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Abstract 

The Amazon hydrological cycle has intensified since approximately 1990, and yet 

long-term meteorological data from the region are limited, making it difficult to 

determine the cause of current variability. Proxy records can be used to reconstruct past 

climate, thus providing useful historical context for recent changes. This thesis focuses 

on the climate insights that can be gained from oxygen isotopes in tree rings (δ18OTR). 

The consistency of annual ring formation was tested first, as this is an important 

prerequisite for constructing a well-dated proxy record. Cedrela trees were found to 

form annual rings across most of the species’ natural range, but biannual rings in 

Suriname (Chapter 3). Next, new δ18OTR records were developed from Cedrela and 

seven other tree species from northern Bolivia. δ18OTR signals were shown to correlate 

between different species, and between sites large distances apart (<1000 km), 

indicating a large-scale environmental control on δ18OTR (Chapter 4). Following this, 

atmospheric back-trajectory modelling and basin-scale vapour transport analysis were 

used to confirm that rainout of heavy isotopes during moisture transport across the 

continent is the primary control on interannual δ18OTR signals in the western Amazon 

(Chapter 5). Finally, new Cedrela δ18OTR chronologies from Ecuador and Bolivia were 

developed. These records show an increase in δ18OTR from the early 1800s until 

approximately 1950, indicating a change in hydrological functioning over this period, 

with a reversal in the trend over the last 1–2 decades. The increase is most likely driven 

by a reduction in the fraction of incoming water vapour that rains out over the Amazon, 

which could be caused by a reduction in precipitation, or an increase in the volume of 

imported vapour. Overall, these results provide evidence for long-term changes in 

Amazon hydrology over the past 200 years, and make an important contribution to the 

field of tropical dendroclimatology. 
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Chapter 1: Introduction 

The Amazon basin in South America is the world’s largest watershed and forms a 

major component of the global hydrological (Richey et al., 1989, Salati et al., 1979) and 

carbon cycles (Pan et al., 2011). Estimates of annual precipitation averaged across the 

whole basin range from 1895–2322 mm (Costa and Foley, 1998) and mean annual 

Amazon River discharge to the oceans is around 200,000 m3s-1 (Callède et al., 2010). 

The Amazon is also home to the world’s largest tropical rainforest, which covers more 

than five million square kilometres and represents 40% of tropical forest worldwide 

(Aragão et al., 2014). This expanse of vegetation has been estimated to contain 16,000 

tree species (ter Steege et al., 2013) and store approximately 17% of global terrestrial 

carbon (Feldpausch et al., 2012, Cao and Woodward, 1998). The forest also provides an 

interface for extensive biosphere-atmosphere interactions, including exchanges of 

carbon, water, trace gases, biogenic aerosols and energy (e.g. Silva Dias et al., 2002), 

which in turn affect the functioning of the climate. For example, water recycling 

through evapotranspiration accounts for roughly 28% of regional precipitation, though 

there is a spatial gradient and the far southwest corner of the basin receives the highest 

proportion (~70%) of precipitation originating from within the basin (van der Ent et al., 

2010, van der Ent and Savenije, 2011).  

The Amazon forest is currently a major terrestrial carbon sink (Pan et al., 2011), 

though long-term monitoring has revealed that the strength of the sink is weakening 

over time (Brienen et al., 2015). Severe drought events have caused substantial carbon 

losses from the region. For example, the droughts in 2005 and 2010 are estimated to 

have driven carbon fluxes to the atmosphere of 1.6 and 1.1 Pg respectively (Phillips et 

al., 2009, Feldpausch et al., 2016). These estimates are in line with results from CO2 

vertical profile analysis, which indicate that such extreme negative precipitation 

anomalies may temporarily neutralise the Amazon carbon sink, through increased 

biomass burning and reduced forest productivity (Gatti et al., 2014), with potential 

consequences for global climate. Furthermore, forest logging and land-use change, 

driven by a growing demand for agricultural expansion, may exacerbate these climate 

impacts by increasing forest susceptibility to fire and droughts (Nepstad et al., 2008), 

and reducing evaporative recycling and thus precipitation downstream (Spracklen et al., 
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2012, Spracklen and Garcia-Carreras, 2015). For example, forest conversion to pasture 

reduces evaporative cooling, thus simultaneously warming and drying the local climate 

(Bonan, 2008). Indeed, the Amazon forest has been labelled a ‘tipping element’ in the 

Earth’s climate system, because climate-driven forest loss could possibly escalate if 

certain critical thresholds (e.g. in annual precipitation and dry season length) are 

surpassed (Lenton et al., 2008). The complex interactions between the forest and the 

climate require careful monitoring as anthropogenic pressures on the region increase, 

since perturbations to these highly interconnected systems could have important global 

implications. 

 

1.1 The Changing Amazon Hydrological Cycle 

Sea surface temperature (SST) anomalies in the ocean basins surrounding the 

Amazon are known to control precipitation variability (Garreaud et al., 2009). For 

example, the influence of interannual variation in Pacific SSTs, particularly the El 

Niño-Southern Oscillation (ENSO), on Amazon hydrology is well established (e.g. 

Kousky et al., 1984, Marengo, 1992, Ronchail et al., 2002 and references therein). 

During positive (negative) ENSO years anomalously warm (cool) SSTs in the 

equatorial Pacific increase (reduce) convection over the ocean, thus suppressing 

(enhancing) convection over the Amazon (e.g. Foley et al., 2002, Garreaud et al., 2009). 

