of nonlinear system



theoretic operators, and their application to form functional circuits.

Previous work on the implementation of feedback controllers using DNA
has focussed on the design of linear time-invariant systems only, e.g. the propor-
tional+integrator (PI) controllers described in [17; 31; 32]. This approach fails to
exploit the inherent potential of biomolecular circuits to implement nonlinear dy-
namical systems [15; 22; 33], and also requires the use of additional circuitry to
overcome the wind-up effects associated with the integrator action. In Chapter 4,
the approach of [17; 31; 32] is extended to allow the implementation of nonlinear
feedback controllers. The focus is on a well-known type of nonlinear controller
called a sliding mode controller (SMC), whose strong performance and robustness
characteristics have been widely recognised in more traditional control engineering
applications [34; 35]. From sliding mode control theory, a perfect SMC can be rep-
resented by a relay nonlinearity (see [34; 36; 37]). To avoid a number of theoretical
and practical issues with the implementation of such discontinuous switches, in en-
gineering practice SMC'’s are usually implemented as quasi sliding mode (QSM)
controllers, i.e. continuous/smooth approximations of the discontinuous SMC. In
Chapter 4, it is shown how a set of irreversible chemical reactions can provide a
biomolecular implementation of a nonlinear QSM controller. It is also shown how
the kinetics of the required chemical reactions can then be implemented as enzyme-
free, entropy/enthalpy driven DNA reactions [38], using strand displacement as an
elementary computational mechanism. To evaluate the performance properties of
the QSM controller, the closed-loop response of the QSM controller is compared to
that of a traditional linear PI controller. Feedback control systems usually comprise
several individual modules or components connected together to perform a particu-
lar function. Although the components behave as expected when designed individ-
ually; they can affect each others’ behaviour when interconnected. This interesting
phenomenon is referred to as retroactivity and it has been extensively studied in
[39-41]. For the closed-loop simulations of the proposed QSM and PI controllers,
the retroactivity is quantified to evaluate its effect on the closed-loop dynamics.

An important requirement for any embedded bimolecular controller is that
its design provides robustness to various forms of uncertainty and variability that

could arise in its final implementation in DNA. In Chapter 5, the focus is on two im-



portant sources of such uncertainty - variability in the reaction rate constants of the
chemical reactions underlying the closed-loop control system under consideration,
and uncertain time delays in the biomolecular process to be controlled. In practice,
experimental biologists are rarely able to specify the reaction rates of chemical reac-
tions exactly, and additionally, as highlighted in [31], unregulated chemical devices
or leaky expression can potentially affect production and degradation rates and sub-
sequently alter the behaviour of the designed components. There are also many
reasons why time delays may need to be included in CRN models of biomolecu-
lar processes, since this avoids cataloging potentially large numbers of intermedi-
ate species and their reactions, in favour of describing the dynamic relationships
between the concentrations of key species. As a result, fewer concentration vari-
ables will generally be required, thus simplifying the overall circuit design problem.
Chapter 5 comprises a robustness analysis comparison of the proposed QSM and
PI controller, in the presence of uncertainty. The DSD mechanism involves a set
of chemical reactions with DNA strands as the input and output. These reactions
may exhibit time delays in producing the final product DNA strand, especially if
the number of reactions is large. Considering the number of reactions involved in
the complete feedback circuit, their accumulative delay is included at the output.

Covalent modification cycles are ubiquitous motifs in cellular signalling. Al-
though such signalling cycles are implemented via a highly concise set of chemical
reactions, they have been shown to be capable of producing multiple distinct input-
output mapping behaviours such as, ultrasensitive, hyperbolic, signal-transducing
and threshold-hyperbolic. Chapter 6 explores more generally how the set of chem-
ical reactions underlying covalent modification cycles can be exploited for the de-
sign of synthetic biomolecular feedback controllers with strong performance and
robustness properties. The different input-output characteristics of such cycles in
their different operating regimes are shown to allow the implementation of dif-
ferent types of feedback controllers. In chapter 6 an overview of the design of a
proposed nonlinear covalent modification cycle (CMC) controller is provided, and
a performance/robustness comparison with a linear PI controller in the presence of
parametric uncertainty is described.

Finally, some conclusions and a discussion on the directions for future re-



search in this area are offered in Chapter 7.

The elements of the MatLab simulations codes may be obtained upon re-
quest by contacting the author - rucha.sawlekar@uni.lu. Parts of chapters 3 to 6
have been published or are currently submitted for publication in a number of re-
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Chapter 2

Chemical Reaction Networks and
DNA Strand Displacement

The chapter begins by presenting the terminology for using chemical reaction net-
works (CRNs) as a programming language in order to design system theoretical
operators and circuits. It is followed by a discussion of the methodology for rep-
resenting species concentrations as signals, in order to represent a biomolecular
system as a mathematical model. Finally, the mechanism of DNA strand displace-
ment (DSD) is introduced as a candidate architecture to implement the devices at a

molecular level.

2.1 Chemical reaction networks

A system of chemical reactions can be represented mathematically as a CRN [12;
42-44]. A CRN consists of a finite set of reactions, having specified reaction rates,
that includes a set of reactants and products. A general set of reversible and irre-

versible chemical reactions may be written as:

k

X1 +Xp %X3 + Xy, (2.1a)
2

X, 5 X+ Xs, (2.1b)

X5 0. (2.1¢)



where, X; denote chemical species. In (2.1a), the quantities on the left hand side
of the reaction (X; and X;) are called ’reactants’, and the quantities on the right
hand side (X3 and X,) are called ’products’. Based on the number of reactants
present, the reactions are either unimolecular (only one reactant), bimolecular (two
reactants) or multimolecular (more than two reactants present). Accordingly, (2.1a)
is referred to as a bimolecular reaction while (2.1b) and (2.1c) are unimolecular
reactions. Furthermore, (2.1a) represents a reversible reaction, i.e. reactants can be
re-produced by means of products; with k1, k; denoting the forward and backward
reaction rates, respectively. Reactions (2.1b) and (2.1c) are irreversible, with k3
being the catalysis reaction rate and k4 a degradation rate that turns Xs into an inert
or waste product (¢). Different types of chemical reactions that are used to construct
the functional operators in this thesis are explained further in Section 2.2.

The order of the reaction corresponds to the number of molecules reacting
with each other simultaneously. Thus, (2.1b) is an example of a first order reaction
whereas (2.1a) is a second order reaction. The reaction rates &k to k4 are the number
of occurrences of the respective reaction, per unit time, per unit volume, divided by
Avogadro’s number (6.023 x 10%%) [12]. Also, the units of the reaction rates for
first and second order reactions are different. The first order reaction rates k3 and k4
have units of reciprocal seconds (/s) and second order reaction rates k; and k, have
units (/M /s) [4].

A reaction network, {S,C, R} can be specified by the set of species S that
indicates the molecules undergoing the series of chemical reactions; the set of com-
plexes C that indicates the linear combinations of the used and produced species in
the reactions, and by R, the series of reactions taking place. Accordingly, for (2.1),

the reaction network is:

Species, S ={X1, Xz, X3, X4, Xs}, (2.2a)
Complexes, C={X1+Xa, X3+X4, X4, X4+ X5, X5, ¢}, (2.2b)

k
Reactions, R = {X| +X» % X34+ Xa, Xa 2 Xa 4 X5, Xs 5 0}, (2.20)
2

Usually biochemical reactions are characterised by the property referred to
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as stoichiometry, which specifies the reactants and products participating in the
reaction and the molar ratios in which they are consumed or produced. Accordingly,
the stoichiometric coefficient of a chemical species is positive if it is produced in the
forward reaction, and negative otherwise. A stoichiometric matrix representation of

the reaction network (2.1) can be given as:

k1 ky k3 ky
1 1 0 0\x
1 1 0 0 |x
N=l'1 10 0|x
1 -1 0 O |=x
0 0 1 —1/)x

The stoichiometry matrix for the 5-species 4-reaction scheme has five rows
and four columns so that each row belongs to a particular species and each col-
umn belongs to a reaction rate. In this way, it determines the proportions in which
chemical elements combine or are produced and the weight relations (number of

molecules) in any chemical reaction.

