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Abstract

Recent advances in DNA computing have greatly facilitated the design of
biomolecular circuitry based on toehold-mediated DNA strand displacement (DSD)
reactions. The synthesis of biomolecular circuits for controlling molecular-scale
processes is an important goal of synthetic biology with a wide range of in vitro
and in vivo applications. In this thesis, new results are presented on how chemical
reaction networks (CRNs) can be used as a programming language to implement
commonly used linear and nonlinear system theoretic operators that can be further
utilised in combination to form complex biomolecular circuits. Within the same
framework, the design of an important class of nonlinear feedback controller, i.e.
a quasi sliding mode (QSM) feedback controller, is proposed. The closed loop
response of the nonlinear QSM controller is shown to outperform a traditional lin-
ear proportional+integrator (PI) controller by facilitating much faster tracking re-
sponse dynamics without introducing overshoots in the transient response. The
resulting controller is highly modular and is less affected by retroactivity effects
than standard linear designs. An important issue to consider in this design process
for synthetic circuits is the effect of biological and experimental uncertainties on
the functionality and reliability of the overall circuit. In the case of biomolecular
feedback control circuits, such uncertainties could lead to a range of adverse effects,
including achieving wrong concentration levels, sluggish performance and even in-
stability. In this thesis, the robustness properties of two biomolecular feedback con-
trollers; PI and QSM, subject to uncertainties in the experimentally implemented
rates of their underlying chemical reactions, and to variations in accumulative time
delays in the process to be controlled, are analysed. The simulation results show
that the proposed QSM controller is significantly more robust against investigated
uncertainties, highlighting its potential as a practically implementable biomolecu-
lar feedback controller for future synthetic biology applications. Finally, the thesis
presents new results on the design of biomolecular feedback controllers using the
set of chemical reactions underlying covalent modification cycles.
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Chapter 1

Introduction

By ‘life,’ we mean a thing that can nourish itself and grow and decay.

- Aristotle

1.1 Research motivation and the context of molecu-

lar programming

The criteria for life, as stated by the brilliant geneticist Norman Horowitz is: Life

possesses the properties of replication, catalysis, and mutability; the complexity of

multicellular organisms starts with a single cell; followed by its division, growth,

reproduction, and so on. Thus, living organisms are complex but fascinating phe-

nomena. The development of some of these complex structures performs a partic-

ular function - the heart pumps blood through the body, leaves use the energy of

sunlight by photosynthesis, fish gills help underwater breathing, etc.

If the development of functions in nature is understood as a program then the

underlying chemical reactions can be seen as their programming language. There

may exist more than one set of such chemical reactions (combinations of different

types of chemical reactions) or more than one set of parameter values - that is able

to achieve the desired biomolecular system response. However, one should select

a suitable set of chemical reactions having a minimum number of reactions which

is preferred or rather feasible for in vivo/in vitro implementations. Also, a suitable
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set of parameter values can be chosen for simulations, keeping in mind that these

values are well within the practically achievable physical limits, for eg., DNA or

mRNA concentration levels, reaction rates etc.

Now, to treat biomolecular systems and software analogously, one must es-

tablish common features. First, any slight alteration in software code can affect the

program execution, and eventually the outcome. This is similar to gene mutation

that is carried out by altering the nucleotide sequence of DNA so that even a small

change in sequence causes a significant difference in growth. This change in reac-

tant and resulting product DNA can be formulated in terms of chemical reactions.

For example, developmental mutations in the fruit fly Drosophila melanogaster can

result in the growth of a leg out of the head instead of an antenna [1], or genetic dis-

orders in humans can cause autism [2]. Second, programs can be copied and edited

to get the desired results. During cell replication, cells duplicate their genetic ma-

terial to produce two identical daughter cells [3; 4]. Precise and targeted genome

editing is possible with a recently developed tool based on the clustered regularly

interspaced short palindromic repeats (CRISPR) system that relies on the protein

Cas9, from bacteria. In Streptococcus pyogenes, the re-engineered Cas9 could find

and cut the DNA target specified by the guide RNA [5]. Later, this technique was

used for genome editing in human cells, for the first time in [6–8].

This ability and possibility to program cells that eventually might be used to

design even more complex biochemical systems in the future is the essence of mo-

tivation for this thesis. Similar to using software languages in computer coding, the

aim is to use a structured set of instructions in order to “program” DNA molecules

in vitro or in vivo.

1.2 DNA based circuits in synthetic biology

Synthetic biology is an interdisciplinary research field at the engineering-biology

interface, that encompasses extremely diverse domains such as biotechnology, molec-

ular biology, nanotechnology, biophysics, computer engineering, mathematics and

so on. Several of the proposed industrial and biomedical applications of synthetic

biology require the ability to precisely and robustly control the behaviour of syn-
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Figure 1.1: Synthetic biomolecular devices should ideally have the capability to
produce nonlinear input-output behaviour. The results illustrated in this thesis show
how biomolecular implementations of nonlinear operators can be realized by ap-
proximating the DNA strand displacement (DSD) reactions to the chemical reac-
tion networks (CRNs) and then converting into their equivalent ordinary differential
equations (ODEs).

thetic circuits or devices at a biomolecular level [9; 10]. A fundamental aim of

synthetic biology is thus to achieve the capability to design and implement robust

embedded biomolecular feedback control circuits [11]. An appropriate modelling

and design framework for tackling this problem is provided by chemical reaction

networks (CRNs), which represent a convenient and concise approach to modelling

chemical and biological processes as well as an effective tool for the analysis of

their behaviour from both deterministic [12; 13] and stochastic [14] viewpoints. It

is possible to approximate any chemical reaction by a set of suitably designed DNA

strand displacement (DSD) reactions and vice versa [15–17] (discussed precisely

further in Chapter 2, Section 2.2.2). The conversion from CRNs to ordinary dif-

ferential equations (ODEs) also works bidirectionally because, applying the mass

action law to unimolecular CRNs results in linear ODEs whereas, when applied to

bimolecular CRNs, it results in nonlinear ODEs (discussed in Chapter 2, Section

2.1.1). This gives flexibility in understanding the trade-offs between such conver-

sions and helps improving the system design. This approach has opened up the

possibility of utilising nucleic acid computations for the design and implementa-

tion of various types of synthetic biological circuits - the approach is illustrated

conceptually in Fig. 1.1.

The direct use of nucleic acids for performing computation has emerged

as a promising approach for addressing such problems [17; 18]. The nucleotides

sequence of nucleic acid dictate their interactions through the well-known Watson-
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Crick base-pairing mechanism, which enables a precise programming of molecular

interactions by the choice of relevant sequences. This approach has allowed the

implementation of a number of complex circuits based on DSD [19], DNA en-

zymes [20] and RNA enzymes [21], and has been used for the modelling and im-

plementation of various nucleic-acids-based circuits such as feedback controllers

[22], predator-prey dynamics [23] and also transcriptional oscillators [24]. So far,

several synthetic devices have been designed and implemented in vivo using protein

expression and gene regulation mechanisms, for example, logic gates [25], memory

elements [26], oscillators [27], filters [28; 29] and controllers of cellular differential

processes [30].

1.3 Summary of contributions and thesis organisa-

tion

The scientific contributions as presented in each chapter in this thesis are sum-

marised below.

Chapter 2 presents the background of CRNs, and explains the DSD mecha-

nism and its underlying kinetics. The mapping of chemical reactions to ODEs, by

means of the generalised mass action law is explained, as it is an important step in

order to to build a mathematical model that can approximate the dynamic behaviour

of the biomolecular system. The methodology adopted for the system design is fol-

lowed by an overview of the toehold mediated DSD mechanism.

Chapter 3 describes the use of chemical reactions to implement a number of

linear and nonlinear system theoretic operators such as gain, integrator, summation,

polynomial functions, rational functions, and so on. The signals in the mathematical

models considered here are biomolecular, i.e. they represent chemical concentra-

tions of species. Now, being a physical quantity, chemical concentrations cannot

be negative. To overcome this difficulty, [31] represented the signal in a mathe-

matical model as a difference between the concentrations of two species labelled as

‘+’ and ‘−’, and using this approach described how a number of linear operators

could be designed and implemented in DNA-based chemistry. Chapter 3 reviews

this methodology, and then provides new results on the design of nonlinear system
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theoretic operators, and their application to form functional circuits.

Previous work on the implementation of feedback controllers using DNA

has focussed on the design of linear time-invariant systems only, e.g. the propor-

tional+integrator (PI) controllers described in [17; 31; 32]. This approach fails to

exploit the inherent potential of biomolecular circuits to implement nonlinear dy-

namical systems [15; 22; 33], and also requires the use of additional circuitry to

overcome the wind-up effects associated with the integrator action. In Chapter 4,

the approach of [17; 31; 32] is extended to allow the implementation of nonlinear

feedback controllers. The focus is on a well-known type of nonlinear controller

called a sliding mode controller (SMC), whose strong performance and robustness

characteristics have been widely recognised in more traditional control engineering

applications [34; 35]. From sliding mode control theory, a perfect SMC can be rep-

resented by a relay nonlinearity (see [34; 36; 37]). To avoid a number of theoretical

and practical issues with the implementation of such discontinuous switches, in en-

gineering practice SMC’s are usually implemented as quasi sliding mode (QSM)

controllers, i.e. continuous/smooth approximations of the discontinuous SMC. In

Chapter 4, it is shown how a set of irreversible chemical reactions can provide a

biomolecular implementation of a nonlinear QSM controller. It is also shown how

the kinetics of the required chemical reactions can then be implemented as enzyme-

free, entropy/enthalpy driven DNA reactions [38], using strand displacement as an

elementary computational mechanism. To evaluate the performance properties of

the QSM controller, the closed-loop response of the QSM controller is compared to

that of a traditional linear PI controller. Feedback control systems usually comprise

several individual modules or components connected together to perform a particu-

lar function. Although the components behave as expected when designed individ-

ually; they can affect each others’ behaviour when interconnected. This interesting

phenomenon is referred to as retroactivity and it has been extensively studied in

[39–41]. For the closed-loop simulations of the proposed QSM and PI controllers,

the retroactivity is quantified to evaluate its effect on the closed-loop dynamics.

An important requirement for any embedded bimolecular controller is that

its design provides robustness to various forms of uncertainty and variability that

could arise in its final implementation in DNA. In Chapter 5, the focus is on two im-
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portant sources of such uncertainty - variability in the reaction rate constants of the

chemical reactions underlying the closed-loop control system under consideration,

and uncertain time delays in the biomolecular process to be controlled. In practice,

experimental biologists are rarely able to specify the reaction rates of chemical reac-

tions exactly, and additionally, as highlighted in [31], unregulated chemical devices

or leaky expression can potentially affect production and degradation rates and sub-

sequently alter the behaviour of the designed components. There are also many

reasons why time delays may need to be included in CRN models of biomolecu-

lar processes, since this avoids cataloging potentially large numbers of intermedi-

ate species and their reactions, in favour of describing the dynamic relationships

between the concentrations of key species. As a result, fewer concentration vari-

ables will generally be required, thus simplifying the overall circuit design problem.

Chapter 5 comprises a robustness analysis comparison of the proposed QSM and

PI controller, in the presence of uncertainty. The DSD mechanism involves a set

of chemical reactions with DNA strands as the input and output. These reactions

may exhibit time delays in producing the final product DNA strand, especially if

the number of reactions is large. Considering the number of reactions involved in

the complete feedback circuit, their accumulative delay is included at the output.

Covalent modification cycles are ubiquitous motifs in cellular signalling. Al-

though such signalling cycles are implemented via a highly concise set of chemical

reactions, they have been shown to be capable of producing multiple distinct input-

output mapping behaviours such as, ultrasensitive, hyperbolic, signal-transducing

and threshold-hyperbolic. Chapter 6 explores more generally how the set of chem-

ical reactions underlying covalent modification cycles can be exploited for the de-

sign of synthetic biomolecular feedback controllers with strong performance and

robustness properties. The different input-output characteristics of such cycles in

their different operating regimes are shown to allow the implementation of dif-

ferent types of feedback controllers. In chapter 6 an overview of the design of a

proposed nonlinear covalent modification cycle (CMC) controller is provided, and

a performance/robustness comparison with a linear PI controller in the presence of

parametric uncertainty is described.

Finally, some conclusions and a discussion on the directions for future re-
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search in this area are offered in Chapter 7.

The elements of the MatLab simulations codes may be obtained upon re-

quest by contacting the author - rucha.sawlekar@uni.lu. Parts of chapters 3 to 6

have been published or are currently submitted for publication in a number of re-

search papers, for which the author contributed as leading or co-author:
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Conference papers
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reactions”, in proceedings of the 37th annual IEEE Engineering in Medicine and Bi-

ology Society (EMBC), pages 949–952, August, 2015.
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Chapter 2

Chemical Reaction Networks and
DNA Strand Displacement

The chapter begins by presenting the terminology for using chemical reaction net-

works (CRNs) as a programming language in order to design system theoretical

operators and circuits. It is followed by a discussion of the methodology for rep-

resenting species concentrations as signals, in order to represent a biomolecular

system as a mathematical model. Finally, the mechanism of DNA strand displace-

ment (DSD) is introduced as a candidate architecture to implement the devices at a

molecular level.

2.1 Chemical reaction networks

A system of chemical reactions can be represented mathematically as a CRN [12;

42–44]. A CRN consists of a finite set of reactions, having specified reaction rates,

that includes a set of reactants and products. A general set of reversible and irre-

versible chemical reactions may be written as:

X1 +X2
k1−⇀↽−
k2

X3 +X4, (2.1a)

X4
k3−→ X4 +X5, (2.1b)

X5
k4−→ φ . (2.1c)
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where, Xi denote chemical species. In (2.1a), the quantities on the left hand side

of the reaction (X1 and X2) are called ’reactants’, and the quantities on the right

hand side (X3 and X4) are called ’products’. Based on the number of reactants

present, the reactions are either unimolecular (only one reactant), bimolecular (two

reactants) or multimolecular (more than two reactants present). Accordingly, (2.1a)

is referred to as a bimolecular reaction while (2.1b) and (2.1c) are unimolecular

reactions. Furthermore, (2.1a) represents a reversible reaction, i.e. reactants can be

re-produced by means of products; with k1, k2 denoting the forward and backward

reaction rates, respectively. Reactions (2.1b) and (2.1c) are irreversible, with k3

being the catalysis reaction rate and k4 a degradation rate that turns X5 into an inert

or waste product (φ ). Different types of chemical reactions that are used to construct

the functional operators in this thesis are explained further in Section 2.2.

The order of the reaction corresponds to the number of molecules reacting

with each other simultaneously. Thus, (2.1b) is an example of a first order reaction

whereas (2.1a) is a second order reaction. The reaction rates k1 to k4 are the number

of occurrences of the respective reaction, per unit time, per unit volume, divided by

Avogadro’s number (6.023× 1023) [12]. Also, the units of the reaction rates for

first and second order reactions are different. The first order reaction rates k3 and k4

have units of reciprocal seconds (/s) and second order reaction rates k1 and k2 have

units (/M/s) [4].

A reaction network, {S ,C,R} can be specified by the set of species S that

indicates the molecules undergoing the series of chemical reactions; the set of com-

plexes C that indicates the linear combinations of the used and produced species in

the reactions, and byR, the series of reactions taking place. Accordingly, for (2.1),

the reaction network is:

Species, S = {X1, X2, X3, X4, X5}, (2.2a)

Complexes, C = {X1 +X2, X3 +X4, X4, X4 +X5, X5, φ}, (2.2b)

Reactions, R = {X1 +X2
k1−⇀↽−
k2

X3 +X4, X4
k3−→ X4 +X5, X5

k4−→ φ}. (2.2c)

Usually biochemical reactions are characterised by the property referred to
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as stoichiometry, which specifies the reactants and products participating in the

reaction and the molar ratios in which they are consumed or produced. Accordingly,

the stoichiometric coefficient of a chemical species is positive if it is produced in the

forward reaction, and negative otherwise. A stoichiometric matrix representation of

the reaction network (2.1) can be given as:

N =

k1 k2 k3 k4



−1 1 0 0 X1

−1 1 0 0 X2

1 −1 0 0 X3

1 −1 0 0 X4

0 0 1 −1 X5

The stoichiometry matrix for the 5-species 4-reaction scheme has five rows

and four columns so that each row belongs to a particular species and each col-

umn belongs to a reaction rate. In this way, it determines the proportions in which

chemical elements combine or are produced and the weight relations (number of

molecules) in any chemical reaction.

2.1.1 Mapping biomolecular reactions to differential equations

As discussed previously, CRNs can be considered both as a programming language

and as a mathematical representation of how the molar concentrations of chemical

species evolve over time. In other words, CRNs outline how certain species - in

the context of this thesis, DNA strands - can react to yield some product species in

a finite time. Fig. 2.1 shows the mapping of DNA elementary reactions to CRNs

and to ordinary differential equations (ODEs), that can be simulated to observe

the system dynamics. The key factor in describing the kinetics is to assign a rate

function to each of the chemical reactions present in the network and once it is

done, one can write a system of differential equations. Note that, for species X1 and

X2 in (2.1a), both the species are used at the rate k1 and produced at the rate k2 in

11



A B
Chemical Reaction

Simulation Dynamics CD
ODE

Approximation

Mass action law

Simulation

Simulation

𝑋1  
𝑘𝐼
𝑋1+ 𝑋2

DNA Reactions

𝑋1 + 𝐺1  
𝑞1
𝜙 + 𝑂1

𝑂1 + 𝑇1
𝑞𝑚𝑎𝑥

𝑋1+ 𝑋2

𝑑𝑋2
𝑑𝑡
= 𝑘𝐼 𝑋1

Figure 2.1: DNA reactions→ chemical reaction (or CRN)→ODE: (A) Elementary
DNA reactions where, X1, X2 are signal species and the remaining are the auxiliary
species. (B) Chemical reaction can be approximated from DNA reactions and vice
versa. (C) Chemical reaction can be approximated by ODE using mass action ki-
netics. (D) Simulation of ODE to evaluate the behaviour of the DNA reactions.

the reaction. Then, for X1 and X2, the ODE can be written as:

dX1

dt
=

dX2

dt
=−k1X1X2 + k2X3X4, (2.3)

where, this formalism of applying reaction rates to the species activities is referred

as the law of mass action [45]. It is applied to a set of chemical reactions in order

to generate a system of ODEs. Now, species X3 in (2.1a) is produced at the rate k1

and used at the rate k2 in the reaction, so that:

dX3

dt
= k1X1X2− k2X3X4, (2.4)

By continuing in this way, a system of ordinary differential equations is

obtained for each of the species as follows:

dX1

dt
=−k1X1X2 + k2X3X4, (2.5a)

dX2

dt
=−k1X1X2 + k2X3X4, (2.5b)

dX3

dt
= k1X1X2− k2X3X4, (2.5c)

dX4

dt
= k1X1X2− k2X3X4, (2.5d)

dX5

dt
= k3X4− k4X5. (2.5e)
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Once the system of ODEs is obtained, the dynamic behaviour of the species

can then be simulated and modified by means of their respective concentrations and

reaction rates.