This mechanism differs from the influence of Atlantic SSTs on Amazon hydrology, 

which has been recognised more recently and is thought to be of comparable magnitude 

to the Pacific influence (Yoon and Zeng, 2010). Warm (cool) SST anomalies in the 

tropical North Atlantic cause the northward (southward) displacement of the inter-

tropical convergence zone (ITCZ, a band of heavy precipitation which follows the 

thermal equator), therefore reducing (increasing) rainfall over the Amazon region (Yoon 

and Zeng, 2010, Zeng et al., 2008, Marengo et al., 2011). Changes to Pacific or Atlantic 

SSTs may therefore force changes to the functioning of the Amazon hydrological cycle.  

Evidence is amassing which suggests that Amazon hydrology is currently in a 

state of flux. Dry seasons are becoming longer and more severe, possibly driven by 

rising SSTs in the tropical North Atlantic (Fu et al., 2013, Marengo et al., 2011). 

Meanwhile a recent analysis of river flows and rain gauges indicates that wet season 
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precipitation has risen between 1990–2010, with increased wet season river fluxes and 

greater variability between wet and dry season moisture regimes (Gloor et al., 2013). 

This amplification of the Amazon hydrological cycle is consistent with a rise in the 

volume of moisture being transported into the basin and a switch to the cold phase of 

the Pacific Decadal Oscillation (PDO), a low-frequency SST mode with a similar spatial 

pattern to ENSO (Gloor et al., 2015). This shift reversed a trend of declining moisture 

import to the basin over the period 1976–1996 (Costa and Foley, 1999). The reversal in 

moisture transport trends illustrates the variability of the Amazon climate system and 

highlights a need for longer hydrological records to adequately assess on-going 

changes. 

Extreme drought and flood events in the Amazon have also tended to become 

more frequent in recent decades (Marengo and Espinoza, 2016). For example, there 

were major droughts in 2005, 2010 and 2015/16 (Marengo et al., 2008, Marengo et al., 

2011, Jiménez-Muñoz et al., 2016), while intense precipitation caused severe flooding 

in 2009 and 2012–2014 (Espinoza et al., 2013, Espinoza et al., 2014, Marengo and 

Espinoza, 2016). Droughts have the potential to cause increased tree mortality and 

associated carbon release (Phillips et al., 2009), and may also drive shifts in floristic 

composition, particularly in wet areas where species may be more sensitive to drought 

(Esquivel-Muelbert, 2017). On the other hand, floodplain species already living at the 

edge of their physiological limits may be susceptible to increases in the flood height or 

inundation length (Wittmann et al., 2004, Gloor et al., 2015). It follows that accurately 

projecting future changes in the frequency of extreme events is important for predicting 

how the forest will respond to anthropogenic climate change. 

Some modelling studies have suggested the Amazon may experience a substantial 

drying and consequential rainforest ‘dieback’ under future warming (e.g. Cox et al., 

2004, Huntingford et al., 2008), though these studies were based on a single general 

circulation model (GCM), which underestimates current Amazon wet season 

precipitation and overestimates dry season length (Cox et al., 2004). An analysis of 29 

GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble 

showed that temperature-driven increases in moisture convergence would rather 

increase precipitation over monsoon regions globally, including the South American 

monsoon domain (Kitoh et al., 2013). Another recent study, involving 36 CMIP5 GCMs 
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and focussing specifically on the Amazon basin, showed that while models simulate a 

large spread of trends in precipitation over the next century, precipitation seasonality is 

mostly projected to increase, following the current trend in observations (Boisier et al., 

2015). The increasing seasonality could reduce rainforest cover in regions where the dry 

season becomes longer than three months. However, there are concerns that current 

model ensembles could be underestimating the impact of drying in the Amazon, due to 

dry biases in the models (Boisier et al., 2015) and an inability to reproduce observed 

increases in dry season length since 1979 (Fu et al., 2013).  

It is also important to consider the spatial heterogeneity of future hydrological 

shifts. Models generally project an east-west divide, with stronger drying in the eastern 

Amazon, and a possible transition to seasonal forest in this region (Malhi et al., 2009, 

Duffy et al., 2015). This pattern is supported to an extent by remote sensing 

observations of precipitation and terrestrial water storage, which both show declines in 

the eastern Amazon since 2000 (Hilker et al., 2014). However, river records show a 

slightly different pattern, with basins in the northwest and centre of the Amazon 

showing an increase in runoff, while basins in the south are following a drying trend 

(Espinoza et al., 2009: analysed period 1974–2004, Gloor et al., 2015: analysed period 

~1980–2012). Using a novel water recycling network approach, Zemp et al. (2017) 

simulated a change pattern more in line with the river discharge data, with land-

atmosphere interactions driving increased forest instability and tree cover losses, 

predominantly over the south of the Amazon by the end of the 21st century. Given the 

current uncertainties in model forecasts, and the potential negative impacts of climate 

change, it is vital to develop a better understanding of the underlying controls on 

Amazon hydrology and the natural patterns of variability.  

The overarching aim of this thesis is to develop a more complete understanding of 

the Amazon hydrological cycle using a palaeoclimate approach. Although 

meteorological stations are scarce in this region, and there are few long-term 

instrumental climate records, proxy climate data may offer helpful insights (Boninsegna 

et al., 2009). For example, stable oxygen isotopes in tree-rings (δ18OTR) have recently 

been shown to record δ18O in precipitation (δ18OP) and be a good proxy for precipitation 

across the whole Amazon basin (Brienen et al., 2012). Reconstructions of historical 

climate using such proxy data could clarify whether the recent amplification of Amazon 
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hydrology is part of natural climatic variability, or linked to global climate change. In 

this chapter, an overview of the relevant literature for the thesis topic is provided 

(section 1.2). This will include an introduction to stable isotopes in the hydrological 

cycle (1.2.1), an overview of global patterns in δ18OP (1.2.2), a summary of the main 

controls on δ18OP over the Amazon (1.2.3), and a description of how δ18OP signals 

preserved in natural archives can provide valuable information on Amazon climate 

(1.2.4). The physiological (1.2.5) and biochemical (1.2.6) factors that influence the 

isotope signature stored in tree rings are described, and δ18OTR research in the Amazon 

to date is reviewed (1.2.7). The principle of uniformitarianism, which is fundamental to 

palaeoclimate reconstructions, is defined in section 1.3, with a discussion on why 

anthropogenic impacts need to be considered for the correct interpretation of δ18OTR 

chronologies. Section 1.4 sets out the project aims and the key research questions, and 

the structure of the whole thesis is outlined in section 1.5.  

