
Exploring Model Driven Engineering
from Behavioural Models

Muideen Adesola AJAGBE

MSc by Research

UNIVERSITY OF YORK
Computer Science

April, 2017

Abstract

Model Driven Engineering (MDE) is an approach in software engineering that
promotes the use of models as first class artefacts. It enables improved productiv-
ity and consistency through the reuse of models to generate other necessary arte-
facts such as working code and textual documents. In MDE, modelling tools and
model management operations are deployed to explore a system under development.
Through model management operations (e.g. model transformation, validation and
comparison), many system can be automated. For example, model-to-model trans-
formation (M2M) are used to develop other model artefacts from the source models.

EAE system is used as our case study and code is normally hand-crafted for
its simulation. However, this hand-crafted code might contain bugs as modellers are
prone to error. The need to avoid this error gives rise to using MDE practices on
the system and it provides an avenue to generating OO code. This code is meant
to be fitness-for-purpose thereby leading to support for EAE simulation. As MDE
is applied to this system, the transformation of EAE model mostly represented in
behaviour diagrams to structure model is conceived.

This thesis explores EAE’s models by transforming its behaviour diagrams to
structural diagram where OO code can be generated. Our techniques deploy two
approaches towards the EAE’s domain model. The structural diagram produces by
these different approaches leads to OO code generation which will be used as a guide
to EAE’s simulation. This process is supported by the results of transformation rule
used in the thesis thereby reducing loss of information during the transformation
process.

For my parents and siblings.

3

Contents

Abstract 2

Dedication 3

Table of Contents 4

List of Figures 8

Acknowledgements 11

Author’s Declaration 12

1 Introduction 14

1.1 Overview of Model and Model Driven Engineering 14

1.2 Research simulations: YCIL immune systems studies 15

1.3 Motivation and Research Hypothesis 15

1.4 Thesis Structure . 16

2 Background: Model Driven Engineering 19

2.1 MDE Concepts and Terminologies . 19

2.1.1 Models and Metamodels . 20

2.1.2 Modelling Languages . 21

2.1.3 MOF: A Metamodelling Language 23

2.1.4 MDE Guidelines . 23

2.1.5 Model Management . 25

2.2 MDE Tools . 29

2.2.1 Eclipse Modelling Framework (EMF) 30

2.2.2 Papyrus . 30

4

2.2.3 Epsilon . 31

2.2.4 Summary . 32

2.3 MDE Benefits and Recent Challenges 33

2.3.1 Benefits . 33

2.3.2 Challenges . 33

2.4 Chapter Summary . 34

3 EAE: Domain Analysis and Observation 36

3.1 Introduction . 36

3.2 Domain Model Overview . 37

3.3 EAE Model Diagram . 37

3.3.1 Behavioural diagram . 38

3.4 EAE Domain Model . 38

3.4.1 The System-level Overview . 38

3.4.2 The System’s and Modelling Perspectives 39

3.4.3 The System Single-Entity Dynamics 44

3.5 Analysis . 48

4 Analysis and Hypothesis 52

4.1 Research Background . 52

4.2 Research Hypothesis . 52

4.3 Research Scope . 53

4.4 Research Methodology . 54

4.4.1 Analysis, Design and Implementation 54

4.4.2 Research Model Approach . 55

4.5 Summary . 55

5 Naive Approach 57

5.1 Introduction . 57

5.2 Outline . 58

5.3 Input Model - Activity Diagram . 59

5.3.1 Input Model Transformation Strategies 59

5.4 Output Model - Class Diagram . 62

5.4.1 Transform CD to SD . 62

5.5 Process Automation . 63

5

5.5.1 Papyrus Tool . 63

5.5.2 EMF Compare . 63

5.6 Code Generation . 64

5.7 Evaluation and Critique . 66

5.7.1 Evaluating Correctness and Target-Realization 66

5.7.2 Evaluating Efficiency . 67

5.7.3 Case study . 68

5.8 Critique . 69

5.9 Summary . 69

6 Second Approach 77

6.1 Introduction . 77

6.2 Overview . 77

6.3 Source Model - State Diagram . 79

6.3.1 State diagrams Metamodel . 80

6.4 Target Metamodel - Structural diagram 80

6.5 MDE on Target Metamodel . 81

6.5.1 Using Eclipse Modeling Framework to Model Target Metamodel 81

6.6 Using Model Management and Epsilon to Query and Validate Model 82

6.6.1 Epsilon Object Language (EOL) to Query our Model 82

6.6.2 Epsilon Validation Language (EVL) to Validate our Model . . 83

6.7 Code Generation . 85

6.8 Simulation . 85

6.9 Evaluation and Critique . 86

6.9.1 Approach Evaluation . 86

6.9.2 Limitation . 87

6.10 Summary . 87

7 Conclusion and Future Work 94

7.1 Thesis Contributions . 94

7.2 Future Work . 96

7.3 Concluding Remarks . 96

Appendices . 97

A Naive Approach 98

6

A.1 AD to SD Transformation Rule . 98

A.2 AD to CD Transformation Rule . 99

A.3 CD to SD Transformation Rule . 101

B Second Approach Transformation Rule 104

B.1 SD to SD metamodel (Structure) Transformation Rule 104

B.2 Transformation Rule for SD metamodel and AD to EAE Target Meta-
model . 105

Bibliography 107

7

List of Figures

2.1 An illustration of the relationship between model, metamodel and
language from [1]. 20

2.2 Metamodel of abstract syntax for a simple language from [2]. 22

2.3 A model represented as an instance diagram from [2]. 22

2.4 An excerpt of the UML metamodel defined in MOF, from [3]. 24

2.5 The stages of standards used as part of MDA from [4]. 25

2.6 Model transformation pattern in Model Driven Development from [5]. 26

2.7 The Ecore Metamodeling Language taken from [6]. 30

2.8 A Papyrus model environment. 31

2.9 The architecture of Epsilon, taken from Eclipse Epsilon [7]. 32

3.1 Read’s expected behaviours diagram depicting the phenomena ob-
served in a real domain, and the behaviours manifesting from cellular
interactions believed to be responsible for them [8]. 39

3.2 The spatial components of the domain model, and the manner in
which the cells of the domain model may migrate between them from
[8]. 40

3.3 UML activity diagram depicting the cellular interactions and events
that lead to neuronal apoptosis in the CNS following immunisation
for EAE from [8]. 41

3.4 The introduced notation variation in Figure 3.3 from [8]. 41

3.5 UML activity diagram depicting the cellular interactions and events
that lead to the self-perpetuation of autoimmunity following neuronal
apoptosis resulting from immunisation for EAE from [8]. 42

3.6 UML activity diagram depicting the cellular interactions and events
that lead to the self-perpetuation of autoimmunity following neuronal
apoptosis resulting from immunisation for EAE from [8]. 43

8

3.7 Activity diagram depicting the cellular interactions and events that
lead to the deviation of the immune response from [8]. Additional no-
tations include parallel slashes representing the collision of the primed
T-cell population (Treg and CD4Th1) cells which outnumbers their
CD4Th2 counterparts, and as such the CNS cytokine milieu is de-
composed into primarily type 1 cytokine. In sufficient concentration,
type 1 cytokine leads to neuronal apoptosis. Also, with DCs in the
CNS phagocytoses of apoptotic neurons, the double circles represent
DC maturation which lead to its adoption of either a type 1 or type 2
polarisation, depending on the balance of type 1 and type 2 cytokines
in their local vicinity. 45

3.8 The introduce notation variation in Figure 3.7 from [8] depicting CNS
cytokine milieu. 46

3.9 State machine diagram depicting the dynamics of CD4Th cells from
[8]. 46

3.10 State machine diagram depicting the dynamics of CD4Treg cells from
[8]. 47

3.11 State machine diagram depicting the dynamics of dendritic cells from
[8]. 48

3.12 State machine diagram depicting the dynamics of CNS macrophages
from [8]. 49

3.13 State machine diagram depicting the dynamics of neurons from [8]. . 49

3.14 State machine diagram depicting the dynamics of myelin basic protein
(MBP). from [8]. 50

4.1 An illustration of an agile model-driven development showing itera-
tion and incremental process from [9]. 54

5.1 An illustration of the transformation steps from AD to CD, AD to a
SD and CD to another SD. Comparing the two resulting SDs validate
the CD, prior to generation of OO Java code. 58

5.2 UML sequence diagram showing notations from [10]. 60

5.3 Sequence diagram transformed from the activity diagram in Figure
3.3. 70

5.4 A part of EAE transformed class structure model. 71

5.5 Sequence diagram showing interactions between objects of class dia-
gram presented in Figure 5.4. 72

5.6 Creating a model in Papyrus, illustrating some derived EAE class
structures. 73

5.7 A comparison of our two sequence diagrams showing differences in
merging. 74

9

5.8 A comparison between two sequence diagrams. 75

6.1 An illustration of our second approach showing its transformation
process. 78

6.2 A state machine diagram showing its notations from [11]. 79

6.3 The developed state diagram metamodel. 88

6.4 The EAE target metamodel . 89

6.5 The EAE metamodel editor in emfatic text. 90

6.6 A model class of the EAE system. 91

6.7 An OO Java code for CNS Class . 92

10

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr. Fiona Polack
and Professor Richard Paige for their incredible support and tutelage throughout the
duration of this project. I am also very grateful to my assessor, Dr Simon OKeefe,
for providing me with valuable feedbacks. I am highly indebted to Dr. Dimitris
Kolovos and Athanasios Zolotas for their technical support.

A big thanks and appreciation goes to my amazing parents, Adetunji and
Remi, my brother, Saheed, and darling sisters, Kudirat and Medinat for the endless
love and moral support every day. Special thanks to Isobel Atkinson, Jamal Hallam
and Alfa Ryano for making my York experience worthwhile.

Finally, All praise be to Almighty Allah (SWT), Lord of the Universe, the
Most Gracious and the Most Merciful for the successful completion of my degree.

11

Author’s Declaration

I declare that this thesis is a presentation of original work and I am the sole author.
This work has not previously been presented for an award at this, or any other,
University. All sources are acknowledged as References.

12

13

Chapter 1

Introduction

This report concerns the application of model driven engineering (MDE) techniques
and tools to support creation of simulator code. The work is part of an initiative to
provide software engineering support for the modeling and development approach
used in immune systems simulation by the York Computational Immunology Lab
(YCIL)1.

Model-Driven Engineering (MDE) is a software development approach that
seeks to use models as first-class engineering artefacts in the software development
lifecycle. It has been stated that MDE improves systems productivity, maintain-
ability and reusability by using models to manipulate systems [4]. MDE techniques
and tools such as EMF and Epsilon are used to enable large model manipulations
such as validation and transformation.

More so, if detailed UML models exist and are valid with respect to the domain,
software engineering support can be used to generate code that is valid with respect
to the models. This support is a step towards developing model simulations.

Read’s thesis [8] is a typical example of the sort of simulation design that we
are interested in. Rather than working from a class model, it uses UML behaviour
models in design. This report uses the design models and text information from [8]
to propose approaches using MDE to support simulation development.

1.1 Overview of Model and Model Driven Engi-

neering

Model is an abstraction used in understanding or representing a concept. In MDE,
models are represented in well-defined modeling languages. The definition of the
modeling language is specified by a MDE metamodel. A good MDE model is said
to conform to its metamodel. A metamodel is itself a model, and is usually defined
in a metamodelling language such as MOF or Ecore.

1York Computation Immunology Group: https://www.york.ac.uk/computationalimmunology/publications/

14

By defining and instantiating metamodels, software engineers are able to de-
velop well-defined domain specific languages (DSL), whilst model management tools
that operate on well-defined languages provide support for construction, manipula-
tion and validation of models.

MDE-supported development typically uses a structure diagram (a UML class
diagram or similar) as a basis for generating Object Oriented (OO) code. However,
MDE has not generally been used to support systems modelled primarily through
their behaviour - a major aspect of our work.

1.2 Research simulations: YCIL immune systems

studies

In this project, work from existing case studies created by the YCIL group are
explored. The YCIL approach uses behavioural models such as activity diagrams
and state diagrams to create a domain model which biologists can understand and
validate. These diagrams are typically created using UML with slight variations.
The models are currently used as a guide to implementation, but the code is not
directly derived from the models.

The work in this report is based on the study of a murine autoimmune disease
called experimental autoimmune encephalomyelitis (EAE) [8]. Our work is focused
on the EAE domain and how the domain models can be simulated and modelled
in order to study the emergent behaviours observed in them. More so, [8] uses
behavioural diagrams such as activity and state diagram to represent biological
components of EAE.

Read [8] develops his simulation using the CoSMoS 2 approach, where the
domain, domain model, platform model, simulation platform and result model are
developed to give a system that is fit for the specified simulation purpose [12]. The
benefits of using a CoSMoS-like approach on case studies such as this one include:

• The capturing and merging of data from different sources which can be used
to developing a system-level synopsis of the system behaviour.

• Simulation provides a platform for the formulation and evaluation of hypothe-
ses concerning the complex systems’ operation.

1.3 Motivation and Research Hypothesis

The YCIL case studies [8, 13, 14] use a common set of behavioural modelling ap-
proaches (based on UML activity diagram and state diagrams) but then handcraft
code for simulation. The act of hand-crafting code is error prone, since it is difficult
to provide validation that the models have been correctly interpreted in the code.

2York Centre for Complex Systems Analysis :https://www.york.ac.uk/yccsa/research/cosmos/

15

MDE approaches may provide a way to rigorously transform models to code which
is more fit-for-purpose.

This project investigates the hypothesis that metamodelling and model trans-
formation can be used to provide an automatable approach to creating simulation
code from the behavioural models used by YCIL projects.

To investigate this hypothesis, the report presents two approaches to automa-
tion. The first (naive) approach builds on published work that shows how a class
model can be derived from an activity diagram alone. The second approach, which is
more relevant to the large, complex systems addressed by YCIL, uses all the domain
models to create a class model suitable for OO code generation.

Finally, the work presents a detailed review of behavioural transformation of
UML behaviour diagrams to structure diagrams. The effective current-state-of-the-
art tools and techniques used in MDE are discussed, showing their benefits and
limitations.

1.4 Thesis Structure

Chapter 2 discusses the detailed overview of Model Driven Engineering, including the
concepts and terminologies of MDE. Models, metamodels and modelling language
are discussed in relation to our work. Also, different model management operations
are reviewed. MDE tools are discussed with emphasis on EMF, Papyrus and Epsilon
as the primary tools used in this work. The challenges and benefits of MDE are also
briefly reviewed.

Chapter 3 presents Read’s EAE domain analysis by providing an overview of
EAE immunology disease as a complex systems with the sections presenting the low
level, top level of the systems model. In this chapter, EAE diagrams from Read’s
thesis [8] are discussed. Also, the domain model of EAE is presented as the system-
level overview, system and modelling perspective and system-level dynamics where
diagram representing each level are discussed.

Chapter 4 presents an analysis and hypothesis of our research. The research
background, hypothesis and scope is discussed in this chapter. Also, the research
methodology in form of analysis, design and implementation is reviewed. A brief
overview of the research modelling approach is also motivated.

Chapter 5 details the naive (first) modelling approach. The input model (activ-
ity diagram) used and the transformation strategy applied towards a structure class
diagram are discussed. The automation of the modelling process and the tool used
are discussed. The code generated is presented. Also, an evaluation and critique of
this approach is given.

Chapter 6 discusses the second approach. It presents the input model (state
machine diagram with other information) and its transformation strategies. Also,
the output model and a target output model are reviewed. The MDE practices ex-
plored using EMF are presented. Also, model management operations are discussed

16

under EOL, EVL and ETL. Finally, the evaluation and critique of this approach is
discussed.

Chapter 7 concludes by summarizing the approach and the exploration of MDE
through EAE model diagram in this thesis. It provides direction for further work
to support simulation with the generated object-oriented structure model.

17

18

Chapter 2

Background: Model Driven
Engineering

This chapter introduces concepts of Model Driven Engineering (MDE). A detailed
context of MDE is needed in order to understand model validation and transfor-
mation. A model is an abstraction of a system; models are the necessary artefacts
needed to understand the detail of a system under study.

The use of MDE practices for modelling Read’s [8] EAE system is justified
by Greenfield [15]: “The software industry remains reliant on the craftsmanship of
skilled individuals engaged in labour intensive manual tasks. However, growing pres-
sure to reduce cost and time to market and to improve software quality may catalyse
a transition to more automated methods. We look at how the software industry may
be industrialized, and we describe technologies that might be used to support this
vision. We suggest that the current software development paradigm, based on object
orientation, may have reached the point of exhaustion, and we propose a model for
its successor” [15].

In MDE, a principled process to software engineering where models are used
throughout the engineering process is advocated. The concept and terminology of
MDE are discussed to buttress this point. In this chapter, we review the MDE
guidelines and the MDA standard to guide through effective modelling approach.
Model management is also discussed as a step to exploring MDE. Also MDE tools
available to support the development of our work are discussed. In conclusion, MDE
benefits and its challenges are presented so as to fully utilize MDE to our advantage
in this thesis.

2.1 MDE Concepts and Terminologies

MDE is used for the construction and manipulation of artefacts such as code and
documentation [16]. It involves the use of different artefacts like model, metamodels
and model management operations. MDE deploys model management operations
on models, metamodels and other artefacts so as to manipulate models effectively.