2.1.2 Realising dynamical systems using CRNs

In this section, existing results are summarised from [31; 46] to show how different

systems are realised in the CRN framework. The notations are adopted from [31]

and [15].

Signals and system theory involves input signals that are processed through

a mathematical model to generate the output signals. The signals in biological

systems are often molecular concentrations. While signals in systems theory can

yield both positive and negative values, molecular concentrations, being a physical

quantity, can only take non-negative values. Thus, when a negative value of any

signal appears in the simulations, it looks contradictory to present the signal as a

concentration.

To resolve this difficulty, the approach proposed in [31] is adopted and ac-

cordingly any signal x is represented as the difference in concentration of two chem-

ical species, namely x+ and x−, such that:

x = x+− x−, or specifically, x(t) = x+(t)− x−(t) (2.6)

where, x+ and x− can be physically represented as two individual DNA molecules

and their superscripts +,− denote only the labels. This way two DNA molecules of

the same domain (same nucleotides sequence) can be presented conveniently. Now,

x can be treated as a signal in the mathematical model, and physically measured as

a concentration that is obtained as a difference in the concentration of two chemi-

cal species x+ and x−. Based on this method, if the value of x appears negative in

simulations - it can now be justified. Note that, relation x = x++ x− is not consid-

ered here as only the approach in (2.6) validates the negative values of a signal (or

concentration) appearing in the simulations.

The relation in (2.6) is illustrated through an example given in Fig. 2.2
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Figure 2.2: The square wave of signal x (right) is modelled by using two instanta-
neous additions of chemical species at t = 0 sec and t = 20,000 sec. At time t = 0
sec, only DNA strand x+ is added i.e. x+(0) = 10nM (left). This constitutes the
resulting response of x (right) for t ∈ [0,20,000] sec, as given in (2.7). At time
t = 20,000 sec, DNA strand x− is added i.e. x−(20,000) = 20nM (center). As
stated in (2.8), it results in the response of x for t ∈ [20,000,40,000] sec.

where, the simulated trajectories represent concentrations of DNA strands x+, x−

and the resulting value of x over the time, t = [0,40,000]s. In Fig. 2.2, a DNA strand

x+ with a concentration of 10 nM is added initially at time t = 0s, in the absence of

DNA strand x− in the solution; then the value of x is given as:

x(0) = x+(0)− x−(0) = 10−0 = 10; . . . [for t ∈ [0, 20,000] s] (2.7)

When the DNA strand x− is added with a concentration of 20 nM at time t =

20,000s, the minimal representation of signal x is given as:

x(20,000) = x+(20,000)− x−(20,000)

= 10−20 =−10; . . . [for t ∈ [20,000, 40,000] s] (2.8)

Thus, the simulated trajectory for dynamics of any signal x in Fig. 2.2 fol-

lows (2.7) and (2.8), showing how the value of x changes from positive to negative

over the time t = [0,40,000]s.

The next section presents an example on how this methodology can be em-

ployed in order to derive a mathematical model of a particular biomolecular system

known as a covalent modification cycle.
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Figure 2.3: (a) The covalent modification cycle regulated by their phosphoryla-
tion/dephosphorylation [59]: inactive (XI) or active (XA) proteins can be activated
or deactivated by means of the two enzymatic species, namely kinase (XE1) and
phosphatase (XE2), respectively. (b) Steady state behaviour of the four regimes of
the covalent modification cycle.

2.1.3 Modelling covalent modification cycles

A classical example of analog cellular signal processing is signal transduction,

which cells rely on for sensing and responding to various internal or external pertur-

bations (see e.g. [47–50]). When perturbations occur, cells perceive them through

receptors, which subsequently activate appropriate signalling pathways or cascades

in order for cells to communicate with each other and respond accordingly [51–53].

One of the most ubiquitous motifs seen in cell signalling cascades is the cycle of

covalent modification (see e.g. [54; 55] and references therein). Examples of this

signalling cycle include phosphorylation/dephosphorylation cascades [56], DNA

methylation [57] and monoclonal antibodies [58]. The covalent modification cycle

is implemented via a highly concise set of chemical reactions, and this set of chem-

ical reactions has been subjected to rigorous mathematical analysis. As shown in

[54], under certain conditions, the set of chemical reactions describing the cova-

lent modification cycle can exhibit highly sigmoidal input-output characteristics,

generating the so-called ultrasensitive response. In [59], the authors systematically

examine the covalent modification cycle in Fig. 2.3(a) and its steady-state responses

as in Fig. 2.3(b), to time varying perturbations and demonstrate the existence of two

additional types of responses, termed signal-transducing and threshold-hyperbolic.

15



The chemical reactions from [59] are given by:

XE1 +XI
ka1−−⇀↽−−
kd1

XCA

ku1−−→ XA +XE1 (2.9a)

XA +XE2

ka2−−⇀↽−−
kd2

XCI

ku2−−→ XI +XE2 (2.9b)

where, ka1 , ka2 are the respective substrate-enzyme association rates and kd1 , kd2

are the respective substrate-enzyme dissociation rates. ku1 and ku2 are the forward

and backward catalytic reaction rates. This covalent modification cycle in (2.9),

operates in the following manner; the two step irreversible reaction (2.9a) is catal-

ysed by the enzyme (kinase) XE1 that reacts with the inactive protein XI to produce

the active protein output, XA. Similarly, reaction (2.9b) is catalysed by the en-

zyme (phosphatase) XE2 that reacts with active protein XA to produce the inactive

protein, XI . XC1 and XC2 are the intermediate products in (2.9a) and (2.9b), respec-

tively that represent the bound concentration of the reactants as, XCA = XE1 : XI and

XCI = XA : XE2 .

Now, an individual system of 14 chemical reactions that can generate the

identical distinct steady state response regimes as illustrated in Fig. 2.3(b), is given

below. Despite the ability to mimic the response regimes, the CRNs given below

remain different than the CRNs of a standard covalent modification cycle (2.9), due

to the formalism (2.6), adopted from [17; 31]. Strictly speaking, any reaction given

below, with superscript ± and ∓ should be decomposed into their individual ‘+’

and ‘−’ components. For example, any reaction, X±1 +X±2
k−→ X±3 should be read as,

X+
1 +X+

2
k−→X+

3 and X−1 +X−2
k−→X−3 . However, for brevity and to avoid overloading

of reactions, they are written in the compact form:

X±in +X±p
k1−→ X+

C1
, (2.10a)

X∓in +X±p
k1−→ X−C1

, (2.10b)

X±C1

k2−→ X±out +X±in , (2.10c)

X+
C1
+X−C1

η−→ φ , (2.10d)

X+
out +X−out

η−→ φ , (2.10e)

X±out +Xe
k3−→ X±C2

, (2.10f)

X±C2

k4−→ X±p +Xe, (2.10g)

X+
C2
+X−C2

η−→ φ , (2.10h)

X+
p +X−p

η−→ φ . (2.10i)
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where, k1,k3 are binding and k2,k4 are the catalytic reaction rates and η is the

annihilation rate. Note that, for (2.10a) the product is only X+
C1

, rather than X±C1
while

for (2.10b) the product is only X−C1
. Also, system in (2.9) and its corresponding

species are to be treated separately than the system in (2.10) as it can be noted

that (2.10) is the modified version of (2.10) according to the adopted methodology,

(2.6).

It can be checked that applying the law of mass action to (2.10), in order to

obtain the system of ODEs, results in:

For XC1 For Xp

dX+
C1

dt
= k1X+

in X+
p + k1X−in X−p − k2X+

C1
−ηX+

C1
X−C1

,
dX+

p

dt
=−k1X+

in X+
p − k1X−in X+

p + k4X+
C2
−ηX+

p X−p ,

dX−C1

dt
= k1X−in X+

p + k1X+
in X−p − k2X−C1

−ηX+
C1

X−C1
,

dX−p
dt

=−k1X−in X−p − k1X+
in X−p + k4X−C2

−ηX+
p X−p ,

From (2.6), x = x+− x−. Hence: From (2.6), x = x+− x−. Hence:

dXC1

dt
=

[dX+
C1

dt
−

dX−C1

dt

]
,

dXp

dt
=

[
dX+

p

dt
−

dX−p
dt

]
,

= [k1X+
in X+

p + k1X−in X−p − k2X+
C1
−ηX+

C1
X−C1

] = [−k1X+
in X+

p − k1X−in X+
p + k4X+

C2
−ηX+

p X−p ]

−[k1X−in X+
p + k1X+

in X−p − k2X−C1
−ηX+

C1
X−C1

], −[−k1X−in X−p − k1X+
in X−p + k4X−C2

−ηX+
p X−p ],

= k1X+
in X+

p + k1X−in X−p − k2X+
C1
−ηX+

C1
X−C1

= −k1X+
in X+

p − k1X−in X+
p + k4X+

C2
−ηX+

p X−p
−k1X−in X+

p − k1X+
in X−p + k2X−C1

+ηX+
C1

X−C1
, +k1X−in X−p + k1X+

in X−p − k4X−C2
−ηX+

p X−p ,

= k1X+
in (X

+
p −X−p )− k1X−in (X

+
p −X−p ) = −k1X+

in (X
+
p −X−p )− k1X−in (X

+
p −X−p )

−k2(X+
C1
−X−C1

), +k4(X+
C2
−X−C2

),

= k1X+
in Xp− k1X−in Xp− k2XC1 , = −k1X+

in Xp− k1X−in Xp + k4XC2 ,

= k1Xp(X+
in −X−in )− k2XC1 , = −k1Xp(X+

in −X−in )+ k4XC2 ,

= k1XpXin− k2XC1 , = −k1XpXin + k4XC2 ,

dXC1

dt
= k1XinXp− k2XC1 .

dXp

dt
=−k1XinXp + k4XC2 .
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For Xout For XC2

dX+
out

dt
= k2X+

C1
− k3X+

outXe−ηX+
outX

−
out ,

dX+
C2

dt
= k3X+

outXe− k4X+
C2
−ηX+

C2
X−C2

,

dX−out

dt
= k2X−C1

− k3X−outXe−ηX+
outX

−
out ,

dX−C2

dt
= k3X−outXe− k4X−C2

−ηX+
C2

X−C2
,

From (2.6), x = x+− x−. Hence: From (2.6), x = x+− x−. Hence:

dXout

dt
=

[
dX+

out

dt
− dX−out

dt

]
,

dXC2

dt
=

[dX+
C2

dt
−

dX−C2

dt

]
,

= [k2X+
C1
− k3X+

outXe−ηX+
outX

−
out ] = [k3X+

outXe− k4X+
C2
−ηX+

C2
X−C2

]

−[k2X−C1
− k3X−outXe−ηX+

outX
−
out ], −[k3X−outXe− k4X−C2

−ηX+
C2

X−C2
],

= k2X+
C1
− k3X+

outXe−ηX+
outX

−
out = k3X+

outXe− k4X+
C2
−ηX+

C2
X−C2

−k2X−C1
+ k3X−outXe +ηX+

outX
−
out , −k3X−outXe + k4X−C2

+ηX+
C2

X−C2
,

= k2(X+
C1
−X−C1

)− k3(X+
out−X−out)Xe, = k3Xe(X+

out−X−out)− k4(X+
C2
−X−C2

),

= k2XC1− k3XoutXe, = k3XeXout− k4XC2,

dXout

dt
= k2XC1− k3XoutXe.

dXC2

dt
= k3XoutXe− k4XC2 .

Thus, collectively we get:

dXC1

dt
= k1XinXp− k2XC1, (2.11a)

dXout

dt
= k2XC1− k3XoutXe, (2.11b)

dXp

dt
=−k1XinXp + k4XC2, (2.11c)

dXC2

dt
= k3XoutXe− k4XC2. (2.11d)

as shown in the derivations above, each signal, for example XC1 can be understood

as a difference in the concentrations of species X+
C1

and X−C1
. The remaining ODEs

throughout the thesis can be derived in a similar manner. The total substrate con-

centration is expressed as Stotal :=Xp+Xout +XC1 +XC2 . From (2.11), it can be seen

that (dXp/dt)+ (dXout/dt)+ (dXC1/dt)+ (dXC2/dt) = 0, at equilibrium and thus

Stotal is assumed to be constant. Through an appropriate choice of reaction rates,

one can obtain four distinct operating regimes for (2.11), as shown in Fig. 2.3(b).
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2.2 Implementation using toehold mediated DNA strand

displacement

DNA encodes genetic information essential for all biological functions such as

growth, development, reproduction and so on. DNA is double helical in nature,

comprising of the bases adenine (A), thymine (T), guanine (G), cytosine (C) linked

by covalent bonds, as proposed by James Watson and Francis Crick in 1953 [60].

The bases are attached to a phosphate group and a deoxyribose sugar, together re-

ferred to as nucleotides (nt). Two nucleotide strands run opposite to each other and

are antiparallel. Single stranded DNA (ssDNA) is used as a template, to transcribe

messenger ribonucleic acid (mRNA) (transcription), which is then translated to

specify a sequence of amino acids that forms a protein molecule in a process called

translation [4; 61; 62]. Mutation in base pairs can lead to genetic disorders, for

example, the mutation in the haemoglobin (HBB) gene causes sickle cell anaemia

[63; 64].

Over the past few years, synthetic nucleic acids have been used as pro-

grammable building blocks for molecular level structures and circuits [19; 65; 66].

In particular, DNA is chosen as the building block in this thesis because its thermo-

dynamics [67–69] and mechanical properties [70; 71] are well understood. Also,

the ability to synthesise DNA, and thus RNA and protein is getting relatively faster

and cheaper [72; 73]. Another reason is that, to implement a prescribed dynamic

behaviour in vitro, the chosen molecular structure should offer a way to make the

tuning of reaction rate constants simple. It is quite feasible to do this with DSD

[74; 75] by changing the length of a particular subsequence of the reacting DNA,

referred to as a toehold. In Section 2.2.1, the underlying molecular mechanism of

toehold mediated DSD is explained, and this mechanism will form the basis of the

proposed experimental implementation of the various dynamic devices and circuits

described later in this thesis. This mechanism provides a precise control over the

reaction kinetics by allowing engineers to program when and where specific actions

or steps occur in a molecular device.
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Figure 2.4: DNA strand displacement reaction mechanism: the DNA strands are
bonded by Watson-Crick base pairing, denoted by ∗ and arrows indicate a 3

′
end.

The basic steps involved are: (a) binding of toehold 1 invader strand P to 1* of
complementary target strand X , (b) branch migration wherein the strand 1-2 par-
tially displaces strand 2-3, and (c) complete separation of strand 2-3.

2.2.1 The architecture and mechanism

This section presents an overview of the DSD mechanism, through which the types

of chemical reactions used in this thesis may be implemented. Consider the re-

versible bimolecular reaction:

X+P
kb−⇀↽−
kub

Y+Q, (2.12)

where, X , P, Y and Q are DNA strands while kb and kub are the binding and unbind-

ing rates, respectively. A DSD implementation of this reaction is shown in Fig. 2.4.

It begins with an invader strand P binding to the complementary target strand X at

the toehold 1* through Watson-Crick base pairing, denoted by ∗ and arrows indicate

a 3
′

end. [60]. Through an intermediate process of branch migration, P displaces

the evader strand 2-3 from X , thereby producing the partially double stranded prod-

uct Y that can further react with other DNA complexes using the toehold 3*.

The numbers 1,2,3 and 1∗,2∗,3∗ are referred as domains and denote the set

of adjoining nucleotides. If the DNA strands belong to entirely different domains

i.e. contain no complementary DNA strands with respect to each other, as is often

the case, they do not interact with each other directly and therefore DSD reactions

must be mediated by so-called auxiliary DNA species, which must be present in suf-
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ficiently large amounts [76]. We assume that the complementary strands react only

with each other, although this constraint can be relaxed, as demonstrated in [17].

For the DSD reactions to be fast and thereby reduce mismatches during branch mi-

grations, the toehold domains should be short: for example, of the order of 6–10 nt,

where nt denotes nucleotides, and the displacement domains should preferably be

20 nt [77]. The reaction rate constants, and consequently the kinetics of the system,

are a function of the toehold binding strength and can thus be altered by varying the

binding strength and the strand composition [76]. If all the steps and reactions from

Fig. 2.4 are considered, the resulting number of ODEs increases. This can be a

drawback in designing complex and bigger networks from mathematical modelling

point of view. Hence, elementary DNA reactions are approximated into CRNs by

excluding auxiliary species as described in [15] (see figures in Section 2.2.2). Cor-

responding reaction rates are also approximated in terms of initial concentration of

auxiliary DNA species (Cmax), and forward binding reaction rates (qi and qmax).

2.2.2 Software design tool: Visual DSD

The recent accelerated growth in the complexity of the experimental systems im-

plementing DNA devices has led to the frequent use of computing software for

the design of such systems. Visual DSD 1 [78; 79] is one such software package,

developed by Microsoft Research, that is used for the analysis, simulation and ver-

ification of DSD circuits. In Visual DSD, each DNA strand is represented with

domains where, the numbers 1,2,3 and 1∗,2∗,3∗ denote the set of adjoining nu-

cleotides (see Fig. 2.4). To simulate the DNA reaction, reactant DNA strands are

defined in a simple code along with their initial concentrations, toehold presence

on the strand (if any) and reaction rate. The evolution of each species concentration

over the time can be viewed and also modified by changing these parametes. The

simulated reactions may produce different domain composition of the product DNA

strands, depending on which domain the toehold presence was defined. If any of

the product DNA strands does not have a toehold presence then it might not be able

to react further and is thus referred to as inert or waste product (φ ).

1Visual DSD, version v0.14-20140319-34170, Microsoft Research, Microsoft Corporation,
2014.
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To implement the linear and nonlinear operators that form the various func-

tional circuits considered in this thesis, four types of chemical reactions are required

- catalysis, bimolecular, degradation and annihilation. For each of these chemi-

cal reactions, the underlying DSD mechanism is illustrated using Visual DSD in

Figs. 2.5 to 2.9. Note that the catalysis reactions (2.15) and (2.18) in Figs. 2.5 and

2.6, respectively, produce different output species depending on the domain com-

position of the reactant auxiliary species. The auxiliary species considered here are

namely, G±i , T±i , H±i , O±i , L±i , B±i , HS±i , LS±i , BS±i . Species G±i and T±i , which are

partially double stranded DNAs, and single strands of O±i , can be observed to have

different domain compositions in Fig. 2.5 and Fig. 2.6. As a result, in (2.15) two

different products, X±2 and X±3 , are obtained whereas in (2.18) the single species

Y± is produced.

The domain 1∗q in Figs. 2.5 to 2.9 denotes the subsequence of domain 1

that may be the same length as 1 but contains some mismatched bases over the

displacement domain. The reaction rate of 1∗q is however tuned to rate qi [77] and

other corresponding reaction rates are set by following the notation from [31] and

[15]. Initial concentrations of the auxiliary species G±i0 , T±i0 , L±i0 , B±i0 , LS±i0 , BS±i0
are set to Cmax = 1000 nM. In Fig. 2.7, which gives the DNA implementation of the

bimolecular CRN, the concentrations of T±i , L±i , B±i remain constant throughout the

process [15]. The notion of ‘initial concentration’ that is defined in Visual DSD or

in in vitro / in vivo experiments represents a certain amount of molar concentration.