 

1.2 Literature Review 

1.2.1 Isotopes in the hydrological cycle 

One way to gain a better understanding of the hydrological cycle is to use stable 

(i.e. non-radioactive) water isotopes (Galewsky et al., 2016). Isotopes are forms of the 

same element with different numbers of neutrons in the nucleus of the atom, and many 

elements have at least two. Given the difficulties of measuring isotope abundances 

directly, the isotope composition of a substance, such as water, is usually expressed 

using delta notation (δ). Isotope composition (in units of per mil, ‰) is given as the 

isotope ratio (R) in a sample relative to that in a standard reference material (e.g. Mook, 

2000): 

δ = ( Rsample

Rstandard
− 1)  × 1000    where    R =  abundance of the rare isotope

abundance of the common isotope
   (1) 

With an increase in the number of neutrons in the nucleus there is a corresponding 

increase in an element’s atomic mass, so different isotopes have slightly different 

chemical and physical properties. In particular, heavy isotopes form stronger bonds with 

other atoms than their light counterparts do, and they are also less mobile. These 

differences in behaviour between heavy and light isotopes result in mass-dependent 

isotope fractionation (Mook, 2000, Galewsky et al., 2016). Mass-dependent 
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fractionation (also called isotope discrimination) causes differences in the isotope 

composition of compounds before and after a chemical or physical reaction (Gat et al., 

2001). The symbol α is used to denote the fractionation factor, which can be defined as 

the ratio of isotope ratios in two pools of compounds (A and B, for the reaction AÆ B): 

αB/A = R(B)
R(A)

 (2) 

As isotope fractionation effects are small, α has a value close to 1. Therefore, 

fractionation may also be expressed as difference between α and 1: 

εB/A = (αB/A − 1) (3) 

where εB/A represents the enrichment or depletion of the rare isotope in pool B relative 

to pool A, and is usually given in units of per mil. 

Fractionation effects can be grouped into two categories: i) equilibrium 

(thermodynamic) fractionation during reversible reactions, and ii) kinetic fractionation 

during irreversible reactions, or as a result of slightly different diffusion coefficients 

(Mook, 2000). Equilibrium fractionation is controlled by temperature, with fractionation 

decreasing as temperatures become warmer (Bottinga and Craig, 1968, Majoube, 1971). 

This is because the difference between the amount of energy needed to react light and 

heavy isotopes becomes smaller as temperatures increase. The equation to describe the 

relationship between equilibrium fractionation (ε*) and temperature (T, in kelvin) can be 

written as follows (from Bottinga and Craig, 1968): 

ε∗ = 2.644 – 3.206 (103

T
) + 1.534 (106

T2 )         (4) 

Conversely, kinetic fractionation effects are temperature-independent. Most natural 

processes will involve multiple types of fractionation, though the magnitude of kinetic 

fractionation effects tends to exceed that of equilibrium fractionation effects (Gat et al., 

2001). 

Oxygen has three naturally occurring stable isotopes (16O, 17O and 18O), which 

combine with hydrogen to form the water isotopologues H2
16O, H2

17O and H2
18O. The 

rare heavy isotopologues of water (H2
17O and H2

18O) have higher binding energies and 

lower diffusivities than the abundant H2
16O form (Galewsky et al., 2016). These 

properties result in fractionation during phase changes and transport through the 

hydrological cycle, causing different natural reservoirs of water on Earth to have 
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different oxygen isotope compositions (δ18O; see Table 1.1). This makes it possible to 

trace water as it moves between these reservoirs (Gat et al., 2001, Mook, 2000).  

Figure 1.1 shows a simple schematic of the fractionation processes that occur 

during evaporation, condensation and precipitation over the ocean (modified from Fig. 

15 in Craig and Gordon, 1965). First, temperature-dependent equilibrium fractionation 

occurs during evaporation from the surface of the ocean into a very thin boundary layer 

of saturated air at the liquid/air interface (step 1 in Fig. 1.1). The water vapour that 

forms is isotopically lighter (i.e. depleted) relative to the liquid source water 

(Dansgaard, 1964). Water molecules then move via molecular diffusion through the 

unsaturated diffusive layer (step 2 in Fig. 1.1). Kinetic fractionation occurs here, 

because the lighter vapour molecules diffuse faster than the heavier vapour molecules. 

Kinetic fractionation is not affected by temperature but rather determined by the isotope 

composition of atmospheric water vapour and the relative humidity (RH) of the ambient 

air. Equilibrium and kinetic fractionation effects together determine the isotope 

composition of the evaporative flux (δ18OE). Craig and Gordon (1965) developed a 

model (henceforth referred to as the Craig-Gordon model) to describe the fractionation 

processes during evaporation as a function of environmental parameters. The model, 

simplified by Gat et al (2001; equation 3.4), can be written: 

δ18OE = (α∗×δ18OL)−(RHN∗δ18OV)+ε∗+εk
(1−RHN)−εk

  (5) 

where α*
 is the equilibrium fractionation factor between vapour and liquid water, δ18OL 

is the isotope composition of the liquid water, RHN is the relative humidity, normalised 

to account for temperature, δ18OV is the isotope composition of atmospheric water 

vapour, ε*is the enrichment due to equilibrium fractionation (equal to α* – 1), and εk is 

the enrichment due to kinetic fractionation (in this case diffusion). The model assumes 

that atmospheric water vapour is in isotopic equilibrium with the source water at the 

liquid/air interface, that both water bodies are well mixed, and that water volume 

remains constant over time.  