2.1.1 Mapping biomolecular reactions to differential equations

As discussed previously, CRNs can be considered both as a programming language
and as a mathematical representation of how the molar concentrations of chemical
species evolve over time. In other words, CRNs outline how certain species - in
the context of this thesis, DNA strands - can react to yield some product species in
a finite time. Fig. 2.1 shows the mapping of DNA elementary reactions to CRNs
and to ordinary differential equations (ODEs), that can be simulated to observe
the system dynamics. The key factor in describing the kinetics is to assign a rate
function to each of the chemical reactions present in the network and once it is
done, one can write a system of differential equations. Note that, for species X and

X5 in (2.1a), both the species are used at the rate k; and produced at the rate k, in

11
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Figure 2.1: DNA reactions — chemical reaction (or CRN) — ODE: (A) Elementary
DNA reactions where, X1, X, are signal species and the remaining are the auxiliary
species. (B) Chemical reaction can be approximated from DNA reactions and vice
versa. (C) Chemical reaction can be approximated by ODE using mass action ki-
netics. (D) Simulation of ODE to evaluate the behaviour of the DNA reactions.

the reaction. Then, for X; and X5, the ODE can be written as:

ax _dx,
dt  dt

where, this formalism of applying reaction rates to the species activities is referred

= —k1 X1 X0 + ko X3Xy, 2.3)

as the law of mass action [45]. It is applied to a set of chemical reactions in order
to generate a system of ODEs. Now, species X3 in (2.1a) is produced at the rate k;
and used at the rate k» in the reaction, so that:
dX:
0 =hXiXa —kXsXs, (24)
By continuing in this way, a system of ordinary differential equations is

obtained for each of the species as follows:

dx,

El = kXX +XaXs, (250) % XX — koXsXs,  (2.5d)
t

X,
t

X,

dr = k1X1X2 - k2X3X4, (2.50)
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Once the system of ODE:s is obtained, the dynamic behaviour of the species
can then be simulated and modified by means of their respective concentrations and

reaction rates.

2.1.2 Realising dynamical systems using CRNs

In this section, existing results are summarised from [31; 46] to show how different
systems are realised in the CRN framework. The notations are adopted from [31]
and [15].

Signals and system theory involves input signals that are processed through
a mathematical model to generate the output signals. The signals in biological
systems are often molecular concentrations. While signals in systems theory can
yield both positive and negative values, molecular concentrations, being a physical
quantity, can only take non-negative values. Thus, when a negative value of any
signal appears in the simulations, it looks contradictory to present the signal as a
concentration.

To resolve this difficulty, the approach proposed in [31] is adopted and ac-
cordingly any signal x is represented as the difference in concentration of two chem-

ical species, namely x and x~, such that:
x=x"—x", orspecifically, x(t)=x"(t)—x (¢) (2.6)

where, x™ and x~ can be physically represented as two individual DNA molecules
and their superscripts 4+, — denote only the labels. This way two DNA molecules of
the same domain (same nucleotides sequence) can be presented conveniently. Now,
x can be treated as a signal in the mathematical model, and physically measured as
a concentration that is obtained as a difference in the concentration of two chemi-
cal species x™ and x~. Based on this method, if the value of x appears negative in
simulations - it can now be justified. Note that, relation x = x* + x~ is not consid-
ered here as only the approach in (2.6) validates the negative values of a signal (or
concentration) appearing in the simulations.

The relation in (2.6) is illustrated through an example given in Fig. 2.2

13
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Figure 2.2: The square wave of signal x (right) is modelled by using two instanta-
neous additions of chemical species at ¢t = 0 sec and # = 20,000 sec. At time t =0
sec, only DNA strand x* is added i.e. x™(0) = 10nM (left). This constitutes the
resulting response of x (right) for 7 € [0,20,000] sec, as given in (2.7). At time
t = 20,000 sec, DNA strand x~ is added i.e. x(20,000) = 20nM (center). As
stated in (2.8), it results in the response of x for z € [20,000,40,000] sec.

where, the simulated trajectories represent concentrations of DNA strands xt, x™
and the resulting value of x over the time, r = [0,40,000]s. In Fig. 2.2, a DNA strand
xT with a concentration of 10 nM is added initially at time # = Os, in the absence of

DNA strand x™ in the solution; then the value of x is given as:
x(0) =x7(0) —x(0) =10—0=10; ... [fort e [0, 20,000] 5] 2.7)

When the DNA strand x~ is added with a concentration of 20 nM at time ¢t =

20,000s, the minimal representation of signal x is given as:

x(20,000) = x™(20,000) — x~(20,000)
=10—-20=-10; ... [for t € [20,000, 40,000] s] (2.8)

Thus, the simulated trajectory for dynamics of any signal x in Fig. 2.2 fol-
lows (2.7) and (2.8), showing how the value of x changes from positive to negative
over the time ¢ = [0,40,000]s.

The next section presents an example on how this methodology can be em-
ployed in order to derive a mathematical model of a particular biomolecular system

known as a covalent modification cycle.
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Figure 2.3: (a) The covalent modification cycle regulated by their phosphoryla-
tion/dephosphorylation [59]: inactive (X7) or active (X4) proteins can be activated
or deactivated by means of the two enzymatic species, namely kinase (Xg,) and
phosphatase (Xg,), respectively. (b) Steady state behaviour of the four regimes of
the covalent modification cycle.

2.1.3 Modelling covalent modification cycles

A classical example of analog cellular signal processing is signal transduction,
which cells rely on for sensing and responding to various internal or external pertur-
bations (see e.g. [47-50]). When perturbations occur, cells perceive them through
receptors, which subsequently activate appropriate signalling pathways or cascades
in order for cells to communicate with each other and respond accordingly [51-53].
One of the most ubiquitous motifs seen in cell signalling cascades is the cycle of
covalent modification (see e.g. [54; 55] and references therein). Examples of this
signalling cycle include phosphorylation/dephosphorylation cascades [56], DNA
methylation [57] and monoclonal antibodies [58]. The covalent modification cycle
is implemented via a highly concise set of chemical reactions, and this set of chem-
ical reactions has been subjected to rigorous mathematical analysis. As shown in
[54], under certain conditions, the set of chemical reactions describing the cova-
lent modification cycle can exhibit highly sigmoidal input-output characteristics,
generating the so-called ultrasensitive response. In [59], the authors systematically
examine the covalent modification cycle in Fig. 2.3(a) and its steady-state responses
as in Fig. 2.3(b), to time varying perturbations and demonstrate the existence of two

additional types of responses, termed signal-transducing and threshold-hyperbolic.
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The chemical reactions from [59] are given by:

ka ky
XE1 + X k:l XCA — X4 —|—XE1 (2.9a3)
d
ka2 kuz
Xa + X, k# Xc, — Xi +Xg, (2.9b)

dy

where, k4, kq, are the respective substrate-enzyme association rates and ky , kg,
are the respective substrate-enzyme dissociation rates. k,, and k,, are the forward
and backward catalytic reaction rates. This covalent modification cycle in (2.9),
operates in the following manner; the two step irreversible reaction (2.9a) is catal-
ysed by the enzyme (kinase) Xg, that reacts with the inactive protein X; to produce
the active protein output, X4. Similarly, reaction (2.9b) is catalysed by the en-
zyme (phosphatase) X, that reacts with active protein X, to produce the inactive
protein, X;. Xc, and Xc, are the intermediate products in (2.9a) and (2.9b), respec-
tively that represent the bound concentration of the reactants as, X¢, = Xg, : X; and
Xc, = Xy : XE,.

Now, an individual system of 14 chemical reactions that can generate the
identical distinct steady state response regimes as illustrated in Fig. 2.3(b), is given
below. Despite the ability to mimic the response regimes, the CRNs given below
remain different than the CRNSs of a standard covalent modification cycle (2.9), due
to the formalism (2.6), adopted from [17; 31]. Strictly speaking, any reaction given
below, with superscript £+ and F should be decomposed into their individual ‘+’
and ‘—’ components. For example, any reaction, XljE -l-X2i LN X3jE should be read as,
X f’ —|—X2+ LA X;r and X[ +X, LN X5 . However, for brevity and to avoid overloading

of reactions, they are written in the compact form:

X+ X X (2.10a) X +Xe 55 XE, (2.100)
X+ X5 X (2.10b) Xg 4 XX, (2.10g)
Xe, By xE 4 x2E (2.10c) X4 +Xg, 6, (2.10h)
Xt +Xo g, (2.10d) X +X, L. (2.100)
X+ X0 0, (2.10e)
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where, ki,k3 are binding and k»,k4 are the catalytic reaction rates and 1 is the
annihilation rate. Note that, for (2.10a) the product is only X, *1 , rather than Xci1 while
for (2.10b) the product is only Xe,- Also, system in (2.9) and its corresponding
species are to be treated separately than the system in (2.10) as it can be noted
that (2.10) is the modified version of (2.10) according to the adopted methodology,
(2.6).