19

This section details the activities involved in MDE.

2.1.1 Models and Metamodels

MDE as a contemporary approach to software development allows model to be
used as a first-class artefacts during development processes. “Model provides the
representation of simplified system in a well-defined language” [17]. According to
[18], these models are “the descriptions of phenomena of interest” which can be
expressed in general-purpose or specific languages. Also, a “model allows concepts to
be shown, wherein, an abstraction of irrelevant details from reality is made possible”
[19]. Thus, a model is an abstract representation of a system in a domain and it is
created by software engineers so as to capture important details of such system.

There are many definitions used in expressing the meaning of model; it is
essentially the abstract representation of artefacts from the real-world [20]. The real
world view that a model represents may be called the model’s domain or the system
of interest. The exploration of this domain may use automatable model tools for
analysis, validation, transformation and other intended purposes.

In MDE, description of interests can be easily manipulated by powerful au-
tomated model management tools [21]. Model management processes allow model
manipulation to be automated if the models are defined in modeling languages i.e.
the models conform to metamodels [22].

Metamodels describe the structure, concepts and well-formedness rules perti-
nent to a group of models [21]. The metamodels are models themselves and they
conform to a metametamodel [21]. Figure 2.1 illustrastes model which is an in-
stance of a metamodel and these models is expressed using defined languages. The
instantiation or development of a metamodel enables model operations such as refac-
toring, transformation and comparisons to be managed and applied to models [23].
Metamodel creates a type-system for models which allow their properties to be sub-
stantiated and validated. Also, metamodel aids model interchange and, therefore,
interoperability between modelling artefacts and tools is made possible. This sec-
tion presents important areas of MDE, model management approaches, and how
they relate to our work.

Figure 2.1: An illustration of the relationship between model, metamodel and lan-
guage from [1].

20

2.1.2 Modelling Languages

Models can be grouped into structured or unstructured, depending on their confor-
mance to specified rules. Structured models comply to established and well defined
rules (e.g. notations) while unstructured models do not conform to any rules. In
MDE, with the aid of a modelling language, models are structured [24]. A modelling
language contains “syntactic and semantic constraints” deployed to define a group
of related model structures [25]. These groups of models adhere to the rigid sets of
rules and syntax established in their metamodels [26]. Also, these sets of rules are
encoded within a modelling language.

MDE advocates the development of abstract syntax, concrete syntax and se-
mantics in order to establish conformance - a relationship between model and meta-
model [27]. Conformance is viewed as a sets of constraints between models and
metamodels [28]. A satisfaction of these constraints determines that a model con-
forms to a metamodel.

A metamodel comprises three categories of constraints:

• The concrete syntax represents the modelling concepts of a model (e.g.
graphically). For example, a group of boxes connected by lines can represent
a model. Concrete syntax give notations for developing models that conform to
a metamodelling language thereby facilitating communication. Also, a strict
concrete syntax is optimal for machine comsumption (e.g XML Metadata In-
terchange (XMI) or Unified Modelling Language (UML) [25].)

• The abstract syntax describes modelling objects, defined in a metamod-
elling language, such as classes, packages, interfaces and datatypes. Repre-
senting these objects is independent of any concrete syntax. For example, an
abstract syntax tree to encodes an abstract syntax of a program when trying
to implement a compiler.

• The semantics is the meaning of the modelling concepts used in a particu-
lar domain. Semantic differs from one another as a modelling language has
different semantics for different domain. Also, semantics can be defined us-
ing formal language like Z [29] or in a semi-formal instance such as a natural
language [30].

In MDE, concrete and abstract syntaxes plus semantics together describe a
modelling language [31]. Many approaches to defining languages have been specified
but using these three constraints are common in MDE. A metamodel is used to define
abstract syntax; concrete syntax for model transformation; and behaviour models
to evolve semantics [25]. For example, Figure 2.2 shows a metamodel of a language
which defines models as a collection of types where types have attributes, which in
turn have a type.

Figure 2.3 shows a model in an instance diagram conforming to the metamodel
in 2.2 where Type String is represented after the Attribute Name of Type User,

21

Figure 2.2: Metamodel of abstract syntax for a simple language from [2].

whose type is String. Also, a typical concrete syntax from [2], is shown in Listing
2.1.

Figure 2.3: A model represented as an instance diagram from [2].

Listing 2.1: A textual concrete syntax [2]

1 Type Mail
2 {
3 From : User
4 To : User
5 }
6 Type St r ing ;
7 Type User
8 {
9 Name : S t r ing

10 }

A metamodel is used in either a domain- specific language (DSL) or general
purpose language (GPL) to archetype a model, depending on the level of abstractions
involved in the domain of interest [25]. The two languages are further defined below.

General Purpose Language - general purpose modelling languages include
UML, widely used by modellers to model the abstraction of a system, from different
levels and views. UML allows the development of variety of models that describe the

22

behaviour and structure of a system. Specifically, our domain of interest comprises
models in UML, with slight variations to explain aspects of biology. GPLs provide
general concepts (abstract syntax and semantics) and a generic concrete syntax.

Domain-Specific Language - In MDE, DSLs are tailored to a particular
domain. For our work, languages such as EOL1, EVL2, ETL3 are MDE DSLs used
to query, validate and transform models, respectively. While these languages’ scope
is limited to one domain, they provide a concise solution at same level of abstraction
as the problem domain, by being less suceptible to portability [32]. DSLs can cap-
ture concepts of a modelling domain(abstract syntax, semantics) and use notations
familiar in the domain for the concrete syntax.

2.1.3 MOF: A Metamodelling Language

One of the standard languages for specifying metamodels is called the Meta-Object
facility (MOF); it is defined by Object Management Group (OMG)4. UML is the
origin of MOF [3]. MOF allows the expression of abstract syntax for modelling
language by developers. MOF is supplemented by the Object Constraint Language
(OCL) which is a formal language used in defining constraints [33]. MOF was
developed because of the need to have a standard form of defining metamodels for
MDE.

MOF is a modelling language used in defining modelling languages hence it
is called a metamodelling language. Figure 2.4 is defined in MOF using a concrete
syntax similar to a UML class diagram. According to [34], “The objective of the
MOF standard is to enhance consistency in the way in which modelling languages
are specified. Without a standardised metamodelling language modelling tools can
have diverse modelling languages, which makes interoperability challenging. With a
common metamodelling language in place, tools can create modelling languages with
the metamodelling language and exchange such modelling languages with no com-
patibility issues. Thus, a standardised metamodelling language promotes modelling
tool interoperability [34].

2.1.4 MDE Guidelines

Effective approaches and tools are needed for MDE efficient model engineering prac-
tices. This section discusses the level of abstraction involved in MDE, the method
and tools used in this research.

1Epsilon Object Language : http://www.eclipse.org/epsilon/doc/eol/
2Epsilon Validation Language : http://www.eclipse.org/epsilon/doc/evl/
3Epsilon Transformation Language : http://www.eclipse.org/epsilon/doc/eol/
4Object Management group : http://www.omg.org/spec/

23

Figure 2.4: An excerpt of the UML metamodel defined in MOF, from [3].

The Model Driven Architecture

Model Driven Architecture (MDA) is an approach to developing technological com-
plex systems. It proffers a standard to models and modeling languages. This stan-
dard is reflected in representing and exchanging models (XMI), constraints specifi-
cation (OCL), and transformation specification on models [35]. Model architecture
allows models to be created at various level of abstractions mostly in standards for-
mats like XMI. MDA is used as an approach to specifying ways in which MDE is
instantiated in software engineering. MDA lays down guidelines and approaches for
a MDE so as to enable the development of system from raw data and business logic,
leaving behind the crucial implementation technologies.

Standards for the MDA

OMG defined set of standards for the MDA as a part of guidelines for MDE. These
standards are the basis for defining metamodels and imposing constraints on models
to make them conform to their metamodels. Each standard is allocated to one of
four tiers and each tier shows model abstraction in different level as seen in Figure
2.5.

The base of the pyramid, M0, depicts the domain of interest (real world). M1 is
the representation of the M0 - a model of the M0 concepts. M2 defines the modelling

24

Figure 2.5: The stages of standards used as part of MDA from [4].

language (metamodels) used to define M1. M2 contains UML metamodels used in
making M1 conforms to them. Lastly, M3 identifies a metamodelling language, used
in defining M2. For example, if a real world (M0) is a book, the model of the book is
M1, a language suitable to model books is M2 and a language suitable for defining
a language (that can model a book) is M3.

2.1.5 Model Management

In MDE, models are managed to construct software. Model management refers to
operators deployed in manipulating models [36]. Models and transformations are
regarded as the core operations of MDE [37]. This section details these operations
and their tools.

Model Transformation

Model transformation is a development operation where a modelling artefact is de-
rived from another by systematic application of rules that map concepts of one
model to the concept of another. The transformation of models is often specified
to enhance quality, recognise emergent patterns, and automate software evolutions,
among many other attributes [38]. Model transformations have three types which
are the model-to-model, model-to-text and text-to-model transformation. The re-
maining part of this section discusses two relevant parts of these transformation.
[5] presents Figure 2.6 which shows a model transformation pattern adapted from
model driven architecture [39].

25

Figure 2.6: Model transformation pattern in Model Driven Development from [5].

Model to Model (M2M)

M2M is an approach to model transformation where diagrammatic models are
derived from other diagrammatic model. M2M rules are written at metamodel level
and when automated helps reduce engineering cost of complex systems instead of
transformation between pairs of interdependent models [37]. Using M2M approach,
the input model (also called the source model) conforming to a metamodel, is trans-
formed by following a set of transformation rules, in a transformation language, to
an output model (called the target model) conforming to another metamodel. List-
ing 2.2 is an example of a M2M transformation in the ETL transformation language,
where a class is transformed to a database table. The details of the table’s primary
key is detailed, and if the class extends some other classes, a foreign key pointing
towards the primary key of the parent class is created.

Listing 2.2: A sample ETL language of a class to a table from Epsilon ETL [40].

1 r u l e Class2Table
2 trans form c : OO! Class
3 to t : DB! Table , pk : DB! Column
4 {
5 t . name = c . name ;
6 t . database = db ;
7
8 pk . name = t . primaryKeyName () ;
9 pk . type = ”INT” ;

10 t . columns . add (pk) ;
11 t . primaryKeys . add (pk) ;
12
13 i f (c . ‘ extends ‘ . i sDe f i n ed ())

26

14 {
15 var fk : new DB! ForeignKey ;
16 var chi ldFkCol : new DB! Column ;
17 var parentFkCol : DB! Column ;
18 var parentTable : DB! Table ;
19
20 parentTable : := c . ‘ extends ‘ ;
21 parentFkCol = parentTable . primaryKeys . f i r s t () ;
22
23 chi ldFkCol . name = parentFkCol . name ;
24 chi ldFkCol . type = ”INT” ;
25 chi ldFkCol . t ab l e = t ;
26
27 fk . database = db ;
28 fk . parent = parentFkCol ;
29 fk . c h i l d = chi ldFkCol ;
30 fk . name = c . name + ”Extends” + c . ‘ extends ‘ . name ;
31 }
32 }

• Declarative M2M transformation languages define a relationship between
source and target model using declarative constructs for mappings between
models. The limitation of the declarative approach is its inability to produce
fine grained rule scheduling for executable transformations [41]. Examples of
declarative M2M includes QVT-relations from OMG.

• Imperative M2M transformation languages define a series of steps needed
for transformation of models from the source to the target model, enabling
exclusive control of transformation rules. The limitation to this approach
is the difficulty in writing and maintaining the language [42]. Example of
Imperative M2M includes QVT-operational from OMG.

• Hybrid M2M transformation seeks to combine declarative and imperative
M2M by providing both implicit and explicit rule scheduling. Our work made
use of ETL, a hybrid M2M languages in order to handle complex transfor-
mation scenarios observed in our model. ETL is further discussed in Chapter
4.

Model to Text (M2T)

M2T is an approach to model transformation where diagrammatic models can
be serialized, or transformed into code or other textual artefacts. In M2T, generation
is not limited to code as any type of textual artefacts such as documentations,
manuals and requirements can be generated.

M2T transformation is used to produce unstructured textual artefact as in
contrast to M2M. According to [25] “M2T allow the use of mechanisms for specifying

27

sections of text that will be completed manually and must not be overwritten by
transformation engine” [25].

M2T languages allow the use of templates which have static and dynamic
sections. A verbatim response is deduced when transformation is done in static
sections. For dynamic sections, it contains executable logic. EGL is an example of
language used in M2T. According to [25], Listing 2.3 contains two static sections
(‘package’ and ‘;’) and a dynamic output section ([%=class.package.name%]), and
will generate a package declaration when executed. Similarly, line 3 will generate a
class declaration. Lines 4 to 6 iterate over every attribute of the class, outputting a
field declaration for each attribute.

Listing 2.3: M2T transformation in the Epsilon Generation Language from [25].

1 package [%= c l a s s . package . name%];
2
3 pub l i c c l a s s [%= c l a s s . name%] {
4 [% f o r (a t t r i b u t e in c l a s s . a t t r i b u t e s) { %]
5 p r i v a t e [%=a t t r i b u t e . type%] [%=a t t r i b u t e . name%];
6 [% } %]
7 }

Model Validation

A fit-for-purpose model that captures a system’s domain of interest needs to be ver-
ified and validated. Model validation provides integrity to a software system under
development using MDE. A model is “incomplete, contradictory and inconsistent
when it leaves out information” [42]. Also a model becomes redundant when it is
incomplete and shows differences in its concepts [43]. According to [43], incom-
pleteness and redundancy are example of inconsistency. By using model validation,
some limitations of models can be detected, analyzed and corrected using MDE
approaches.

To have a validated and consistent model, constraints can be specified on UML
and MOF models using validation and constraint languages such as the Object Con-
straint Language (OCL), an OMG standard. Pertaining to our work, a validation
language called Epsilon Validation Language (EVL) is used to define and evaluate
constraints within and between models as OCL is limited to expresing inter-model
constraints [24].

By using EVL, model dependecy can be supported among constraints imposed
on model thereby decomposing complicated constraints to simpler forms. An exam-
ple of constraint written in EVL from Epsilon EVL is shown in Listing 2.4. Here, the
validation checks if the class in the model starts with an upper case letter. When
validation is executed, the EVL model is invoked for every specified class of the
model.

Listing 2.4: A sample EVL language.

1 context OO! Class {

28

2 c r i t i q u e NameShouldStartWithUpperCase
3 {
4 guard : s e l f . s a t i s f i e s (”HasName”)
5
6 check : s e l f . name . sub s t r i ng (0 , 1) =
7 s e l f . name . sub s t r i ng (0 , 1) . toUpperCase ()
8
9 message : ”The name o f c l a s s ” + s e l f . name +

10 ” should s t a r t with an upper−case l e t t e r ”
11
12 f i x
13 {
14 t i t l e : ”Rename c l a s s ” + s e l f . name + ” to ” +
15 s e l f . name . f i rstToUpperCase ()
16
17 do
18 {
19 s e l f . name = s e l f . name . f i rstToUpperCase () ;}
20 }
21 }

Other model management operations

With a model transformation and validation, other examples of model management
operations include model merging which combines two or more models (e.g. Reuse-
ware) [44] and model comparison where traces of same or different artefacts are
constructed from two or more models (e.g. EMF compare) [45].

2.2 MDE Tools

MDE is supported by powerful tools that support model interoperability. This sec-
tion reviews the MDE tools that are used in our research. Section 2.2.1 gives an
overview of the Eclipse Modelling Framework (EMF) which uses MOF and supports
several MDE tools and languages thereby enabling their interoperability. Section
2.2.2 discusses the papyrus tool which allows UML model and other language mod-
els to be drawn. Section 2.2.3 discusses Epsilon which is an extensible platform
customizable for model management language.

In order to use behaviour models to support simulation development, our ap-
proach to modelling in MDE involves the use of diagramming tool to draw diagrams
that conform to the tool’s internal GPL metamodel. The purpose of this section is
to give an overview of relevant MDE tools. This section does not discuss other MDE
tools and environment such as ATL for M2M transformation and AMMA platform
used for large scale modelling as we are more comfortable with the tools we used.

29

2.2.1 Eclipse Modelling Framework (EMF)

EMF is a framework that helps with the development and instantiation of meta-
models. EMF provides support for MDE via a metamodelling language, Ecore, a
partial implementation of OMG’s MOF metamodelling language [6]. It is widely
believed that EMF is the most widely used MDE modelling framework. EMF Ecore
is used to define the metamodel used in our work. EMF provides both a tree-based
and graphical metamodel editors and it is a contemporary MDE framework that is
widely used.

EMF enables users to define their own metamodels in Ecore. Figure 2.7
presents a high level overview of Ecore. In Ecore, the name of every element of
a class starts with ‘E’, as every Ecore object is an EObject. The root element of an
Ecore metamodel is an EPackage. Other metamodel elements include EDataTypes,
EClasses, EAttributes, EReferences.

In our work, with the definition of a metamodel, EMF enables the generation
of a model editor that allows us to create models that conforms to our metamodel.
Likewise, a graphical modelling framework (GMF) can be created from metamodels
instantiated with EMF. A model driven approach where several models are specified,
merged and transformed to enable code generation is made possible from a graphical
editor. Also, several MDE tools are interoperable with EMF.