The evaporative flux is transported by turbulent diffusion through the free 

atmosphere (step 3 in Fig. 1.1). It is usually assumed that there is no isotope 

fractionation during this turbulent transport of moisture (Gat et al., 2001, Galewsky et 

al., 2016). As air masses rise and cool, clouds form, and further isotope fractionation 

takes place. In-cloud isotope processes are complex (e.g. Ciais and Jouzel, 1994, Risi et 



 

10 

 

al., 2008), though fractionation during condensation has the strongest effect on the 

isotope composition of precipitation (Dansgaard, 1964). Since the air inside a cloud is 

saturated, the phase change from vapour to liquid is affected by equilibrium 

fractionation, which is dependent on the temperature of the cloud and thus largely 

determined by the altitude of condensation (step 4 in Fig. 1.1). The condensate that 

forms is isotopically heavier (i.e. enriched) relative to the surrounding water vapour 

(Dansgaard, 1964). Finally, water droplets coalesce and fall to the ground, becoming 

further isotopically enriched as they fall (step 5 in Fig. 1.1). This is due to partial re-

evaporation and diffusive exchange with atmospheric water vapour. These fractionation 

processes are kinetic, since the rain is falling through the air and there is no time for 

isotope equilibration to occur. Therefore, fractionation during precipitation is affected 

by δ18OV and RH, but not influenced by temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.1 – The Craig-Gordon model of isotope effects in the hydrological cycle. Numbers indicate 
evaporation (1), molecular diffusion (2), turbulent diffusion (no fractionation, 3), condensation (4) and 
precipitation (5) over the ocean. Equilibrium (α*) and kinetic (αk) fractionation effects are indicated. α* is 
controlled by temperature (T), while αk is influenced by relative humidity (RH) and the isotope 
composition of atmospheric vapour (δ18OV). Example oxygen isotope values are given for seawater 
(δ18OSW), the evaporative flux (δ18OE), cloud condensate (δ18OCLD) and precipitation (δ18OP). Modified 
from Fig. 15 in Craig and Gordon, 1965 and Fig. 3.4 in Gat et al., 2001. 
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1.2.2 Global patterns in precipitation isotopes 

The fractionation processes outlined above affect the isotope composition of 

precipitation (δ18OP), which is of particular relevance to this thesis. In addition, there are 

four large-scale effects that cause considerable spatial variation in δ18OP across the 

globe: the latitude effect, the amount effect, the continental effect and the altitude effect. 

These effects are described in detail by Rozanski et al. (1993), and will be briefly 

summarised here. First, the latitude effect is the observed reduction in δ18OP with 

increasing latitude. This is because the tropical oceans are the primary global source of 

atmospheric water vapour, and moisture is transported from here towards the poles. Air 

masses cool during poleward transport, causing water vapour to condense, and heavy 

isotopes to be progressively removed (Gat et al., 2001). Furthermore, temperature-

dependent equilibrium fractionation effects increase as temperatures decline at higher 

latitudes, thus enhancing the latitude effect.  

The amount effect refers to the negative relationship between the amount of rain 

in a single rainfall event and the δ18OP of the rainfall, and is particularly important in the 

tropics (Dansgaard, 1964). Risi et al. (2008) outlined the main physical processes 

contributing to this phenomenon: first, as explained above, the temperature, and thus the 

altitude of condensation, affects the degree to which the condensate is enriched through 

equilibrium fractionation. Next, kinetic fractionation occurs as raindrops fall from the 

cloud to the ground, through re-evaporation from the falling water droplets and isotope 

exchanges between the liquid water and atmospheric vapour. These processes tend to 

further enrich the falling rain, but are less effective during strong precipitation events, 

since rain falls more quickly and RH is high. Conversely, during light precipitation 

events raindrops fall more slowly through less humid air, and kinetic fractionation 

effects are stronger, thus raindrops become more isotopically enriched. This explains 

the observed inverse relationship between δ18OP and local precipitation amount. 

Finally, the continental effect and the altitude effect can be considered together as 

they are effectively controlled by the same mechanism (Rozanski et al., 1993). The 

continental effect refers to the tendency for δ18OP to become more depleted with 

increasing distance from the coast, while the altitude effect is the reduction in δ18OP that 

occurs with increasing surface elevation. As described in section 1.2.1, temperature-

dependent equilibrium fractionation effects within a raincloud result in the heavier  



 

12 

 

Table 1.1 – Typical δ18O values in some of the natural reservoirs of water in the global hydrological 
cycle. Values come from Fig. 7.9 in Mook (2000). 

 

 

 

isotopologues of 

water condensing 

and raining out 

first (Dansgaard, 

1964). Therefore, 

successive precipitation events during the transport of moisture over continents, or as air 

masses rise and cool during orographic uplift, result in the cumulative depletion of 

water vapour isotopes remaining in the atmosphere. Therefore, precipitation further 

inland, or at higher altitudes, will tend to have lower δ18OP values.  

 

1.2.3 Isotopes in Amazon precipitation  

Having reviewed the large-scale effects on δ18OP across the globe, the most 

important processes controlling δ18OP in the Amazon basin will now be discussed. 