It can be checked that applying the law of mass action to (2.10), in order to

obtain the system of ODEzs, results in:

For X¢, For X,
ax; ax;t
G _ + —y— + +y— P + - + -
dt b =hiXp X, HhaX, X, —kXe —nXE Xe = kX, X, — kX, X, +kXe, - X)X,
dX. ax,;
G _ - +y— - +y— P —y— +y— - -
— b=k X, X, kX, X, —kXe —nXE Xc D —kiX;, X, — kX, X, +kXo, —nX; X,
From (2.6), x = x™ — x ™. Hence: From (2.6), x = x™ — x ™. Hence:
+ - -
dXe, _ dXe,  dXg Xy _ X, dXx,
dt dt dr |’ dt dt dt |’
_ +y+ —y- + +y— _ +y+ -yt + +y -
= kX, X, +hi X, X, —kXe —nX: Xe ] = [~kiXp X, — kX, X, +haXZ, —nX,) X, ]
— kX, X, +ki X X, — ko X —nX2 Xc ], —[—kiX;, X, — kX X, +kXo, —nX, X, ],
= kiXg X, +kiX;, X, —koX& —nX2 X = —kXy X, — ki X, X, +kaXp X, X,
—ki1 X, Xy —kiXp X, +koXe, +nXE Xe s +h X, X, ki Xp X, —kaXg, —nX; X,
=kiX; (X5 —X,) —kiX;, (X —X,,) = —kiX; (X, —X,) —ki X, (X, - X,)
—ka (X —Xg,)s +ha(X5, — X¢,)s
=X X, — kX, X, —kXc,, = kXX, — kX, X, +kiXc,,
= k]Xp(Xijl— - Xi;) —ka Xy, = —kiXp (Xi: - Xi;) +kiXc,,
= ki1 XpXin — k2 Xc,» = —kiXpXin + kaXc,,
dX dX
dl‘Cl = kIX,»,,Xp — kZXCl . TZP = 7k1X,‘nXp + k4XC2.
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For X, For Xc,

ax; ”
Tt)m = k2Xa - k3X(;t¢lX€ - nX(;ILAthm’

dX- B - B dXE
out kZXCl — k3 X g Xe — nXDJIrAthmt’ :

= ks Xou Xe — kaX{ = XA X5,

= ksXouXe — kaXg, —MXEXG,

dt dt
From (2.6), x = x* —x~. Hence: From (2.6), x = x* —x~. Hence:
AXou _ [AXow  AXou dXe, _[dXe, dXg,
dt dt dr |’ dt dt dr |’
= [kZXE: — k3 XowuXe = X o Xour] = [kaXguXe — k4X(er2 - TIXE;XEz]
- [kZXa —k3XouXe — anu;X(;r]’ — (k3 X g Xe — k4Xc_2 - rlXctXc_z]’
= kX — k3 XouXe — N X o Xous = k3 XouXe — kaXg, —MXEXc,
_k2Xa + k3X(;41Xe + nX(;;tX(;tta _k3X(;¢tXe + k4XE2 + TIX(ZXEZ,
= kZ(XcJ': _Xc_, )—ks (Xotr = Xou) Xe, = k3X€(Xu+ut —Xou) — k4(XcJ'r2 _XEz)v
= kZXCl - kSX()utXes = k3XeX(,ut — k4XC2,
dX, dX,
T(;m = kZXCI — k3 XouXe. dtCZ = k3 XouXe — k4XC2~
Thus, collectively we get:
dXc dX
P
T =kXaX,—kXe,  @lla) TP = kXX, tkiXe,  (2110)
dXou[ dXC
2
= koXe, — ksXouXe,  (2.11b) = ksXouXe —ksXe,.  (2.11d)

as shown in the derivations above, each signal, for example X¢, can be understood
as a difference in the concentrations of species Xzfl and X . The remaining ODEs
throughout the thesis can be derived in a similar manner. The total substrate con-
centration is expressed as S;oq1 := X, +Xous +Xc, +Xc,. From (2.11), it can be seen
that (dX,/dt) + (dXou /dt) + (dXc, /dt) + (dXc,/dt) = 0, at equilibrium and thus
Sioral 18 assumed to be constant. Through an appropriate choice of reaction rates,

one can obtain four distinct operating regimes for (2.11), as shown in Fig. 2.3(b).
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2.2 Implementation using toehold mediated DNA strand

displacement

DNA encodes genetic information essential for all biological functions such as
growth, development, reproduction and so on. DNA is double helical in nature,
comprising of the bases adenine (A), thymine (T), guanine (G), cytosine (C) linked
by covalent bonds, as proposed by James Watson and Francis Crick in 1953 [60].
The bases are attached to a phosphate group and a deoxyribose sugar, together re-
ferred to as nucleotides (nt). Two nucleotide strands run opposite to each other and
are antiparallel. Single stranded DNA (ssDNA) is used as a template, to transcribe
messenger ribonucleic acid (mRNA) (transcription), which is then translated to
specify a sequence of amino acids that forms a protein molecule in a process called
translation [4; 61; 62]. Mutation in base pairs can lead to genetic disorders, for
example, the mutation in the haemoglobin (HBB) gene causes sickle cell anaemia
[63; 64].

Over the past few years, synthetic nucleic acids have been used as pro-
grammable building blocks for molecular level structures and circuits [19; 65; 66].
In particular, DNA is chosen as the building block in this thesis because its thermo-
dynamics [67—69] and mechanical properties [70; 71] are well understood. Also,
the ability to synthesise DNA, and thus RNA and protein is getting relatively faster
and cheaper [72; 73]. Another reason is that, to implement a prescribed dynamic
behaviour in vitro, the chosen molecular structure should offer a way to make the
tuning of reaction rate constants simple. It is quite feasible to do this with DSD
[74; 75] by changing the length of a particular subsequence of the reacting DNA,
referred to as a toehold. In Section 2.2.1, the underlying molecular mechanism of
toehold mediated DSD is explained, and this mechanism will form the basis of the
proposed experimental implementation of the various dynamic devices and circuits
described later in this thesis. This mechanism provides a precise control over the
reaction kinetics by allowing engineers to program when and where specific actions

or steps occur in a molecular device.
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Figure 2.4: DNA strand displacement reaction mechanism: the DNA strands are
bonded by Watson-Crick base pairing, denoted by * and arrows indicate a 3" end.
The basic steps involved are: (a) binding of toehold 1 invader strand P to 1* of
complementary target strand X, (b) branch migration wherein the strand 1-2 par-
tially displaces strand 2-3, and (c) complete separation of strand 2-3.

2.2.1 The architecture and mechanism

This section presents an overview of the DSD mechanism, through which the types
of chemical reactions used in this thesis may be implemented. Consider the re-

versible bimolecular reaction:

k
X+P=Y10Q, (2.12)

kupy

where, X, P, Y and Q are DNA strands while &, and k,,;, are the binding and unbind-
ing rates, respectively. A DSD implementation of this reaction is shown in Fig. 2.4.
It begins with an invader strand P binding to the complementary target strand X at
the toehold 1* through Watson-Crick base pairing, denoted by * and arrows indicate
a3 end. [60]. Through an intermediate process of branch migration, P displaces
the evader strand 2-3 from X, thereby producing the partially double stranded prod-
uct Y that can further react with other DNA complexes using the toehold 3*.

The numbers 1,2,3 and 1*,2*,3* are referred as domains and denote the set
of adjoining nucleotides. If the DNA strands belong to entirely different domains
1.e. contain no complementary DNA strands with respect to each other, as is often
the case, they do not interact with each other directly and therefore DSD reactions

must be mediated by so-called auxiliary DNA species, which must be present in suf-
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ficiently large amounts [76]. We assume that the complementary strands react only
with each other, although this constraint can be relaxed, as demonstrated in [17].
For the DSD reactions to be fast and thereby reduce mismatches during branch mi-
grations, the toehold domains should be short: for example, of the order of 6-10 nt,
where nt denotes nucleotides, and the displacement domains should preferably be
20 nt [77]. The reaction rate constants, and consequently the kinetics of the system,
are a function of the toehold binding strength and can thus be altered by varying the
binding strength and the strand composition [76]. If all the steps and reactions from
Fig. 2.4 are considered, the resulting number of ODEs increases. This can be a
drawback in designing complex and bigger networks from mathematical modelling
point of view. Hence, elementary DNA reactions are approximated into CRNs by
excluding auxiliary species as described in [15] (see figures in Section 2.2.2). Cor-
responding reaction rates are also approximated in terms of initial concentration of

auxiliary DNA species (Cyqy), and forward binding reaction rates (g; and g,qx)-

2.2.2 Software design tool: Visual DSD

The recent accelerated growth in the complexity of the experimental systems im-
plementing DNA devices has led to the frequent use of computing software for
the design of such systems. Visual DSD ! [78; 79] is one such software package,
developed by Microsoft Research, that is used for the analysis, simulation and ver-
ification of DSD circuits. In Visual DSD, each DNA strand is represented with
domains where, the numbers 1,2,3 and 1*,2*,3* denote the set of adjoining nu-
cleotides (see Fig. 2.4). To simulate the DNA reaction, reactant DNA strands are
defined in a simple code along with their initial concentrations, toehold presence
on the strand (if any) and reaction rate. The evolution of each species concentration
over the time can be viewed and also modified by changing these parametes. The
simulated reactions may produce different domain composition of the product DNA
strands, depending on which domain the toehold presence was defined. If any of
the product DNA strands does not have a toehold presence then it might not be able

to react further and is thus referred to as inert or waste product (¢).