Figure 2.7: The Ecore Metamodeling Language taken from [6].

2.2.2 Papyrus

Papyrus provides an environment where any kind of EMF model can be edited. It
also supports UML and other related modelling language like SysML and Marte

30

[46]. A model (diagram) editor and support is provided for EMF thereby enabling
the drawing of UML diagram where their serialization is made interoperable. In
Papyrus, a UML metamodel and graphical models are used to define and modify
models. A behaviour or structure model can be easily created. We deploy Papyrus
to create our behaviour diagrams to structure diagrams. Thus enables us to au-
tomate different UML models representing different domain of our system, model
and metamodels. Figure 2.8 shows a papyrus modelling environment where different
UML diagram can be created from papyrus website [47].

Figure 2.8: A Papyrus model environment.

2.2.3 Epsilon

The Extensible Platform for Specification of Integrated Languages for mOdel maN-
agement (Epsilon) [42] is a powerful tool suite for MDE. It incorporates many model
management languages and it is used for performing management tasks such as
transformation, validation and merging [42]. Figure 2.9 shows the architecture of
Epsilon and it comprises of two main components which are the Epsilon language
family and the layer of Epsilon Model Connectivity (EMC).

According to [26], “Epsilon is modelling technology agnostic”. Whilst many
model management languages are bound to a particular subset of modelling tech-
nologies thereby inhibiting their utilization, Epsilon is able to manipulate models
expressed in various modelling languages [48]. Currently, Epsilon supports models
implemented with EMF, MOF, XML, or Community Z Tools (CZT) and they are
supported by technology-specific drivers [26].

Furthermore, Epsilon allows model reusability when constructing independent
model management languages. EOL which is the core language of Epsilon platform

31

provides functionality closely related to OCL but with more features provides func-
tionality such as model updates, access to various models, imperative (conditional
and loop) statements, standard output, user feedback and error reporting [25].

Epsilon supports lightweight means for defining new developmental languages
for MDE. As shown in Figure 2.9, EOL is used to build task-specific languages such
as Epsilon Generation language(EGL) for model-to-text transformation, Epsilon
Wizard Language (EWL) for model-to-model transformations, Epsilon Comparison
Language (ECL) for model comparison. Other languages includes Epsilon Merg-
ing Language (EML) for model merging, Epsilon Transformation Language (ETL)
for model-to-model transformations, Epsilon Validation Language (EVL) for model
validation, Epsilon Flock for model migration and Epsilon Pattern Language (EPL)
for pattern-based querying. Epsilon is suitable as a platform for the research of this
thesis as it support modelling technologies and task-specific model management
operations.

Figure 2.9: The architecture of Epsilon, taken from Eclipse Epsilon [7].

2.2.4 Summary

This section introduced MDE tools used in this thesis. The Eclipse Modelling Frame-
work (EMF)enables the implementation of MOF or Ecore for defining metamodels.
Using metamodels defined in Ecore, EMF aid persisting models to disk enable code
generation for distinct metamodel editors. Tools such as Epsilon and Graphical
Modelling Framework (GMF) is used to enhance EMF’s functionality as it is the
most used contemporary MDE framework. GMF aid metamodel specification of

32

graphical concrete syntax and therefore enable generation of graphical model edi-
tors. Epsilon as an extensible platform enables re-use so as to aid the expression of
new model management language.

2.3 MDE Benefits and Recent Challenges

In comparison to traditional software engineering approaches such as language-
oriented programming and domain-specific modelling, MDE has offered tremendous
benefits which comes with limitations. This section discusses MDE benefits and its
challenges.

2.3.1 Benefits

As discussed in this chapter, benefits of MDE are expressed to help describe the ad-
vantages of MDE practices, approaches and why MDE is crucial to complex system
modelling.

Interoperability

MOF as a standard metamodelling language enables modelling tools interoperabil-
ity through model interchange. EMF utilizes Ecore to provide a holistic reference
implementation of MOF thereby enabling the development of several contemporary
MDE tool. Model management operations performed between different modelling
tools is achieved through interoperability among modelling tools thereby modellers
are not tied to just one specific modelling tool. Also, single environment can be used
by models represented in wide range of modelling languages. Before the advent of
MOF, developers used several tools for each modelling language but with MDE,
interoperability of models is made possible.

2.3.2 Challenges

MDE has helped software engineers a lot whether through using domain specific
modelling to automate traditional software engineering practices or model manage-
ment operations. Also, tool interoperability allowed compability of various tools
used on different models.

Whilst MDE benefits have been highlighted above, some challenges it faces is
discussed here. The challenges to MDE has been identified and they are used as a
motivation towards exploring potential research areas to improve MDE. This section
highlights these challenges and they are reviewed below.

33

Learnability

It is difficult for a new user to utilize MDE properly. This is due to its increasing
developmental activities and conceptualized principle to software engineering. The
learnability of MDE comes from its perceived adoption in a mainstream spectrum.
According to [49], “GMF is difficult for new users to understand and mechanisms
for its simplification have been proposed recently” [49].

Scalability

Scalabilty is the need to make MDE more powerful. According to [50], “MDE is
increasingly getting utilized in modelling complex systems therefore its modelling
languages and model management tools are being stretched to accommodate more
model activities such as collaborative development, model persistence when dealing
with models with large megabytes” [50].

Furthermore, the relevance of MDE in software engineering depends on the
need to bring MDE languages and tools to scale. This scalability will help accom-
modate modelling of large and complex models.

Scalability in MDE is considered as the “Holy Grail of MDE as its a major
concern for modellers” [50]. The achievement of MDE scalability comes in the need
to enable the development of large models and domain specific languages. Also, the
enhance of model management tool to efficiently accomodate large models is a huge
step towards scalability. MDE needs to enable large modeller teams to develop and
refine large models.

2.4 Chapter Summary

This chapter provides a background review of Model-Driven Engineering (MDE)
- a crucial modelling approach in software engineering. Modelling artefacts such
as model, metamodels and model architecture are discussed. Also, several model
management operations such as model transformation (focus on model-to-model and
model-to-text transformation) and model validation are discussed.

The Eclipse Modelling Framework (EMF) and Epsilon platform which are
widely utilized in this thesis were discussed. Finally, benefits and challenges identi-
fied in MDE that are closely related to this thesis were highlighted. This thesis uses
Read [8] behaviour diagram to explore MDE and subsequent chapters discuss it fur-
ther while the next chapter, Chapter 3 presents the domain analysis and observation
from [8].

34

35

Chapter 3

EAE: Domain Analysis and
Observation

This chapter presents the domain model of an EAE immune system from Read’s
thesis [8] using the Unified Modeling Language (UML) and other diagrams provided
in the thesis.

3.1 Introduction

Experimental autoimmune encephalomyelitis (EAE) is a murine autoimmune disease
which has many parallels with multiple sclerosis [8]. According to [8], the motivation
for the simulation and modeling of this immune system stems from the need to
understand the emergent behaviour and patterns observed in the EAE system.

Read’s wet-lab experimentation detailed his observation on EAE system for
modelling and simulation. According to [8], “EAE as resulting from sub-cutaneous
immunisation with myelin basic protein (MBP), complete Freunds adjuvant (CFA),
and pertussis toxin (PTx), leads to damage of the central nervous system (CNS).
This leads to paralysis in the subject. Following the induction of EAE, the ma-
jority of experimental animals experience physiological recovery from paralysis; no
experimental intervention is administered in facilitating recovery. Lastly, mice hav-
ing undergone recovery from autoimmunity are resistant to subsequent attempts to
induce paralysis with similar immunisation”.

In this project, Read’s design models [8] are used. By deploying MDE tech-
niques, we explore the feasibility of automatically generating simulator code from
the designs. Model simulation helps capture and integrate different information
thereby providing a system-level synopsis of what the wet-lab data represents.

In Read’s work [8], simulation helps to guide wet-lab experimentation, as an
in-silico investigation can show crucial part of a system highlighting areas where
information on EAE system is insufficient. The targeted collection of information
on the system can help bridge the gap between competing theories identified in the
domain of the system.

36

Read [8] shows that the modelling and simulation of the EAE system presents
a fit-for-purpose representation of the target domain through the generation of in-
silico hypotheses which can be verified further in wet-lab experimentation. It is
important to note that the need for confidence in simulation results comes from the
demonstration of fitness-for-purpose models representing the immune system.

Crucially, explaining hypotheses, as well as tuning the simulator, requires many
revision to the code, making it hard to keep models and code in synch manually.
We would like to ultimately to “tweak” models not code, as biologists understand
the models and changes to models.

3.2 Domain Model Overview

Read’s domain model [8] is tailored using the framework of the CoSMoS process
where the first stage details the development of the domain model that capture the
detailed understanding of a system’s domain [51]. The detailed model captures the
exploration of the domain of interest before simulation and provides an avenue for
exploring MDE from UML behaviour models in our work.

The domain of a system encompasses the system’s scientific scope as seen
from the scientist or domain expert perspective. The domain expert and developers
use domain models to determine the purpose of simulation thereby guiding the
developers to a fit-for-purpose simulation.

For detailed analysis, [52] describes domain as “a development contract: a
developer depends on the scientist to provide appropriate information about the
domain, and guarantees a desirable simulation; meanwhile, the scientist also depends
on the developer to use the domain information suitably, and guarantees to work
with the developer to ensure that the right outcome is achieved” [52].

Domain model reveals the limitation of knowledge about the system, as well as
inconsistency and underspecification, which can be resolved by making assumptions
of the domain. According to [8], a domain model is validated by domain experts
who help to make sense off different specific domain understandings. In MDE terms,
a model is verified by its conformance to a metamodel and semantics checking.

3.3 EAE Model Diagram

Analytically, EAE domain model in [8], like many other biological illustration uses
bespoke, formal and informal illustrations to show the distinct interactions between
EAE system’s complexity. Modelling techniques used to describe EAE uses defined
syntax and semantics as well as varied notations which are captured in the diagrams
shown in Section 3.4.

37

3.3.1 Behavioural diagram

The UML behavioural diagram enables the specification and visualization of dy-
namic aspects of EAE system simulation. The diagram represents a series of actions.
Activity diagram and state machines are widely used to capture the different levels
of abstraction in [8]. Activity diagrams represent EAE sequences and conditions for
EAE lower-level behaviours.

On the other hand, state diagrams show potential evolutions of elements of
the EAE system; they define EAE object existence in different states. State dia-
grams also show how these objects transition between states. According to [12], “A
transition is a response to an event, and an event is, typically, an input received
by the object(or system). Transitions are protected by guards - a set of conditions,
concerning the wider system state (and perhaps the environmental context of the
system) that must be true if the state is to change” [12].

Benefits of using state diagrams for modelling EAE include the expression
of dynamic structures and simulation of objects collection. They allow the use of
concurrent state. This makes it possible to build sophisticated models used in EAE
cell interactions [8]. The EAE model [8] uses both activity diagrams and state
diagrams to model EAE’s behaviour.

As discussed earlier, EAE models [8] are mostly represented using UML dia-
grams and they are discussed extensively in Section 3.4.

3.4 EAE Domain Model

Read’s thesis [8] presents the EAE domain model using different UML models. The
domain model is detailed using a top-down methodology and each layer presents
the domain of interest according to the level of abstraction observed in them. The
layers are described in the following subsections.

3.4.1 The System-level Overview

This section introduces the most abstract view of Read’s EAE model [8]. The top
layer of Read’s design [8] is shown in Figure 3.1. The expected behaviours diagram
format was devised by [8] and is used in all subsequent work by YCIL [13, 14].
The model reproduced in Figure 3.1 captures relevant observable phenomena, the
potential foci of the simulation and, for each potential phenomena, the informal
notation captures known biological components (cells, neurons) and the domain
expert view of how these interact.

38

Figure 3.1: Read’s expected behaviours diagram depicting the phenomena observed
in a real domain, and the behaviours manifesting from cellular interactions believed
to be responsible for them [8].

3.4.2 The System’s and Modelling Perspectives

From the expected behaviour diagram and the domain exploration that it captures,
[8] uses an informal box and arrow diagram to show 6 bodily compartments, Figure
3.2. Read’s simulation [8] ultimately simulates each of these compartments, linked
as shown in Figure 3.2.

Having summarized the domain in the expected behaviours and compartment
diagrams, the UML base modelling expresses the activity of the cells and their
interactions that make up the system’s behaviours in each relevant stage of the
disease and recovery. Different UML notations such as activity diagram are used
in expressing these models. Also, some minor variant notations are introduced by
Read [8].

EAE perspectives expressed in [8] detail how EAE causes paralysis and how
mice recover, which is considered to be inherently complex. These perspectives
describe collective consequences of cellular interactions, and they are grouped into
four stages:

1. The initial establishment of autoimmunity in the CNS following immunisation.

2. The self-perpetuation of autoimmunity.

39

Figure 3.2: The spatial components of the domain model, and the manner in which
the cells of the domain model may migrate between them from [8].

3. The establishment of regulation that results in the apoptosis of CD4Th1 cells.

4. A deviation of autoimmune response that results from regulatory activity and
ultimately leads to the termination of both autoimmune and regulatory im-
mune responses.

Furthermore, two diagrams are used to show how immunity is established and
the apoptosis state. The first section (Figure 3.3.) focuses on the DC or CD4 cell
activities and the compartment-level migration, whilst Figure 3.6. focuses on the
biochemistry of the CD4 cells, stimulated by the apoptosis of an infected CD4 cell,
phagocytosed by DC.

Initial establishment of autoimmunity

The initial establishment of EAE autoimmunity shows the events that lead from
immunization to the apoptosis of neurons in the CNS. The various activities of the
composing cells, how they effect changes and move around in the EAE system are
shown in Figure 3.3. UML variation is introduced in the SLO compartment of Figure
3.3.

Figure 3.4 is a notation borrowed from biological modelling of feedback loops
which represents an inhibitory response which leads to producing naive daughter cell
through an action called spawning. According to [8], “the majority of these naive
daughter cells will immediately bind the MHC-II:MBP complexes expressed by the
priming DC, and follow a similar sequence of events as the parent cell. Those that
do not begin priming on the same DC as their parents assume migratory behaviour”
[8].

40

Figure 3.3: UML activity diagram depicting the cellular interactions and events that
lead to neuronal apoptosis in the CNS following immunisation for EAE from [8].

Figure 3.4: The introduced notation variation in Figure 3.3 from [8].

Self-perpetuation of autoimmunity

According to [8], after the initial establishment of automimmunity, some series of
events enables its self-perpetuation. These series of events and the interactions

41

between cells are important to help understand EAE emergent patterns. The be-
haviour is represented using an activity diagram in Figure 3.5. As the nature of
autoimmunity is self-perpetuating, the diagram has no termination.

Figure 3.5: UML activity diagram depicting the cellular interactions and events that
lead to the self-perpetuation of autoimmunity following neuronal apoptosis resulting
from immunisation for EAE from [8].

Establishment of regulation

The establishment of regulation creates a physiological lifecycle of cells leading them
to enter apoptosis. This regulation enables the recognition of actions between the
cellular interactions of the system. Most importantly, the regulatory immune re-

42

sponse perpetuates thereby it has no terminating state, and it is shown in Figure
3.6. Furthermore, the first section i.e. Figure 3.3 focuses on the DC and CD4 cell
activities and the compartment-level migration, whilst Figure 3.6 focuses on the
biochemistry of the CD4 cells, stimulated by the apoptosis of an infected CD4 cell,
phagocytosed by DC.

Figure 3.6: UML activity diagram depicting the cellular interactions and events that
lead to the self-perpetuation of autoimmunity following neuronal apoptosis resulting
from immunisation for EAE from [8].

43

Deviation of the autoimmune response

For an EAE infection and its recovery, Read [8] considers a specific deviation of the
autoimmune response. According to [8], “the actions depicted here are cyclic, the
deviation does not occur as a single atomic action within the system, but emerges
as a gradual shift in behaviours spanning multiple populations of cells. However,
the autoimmune response does eventually terminate, and hence an end state is
expressed” [8]. This is modelled in Figure 3.7. The diagram is a non-standard UML
model as notations are introduced to accommodate the biological entities.

Figure 3.8 is a notation borrowed from biological modelling of cyclic types
showing CNS cytokine milieu. According to [8], “the CNS cytokine milieu is com-
posed primarily of type 1 cytokine. In sufficient concentration, type 1 cytokine leads
to neuronal apoptosis” [8].

3.4.3 The System Single-Entity Dynamics

The activity diagrams in Section 3.4.2 are used to model the structure of the be-
haviour of EAE. An alternative view is provided using UML state diagrams, which
shows the permitted sequence of behaviours for each type of cell (in UML, for objects
of each class).

Read’s state diagrams [8] include invariant conditions that control the state
transitions observed in the EAE system.

T-cell Dynamics

Read [8] presents relevant dynamics of T-cells shown as part of the domain model.
The state machine diagrams (Figures 3.9 and 3.10) show the different behaviour of
T-cells. A concurrent state diagram shows how T-cells migrate around the body
compartments (Figure 3.9). For the T-cell model, Read[8] affirms that several T-
cell types represented in the domain have similar characteristics as they commence
their life cycle in a naive state, circulatory system and gears toward migratory
behaviour. Subsequentrly Read’s model and simulation [8] only considers generic
T-cell behaviour.