Whereas, for the simulations of the associated ODEs in MATLAB 2 [80], the initial

condition indicates the initial molar concentration as a reference and is thus set to

zero. The MATLAB simulations thus show the dynamic behaviour of the DNA

strands that evolve from this reference concentration.

The DSD implementation of the catalysis reactions X±1
k1−→ X±2 + X±3 and

X±
k2−→X±+Y± is illustrated in Figs. 2.5 and 2.6 . Accordingly, the reactions (2.13),

(2.16) initiate with the ssDNA X±1 (or X±) displacing auxiliary species G±i irre-

versibly at the rate qi, producing the intermediate complex O±i and waste. Complex

O±i on reacting with auxiliary species T±i , releases two single stranded products,

X±2 (or X±) and X±3 (or Y±). A DNA strand without the presence of a toehold is

2MATLAB version 8.3.0.532. Natick, Massachusetts: The MathWorks Inc., 2014.
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potentially unable to react further and is thus denoted as an inert or waste product

species, indicated as φ .

The DSD implementation of the bimolecular reaction (2.22) is shown in

Fig 2.7. Here, the reaction begins with single strand X±1 reacting reversibly with

the auxiliary species L±i to produce activated intermediate complexes H±i and B±i .

Due to the presence of X±2 in the solution with an active toehold, it reacts with

complex H±i to release intermediate complex O±i and an inert species φ . If X±2 is

absent then B±i can reversibly displace H±i , releasing X±1 back into the solution.

Complex O±i displaces T±i . Hence, the approximated bimolecular reaction given

by (2.22) is irreversible and produces ssDNA X±3 .

The degradation and annihilation reactions are illustrated in Figs. 2.8 and

2.9, respectively. In Fig. 2.8, ssDNA X± reacts with partially double stranded

species G±i and produces inert species. Due to the absence of a toehold presence,

the product species are unable to react further and therefore the reaction is termed

as ‘degradation’. The annihilation reaction shown in Fig. 2.9 is considered in the

reaction network because of the adopted methodology from [31], as explained in

Section 2.1.2. For the reaction (2.28), the DSD begins with ssDNA X+ reacting

with Li reversibly to produce Hi and Bi. A ssDNA X− reacts with the partially dou-

ble stranded species LSi, producing intermediate strands HSi and BSi. Further, X−

produces an inert species on reacting with one of the intermediate species, Hi.
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DNA Implementation CRN

X±1 +G±i
qi−→ φ +O±i (2.13)


where,

O±i +T±i
qmax−−→ X±2 +X±3 (2.14) X±1

k1−→ X±2 +X±3 (2.15) qi =
k1

Cmax

Figure 2.5: Catalysis reaction X±1 → X±2 +X±3 . The DNA implementation of catal-
ysis reaction (2.15) with reaction index i and black boxes highlighting the species,
X±1 , X±2 and X±3 . Domain 1∗q may not entirely complement domain 1 but its toe-
hold domain reaction rate is tuned to qi. In (2.13), species Gi reacts with X±1 and
releases O±i along with waste φ . O±i on reacting with species T±i produces two sin-
gle stranded DNAs, X±2 and X±3 . [15]. The question mark appearing on the DNA
strands such as X±1 and φ , indicates the species identifier; as adapted from [31].
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DNA Implementation CRN

X±+G±i
qi−→ φ +O±i (2.16)


where,

O±i +T±i
qmax−−→ X±+Y± (2.17) X± k2−→ X±+Y± (2.18) qi =

k2

Cmax

Figure 2.6: Catalysis reaction X±→ X±+Y±. The unimolecular catalysis reaction
(2.18) is approximated from the DNA implementation with reaction index i. In
(2.16), species G±i reacts with X± to produce O±i and in (2.17), O±i releases X± and
Y±, on reacting with species T±i ; as adapted from [31]. The strand displacement
mechanism resembles to that in Fig. 2.5 but, the nucleotide composition of the
product species vary depending on the composition of the auxiliary species involved
[15].
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DNA Implementation CRN

X±1 +L±i
qi−−⇀↽−−

qmax
H±i +B±i (2.19)

X±2 +H±i
qmax−−→ O±i +φ (2.20) where,

O±i +T±i
qmax−−→ X±3 (2.21) X±1 +X±2

k3−→ X±3 (2.22) k3 = qi

Figure 2.7: Bimolecular reaction X±1 +X±2 → X±3 : DNA implementation of a bi-
molecular reaction (2.22) with reaction index i and black boxes highlighting the
species, X±1 , X±2 , X±3 . In (2.19) X±1 displaces auxiliary species L±i reversibly
producing the intermediate complex H±i which reacts with X±2 as given in (2.20)
producing O±i . In (2.21), X±3 is produced when O±i irreversibly displaces T±i ; as
adapted from [15].
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DNA Implementation CRN

X±+G±i
qi−→ φ (2.23)

}
X±

γi−→ φ (2.24) where, qi =
γi

Cmax

Figure 2.8: Degradation reaction X± → φ : DNA implementation of species X±

degradation on reacting with auxiliary species G±i . In (2.23), X± performs strand
displacement on G±i producing inert waste φ . (2.24) represents the chemical reac-
tion derived from this DNA strand displacement reaction; as adapted from [31].
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DNA Implementation CRN

X++Li
qmax−−⇀↽−−
qmax

Hi +Bi (2.25)


X−+LSi
qmax−−⇀↽−−
qmax

HSi +BSi (2.26) where,

X−+Hi
qmax−−→ φ (2.27) X++X−

ηi−→ φ (2.28) ηi =
qmax

2

Figure 2.9: Annihilation reaction X++X−→ φ : The DSD diagram shows degra-
dation of auxiliary species X+ and X− by means of molecules Li and LSi. The
reaction dynamics are separated into fast and slow time scales such that, X+ and
X− are sequestered into intermediate species through reaction with Li and LSi at a
fast reaction rate, while X− degrades into waste by reacting with Hi at a slower rate.
The initial concentrations of X+ and X− must be scaled by a factor of 2 (let, ξ = 2,
hence, X+

0 = 1ξ nM and X−0 = 0.5ξ nM) to attenuate for the sequestering effect of
the fast dynamics; as adapted from [31].
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Chapter 3

Biomolecular Implementation of
Nonlinear System Theoretic
Operators

This chapter focusses on the design of linear and nonlinear system theoretic opera-

tors using chemical reaction networks (CRNs). These CRNs can be approximated

in DNA based chemistry and vice-versa thus making the operators implementable

using DNA strand displacement (DSD) reactions. The chapter begins with a dis-

cussion on how to build individual linear and nonlinear operators based on the

methodology from [31] and discussed in Chapter 2, Section 2.1.2. Subsequently

it is shown how a number of functional circuits can be built using a combination of

these individual operators.

3.1 Background results on linear operators

To realise linear time-invariant (LTI) systems using CRNs, [31; 81] show different

realisations to represent elementary system theoretic operations such as gain, sum-

mation and integration. Generally, these mathematical operations are based on the

combination of three forms of elementary chemical reactions: catalysis, degrada-

tion and annihilation. Note that, while the framework considered in [81] is simpler

and also considers nonlinear operators, their proposed framework is not suited for
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the systems under consideration in this thesis, since it does not allow the compu-

tation of negative signals. Thus, the framework proposed by [31] is followed here

instead. In this section, the complete background theory based on [31] required to

realise linear/nonlinear operators is outlined.

Following [31], a set of reactions is compactly represented as x±i
k−→ x±o ,

which represents two reactions: x+i
k−→ x+o and x−i

k−→ x−o . Strictly speaking, any

reaction with superscript ± and ∓ should be decomposed into their individual ‘+’

and ‘−’ components but for brevity and to avoid overloading of reactions, they are

written in the compact form.

Note that, lower-case notations for chemical species are used only for the

lemmas in this thesis. Also, the DNA implementation reactions of the functional

operators may be reversible but, their corresponding approximated CRNs appear to

be irriversible, in order to simplify the mathematical modelling of the CRNs. Now

the lemmas to support the implementation of the linear theoretic operators using

CRNs are presented:

3.1.1 Gain, summation and integration

Lemma 1 [Scalar gain k]

Let, xo = kxi where, xi and xo are the input and output as shown in Fig. 3.1, re-

𝑥𝑖 𝑥𝑜

𝑥𝑖 𝑥𝑜

𝑥𝑑

𝑥𝑖 𝑥𝑜

Scalar gain Integrator 

Addition/Subtraction

+

±

X
𝑥1 𝑥𝑜

𝑥2

Multiplication

 1𝑘

Figure 3.1: A block diagram representing scalar gain

spectively and k represent scalar gain. This operation can be implemented using

the following set of chemical reactions:

x±i
γk−→ x±i + x±o ; x±o

γ−→ /0; x+o + x−o
η−→ /0. (3.1)

where, γ and η are the kinetic rates associated with degradation and annihilation

reactions respectively.
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Proof: Using generalised mass-action kinetics, the following ODE is obtained:

dxo

dt
= γ(kxi− xo). (3.2)

At steady state,

xo = kxi. (3.3)

Thus, (3.2) shows how the gain operator can be implemented.

Lemma 2 [Summation/subtraction]

Consider the summation operation xo = xi + xd , where xi and xd are the inputs

𝑥𝑖 𝑥𝑜

𝑥𝑖 𝑥𝑜

𝑥𝑑

𝑥𝑖 𝑥𝑜

Scalar gain Integrator 

Addition/Subtraction

+

±

X
𝑥1 𝑥𝑜

𝑥2

Multiplication

 1𝑘

Figure 3.2: A block diagram representing summation or subtraction

and xo is the output, as shown in Fig. 3.2. This operation is implemented using the

following set of chemical reactions:

x±i
γ−→ x±i + x±o ; x±d

γ−→ x±d + x±o ; x±o
γ−→ /0; x+o + x−o

η−→ /0. (3.4)

The subtraction operation xo = xi− xd is implemented using the following set of

chemical reactions:

x±i
γ−→ x±i + x±o ; x±d

γ−→ x±d + x∓o ; x±o
γ−→ /0; x+o + x−o

η−→ /0. (3.5)

Note that, the only difference between sets (3.4) and (3.5) is reaction xd
γ−→ xd + xo.

To perform addition, x+d produces x+o in (3.4) whereas, for subtraction operation x+d
produces x−d in (3.5).

Proof: Applying generalised mass-action kinetics to (3.4), the ODE obtained for

summation operation is:
dxo

dt
= γ(xi + xd− xo). (3.6)
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At steady state,

xo = xi + xd. (3.7)

Similarly, applying mass-action kinetics to (3.5), ODE obtained for the subtraction

operation is:
dxo

dt
= γ(xi− xd− xo). (3.8)

At steady state,

xo = xi− xd. (3.9)

Thus, (3.6) and (3.8) shows the implementation of summation and subtraction op-

erators, respectively.

Lemma 3 [Integration]

Consider the integrator, xo = k
∫

xi dt where, xi is the input, xo is the output and k

𝑥𝑖 𝑥𝑜

𝑥𝑖 𝑥𝑜

𝑥𝑑

𝑥𝑖 𝑥𝑜

Scalar gain Integrator 

Addition/Subtraction

+

±

X
𝑥1 𝑥𝑜

𝑥2

Multiplication

 1𝑘

Figure 3.3: A block diagram representing integration

is the DC gain (see Fig. 3.3). This operation is implemented using the following set

of chemical reactions:

x±i
k−→ x±i + x±o ; x+o + x−o

η−→ /0. (3.10)

Proof: Using generalised mass-action kinetics, the following ODE is obtained:

dxo

dt
= kxi. (3.11)

Thus, (3.11) shows implementation of the integration operator.

3.2 Nonlinear operators

This section shows how a number of nonlinear operators, namely multiplication,

division and polynomials, may also be designed using chemical reactions, and sub-
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sequently implemented via DNA-based chemistry.

3.2.1 Multiplication, division and polynomial operators

Lemma 4 [Multiplication operator]

Consider the multiplication operation, xo = x1x2, where, x1 and x2 are the inputs

𝑥𝑖 𝑥𝑜

𝑥𝑖 𝑥𝑜

𝑥𝑑

𝑥𝑖 𝑥𝑜

Scalar gain Integrator 

Addition/Subtraction

+

±

X
𝑥1 𝑥𝑜

𝑥2

Multiplication

 1𝑘

Figure 3.4: A block diagram representing multiplication

and xo is the output product, as shown in Fig. 3.4. This operation can be imple-

mented using the chemical reactions:

x±1 + x±2
γM−→ x±1 + x±2 + x+o ; x±1 + x∓2

γM−→ x±1 + x∓2 + x−o ;

x±o
γ−→ /0; x+o + x−o

η−→ /0. (3.12)

Here, γM, γ and η are the binding, degradation and annihilation reaction rates,

respectively.

Proof: Using generalised mass-action kinetics, the following ODE is obtained:

dxo

dt
= γMx1x2− γxo. (3.13)

At steady state,

xo =
γM

γ
x1x2. (3.14)

Hence, multiplication operation of inputs x1 and x2 can be implemented with (3.13).

Lemma 5 [Division operator]

Consider the system SD shown in Fig. 3.5. Let the biomolecular signals u and z be

its inputs. Then its output y computes the ratio u/z.
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Polynomial ratio y=u/z for thesis

𝐾𝑑
+

-

X

𝑢 𝑦𝑒

𝑧

𝑦𝑧

Subtractor

Multiplier

Figure 3.5: A block diagram representation of the feedback system SD that com-
putes the ratio y = u/z where, u and z are biomolecular signals.

Proof: From Fig. 3.5, the error signal is e = u− yz and y = Kde. Substituting the

former equation into the latter one and rearranging the variables, we get:

y = Kd(u− yz) =
Kdu

1+Kdz
=

u
(1/Kd)+ z

. (3.15)

If Kd is chosen large enough, y≈ u/z.

Remark The configuration in Fig. 3.5 consist of a gain, a subtractor and a multi-

plication operator. The corresponding CRNs for these operators are given in (3.1),

(3.5) and (3.12), respectively.

Lemma 6 [Polynomial xn]

Let xp,n denote the polynomial of degree n defined as xp,n = xn (see ‘power compo-

nent’ block of Fig. 3.6). Then, output of power component xp,n is realised through

the following set of chemical reactions:

x±+ x±
γp−→ x±+ x±+(xp,2)

+, (3.16a)

x±+ x∓
γp−→ x±+ x∓+(xp,2)

−, (3.16b)

(xp,2)
± γp−→ /0, (3.16c)

(xp,2)
++(xp,2)

− η−→ /0. (3.16d)

...

x±+(xn−1)±
γp−→ x±+(xn−1)±+(xp,n)

+, (3.17a)

x±+(xn−1)∓
γp−→ x±+(xn−1)∓+(xp,n)

−, (3.17b)

(xp,n)
± γp−→ /0, (3.17c) (xp,n)

++(xp,n)
− η−→ /0. (3.17d)
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Figure 3.6: The input-output system derived in Lemma 7 to compute the univariate
polynomial f (x) = ∑

n
i=0 aixi. The result uses intermediate variables xp,i which can

be computed using the chemical reactions given by Lemma 6. The output of the
power component is indicated as xp,i and the output of the gain component is indi-
cated as xg,i. This implementation requires 11n+7 chemical reactions, where n is
the degree of the polynomial f (x).

where, γp and η are the catalysis and degradation reaction rates, respectively.

Here, the output species in (3.16) denotes xp,2 = (x2) whereas, output species in

(3.17) denotes xp,n = (xn). This way, nth order component with n−1 CRNs can be

computed as shown with (3.16), (3.17).

Proof: Using generalised mass-action kinetics, it can be verified that the CRN

(3.17) is described using the following ODE:

dxp,n

dt
= γp(xn− xp,n). (3.18)

Hence, using the final value theorem, it follows that the CRN (3.17) implements the

desired function at steady-state with 1/γp as the time constant.

Lemma 7 [Univariate polynomial]

Consider the block diagram shown in Fig. 3.6. Let f (x) be the univariate polyno-
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mial of degree n defined as:

f (x) =
n

∑
i=0

aixi. (3.19)

Then, f (x) is realised through the feedforward system illustrated in Fig. 3.6, where

the output of the power component is indicated as xp,i while the output of the gain

component is indicated as xg,i.

Proof: The proof follows trivially using the proofs of Lemmas 1-6.

Remark 1 It may be noted that the constant a0 can be realised as, /0
a0−→ x±g,0 so that,

xg,0 −→ a0 at steady-state with the time constant equal to 1/a0.

Remark 2 This configuration can be taken a step further to compute the ratio of

two polynomials. Let û and ẑ be the univariate polynomials of individual species.

The chemical reactions for both û and ẑ can be realised using Lemma 7. Then,

the ratio of these two polynomials, i.e., û/ẑ is computed in a similar manner as

computing the ratio of u and z using Lemma 5.