Visual DSD, version v0.14-20140319-34170, Microsoft Research, Microsoft Corporation,
2014.
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To implement the linear and nonlinear operators that form the various func-
tional circuits considered in this thesis, four types of chemical reactions are required
- catalysis, bimolecular, degradation and annihilation. For each of these chemi-
cal reactions, the underlying DSD mechanism is illustrated using Visual DSD in
Figs. 2.5 to 2.9. Note that the catalysis reactions (2.15) and (2.18) in Figs. 2.5 and
2.6, respectively, produce different output species depending on the domain com-
position of the reactant auxiliary species. The auxiliary species considered here are
namely, G?E, Tl.i, Hii, Ol.i, L?E, B?E, HS?E, LSl.i, BS?E. Species G?E and Tii, which are
partially double stranded DNAs, and single strands of Oii, can be observed to have
different domain compositions in Fig. 2.5 and Fig. 2.6. As a result, in (2.15) two
different products, X2i and X3i, are obtained whereas in (2.18) the single species
Y+ is produced.

The domain 17 in Figs. 2.5 to 2.9 denotes the subsequence of domain 1
that may be the same length as 1 but contains some mismatched bases over the
displacement domain. The reaction rate of 12; is however tuned to rate ¢; [77] and
other corresponding reaction rates are set by following the notation from [31] and
[15]. Initial concentrations of the auxiliary species Giio, TlojE Li, Bl%, LSI%, BSl.i0
are set to Cyqr = 1000 nM. In Fig. 2.7, which gives the DNA implementation of the
bimolecular CRN, the concentrations of Tl.i, Ll.i, B?E remain constant throughout the
process [15]. The notion of ‘initial concentration’ that is defined in Visual DSD or
in in vitro / in vivo experiments represents a certain amount of molar concentration.
Whereas, for the simulations of the associated ODEs in MATLAB 2 [80], the initial
condition indicates the initial molar concentration as a reference and is thus set to
zero. The MATLAB simulations thus show the dynamic behaviour of the DNA
strands that evolve from this reference concentration.

The DSD implementation of the catalysis reactions Xit LN th ~|—X§'E and
x* 22 x* ¢ v+ isillustrated in Figs. 2.5 and 2.6 . Accordingly, the reactions (2.13),
(2.16) initiate with the ssDNA X]jE (or X*) displacing auxiliary species Gl-jE irre-
versibly at the rate g;, producing the intermediate complex Oii and waste. Complex
Oii on reacting with auxiliary species Tii, releases two single stranded products,
X2i (or X*) and Xf (or YT). A DNA strand without the presence of a toehold is

2MATLAB version 8.3.0.532. Natick, Massachusetts: The MathWorks Inc., 2014.
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potentially unable to react further and is thus denoted as an inert or waste product
species, indicated as ¢.

The DSD implementation of the bimolecular reaction (2.22) is shown in
Fig 2.7. Here, the reaction begins with single strand X]i reacting reversibly with
the auxiliary species Ll-i to produce activated intermediate complexes Hl-jE and Bli.
Due to the presence of X2i in the solution with an active toehold, it reacts with
complex Hl.i to release intermediate complex 01-i and an inert species ¢. If X2i is
absent then B?E can reversibly displace Hl.i, releasing X li back into the solution.
Complex O?E displaces Tii. Hence, the approximated bimolecular reaction given
by (2.22) is irreversible and produces ssDNA X3i.

The degradation and annihilation reactions are illustrated in Figs. 2.8 and
2.9, respectively. In Fig. 2.8, ssDNA XT reacts with partially double stranded
species GijE and produces inert species. Due to the absence of a toehold presence,
the product species are unable to react further and therefore the reaction is termed
as ‘degradation’. The annihilation reaction shown in Fig. 2.9 is considered in the
reaction network because of the adopted methodology from [31], as explained in
Section 2.1.2. For the reaction (2.28), the DSD begins with ssDNA X reacting
with L; reversibly to produce H; and B;. A ssDNA X reacts with the partially dou-
ble stranded species LS;, producing intermediate strands HS; and BS;. Further, X~

produces an inert species on reacting with one of the intermediate species, H;.
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Figure 2.5: Catalysis reaction XljE — X2jE +X3i. The DNA implementation of catal-
ysis reaction (2.15) with reaction index i and black boxes highlighting the species,
Xli, X2i and X3jE . Domain 17 may not entirely complement domain 1 but its toe-
hold domain reaction rate is tuned to g;. In (2.13), species G; reacts with Xli and
releases Oii along with waste ¢. Oii on reacting with species Tl-jE produces two sin-
gle stranded DNAs, X2jE and X3i. [15]. The question mark appearing on the DNA
strands such as Xli and ¢, indicates the species identifier; as adapted from [31].
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Figure 2.6: Catalysis reaction X* — X* 4 Y*. The unimolecular catalysis reaction
(2.18) is approximated from the DNA implementation with reaction index i. In
(2.16), species GijE reacts with X* to produce Of andin (2.17), O;—L releases X* and
Y™, on reacting with species Tii; as adapted from [31]. The strand displacement
mechanism resembles to that in Fig. 2.5 but, the nucleotide composition of the
product species vary depending on the composition of the auxiliary species involved
[15].
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Figure 2.7: Bimolecular reaction Xli +X2jE — X3i: DNA implementation of a bi-
molecular reaction (2.22) with reaction index i and black boxes highlighting the
species, Xli, Xzi, X3i. In (2.19) Xli displaces auxiliary species Lf reversibly
producing the intermediate complex Hl-i which reacts with XZjE as given in (2.20)
producing Oii. In (2.21), X3jE is produced when Oii irreversibly displaces Tii; as

adapted from [15].
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DNA Implementation CRN

Y
Cmax

X*+G6E 5 (2.23) } xt%e¢  (224) where,|g =

Figure 2.8: Degradation reaction X* — ¢: DNA implementation of species X*
degradation on reacting with auxiliary species Gli. In (2.23), X* performs strand
displacement on G?E producing inert waste ¢. (2.24) represents the chemical reac-
tion derived from this DNA strand displacement reaction; as adapted from [31].
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Figure 2.9: Annihilation reaction X* + X~ — ¢: The DSD diagram shows degra-
dation of auxiliary species X and X~ by means of molecules L; and LS;. The
reaction dynamics are separated into fast and slow time scales such that, X and
X~ are sequestered into intermediate species through reaction with L; and LS; at a
fast reaction rate, while X~ degrades into waste by reacting with H; at a slower rate.
The initial concentrations of X ™ and X~ must be scaled by a factor of 2 (let, £ = 2,
hence, XOJr =1& nM and X, = 0.5 nM) to attenuate for the sequestering effect of
the fast dynamics; as adapted from [31].
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Chapter 3

Biomolecular Implementation of
Nonlinear System Theoretic

Operators

This chapter focusses on the design of linear and nonlinear system theoretic opera-
tors using chemical reaction networks (CRNs). These CRNs can be approximated
in DNA based chemistry and vice-versa thus making the operators implementable
using DNA strand displacement (DSD) reactions. The chapter begins with a dis-
cussion on how to build individual linear and nonlinear operators based on the
methodology from [31] and discussed in Chapter 2, Section 2.1.2. Subsequently
it is shown how a number of functional circuits can be built using a combination of

these individual operators.

3.1 Background results on linear operators

To realise linear time-invariant (LTI) systems using CRNs, [31; 81] show different
realisations to represent elementary system theoretic operations such as gain, sum-
mation and integration. Generally, these mathematical operations are based on the
combination of three forms of elementary chemical reactions: catalysis, degrada-
tion and annihilation. Note that, while the framework considered in [81] is simpler

and also considers nonlinear operators, their proposed framework is not suited for
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the systems under consideration in this thesis, since it does not allow the compu-
tation of negative signals. Thus, the framework proposed by [31] is followed here
instead. In this section, the complete background theory based on [31] required to
realise linear/nonlinear operators is outlined.

Following [31], a set of reactions is compactly represented as x;—L LN xr,
which represents two reactions: xf LN x; and x; LN x, . Strictly speaking, any
reaction with superscript + and F should be decomposed into their individual ‘+’
and ‘—’ components but for brevity and to avoid overloading of reactions, they are
written in the compact form.

Note that, lower-case notations for chemical species are used only for the
lemmas in this thesis. Also, the DNA implementation reactions of the functional
operators may be reversible but, their corresponding approximated CRNs appear to
be irriversible, in order to simplify the mathematical modelling of the CRNs. Now
the lemmas to support the implementation of the linear theoretic operators using

CRNss are presented:

3.1.1 Gain, summation and integration

Lemma 1 [Scalar gain k]

Let, x, = kx; where, x; and x, are the input and output as shown in Fig. 3.1, re-

Xi Xo
—{

Figure 3.1: A block diagram representing scalar gain

spectively and k represent scalar gain. This operation can be implemented using

the following set of chemical reactions:

+ Y o+ + =% +4.,- "
X, —x; +x,5 x, =0, x,+x, —0. (3.1)

o

where, Y and 1 are the kinetic rates associated with degradation and annihilation

reactions respectively.
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Proof: Using generalised mass-action kinetics, the following ODE is obtained.:

dx, o
- = y(kx; — x,). (3.2)

At steady state,
X, = kx;. 3.3)

Thus, (3.2) shows how the gain operator can be implemented.