DC and CNS macrophage Dynamics

According to [8], the relevant involvement of a dendritic cell (DC) begins in an
immature state and further matures later. DCs are also responsible for priming
T-cell. As for the T-cell, Read [8] uses a concurrent state model to illustrate the
relationship of DC behaviour and the body compartments (Figure 3.11). The DC
cells have a range of relevant concurrent behaviour options which are not specific to
compartments.

The CNS macrophage is found on the central nervous system (CNS) and ex-
hibits a subset of the behaviour of the DC. These cells exist in immature and mature

44

Figure 3.7: Activity diagram depicting the cellular interactions and events that lead
to the deviation of the immune response from [8]. Additional notations include
parallel slashes representing the collision of the primed T-cell population (Treg and
CD4Th1) cells which outnumbers their CD4Th2 counterparts, and as such the CNS
cytokine milieu is decomposed into primarily type 1 cytokine. In sufficient con-
centration, type 1 cytokine leads to neuronal apoptosis. Also, with DCs in the
CNS phagocytoses of apoptotic neurons, the double circles represent DC matura-
tion which lead to its adoption of either a type 1 or type 2 polarisation, depending
on the balance of type 1 and type 2 cytokines in their local vicinity.

state. They are represented with the state machine diagram shown in Figure 3.12.

45

Figure 3.8: The introduce notation variation in Figure 3.7 from [8] depicting CNS
cytokine milieu.

Figure 3.9: State machine diagram depicting the dynamics of CD4Th cells from [8].

Neuron and MBP Dynamics

EAE neurons express Myelin based protein (MBP) and they reside exclusively in
the CNS compartment. Their dynamic behaviour is shown in Figure 3.13.

46

Figure 3.10: State machine diagram depicting the dynamics of CD4Treg cells from
[8].

MBP in EAE is manufactured and expressed by neurons and injected into
EAE system by an experimenter [8]. The MBP dynamics is detailed in the state
machine shown in Figure 3.14. The state diagrams presented in this section all use
un-varied UML notations.

47

Figure 3.11: State machine diagram depicting the dynamics of dendritic cells from
[8].

3.5 Analysis

The EAE expected behaviour diagram (Figure 3.1) presents an abstract modeling
level in its domain model. It shows the relevant observations of the real domain,
how they relate at different abstract level and how the interactions lead to system-
wide behaviours believed to be a solid representation of the real-world system [8].
Read’s model [8] has been validated by domain experts.

48

Figure 3.12: State machine diagram depicting the dynamics of CNS macrophages
from [8].

Figure 3.13: State machine diagram depicting the dynamics of neurons from [8].

UML notations are used to capture relevant behaviours of EAE and sometimes,
slight notation variations are needed to capture details of the system. Read [8]
states that UML does not represent the high level of concurrency-orthogonality of

49

Figure 3.14: State machine diagram depicting the dynamics of myelin basic protein
(MBP). from [8].

the disease. However, the diagrams help to disintegrate the high-level complexity
into smaller and manageable components which can be modelled individually.

The UML activity diagram is widely used to model EAE perspectives as it
has the ability to represent different abstract events and link them together as
an activity. Notwithstanding, activity diagram does not represent concurrencies
and stochasticity of the real domain. According to [8], “In vivo, there exist many
populations of cells undergoing different activities depicted on the diagrams at many
points in time; there is no sequential transfer of control as suggested on the activity
diagram, a single cell may interact with many others at the same time, and may
continue to do so after it has instigated an event in another cell ” [8].

UML state diagrams have been used effectively to show dynamics of single-
entities. According to [8], “Once more, it is high and partially-orthogonal dimension-
ality that raises issues. However, these have been satisfactorily overcome through
use of guards. It is noted that many transitions depend on probabilistic or temporal
conditions, and notations were devised to represent these aspects” [8].

50

51

Chapter 4

Analysis and Hypothesis

Through the review of background work in Chapter 2 and the domain analysis of
EAE diagram in Chapter 3, modelling approaches were proposed. This chapter
analyzes and motivates the proposed modelling approach and establishes a basis for
this thesis objectives. The aim of the proposed modelling approach is outlined.

4.1 Research Background

This section summarizes motivation for our research in line with the discussions in
Chapter 2 and 3.

In Chapter 3, we presented Read’s domain model of EAE system [8]. This
domain model provided us the system and modeling perspective of EAE, culminating
into different behaviour diagram representing different level of abstraction observed
in the system. Read [8] develops models and uses them as guides to implementation
but does not follow precise rules or traceable transformations. This means that the
validity of the implementation has not been definitively demonstrated. In general,
the fitness-for-purpose of YCIL simulators relies on individual software engineers’
skill, rather than repeatable validation. The target languages for implementation
are usually object oriented, and code could thus be at least partially generated from
models.

This chapter motivates two approaches to transforming the behaviour diagrams
to a class structure diagram, using MDE tools discussed in Chapter 2 to generate
OO code. Our approaches to modelling make use of the artefacts provided in Read’s
thesis [8] as input model in the MDE processes deployed to our transformation.

4.2 Research Hypothesis

Read [8] does not use a class diagram as the OO model of class objects as passing
messages is not appropriate for an abstract model of cell interaction. Also, behaviour
models imply objects; a class diagram would, if available, give a structure for code.

52

However, the behaviour models can not provide structure for object-oriented code
generation hence the need to transform them to a class structure after they have
been used to model the EAE domain of interest.

Our modelling approach to transforming EAE domain models to a class struc-
ture diagram comes from the need to generate OO code that reflects the domain
of interest. Our approaches are automated and contain an output model (class di-
agrams) transformed from input models (activity and state diagram). We propose
two approaches: a naive approach which does not preserve domain concepts, and
a second approach that creates domain-relevant code structures, and makes use of
more of the domain models.

As explained in Chapter 3, YCIL researchers [8, 13, 14] handcraft code for
simulations based on UML diagrams validated by domain experts. According to
[53], programmers often spend much time debugging code and the code often con-
tains errors. Confidence in the implemented simulators could be impaired by an
automated process of transforming domain models to generate object-oriented code
such that the code demonstrably retains the validity of the models.

In this context, the hypothesis of this thesis is stated below:

Model management operations (validation, comparison and transformation)
can be deployed to complex behaviour diagram thereby producing class structure arte-
facts that are reusable for simulators as in contrast to handcrafted code for simulator
which often contain errors.

The objectives of this research is the aim of the transformation approaches
that we develop and they should be capable of the following.

1. Reliably and systematically generate code from behaviour models.

2. Reliably and systematically generate revised code when models (diagrams) are
modified.

3. Support reuse and modification of the existing models and simulations.

4.3 Research Scope

The scope of our research uses YCIL behaviour diagrams, and MDE tools especially
EMF. The UML behaviour diagrams from Read’s thesis [8] are used and they have
slight notation variations to accomodate EAE biological components. EMF frame-
work is also used to help generate object-oriented code via our developed modelling
approaches. The reason for limiting our scope to MDE and using EMF is explained
by [6] as “EMF provides tools and runtime support to produce a set of Java classes
for the model, along with a set of adapter classes that enable viewing and command-
based editing of the model, and a basic editor” [6].

53

4.4 Research Methodology

An iterative and incremental development process is followed in evaluating the hy-
pothesis. The behaviour diagram is analzyed, designed, implemented, and the out-
put model is tested and evaluated iteratively and incrementally for each bodily
compartments of EAE expected behaviour shown earlier in Figure 3.2 of Chapter 3.
Figure 4.1 shows a form of iterative and incremental development process based on
agile development methodology from [9].

Figure 4.1: An illustration of an agile model-driven development showing iteration
and incremental process from [9].

4.4.1 Analysis, Design and Implementation

The use of Read’s behaviour model [8] allow us to explore model driven engineering
thereby devising two approaches to transformation. These approaches are motivated
by the need to automate more of our modelling processes and find an alternative to
handcrafting codes. This in itself is one of the challenges identified in supporting
simulators and it has motivate our hypothesis and objectives highlighted in Section
4.2.

The designing of our models enables the use of model as the first-class cit-
izen. This process enables the development of model management operations on
this model. The target output model during model implementation phase is object-
oriented in nature thereby class structure diagrams are effectively designed follow-
ing our approaches. Our approaches were implemented as a model transformation
framework thereby simplifying the development of automatable model transforma-
tions that can be easily reused.

54

4.4.2 Research Model Approach

Our two approaches were deployed on Read’s domain models and they help estab-
lish a model-to-model and model-to-text transformation where the input models
(activity and state diagrams) are transformed to a class structure diagram and the
structure diagram is used to generate Java object-oriented code. The development
and adoption our approaches is rooted in their ability to enable us achieve the desired
target (class structure diagram) and code for simulation.

4.5 Summary

This chapters discuss the motivation of our literature review. This thesis objectives
and hypothesis were expressed and the intended methodology followed in order to
explore MDE is reviewed. The two approaches developed for our model transforma-
tion is discussed in Chapter 5 and 6 .

55

56

Chapter 5

Naive Approach

This chapter discusses the naive approach developed to aid the model transformation
in this research. The naive approach was inspired by work from [54]. The process
and how the approach is automated is discussed in the sections below.

5.1 Introduction

The naive approach to model transformation presents a process of transforming
an activity diagram to a class structure diagram. This approach is motivated by
work from [54] which provides a systematic, but simple and intuitive translation to
object-oriented code and it can be implemented with or without automation tool.

According to [54], “when translating activity diagrams to class diagrams each
activity diagram will map to one class in the class diagram. Activity diagram in
subactivity states are translated to aggregated classes. This is in accordance with
the subactivity specified semantics which states that single activity graph may be
invoked by many subactivity states”.

Inspired by the concepts from [54], we proposed the naive approach which for-
malizes mappings between behaviour diagram (activity diagram) and a class struc-
ture. The mappings is done with the aid of metamodels and it helps remove any
ambiguity on our naive approach. The motivation behind this approach is enumer-
ated below.

1. If we assume an OO target (YCIL mostly uses Java Mason), then we need a
class model to give the structure of the code.

2. We can extract objects and operations from activity diagram, and thus trans-
form activity diagram to a draft class diagrams.

3. We can validate (and extend) the class model with more information by trans-
forming the activity diagram to a sequence diagram and the draft class diagram
to another sequence diagram. The two sequence diagram can be compared to-

57

gether for matching components and any resulting additional sequences can
be used to update the class diagram.

5.2 Outline

Given the activity diagrams used by Read [8] to capture the behaviour of EAE, we
can:

• Transform activity diagrams (AD) to class diagram (CD) - so as to get a
object-oriented structure for code generation.

• Derive sequence diagram (SD) from AD - behaviour aligned with objects
thereby giving a pointer to potential classes.

• Transform CD to SD - sequence diagram represents message sent between
instances of classes (objects) therefore, when messages is sent between two
objects, it implies that there is a relationship between the two class which
must be shown on the class diagram.

• Compare SDs and update CD - so as to validate the correctness of the trans-
formation and add other missing components noticed during comparison to
the classes.

• Generate OO code from CD - so as to derive the code needed for simulation
support.

This outline is better represented diagrammatically as shown in Figure 5.1.

Figure 5.1: An illustration of the transformation steps from AD to CD, AD to a SD
and CD to another SD. Comparing the two resulting SDs validate the CD, prior to
generation of OO Java code.

58

5.3 Input Model - Activity Diagram

The discussion of this section raises issues of activity diagram (AD) and what EAE
system did with it in relation to our approach. The UML AD defines behaviour as
a flow of control using activity, sequences, conditions and state of an event [55]. A
behaviour shows sequences of components that use a data flow model and controls
[56].

AD is also defined as a specialized variant of state diagrams, a specialized
diagram based on petri-net semantics so that it can be used in any given scenarios
or domains with a wider scope [57]. Activity diagram consists of a parameterized
behaviour denoted as flows of action. The flows of actions are shown as transition
lines or control flow as they help connect one activity to the other. As a behaviour
diagram, the AD captures the flow of events showing the behaviour of the EAE
system. The activity diagrams used in this process are from Read domain model [8]
and shown in Figure 3.3 and Figure 3.5 of Chapter 3.

5.3.1 Input Model Transformation Strategies

The transformation of our input model (activity diagram) entails its translation to
other representative type (mostly, another model often called the output or target
model). Prior to this transformation, the model is transformed to other artefacts
that are closely related to the output model (class structure diagram). The closely
related diagram adopted here is the sequence diagram (SD).

Sequence diagram is an interaction diagram that shows how an operation is
implemented. It helps capture interactions between objects thereby showing their
relationship. Also, it help model either a generic or specific instances of interac-
tions between objects [58]. Sequence diagram depicts the order of interaction in
vertical axis thereby showing when and what messages are sent while its horizontal
axis shows the object instances to which the messages are sent. However, they do
not represent objects structural interactions but are steps away by showing objects
interactions [59].

Some of the messages being transferred between activity diagram are described
below.

• Synchronous - a message that shows a “wait” semantics between objects; the
sender waits for the message to be dealt with before job continues. It is a form
of a method call [58].

• Asynchronous - a message that doesn’t need explicit return message before
job continues. It shows a “no-wait” semantics; the sender does not wait for
the message to be handled before it continues thereby allowing objects to be
implemented concurrently [58].

• Reply - a message that is a return from another message [58].

59

• Create - a message that occurs during the development of a new object. Ac-
cording to [58], an example is a message in Java that calls a constructor for a
class.

Sequence diagrams use notations which includes frames, objects, lifelines, ac-
tivations, messages, states and so on. Figure 5.2 shows different UML sequence
diagram notations.

Figure 5.2: UML sequence diagram showing notations from [10].

Transformation from AD to SD

The main motivation for our transformation is to produce a more structural repre-
sentation of behaviour (AD) that is aligned to objects. There exists a limitation on
the AD as the generation of code from a behaviour diagram is very difficult. The
objects identified with transformation to SD helps identify classes for the translation
of AD to CD. Due to this variation and for the purpose of our transformation, we
are able to resolve the activity diagram to a sequence diagram. We chose to trans-
form AD to SD as other people have translated SDs to CDs. We also imagine an
activity between two sequence as their interactions, hence an opportunity for trans-
formation. Figure 5.3 shows AD components from Figure 3.3 and Figure 3.5 being
transformed into a sequence diagram. Appendix A.1 shows the transformation rule
used in transforming our AD to SD.

We take the following steps:

1. An action in an AD is represented as a lifeline in the sequence diagram (SD).
The lifeline is an element representing each actor in an interaction while the
action is an element representing each stage of an activity.

2. The transition lines or control flow between different activities are translated
to asynchronous messages between lifelines of the SD.

60

3. The merge nodes are translated as synchronous message interaction because
they bring in together alternative flows. The action here does not start until
all the control flows are connected by the merge.

4. For a synchronous message interaction in the SD, the control flow or object flow
between the activities and object must point to an if else logic of expression
or decision nodes in the AD.

5. The ADs decision nodes and forks are translated as asynchronous message
interaction as they show concurrent executions of two threads.

6. The joins are translated as a synchronous message interaction because the
actions after the Join will not continue unless all the actions leading to the
join is executed.

The AD joins and forks relate to input and output operations, respectively.
The control flows link together to form a join hence the reason for translating AD
joins manually to an output operation which is synchronous in nature. The fork
releases a control flow hence an output operation which is translated asynchronously
as the fork is not ordered to wait for the activity before continuing. Here, the
synchronous message occurs as the sender waits until the receiver is done processing
the message before continuing the jobs [60]. For asynchronous message, messages
are sent without waiting for a response from the receiver before the job continues
[60].

Transformation from AD to CD

To justify the transformation of AD to CD, all elements of the AD are transformed
to CD elements through objects which is an instance of a class. The first step starts
with mapping each activity to a class in CD. By following concepts adopted from
[54], we exploit the following scenarios:

1. Activity in AD is mapped to a class object.

2. Action state is mapped to an action state object as all action state objects are
regarded as action state vector - a class property.

3. Subactivity states are mapped as a subclass with a generalization relationship
to its active class.

4. Transition line or control flow of activities are transformed to a relationship
between classes.

5. Decision and merges are transformed to operations of the class.

6. Forks and joins are transformed to as an association relationship of the class.

61

The transition line is mapped as a relationship between the classes as it is
triggered by the activity’s action in relation to one activity from the other. Decision
and merges have input and output which makes their mapping to a class method.
The mapping considers simple transition and decision structure to support multiple
possible flows [54].

Fork has two or more outputs in form of arcs or flows which depicts the “con-
current executions of threads” whereas the Join depicts the “synchronization of
concurrent activities” [54]. For mapping to a class method, all input and output
must be considered together. This gives basis for a relationship mapping between the
classes. Following the steps stated above, we transformed AD from Figure 3.3 and
Figure 3.5 to a CD, shown in Figure 5.4. Appendix A.2 shows the transformation
rule used.

5.4 Output Model - Class Diagram

The output model of our naive approach is a class diagram and it provides the
structure needed to generate OO code. A class diagram shows relationship between
two or more classes and a SD shows how messages are sent between instances of
these classes. Messages sent between objects implies a relationship between two
classes hence the motivation for translating CD to SD. Here, our output model is
shown in Figure 5.4.