Amazon δ18OP are influenced by three main factors: i) local amount effects, ii) 

continental rainout, and iii) precipitation recycling. These factors will each be 

discussed, and their relative importance in the Amazon highlighted. First, as explained 

in section 1.2.2, the amount effect has an important influence on δ18OP across the 

tropics, including the Amazon (Dansgaard, 1964, Rozanski et al., 1993). Models show 

that local amount effects are strongest over the tropical Atlantic Ocean, which is the 

major source of water vapour transported into the Amazon (Stohl and James, 2005, 

Drumond et al., 2014), and its control on δ18OP declines inland with increasing distance 

from the moisture source (Vimeux et al., 2005, Vuille et al., 2012). It should be noted 

that there is often a lack of clarity in the literature between the amount effect described 

here, and the large-scale inverse relationships between δ18OP and Amazon precipitation 

caused by continental rainout, which is described in the next paragraph. Henceforth, to 

avoid ambiguity, the phrase ‘local amount effects’ is used to refer to the amount effect 

in this thesis. 

Natural reservoir δ18O (‰) 

Lake Chad +8 to +15 

Dead Sea +2 to +5 

Arctic sea ice –3 to +3 

Ocean water –2 to +1 

Subtropical/tropical zone precipitation –8 to –2 

Temperate zone precipitation –16 to –4 

Alpine glaciers –18 to –11 

Greenland glaciers –39 to –25 

Antarctic ice –60 to –25 
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The second important factor influencing δ18OP in the Amazon is continental 

rainout, which is sometimes also referred to as Rayleigh rainout, or simply rainout. A 

schematic representation of this process is shown in Figure 1.2. The gradual removal of 

moisture from air masses during transport over the basin causes a gradient in δ18OP from 

the east to the west of the Amazon (Salati et al., 1979). The more rainout that occurs 

during moisture transport, the more isotopically light the rainfall at the western margins 

of the basin will be, often with little influence of the local climate at the site of 

condensation (e.g. Vimeux et al., 2005, Villacís et al., 2008). Indeed, the influence of 

rainout on δ18OP becomes stronger with increasing distance from the coast, which 

contrasts with the influence of local amount effects on Amazon δ18OP (see above). The 

gradual isotope depletion of atmospheric vapour over the course of multiple 

precipitation events can be mathematically described using Rayleigh distillation 

equations (Dansgaard, 1964, Salati et al., 1979). Due to their relative simplicity, and 

their ability to adequately describe most variability in δ18OP in the Amazon, Rayleigh 

distillation models have been employed in many studies over the past few decades (e.g. 

Grootes et al., 1989, Pierrehumbert, 1999, Gonfiantini et al., 2001, Vimeux et al., 2005, 

Samuels-Crow et al., 2014, Hurley et al., 2016). Further details on Rayleigh distillation 

are provided in Chapters 5 and 6.  

A third important control on δ18OP in the Amazon is precipitation recycling 

through vegetation. At the global scale, transpiration contributions to terrestrial water  
 

Figure 1.2 – Continental rainout and precipitation recycling over the Amazon. Water vapour is 
transported into the Amazon basin from the tropical North Atlantic (TNA). During moisture transport 
over the basin precipitation events preferentially remove heavy isotopes from the atmosphere (1), 
resulting in a gradient in the isotope composition of precipitation (δ18OP) from east to west across the 
basin. Non-fractionating transpiration returns heavy isotopes back to the atmosphere (2), thus reducing 
the effective rainout and weakening the δ18OP gradient. Example oxygen isotope values in the ocean 
source water, atmospheric vapour, precipitation and transpired water are shown. 
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fluxes remain uncertain, but may be in the range of 35–80% (Jasechko et al., 2013, 

Coenders-Gerrits et al., 2014). Steady-state transpiration, which is generally assumed to 

be reached over longer timescales, such as over the course of a wet season (Jasechko et 

al., 2013; Welp et al., 2008; Yakir and Wang, 1996), has been shown to be isotopically 

non-fractionating (Flanagan and Ehleringer, 1991). Therefore, when plants transpire and 

return water vapour to the atmosphere that has the same isotope composition as 

precipitation, the effective rainout of heavy isotopes is reduced, thus weakening 

continental gradients in δ18OP (see Fig. 1.2). Indeed, Salati et al. (1979) measured δ18OP 

along an east-west gradient in the Amazon and observed that the inland gradient was 

weaker than that observed over Europe due to the significant contribution of water 

transpired through tropical forest, particularly during the dry season. Running a 

precipitation-recycling model with two different datasets, Eltahir and Bras (1994) 

estimated recycling ratios (i.e. the proportion of rain originating from evaporation 

within the region) of 25% and 35% for the Amazon. Other studies support these 

findings, with van der Ent et al. (2010) calculating that approximately 28% of 

precipitation in the Amazon originated from evapotranspiration within the region, which 

is in close accordance with Bosilovich and Chern’s (2006) estimate of 27.2%. The 

precipitation-recycling ratio increases with distance from the Atlantic coast, and may be 

up to 70% in the southwest Amazon (van der Ent and Savenije, 2011). Finally, although 

transpiration is the dominant process by which water is returned to the atmosphere in 

the Amazon, evaporation from open water bodies and partial re-evaporation of 

rainwater trapped in the canopy (both fractionating processes, i.e. the evaporative flux is 

isotopically depleted relative to the source) are also important (Martinelli et al., 1996, 

Victoria et al., 1991). Henderson-Sellers et al. (2002) illustrate that the correct 

partitioning of fractionating evaporation relative to non-fractionating transpiration is 

necessary for accurate representation of Amazon δ18OP in GCMs. 

 

1.2.4 Oxygen isotope proxy records 

Instrumental climate records are temporally and spatially limited, particularly 

across regions of South America (Boninsegna et al., 2009, Rosenblüth et al., 1997, 

Villalba et al., 2003). In order to assess recent climatic changes in the context of historic 

variability it is helpful to extend these records further back in time, which can be done 
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using palaeoclimate proxies. Bradley (2011) reviewed the prerequisites for 

reconstructing palaeoclimate from proxy data. In summary, these include: i) the ability 

to establish an precisely dated chronology, which will usually require sufficient sample 

replication, ii) the possibility to sample at high (e.g. annual) resolution, iii) a good 

understanding of how climate influences the proxy signal, iv) confidence that the 

climate-signal relationship has been uniform over time (i.e. the principle of 

uniformitarianism, for further details see section 1.3), and v) an awareness of the 

different timescales of variation captured in the proxy signal. However, in reality 

different proxy archives have different strengths and weaknesses, and may not 

necessarily meet all of these requirements. 