Lemma 2 [Summation/subtraction]

Consider the summation operation x, = X; + x4, where x; and x; are the inputs

A e,
> >

+
Xd

Figure 3.2: A block diagram representing summation or subtraction

and x, is the output, as shown in Fig. 3.2. This operation is implemented using the
following set of chemical reactions:

X; %xi—l—xo; x;ltlm;t%—x;t; x;—LlHZ); Xt +x, — 0. (3.4)
The subtraction operation x, = x; — x4 is implemented using the following set of

chemical reactions:
N . + Y+ T. + 7 0: + -0 0 35
X; =X tx,s x; o x;+xy; x, — 0, x, +x, —0. (3.5)

Note that, the only difference between sets (3.4) and (3.5) is reaction x4 z, Xg + X,.
To perform addition, xj produces x| in (3.4) whereas, for subtraction operation x;“
produces x; in (3.5).

Proof: Applying generalised mass-action kinetics to (3.4), the ODE obtained for

summation operation is:

dx,

- = y(xi + x4 — ). (3.6)
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At steady state,
Xo = Xi+X,4. 3.7

Similarly, applying mass-action kinetics to (3.5), ODE obtained for the subtraction
operation is:

dx

d_to = Y(Xi — Xg — Xo). (3.8)
At steady state,

Xo = Xj —X4. (39)

Thus, (3.6) and (3.8) shows the implementation of summation and subtraction op-

erators, respectively.

Lemma 3 [Integration]

Consider the integrator, x, = k [ x; dt where, x; is the input, x, is the output and k

Figure 3.3: A block diagram representing integration

is the DC gain (see Fig. 3.3). This operation is implemented using the following set

of chemical reactions:

5 vt xi4xg Do (3.10)

Proof: Using generalised mass-action kinetics, the following ODE is obtained:

o = kx;. (3.11)

Thus, (3.11) shows implementation of the integration operator.

3.2 Nonlinear operators

This section shows how a number of nonlinear operators, namely multiplication,

division and polynomials, may also be designed using chemical reactions, and sub-
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sequently implemented via DNA-based chemistry.

3.2.1 Multiplication, division and polynomial operators

Lemma 4 [Multiplication operator]

Consider the multiplication operation, x, = x1xp, where, x| and x) are the inputs

X1 Xo
— X
X2 T

Figure 3.4: A block diagram representing multiplication

and x, is the output product, as shown in Fig. 3.4. This operation can be imple-

mented using the chemical reactions:

Yu Ym _
xli+x§E —>x1i+x2i+x;’; xli%—x; —>xit+x2$—l—x0;
=50 xi4xBo. (3.12)

Here, Yy, v and M are the binding, degradation and annihilation reaction rates,
respectively.

Proof: Using generalised mass-action kinetics, the following ODE is obtained:

dx,

At steady state,
Xp= 77Mx1xz. (3.14)

Hence, multiplication operation of inputs x| and x, can be implemented with (3.13).

Lemma 5 [Division operator]
Consider the system ./p shown in Fig. 3.5. Let the biomolecular signals u and z be

its inputs. Then its output y computes the ratio u/z.
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Subtractor

u + e y
Ky —1—>
Iy
yz
X [—~2
‘—
Multiplier

Figure 3.5: A block diagram representation of the feedback system .#p that com-
putes the ratio y = u/z where, u and z are biomolecular signals.

Proof: From Fig. 3.5, the error signal is ¢ = u — yz and y = K e. Substituting the
former equation into the latter one and rearranging the variables, we get:
K, u u

y=Ky(u—yz) = Tr K K)o (3.15)

If K is chosen large enough, y ~ u/z.

Remark The configuration in Fig. 3.5 consist of a gain, a subtractor and a multi-
plication operator. The corresponding CRNs for these operators are given in (3.1),
(3.5) and (3.12), respectively.

Lemma 6 [Polynomial x"]
Let x), , denote the polynomial of degree n defined as x, , = x"* (see ‘power compo-
nent’ block of Fig. 3.6). Then, output of power component x, ,, is realised through

the following set of chemical reactions:

ot D (0T, (B6a)  (xy0)F 0, (3.16¢)

T DT (x0)7, B6b)  (rp0) T+ (xp2)” 0. (3.16d)

o (0 E I (Y (x0T (3.17a)
()T B E L YT () (3.17b)
(xp)* 250, (3.17¢) ()™ + (ipn) ™ 5 0. (3.17d)
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Power Gain
Component Component

L{ o e a

Figure 3.6: The input-output system derived in Lemma 7 to compute the univariate
polynomial f(x) = Y" ja;x'. The result uses intermediate variables Xp,; which can
be computed using the chemical reactions given by Lemma 6. The output of the
power component is indicated as x, ; and the output of the gain component is indi-
cated as x, ;. This implementation requires 117+ 7 chemical reactions, where n is
the degree of the polynomial f(x).

where, Y, and 1 are the catalysis and degradation reaction rates, respectively.
Here, the output species in (3.16) denotes x, = (xz) whereas, output species in
(3.17) denotes x,, , = (x"). This way, n'" order component with n — 1 CRNs can be
computed as shown with (3.16), (3.17).

Proof: Using generalised mass-action kinetics, it can be verified that the CRN
(3.17) 1s described using the following ODE:

dxp

=1 ). (3.18)

Hence, using the final value theorem, it follows that the CRN (3.17) implements the

desired function at steady-state with 1/7, as the time constant.

Lemma 7 [Univariate polynomial]

Consider the block diagram shown in Fig. 3.6. Let f(x) be the univariate polyno-
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mial of degree n defined as:
n .
fx)=Y ax'. (3.19)
i=0

Then, f(x) is realised through the feedforward system illustrated in Fig. 3.6, where
the output of the power component is indicated as x, ; while the output of the gain

component is indicated as Xy ;.

Proof: The proof follows trivially using the proofs of Lemmas 1-6.
Remark 1 It may be noted that the constant aq can be realised as, 0 £, x;t’o so that,
Xg,0 — o at steady-state with the time constant equal to 1 /aq.
Remark 2 This configuration can be taken a step further to compute the ratio of
two polynomials. Let # and Z be the univariate polynomials of individual species.
The chemical reactions for both & and Z can be realised using Lemma 7. Then,
the ratio of these two polynomials, i.e., #/Z is computed in a similar manner as
computing the ratio of u and z using Lemma 5.

Table 3.1 lists the DNA strand displacement reactions, CRNs and the corre-
sponding ODE:s for the implementation of each of the nonlinear system theoretic

operators from Sections 3.1.1 and 3.2.1.
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DNA Implementation CRNs ODEs
(a) Gain
k
xii—l—Gli L (Z)—I—Oi xliy%x,-i—&-x;t
Oi Gma, + xt
Xt Gi REN) oY)
Gmax
x4+ Ls \—qm'ux H3+B3 Lo — ykxi —x,)
X7 +LS3 s - HS3+BS3 X 4x; 5o
x; +H Gmax 0
(b) Summation
X; JrGi “ V)JrOi xl-i—>xl-i+x
Oi Gmax, + Xi
Gi 50+ 0i Xy RA xf +x;
O;t + T;t Gmax xd _'_xj:
j: + 7 dx,
x; + G 250 x; =0 T =7(xi+xg —x,)
Gmax

+ L7 q: H;+B7
X+ LS, = 1S, + BS;
Gmax
Gmax

x, +H; — 0

(c) Subtraction

468 %0408
08i+TiMx —|—xi

N RN
0*+Tiqﬂ> +xF
x +G ﬂ@

x;+Ly ﬂHn +B11

ma,x

X, +LS11 ﬁHSII +BS11

q”mx
‘I 'max

x, +Hy

(d) Integration
X +Ghy m 0 + 0%
+ + qmax
0, + le +x

xf +L13 H13+Bl3

max

X +LS13 == HSi3+BS)3

Gmax
Gmax

x, +H3z —0

|
|
|
)
P
]
|

k
X = xii +x$

Xt Lo

d;f = Y(xi —Xq —Xo)

dx(, _ kx,

10 - ¢iCpax- 0 indicates inert or waste product [15; 31].
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Table 3.1: DNA Implementation reactions, CRNs and the corresponding ODEs for the implemen-
tation of components, where, x; and x, denote the input and output of each individual component,
respectively: (b) Summation, modelled using 13 DNA reactions - approximated to 7 chemical re-
actions. (c) Subtraction, modelled using 13 DNA reactions - approximated to 7 chemical reactions.
(d) Integration, modelled using 7 DNA reactions - approximated to 3 chemical reactions. The DNA
implementation reaction rates are set to ¢; = 800 /M/s (i = 1,2,..21), gmax = 107 /M/s and initial

concentration of auxiliary species, Cy,q = 1000 nM. The reaction rate of annihilation, 7, is set to



DNA Implementation

CRNs

ODEs

(e) Multiplication
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+ ‘Inw +
Xy +Hy =% 014
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(f) Power Component
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TABLE 3.1 (continued): DNA Implementation reactions, CRNs and the corresponding ODEs for
the implementation of components, where, x; and x, denote the input and output of each individual
component, respectively: (e) Multiplication, modelled using 17 DNA reactions - approximated to 7
chemical reactions. (f) Power component, modelled using 17(n-1) DNA reactions - approximated
to 7(n-1) chemical reactions where, n is the power. The DNA implementation reaction rates are
set to g; = 800 /M/s (i = 1,2,..21), gmax = 107 /M/s and initial concentration of auxiliary species,
Cinax = 1000 nM. The reaction rate of annihilation, 1, is set to 10 - g;Cy4x. 0 indicates inert or waste
product [15; 31].