5.4.1 Transform CD to SD

For the purpose of validating the translation of AD to CD, a sequence diagram that
represents the model of our class diagram is transformed. The classes in our class
diagram is converted into lifelines. The edges are translated to synchronous message
and asynchronous messages depending on their classifier and associations. Following
on from the point above - a lifeline refers to an object. A SD can have more than
one object for each class.

Also, the messages become the operations and property of the class diagram as
they are conceptually a form of operation calls. Figure 5.5 shows the transformation
of CD to SD achieved through this strategy as we develop our SD by using the
components of our CD. The structure of the model is not altered with the update
from compared sequence diagrams. The following steps are proposed:

1. The classes (superclass and subclass) in the CD are represented as Lifelines in
the SD. The class may contain many objects and the lifelines is an object.

2. Properties are transformed to a synchronous message

3. Operation calls of the CD are translated as asynchronous messages.

4. Relationships are transformed to a create message of the SD.

62

Most importantly, the two sequence diagrams derived from the activity and
the class diagrams, show the interactions and sequence of events culminating into a
detailed model of EAE operations and their associations as evident in the domain
model [61]. We automate the listed transformation rules using the eclipse tools.
Appendix A.3 shows the transformation rule used in transforming our CD to SD.
The design developed here is justified as a means to comparison of two sequence
diagram so as to vindicate our transformation of the CD from the AD.

5.5 Process Automation

This section describes how the naive approach steps can be automated. The purpose
of automating the transformation rules for our models is to provide test cases and
effective modelling of the manually designed UML diagram representing different
abstraction level of EAE system. We use two open source tools, as follows.

5.5.1 Papyrus Tool

Papyrus as discussed in section 2.2.2, is an open source model-based engineering tool
built on Eclipse. Papyrus provides an integrated environment where UML diagram
can be created and edited. It can be easily customized to provide support for dia-
gram notations and for manipulating models. We use papyrus to draw the AD and
SD. Also, the manual translation of SD to CD is supported by the tool by providing
sequence diagram components. Essentially, Papyrus assists in automating the dif-
ferent UML diagrams representing the different level of abstraction expressed as a
behaviour model in [8]. Papyrus components contains primitive types for both Java
and Ecore which can be used to generate Java code or Ecore metamodel respectively.
Additionally, it enables automation of transformation steps of the naive approach
by providing UML drawing components. It also provides the diagram XMI which
can be exported. Figure 5.6 shows part of EAE class being created with papyrus
tool.

5.5.2 EMF Compare

Eclipse Modelling Framework (EMF) Compare 1 support merge and model compar-
ison. It provides customizable, reusable and generic tool support for comparing and
merging model. We use EMF Compare for merging and comparison of the models
created using the Papyrus. With EMF Compare, a merging of model components
gives confidence in the model and the code to be generated when rules used are
stated and verified explicitly. The comparison of our derived SDs is done using
EMF compare. This comparison authenticates the translated CD and the code gen-
erated from it. Also, it provides a visualization of the compared entity either as a

1https://www.eclipse.org/emf/compare/

63

text compare or a model compare. We did not use other alternative comparison tool
such as JEdit JDiff2 and Guiffy SureMerge3 as we don’t have detailed knowledge on
their utilization. Figure 5.7 shows an EMF compare in a model compare format.

Comparison

We sought to compare the derived SDs so as to validate the translated CD which
in turn affords us the confidence on the generated code. For comparison, we use
the two derived SDs. The first SD is derived from an AD while the second SD is
from the translated CD. Most importantly, the two sequence diagrams represent
the same model in our domain of interest. This relationship gives us confidence
in the correctness of the translation between our AD to the CD. We compare the
two sequence diagrams using the eclipse tool, EMF Compare4. EMF Compare is
a tool designed to support comparisons of large fragmented models [62]. If the
matching of the merged models shows similarity between the components of the
model, there exist a relationship between the activity diagram and class diagram.
The differences are also shown and any inaccuracy of the models is highlighted.
The comparison done between the two sequence diagram shows relatively many
matching components hence the confidence on the approach and the differences is
used to update the translated class diagram so as to have a fit-for-purpose output
model.

Figure 5.8 shows comparison of another YCIL work from [14]. The naive ap-
proach is deployed to [14] domain, where “extracellular stimuli binds to the cell
membrane receptor and sequentially moves through each of the steps before tran-
scription of inflammatory genes and resultant translation into inflammatory response
proteins, culminating in inhibition of NF-B again by IB” [14].

The effectiveness of this approach to our case study [8] is reflected in the
updated CD. This approach deciphers a practical and intuitive way to translate
Read’s domain model [8] to class diagrams with generated OO code. The domain
model [8] is transformed to both interaction and structural diagram without com-
promising or adding additional information outside its scope. This approach enables
easy re-usability of models for their instance comparisons. More importantly, these
technique helps reduce the loss of crucial information from the domain model as in-
formation that must have been left out during AD transformation to SD is updated
through informations captured from AD transformation to CD and the subsequent
SD.

5.6 Code Generation

With the automation of the transformation process using papyrus tool, we move
to comparing the two sequence diagrams using EMF Compare so as to validate

2http://plugins.jedit.org/plugins/?JDiffPlugin
3http://www.guiffy.com/
4https://www.eclipse.org/emf/compare/

64

and update the class structure diagram. Here, we proceed to generating Java code
from the validated class diagram. Here, our papyrus tool enables us to add Java
primitive types to our class, attributes, property and operations. This process of
adding primitive types allow us to generate the OO code. The code generated reflects
the class structure diagram when the Java primitive types are added. Listing 5.1
shows code generated for the SLO class in Figure 5.4.

Listing 5.1: A sample Java code generated from the class model in Figure 5.4.

1 pub l i c c l a s s SLO {
2
3 /∗∗
4 ∗
5 ∗/
6 pub l i c CD4thCellBindsMHC cd4thce l lb indsmhc ;
7 /∗∗
8 ∗
9 ∗/

10 pub l i c DCSecretesCytokines d c s e c r e t e s c y t o k i n e s ;
11 /∗∗
12 ∗ Getter o f cd4thce l lb indsmhc
13 ∗/
14 pub l i c CD4thCellBindsMHC getCd4thce l lb indsmhc () {
15 re turn cd4thce l lb indsmhc ;
16 }
17 /∗∗
18 ∗ S e t t e r o f cd4thce l lb indsmhc
19 ∗/
20 pub l i c void setCd4thce l lb indsmhc (CD4thCellBindsMHC

cd4thce l lb indsmhc) {
21 t h i s . cd4thce l lb indsmhc = cd4thce l lb indsmhc ;
22 }
23 /∗∗
24 ∗ Getter o f d c s e c r e t e s c y t o k i n e s
25 ∗/
26 pub l i c DCSecretesCytokines g e t D c s e c r e t e s c y t o k i n e s () {
27 re turn d c s e c r e t e s c y t o k i n e s ;
28 }
29 /∗∗
30 ∗ S e t t e r o f d c s e c r e t e s c y t o k i n e s
31 ∗/
32 pub l i c void s e t D c s e c r e t e s c y t o k i n e s (DCSecretesCytokines

d c s e c r e t e s c y t o k i n e s) {
33 t h i s . d c s e c r e t e s c y t o k i n e s = d c s e c r e t e s c y t o k i n e s ;
34 }
35 /∗∗
36 ∗
37 ∗ @return

65

38 ∗/
39 pub l i c S t r ing JoinOperat ion () {
40 // TODO Auto−generated method
41 re turn n u l l ;
42 }
43 /∗∗
44 ∗
45 ∗ @param CD4ThBindsMHC
46 ∗ @param DCSecretesCytokines
47 ∗/
48 protec ted void ForkOperation (S t r ing CD4ThBindsMHC, St r ing

DCSecretesCytokines) {
49 // TODO Auto−generated method
50 }
51
52 }

5.7 Evaluation and Critique

This section evaluates the naive approach, with respect to the research hypothesis:
transformation of behaviour diagram to a structure diagram using MDE from a naive
approach and an extended practical approach.

The evaluation of the naive approach transformations uses Read’s UML ac-
tivity diagrams [8] as the input model. As described in Section 1.3, this is our first
approach deployed towards transformation therefore it is naive and presents the
extraction of class diagram from an activity diagram solely.

5.7.1 Evaluating Correctness and Target-Realization

The reliability of our naive approach is viewed based on its correctness and target-
realization culminating into a fitness-for-purpose model transformation. An incor-
ruptible method of validating the naive approach is making sure every component
presented in the activity diagram is reflected in the transformed class diagram - a
model to model transformation.

Furthermore, the transformed class diagrams is validated through code gener-
ation by adding Java primitive types with the aid of papyrus tool. We evaluate the
validity of our naive approach in the sections below.

Target-Realization

The naive-approach follows modelling based on the presented activity diagram. Tar-
get realization is the goal of achieving sets of outputs that reflects the actual EAE’s
domain of interest. The target-realization for the naive-approach seeks to produce

66

an output of sequence diagrams that can be compared together to ensure verification
of the translated class diagram as illustrated in Figure 5.1. This verification is done
by analyzing whether the process for transformation satisfies all the transformation
processes laid down in this Chapter for our transformation.

More importantly, the translation of activity component to a class diagram
and the further extraction of sequence diagrams from both activity diagram enables
guided and effective transformation based on the available input model (activity
diagram).

Furthermore, to assess target-realization in our naive approach, we make sure
our input model uses the activity diagram and other textual information provided
in Read’s domain model [8] for transformation from AD to SD and AD to CD as
well. Our ultimate realized target is a class structure diagram and a negation of
this approach comes from the incorrect output (sequence diagram) from the activity
diagram being entirely different from the sequence diagram translated from the class
diagram. Our premise to target realization raises the question below.

Q1: Are the contents of the two sequence diagrams when compared shows
relatively matching components?

Correctness

The outcome of our naive approach is the transformation and generation of class
structure diagram and object-oriented code respectively. Evaluating the correctness
of our naive approach involves getting fit-for-purpose object-oriented code. The
correctness is validated with the support of papyrus tool for generation of required
artefacts (code). The papyrus tool enables us to add Java primitive types which aid
the generation of Java object oriented code from the class structural diagram.

To evaluate the correctness of the code as an implementation of the model, a
structural testing comparing the objects and classes presented in the code is done
in relations to the transformed model. The code generated has not been compared
to the handcrafted code from [8], however, following our naive approach, we have
confidence on the code generated in relation to the scope of the transformation
as primitive types added reflects the structure of the output model in a Java OO
code environment. Our premise to correctness answers the question below on the
premise that using Papyrus tool to add Java primitive type, there is no change in
the structure of the output model as it only give basis to generation of only Java
code from the CD.

Q2: Does the code generated reflect element of the class structure diagram
when Java primitive types are added?

5.7.2 Evaluating Efficiency

Our research hypothesis aims to use MDE to explore behaviour diagrams through
model management operations (model transformation) hence the need for the exe-

67

cution of models in a very efficient, effective and consistent manner. Efficiency and
consistency is a mainstay in our naive approach as the output models (structure
diagram) needs to reflect all components of the activity diagram by following in-
spired concepts from [54] used in developing the proposed transformation steps of
this chapter. This approach is efficient as it avoids the use of complex constraints
declared in constraints languages like EVL.

The naive approach consistency comes from its usability in any provided activ-
ity diagram without changing any of the proposed transformation steps regardless
of whether the components of the input model is altered or not. It also utilizes
papyrus inbuilt validation which is repeatable through the use of EMF Compare
and this produces an inbuilt quality for the approach. This approch allow us to use
more YCIL case study diagram [8, 13, 14] thereby enabling approach testing. For
evaluation purpose, we answer the following questions on our approach efficiency
and consistency:

Q3: Will the output model structure be altered with the increasing update of
the extracted class diagram from the compared sequence diagrams?

Q4: Under what situation will the translation to output model be found effi-
cient in relation to the increased numbers of input models?

5.7.3 Case study

The sections above highlighted essential qualities that can be used to assess the
effectiveness of our naive approach and described how they are evaluated. To un-
derstand our naive approach in depth, we discuss our case study by answering the
questions raised (Q1-Q4).

The scope of our transformations are dependent on Read’s domain model [8].
The activity diagram gives basis for the transformation hence the corresponding re-
sult (CD and OO code) reflects its element. The CD is validated via the transformed
SDs which leads to the generation of Java OO code.

The transformation of AD to SD, AD to CD and CD to SD hinges on the trans-
formation rules and these transformations evolved independent of our techniques.
The naive approach technique serves as a framework for how our final result can
be achieved. The translation of AD to several models (SD and CD) uses only the
element presented in the domain model [8]. This helps avoid bias and shows that
the naive approach techniques presented have not been optimised for our case study
[8].

The code generated reflects element of the transformed CD and the primitive
types added helps with generation of Java code. There is no alteration to the
structure of the CD as the papyrus tool supports code generation based on the
output model (CD). The results from the naive approach are limited to the case
study and the papyrus tool used for drawing the transformed model with subsequent
code generation.

The correctness of the approach has not been verified as we don’t have access

68

to the hand-crafted code of the case study [8], however, we have confidence on our
transformation process as they are fit-for-purpose based on ETL transformation rule.
Precisely, the premise for our result verification lies in the transformation process
as elements of the domain model makes up the code element and the tool deployed
for code generation guarantees the generation of OO code.

5.8 Critique

A situation where a model output is expected to be correct or not is a common
assumption in software testing and this is used as a yardstick for determining the
correctness of a system [63]. In testing the correctness of our approach, the same
scenario is played out in our model transformation format as we assume the approach
used produces a correct model or not depending on the modellers’ skill in relation
to the stated transformation process.

Here, the limitations of our naive approach is discussed in respect to its prac-
ticality towards EAE behaviour models. The critique of this approach is the limi-
tations on comparison as it is a tool-oriented and it only compares the input data
(the two sequence diagrams) rather than further testing on other diagrams which
are not part of the input model.

The naive approach loses traceability from biology components to the gener-
ated code, as we work on the model class structure. The transformation use the
notations not the semantics of the activity diagram.

Domain experts (biologist) need more than one model to express the domain.
However, code generated from the naive approach only expresses details from an
activity diagram. Different features of cell in EAE compartment will be difficult to
find in the code even with regeneration by biologist as the activity diagram expresses
just the role of actors in the system instead of other details.

As stated above, our naive approach does not use all domain model of Read’s
EAE system [8]. Furthermore, it will be possible to generate code from more dia-
grams but it won’t solve its biological correspondence needed for effective modelling
of EAE model. This actions put limitations on the feasible deployment of our naive-
approach at large, to EAE system. This leads to the development of a more solid
approach presented in Chapter 6.

5.9 Summary

This chapter introduces and motivate the naive approach for transformation. Trans-
formation processes inspired by work from [54] is also proposed. The tools used in
automating this approach is discussed. The automation of the transformation pro-
cess and the tool used is reviewed. Code generation as a means to further simulation
in future work is also discussed. We further evaluate and critique the naive approach
so as to enlist its benefit and limitations which motivates us to the second approach.

69

Figure 5.3: Sequence diagram transformed from the activity diagram in Figure 3.3.70

Figure 5.4: A part of EAE transformed class structure model.

71

Figure 5.5: Sequence diagram showing interactions between objects of class diagram
presented in Figure 5.4.

72

Figure 5.6: Creating a model in Papyrus, illustrating some derived EAE class struc-
tures.

73

Figure 5.7: A comparison of our two sequence diagrams showing differences in
merging.

74

Figure 5.8: A comparison between two sequence diagrams.

75

76

Chapter 6

Second Approach

The second approach to modelling uses all the behaviour diagrams (activity diagrams
and state diagrams) and other information presented in Read’s thesis [8]. This
approach is sophisticated as in contrast to the naive approach where only activity
diagram is used as the input model for transformation. In this chapter, we discuss
our approach, tools used, and its evaluation in general.

6.1 Introduction

The second approach is based on application of MDE principles, and it is imple-
mented through an incremental process of model development. With the need to
generate code from the structure of a model diagram for further simulation, it is
hard to change only part of the code that relates to a biological concept. This calls
for the need to have a concrete approach that reflects domain concepts of the be-
haviour diagram to the structural diagram. Towards the development of a structural
diagram, metamodel can be developed to help with the modelling of EAE system.

The approach to transformation is broken down into three stages. The first
stage utilizes several state diagrams presented in Chapter 3 by developing a meta-
model for them. The second stage deals with model refinement by combining the
activity diagrams and other information presented in Read’s domain model [8] with
the state diagram metamodel to create a target metamodel (a super metamodel
capturing the whole domain model [8]). The third stage deals with the use of MDE
practices to support these models. This is done by applying several model manage-
ment operations thereby manipulating the models to generate an OO Java code.

6.2 Overview

The source model used in our second approach is the various state diagrams shown
in Chapter 3. A metamodel is defined for the presented state diagrams. This compo-
nent view of the system captures the detailed information of EAE, and supplements

77

the activity diagram that shows the top-level system activities of EAE. A state dia-
gram shows the possible behaviour of any object of a class and we are provided with
several state diagrams as discussed in Chapter 3. We decide to create a metamodel
for these several diagram so as to have a unifying structural model that defines each
individual state diagrams. This is achievable as each state diagrams presented by
[8] is for a domain class of EAE.