A variety of archives from South America have been shown to preserve δ18OP, 

including ice cores (e.g. Thompson et al., 1995, Hoffmann, 2003, Vimeux et al., 2009, 

Thompson et al., 2013, Hurley et al., 2016), speleothems (e.g. Cruz et al., 2009, Reuter 

et al., 2009, Strikis et al., 2011, Kanner et al., 2013, Moquet et al., 2016, Novello et al., 

2016), lake and palaeo-lake sediments (e.g. Baker et al., 2001, Wolfe et al., 2001, Bird 

et al., 2011a), marine sediments (Maslin and Burns, 2000) and also peat bogs (Skrzypek 

et al., 2011), which have all previously been used to reconstruct changes in climate 

across the Amazon. These records are a valuable source of information, and may 

provide insights on palaeoclimate over very long periods of time. For example, 

speleothems from southern Brazil have been used to reconstruct variation in convective 

activity over South America controlled by the precessional insolation cycle, which has a 

period of approximately 26,000 years (Cruz et al., 2005). However, there are also 

specific problems associated with each of these proxy records, which are outlined 

below. 

First, replication may be limited, either due to the challenge of finding samples 

(e.g. speleothems are relatively rare), or because of the substantial cost and effort 

required to collect the samples, particularly ice cores (Bradley, 2011). In addition, 

several of these proxies may have fairly coarse or variable temporal resolution, for 

example, the resolution of isotope sampling in speleothems or peat can be as low as 40 

or 50 years (e.g. Strikis et al., 2011, Skrzypek et al., 2011). While layer counting is 

possible in some archives, in the absence of clear annual stratification dating must be 

achieved using other methods, including the construction of age models, which are 
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subject to a degree of uncertainty (e.g. Thompson et al., 1998, Hardy et al., 2003, 

Kanner et al., 2013, Bird et al., 2011b). Furthermore, it can sometimes be difficult to 

isolate the source water δ18O signal from post-depositional processes, limiting the 

conclusions that can be drawn (Cruz et al., 2005, Hoffmann, 2003, Pierrehumbert, 

1999). For example, the δ18O of speleothem calcite is affected by the isotope 

composition of drip water and modified by temperature-dependent fractionation, which 

can only be disentangled by analysing drip water preserved in fluid inclusions (e.g. van 

Breukelen et al., 2008). Similarly, ice-cores are affected by post-depositional processes 

during firnification, including evaporative enrichment at the surface and percolation of 

melted water through older ice, thus smoothing the signal (Grootes et al., 1989). Hardy 

et al. (2003) note that ice cores may be seasonally biased as they only preserve the 

signal during periods of net accumulation (i.e. the wet season). For instance, they 

estimate that just two thirds of the annual snowfall on the Sajama ice cap in Bolivia 

accumulates on the summit, with the rest lost due to melting and wind scour. 

Furthermore, reductions in wet season precipitation during extreme ENSO events may 

result in zero net annual accumulation, thus limiting the ability of ice cores to record 

these important climate anomalies. Other problems include the fact that ice cores are 

biased to high elevation sites, which are likely to be influenced by the altitude effect 

(see section 1.2.2), and tropical ice sheets are also under threat from anthropogenic 

warming (Thompson et al., 2000, Thompson et al., 2006). 

More recently, tree-ring cellulose has been identified as another useful tropical 

δ18OP archive (Brienen et al., 2012, Ballantyne et al., 2011). Cellulose is used because it 

is immobile and produces a less noisy signal than lignin or whole wood (Gray and 

Thompson, 1977). Although it was once widely believed that tropical trees do not form 

annual growth rings due to the lack of temperature and daylight seasonality at low 

latitudes (e.g. Whitmore, 1998), at least 230 tropical tree species are now known to 

form demonstrably annual rings, and this number is continuing to rise with the 

expansion of tropical dendrochronology (Brienen et al., 2016). Rings can form in 

tropical trees that experience either an extreme dry (Dünisch et al., 2002) or an extreme 

wet (i.e. flooded) period (Worbes, 1995, Worbes and Junk, 1989), which both result in 

cessation of cambial growth. Tree-ring samples are relatively cheap and quick to 

collect; so, adequate replication is easily attainable. Furthermore, many species known 
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to form annual rings are ubiquitous across the Amazon basin, reducing the geographic 

limitations found with other archives. In sites where rings are known to be annual, 

dating can be achieved by simple ring counting and crossdating ring width (i.e. 

Douglass, 1941, Stokes and Smiley, 1968), or isotope measurements, between samples. 

Tree-ring records are likely to be subject to seasonal biases as δ18OP signals are only 

preserved during the period of tree growth, for example, Cedrela odorata from the 

Amazon primarily record wet season δ18OP (Brienen et al., 2012). However, once 

cellulose has formed the signal is retained and does not degrade, as may sometimes 

occur with ice cores. Finally, tree-ring δ18O analysis can be conducted at annual 

resolution and higher, with some studies measuring δ18O in sections only a few hundred 

micrometres wide to evaluate seasonal variability (e.g. Ohashi et al., 2016). One 

drawback of using tree-ring records is that tree lifespan may limit the length of 

palaeoclimate reconstructions, unless sufficient well-preserved wood can be found to 

extend the reconstruction back in time. In the tropics trees are widely thought to reach a 

maximum of 400–500 years old (Worbes and Junk, 1999), though the mean maximum 

age of tropical trees estimated by counting annual rings is 207 years (Brienen et al., 

2016). However, some studies have reported finding trees much older than this (e.g. 