3.3 Forming functional circuits using linear/nonlinear

operators

In this section, the way in which the individual linear and nonlinear operators de-
scribed in the previous sections, can be combined to form a number of functional
circuits is explained. Circuit designs to compute the fractional exponent of a sig-
nal, the absolute value of a signal, as well as the logarithm of arbitrary base, are
presented. Designs based on exploiting the dynamics of covalent modification cy-
cles are also presented and are shown to achieve significant reductions in circuit
complexity.

Note that, the reaction rates and coefficients values listed for each complex
circuit application are the manually tuned values that are well within their physi-
cal limits. The base-line or initial values used to simulate the results in this thesis
are referred from the cited existing literature and references therein. An isolated
component can be tested to perform its desired function using different sets of pa-
rameter values. However, when inserted in a multi-component system it might need
to be tuned slightly again. For example, an isolated controller generates expected
input-output characteristics using a set of parameter values but, when it is used in a
closed loop feedback system to control a process, it needs to be tuned accordingly.
It means, there can be multiple sets of parameter values for which the controller can
generate a similar expected behaviour. However, we need to select the best suited
parameter set that gives us better performance than others, for the system design
purpose. Accordingly, the parameter values listed throughout the thesis have been

collected.

3.3.1 Fractional exponent

Fractions are represented as the quotient a/b of two numbers, with numerator a
and a non-zero denominator b. Here, it is illustrated how to compute the fractional
exponent of a biomolecular signal S , where m and n are integers.

The Newton-Raphson method is a powerful technique in numerical analysis,
based on the principle of linear approximation. It is used to find better approxima-

tions to the roots of a real-valued function. Due to the combination of simplicity
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Figure 3.7: Computing fractional exponent: the system arrangement uses a Newton-
Raphson block, a polynomial function and a divider where, the system output is xg.

and power, it is one of the most widely used iterative methods. A reciprocal of n'"

root function can be computed using Newton-Raphson in the following way:

54
X1 = X — ——7 (3.20)

where, S is the number for which its reciprocal of n'" root is to be computed. Rear-

ranging (3.20), we get:

1
Xyl — X = ;(xk—SxZH) (3.21)

The left hand side of the (3.21) can be approximated by a derivative, which leads to

the following:
dx 1
@ —Sx"+1> 322
dt n (x ( )

The reciprocal of n'* root function can be obtained by taking integration on both
sides of (3.22), which is essentially a scaled integration of the difference between
the signal x and a product of Sx"*!. The block diagram representation of this is
shown by the dotted box in Fig. 3.7.

" m D N . .
Now, rewriting S» = (§7n)™" = —1 it can be seen that the fractional

2
m

I
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Figure 3.8: Computation of S . Two cases are considered: (a) Red (dashed), S =8,
m=2,n=3,ie. 83. (b) Blue (solid), S = 16, m =3, n = 4, i.e. 163.

exponent can be computed by first finding the reciprocal of n” root and raised to
the power of m before taking its inverse value. Thus, besides the computation of
n'" root function, an additional polynomial function and a divider is required to
compute the fractional exponent as depicted in Fig. 3.7. The simulation result is
shown in Fig. 3.8, with reaction rates and coefficients (refer Table 3.1 for the CRNs
of each individual component) set to be y3 =70/s, b =3 /s, 3 =3 /s, ya =3 /s,
Ys =0.1/s, kg1 = 100 /s, ksp = 0.00001 /s and K; = 10,000. The signal, u is set to

1 since the reciprocal of (S’%)’” is computed.

3.3.2 Absolute value

An absolute value (or modulus) can be defined as a non-negative value of a real
number x, regardless of its sign. It can be understood as a distance of any number
from zero on a number line and represented as |x| or abs(x). Namely, for x = —5
the absolute value is 5; and for x = 5 it is also 5.

Two approaches are proposed here to compute the absolute value of a given
signal u. These approaches are compared to show that one of them can be imple-
mented using significantly fewer chemical reactions than the other. The first ap-
proach uses a combination of operators whereby the input signal u is first squared
before taking its square root, as shown in Fig. 3.9. The Newton-Raphson method is

used for the computation of the square root y. A total of 7 (to compute the square)

41



— == = |ul
u>|(-)2| X :\/_ Y ¢

Subtractor I

(G

L

O {IHT

Figure 3.9: Computing absolute value using combination of operators. The input u
is first squared before taking its square root using Newton-Raphson method.

+ 55 (to compute the square root) = 62 chemical reactions, are required to realise
the computation of the absolute value (refer Table 3.1 for the CRNs of each indi-
vidual component). The number of reactions required is quite high, mainly due to
the presence of the fractional exponent.

The other approach uses the two regimes of the covalent modification cycle
(see Chapter 2, Section 2.1.3), i.e. signal-transducing and threshold-hyperbolic op-
erating regimes, for which the block diagram is shown in Fig. 3.10 (refer Table 3.1
for the CRNs of each individual component). The threshold-hyperbolic regime has
a non-responsive region called a dead zone, followed by a hyperbolic response. To
compute the absolute value, the dead zone range is required to be operated such that
it does not respond to the negative valued input signal u and only responds when
u is non-negative. In addition, u# should respond in a linear manner following the
dead zone. Note that, in the threshold-hyperbolic regime, any hyperbolic response
contains an almost linear region when the input signal is small. Taking advantage
of this property, one can ensure that the required threshold-hyperbolic regime has a
linear instead of hyperbolic response, after the dead-zone region.

On the other hand, the signal-transducing regime has a linear region fol-

lowed by a saturated response. This makes this regime suitable for responding
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Figure 3.10: Block diagram of a circuit to compute the absolute value using the
threshold-hyperbolic and signal-transducing regimes from the covalent modifica-
tion cycle.

only to non-positive signals and not to strictly positive input signals. By combin-
ing these two regimes (signal-transducing and threshold-hyperbolic) with two gain
components and one subtraction operator, 45 reactions are required to compute the
absolute value, a reduction in circuit complexity of 17%, compared to the first ap-
proach.

The reaction rates to achieve this threshold-hyperbolic response in covalent
modification cycle are set to k; = 0.0027 /M/s, k; = 16,640 /s, k3 = 0.043 /M/s,
ks = 0.008 /s and X, = 3.5 M, for eq. (2.11) in Chapter 2, Section 2.1.3. The two
gain components, K| and K>, are intorduced for scaling purposes. For the signal-
transducing response, suppose that due to the limitations imposed by the system, a
unity gradient of the linear response cannot be achieved, resulting in the gradient of
the linear response to be 20. In this case, the gain component is set to K, = 1/20.
Likewise, the signal-transducing response is achieved with, ky =5 /M/s, k, = 100
/s, k3 =5 /M/s, kg = 630 /s and X, = 1.8 M, for eq. (2.11) in Chapter 2, Section
2.1.3.

Fig. 3.11 illustrates the simulation results for six different input signals, u =
1,2,...,6. At time, t = 10,000 s, these input signals, u are switched to their negative
counterpart ranging from u = —1,—2,..., —6. The performance comparison of the
circuit designed using a combination of operators and the covalent modification
cycle is shown. Both the circuits perform remarkably well, although for the covalent

modification cycle when u = 1 and 6 some deviations are observed. This is because
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Figure 3.11: Computation of absolute value: In all the simulations- Black dashed
line: the input value. Red solid line: using combination of operators. Blue solid
line: using threshold-hyperbolic and signal-transducing regimes from the covalent
modification cycle. (A) Input, u = £1, (B) Input, u = £2. (C) Input, u = £3. (D)
Input, u = +4. (E) Input, u = £5. (F) Input, u = +-6.

the threshold-hyperbolic and signal-transducing responses are not a perfect match
to the ideal desired responses.