The several state diagrams presented by Read [8] are used to define a domain
metamodel which encompasses all the domain concepts expressed in the state dia-
gram elements. The definition of the metamodel will enable a M2M transformation
from a source model to a target model. Here, the states in the state diagrams denote
the existence of classes while the conditions and transitions indicate the existence
of properties and relationships. Also, following the concepts of transforming AD to
CD in Section 5.3.1 (Naive approach), we refine our target metamodel with other
textual information from Read’s domain model [8].

Our second approach is conceptualized on metamodelling through transforma-
tion. Here, model transformation enables the re-use of existing state diagram to
create a metamodel from which object oriented Java code can be generated. The
transformation is done on a domain level as this type of transformation ensures
that the target model conforms to its metamodel specifications. This gives way to
a syntactically fit-for-purpose model transformation. Our approach is illustrated
in Figure 6.1. The approach shows the development of a metamodel for the state
diagram following OMG’s standard [3] and this metamodel is transformed to a tar-
get metamodel premised with refinement from activity diagram and other textual
information provided in the domain model [8].

Figure 6.1: An illustration of our second approach showing its transformation
process.

78

6.3 Source Model - State Diagram

The state diagram implies the existence of a class. The concept of state diagram is
to define a system with a number of state which gives set of values to attributes of an
object. This gives basis to the specification of individual behaviour entities of EAE
system such as class objects. Also, the state diagram of a class shows transitions
from one state to another in objects of that class. These transitions imply a call to
one or more class methods that define how an object of the class changes states.

A state in a state diagram is defined by the values of the attributes in a
particular object of the class. Given a class with an attribute, the state of the class
is defined by the value of its attribute under a defined condition i.e. the conditions
on the state transitions and the definition of the state requires an attribute, hence
the transformation to a class structure attributes.

Read [8] uses state diagrams to model the dynamics of EAE cells and how
they transition from one state to another. Figure 6.2 presents an example of UML
state diagrams showing its notations. In order to perform a model transformation,
the source metamodel and target metamodel is defined. The state diagram used
from Read’s domain are presented in Figures (3.9, 3.10, 3.11, 3.12, 3.13 and 3.14)
and they are modelled explicitly to create a single state diagram metamodel. This
metamodel is further transformed to our target metamodel which is a structural
diagram.

Figure 6.2: A state machine diagram showing its notations from [11].

79

6.3.1 State diagrams Metamodel

We present our EAE state diagram metamodel as shown in Figure 6.3 based on
OMG’s MOF specification [3]. The concept of MOF and its associations can be
defined by a class diagram and since the state represents object of the class we
support the metamodel with an ETL language for its development. The ETL rule
in Appendix B.1 is used as an algorithm-like rule to support the development of the
metamodel. The metamodel comprises elements of the six different state diagrams
presented in Chapter 3. The state diagrams are for the single entity dynamics of
the EAE system. The dynamics presented are the T-cell dynamics (CD4Th and
CD4Treg), DC and CNSmacrophage dynamics as well as the Neurons and MBP
dynamics.

Event of the state diagram triggers a transition between the states. The tran-
sition from one state to another is influenced by an external event. The internal
event doesn’t lead to change of state in the model. Actions of the events leads to
methods. Here, the metamodel captures crucial and important element of the EAE
state diagrams and it is defined in Ecore with the aid of an EMF editor. The purpose
of developing this metamodel is to facilitate a M2M transformation to a structural
model which provides an avenue to code generation. We take the following point
into consideration during the development of the metamodel:

• The state diagram elements are representation of state classes.

• Transition consists of parameters and conditions that trigger events (internal
and external events) and is dependent on the activity it performs.

• Activities performed by the state diagram transition are reflections of relation-
ships and properties of the state.

• Transition from a state to another is an external transition while the internal
transition does not reflect a change of state as they are predefined (entry, do,
on event and exit).

• Transition executes actions or activities that are transformed into operations
or class methods.

6.4 Target Metamodel - Structural diagram

The target metamodel is the final output model and it is shown in Figure 6.4.
EAE models represents its real world scenarios, as such, there is a need to have a
fit-for-purpose model representing its domain [8]. To achieve this, metamodels are
used as a guide to its development. Here, elements of the source metamodel (state
diagram metamodel) is transformed to the target metamodel through the use of
model transformation. The state diagram’s metamodel is used as the input model
(Figure 6.3). Activity diagram and other information provided is used to refine the

80

metamodel and this is specified using ETL rule that transforms element of the AD
to the target metamodels. By following the written rules, the target metamodel is
produced for our EAE model. Appendix B.2 shows how different elements of the
source metamodel as well as the AD are mapped to the target metamodel.

It is important to note that only elements that are functionally involved in
object interactions are transformed to our target metamodel as it’s the means of
reflecting EAE domain model accurately. Figure 6.4 shows the transformed meta-
model after mapping and refinement.

After the development of the target metamodel, model management operations
are performed on it so as to extract, query and validate the model thereby supporting
code generation. The model management operations performed are discussed in the
next section.

6.5 MDE on Target Metamodel

This section describes the use of MDE practices on the target metamodel so as to
generate a model which model management operations can be performed on.

6.5.1 Using Eclipse Modeling Framework to Model Target
Metamodel

EMF as described in Section 2.2.1 is an Eclipse plug-ins tool which is deployed
to help model our EAE target metamodel thereby generating artefacts (model and
other textual artefact). The reason for using EMF is because it allows us to generate
an ecore file (which contains defined classes) where genmodel file can be generated
subsequently and it contains object-oriented code. Figure 6.5 shows our EAE target
metamodel written in EMF.

Modelling Process

Ecore in the EMF framework perspective is used to create our metamodel. The file
is written in EMF with .emf extension and this is where our EMF Ecore metamodel
is generated from automatically. The metamdel allows for the development of model
that conforms to it with the aid of the framework. The process is detailed below:

1. Create a new file with .emf extension and populate it with Emfatic syntax
that reflects the target metamodel .

2. Generate a .ecore XMI-based metamodel from the Emfatic textual represen-
tation (.emf file).

3. Register the newly generated .ecore Epackages so as for the EMF to know it
exist.

81

4. Create a model that conforms to the new .ecore metamodel.

Through this process, a model that represents our EAE systems and conforms
to its metamodel is developed. Individual models from the metamodel is created
automatically with the aid of EMF framework. The reason for creating the model
is to explore individual models in relation to their domain model. After developing
the model, model management operation is initiated to enable full-fledged MDE
practices. Figure 6.6 shows the model of EAE class CNSmacrophage created from
the target metamodel.

6.6 Using Model Management and Epsilon to Query

and Validate Model

EAE model and metamodels are implemented by following the modelling process
detailed in this section. The manipulation of these models is done through model
management operations. This operation enable us to query EAE models, validate
them against complex constraint and thereby generate Java OO code from them
as well. These model managements were carried out using Epsilon tools and for
the purpose of eliciting our model, the model management operations performed on
them are further discussed in subsequent subsections.

6.6.1 Epsilon Object Language (EOL) to Query our Model

EOL is a crucial programming language that allows the development and query of
EMF models [65]. It provides several reusable elements that can be utilized towards
development of different task-specific languages. EOL is the main constituent or
core of Epsilon an its an OCL-based language. Access to multiple models, user
interactions and the development of conventional programming structure is made
possible through EOL [66].

The use of EOL for our EAE metamodel enables us to write queries, create
sample models that conform to the earlier developed metamodel and also run the
queries on the new sample models. The created model is queried based on the
conditions noticed in the domain model. For example, some of the TCell model
are either in apoptosis or effector state so the model is queried to determine its
state. Listing 6.1 shows different EOL language used in querying different part of
our model.

Listing 6.1: A sample EOL language

1 // c o l l e c t a l l e f f e c t o r s t a t e o f TCell
2 TCell . a l l . c o l l e c t (t | t . e f f e c t o r) .
3 asSet () . p r i n t l n () ;
4 var e f f e c t o r : Set ;
5 f o r (t in TCell . a l l)

82

6 {
7 e f f e c t o r . add (t . e f f e c t o r) ;
8 }
9 e f f e c t o r . p r i n t l n () ;

10
11 // l i s t o f mature DCs
12 DC. a l l . c o l l e c t (d | d . mature) . sum () .
13 p r i n t l n () ;
14 f o r (item in TCell . a l l)
15 {
16 item . e f f e c t o r . p r i n t l n () ;
17 }
18
19 // c o l l e c t a l l TCel ls l o c a t i o n and t h e i r p r o b a b i l i t y
20 TCell . a l l . c o l l e c t (t | t . migrate) . asSet () .
21
22 c o l l e c t (t | t . p r o b a b i l i t y) . p r i n t () ;

After manipulating the EAE model with EOL, we proceed to validating it
using EVL in the next section

6.6.2 Epsilon Validation Language (EVL) to Validate our
Model

EVL is a language used for validation and it is built on top of EOL. It supports
creation of constraints on models thereby evaluating inter-model constraints [67]. We
deploy EVL to validate our EAE model and it enables us to identify and validate
elements which violate our constraints. Also, EVL is used as a means to capturing
the complexity of validation rules that the metamodel cannot express. For example,
each different TCell are present in different locations. We use EVL to validate
or check location of the TCell. Listing 6.2 shows several EVL language used in
validating different part of our model.

Listing 6.2: A sample EVL language

1 context eaeimmune ! TCell{
2
3 // Ex i s t ing TCell must belong to a l o c a t i o n
4 c o n s t r a i n t HasLocation {
5
6 check : TCell . l o c a t i o n <>‘‘”
7
8 message : ‘ ‘ Locat ion ” + s e l f + ” e x i s t s ”
9

10 }
11 }
12

83

13 context eaeimmune !CD4Th1 {
14
15 //Every CD4Th1 must have a s t a t e
16 c o n s t r a i n t HasState {
17
18 check : s e l f . s t a t e <> ‘ ‘ ”
19
20 message : ‘ ‘CD4Th ” + s e l f + ‘ ‘ must have a s t a t e ”
21
22 }
23 }
24
25 context eaeimmune ! TCell{
26
27 // TCell must belong to a l o c a t i o n
28
29 c o n s t r a i n t HasLocation {
30
31 check : TCell . l o c a t i o n <>‘‘”
32
33 message : ‘ ‘ Locat ion ” + s e l f + ‘ ‘ e x i s t s ”
34
35 }
36 }
37
38 context eaeimmune ! CNSmacrophage {
39
40 //CNSmacrophage ac t i on i s exh ib i t ed when i t e i t h e r s e c r e t e s

or expre s s MHCIIMBP or TNFalpha
41
42 c r i t i q u e CNSmacrophageaction {
43
44 check : MHCIIMBP. a l l I n s t a n c e s . e x i s t s (m|m. type = s e l f) or
45 TNFalpha . a l l I n s t a n c e s . e x i s t s (t | t . type = s e l f) or
46 CNSmacrophage . a l l I n s t a n c e s . e x i s t s (c | c . ‘ extends ‘ = s e l f)
47
48 message : ‘ ‘ CNSmacrophage ac t i on ” + s e l f . mature
49
50 f i x {
51 t i t l e : ‘ ‘ De lete CNSmacrophage ” + s e l f . mature
52
53 do {
54
55 d e l e t e s e l f ;
56
57 }

84

58 }
59 }
60 }

After resolving the constraints and validating the TCell model, we proceed to
generating Java OO code from the model.

6.7 Code Generation

With a fit-for-purpose model generated, we proceed to generating OO Java code
from the model. The purpose of generating the Java code is to provide an object-
oriented code structure which can be used in future as basis for simulation. The
premise for generating the code lies in the correctness of our target metamodel. The
metamodel developed captures elements of the domain model [8] through the use of
ETL rule for transformation.

As expressed earlier, the developed metamodel followed OMG’s standard [3]
and it includes all aspects of the model. The validity of the obtained metamodel is
justified in the domain model as the Java classes of the code generated reflects the
domain classes of our EAE system. The class properties are reflected in fields of
the Java class and the association reflects objects or collection of objects depending
on the properties multiplicity. The Java class methods is evident in the domain’s
actions triggered by an event.

The code is generated automatically by the use of EMF tool. To achieve this,
by right clicking on the root node of the .ecore file, we move to Eugenia which
leads us to generating our EMF GenEditor. The generated editor is in .genmodel
extension. Right-clicking on the GenEditor node enable us to generate all possible
code with ‘Generate All’ i.e. edit, editor and test code. The code generated are
Java code of EAE’s EMF model implementation. By clicking on the edit code, Java
code representing EAE class is available. Figure 6.7 shows the generated Java Code
of EAE CNS macrophage class.

6.8 Simulation

The practicality of the generated code is rooted in its guide towards the actual sim-
ulation done by [8]. EAE’s domain model is a project of the York Computation
Immunology Lab (YCIL) group. YCIL process involves creating a domain model
as presented by Read [8] and a Platform model which details how states and in-
teractions are captured, a process we adopted through transformation to sequence
diagram. Often times, assumptions are mostly made when further parameters are
needed in forming the platform model e.g. the numerical values of some parameters.
This process gives intuitive view of how the generated code can be adopted for the
simulation as the interaction and states of the systems is reflected as an agent of the
simulation.

85

The Java MASON is an open source environment which it allows portability
of our code. It dedicates Java to maximize flexibility of Agent Based Simulations
(ABM) development. The environment is optimised to run fast and it allows the
use of our code to define classes of agents. This process will be further explored in
our future work.

The simulator created for both the domain model and the platform model by
YCIL group has been created in Java and utilises the MASON simulation toolkit
which is run from the command line. Java MASON is used by the group because it is
a multi-agent simulation as the EAE system is inherently complex with many objects
which is referenced as an agent. Here, models are self-contained which makes it easy
to run them on other Java frameworks. With the use of Java MASON, our output
models reflected in the code is independent and can be altered at any time. Also,
the models can be migrated to different platforms. Future work for the simulation
looks into how our Java code can be optimized following YCIL approach in adopting
Java MASON and ABM.

6.9 Evaluation and Critique

The evaluation of our second approach is done on the merit of its practicality to
modelling our EAE system. MDE was explored fully through model management
operations with the second approach. This was achievable through the implemen-
tation of model as the foci of our modelling process. The implemented model is
transformed and validated while constraint is specified and code is generated.

This section discusses evaluation of the use of more diagrams to capture bio-
logical correspondence thereby generating object oriented code. Also, the critique
of the second approach in line with its limitation is reviewed in this section.

6.9.1 Approach Evaluation

The practicality of the second approach is rooted in its use of more time dedicated to
enhancing models and behavioural diagram presented in the thesis. This approach
allows us explore transformation and its validity as there is no standard approach
to this type of modelling. The transformation in this approach is supported by ETL
language thereby giving confidence on the transformation process.

The second approach allow us to work from a set of models, and impose con-
straints via a constraint language. These constraints are automated and enable us
to check the consistency of our models against applicable rule. Also, the second
approach gives a result of consistent output with the automation of the transforma-
tion rules. The transformation rule is not analysed but its implementation leads to
a consistent model.

The second approach enables EAE biological components to be traceable
through implementation. Also, behaviour exhibited in EAE biological represen-
tation can be traced to the code generated. In this approach, by analysing the

86

behaviour of a cell in the compartments, we can automatically regenerate the dia-
gram to show generated code is valid.

6.9.2 Limitation

Among the limitation of the second approach is its inability to self-validate as in
contrast to the naive approach that uses EMF compare. Deploying second approach
to Read’s domain model [8] allow us to generate consistent model, however, there is
no more model to try out. Our transformation rule was validated using EVL but it
has not been reviewed.

6.10 Summary

In this chapter, we discuss our second approach to modelling where state diagram is
used as the input model towards exploring MDE. State diagram with each transition
as presented as a domain of each class in EAE is reviewed. The transformation of
the model to a target metamodel is discussed. Also, the final output model that
becomes the class structure diagram is reviewed. MDE tools and model management
operations used to transform, validate and impose constraints on model is presented.
Finally, the approach is evaluated on its approach and limitations.

87

Figure 6.3: The developed state diagram metamodel.

88

Figure 6.4: The EAE target metamodel

89

Figure 6.5: The EAE metamodel editor in emfatic text.

90

Figure 6.6: A model class of the EAE system.

91

Figure 6.7: An OO Java code for CNS Class

92

93

Chapter 7

Conclusion and Future Work

This thesis examined the exploration of MDE through the lenses of behaviour di-
agrams. Although MDE is not conceptualized as an insoluble approach towards
eliciting domain of interest, it however allows the presentation of real world system
as a model and the use of this model to improve systems with increased productivity
and reusability [68]. Model transformation from different abstract level to another
is crucial to set up EAE input model (activity and state diagrams) to an output
model (structure model) in order to generate necessary artefacts needed hence the
deployment of other model management operations to aid this process.

This research has solely focus on developing and automating modelling ap-
proaches in contrast to hand-crafted codes for simulation thereby enabling the tin-
kering of MDE practices. This thesis has provide both a naive and second approach
to modelling which gives the basis for exploring the following hypothesis:

Naive and second approaches to Transformation can be used as a step to a
practicable model management operations which enables MDE to be explored through
behavioural diagram.