Chambers et al., 1998). 

As with other proxy records, it is vital to have a mechanistic understanding of the 

controls on variation in Amazon tree-ring δ18O (δ18OTR), and whether they may have 

changed over time, before δ18OTR records can be used to reliably reconstruct 

palaeoclimate (see section 1.3). The δ18O signature recorded in cellulose reflects the 

isotope composition of source water taken up by the plant, modified, to a greater or 

lesser extent, by plant physiology (Roden et al., 2000). Climate signals can be imprinted 

in δ18OTR either by an influence on source water δ18O, or by affecting leaf-level 

enrichment (McCarroll and Loader, 2004). In order to correctly interpret δ18OTR records 

it is necessary to develop a detailed understanding of how the δ18O signal alters between 

water uptake and cellulose formation. The modification can be separated into 

physiological and biochemical fractionation effects (Sternberg, 2009), which will be 

described in detail in the sections that follow. 
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1.2.5 Physiological effects on δ18OTR 

Figure 1.3 shows the key processes that affect the δ18OTR signal (modified from 

Fig. 1 in Roden et al., 2000). First, precipitation (step 1 in Fig. 1.3) determines the 

isotope composition of the source water available to the tree in the top layers of soil. 

Next, water uptake and stem transport (steps 2 & 3 in Fig. 1.3) are non-fractionating 

processes so water entering the leaf has the same isotopic signal as the source/stem 

water (δ18OS; White et al., 1985). In the leaf, preferential transpiration of isotopically 

light water through the stomata leads to enrichment at the site of evaporation (step 4 in 

Fig. 1.3; Roden et al., 2000, Barbour et al., 2004). The enrichment of the evaporative 

pool inside the leaf (δ18OE) has been described using the Craig-Gordon model (Eqn. 5), 

since modified to include the effects of a boundary layer at the leaf surface and 

diffusion through the stomata (Craig and Gordon, 1965, Dongmann et al., 1974,  

Figure 1.3 – Processes affecting the oxygen isotope composition of cellulose (δ18OTR). Numbers 
indicate precipitation (1), non-fractionating uptake of source water (2), water transport to the leaf (3), 
enrichment at the site of evaporation (4), the Péclet effect (5), enrichment during synthesis of 
carbohydrate molecules in the leaf (6), the transport of carbohydrates to the stem (7) and oxygen atom 
exchange with stem water in phosphate recycling reactions during cellulose synthesis (8). Important δ18O 
pools are labelled, including precipitation (δ18OP), source/stem water (δ18OS), water at the site of 
evaporation in the leaf (δ18OE), bulk leaf water (δ18OL) and synthesised carbohydrates (δ18OCARB). Finally, 
ei and ea represent the intercellular and ambient vapour pressures respectively. Modified from Fig. 1 in 
Roden et al. (2000).  
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Farquhar and Lloyd, 1993, Sternberg, 2009): 

δ18OE =  ε∗ + ( δ18OS +  εk)(ei−ea
ei

) + δ18OV (ea
ei

) (6) 

In this equation, hereafter referred to as the Dongmann model, ε* represents the 

enrichment at the site of evaporation due to equilibrium fractionation, during the phase 

change from liquid to vapour (NB: ε*= α* – 1). This process is dependent on the 

temperature (T) of the leaf, though the effect of T is relatively small (Majoube, 1971). 

In the second term of the model, δ18OS represents the isotope composition of the 

source/stem water, and εk is the enrichment through kinetic fractionation during 

molecular diffusion through the stomata and the leaf boundary layer (NB: εk = αk – 1; 

Barbour and Farquhar, 2000, Barbour et al., 2001, Roden et al., 2000). In the third term, 

δ18OV is the isotope composition of atmospheric vapour. The second and third terms are 

strongly influenced by RH, which determines the difference between the intercellular 

(ei) and ambient (ea) vapour pressures (i.e. the leaf-to-air vapour pressure difference). 

Under humidity-controlled conditions RH decreases with increasing T. RH is inversely 

related to δ18OE, thus when RH is low (high), ei−ea
ei

 is high (low) and thus δ18OE is more 

(less) enriched through kinetic fractionation effects, while ea
ei

 is low (high) and thus 

δ18OV (which would tend to have a depleting effect) has a weaker (stronger) influence 

on δ18OE. 

Flanagan and Ehleringer (1991) observed that the above model overestimated leaf 

water enrichment. This is because the Dongmann model only considers advective 

transport of water and its isotopes, however, the rate of diffusive backflow of water 

from the site of evaporation into the rest of the leaf is also important. The extent to 

which δ18OE affects bulk leaf water isotope composition (δ18OL) depends on the ratio 

between the advective transport rate and diffusive transport rate, which is called the 

Péclet number (ρ; step 5 in Fig. 1.3; Farquhar and Lloyd, 1993). For rate of water loss 

via evapotranspiration through the stomata (ET, in kg m-2 s-1), and the effective path 

length (L, in m) for advection through the leaf veins, the Péclet number can be 

calculated: 

ρ =  ET × L
C × D

 (7) 

where C is the concentration of water (in kg m-3) and D is the diffusivity of H2
18O in 

water (in m2 s-1; D=2.275×109 at 25 °C; Easteal et al., 1984). A low Péclet number 
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means that diffusive backflow from the evaporative site is important, while a large 

number means that diffusive back transport is not important (e.g. Barbour et al., 2004). 