This is illustrated in Fig. 3.12, which shows a comparison of the ideal re-
sponse with the simulated response for both the regimes. The ideal threshold-
hyperbolic response is to have a dead-zone for a strictly negative input signal u
and a linear response with unity gradient for the non-negative input signal as in
Fig. 3.12 (A). The ideal signal-transducing response is to have a linear response
with non-unity gradient for negative input signals and no response to strictly posi-
tive input signals, as shown in Fig. 3.12 (B). These response characteristics are in-
tentionally chosen to illustrate the purpose of exploiting the gain operator that can
be used for scaling. The gain operator could prove useful when there is difficulty in
achieving the ideal unity gradient linear response in both the threshold-hyperbolic

and signal-transducing regime. Thus, inclusion of this gain provides flexibility to
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Figure 3.12: Comparison between ideal and simulated signal-transducing response.
(A) Positive component: threshold-hyperbolic response. (B) Negative component:
signal-transducing response.

achieve alternative similar responses when the initially intended responses (i.e. with
unity gradient) cannot be attained. Since the threshold-hyperbolic response has a
linear response with unity gradient, there is no requirement for the gain block, K
or equivalently, K; = 1. Though the ideal response for threshold-hyperbolic should
have zero output value when the input value, u is strictly negative; and be strictly
positive for the signal transducing regime. Our simulated response for threshold-
hyperbolic on the other hand, show a small non-zero output for those ranges of input
signal. Moreover, the linear responses for both threshold-hyperbolic and signal-
transducing regimes are not exactly linear. These two factors contribute to the ob-
served deviation of the simulation results in Fig. 3.11 for the case of input signal
u =1 and 6. Nevertheless, the simulation shows excellent results for the range of

input signal u = 2,3,4,5.

3.3.3 Logarithm of arbitrary base

Consider the operation ¢ = log;, a, 1.e. computing the logarithm of a to the base b.

Ina
Inb>

where In denotes the natural logarithm. In other words, ¢ can be realised as a ratio

This logarithm can be computed through the change of logarithm base, i.e. ¢ =

of Ina and Inb. Several numerical methods exist to compute the natural logarithm.

The most commonly used method is to use Taylor series, but this method accurately
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Figure 3.13: Computation of logarithm of arbitrary base. (A) Block diagram rep-
resentation to compute natural logarithm based on area hyperbolic tangent series
approximation of order / = 10. (B) The hyperbolic regime obtained from signalling
cycle. (C) Block diagram representation to compute logarithm of arbitrary base by
computing the ratio of two natural logarithms.

computes the logarithm of a number, denoted as x, only within the range 0 < x <
2 [82]. A more efficient method to compute the natural logarithm for x > 2 is
based on the area hyperbolic tangent series approximation [83]. Thus, using such

approximation, the natural logarithm can be computed as follows:

[ 2i+1

z—1 z
mxzm@—ﬁzz _
() z+1 l.zz(’)ZH—l

(3.23)

where [ is the order of the series. The larger the order [ is, the better the approxi-
mation, but the higher the complexity of the circuit. Here, [ = 10 is chosen as this
order allows us to compute the logarithm of numbers up to 10.

The block diagram of a circuit that can compute the natural logarithm us-
ing the area hyperbolic tangent series approximation of order / = 10 is shown in
Fig. 3.13(A). This circuit uses a combination of several linear and nonlinear op-

erators; summation, subtraction, gain, multiplication and power exponent, each
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Figure 3.14: Simulation results of natural logarithm and logarithm of arbitrary base.
In all simulations, Black dashed: Actual value, light Green solid: Using area hy-
perbolic tangent series approximation up to order 10. Dark Green solid: Using
hyperbolic regime from signalling cycle. (A) log;,5. (B) log,9. (C) In5. (D) In9.
(E) In10. (F) In2.

of which may be implemented using a number of chemical reactions, details of
which are given in Section 3.1.1 and 3.2.1. With the area hyperbolic tangent series
approximation and / = 10, the circuit in Fig. 3.13(C) requires 13 summation and
subtraction operators, 1 multiplication operator, 10 power exponent operators with
exponents 3, 5,...,21 and 12 gain operators (refer Table 3.1 for the CRNs of each in-
dividual component). This results in a total of 928 chemical reactions. To compute
the logarithm of arbitrary base, as shown in Figure 3.13(C), it requires one more
& that computes the second natural logarithm and one each for the subtraction,
multiplication and gain operator. Thus, this circuit requires a total of 1875 chemi-
cal reactions, which makes it completely intractable from an experimental point of
view.

The huge number of chemical reactions required to implement the circuit

described above means that alternative, more efficient, designs are required. It
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is noted that the response characteristics of a natural logarithm resemble the hy-
perbolic regime of the covalent modification cycle (see Chapter 2, Section 2.1.3,
Fig. 2.3(b)) thus making this regime potentially useful for computing the natural
logarithm. Interestingly, this response is not governed by the order of the series
approximation. Thus, as long as one can obtain the appropriate reaction rates for
ky to k4 for CRN (2.10) in Chapter 2, Section 2.1.3, the natural logarithm can be
computed using the hyperbolic regime. Moreover, this approach requires only 14
chemical reactions. To compute the logarithm of arbitrary base using this approach,
the @ block in Fig. 3.13(C) is replaced with the covalent modification cycle reac-
tions that produce the hyperbolic regime, as shown in Fig. 3.13(B). This results in a
total of 47 chemical reactions, more than 90% reduction in circuit complexity than
with the area hyperbolic approach.

Simulation results for computing log;, 5 and log, 9 using covalent modifica-
tion cycle and area hyperbolic tangent series are shown in Fig. 3.14. To implement
the hyperbolic response, reaction rates for (2.11) in Chapter 2, Section 2.1.3 are;
k1 =0.22 /M/s, k; =0.43 /s, k3 = 1.03 /M/s, kg = 35.10 /s, and X, = 1 M.

For both approaches, the computed logarithms are close to the actual value,
however the circuit based on the covalent modification cycle is significantly faster
in settling to the correct steady-state value, even though it uses far fewer chemical
reactions. An alternative approach for the biological computation of logarithms
has been designed and implemented in [84]. This approach utilises transcriptional
regulation, which requires a host cell, while the approach presented here can be
implemented in cell-free conditions (e.g. using DSD framework). Moreover, [84]
considers only the computation of the natural logarithm, while our approach enables

the computation of logarithms of arbitrary base.
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Chapter 4

Design and Implementation of a
Biomolecular Quasi Sliding Mode

Controller

Exploiting chemical reaction networks (CRNs) as a programming language for
the design of complex circuits and networks, this chapter shows how an impor-
tant class of nonlinear feedback controllers can be designed to realize input-output
dynamics that approximate an ideal sliding mode controller (SMC). The kinetics
of the required chemical reactions can then be implemented as enzyme-free, en-
thalpy/entropy driven DNA reactions using a toehold mediated DNA strand dis-
placement (DSD) mechanism. In this chapter, the approach of [31] and [17] is ex-
tended to allow the implementation of nonlinear feedback controllers. It is demon-
strated with simulation results, that the closed loop response of the nonlinear quasi
sliding mode (QSM) controller outperforms a traditional linear controller by facil-
itating much faster tracking response dynamics without introducing overshoots in
the transient response. The resulting controller is highly modular and is less af-
fected by retroactivity effects than standard linear designs.

Though some of the operators are mentioned already in Chapter 3, they are
briefly described again here to maintain the nomenclature and continuity, in the

context of the design of a closed-loop feedback system.
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4.1 Saturation nonlinearity

1000 x10

0 50 100 -2 0 2
Input, Xin Input, Xin X 1076
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Figure 4.1: Input-output characteristic curve for: (a) covalent modification cycle
where, positive output is produced for the positive values of the input signal; i.e.
operates in the 1st quadrant. (b) Chemical reactions implementing saturation non-
linearity where, negative output is produced for the negative values of input. Simi-
larly, positive output is produced for the positive values of input signal; i.e. operates
in 4 quadrants.

Four operating regimes of a covalent modification cycle are discussed in
Chapter 2, Section 2.1.3, where one of these is an ultrasensitive regime. In [59], the
ultrasensitive regime operates for positive input values and produces a sigmoidal
input-output relationship. In that case, for small values of the input, the output is
nearly zero. Then, after a certain threshold value of the input signal, the output im-
mediately rises to its highest value and remains saturated for the higher values of the
input signal. In order to utilise this interesting behaviour to design a controller one
should consider the fact that generally, in a closed-loop feedback system, the input
of a controller is an error signal generated from the summation junction. Since the
error is computed as the difference between a reference signal and the actual output
signal, the resulting error value can be either positive or negative. In this section,
it is thus shown how the input-output characteristic response of the ultrasensitive
regime can be mapped from the 1st quadrant into 4 quadrants, as illustrated in
Fig. 4.1, in order to allow this system to be used for controller design.

In practice, physical systems often exhibit some nonlinearity due to the pres-
ence of properties such as friction or hysteresis, actuator saturation, viscosity, chem-

ical kinetics, geometric functions in robotics, and so on [37; 85]. The factors whose
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Figure 4.2: Saturation nonlinearity: The chemical reactions and ODEs used to gen-
erate the saturation nonlinearity (SN) behaviour for the operating range of input
signal X;, = [—2,2]. The slope of curve can be modified by tuning the key parame-
ter, Xetoral-

static characteristics between input and output does not satisfy linear relationship
are defined as nonlinear factors. Some frequently appearing nonlinearities are called
as common nonlinearities. They include saturation, hysteresis, backlash and dead-
zone among which the particular behaviour of interest here is a saturation nonlinear-
ity. This is because the ultrasensitive operating regime of the covalent modification
cycle, as discussed in Chapter 3, Section, 2.1.3, imitates the nature of a saturation
nonlinearity, and can thus be exploited for the design of nonlinear biomolecular
systems or controller.