In light of the research hypothesis, the following objectives were defined in this
thesis:

• Support transformation of EAE’s behaviour model to a structural model.

• Reliably and systematically query, validate, compare and transform EAE mod-
els through model management operations.

• Reliably and systematically generate code from EAE’s behaviour models.

7.1 Thesis Contributions

The core contributions of this thesis in the context of limitations of behavioural
diagram and the research hypothesis are outlined below.

Investigation of modelling approach concession for EAE. Through a
review of our domain analysis, we identified challenges to elicitation of EAE models,

94

and investigated this challenge through exploration of MDE. We use the behaviour
diagrams presented in Chapter 3 by conducting thorough analysis to decipher ap-
proach to modelling it.

Towards initiating our naive-approach, we analyze the sequence of events
present in an activity diagram and therefore decide to transform it to a sequence
diagram. Furthermore we argued that a dynamic behaviour is associated on the
top-level with the activity diagram hence there is not a full detailed dynamism of
behaviour model because state diagrams from the domain model shows the system
single-entity dynamics. The activity diagram did captures the behaviour of EAE
but its limited to the system-level overview and perspective according to [8].

To capture EAE system-level overview, modelling perspective and the single-
entity dynamics as presented in Chapter 3 by [8], we proceed to using our second
approach whereby an exploration of the state diagrams in Chapter 3 is utilized. The
concept here is backed up by the use of state diagram to depict EAE single-entity
dynamics - a full implementation of the domain model [8]. This two modelling
approach have been motivated in Chapter 4.

In contrast to handcrafting code for modelling and simulation, our Naive and
traditional approaches automate models and make it the pivot of every model op-
erations. This is done by making the behavioural diagrams from our case study [8]
as the input model. The refinement and manipulation of this input model utilizes
MDE practices thereby exploring it in terms of model management operation.

Naive approach technique: The technique used in this approach is concep-
tualized on a behaviour input model (activity diagram) and a resulting structural
output model (class diagram). We proceed to extracting class diagram from the
activity diagram through the use of information presented in the activity. This class
diagram is transformed to a sequence diagram due to its illustration of objects inter-
actions and an object is an instance of a class. The comparison of the two sequence
diagrams follows and the class diagram is subsequently updated from additional
data gathered from the sequence diagram from the activity diagram. The limitation
on this approach involves its constriction to only modelling the actions exhibited by
the activity diagram.

Second approach technique: This approach presents a hands-on technique
where state diagrams is used to develop a metamodel. This developed metamodel
is transformed to a target metamodel and with is refinement with AD, OO code
can be generated. The transformation follows OMG’s standard and ETL rule, thus,
reducing the loss of vital information crucial to future simulation. Our premise on
using state diagram relies on the conception of illustrations of classes through state
charts. Class diagram are known to model the dynamic flow of control within an
object of a class. This approach affords us to model the full dynamic component of
EAE as the overall behaviour of the system through starting-level and transitions is
highly detailed as a dynamic behaviour using the state diagram.

95

7.2 Future Work

The future work on this paper aims to build on our shortfalls. With this approach,
we have created class structure diagram and generate object-oriented code. This
is a step towards agent based modelling (ABM) as they are created in an object
framework. We aim to develop a substantial generic modelling tool that can be used
to elicit the second approach and make it scalable. Also, the second approach will be
geared towards support for creation of ABM and object-oriented based simulation.
Further simulation in Java MASON as motivated in Section 6.8 will be explored as
future work.

7.3 Concluding Remarks

EAE domain analysis from [8] presents biological illustration through UML be-
havioural diagram with slight notations and variations. These diagrams have limi-
tations based on their ability to completely maintain the biological aspect of these
models. The representation of this diagrams as an input models and their conse-
quent transformation to a structure model through the use of model management
operations enables the use of MDE. Exploration of MDE for this purpose is vital
basis for automated modelling of EAE system.

However, achieving an efficient and practicable modelling approach to EAE is
challenging as there needs to be confidence on the transformation process, the use
of more diagrams from [8] and maintenance of the biological aspect of EAE model
with the subsequent generated code.

The naive approach to transformation is limited in its capacity to modelling
EAE system as it could only reflect its premises which is the activity diagram. This
approach is only suitable to model the structure aspect of EAE activity diagram
in contrast to its well-defined dynamic behaviour as reflected in other behavioural
system (state diagram).

In addition to this, the second approach as premised on the use of state dia-
gram for key biological entities enables model reusability and interoperability. For
instance, more diagrams is widely utilized and the model developed from it through
MDE can be reused when the model artefacts are merged or demerged.

This thesis has explored MDE through EAE behaviour diagram. We also
conceive and automate two approaches to modelling this diagram. In addition, we
propose processes that can be used towards motivating the transformation of activity
diagram to a class diagram. Furthermore, for a fit-for-purpose output model, the use
of model management (constraints, validation and generation) language and their
effectiveness towards EAE domain of interest is proposed. Finally, as a result of our
approach, we have decipher a goad for further research in how to provide a more
concrete model exploration through UML behaviour diagram for object oriented
structures in simulations.

96

97

Appendix A

Naive Approach

The transformation rules are applied as a guide implementation to the models and
are written in ETL. A typical ETL has a name, source and target. According to [40],
“the name of the rule follows the rule keyword and the source and target parameters
are defined after the transform and to keywords. Also, the rule can define an optional
comma separated list of rules it extends after the extends keyword. Inside the curly
braces ({}), the rule can optionally specify its guard either as an EOL expression
following a colon (:) (for simple guards) or as a block of statements in curly braces
(for more complex guards). Finally, the body of the rule is specified as a sequence
of EOL statements” [40].

A.1 AD to SD Transformation Rule

Listing A.1: ETL used to transform Activity Diagram to Sequence Diagram

1 r u l e Act iv i ty2Sequence
2 trans form a : Act i v i ty ! ActivityD
3 to s : Sequence ! SequenceD {
4
5 s . name := e l e m e n t s . + a . id ;
6 s . contents := a . sequence . equ iva l en t () ;
7 }
8
9 r u l e A c t i o n 2 L i f e l i n e

10 trans form l : L i f e l i n e ! Sequence
11 to a : Action ! Ac t i v i ty {
12
13 a . element = l . element ;
14 }
15
16 r u l e Transit ionLine2Amessage
17 trans form a : Amessage ! Sequence
18 to t : Trans i t i onL ine ! Ac t i v i ty {

98

19
20 t . name = a . name ;
21 }
22
23 r u l e MergeNode2SMessage
24 trans form s : SMessage ! Sequence
25 to m : MergeNode ! Sequence {
26
27 m. element = s . element ;
28 }
29
30 r u l e Fork2Amessage
31 trans form a : AMessage ! Sequence
32 to f : Fork ! Ac t i v i t y {
33
34 f . name = a . name ;
35 }
36
37 r u l e Join2Smessage
38 trans form s : SMessage ! Sequence
39 to j : Join ! Ac t i v i ty {
40
41 j . name = s . name ;
42 }

Listing A.1 shows ETL rule used in transforming different components of our
EAE activity diagram metamodel to elements of sequence diagram metamodel. The
rule (Action2Lifeline) transforms action in AD to a Lifeline in CD where the name
of the action is executed as a corresponding lifeline. The second rule (Transition-
Line2Amessage) executes a transition line to an asynchronous message, the third
rule transforms (MergeNode2SMessage) a merge node to a synchronous message.
Also, due to the input and output nature of messages involved, the fourth rule
(Fork2Amessage) transforms a fork to an asynchronous message while the fifth rule
(Join2Smessage) executes the ADs join to a synchronous message.

A.2 AD to CD Transformation Rule

Listing A.2: ETL used to transform Activity Diagram to Class Diagram

1 r u l e Act i v i t y2C la s s
2 trans form a : Ac t i v i t y ! ActivityD
3 to c : Class ! ClassD
4
5 guard : not a . endNode {
6
7 c . name := a . name + ‘ Action ’ ;
8 }

99

9
10 r u l e Act ionState2ClassProperty
11 trans form a : Act i v i ty ! Act ionState
12 to c : Property ! Class {
13
14 c . name = a . name ;
15 }
16
17 r u l e Subact iveState2SubClass
18 trans form s : Subact iveState ! Ac t i v i ty
19 to a : SubClass ! Class {
20
21 a . name = s . name ;
22 }
23
24 r u l e Trans i t i onL ine2C la s sRe l a t i on sh ip
25 trans form t : Trans i t i onL ine ! Ac t i v i t y
26 to c : Re l a t i on sh ip ! Class {
27
28 c . name = t . name ;
29 }
30
31 r u l e Merge2ClassOperation
32 trans form m : Merge ! Ac t i v i ty
33 to c : Operation ! Class {
34
35 c . name = m. name ;
36 }
37
38 r u l e Dec i s ion2ClassOperat ion
39 trans form d : Dec i s i on ! Ac t i v i ty
40 to c : Operation ! Class {
41
42 c . name = d . name ;
43 }
44
45 r u l e Fork2Clas sAssoc ia t ion
46 trans form f : Fork ! Ac t i v i t y
47 to c : As soc i a t i on ! Class {
48
49 c . name = f . name ;
50 }
51
52 r u l e Jo in2C la s sAs soc i a t i on
53 trans form j : Join ! Ac t i v i ty
54 to c : As soc i a t i on ! Class {

100

55
56 c . name = j . name ;
57 }

Listing A.2 shows ETL rule used in transforming our EAE activity diagram
metamodel to an object-oriented class diagram metamodel. Here, the rule trans-
forms Activity Diagram into CD elements. The first rule specifies the transformation
of Activity to a class while the second rule shows how action state is transformed to
the class property. The third rule transforms subactive state activity to a subclass.
The fourth rule transforms transition line to class relationship while the fifth rule
transform the activity’s merge to a class operation. Decisions are transformed to
operation of the class a well. Fork and Join are transformed to the Class association
respectively.

A.3 CD to SD Transformation Rule

Listing A.3: ETL used to transform Class Diagram to Sequence Diagram

1 r u l e ClassD2SequenceD
2 trans form c : Class ! ClassD
3 to s : Sequence ! SequenceD {
4
5 s . element = c . element ;
6
7 i f (t . parent . i sDe f i n ed ()) {
8 var e : new L i f e l i n e ! Sequence ;
9 e . source : := c . parent ;

10 e . t a r g e t = s ;
11 }
12 }
13
14 r u l e C l a s s 2 L i f e l i n e
15 trans form s : L i f e l i n e ! Sequence
16 to c : Class ! Class {
17
18 guard : (not s . i sAbs t r a c t)
19 c . element = s . element ;
20 }
21
22 r u l e Property2SMessage
23 trans form p : Property ! Class
24 to s : SMessage ! Sequence {
25
26 s . element = p . element ;
27 }
28
29 r u l e Operation2AMessage

101

30 trans form o : Operation ! Class
31 to m : AMessage ! Sequence {
32
33 m. element = o . element ;
34 }
35
36 r u l e Assoc iat ion2Message
37 trans form a : As soc i a t i on ! Class
38 to m : Message ! Sequence {
39
40 m. element = a . element ;
41 }

In Listing A.3, we use ETL to transform a model that conforms to a Class
diagram metamodel to a model that conforms to a Sequence diagram metamodel.
When the class is translated to lifeline, the rule executes to transform class property
to SDs operation messages.

102

103

Appendix B

Second Approach Transformation
Rule

This section discusses the transformation rule used in the second approach transfor-
mation.

B.1 SD to SD metamodel (Structure) Transfor-

mation Rule

Listing B.1: ETL used to transform State Diagram to State Diagram Metamodel

1 r u l e StateDiagram2StateMetamodel
2 trans form m : StateDiagram ! Diagram
3 to p : ObjectOriented ! Metamodel {
4 p . name := ‘ uk . ac . york . cs . ’ + m. id ;
5 p . contents := m. s t a t e s . equ iva l en t () ;
6 }
7
8 r u l e State2Clas s
9 trans form s : StateDiagram ! State

10 to c : Class ! Class
11 guard : not s . i s F i n a l {
12
13 c . name := s . name + ‘ Class ’ ;
14 }
15
16 r u l e Event2Propert i e s
17 trans form p : P r o pe r t i e s ! Class
18 to e : Event ! State
19
20 e . name = p . name ;
21 }

104

22
23 r u l e Exte rna lTrans i t i on2As soc i a t i on
24 trans form a : As soc i a t i on ! Class
25 to e : Exte rna lTrans i t i on ! State {
26
27 e . element = a . element ;
28 }
29
30 r u l e In t e rna lTrans i t i on2Opera t i on
31 trans form o : Operation ! Class
32 to i : I n t e r n a l T r a n s i t i o n ! State {
33
34 i . e lement = o . element ;
35 }
36
37
38 r u l e Trans it ion2Parameter
39 trans form p : Parameters ! Class
40 to s : Trans i t i on ! State {
41
42 s . element = p . element ;
43 }

Listing B.1 specify rules used in transforming state diagram to a state diagram
metamodel.

B.2 Transformation Rule for SD metamodel and

AD to EAE Target Metamodel

Listing B.2: ETL used to transform state diagram metamodel and AD to the target
metamodel

1 // r u l e f o r s t a t e diagram metamodel to t a r g e t metamodel
2 r u l e Clas s2Clas s
3 trans form c : Class ! ClassMM
4 to s : Class ! Class {
5
6 s . name = c . name
7 }
8
9

10 r u l e Att r ibute2Att r ibute
11 trans form c : Att r ibute ! ClassMM
12 to s : Att r ibute ! Class
13
14 guard : not c . endClass {
15

105

16 s . name := c . name + ‘ Class ’ ;
17 }
18
19 r u l e As so c i a t i on2As so c i a t i on
20 trans form a : As soc i a t i on ! ClassMM
21 to s : As soc i a t i on ! Class {
22
23 s . name = a . name
24 }
25
26 // r u l e f o r AD metamodel to t a r g e t metamodel
27 r u l e Act i v i t y2C la s s
28 trans form a : Ac t i v i t y ! ActivityD
29 to c : Class ! ClassD
30
31 guard : not a . endNode {
32
33 c . element := a . element + ‘ Action ’ ;
34 }
35
36 r u l e Act ionState2ClassProperty
37 trans form a : Act i v i ty ! Act ionState
38 to c : Property ! Class {
39
40 c . element = a . element ;
41 }
42
43 r u l e Subact iveState2SubClass
44 trans form s : Subact iveState ! Ac t i v i ty
45 to a : SubClass ! Class {
46
47 a . element = s . element ;
48 }
49
50 r u l e Trans i t i onL ine2C la s sRe l a t i on sh ip
51 trans form t : Trans i t i onL ine ! Ac t i v i t y
52 to c : Re l a t i on sh ip ! Class {
53
54 c . element = t . element ;
55 }
56
57 r u l e Merge2ClassOperation
58 trans form m : Merge ! Ac t i v i ty
59 to c : Operation ! Class {
60
61 c . merge = m. name ;

106

62 }
63
64 r u l e Dec i s ion2ClassOperat ion
65 trans form d : Dec i s i on ! Ac t i v i ty
66 to c : Operation ! Class {
67
68 c . element = d . element ;
69 }
70
71 r u l e Fork2Clas sAssoc ia t ion
72 trans form f : Fork ! Ac t i v i t y
73 to c : As soc i a t i on ! Class {
74
75 c . element = f . element ;
76 }
77
78 r u l e Jo in2C la s sAs soc i a t i on
79 trans form j : Join ! Ac t i v i ty
80 to c : As soc i a t i on ! Class {
81
82 c . element = j . element ;
83 }

Listing B.2 shows ETL rule used in transforming different components of a
structure class diagram metamodel to another. The rule shows transformation of a
class to another class, an attribute to another attribute and a class association to
another class association.

107

108

Bibliography

[1] “Metamodeling,” https://sites.google.com/site/raquelpau/metamodeling, ac-
cessed: 2017-02-17.

[2] P.-A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schnekenburger,
S. Gérard, and J.-M. Jézéquel, “Model-driven analysis and synthesis of textual
concrete syntax,” Software & Systems Modeling, vol. 7, no. 4, pp. 423–441,
2008. [Online]. Available: http://dx.doi.org/10.1007/s10270-008-0088-x

[3] OMG, “Unified modelling language 2.1.2 infrastructure specification,”
OMG, Specification Version 2.1.2, November 2007. [Online]. Available:
http://www.omg.org/docs/formal/07-11-04.pdf

[4] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2003.

[5] D. Cetinkaya and A. Verbraeck, “Metamodeling and Model Transformations in
Modeling and Simulation,” in Proceedings of the Winter Simulation Conference,
ser. WSC ’11. Winter Simulation Conference, 2011, pp. 3048–3058. [Online].
Available: http://dl.acm.org/citation.cfm?id=2431518.2431880

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Mod-
eling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[7] D. Kolovos, L. Rose, G. Dominguez Antonio, and R. Paige, “The epsilon book,”
http://eclipse.org/epsilon/doc/book.

[8] M. N. Read, “Statistical and modelling techniques to build confidence in the
investigation of immunology through agent-based simulation,” Ph.D. disserta-
tion, University of York, Department of Computer Science, 09 2011.

[9] “Agile model-driven development,” http://www.cs.sjsu.edu/∼pearce/oom/se/
agile.htm, accessed: 2017-02-06.