Table 3.1 lists the DNA strand displacement reactions, CRNs and the corre-

sponding ODEs for the implementation of each of the nonlinear system theoretic

operators from Sections 3.1.1 and 3.2.1.
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DNA Implementation CRNs ODEs

(a) Gain

x±i +G±1
q1−→ /0+O±1

}
x±i

γk−→ x±i + x±o


O±1 +T±1
qmax−−→ x±i + x±o

x±o +G±2
q2−→ /0

}
x±o

γ−→ /0

x+o +L3
qmax−−⇀↽−−
qmax

H3 +B3


dx0
dt = γ(kxi− xo)

x−o +LS3
qmax−−⇀↽−−
qmax

HS3 +BS3 x+o + x−o
η−→ /0

x−o +H3
qmax−−→ /0

(b) Summation
x±i +G±4

q4−→ /0+O±4
}

x±i
γ−→ x±i + x±o



O±4 +T±4
qmax−−→ x±i + x±o

x±d +G±5
q5−→ /0+O±5

}
x±d

γ−→ x±d + x±o
O±5 +T±5

qmax−−→ x±d + x±o
x±o +G±6

q6−→ /0
}

x±o
γ−→ /0 dxo

dt = γ(xi + xd− xo)

x+o +L7
qmax−−⇀↽−−
qmax

H7 +B7


x−o +LS7
qmax−−⇀↽−−
qmax

HS7 +BS7 x+o + x−o
η−→ /0

x−o +H7
qmax−−→ /0

(c) Subtraction
x±i +G±8

q8−→ /0+O±8
}

x±i
γ−→ x±i + x±o



O±8 +T±8
qmax−−→ x±i + x±o

x±d +G±9
q9−→ /0+O±9

}
x±d

γ−→ x±d + x∓o
O±9 +T±9

qmax−−→ x±d + x∓o
x±o +G±10

q10−−→ /0
}

x±o
γ−→ /0 dxo

dt = γ(xi− xd− xo)

x+o +L11
qmax−−⇀↽−−
qmax

H11 +B11


x−o +LS11
qmax−−⇀↽−−
qmax

HS11 +BS11 x+o + x−o
η−→ /0

x−o +H11
qmax−−→ /0

(d) Integration

x±i +G±12
q12−−→ /0+O±12

}
x±i

k−→ x±i + x±o


O±12 +T±12
qmax−−→ x±i + x±o

x+o +L13
qmax−−⇀↽−−
qmax

H13 +B13


dxo
dt = kxi

x−o +LS13
qmax−−⇀↽−−
qmax

HS13 +BS13 x+o + x−o
η−→ /0

x−o +H13
qmax−−→ /0

Table 3.1: DNA Implementation reactions, CRNs and the corresponding ODEs for the implemen-
tation of components, where, xi and xo denote the input and output of each individual component,
respectively: (b) Summation, modelled using 13 DNA reactions - approximated to 7 chemical re-
actions. (c) Subtraction, modelled using 13 DNA reactions - approximated to 7 chemical reactions.
(d) Integration, modelled using 7 DNA reactions - approximated to 3 chemical reactions. The DNA
implementation reaction rates are set to qi = 800 /M/s (i = 1,2, ..21), qmax = 107 /M/s and initial
concentration of auxiliary species, Cmax = 1000 nM. The reaction rate of annihilation, η , is set to
10 ·qiCmax. /0 indicates inert or waste product [15; 31].
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DNA Implementation CRNs ODEs

(e) Multiplication

x±1 +L±14
q14−−⇀↽−−
qmax

H±14 +B±14




x±2 +H±14
qmax−−→ O±14 x±1 + x±2

γM−→ x±1 + x±2 + x+o
O±14 +T±14

qmax−−→ x±1 + x±2 + x+o
x±1 +L±15

q15−−⇀↽−−
qmax

H±15 +B±15

x∓2 +H±15
qmax−−→ O±15 x±1 + x∓2

γM−→ x±1 + x∓2 + x−o
dxo
dt = γMx1x2− γxo

O±15 +T±15
qmax−−→ x±1 + x∓2 + x−o

x±o +G±16
q16−−→ /0

}
x±o

γ−→ /0

x+o +L17
qmax−−⇀↽−−
qmax

H17 +B17


x−o +LS17
qmax−−⇀↽−−
qmax

HS17 +BS17 x+o + x−o
η−→ /0

x−o +H17
qmax−−→ /0

(f) Power Component

x±+L±18
q18−−⇀↽−−
qmax

H±18 +B±18




x±+H±18
qmax−−→ O±18 x±+ x±

γp−→ x±+ x±+(xp,2)
+

O±18 +T±18
qmax−−→ x±+ x±+(xp,2)

+

x±+L±19
q19−−⇀↽−−
qmax

H±19 +B±19

x∓+H±19
qmax−−→ O±19 x±+ x∓

γp−→ x±+ x∓+(xp,2)
−

O±19 +T±19
qmax−−→ x±+ x∓+(xp,2)

−

(xp,2)
±+G±20

q20−−→ /0
}

(xp,2)
± γp−→ /0

(xp,2)
++L21

qmax−−⇀↽−−
qmax

H21 +B21


(xp,2)
−+LS21

qmax−−⇀↽−−
qmax

HS21 +BS21 (xp,2)
++(xp,2)

− η−→ /0

(xp,2)
−+H21

qmax−−→ /0
...

... dxp,n
dt = γp(xn− xp,n)

x±+L±22
q22−−⇀↽−−
qmax

H±22 +B±22

x±+H±22
qmax−−→ O±22 x±+(xn−1)±

γp−→ x±+(xn−1)±+(xp,n)
+

O±22 +T±22
qmax−−→ x±+ x±+(xp,n)

+

x±+L±23
q23−−⇀↽−−
qmax

H±23 +B±23

x∓+H±23
qmax−−→ O±23 x±+(xn−1)∓

γp−→ x±+(xn−1)∓+(xp,n)
−

O±23 +T±23
qmax−−→ x±+ x∓+(xp,n)

−

(xp,n)
±+G±24

q24−−→ /0
}

(xp,n)
± γp−→ /0

(xp,n)
++L25

qmax−−⇀↽−−
qmax

H25 +B25


(xp,n)
−+LS25

qmax−−⇀↽−−
qmax

HS25 +BS25 (xp,n)
++(xp,n)

− η−→ /0

(xp,n)
−+H25

qmax−−→ /0

TABLE 3.1 (continued): DNA Implementation reactions, CRNs and the corresponding ODEs for
the implementation of components, where, xi and xo denote the input and output of each individual
component, respectively: (e) Multiplication, modelled using 17 DNA reactions - approximated to 7
chemical reactions. (f) Power component, modelled using 17(n-1) DNA reactions - approximated
to 7(n-1) chemical reactions where, n is the power. The DNA implementation reaction rates are
set to qi = 800 /M/s (i = 1,2, ..21), qmax = 107 /M/s and initial concentration of auxiliary species,
Cmax = 1000 nM. The reaction rate of annihilation, η , is set to 10 ·qiCmax. /0 indicates inert or waste
product [15; 31].
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3.3 Forming functional circuits using linear/nonlinear

operators

In this section, the way in which the individual linear and nonlinear operators de-

scribed in the previous sections, can be combined to form a number of functional

circuits is explained. Circuit designs to compute the fractional exponent of a sig-

nal, the absolute value of a signal, as well as the logarithm of arbitrary base, are

presented. Designs based on exploiting the dynamics of covalent modification cy-

cles are also presented and are shown to achieve significant reductions in circuit

complexity.

Note that, the reaction rates and coefficients values listed for each complex

circuit application are the manually tuned values that are well within their physi-

cal limits. The base-line or initial values used to simulate the results in this thesis

are referred from the cited existing literature and references therein. An isolated

component can be tested to perform its desired function using different sets of pa-

rameter values. However, when inserted in a multi-component system it might need

to be tuned slightly again. For example, an isolated controller generates expected

input-output characteristics using a set of parameter values but, when it is used in a

closed loop feedback system to control a process, it needs to be tuned accordingly.

It means, there can be multiple sets of parameter values for which the controller can

generate a similar expected behaviour. However, we need to select the best suited

parameter set that gives us better performance than others, for the system design

purpose. Accordingly, the parameter values listed throughout the thesis have been

collected.

3.3.1 Fractional exponent

Fractions are represented as the quotient a/b of two numbers, with numerator a

and a non-zero denominator b. Here, it is illustrated how to compute the fractional

exponent of a biomolecular signal S
m
n , where m and n are integers.

The Newton-Raphson method is a powerful technique in numerical analysis,

based on the principle of linear approximation. It is used to find better approxima-

tions to the roots of a real-valued function. Due to the combination of simplicity
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Figure 3.7: Computing fractional exponent: the system arrangement uses a Newton-
Raphson block, a polynomial function and a divider where, the system output is x8.

and power, it is one of the most widely used iterative methods. A reciprocal of nth

root function can be computed using Newton-Raphson in the following way:

xk+1 = xk−
S− 1

xn
k

nx−n−1
k

(3.20)

where, S is the number for which its reciprocal of nth root is to be computed. Rear-

ranging (3.20), we get:

xk+1− xk =
1
n

(
xk−Sxn+1

k

)
(3.21)

The left hand side of the (3.21) can be approximated by a derivative, which leads to

the following:
dx
dt

=
1
n

(
x−Sxn+1

)
(3.22)

The reciprocal of nth root function can be obtained by taking integration on both

sides of (3.22), which is essentially a scaled integration of the difference between

the signal x and a product of Sxn+1. The block diagram representation of this is

shown by the dotted box in Fig. 3.7.

Now, rewriting S
m
n = (S−

1
n )−m = 1

(S−
1
n )m

, it can be seen that the fractional
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exponent can be computed by first finding the reciprocal of nth root and raised to

the power of m before taking its inverse value. Thus, besides the computation of

nth root function, an additional polynomial function and a divider is required to

compute the fractional exponent as depicted in Fig. 3.7. The simulation result is

shown in Fig. 3.8, with reaction rates and coefficients (refer Table 3.1 for the CRNs

of each individual component) set to be γ1 = 70 /s, γ2 = 3 /s, γ3 = 3 /s, γ4 = 3 /s,

γ5 = 0.1 /s, ks1 = 100 /s, ks2 = 0.00001 /s and Kd = 10,000. The signal, u is set to

1 since the reciprocal of (S−
1
n )m is computed.

3.3.2 Absolute value

An absolute value (or modulus) can be defined as a non-negative value of a real

number x, regardless of its sign. It can be understood as a distance of any number

from zero on a number line and represented as |x| or abs(x). Namely, for x = −5

the absolute value is 5; and for x = 5 it is also 5.

Two approaches are proposed here to compute the absolute value of a given

signal u. These approaches are compared to show that one of them can be imple-

mented using significantly fewer chemical reactions than the other. The first ap-

proach uses a combination of operators whereby the input signal u is first squared

before taking its square root, as shown in Fig. 3.9. The Newton-Raphson method is

used for the computation of the square root y. A total of 7 (to compute the square)
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+ 55 (to compute the square root) = 62 chemical reactions, are required to realise

the computation of the absolute value (refer Table 3.1 for the CRNs of each indi-

vidual component). The number of reactions required is quite high, mainly due to

the presence of the fractional exponent.

The other approach uses the two regimes of the covalent modification cycle

(see Chapter 2, Section 2.1.3), i.e. signal-transducing and threshold-hyperbolic op-

erating regimes, for which the block diagram is shown in Fig. 3.10 (refer Table 3.1

for the CRNs of each individual component). The threshold-hyperbolic regime has

a non-responsive region called a dead zone, followed by a hyperbolic response. To

compute the absolute value, the dead zone range is required to be operated such that

it does not respond to the negative valued input signal u and only responds when

u is non-negative. In addition, u should respond in a linear manner following the

dead zone. Note that, in the threshold-hyperbolic regime, any hyperbolic response

contains an almost linear region when the input signal is small. Taking advantage

of this property, one can ensure that the required threshold-hyperbolic regime has a

linear instead of hyperbolic response, after the dead-zone region.

On the other hand, the signal-transducing regime has a linear region fol-

lowed by a saturated response. This makes this regime suitable for responding
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threshold-hyperbolic and signal-transducing regimes from the covalent modifica-
tion cycle.

only to non-positive signals and not to strictly positive input signals. By combin-

ing these two regimes (signal-transducing and threshold-hyperbolic) with two gain

components and one subtraction operator, 45 reactions are required to compute the

absolute value, a reduction in circuit complexity of 17%, compared to the first ap-

proach.

The reaction rates to achieve this threshold-hyperbolic response in covalent

modification cycle are set to k1 = 0.0027 /M/s, k2 = 16,640 /s, k3 = 0.043 /M/s,

k4 = 0.008 /s and Xe = 3.5 M, for eq. (2.11) in Chapter 2, Section 2.1.3. The two

gain components, K1 and K2, are intorduced for scaling purposes. For the signal-

transducing response, suppose that due to the limitations imposed by the system, a

unity gradient of the linear response cannot be achieved, resulting in the gradient of

the linear response to be 20. In this case, the gain component is set to K2 = 1/20.

Likewise, the signal-transducing response is achieved with, k1 = 5 /M/s, k2 = 100

/s, k3 = 5 /M/s, k4 = 630 /s and Xe = 1.8 M, for eq. (2.11) in Chapter 2, Section

2.1.3.

Fig. 3.11 illustrates the simulation results for six different input signals, u =

1,2, ...,6. At time, t = 10,000 s, these input signals, u are switched to their negative

counterpart ranging from u = −1,−2, ...,−6. The performance comparison of the

circuit designed using a combination of operators and the covalent modification

cycle is shown. Both the circuits perform remarkably well, although for the covalent

modification cycle when u = 1 and 6 some deviations are observed. This is because
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the threshold-hyperbolic and signal-transducing responses are not a perfect match

to the ideal desired responses.

This is illustrated in Fig. 3.12, which shows a comparison of the ideal re-

sponse with the simulated response for both the regimes. The ideal threshold-

hyperbolic response is to have a dead-zone for a strictly negative input signal u

and a linear response with unity gradient for the non-negative input signal as in

Fig. 3.12 (A). The ideal signal-transducing response is to have a linear response

with non-unity gradient for negative input signals and no response to strictly posi-

tive input signals, as shown in Fig. 3.12 (B). These response characteristics are in-

tentionally chosen to illustrate the purpose of exploiting the gain operator that can

be used for scaling. The gain operator could prove useful when there is difficulty in

achieving the ideal unity gradient linear response in both the threshold-hyperbolic

and signal-transducing regime. Thus, inclusion of this gain provides flexibility to
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achieve alternative similar responses when the initially intended responses (i.e. with

unity gradient) cannot be attained. Since the threshold-hyperbolic response has a

linear response with unity gradient, there is no requirement for the gain block, K1

or equivalently, K1 = 1. Though the ideal response for threshold-hyperbolic should

have zero output value when the input value, u is strictly negative; and be strictly

positive for the signal transducing regime. Our simulated response for threshold-

hyperbolic on the other hand, show a small non-zero output for those ranges of input

signal. Moreover, the linear responses for both threshold-hyperbolic and signal-

transducing regimes are not exactly linear. These two factors contribute to the ob-

served deviation of the simulation results in Fig. 3.11 for the case of input signal

u = 1 and 6. Nevertheless, the simulation shows excellent results for the range of

input signal u = 2,3,4,5.

3.3.3 Logarithm of arbitrary base

Consider the operation c = logb a, i.e. computing the logarithm of a to the base b.

This logarithm can be computed through the change of logarithm base, i.e. c = lna
lnb ,

where ln denotes the natural logarithm. In other words, c can be realised as a ratio

of lna and lnb. Several numerical methods exist to compute the natural logarithm.

The most commonly used method is to use Taylor series, but this method accurately
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computing the ratio of two natural logarithms.

computes the logarithm of a number, denoted as x, only within the range 0 < x <

2 [82]. A more efficient method to compute the natural logarithm for x ≥ 2 is

based on the area hyperbolic tangent series approximation [83]. Thus, using such

approximation, the natural logarithm can be computed as follows:

ln(x) = ln
(z−1

z+1

)
= 2

l

∑
i=0

z2i+1

2i+1
(3.23)

where l is the order of the series. The larger the order l is, the better the approxi-

mation, but the higher the complexity of the circuit. Here, l = 10 is chosen as this

order allows us to compute the logarithm of numbers up to 10.

The block diagram of a circuit that can compute the natural logarithm us-

ing the area hyperbolic tangent series approximation of order l = 10 is shown in

Fig. 3.13(A). This circuit uses a combination of several linear and nonlinear op-

erators; summation, subtraction, gain, multiplication and power exponent, each
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of which may be implemented using a number of chemical reactions, details of

which are given in Section 3.1.1 and 3.2.1. With the area hyperbolic tangent series

approximation and l = 10, the circuit in Fig. 3.13(C) requires 13 summation and

subtraction operators, 1 multiplication operator, 10 power exponent operators with

exponents 3, 5,...,21 and 12 gain operators (refer Table 3.1 for the CRNs of each in-

dividual component). This results in a total of 928 chemical reactions. To compute

the logarithm of arbitrary base, as shown in Figure 3.13(C), it requires one more

Φ that computes the second natural logarithm and one each for the subtraction,

multiplication and gain operator. Thus, this circuit requires a total of 1875 chemi-

cal reactions, which makes it completely intractable from an experimental point of

view.

The huge number of chemical reactions required to implement the circuit

described above means that alternative, more efficient, designs are required. It
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is noted that the response characteristics of a natural logarithm resemble the hy-

perbolic regime of the covalent modification cycle (see Chapter 2, Section 2.1.3,

Fig. 2.3(b)) thus making this regime potentially useful for computing the natural

logarithm. Interestingly, this response is not governed by the order of the series

approximation. Thus, as long as one can obtain the appropriate reaction rates for

k1 to k4 for CRN (2.10) in Chapter 2, Section 2.1.3, the natural logarithm can be

computed using the hyperbolic regime. Moreover, this approach requires only 14

chemical reactions. To compute the logarithm of arbitrary base using this approach,

the Φ block in Fig. 3.13(C) is replaced with the covalent modification cycle reac-

tions that produce the hyperbolic regime, as shown in Fig. 3.13(B). This results in a

total of 47 chemical reactions, more than 90% reduction in circuit complexity than

with the area hyperbolic approach.

Simulation results for computing log10 5 and log2 9 using covalent modifica-

tion cycle and area hyperbolic tangent series are shown in Fig. 3.14. To implement

the hyperbolic response, reaction rates for (2.11) in Chapter 2, Section 2.1.3 are;

k1 = 0.22 /M/s, k2 = 0.43 /s, k3 = 1.03 /M/s, k4 = 35.10 /s, and Xe = 1 M.

For both approaches, the computed logarithms are close to the actual value,

however the circuit based on the covalent modification cycle is significantly faster

in settling to the correct steady-state value, even though it uses far fewer chemical

reactions. An alternative approach for the biological computation of logarithms

has been designed and implemented in [84]. This approach utilises transcriptional

regulation, which requires a host cell, while the approach presented here can be

implemented in cell-free conditions (e.g. using DSD framework). Moreover, [84]

considers only the computation of the natural logarithm, while our approach enables

the computation of logarithms of arbitrary base.

48



Chapter 4

Design and Implementation of a
Biomolecular Quasi Sliding Mode
Controller

Exploiting chemical reaction networks (CRNs) as a programming language for

the design of complex circuits and networks, this chapter shows how an impor-

tant class of nonlinear feedback controllers can be designed to realize input-output

dynamics that approximate an ideal sliding mode controller (SMC). The kinetics

of the required chemical reactions can then be implemented as enzyme-free, en-

thalpy/entropy driven DNA reactions using a toehold mediated DNA strand dis-

placement (DSD) mechanism. In this chapter, the approach of [31] and [17] is ex-

tended to allow the implementation of nonlinear feedback controllers. It is demon-

strated with simulation results, that the closed loop response of the nonlinear quasi

sliding mode (QSM) controller outperforms a traditional linear controller by facil-

itating much faster tracking response dynamics without introducing overshoots in

the transient response. The resulting controller is highly modular and is less af-

fected by retroactivity effects than standard linear designs.

Though some of the operators are mentioned already in Chapter 3, they are

briefly described again here to maintain the nomenclature and continuity, in the

context of the design of a closed-loop feedback system.
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4.1 Saturation nonlinearity
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Figure 4.1: Input-output characteristic curve for: (a) covalent modification cycle
where, positive output is produced for the positive values of the input signal; i.e.
operates in the 1st quadrant. (b) Chemical reactions implementing saturation non-
linearity where, negative output is produced for the negative values of input. Simi-
larly, positive output is produced for the positive values of input signal; i.e. operates
in 4 quadrants.