For the chemical reactions listed in Fig. 4.2, k1, k3 are binding rates, k>, k4 are
the catalytic reaction rates and 7 is the annihilation rate. As highlighted in Chapter
3, Section 2.1.3, these rates can be tuned to obtain one of the four possible operating
regimes from the covalent modification cycle. Using the same CRN and through
the appropriate tuning of the aforementioned rates, a saturation nonlinearity (SN)
can be obtained as shown in Fig. 4.2. The ideal expected SN behaviour is when the
input values are negative, the output should be negative. Similarly, when the input
is positive, the output should be positive. The slope of the curve can be modified by
=X, +Xc,.

setting different values of the parameter, X, where, X,

Total Total
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4.2 Implementing Nonlinear Feedback Controllers
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Figure 4.3: A prototype embedded biomolecular closed loop feedback control sys-
tem.

This section shows how an important class of nonlinear feedback controllers
can be designed using chemical reactions and implemented via DSD reactions. The
nonlinear QSM controller is designed and its performance is compared with a clas-
sical linear controller. The simulated results demonstrate that the closed loop re-
sponse of the nonlinear QSM controller outperforms a traditional linear controller
by facilitating much faster tracking response dynamics without introducing over-
shoots in the transient response. The controller here is implemented on a prototype
embedded closed loop feedback system that consists of three individual modules, a
subtractor, a controller and a biomolecular process to be controlled, each realized
by mass action kinetics at a molecular level and interconnected using a modular
approach as shown in Fig. 4.3. In contrast to previous implementations of DNA-
based feedback controllers, the biomolecular process to be controlled here is both
dynamic and nonlinear. Note also that the subtractor module must be represented as
a dynamical system, unlike in standard feedback control systems which assume the
availability of an ideal subtractor. Analysis of the closed loop performance of the
QSM controller reveals significant performance advantages compared to a linear
proportional+integrator (PI) controller, particularly when retroactivity effects (see
[40], [86], and [41]) are taken into account.

4.2.1 Biomolecular Quasi-sliding mode controller

Taking inspiration from the ultrasensitive input-output behaviour exhibited by co-

valent modification cycle signaling cascades, [8§7—89], a set of chemical reactions is
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presented that can be used to generate switch-like input-output responses. In Sec-
tion 4.1, it is explained how the SN behaviour is generated using a set of chemical
reactions. The main difference in the ultrasensitive responses exhibited by the sys-
tem in [59] and the QSM controller described here is that the QSM controller has
been designed to operate for positive as well as negative values of the input signal,
which is the error signal in the feedback control loop.

Consider the following CRN, where a signal x is represented as x = x —x~
which is the difference between the concentrations of two DNA strands x™ and x—,
having a free toehold each when implemented as elementary DNA reactions (see
Chapter 2, Section 2.1.2). The chemical reactions that construct a nonlinear QSM

feedback controller are:

X +B* ki>X+, (4.1a) AT+ X3 kﬁ»{f, 4.11)
X7 +B* ki>x—, (4.1b) X; fo, p + X3, (4.1g)
X5 11>Ai+xli, 4.1¢c) X +X; Iy 0, (4.1h)
X5 +x; 5o, (4.1d) Bt +B~ 1 ¢, (4.19)
At+A~ Lo, (4.1e)

Here, kj,, and kj,, denote the binding reaction rates whereas k., and k., de-
note the catalytic reaction rates and 7 is the degradation rate. The signal X; is the
input and the signal A is the output of the controller. The CRN (4.1) realizes an ul-
trasensitive switch-like input-output response, as illustrated in Fig. 4.4 for the input
range u = [—4 4]. Interestingly, the input-output response of (4.1) can be made to
closely approximate the ideal switch implemented using a SMC, by tuning the key
parameter, X37,q1, Where X37,:.1 = X3 + X4, defined as the total concentration of X3
and X4. It is assumed that X37,,,; 1s conserved through the lifetime of the process
and therefore is set to a constant value.

The CRN (4.1) is an approximation of elementary DNA reactions which can
be realized using Visual DSD software, [79]. Using the software package Visual
DSD [79], the strand displacement mechanism of the catalysis, bimolecular, degra-
dation and annihilation reactions is illustrated in Figs. 2.5 to 2.9. Now, using mass

action kinetics, (4.1) can be represented by the following set of ODEs:
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Figure 4.4: Input-output characteristics of an ideal sliding mode controller and
quasi sliding mode controller for different values of the tuning parameter X37,s.;.

dA dB
E = kc]XZ - kaAX3, (4.2a) E = —kblxlB + kC2X4, (4.2¢)
dX dX
d_;z — ky, X|B—ke,Xa,  (4.2b) d—;‘ = kp,AX3 — ke, Xy (4.2d)

From (4.2) it can be seen that: ‘fl—? + % + Kfi—f + % =0. Hence, A+B+ X, +

X4 = constant = S,,; where, Sy, denotes the total concentration of four signal
species. Accordingly, it can be said that signal B is variable and depends on the
dynamic signals A,X5,Xy. Thus, for simulations B is constructed as, B = Syg, —
A — X —Xy. Since, X; also varies over time this means that the term k;, X B in
(4.2b) is nonlinear.

Now, from sliding mode control theory, a perfect SMC can be represented
by a relay nonlinearity (see [34; 36; 37]). As shown in Fig. 4.4, this can be ob-
tained as the limiting case of a controller implemented using (4.2). For example,
as Xsrorar — 0, the output A of the controller can be described by the following

relay-type saturation nonlinearity (see Fig. 4.4):

A(t) = ksye -sgn(X (1)), 4.3)
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where sgn(-) denotes the signum function and X (¢) is the input to the controller
(the error signal generated by the subtractor). Such a controller has a discontinuity
on the straight line X; = 0 which is traditionally referred to as the sliding manifold
o aef X1 =0, where o is the sliding variable. The control signal A, defined by (4.3),
is therefore designed to force the system to move towards the sliding manifold o =0
(the reaching phase of SMC) and then maintain this condition (i.e. o = 0) for all
future time (the sliding phase of SMC).

In practice, however, implementations of perfect sliding mode controllers
cause the system’s closed loop response to exhibit a zigzag motion of small am-
plitude and high frequency, due to imperfections in switching devices and delays
[34; 36; 37]. This effect, known as chattering, is typically avoided by using con-
tinuous/smooth approximations of the discontinuous SMC, resulting in a so-called
QSM controller.

The controller implemented using (4.2) is an example of such a function,
since it approximates the nonlinearity sgn(X;). With a QSM controller, there is no
ideal sliding mode in the closed loop system as the sliding variable (error) cannot be
driven exactly to zero in a finite time, [34]. However, if the QSM controller is made
more ultrasensitive (for example, by decreasing X37,4;), the input-output behaviour
of our QSM controller approaches the limiting case of an ideal SMC, as illustrated

in Fig. 4.4, and then the error signal can be made as small as desired.

4.2.2 Nonlinear process to be controlled

To act as a challenging benchmark control problem (reference tracking), a process
to be controlled is selected that is composed of both unimolecular and bimolecular

reactions, given as:

ke
AT X5 L XS (4.4a) vty Lo (4.4d)
kep ky
AT+XT L X, (4.4b) G (4.4e)
ke
X 5 YE+ X7, (4.4¢)

Here, the process input signal is A and output signal is Y. k,, is a binding

reaction rate, k., is the catalytic reaction rate, k,, is the degradation rate, and 7 is the
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annihilation reaction rate. These reaction rates and their values are as listed further
in Section 4.3.1 with simulation results.

This process was chosen because application of standard Michaelis-Menten
kinetics to these reactions results in a set of ODEs with nonlinear response dynam-

ics, given by:

dXs dY
7 = _krlAXS + kr2X67 (453) E = kr2X6 — kr3Y. (45C)
dXe

7 - krlAXS - kr2X67 (45b)

From (4.5a) and (4.5b): % + % = 0. Hence, it can be concluded that
Xroral = X5+ Xg 1s conserved through the lifetime of the process and therefore it is
set to a constant value.

In the context of the feedback system shown in Fig. 4.3, the process input
signal is the controller output A and the process output signal Y is fed back as an
input signal to the subtractor. In the control literature it is well known that nonlinear
systems are in general more difficult to control than linear systems. Also, previous
work on the implementation of linear feedback controllers using nucleic acids con-
sidered only a static process to be controlled [17; 31]. The system described here
represents the first attempt to design a DNA-based biomolecular feedback controller

for a complex nonlinear biomolecular process.

4.2.3 Subtractor

Following [31] and [17], the subtraction U —Y of tw