[10] “UML - interaction diagrams,” https://www.tutorialspoint.com/uml/uml
interaction diagram.htm, accessed: 2017-02-07.

[11] “Statechart diagram,” https://sourcemaking.com/uml/modeling-it-systems/
the-behavioral-view/statechart-diagram, accessed: 2017-02-13.

109

https://sites.google.com/site/raquelpau/metamodeling
http://dx.doi.org/10.1007/s10270-008-0088-x
http://www.omg.org/docs/formal/07-11-04.pdf
http://dl.acm.org/citation.cfm?id=2431518.2431880
http://eclipse.org/epsilon/doc/book
http://www.cs.sjsu.edu/~pearce/oom/se/agile.htm
http://www.cs.sjsu.edu/~pearce/oom/se/agile.htm
https://www.tutorialspoint.com/uml/uml_interaction_diagram.htm
https://www.tutorialspoint.com/uml/uml_interaction_diagram.htm
https://sourcemaking.com/uml/modeling-it-systems/the-behavioral-view/statechart-diagram
https://sourcemaking.com/uml/modeling-it-systems/the-behavioral-view/statechart-diagram

[12] F. A. C. Polack, T. Hoverd, A. T. Sampson, S. Stepney, and J. Timmis, “Com-
plex systems models: engineering simulations,” in Eleventh International Con-
ference on the Simulation and Synthesis of Living Systems. MIT Press, 2008,
pp. 482–489.

[13] D. Moyo, “Investigating the dynamics of hepatic inflammation through simu-
lation,” Ph.D. dissertation, Department of Computer Science, York, 2014.

[14] W. Richard, “An agent-based model of the IL-1 stimulated nuclear factor-kappa
b signaling pathway,” Ph.D. dissertation, Department of Computer Science,
York, 2014.

[15] J. Greenfield and K. Short, Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Indianapolis, IN: Wiley, 2004.

[16] J. Bézivin, “On the unification power of models,” Software & Systems
Modeling, vol. 4, no. 2, pp. 171–188, 2005. [Online]. Available: http:
//dx.doi.org/10.1007/s10270-005-0079-0

[17] J. Bézivin and O. Gerbé, “Towards a precise definition of the OMG/MDA
framework,” in Proceedings of the 16th IEEE International Conference
on Automated Software Engineering, ser. ASE ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 273–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=872023.872565

[18] A. Rensink and J. Warmer, Eds., Model Driven Architecture - Foundations and
Applications, Second European Conference, ECMDA-FA 2006, Bilbao, Spain,
July 10-13, 2006, Proceedings, ser. Lecture Notes in Computer Science, vol.
4066. Springer, 2006.

[19] A. M. Starfield, K. Smith, and A. L. Bleloch, How to Model It: Problem Solving
for the Computer Age. New York, NY, USA: McGraw-Hill, Inc., 1993.

[20] I. Kurtev, “Adaptability of model transformations,” Ph.D. dissertation, Uni-
versity of Twente, Netherlands, 2004.

[21] R. F. Paige, N. Matragkas, and L. M. Rose, “Evolving models in model-driven
engineering,” J. Syst. Softw., vol. 111, no. C, pp. 272–280, 01 2016. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2015.08.047

[22] R. F. Paige, D. S. Kolovos, and F. A. Polack, “A tutorial on metamodelling
for grammar researchers,” Science of Computer Programming, to appear, Tech.
Rep., 2014.

[23] L. Rose, E. Guerra, J. de Lara, A. Etien, D. Kolovos, and R. Paige,
“Genericity for model management operations,” Software & Systems
Modeling, vol. 12, no. 1, pp. 201–219, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10270-011-0203-2

110

http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dl.acm.org/citation.cfm?id=872023.872565
http://dx.doi.org/10.1016/j.jss.2015.08.047
http://dx.doi.org/10.1007/s10270-011-0203-2

[24] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “Rigorous methods
for software construction and analysis,” J.-R. Abrial and U. Glässer, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. On the Evolution of OCL
for Capturing Structural Constraints in Modelling Languages, pp. 204–218.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2172244.2172257

[25] L. M. Rose, “Structures and processes for managing model-metamodel co-
evolution,” Ph.D. dissertation, University of York, Department of Computer
Science, 07 2011.

[26] D. Kolovos, “An extensible platform for specification of integrated languages
for model management,” Tech. Rep., 2008.

[27] J. Bézivin, “On the unification power of models.” Software and System
Modeling, vol. 4, no. 2, pp. 171–188, 2005. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/sosym/sosym4.html#Bezivin05

[28] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based
model conformance and multiview consistency checking,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 3, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1243987.1243989

[29] ISO, “Information technology – Z formal specification notation – Syntax, type
system and semantics,” International Organization for Standardization, Tech.
Rep. ISO/IEC 13568, 2002. [Online]. Available: http://standards.iso.org/ittf/
PubliclyAvailableStandards/c021573 ISO IEC 13568 2002(E).zip

[30] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifications from
natural language API documentation,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 307–318. [Online].
Available: http://dx.doi.org/10.1109/ASE.2009.94

[31] J. Alvarez, A. Evans, and P. Sammut, “Mml and the metamodel architecture,”
Workshop on Transformation in UML, co-located with the European Joint Con-
ferences on Theory and Practice of Software (ETAPS), 2001.

[32] S. Kelly and J. Tolvanen, Domain-Specific Modeling - Enabling Full
Code Generation. Wiley, 2008. [Online]. Available: http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-0470036664.html

[33] J. Cabot and M. Gogolla, Object Constraint Language (OCL): A Definitive
Guide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 58–90.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-30982-3 3

[34] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. New York, NY, USA: John Wiley & Sons, Inc., 2002.

[35] I. Kurtev, “State of the art of QVT: a model transformation language
standard,” in Applications of Graph Transformations with Industrial Relevance,

111

http://dl.acm.org/citation.cfm?id=2172244.2172257
http://dblp.uni-trier.de/db/journals/sosym/sosym4.html#Bezivin05
http://dblp.uni-trier.de/db/journals/sosym/sosym4.html#Bezivin05
http://doi.acm.org/10.1145/1243987.1243989
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://dx.doi.org/10.1109/ASE.2009.94
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
http://dx.doi.org/10.1007/978-3-642-30982-3_3

ser. Lecture Notes in Computer Science, A. Schürr, M. Nagl, and A. Zündorf,
Eds., vol. 5088. Berlin: Springer Verlag, October 2008, pp. 377–393. [Online].
Available: http://doc.utwente.nl/62484/

[36] S. Melnik, Generic model management : concepts and algorithms, ser. Lecture
notes in computer science. Berlin, New York: Springer, 2004. [Online].
Available: http://opac.inria.fr/record=b1100774

[37] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of
model-driven software development,” IEEE Softw., vol. 20, no. 5, pp. 42–45,
09 2003. [Online]. Available: http://dx.doi.org/10.1109/MS.2003.1231150

[38] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Sci. Comput. Program., vol. 85, pp. 5–40, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2013.07.013

[39] J. Miller and J. Mukerji, “Mda guide version 1.0.1,” Object Management Group
(OMG), Tech. Rep., 2003.

[40] “Epsilon etl,” http://www.eclipse.org/epsilon/examples/index.php?example=
org.eclipse.epsilon.examples.oo2db, accessed: 2017-03-04.

[41] K. Ma, B. Yang, Z. Chen, and A. Abraham, “A relational approach to
model transformation with QVT relations supporting model synchronization.”
J. UCS, vol. 17, no. 13, pp. 1863–1883, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jucs/jucs17.html#MaYCA11

[42] D. S. Kolovos, “An extensible platform for specification of integrated languages
for model management,” Ph.D. dissertation, University of York, Department
of Computer Science, 2009.

[43] M. Elaasar and L. Briand, “An overview of UML consistency management,”
Carleton University, Tech. Rep., 08, sCE-04-18.

[44] J. Henriksson, F. Heidenreich, J. Johannes, S. Zschaler, and U. Aßmann, “Ex-
tending grammars and metamodels for reuse: the reuseware approach,” IET
Software, vol. 2, no. 3, pp. 165–184, 2008.

[45] C. Brun and A. Pierantonio, “Model differences in the eclipse modelling frame-
work,” p. 2934, 2008, upgrade.

[46] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A UML2
tool for domain-specific language modeling,” in Proceedings of the 2007
International Dagstuhl Conference on Model-based Engineering of Embedded
Real-time Systems, ser. MBEERTS’07. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 361–368. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1927558.1927582

[47] “Papyrus modeling environment,” https://eclipse.org/papyrus/index.php, ac-
cessed: 2017-02-08.

112

http://doc.utwente.nl/62484/
http://opac.inria.fr/record=b1100774
http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1016/j.scico.2013.07.013
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
http://dblp.uni-trier.de/db/journals/jucs/jucs17.html#MaYCA11
http://dl.acm.org/citation.cfm?id=1927558.1927582
http://dl.acm.org/citation.cfm?id=1927558.1927582
https://eclipse.org/papyrus/index.php

[48] D. Kolovos, R. Paige, and F. Polack, “The Epsilon Object Language (EOL),”
in Proc. European Conference on Model-Driven Architecture - Foundations
and Applications (ECMDA-FA), ser. Lecture Notes in Computer Science,
A. Rensink and J. Warmer, Eds., vol. 4066. Springer, 2006, pp. 128–142.

[49] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C.
Polack, and G. Botterweck, “Taming EMF and GMF using model
transformation,” in Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems: Part I, ser. MODELS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 211–225. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1926458.1926479

[50] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot, “A
research roadmap towards achieving scalability in model driven engineering,”
in Proceedings of the Workshop on Scalability in Model Driven Engineering,
ser. BigMDE ’13. New York, NY, USA: ACM, 2013, pp. 2:1–2:10. [Online].
Available: http://doi.acm.org/10.1145/2487766.2487768

[51] P. S. Andrews, F. A. C. Polack, A. T. Sampson, S. Stepney, and J. Timmis,
“The CoSMoS process, version 0.1: A process for the modelling and simulation
of complex systems,” Department of Computer Science, University of York,
Tech. Rep. YCS-2010-453, Mar. 2010.

[52] F. A. C. Polack, P. S. Andrews, T. Ghetiu, M. Read, S. Stepney, J. Timmis,
and A. T. Sampson, “Reflections on the simulation of complex systems for sci-
ence,” in 2010 15th IEEE International Conference on Engineering of Complex
Computer Systems, March 2010, pp. 276–285.

[53] S. V. Mierlo, “Explicitly modelling model debugging environments,” in
Proceedings of the ACM Student Research Competition at MODELS 2015
co-located with the ACM/IEEE 18th International Conference MODELS 2015,
Ottawa, Canada, September 29, 2015., 2015, pp. 24–29. [Online]. Available:
http://ceur-ws.org/Vol-1503/05 pap mierlo.pdf

[54] J.-P. Barros and L. Gomes, “From activity diagrams to class di-
agrams.” [Online]. Available: http://www.disi.unige.it/person/ReggioG/
UMLWORKSHOP/Barros.pdf

[55] B. Donald, “UML basic: An introduction to the unified modeling language,”
2003. [Online]. Available: http://www.therationaledge.com/content/jun{ }03/
f{-}umlintro{ }db.jsp

[56] O. M. G. (OMG), “Meta-object facility (mof) specification, version 2.5.”
[Online]. Available: http://www.omg.org/spec/UML/2.5

[57] B. P. Douglass, Doing Hard Time: Developing Real-time Systems with UML,
Objects, Frameworks, and Patterns. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1999.

113

http://dl.acm.org/citation.cfm?id=1926458.1926479
http://doi.acm.org/10.1145/2487766.2487768
http://ceur-ws.org/Vol-1503/05_pap_mierlo.pdf
http://www.disi.unige.it/person/ReggioG/UMLWORKSHOP/Barros.pdf
http://www.disi.unige.it/person/ReggioG/UMLWORKSHOP/Barros.pdf
http://www.therationaledge.com/content/jun{_}03/f{-}umlintro{_}db.jsp
http://www.therationaledge.com/content/jun{_}03/f{-}umlintro{_}db.jsp
http://www.omg.org/spec/UML/2.5

[58] M. Felici, “Sequence diagrams,” http://www.inf.ed.ac.uk/teaching/courses/
seoc/2011 2012/notes/SEOC08 notes.pdf, accessed: 2017-02-07.

[59] OMG, “OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1,” Object Management Group, August 2011. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1

[60] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[61] OMG, “OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1,” Object Management Group, August 2011. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1

[62] E. Compare, “Emf compare-userguide version 3.1.0.201506080946.” [Online].
Available: https://www.eclipse.org/emf/compare/overview.html

[63] D. Peters and D. L. Parnas, “Generating a test oracle from program
documentation: Work in progress,” in Proceedings of the 1994 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’94. New York, NY, USA: ACM, 1994, pp. 58–65. [Online]. Available:
http://doi.acm.org/10.1145/186258.186508

[64] M. Lenzerini, “Data integration: A theoretical perspective,” in Proceedings of
the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp.
233–246. [Online]. Available: http://doi.acm.org/10.1145/543613.543644

[65] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack,
“The design of a conceptual framework and technical infrastructure for model
management language engineering,” in Proceedings of the 2009 14th IEEE
International Conference on Engineering of Complex Computer Systems, ser.
ICECCS ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
162–171. [Online]. Available: http://dx.doi.org/10.1109/ICECCS.2009.14

[66] D. S. Kolovos, R. F. Paige, and F. Polack, “The Epsilon Object Language
(EOL),” in Proceedings of the Second European Conference on Model Driven
Architecture Foundations and Applications, ser. Lecture Notes in Computer
Science, vol. 4066. Springer International Publishing, 2006, pp. 128–142.

[67] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “Rigorous methods
for software construction and analysis,” J.-R. Abrial and U. Glässer, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. On the Evolution of OCL
for Capturing Structural Constraints in Modelling Languages, pp. 204–218.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2172244.2172257

[68] I. Ráth, G. Varró, and D. Varró, “Change-driven model transformations,”
in Model Driven Engineering Languages and Systems, 12th International
Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009. Proceedings,

114

http://www.inf.ed.ac.uk/teaching/courses/seoc/2011_2012/notes/SEOC08_notes.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc/2011_2012/notes/SEOC08_notes.pdf
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UML/2.4.1
https://www.eclipse.org/emf/compare/overview.html
http://doi.acm.org/10.1145/186258.186508
http://doi.acm.org/10.1145/543613.543644
http://dx.doi.org/10.1109/ICECCS.2009.14
http://dl.acm.org/citation.cfm?id=2172244.2172257

ser. Lecture Notes in Computer Science, A. Schürr and B. Selic, Eds., vol.
5795, Springer. Springer, 2009, pp. 342–356, springer Best Paper Award and
ACM Distinguished Paper Award Acceptance rate: 18%. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04425-0 26

115

http://dx.doi.org/10.1007/978-3-642-04425-0_26

	Abstract
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	Author's Declaration
	Introduction
	Overview of Model and Model Driven Engineering
	Research simulations: YCIL immune systems studies
	Motivation and Research Hypothesis
	Thesis Structure

	Background: Model Driven Engineering
	MDE Concepts and Terminologies
	Models and Metamodels
	Modelling Languages
	MOF: A Metamodelling Language
	MDE Guidelines
	Model Management

	MDE Tools
	Eclipse Modelling Framework (EMF)
	Papyrus
	Epsilon
	Summary

	MDE Benefits and Recent Challenges
	Benefits
	Challenges

	Chapter Summary

	EAE: Domain Analysis and Observation
	Introduction
	Domain Model Overview
	EAE Model Diagram
	Behavioural diagram

	EAE Domain Model
	The System-level Overview
	The System's and Modelling Perspectives
	The System Single-Entity Dynamics

	Analysis

	Analysis and Hypothesis
	Research Background
	Research Hypothesis
	Research Scope
	Research Methodology
	Analysis, Design and Implementation
	Research Model Approach

	Summary

	Naive Approach
	Introduction
	Outline
	Input Model - Activity Diagram
	Input Model Transformation Strategies

	Output Model - Class Diagram
	Transform CD to SD

	Process Automation
	Papyrus Tool
	EMF Compare

	Code Generation
	Evaluation and Critique
	Evaluating Correctness and Target-Realization
	Evaluating Efficiency
	Case study

	Critique
	Summary

	Second Approach
	Introduction
	Overview
	Source Model - State Diagram
	State diagrams Metamodel

	Target Metamodel - Structural diagram
	MDE on Target Metamodel
	Using Eclipse Modeling Framework to Model Target Metamodel

	Using Model Management and Epsilon to Query and Validate Model
	Epsilon Object Language (EOL) to Query our Model
	Epsilon Validation Language (EVL) to Validate our Model

	Code Generation
	Simulation
	Evaluation and Critique
	Approach Evaluation
	Limitation

	Summary

	Conclusion and Future Work
	Thesis Contributions
	Future Work
	Concluding Remarks
	Appendices

	Naive Approach
	AD to SD Transformation Rule
	AD to CD Transformation Rule
	CD to SD Transformation Rule

	Second Approach Transformation Rule
	SD to SD metamodel (Structure) Transformation Rule
	Transformation Rule for SD metamodel and AD to EAE Target Metamodel

	Bibliography