Four operating regimes of a covalent modification cycle are discussed in

Chapter 2, Section 2.1.3, where one of these is an ultrasensitive regime. In [59], the

ultrasensitive regime operates for positive input values and produces a sigmoidal

input-output relationship. In that case, for small values of the input, the output is

nearly zero. Then, after a certain threshold value of the input signal, the output im-

mediately rises to its highest value and remains saturated for the higher values of the

input signal. In order to utilise this interesting behaviour to design a controller one

should consider the fact that generally, in a closed-loop feedback system, the input

of a controller is an error signal generated from the summation junction. Since the

error is computed as the difference between a reference signal and the actual output

signal, the resulting error value can be either positive or negative. In this section,

it is thus shown how the input-output characteristic response of the ultrasensitive

regime can be mapped from the 1st quadrant into 4 quadrants, as illustrated in

Fig. 4.1, in order to allow this system to be used for controller design.

In practice, physical systems often exhibit some nonlinearity due to the pres-

ence of properties such as friction or hysteresis, actuator saturation, viscosity, chem-

ical kinetics, geometric functions in robotics, and so on [37; 85]. The factors whose

50



Chemical reactions

X±in +X±p
k1−→ X+

C1
, X±out +Xe

k3−→ X±C2
,

X∓in +X±p
k1−→ X−C1

, X±C2

k4−→ X±p +Xe,

X±C1

k2−→ X±out +X±in , X+
C2
+X−C2

η−→ φ ,

X+
C1
+X−C1

η−→ φ , X+
p +X−p

η−→ φ ,

X+
out +X−out

η−→ φ .

Ordinary differential equations
dXout

dt = k2XC1− k3XoutXe,
dXC1

dt = k1XinXp− k2XC1 ,
dXC2

dt = k3XoutXe− k4XC2 , dXp
dt =−k1XinXp + k4XC2 .
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Figure 4.2: Saturation nonlinearity: The chemical reactions and ODEs used to gen-
erate the saturation nonlinearity (SN) behaviour for the operating range of input
signal Xin = [−2,2]. The slope of curve can be modified by tuning the key parame-
ter, XeTotal .

static characteristics between input and output does not satisfy linear relationship

are defined as nonlinear factors. Some frequently appearing nonlinearities are called

as common nonlinearities. They include saturation, hysteresis, backlash and dead-

zone among which the particular behaviour of interest here is a saturation nonlinear-

ity. This is because the ultrasensitive operating regime of the covalent modification

cycle, as discussed in Chapter 3, Section, 2.1.3, imitates the nature of a saturation

nonlinearity, and can thus be exploited for the design of nonlinear biomolecular

systems or controller.

For the chemical reactions listed in Fig. 4.2, k1,k3 are binding rates, k2,k4 are

the catalytic reaction rates and η is the annihilation rate. As highlighted in Chapter

3, Section 2.1.3, these rates can be tuned to obtain one of the four possible operating

regimes from the covalent modification cycle. Using the same CRN and through

the appropriate tuning of the aforementioned rates, a saturation nonlinearity (SN)

can be obtained as shown in Fig. 4.2. The ideal expected SN behaviour is when the

input values are negative, the output should be negative. Similarly, when the input

is positive, the output should be positive. The slope of the curve can be modified by

setting different values of the parameter, XeTotal where, XeTotal = Xe +XC2 .
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4.2 Implementing Nonlinear Feedback Controllers
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Figure 4.3: A prototype embedded biomolecular closed loop feedback control sys-
tem.

This section shows how an important class of nonlinear feedback controllers

can be designed using chemical reactions and implemented via DSD reactions. The

nonlinear QSM controller is designed and its performance is compared with a clas-

sical linear controller. The simulated results demonstrate that the closed loop re-

sponse of the nonlinear QSM controller outperforms a traditional linear controller

by facilitating much faster tracking response dynamics without introducing over-

shoots in the transient response. The controller here is implemented on a prototype

embedded closed loop feedback system that consists of three individual modules, a

subtractor, a controller and a biomolecular process to be controlled, each realized

by mass action kinetics at a molecular level and interconnected using a modular

approach as shown in Fig. 4.3. In contrast to previous implementations of DNA-

based feedback controllers, the biomolecular process to be controlled here is both

dynamic and nonlinear. Note also that the subtractor module must be represented as

a dynamical system, unlike in standard feedback control systems which assume the

availability of an ideal subtractor. Analysis of the closed loop performance of the

QSM controller reveals significant performance advantages compared to a linear

proportional+integrator (PI) controller, particularly when retroactivity effects (see

[40], [86], and [41]) are taken into account.

4.2.1 Biomolecular Quasi-sliding mode controller

Taking inspiration from the ultrasensitive input-output behaviour exhibited by co-

valent modification cycle signaling cascades, [87–89], a set of chemical reactions is
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presented that can be used to generate switch-like input-output responses. In Sec-

tion 4.1, it is explained how the SN behaviour is generated using a set of chemical

reactions. The main difference in the ultrasensitive responses exhibited by the sys-

tem in [59] and the QSM controller described here is that the QSM controller has

been designed to operate for positive as well as negative values of the input signal,

which is the error signal in the feedback control loop.

Consider the following CRN, where a signal x is represented as x = x+−x−

which is the difference between the concentrations of two DNA strands x+ and x−,

having a free toehold each when implemented as elementary DNA reactions (see

Chapter 2, Section 2.1.2). The chemical reactions that construct a nonlinear QSM

feedback controller are:

X±1 +B±
kb1−−→ X+

2 , (4.1a)

X∓1 +B±
kb1−−→ X−2 , (4.1b)

X±2
kc1−→ A±+X±1 , (4.1c)

X+
2 +X−2

η−→ φ , (4.1d)

A++A−
η−→ φ , (4.1e)

A±+X3
kb2−−→ X±4 , (4.1f)

X±4
kc2−→ B±+X3, (4.1g)

X+
4 +X−4

η−→ φ , (4.1h)

B++B−
η−→ φ . (4.1i)

Here, kb1 and kb2 denote the binding reaction rates whereas kc1 and kc2 de-

note the catalytic reaction rates and η is the degradation rate. The signal X1 is the

input and the signal A is the output of the controller. The CRN (4.1) realizes an ul-

trasensitive switch-like input-output response, as illustrated in Fig. 4.4 for the input

range u = [−4 4]. Interestingly, the input-output response of (4.1) can be made to

closely approximate the ideal switch implemented using a SMC, by tuning the key

parameter, X3Total , where X3Total = X3+X4, defined as the total concentration of X3

and X4. It is assumed that X3Total is conserved through the lifetime of the process

and therefore is set to a constant value.

The CRN (4.1) is an approximation of elementary DNA reactions which can

be realized using Visual DSD software, [79]. Using the software package Visual

DSD [79], the strand displacement mechanism of the catalysis, bimolecular, degra-

dation and annihilation reactions is illustrated in Figs. 2.5 to 2.9. Now, using mass

action kinetics, (4.1) can be represented by the following set of ODEs:
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Figure 4.4: Input-output characteristics of an ideal sliding mode controller and
quasi sliding mode controller for different values of the tuning parameter X3Total .

dA
dt

= kc1X2− kb2AX3, (4.2a)

dX2

dt
= kb1X1B− kc1X2, (4.2b)

dB
dt

=−kb1X1B+ kc2X4, (4.2c)

dX4

dt
= kb2AX3− kc2X4. (4.2d)

From (4.2) it can be seen that: dA
dt +

dX2
dt + dB

dt +
dX4
dt = 0. Hence, A+B+X2+

X4 = constant .
= Sqsm; where, Sqsm denotes the total concentration of four signal

species. Accordingly, it can be said that signal B is variable and depends on the

dynamic signals A,X2,X4. Thus, for simulations B is constructed as, B = Sqsm−
A−X2−X4. Since, X1 also varies over time this means that the term kb1X1B in

(4.2b) is nonlinear.

Now, from sliding mode control theory, a perfect SMC can be represented

by a relay nonlinearity (see [34; 36; 37]). As shown in Fig. 4.4, this can be ob-

tained as the limiting case of a controller implemented using (4.2). For example,

as X3Total → 0, the output A of the controller can be described by the following

relay-type saturation nonlinearity (see Fig. 4.4):

A(t) = kSMC · sgn(X1(t)), (4.3)
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where sgn(·) denotes the signum function and X1(t) is the input to the controller

(the error signal generated by the subtractor). Such a controller has a discontinuity

on the straight line X1 = 0 which is traditionally referred to as the sliding manifold

σ
de f
= X1 = 0, where σ is the sliding variable. The control signal A, defined by (4.3),

is therefore designed to force the system to move towards the sliding manifold σ = 0

(the reaching phase of SMC) and then maintain this condition (i.e. σ = 0) for all

future time (the sliding phase of SMC).

In practice, however, implementations of perfect sliding mode controllers

cause the system’s closed loop response to exhibit a zigzag motion of small am-

plitude and high frequency, due to imperfections in switching devices and delays

[34; 36; 37]. This effect, known as chattering, is typically avoided by using con-

tinuous/smooth approximations of the discontinuous SMC, resulting in a so-called

QSM controller.

The controller implemented using (4.2) is an example of such a function,

since it approximates the nonlinearity sgn(X1). With a QSM controller, there is no

ideal sliding mode in the closed loop system as the sliding variable (error) cannot be

driven exactly to zero in a finite time, [34]. However, if the QSM controller is made

more ultrasensitive (for example, by decreasing X3Total), the input-output behaviour

of our QSM controller approaches the limiting case of an ideal SMC, as illustrated

in Fig. 4.4, and then the error signal can be made as small as desired.

4.2.2 Nonlinear process to be controlled

To act as a challenging benchmark control problem (reference tracking), a process

to be controlled is selected that is composed of both unimolecular and bimolecular

reactions, given as:

A±+X±5
kr1−→ X+

6 , (4.4a)

A±+X∓5
kr1−→ X−6 , (4.4b)

X±6
kr2−→ Y±+X±5 , (4.4c)

Y++Y−
η−→ φ . (4.4d)

Y±
kr3−→ φ , (4.4e)

Here, the process input signal is A and output signal is Y . kr1 is a binding

reaction rate, kr2 is the catalytic reaction rate, kr3 is the degradation rate, and η is the
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annihilation reaction rate. These reaction rates and their values are as listed further

in Section 4.3.1 with simulation results.

This process was chosen because application of standard Michaelis-Menten

kinetics to these reactions results in a set of ODEs with nonlinear response dynam-

ics, given by:

dX5

dt
=−kr1AX5 + kr2X6, (4.5a)

dX6

dt
= kr1AX5− kr2X6, (4.5b)

dY
dt

= kr2X6− kr3Y. (4.5c)

From (4.5a) and (4.5b): dX5
dt + dX6

dt = 0. Hence, it can be concluded that

XTotal
.
= X5 +X6 is conserved through the lifetime of the process and therefore it is

set to a constant value.

In the context of the feedback system shown in Fig. 4.3, the process input

signal is the controller output A and the process output signal Y is fed back as an

input signal to the subtractor. In the control literature it is well known that nonlinear

systems are in general more difficult to control than linear systems. Also, previous

work on the implementation of linear feedback controllers using nucleic acids con-

sidered only a static process to be controlled [17; 31]. The system described here

represents the first attempt to design a DNA-based biomolecular feedback controller

for a complex nonlinear biomolecular process.

4.2.3 Subtractor

Following [31] and [17], the subtraction U −Y of two signals U and Y is imple-

mented in this section. The subtraction operation can be achieved using the follow-

ing set of reactions:

U±
ks−→U±+X±1 , (4.6a)

Y±
ks−→ Y±+X∓1 , (4.6b)

X±1
ks−→ φ , (4.6c)

X+
1 +X−1

η−→ φ . (4.6d)

Here, signals U and Y are the inputs and X1 is the output of the subtractor.

In other words, the value of signal X1 being produced is equivalent to that of the

difference between the two input signals, U and Y . In addition, both the catalysis
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reaction rates in (4.6a) to (4.6b) are set to be equal to the degradation rate in (4.6c).

Note that this subtractor module itself is a dynamical system and produces the de-

sired result, i.e., subtraction of the two input signals, as its steady-steady output.

Applying mass action kinetics to (4.6) gives:

dX1

dt
= ks(U−Y −X1). (4.7)

By choosing a higher value of ks, the response of the subtractor can be sped

up so that the required steady-state value U −Y can be computed more rapidly. In

the context of the feedback system shown in Fig. 4.3, the inputs to the subtractor

comprise the reference input signal U and the plant output Y while its output X1 is

fed as the input to the controller.

4.2.4 PI Controller

For the purposes of evaluating the performance of the designed nonlinear QSM

controller, a linear PI controller [90; 91] has also been implemented. Following

the approach of [31] and [17], the following representation for the PI controller is

obtained — the proposed chemical reactions are slightly different from the ones

given in [31] and [17] because they have been modified for the feedback system

in Fig. 4.3. The PI controller is made up of an integrator implemented via the

reactions:

X±1
kI−→ X±1 +X±2 , (4.8a) X+

2 +X−2
η−→ φ . (4.8b)

and a proportional gain, implemented as:

X±1
kp−→ X±1 +A±, (4.9a)

X±2
kc−→ X±2 +A±, (4.9b)

A±
kd−→ φ , (4.9c)

A++A−
η−→ φ . (4.9d)

Here, the signal X1 is the input and A is the output. Furthermore, kI , kp

and kc denote the catalytic reaction rates while kd denotes the degradation rate and

η denotes annihilation rate. The parameter values are listed in Section 4.3.1 with

simulation results. Using mass action kinetics, the following ODE representation is
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obtained for the PI controller:

dX2

dt
= kIX1, (4.10a)

dA
dt

= kpX1 + kcX2− kdA. (4.10b)

where, kI denotes the integral gain and kp denotes proportional gain.

The linear components of the feedback control system, i.e. the subtractor

and PI controller, are built using a combination of catalysis–Fig. 2.6, degrada-

tion –Fig. 2.8 and annihilation –Fig. 2.9 reactions, given in Chapter 2. The non-

linear components, i.e. the QSM controller and the process to be controlled use

bimolecular–Fig. 2.7 reaction in addition to the above reactions, given in Chapter 2.

Here, the DNA implementation reactions, approximated CRNs and relevant

ODEs for each module of the closed loop feedback control system shown in Fig. 4.3

are collected and presented in Table 4.1.
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DNA Implementation CRNs ODEs

(a) QSM Controller

X±1 +L±1
q1−−⇀↽−−

qmax
H±1 +B±1




B±+H±1
qmax−−→ O±1 +φ X±1 +B±

kb1−−→ X+
2

O±1 +T±1
qmax−−→ X+

2

X∓1 +L±2
q2−−⇀↽−−

qmax
H±2 +B±2

B±+H±2
qmax−−→ O±2 +φ X∓1 +B±

kb1−−→ X−2
O±2 +T±2

qmax−−→ X−2
X±2 +G±3

q3−→ φ +O±3
}

X±2
kc1−→ A±+X±1

O±3 +T±3
qmax−−→ A±+X±1

X+
2 +L4

qmax−−⇀↽−−
qmax

H4 +B4


dA
dt

= kc1X2− kb2AX3

X−2 +LS4
qmax−−⇀↽−−
qmax

HS4 +BS4 X+
2 +X−2

η−→ φ

X−2 +H4
qmax−−→ φ

A++L5
qmax−−⇀↽−−
qmax

H5 +B5


dX2

dt
= kb1X1B− kc1X2

A−+LS5
qmax−−⇀↽−−
qmax

HS5 +BS5 A++A−
η−→ φ

A−+H5
qmax−−→ φ

A±+L±6
q6−−⇀↽−−

qmax
H±6 +B±6


dX4

dt
= kb2AX3− kc2X4

X3 +H±6
qmax−−→ O±6 +φ A±+X3

kb2−−→ X±4
O±6 +T±6

qmax−−→ X±4
X±4 +G±7

q7−→ φ +O±7
}

X±4
kc2−→ B±+X3

dB
dt

=−kb1X1B+ kc2X4

O±7 +T±7
qmax−−→ B±+X3

X+
4 +LS8

qmax−−⇀↽−−
qmax

H8 +B8
X−4 +LS8

qmax−−⇀↽−−
qmax

HS8 +BS8 X+
4 +X−4

η−→ φ

X−4 +H8
qmax−−→ φ

B++L9
qmax−−⇀↽−−
qmax

H9 +B9
B−+LS9

qmax−−⇀↽−−
qmax

HS9 +BS9 B++B−
η−→ φ

B−+H9
qmax−−→ φ

Table 4.1: DNA implementation reactions, CRNs and relevant ODEs : (a) The
QSM controller is modelled using 38 DNA implementation reactions that are ap-
proximated to 14 chemical reactions.
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DNA Implementation CRNs ODEs

(b) Process to be controlled

A±+L±10
q10−−⇀↽−−
qmax

H±10 +B±10




X±5 +H±10
qmax−−→ O±10 +φ A±+X±5

kr1−→ X+
6

O±10 +T±10
qmax−−→ X+

6

A±+L±11
q11−−⇀↽−−
qmax

H±11 +B±11

X∓5 +H±11
qmax−−→ O±11 +φ A±+X∓5

kr1−→ X−6
dX5

dt
=−kr1AX5 + kr2X6

O±11 +T±11
qmax−−→ X−6

X±6 +G±12
q12−−→ φ +O±12


X±6

kr2−→ Y±+X±5
dX6

dt
= kr1AX5− kr2X6

O±12 +T±12
qmax−−→ Y±+X±5

Y±+G±13
q13−−→ φ

}
Y±

kr3−→ φ
dY
dt

= kr2X6− kr3Y

Y++L14
qmax−−⇀↽−−
qmax

H14 +B14
Y−+LS14

qmax−−⇀↽−−
qmax

HS14 +BS14 Y++Y−
η−→ φ

Y−+H14
qmax−−→ φ

(c) Subtractor

U±+G±15
q15−−→ φ +O±15

}
U±

ks−→U±+X±1


O±15 +T±15
qmax−−→U±+X±1

Y±+G±16
q16−−→ φ +O±16

}
Y±

ks−→ Y±+X∓1
O±16 +T±16

qmax−−→ Y±+X∓1
X±1 +G±17

q17−−→ φ
}

X±1
ks−→ φ

dX1

dt
= ks(U−Y −X1)

X+
1 +L18

qmax−−⇀↽−−
qmax

H18 +B18
X−1 +LS18

qmax−−⇀↽−−
qmax

HS18 +BS18 X+
1 +X−1

η−→ φ

X−1 +H18
qmax−−→ φ

X+
1 (0) = 4 nM

}
X+

1 (0) = 8 nM
}

X1(t) =
{

4×10−9 t ∈ [0,50000]
X−1 (50000) = 8 nM X−1 (50000) = 16 nM −4×10−9 t ∈ [50000,100000]

(d) PI Controller

X±1 +G±19
q19−−→ φ +O±19

}
X±1

kI−→ X±1 +X±2


O±19 +T±19
qmax−−→ X±1 +X±2

dX2

dt
= kIX1

X+
2 +L20

qmax−−⇀↽−−
qmax

H20 +B20


︸ ︷︷ ︸
X−2 +LS20

qmax−−⇀↽−−
qmax

HS20 +BS20 X+
2 +X−2

η−→ φ Integration

X−2 +H20
qmax−−→ φ

X±1 +G±21
q21−−→ φ +O±21

} 

O±21 +T±21
qmax−−→ X±1 +A± X±1

kP−→ X±1 +A±

X±2 +G±22
q22−−→ φ +O±22

O±22 +T±22
qmax−−→ X±2 +A± X±2

kc−→ X±2 +A±
dA
dt

= kpX1 + kcX2− kdA

A±+G±23
q23−−→ φ

}
A±

kd−→ φ ︸ ︷︷ ︸
A++L24

qmax−−⇀↽−−
qmax

H24 +B24


Gain

A−+LS24
qmax−−⇀↽−−
qmax

HS24 +BS24 A++A−
η−→ φ

A−+H24
qmax−−→ φ

TABLE 4.1 (continued): DNA implementation reactions, CRNs and relevant ODEs
: (b) The bimolecular process is modelled using 21 DNA implementation reactions
that are approximated to 9 chemical reactions. (c) The subtractor module uses 13
DNA implementation reactions that are approximated to 7 chemical reactions. (d)
The PI controller is modelled using 20 DNA implementation reactions that are ap-
proximated to 10 chemical reactions.
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4.3 Performance comparison of the linear and non-

linear controllers

0 25,000 50,000 75,000 100,000

−4

−2

0

2

4

 

 

B
0 1000 2000 3000 4000

2

4

Time (sec)

C
on

ce
nt

ra
tio

n 
(n

M
)

A

 

 

Reference Input (U)
X

3 Total
 = 0.1 nM

X
3 Total

 = 0.5 nM

(a)

Parameters Nominal
Values

Sqsm total substrate 4 nM
X3Total tuning parameter 0.1 nM

kb1 binding rate 107 /M/s
kb2 binding rate 107 /M/s
kc1 catalytic rate 100 qi ·Cmax /s
kc2 catalytic rate 50 qi ·Cmax /s

(b)

Figure 4.5: QSM controller: (a) Closed loop tracking response obtained using the
QSM controller. Here, the reference input U is a square wave of magnitude 4
nM. The transient response can be made faster by reducing the controller tuning
parameter X3Total . The subfigure “B” is a zoomed-in version of the subfigure “A”
to better illustrate the transient response in the region of interest. (b) Controller
parameters and their nominal values.

In this section, the simulation results illustrate the performance comparison

of linear PI controller with nonlinear QSM controller in a closed-loop feedback

system. For the simulations, all reaction rates and total substrate values have been

set to the nominal values given in Table 4.5(b) to 4.7(b). The second order reac-

tion rates are tuned within the practical experimental limits (a maximum value of

107 /M/s) [15] and catalysis, degradation, annihilation rates have been chosen in

terms of DNA implementation reaction rates, qi and initial concentration of auxil-

iary species, Cmax.

4.3.1 Simulation results with modularity

The system considered in Fig. 4.3 consists of individual modules that are designed

to perform particular operations. Initially it is assumed that the closed-loop feed-
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Figure 4.6: Closed loop responses with quasi and ideal sliding mode controllers: the
undesirable phenomenon of chattering, i.e., high frequency oscillations, is observed
in the closed loop response if the ideal SMC controller is used, but is avoided by
the QSM controller.

Parameters Nominal Values

kr1 forward binding rate 500×103 /M/s
kr2 catalytic reaction rate 2×103 qi Cmax /s
kr3 degradation rate 10×10−3 qi Cmax /s

XTotal total amount of X5 +X6 3 nM

Table 4.2: Process to be controlled — parameter values

back system is modular i.e. the performance of individual modules remain un-

changed even after their interconnection to each other. However, in the next section

such an effect of interconnection is quantified and simulated.

A square-wave input was chosen for the reference signal U to be tracked by

the process output, in line with standard practice in control theory, since such sig-

nals generally result in the most challenging possible tracking problem for the con-

trol system (the output must track signals that are changing infinitely fast, in both

directions). The magnitude of the square wave was chosen to be sufficiently large

that it excites the nonlinear dynamics of the process to be controlled. Fig. 4.5(a)

shows the closed loop tracking response for the system shown in Fig. 4.3 when the

QSM controller is used. The output Y tracks the input U with a settling time of

2,500 sec if X3Total is set to 0.1 nM .

As shown in Fig. 4.6, the QSM controller also avoids the problem of chatter-
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(a)

Parameters Nominal
Values

kI catalytic reaction rate 0.002 qi Cmax /s
kP catalytic reaction rate 0.04 qi Cmax /s
kc catalytic reaction rate 0.2 qi Cmax /s
kd degradation rate 0.4 qi Cmax /s

(b)

Figure 4.7: PI controller: (a) Closed loop tracking response obtained using a PI
controller. The transient response can be made faster by increasing the value of the
controller tuning parameter kP albeit at the cost of introducing progressively larger
overshoots. (b) Controller parameters and their nominal values.

ing that is encountered when the ideal SMC, is used. Fig. 4.7(a) shows the closed

loop tracking response for the system shown in Fig. 4.3 when the PI controller is

used. The closed loop response dynamics that can be achieved with the PI con-

troller are approximately an order of magnitude slower than those achieved using

the QSM controller.

Initial values of the signals A, B, X2, X4 are set to zero, i.e. A0 = B0 =

X20 = X40 = 0 nM. For the PI controller, the nominal values of the reaction rates

and kinetic constants are shown in Table 4.7(b) and the initial concentrations of

the non-auxiliary species in equations (4.8)-(4.9) are set to zero, i.e. X20 = A0 = 0

nM. For the subtractor, ks is set to its nominal value of 3000 ·qiCmax /s where DNA

implementation reaction rates are given by qi = 800 /M/s (i = 1,2, ...,21), qmax =

107 /M/s [15; 31] and the initial concentration of auxiliary species, Cmax = 1000

nM. The reaction rate of annihilation, η , is set to 10 ·qiCmax /s.

4.4 Retroactivity

As described in the influential paper by [92], many biomolecular systems may be

characterised as being composed of functional ‘modules’ whose interconnection
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Figure 4.8: Retroactivity: System S having input u and output y. Signals originating
from the connection of S to upstream and downstream components are denoted as
red signals r and s, respectively.

allows the realisation of higher level functions. For example, the ability of cells

to perform higher level operations such as information integration from multiple

sources can be achieved by the sequence and pattern of the interconnected func-

tional modules. In Synthetic Biology, individual modules are systematically de-

signed to produce desirable behaviour and then incorporated together to form large,

complex biological systems. However, the performance of modules in isolation can

differ from its performance once it is connected to other modules. This effect is

termed as retroactivity [39] which essentially is a biomolecular analogy of loading

effects (or impedance effects) [93] in electronics. This effect is specifically studied

for genetic networks in [40; 41; 94], and for covalent modification cycle cascades

in [55; 95]. Fig. 4.8 illustrates the retroactivity effect for a system S with internal

dynamics and input u and output y. Signal s denotes retroactivity from the down-

stream module on S whereas, signal r denotes retroactivity imposed by S on the

upstream module.

As an example, consider a simple example of a water tank with a constant

flow of water through an input pipe and an output pressure pt that can be measured

at the output pipe. When the output pipe is connected to another tank, the pressure

pt at the output pipe will be affected due to the pressure applied by the downstream

tank. This phenomenon can be modelled as retroactivity from downstream to up-

stream modules connected to a load. The effect of retroactivity depends on the

features of interconnection. In the case of the tank, the output of the upstream tank

will not be affected by the downstream tank if the connecting pipe aperture is very

small compared to the aperture of the output pipe of the upstream tank.
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4.4.1 Simulation results with retroactivity

The closed loop responses shown in Figs. 4.5(a) and 4.7(a) assume perfect modu-

larity of the different elements of the feedback system shown in Fig. 4.3, i.e. in-

terconnection of elements does not change their dynamic response. Although this

assumption is routinely made in the vast majority of systems traditionally encoun-

tered in engineering disciplines, it has recently been established that it does not hold

for many biomolecular feedback systems, [40], since it often happens that different

modules share the same molecular species. The concept of retroactivity has been

introduced to quantify the manner in which the interconnection of two modules

changes their dynamics with respect to their behaviour when isolated, [86]. For

the system under consideration here, it should be noted that the interconnection of

modules containing only unimolecular reactions produces no retroactivity effects.

For example, in the context of Fig. 4.3, the interconnection of the subtractor and the

PI controller will feature no retroactivity. However, if the system is an interconnec-

tion of two modules, one of which comprises unimolecular reactions while the other

features bimolecular reactions (e.g. the subtractor and QSM controller) then it will

feature a unidirectional retroactivity, since the ODE representation of the subtractor

must consider the chemical reactions describing the downstream QSM controller.

For the QSM, retroactivity affects the ODEs of two state variables as follows:

dX1

dt
= ks(U−Y −X1) −kb1X1B+ kc1X2︸ ︷︷ ︸

retroactivity

, (4.11)

dA
dt

= kc1X2− kb2AX3 −kr1AX5︸ ︷︷ ︸
retroactivity

. (4.12)

The additional term (−kb1X1B+ kc1X2) in equation (4.11) quantifies the retroac-

tivity imposed by the downstream QSM controller on the upstream subtractor through

the shared signal X1, while the additional term (kr1AX5) in equation (4.12) quantifies

the retroactivity effects between the QSM controller and the process to be controlled

through the shared signal A.

As shown in Fig. 4.9(a), the nonlinear QSM controller is highly robust to

retroactivity effects, with the major change to the closed loop response being a
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Figure 4.9: (a) Closed loop tracking response obtained by using the QSM controller
after accounting for retroactivity effects. (b) Closed loop tracking response obtained
using the PI controller after accounting for retroactivity effects.

small reduction in overshoot. In the case of the PI controller, retroactivity affects

the ODE of only one state variable, due to the interconnection of the controller and

process to be controlled, as follows:

dA
dt

= kpX1 + kcX2− kdA −kr1AX5︸ ︷︷ ︸
retroactivity

. (4.13)

As shown in Fig. 4.9(b), for the PI controller the presence of retroactivity

results in significant changes in the closed loop response, which is now extremely

sluggish - for a kp value of 0.04 qi Cmax the controller is not able to track the refer-

ence signal even after 50,000 seconds.

4.5 Conclusions

This chapter presents new results on how chemical reactions can be used to design

and implement an important class of nonlinear controllers using DSD reactions.

These results exploit bimolecular as well as unimolecular reactions to significantly

extend the design framework established for linear dynamical systems in [31], al-

lowing the implementation of highly nonlinear synthetic control circuits based on

sliding mode control theory. It is shown how a combination of four elementary
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chemical reactions, viz., bimolecular, catalysis, degradation, and annihilation can

be used to realize all necessary functions and how these chemical reactions may

be translated into enzyme-free, entropy/enthalpy driven DNA reactions. Simula-

tion results indicate that, compared to a traditional PI controller, the implemented

quasi sliding mode controller results are dramatically faster and more accurate in

the tracking of reference signals, even in the presence of retroactivity. The proposed

design approach is highly modular, fully exploits the inherently nonlinear nature of

biomolecular reaction kinetics, and for the first time makes a direct link between

the biological concept of ultrasensitivity and the engineering theory of sliding mode

control.
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Chapter 5

Robustness Analysis of Biomolecular
Controllers to Parametric and Time
Delay Uncertainties

5.1 Robustness analysis

Robustness is the ability of a system to function properly and be insensitive to the

presence of both internal and external uncertainty and disturbances [85; 96–98].

Therefore, the aim is to achieve a robust control design despite such uncertainty,

making the system more durable and resilient. The uncertainty may exist in the

form of unknown parameters, parameter variations, unpredictable environment, and

so on. In control design, feedback systems are widely used to compensate for the

disturbance and maintain the desired closed loop operation [98]. Among the popu-

lar robust control methods, H∞ and µ methods are effective robust control tools and

extensively applied in the linear control system design. H∞ loop-shaping is gen-

erally used for multi input multi output (MIMO) plants having nonlinear dynamics

[99; 100] while, µ method is useful for the analysis of the parameter uncertainty and

unmodeled dynamics effect on the performance and stability of multiloop feedback

systems [101].

On the engineering-biology interface, the concept of robustness has gained

significant focus due to the rigorous definition provided in the context of engineer-
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ing control systems [102]. Biological systems exhibit certain robustness and ex-

ploring such mechanism helps understand evolvability in nature as discussed in

[103]. [104] addresses the issue of sensitivity of signal transduction networks and

proposes a mechanism for robust adaptation.

As shown in Chapter 4, a nonlinear quasi sliding mode (QSM) controller

can be developed using a set of chemical reactions inspired by the ultrasensitive

behaviour exhibited by a covalent modification cycle (CMC) cascade [59] and im-

plemented using the DNA strand displacement (DSD) mechanism. An important

requirement for any embedded bimolecular controller is that its design provides ro-

bustness to various forms of uncertainty and variability that could arise in its final

implementation in DNA. In this chapter, the focus is on two important sources of

such uncertainty - variability in the rate constants of the chemical reactions under-

lying the closed-loop control system, and uncertain time delays in the biomolecular

process to be controlled. In practice, experimental biologists are rarely able to spec-

ify the reaction rates of chemical reactions exactly, and additionally, as highlighted

in [31], unregulated chemical devices or leaky expressions can potentially affect

production and degradation rates and subsequently alter the behaviour of the de-

signed components. The other reasons why one might wish to include time delays

in chemical reaction network (CRN) models of biomolecular processes, since this

avoids cataloging potentially large numbers of intermediate species and their reac-

tions, in favour of describing the dynamic relationships between the concentrations

of key species. As a result, fewer concentration variables will generally be required,

thus simplifying the overall circuit design problem. Also, in preliminary investiga-

tions of a new system, the level of description afforded by a low-order time delayed

CRN model is often closer to our state of knowledge than is a detailed model, in

which a certain amount of speculation about intermediate species is required, [105].

5.2 System description and methodology

The closed-loop feedback configuration considered to analyse the system robust-

ness is shown in Fig. 5.1. The circuit consists of a number of dynamic components,

namely, a subtractor, a controller and a second order nonlinear biomolecular pro-
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Figure 5.1: The biomolecular closed-loop feedback control system with the accu-
mulative process time delay.

cess with an accumulative time delay. This system is based on DNA elementary

reactions and these reactions might exhibit time delays in the form of nucleotide

mismatch. DNA being more stable than RNA, it quickly resolves the mismatch

and proceeds with the strand displacement. Although this delay is not very large it

may be measured in seconds. For this analysis, it is assumed that each component

contributes a certain amount of delay which is included in the accumulated form of

a single time delay. Hence, the term ’accumulative’ time delay.

The controller analysed here is a nonlinear QSM controller and for the pur-

poses of comparison, the level of performance is compared to that achieved us-

ing a classical linear proportional+integrator (PI) controller (see Chapter 4, Sec-

tion 4.2.1). The methodology followed here is precisely explained in Chapter 2,

Section 2.1.2 where, a signal x is represented as the difference in concentrations

of two DNA strands, such that x = x+− x−; where, species labelled as x+ and x−

represent two individual DNA strands. Although some of the operators are men-

tioned already in the Chapters 3 and 4 they are written here again briefly to maintain

the nomenclature and continuity, in the context of the closed-loop feedback system

shown in Fig. 5.1.

5.2.1 QSM controller

The chemical reactions describing the QSM controller designed in Chapter 4, are

given by:
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X±1 +B±
kb1−−→ X+

2 , (5.1a)

X∓1 +B±
kb1−−→ X−2 , (5.1b)

X±2
kc1−→ A±+X±1 , (5.1c)

X+
2 +X−2

η−→ φ , (5.1d)

A++A−
η−→ φ , (5.1e)

A±+X3
kb2−−→ X±4 , (5.1f)

X±4
kc2−→ B±+X3, (5.1g)

X+
4 +X−4

η−→ φ , (5.1h)

B++B−
η−→ φ . (5.1i)

where, X1 is the input and A is the output of the QSM controller. kb1 and kb2 denote

the binding reaction rates whereas kc1 and kc2 denote the catalytic reaction rates

and η is the annihilation rate. The tuning of the QSM controller involves adjusting

kb1 , kb2 , kc1 and kc2 . By tuning the total concentration X3Total where, X3Total =

X3 +X4, the input-output response of the CRN can be made to closely approximate

the ideal switch implemented by a sliding mode controller (SMC) [35]-[37], so that

it implements a QSM controller.

By applying generalised mass action kinetics (see eg. [12]) to (5.1), we get

the following set of ODEs:

dA
dt

= kc1X2− kb2AX3, (5.2a)

dX2

dt
= kb1X1B− kc1X2, (5.2b)

dB
dt

=−kb1X1B+ kc2X4, (5.2c)

dX4

dt
= kb2AX3− kc2X4. (5.2d)

From (5.2), it can be seen that Sqsm
.
= A+B+X2 +X4 is constant. Thus, the

signal B is variable and depends on the dynamic signals A, X2 and X4. Since, X1

also varies over time; this means that the term (kb1X1B) in (5.2b) is nonlinear.

5.2.2 PI controller

The linear PI controller is constructed following the approach of [31] and [17] using

three chemical reactions for the integration operation as:

X±1
kI−→ X±1 +X±2 , (5.3a) X+

2 +X−2
η−→ φ . (5.3b)

and a proportional gain, implemented using seven chemical reactions as:
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X±1
kp−→ X±1 +A±, (5.4a)

X±2
kc−→ X±2 +A±, (5.4b)

A±
kd−→ φ , (5.4c)

A++A−
η−→ φ . (5.4d)

For (5.3) and (5.4), the signal X1 is the input and A is the output. Further-

more, kI , kp and kc denote the catalytic reaction rates while kd denotes the degrada-

tion rate. Applying mass action kinetics to the above CRNs, the following system

of differential equations is obtained for the PI controller:

dX2

dt
= kIX1, (5.5a)

dA
dt

= kpX1 + kcX2− kdA. (5.5b)

5.2.3 Process to be controlled

A second order nonlinear process that can be formed using a combination of uni-

molecular and bimolecular reactions, given as follows:

A±+X±5
kr1−→ X+

6 , (5.6a)

A±+X∓5
kr1−→ X−6 , (5.6b)

X±6
kr2−→ Y±+X±5 , (5.6c)

Y±(t + τ)
kr3−→ φ , (5.6d)

Y++Y−
η−→ φ . (5.6e)

where, kr1 , kr2 , kr3 are the binding, catalytic and degradation reaction rates, respec-

tively. The input signal to the process module is A and the output is Y . The term

τ in (5.6d) indicates the accumulative time delay involved in the production of the

output species Y . Applying mass action kinetics to (5.6), we get:

dX6

dt
= kr1AX5− kr2X6, (5.7a)

dY
dt

= kr2X6− kr3Y (t− τ). (5.7b)

where, XTotal
.
= X5 +X6 is constant and conserved through the entire time of the

process.
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5.2.4 Subtractor

For the closed-loop feedback control, a module is required to compute the differ-

ence of the reference signal (U) and output signal (Y ). Following [31; 32], the CRN

that performs the subtraction operation is given by:

U±
ks−→U±+X±1 , (5.8a)

Y±
ks−→ Y±+X∓1 , (5.8b)

X±1
ks−→ φ , (5.8c)

X+
1 +X−1

η−→ φ . (5.8d)

where ks is the subtraction rate. Here, signals U and Y are the inputs and X1 is

the output of the subtractor. In other words, the value of signal X1 being produced

is equivalent to the difference between the two input signals, U and Y . In addi-

tion, both the catalysis reaction rates in (5.8a) and (5.8b) are set to be equal to the

degradation rate in (5.8c). Applying mass action kinetics to (5.8) gives:

dX1

dt
= ks(U−Y −X1). (5.9)

In the context of the feedback system shown in Fig. 5.1, the inputs to the

subtractor comprise the reference input signal U and the process output Y while its

output X1 is used as the input to the controller.

5.3 Simulation results

The performance of the QSM controller with time delay, τ = 0s and τ = 1000s is

shown in Fig. 5.2. In both the cases, the QSM controller is seen to accurately track

the reference signal, with nearly the same settling time of approximately 12,000s.

However, when the response of the PI controller is evaluated in the presence of

τ = 1000s, as shown in Fig. 5.2, large overshoots can be observed.

To analyse the robustness of closed-loop responses achieved with the QSM

controller, a Monte Carlo simulation campaign was performed. All the parameters

determining the rate constants of the chemical reactions underlying the closed-loop

system are randomly drawn from a uniform distribution over repeated simulations.

The number of Monte Carlo simulations required to achieve various levels of esti-
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Figure 5.2: Comparing system performance of QSM controller with the PI con-
troller for τ = 1000s. The dashed line shows the response of the QSM controller
for τ = 0s.

mation uncertainty with known probability were calculated using the well-known

Chernoff bound [106]. An accuracy of 0.05 and a confidence level of 90% were

chosen for the Monte Carlo simulation analysis, which requires 1060 simulations,

as discussed in [106]-[107]. To investigate the effect of different levels of uncer-

tainty the parameters are varied within ranges of 20% and 50% around their nom-

inal values. Mathematically, it is p(1+∆P(x)) where, p ∈ {ks,kb1,kb2, kc1,kc2,kI,

kp,kc,kd, kr1,kr2,kr3}, P(x) is the probability distribution [108] and ∆ ∈ {0.2,0.5}.
The ranges 0.2 and 0.5 of ∆ is chosen here as it help showing a significant and clear

difference in the closed loop performance of both the controllers. This range is nei-

ther extreme nor insufficient. For example, if 0.1 and 0.3 is chosen then it could

be difficult to show the difference in the response of two controllers. Certainly, one

can simulate for any other range than the given one but, 0.2 and 0.5 appears to be

adequate in this case.

In the simulations, the given step input U changes from 0 to 4 nM at time

t = 0s and the role of the controller is to ensure that the process output Y tracks the

reference input. As quantitative measures of control system performance, the step

response characteristics are measured, which include settling time (ts), rise time (tr),

percentage overshoot (MOS) and steady state error (ess). It is desirable to achieve

small values of ts, tr and MOS, while ess = 0. First, the closed-loop response without

parameter uncertainty is simulated, i.e. with nominal parameter values to use it as a
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Figure 5.3: System performance with the PI controller for 20% uncertainty in pa-
rameters (i.e. ∆ = 0.2) and time delay; for the Monte Carlo simulation analysis (no.
of simulations = 1060).
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Figure 5.4: System performance with the QSM controller for 20% uncertainty in
parameters (i.e. ∆ = 0.2) and time delay; for the Monte Carlo simulation analysis
(no. of simulations = 1060).

benchmark for comparison. Tables 5.1 and 5.2 detail the results of the Monte Carlo

simulation campaign for both the QSM and PI controllers. The PI controller was

observed to lose closed-loop stability for ∆ = 0.5.

The worst case values of each of the step response characteristics and their
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Figure 5.5: System performance with the PI controller for 50% uncertainty in pa-
rameters (i.e. ∆ = 0.5) and time delay; for the Monte Carlo simulation analysis (no.
of simulations = 1060).
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Figure 5.6: System performance with the QSM controller for 50% uncertainty in
parameters (i.e. ∆ = 0.5) and time delay; for the Monte Carlo simulation analysis
(no. of simulations = 1060).

associated parameter values are shown for each of the analysed uncertainty sets (i.e.,

∆ ∈ {0.2,0.5}) in Tables 5.1 and 5.2. Ranges are shown for the uncertain parame-

ters since their worst-case values for each step response characteristic are different,

e.g. the parameters yielding the worst ts may not yield the worst tr, Mos and ess and
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vice versa. Figs. 5.3 and 5.4 show the step responses produced by the Monte Carlo

simulation campaign for each controller when ∆ = 0.2 and similarly, Figs. 5.5 and

5.6 show the step responses when ∆ = 0.5. As shown, the QSM controller displays

significantly greater robustness to the applied levels of uncertainty, highlighting its

potential for successful experimental implementation.

5.4 Conclusions

Within the framework of CRNs, this chapter presented an analysis of the perfor-

mance and robustness properties of a nonlinear QSM controller and a linear PI

controller, when subjected to potential accumulative process time delays in the pro-

duction of the output species of interest. Different levels of variability are intro-

duced in the parameters representing the reaction rates of the underlying chemical

reactions, and a process time delay is introduced to investigate the robustness of

both controllers to these uncertainties. The simulation results highlight the strong

robustness properties of the QSM controller, indicating its suitability for implemen-

tation in wet-lab experiments.
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Characteristics Nominal ∆ = 0.2 ∆ = 0.5
ts (s) 12,652 15,958 unstable
tr (s) 718 11,259 unstable
MOS (%) 43.75 283.17 unstable
ess (M) 0 0 unstable

Parameters Nominal ∆ = 0.2 ∆ = 0.5
Subtractor
ks (/s) [10−3] 2.4 2.714-2.831 2.863-3.530

PI controller
kI (/M/s) [10−6] 1.6 1.616-1.907 1.631-2.110
kp (/M/s) 0.2 0.232-0.233 0.272-0.299
kc (/s) [10−4] 1.6 1.722-1.894 1.934-2.351
kd (/s) [10−1] 3.2 3.255-3.364 3.223-4.497

Nonlinear process
kr1 (/M/s) [102] 5 5.732-5.926 6.951-7.455
kr2 (/s) 1.6 1.818-1.884 1.804-2.242
kr3 (/s) [10−6] 8 8.033-8.696 9.561-11.335

Time delay
τ (s) 1000 700-1118 695-1436

Table 5.1: Step response characteristics and worst-case parameter ranges for the PI
controller.
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Characteristics Nominal ∆ = 0.2 ∆ = 0.5
ts (s) 9,654 15,562 15,954
tr (s) 1,281 1,471 1,631
MOS (%) 12.36 38.23 181.29
ess (M) 0 0 oscillatory

Parameters Nominal ∆ = 0.2 ∆ = 0.5
Subtractor
ks (/s) [103] 1 1.139-1.175 1.059-1.267

QSM controller
kb1 (/M/s) [10−3] 40 41.060-47.587 40.642-59.807
kb2 (/M/s) [10−3] 40 43.094-47.103 42.489-54.347
kc1 (/s) [103] 9 9.122-10.732 12.423-13.410
kc2 (/s) [103] 10 10.201-11.946 10.269-14.694

Nonlinear process
kr1 (/M/s) [102] 5 5.077-5.900 5.038-7.185
kr2 (/s) 1.6 1.769-1.884 1.651-2.368
kr3 (/s) [10−6] 8 9.040-9.310 9.079-11.390

Time delay
τ (s) 1000 853-1169 853-1469

Table 5.2: Step response characteristics and worst-case parameter ranges for the
QSM controller.
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Chapter 6

Exploiting the Dynamic Properties of
a Covalent Modification Cycle for
Nonlinear Controller Design

Covalent modification cycles may exhibit different operating regimes, as previ-

ously discussed in Chapter 2, Section 2.1.3 namely, hyperbolic, signal-transducing,

threshold-hyperbolic and ultrasensitive [59]. Interestingly, among all these regimes,

the signal-transducing regime resembles the steady-state input-output mapping of

the proportional+integrator (PI) controller as shown in Fig. 6.1. In industrial con-

trol systems, the most commonly used controller is the linear PI controller, and this

type of controller has been successfully implemented for biomolecular systems us-

ing DNA based chemistry in previous studies [17; 31]. Here, the performance of

a covalent modification cycle (CMC) controller, designed to operate in its signal-

transducing regime, is compared with that of a classical PI controller. The chem-

ical reactions used to respresent CMC and PI controller differ from those given in

[31; 59] since, they are modified to incorporate the adapted methodology [31] (refer

Chapter 2, Section 2.1.2).
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Figure 6.1: Four different mappings of input-output signals in a covalent modifica-
tion cycle [59]. The signal-transducing mapping resembles the steady-state input-
output mapping of a PI controller.

6.1 Designing a covalent modification cycle controller

The closed-loop feedback scheme, with controller (CMC or PI) and process to be

controlled (linear or nonlinear), is shown in Fig. 6.2. The chemical reactions under-

lying the covalent modification cycle (see Chapter 2, Section 2.1.3) can be used to

design a nonlinear biomolecular feedback controller - CMC controller.

6.1.1 Chemical reactions

For the closed-loop feedback system in Fig. 6.2, the CRN implementing the sub-

tractor is given by:

R±
γSb−→ R±+E±, (6.1a)

Y±
γSb−→ Y±+E∓, (6.1b)

E±
γSb−→ /0, (6.1c)

E++E−
η−→ /0. (6.1d)

where, R and Y are the two inputs- reference signal and feedback signal, respec-

tively and E is the output. The catalysis reaction rate γSb is set equivalent to the

degradation rate and η is the annihilation reaction rate.

The chemical reactions required to implement the CMC controller are given

in (2.11), in Chapter 2, Section 2.1.3. To maintain the consistency of exposition and

in the context of the given feedback system in Fig. 6.2, the chemical reactions are

given here:
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Figure 6.2: A prototype embedded biomolecular closed loop feedback control sys-
tem with CMC or PI controller.

X±p +X±in
k1−→ X+

C1
, (6.2a)

X±p +X∓in
k1−→ X−C1

, (6.2b)

X±C1

k2−→ X±out +X±in , (6.2c)

X+
C1
+X−C1

η−→ φ , (6.2d)

X+
out +X−out

η−→ φ , (6.2e)

X±out +Xe
k3−→ X±C2

, (6.2f)

X±C2

k4−→ X±p +Xe, (6.2g)

X+
C2
+X−C2

η−→ φ , (6.2h)

X+
p +X−p

η−→ φ . (6.2i)

The chemical reactions in (6.2) are required to implement the CMC con-

troller with E = Xin and U = Xout (in the context of Fig. 6.2). The values chosen for

the CMC controller’s reaction rates place it in its signal-transducing input-output

mapping regime, which closely resembles the steady-state input-output mapping of

a PI Controller.

The classical PI controller considered here is designed according to the

methodology of [31] that consists of one integrator, one proportional gain and one

summation operator. A total of 15 chemical reactions are required to implement PI

controller as follows:

[Integrator]:

E±
kI−→ E±+N±, (6.3a) N++N−

η−→ /0. (6.3b)

where, kI is the integral gain of the PI controller and η is the annihilation rate.

[Proportional gain]:

E±
γKkP−−→ E±+M±, (6.4a)

M±
γK−→ /0, (6.4b)

M++M−
η−→ /0. (6.4c)
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where, kP is the proportional gain of the PI controller, γK is the degradation reaction

rate and η is the annihilation rate.

[Summation junction]:

M±
γSm−−→M±+U±, (6.5a)

N±
γSm−−→ N±+U±, (6.5b)

U±
γSm−−→ /0, (6.5c)

U++U−
η−→ /0. (6.5d)

where, γSm is the summation reaction rate.

The input to the PI controller is denoted as E, and the output as U . The

tuning of this controller involves adjusting kP, kI and the reaction rates γK and

γSm. The CMC controller requires 14 reactions to implement, 1 fewer than the

PI controller.

Comparative performance of the two controllers is evaluated for two biomolec-

ular processes - a simple first order linear process and a more complex second order

nonlinear process. The chemical reactions for both processes are given by:

[Linear process]:

U±
kp1−−→U±+Y±, (6.6a)

Y±
kp2−−→ /0, (6.6b)

Y++Y−
η−→ /0. (6.6c)

where, kp1 and kp2 are the catalysis and degradation rates of the process.

[Nonlinear process]:

U±+P±
kr1−→ Q+, (6.7a)

U±+P∓
kr1−→ Q−, (6.7b)

Q±
kr2−→ Y±+P±, (6.7c)

Y±
kr3−→ /0, (6.7d)

Y++Y−
η−→ /0. (6.7e)

where, P and Q are intermediate species involved in the second order process reac-

tion. kr1, kr2 and kr3 are respectively the binding, catalytic and degradation rates of

the process and η is the annihilation rate.
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6.1.2 System of ordinary differential equations

Using generalised mass action kinetics, the ODEs corresponding to the CRNs for

each component in Fig 6.2 from (6.1) to (6.7) are given as:

[Subtraction operator]:
dE
dt

= γSb(R−Y −E) (6.8)

[CMC controller]:

dU
dt

= k2XC1− k3UXe, (6.9a)

dXC1

dt
= k1E− k2XC1, (6.9b)

dXC2

dt
= k3UXe− k4XC2. (6.9c)

[PI controller]:

dN
dt

= kIE, (6.10a)

dM
dt

= γK(kPE−M), (6.10b)

dU
dt

= γSm(M+N−U). (6.10c)

[Linear process]:
dY
dt

= kp1U− kp2Y (6.11)

[Nonlinear process]:

dQ
dt

= kr1UP− kr2Q, (6.12a)
dY
dt

= kr2Q− kr3Y. (6.12b)

In [31], the gain and summation operators used in the PI controller require

identical reaction rates for multiple reactions (for eg. two catalysis reactions having

same reaction rate). However, implementing this requirement in an experimen-

tal setting is unlikely to be feasible, as experimental biologists are rarely able to

specify the exact reaction rates of chemical reactions. Additionally, in practice, as

highlighted in [31], unregulated chemical devices or leaky expressions could poten-

tially affect production and degradation rates and subsequently alter the behaviour

of the designed component. To investigate these issues, a robustness analysis of

both controllers is performed, focussing on the effect of uncertainties in the imple-

mented reaction rates on the closed-loop stability and performance properties of the

feedback system.
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6.2 Simulation results

To analyse the performance and robustness of the closed-loop responses achieved

by the feedback controllers with the linear process, step response tests and Monte

Carlo simulations are performed, respectively. For the Monte Carlo simulations,

all the parameters are randomly drawn from a uniform distribution. The number

of Monte Carlo simulations required to achieve various levels of estimation uncer-

tainty with known probability are calculated using the well-known Chernoff bound

[106]. Following the guidelines provided in [109], an accuracy level of 0.05 and a

confidence level of 99% are chosen for the Monte Carlo simulation analysis, which

requires a total number of 1060 simulations [106; 107]. To investigate the effect of

different levels of uncertainty the parameters are varied within ranges of 20%, 50%,

100% and 120% around their nominal values. Mathematically, it is p(1+∆P(x)),

where p∈{γSb1,γSb2,γSb3,γK1,γK2,γSm1,γSm2,γSm3,kI,kP,k1,k2,k3,k4, kp1,kp2}, P(x)

is the probability distribution and ∆ ∈ {0.2,0.5,1.0,1.2}.
In the simulations, a step change in the concentration of the reference species,

R from 0 M to 1 M occurs at time, t = 0s and the purpose of the controller is to en-

sure that the process output reaches this new desired concentration. As quantitative

measures of the control system performance, the step response characteristics are

used, which comprise the rise time, tr, settling time, ts, percentage of overshoot,

MOV and steady-state error, ess [90].

6.2.1 Performance analysis of controllers with a linear process

For good closed-loop performance, it is desirable to achieve a small tr, ts and MOV

as well as having ess = 0. As a benchmark for comparison, first the step response

characteristics without parameter uncertainty are calculated. Hereafter, those are

referred as the set of results for the nominal system. The parameters for the nominal

system in the required chemical reactions are:

[Linear process]: kp1 = 0.1 /s, kp2 = 0.1 /s.

[Subtractor dynamics]: γSb1, γSb2, γSb3 = 0.4 /s.

[CMC controller]: k1, k3 = 0.00185 /M/s, k2, k4 = 0.5 /s, Xp+U +XC1+XC2 = 27.5

M and Xe +XC2 = 0.033 M.
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[PI controller]: γSb1, γSb2, γSb3 = 0.4 /s, γSm1, γSm2, γSm3 = 0.8 /s, γK1, γK2 = 0.0004

/s, kP = 1 /s and kI = 0.045 /s.

The step response characteristics for both of the nominal systems are tabu-

lated in Table 6.1. For each of the analysed uncertainty sets, the worst-case values

returned by Monte Carlo simulation for each of the step response characteristics and

its associated parameter set are shown. Note that a range of parameters is given here

as the parameter set associated with each worst-case characteristic is different. For

example, the parameters yielding the worst tr may not yield the worst ts, MOV and ess

and vice versa. For illustration, the step responses depicting the nominal and worst-

case responses for each step response characteristics for ∆ ∈ {0.2,0.5,1.0,1.2} are

shown in Fig. 6.3 for both PI and CMC controllers.

The performance of the two nominal closed-loop systems is rather similar,

which reflects the fact that the CMC controller is designed to reproduce the steady-

state input-output mapping of the original PI controller. Interestingly, however, the

robustness of the system can be clearly seen to be significantly improved when the

CMC controller is used. With the PI controller, the closed-loop system become

unstable when ∆ = 1.2, while for the CMC controller, the closed-loop system be-

comes unstable only when ∆ = 1.8 (not provided in the simulation results), showing

that the CMC controller is able to tolerate more than a 50% larger variability in the

values of the reaction rates in the underlying chemical reactions.
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PI controller
Characteristics Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0 ∆ = 1.2
tr (s) 29 44 75 157 173
ts (s) 96 113 175 499 Unstable
MOV (%) 9.14 22.83 52.25 114.17 Unstable
ess (M) 0.00 0.19 0.49 0.91 Unstable
Parameters Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0 ∆ = 1.2
γSb1 (/s) 0.400 0.431-0.476 0.532-0.595 0.475-0.791 0.584-0.599
γSb2 (/s) 0.400 0.401-0.471 0.400-0.584 0.413-0.569 0.428-0.875
γSb3 (/s) 0.400 0.401-0.473 0.414-0.593 0.466-0.721 0.412-0.853
kI 0.045 0.048-0.054 0.048-0.061 0.052-0.086 0.058-0.085
kP 1.000 1.016-1.165 1.130-1.359 1.137-1.549 1.159-1.367
γK1 (/s) [10−3] 0.400 0.436-0.477 0.424-0.515 0.434-0.674 0.505-0.795
γK2 (/s) [10−3] 0.400 0.403-0.466 0.401-0.454 0.473-0.666 0.570-0.683
γSm1 (/s) 0.800 0.809-0.948 0.863-1.099 0.827-1.544 0.825-1.410
γSm2 (/s) 0.800 0.835-0.943 0.904-1.012 0.849-1.205 1.152-1.548
γSm3 (/s) 0.800 0.832-0.958 0.823-1.140 0.841-1.536 0.853-1.279
k1 (/s) 0.100 0.101-0.116 0.106-0.142 0.111-0.174 0.127-0.208
k2 (/s) 0.100 0.101-0.114 0.102-0.139 0.103-0.199 0.123-0.211

CMC controller
Characteristics Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0 ∆ = 1.2
tr (s) 29 37 65 89 117
ts (s) 97 116 155 202 353
MOV (%) 10.12 25.3 44.63 60.55 75.00
ess (M) 0.00 0.18 0.46 0.92 1.12
Parameters Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0 ∆ = 1.2
γSb1 (/s) 0.400 0.403-0.476 0.450-0.595 0.412-0.781 0.626-0.857
γSb2 (/s) 0.400 0.401-0.477 0.406-0.580 0.407-0.752 0.403-0.745
γSb3 (/s) 0.400 0.403-0.466 0.402-0.594 0.577-0.726 0.425-0.806
kb1 (/M/s) [10−2] 0.185 0.186-0.221 0.202-0.274 0.199-0.342 0.224-0.365
kb2 (/s) 0.500 0.514-0.565 0.516-0.683 0.621-0.737 0.509-0.747
kb3 (/M/s) [10−2] 0.185 0.187-0.213 0.187-0.245 0.242-0.354 0.230-0.318
kb4 (/s) 0.500 0.516-0.596 0.679-0.723 0.553-0.851 0.662-1.008
k1 (/s) 0.100 0.100-0.119 0.104-0.148 0.130-0.199 0.101-0.174
k2 (/s) 0.100 0.101-0.114 0.105-0.150 0.106-0.198 0.109-0.209

Table 6.1: Step response characteristics and worst-case parameter ranges for the PI
and CMC controllers + the linear process.
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6.2.2 Performance analysis of the controllers with a nonlinear
process

In this section, it shown how the two controllers perform when controlling a more

complex second-order nonlinear process. The same step test and Monte Carlo sim-

ulations are carried out, with the parameters for the nominal system in the required

chemical reactions given as:

[Nonlinear process]: kr1 = 0.00005 /M/s, kr2 = 1.6 /s, kr3 = 0.0008 /s, with the total

concentration constrained so that, P+Q = 5.5 M.

[Subtractor dynamics]: γSb1, γSb2, γSb3 = 0.4 /s.

[CMC controller]: k1 = = 0.0000055 /M/s, k3 = 0.000018 /M/s, k2 = 12.50 /s, k4 =

140 /s, Xp +U +XC1 +XC2 = 66 M and Xe +XC2 = 0.00012 M.

[PI controller]: γSb1, γSb2, γSb3, γSm1, γSm2, γSm3, γK1, γK2 = 0.0004 /s, kP = 0.65 /s

and kI = 0.3 /s.

The parameter values given here for both the controllers with a nonlinear

process are different than those for the linear process as the controllers are tuned

to control the different processes. The step response characteristics for both of

the nominal systems are tabulated in Table 6.2. As previously, the step responses

depicting the nominal and worst-case responses for ∆ ∈ {0.2,0.5,1.0} are shown in

Fig. 6.4 for the PI and CMC controllers respectively. Note that the case for ∆ = 1.2

is not considered as the closed-loop system becomes unstable for ∆ = 1.0, when the

PI controller + nonlinear process is used.

The performance of the two nominal closed-loop systems are rather similar,

which again reflects the fact that the CMC controller is designed to reproduce the

steady-state input-output mapping of the original PI controller. The closed-loop

system with the CMC controller retains closed-loop stability up until ∆ = 1.6, again

demonstrating a significantly higher level of robustness than exhibited by the linear

PI controller.
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PI controller
Characteristics Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0
tr (s) 11,139 18,959 31,673 Unstable
ts (s) 26,304 44,138 48,482 Unstable
MOV (%) 2.42 24.88 44.44 Unstable
ess (M) 0.00 0.19 0.48 Unstable
Parameters Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0
γSb1 (/s) [10−3] 0.400 0.445-0.480 0.492-0.596 0.472-0.730
γSb2 (/s) [10−3] 0.400 0.402-0.475 0.400-0.453 0.533-0.735
γSb3 (/s) [10−3] 0.400 0.427-0.467 0.433-0.591 0.402-0.473
kI [10−3] 0.300 0.301-0.353 0.310-0.420 0.486-0.504
kP 0.650 0.673-0.771 0.790-0.908 0.806-1.282
γK1 (/s) [10−3] 0.400 0.432-0.461 0.446-0.573 0.498-0.747
γK2 (/s) [10−3] 0.400 0.401-0.422 0.446-0.586 0.404-0.740
γSm1 (/s) [10−3] 0.400 0.427-0.479 0.424-0.587 0.641-0.791
γSm2 (/s) [10−3] 0.400 0.423-0.462 0.469-0.553 0.615-0.730
γSm3 (/s) [10−3] 0.400 0.409-0.478 0.418-0.539 0.401-0.431
kr1 (/M/s) [10−4] 0.500 0.509-0.594 0.536-0.734 0.737-0.945
kr2 (/s) 1.600 1.633-1.865 1.749-2.232 1.860-2.843
kr2 (/s) [10−3] 0.800 0.812-0.904 0.819-1.102 0.844-0.891

CMC controller
Characteristics Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0
tr (s) 11,147 15,501 25,753 30,838
ts (s) 28,848 28,324 42,494 49,196
MOV (%) 2.84 13.12 26.25 56.37
ess (M) 0.00 0.19 0.46 0.98
Parameters Nominal ∆ = 0.2 ∆ = 0.5 ∆ = 1.0
γSb1 (/s) [10−3] 0.400 0.426-0.479 0.534-0.597 0.542-0.798
γSb2 (/s) [10−3] 0.400 0.400-0.478 0.404-0.511 0.403-0.798
γSb3 (/s) [10−3] 0.400 0.406-0.457 0.425-0.578 0.403-0.633
kb1 (/M/s) [10−5] 0.550 0.567-0.644 0.577-0.808 0.619-1.075
kb2 (/s) 12.50 12.64-14.75 16.57-17.84 16.99-17.95
kb3 (/M/s) [10−4] 0.180 0.182-0.207 0.203-0.238 0.196-0.274
kb4 (/s) 140.00 144.48-163.09 165.38-205.25 143.15-278.30
kr1 (/M/s) [10−4] 0.500 0.503-0.593 0.523-0.712 0.538-0.807
kr2 (/s) 1.600 1.635-1.893 1.839-1.950 1.789-2.861
kr2 (/s) [10−3] 0.800 0.803-0.943 0.804-1.162 0.808-1.525

Table 6.2: Step response characteristics and worst-case parameter ranges for PI and
CMC controllers + nonlinear process.
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6.3 Flexible input-output mapping improves robust-

ness

The results thus far have shown consistently better robustness from the CMC con-

troller compared to the PI controller. To explain this, the mapping of steady-state

input-output signals of these two controllers is analysed. Fig. 6.5(A) shows the

mapping of steady-state input-output signals of both controllers as they were imple-

mented when controlling the linear process. The mapping of input-output signals

for the nominal system and the maximum deviation from this response when ∆ = 1.2

are shown in black solid line and magenta dash-dotted line respectively. A signif-

icantly greater change to the gradient of the PI controller’s input-output mappings

can be observed compared to the CMC controller.

This intriguing observation leads to the question - how is the gradient of

this mapping of steady-state input-output signals related to the robustness of the

controller? Given that the process to be controlled is a linear process, its ODE

representation (with X := Y ) is given by:

dX
dt

=−kp2X + kp1U (6.13)

Here, (6.13) is in the standard state-space representation (i.e. dx
dt = Ax+

Bu, y =Cx+Du) with A = −kp2 and B = kp1, C = 1 and D = 0. In linear control

theory design using a state-space approach, [110], a standard control law can be

written as U = KX where, K is the controller gain. This linear control law can be

viewed as a mapping of the input, X to the output, U with K being the gradient.

Substituting U = KX into (6.13), we have:

dX
dt

=−kp2X + kp1KX = (kp1K− kp2)X (6.14)

As (6.14) is in scalar form, the overall process is stable if the real part of

the eigenvalue of A (i.e. kp1K− kp2) is less than 0, Hence, the following condition,

K <
kp2
kp1

must hold. In other words, if the controller gain, K is less than the ratio of

the process parameters kp2 to kp1, one has a stable system. In the simulation, the

process parameters of the nominal system are kp1,kp2 = 0.1, thus, for the system
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Figure 6.5: (A) The mapping of steady-state input-output signals of the PI controller
(top row) and the CMC controller (bottom row) when controlling the linear process.
Black solid line: Nominal system. Magenta dash-dotted line: worst-case response
for ∆ = 1.2. (B) The zoomed-in version of MOV from (A). Black solid line: nominal
system. Magenta dash-dotted line: worst-case response for ∆ = 1.2.

to be stable, it is required that K <
kp2
kp1

= 1. Looking at Fig. 6.5(B), a zoomed-in

version using MOV as an illustration, the gradient of both the controllers’ input-

output mapping are less than 1 (i.e. ≈ 0.34); the closed-loop system is stable. Note

that for the nominal system, both the controllers’ input-output mappings are very

similar, as expected, since the CMC controller was designed to reproduce the PI

controller’s steady-state input-output mapping.

Now, the effect of increasing the levels of variability in the values of the
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parameters in the chemical reactions implementing the feedback control system is

considered. For the PI controller, at ∆ = 1.2, the process parameters change from

kp1 = 0.100→ 0.208 and kp2 = 0.100→ 0.124. Thus, the ratio kp2
kp1

changes from

1→ 0.596. Likewise, from Fig. 6.5(B), it can be observed that the gradient of the

PI controller’s steady-state input-output mapping changes to 1.213 >
kp2
kp1

= 0.596,

which accounts for the observed unstable behaviour.

On the other hand, the change of gradient for the CMC controller is smaller

compared to the PI controller. At ∆ = 1.2, the process parameters change from

kp1 = 0.1→ 0.174 and kp2 = 0.1→ 0.109, leading the ratio kp2
kp1

to change from 1

→ 0.628. However, the gradient of the CMC controller’s steady-state input-output

mapping changes to 0.588 <
kp2
kp1

= 0.628, thus preserving the stability of the system.

What makes the CMC more robust (in terms of gradient change) to parame-

ter uncertainty? The simulation results using the nonlinear process shed some light

on this matter. The steady-state mapping of input-output signals simulated 1060

times at ∆ = 1.0 for both the controllers when controlling the nonlinear process

are shown in Fig. 6.6(A). For the nominal system both the controllers’ input-output

mapping retains a linear behaviour. While the PI controller’s steady-state input-

output mapping stays linear for all 1060 uncertainty combinations, the CMC con-

troller’s input-output mapping displays a ‘hyperbolic’ behaviour for some parame-

ter combinations. Recall that this ‘hyperbolic’ behaviour is one of the input-output

signal mappings reported in [59] (see also Fig. 6.1). Thus, the simulation results

here seem to indicate that parameter uncertainty has the capacity to change the op-

erating regime of the CMC controller from signal-transducing to hyperbolic. Thus,

the question of interest is whether this change in the mapping regime accounts for

the better robustness of the CMC controller.

As the process is now nonlinear, the notion of eigenvalue no longer applies

while the notion of stability for a nonlinear system is also more mathematically in-

volved and beyond the scope of the analysis in this chapter. However, the difference

in the robustness of both controllers can be informally explained by extending the

arguments on the ‘gradient’ of the steady-state input-output mapping, as was done

for the linear process. Fig. 6.6(B) shows the nominal and worst-case deviation in

the input-output mapping for both controllers at ∆ = 1.0.
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From Fig. 6.6(C), it can be seen that despite both controllers having very

similar mapping of input-output signals for the nominal system, when subjected to

parameter uncertainty, the gradient of the PI controller’s steady-state input-output

mapping becomes steeper and subsequently affects the stability of the system. On

the other hand, not only does the CMC controller’s input-output mapping show a

smaller change in response to uncertainty, it becomes more hyperbolic. The CMC

controller’s innate ability to achieve hyperbolic behaviour seems to be able to pre-

vent the adverse effect of parameter uncertainty, as it enables the gradient of its

input-output mapping when subjected to parameter uncertainty to remain small.

6.4 Conclusions

In this chapter, it is shown how the set of chemical reactions underlying the covalent

modification cycle motif may be used to design and implement a nonlinear feed-

back controller whose steady-state input-output behaviour mimics the well known

PI controller. The resulting CMC controller is shown to be significantly more ro-

bust to variability in circuit parameters that will inevitably arise in experimental

implementations of synthetic circuitry. Given the range of input-output mappings

that can be produced by the set of chemical reactions underlying the covalent mod-

ification cycle, it is likely that they could be used to efficiently design many other

types of operators and controllers. As the chemical reactions concerned are all rep-

resented either in unimolecular or bimolecular form, the resulting circuits can then

be readily implemented using DNA-based chemistry either in vitro or in vivo for

future Synthetic Biology applications.
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Figure 6.6: (A) The mappings of steady-state input-output signals of the PI con-
troller and CMC controller simulated 1060 times for ∆ = 1.0. Nominal systems
are shown in the thick dotted grey line. (B) The mapping of the steady-state input-
output signals of the PI controller (top row) and the CMC controller (bottom row)
when controlling the nonlinear process. Black solid line: Nominal system. Green
dash-dotted line: worst-case response for ∆ = 1.0. (C) The zoomed-in version of
the mapping of the steady-state input-output signals of the PI controller (bold line)
and the CMC controller (thin line) for MOV from (B). Black solid line: Nominal
system. Green dash-dotted line: worst-case response for ∆ = 1.0.
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Chapter 7

Conclusions and Future Work

A comprehensive approach for programming dynamic nonlinear devices within the

framework of chemical reactions that are implementable via the DNA strand dis-

placement (DSD) mechanism for enzyme-free, entropy/enthalpy driven DNA reac-

tions, is presented in this thesis. An essential step in this approach is the mapping

of chemical reaction networks (CRNs) into a system of ordinary differential equa-

tions (ODEs), by means of generalised mass action laws, allowing the formulation

of mathematical models of the biological system under consideration. The dynamic

behaviour of such mathematical models, i.e. evolution of chemical species over a

finite time, can then be illustrated, observed and accordingly modified in software

simulations (eg.: MATLAB, Simulink).

In order to design a biomolecular component or a system, there may exist

more than one set of chemical reactions or more than one set of parameter values

that can achieve the similar desired system response. For example, combinations of

different types of chemical reactions can result in similar or maybe different ODEs

that eventually perform identically. Also, the response generated by one set of pa-

rameter values can be equivalently produced by another set of parameter values.

Considering these possibilities, one should select a suitable set of chemical reac-

tions having a minimum number of reactions which is preferred or rather feasible

for in vivo/in vitro implementations. Also, a suitable set of parameter values can

be chosen for simulations, keeping in mind that these values are well within the

practically achievable physical limit, for eg., DNA or mRNA concentration levels,
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reaction rates etc.

A precise overview on the background theory of CRNs, the computational

methodology and DSD mechanism is given in Chapter 2. The underlying DSD

mechanism of four chemical reactions, viz., catalysis, bimolecular, degradation,

and annihilation, that are considered in this thesis, is illustrated using the software

tool Visual DSD. Chapter 3 shows results on how chemical reactions can be used to

design and implement a number of nonlinear system theoretic operators, thus signif-

icantly extending the results obtained in [31] that considered only linear systems. It

is also shown how polynomial functions, rational functions and power components

can be implemented by using a combination of the aforementioned four types of

chemical reactions. Based on this, the new results are highlighted through three ap-

plications, namely, computation of (1) fractional exponent, (2) absolute value, and

(3) logarithm of arbitrary base. In Chapter 4, an important class of nonlinear con-

trollers is realised and implemented in a closed-loop feedback system as a reference

tracking problem. The design exploits bimolecular as well as unimolecular chem-

ical reactions, allowing the implementation of highly nonlinear synthetic control

circuits based on sliding mode control theory. Simulation results for the closed-

loop response indicate that, compared to a traditional proportional+integrator (PI)

controller, the implemented quasi sliding mode (QSM) controller results in dra-

matically faster performance with more accurate tracking of reference signals, as

well as providing a more modular approach that is less affected by the presence

of retroactivity. The proposed design fully exploits the inherently nonlinear nature

of biomolecular reaction kinetics, and makes for the first time a direct link between

the biological concept of ultrasensitivity and the engineering theory of sliding mode

control.

An important factor in the design of any closed-loop feedback system is to

analyse the system robustness under parameter uncertainty or variance. The pro-

posed feedback system is analysed when subjected to potential accumulative pro-

cess time delays in the production of the output species of interest, as discussed in

Chapter 5. Different levels of uncertainty are introduced in the parameters repre-

senting the reaction rates of the underlying chemical reactions, and a process time

delay is also included to investigate the robustness of both controllers (PI and QSM)

98



to these variabilities. Simulation results highlight the strong robustness properties

of the QSM controller, indicating its suitability for implementation in in vitro ex-

periments.

Further, while exploring the properties of the set of CRNs underlying the

covalent modification cycle, it was noticed that one of the operating regimes - the

so-called signal-transducing regime - can be observed to approximate the steady-

state input-output behaviour of a PI controller. Accordingly, an investigation of the

application of this proposed covalent modification cycle (CMC) controller in order

to track reference signals with both a linear or a nonlinear process is described

in Chapter 6. It is followed by a robustness analysis of the CMC controller as

compared to a PI controller in the presence of parametric uncertainty.

Several avenues for further research are opened up by this study. For suc-

cessful implementation of complex feedback control circuits it will be essential to

understand the trade-offs between system performance and complexity (particu-

larly in terms of the number of chemical reactions to be implemented experimen-

tally), as well as the effect of experimental uncertainties on closed loop performance

(e.g. robustness to variations in reaction rates for complex circuit designs, etc). It

would thus be interesting to investigate whether there are alternative sets of CRNs

that could implement a QSM controller using fewer chemical reactions. One way

to achieve this is to seek to utilize CRNs without the ‘+’ and ‘−’ formalism, as

this could significantly reduce the number of reactions required to implement the

proposed circuits and controllers. Sliding mode controllers are only one of many

potential nonlinear control schemes that could potentially be implemented using

DNA-based chemistry, and much work remains to be done to forge closer links

between nonlinear control theory, chemical reaction network theory, and the exper-

imental realities of nucleic acid implementations of complex dynamical systems.

The treatment in this thesis has focussed on deterministic CRNs, but there has been

much recent work on CRNs within a stochastic systems framework that could also

be applied in the context of the design of biomolecular controllers. Lastly, while

the assumption of well-mixed conditions in in vitro systems seems valid, the im-

plementation of DNA-based circuits in vivo will require careful consideration of

spatial factors, motivating the extension of the underlying design framework to in-
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clude partial differential equation-based models.
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