δ18OL can then be modelled as a function of δ18OS, δ18OE and the Péclet number (Eqn. 3 

in Sternberg, 2009): 

δ18OL =  [(1 − (1− e−ρ

ρ
)) ×  δ18OS] + [(1− e−ρ

ρ
)  ×  δ18OE] (8) 

Plants respond to variation in local T and RH by modulating their stomatal conductance, 

which in turn affects the rate of ET and thus the Péclet number (Barbour et al., 2000, 

Barbour and Farquhar, 2000, Cernusak and Kahmen, 2013). Therefore, in addition to 

the effects on fractionation described above, T and RH are inversely related to δ18OL via 

their influence on ET. When RH is low (high), stomatal conductance is reduced 

(increased), ET and thus the Péclet number are low (high), resulting in a higher (lower) 

δ18OL. However, subsequent biochemical reactions may prevent the δ18OL signal from 

being transferred to cellulose (e.g. Treydte et al., 2014). 

 

1.2.6 Biochemical effects on δ18OTR 

The δ18OL signal is not directly recorded in tree rings but is first modified via 

biochemical fractionation effects during the synthesis of carbohydrates and then 

cellulose (Roden et al., 2000). The carbohydrates produced during photosynthesis are 

enriched in δ18O by approximately 27 ‰ relative to the surrounding leaf water (step 6 in 

Fig. 1.3; Sternberg, 2009, Yakir and DeNiro, 1990): 

δ18OCARB =  δ18OL + 27 ‰ (9) 

where δ18OCARB is the δ18O of the synthesized carbohydrate molecules. The enrichment 

occurs through isotope fractionation during the hydration of carbonyl groups in the 

Calvin cycle (Sternberg and DeNiro, 1983). Furthermore, experiments have proven that 

δ18O in synthesised carbohydrates are determined by δ18OL only, and are not affected at 

all by the δ18O of CO2 taken up by the plant (Deniro and Epstein, 1979). The 

carbohydrates are then transported to the stem for cellulose synthesis (step 7 in Fig. 

1.3). 

Oxygen exchange between carbohydrates and the water containing them is 

important in determining the final isotope signature recorded in cellulose (Roden et al., 

2000). A recent study suggested that exchange of oxygen atoms with unenriched stem 
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water during phloem loading in conifers could contribute to the observed reduction in 

δ18O in phloem sugars relative to those in the leaf (Gessler et al., 2013). However, no 

such decrease was observed for two deciduous broadleaf species (Fagus and Quercus) 

in the same study. Oxygen exchange predominantly occurs during triose phosphate 

recycling during cellulose synthesis (step 8 in Fig. 1.3; Hill et al., 1995). A proportion 

of the oxygen atoms in the carbohydrate precursors re-exchange with the local stem 

water (δ18OS), causing some decoupling of the δ18OTR signal from that of the enriched 

leaf water, effectively reinforcing the source water isotope signal. The final δ18OTR 

value can therefore be modelled as (Eqn. 7 in Sternberg, 2009): 

δ18OTR =  ϕ ×  (δ18OS + 27) + (1 − ϕ)(δ18OCARB) (10) 

where ϕ represents the fraction of carbohydrate δ18O that exchanges with local stem 

water during cellulose synthesis, on average 42% (Roden et al., 2000). Work has shown 

that ϕ is positively related to the turnover time of non-structural carbohydrates (Song et 

al., 2014). This may be because more carbohydrate molecules pass through the triose 

phosphate recycling pathway when turnover time is high, or due to another biochemical 

mechanism that has not yet been accounted for (Song et al., 2014). Furthermore, 

Cheesman and Cernusak (2016) recently suggested that ϕ might be inversely related to 

variation in RH. They measured leaf and branch cellulose δ18O in eucalypts growing 

along an aridity gradient and found that while leaf cellulose δ18O became less enriched 

relative to source water with increasing RH, branch cellulose showed little or no 

variation. Increasing oxygen atom exchange between cellulose precursors and 

unenriched stem water with increasing dryness masked the influence of RH on branch 

cellulose δ18O. This work has cast doubt on the ability of cellulose to record interannual 

variation in local climate (i.e. T and RH), but supports the interpretation of δ18OTR as a 

reliable record of source water δ18O (Voelker and Meinzer, 2017). 

 

1.2.7 δ18OTR research in the Amazon 

Due to the misconception that tropical trees do not form annual growth rings, 

there have been relatively few dendrochronological studies in the tropics in comparison 

with temperate regions (International Tree-Ring Data Bank, ITRDB, 2015), and tree-

ring isotope studies are even scarcer. The first study analysing δ18O in tropical trees 

from South America was by Evans and Schrag (2004), who measured δ18O at high-
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resolution in a Prosopis sp. tree from a coastal plantation in Peru. Although the tree did 

not form clear annual rings, the authors associated a strong excursion of approximately 

8 ‰ in the isotope data to the 1997/98 ENSO event, thus highlighting the sensitivity of 

cellulose δ18O from Peru to a pantropical climate oscillation. Subsequently, Ballantyne 

et al. (2011) analysed δ18O in annual tree rings of Tachigali myrmecophila, C. odorata 

and Polylepis tarapacana from Brazil, Peru, and Argentina respectively. They identified 

negative relationships between δ18OTR and regional precipitation, though since the 

authors only analysed one individual from each site, it was not possible to develop 

robust climate reconstructions from the data.  

More recently, Brienen et al. (2012) developed a δ18OTR chronology spanning 

1901–2001 from eight C. odorata trees from a single site in northern Bolivia. The 

δ18OTR record was found to be significantly anticorrelated with precipitation over the 

whole Amazon basin during the wet season, and with Amazon River discharge 

measured at Óbidos (Pearson correlation coefficients >0.5), which integrates 

precipitation over approximately 80% of the Amazon basin (Callède et al., 2004). 

Meanwhile, local environmental variables had little influence on the δ18OTR signal. The 

authors hypothesised that the negative relationship with whole-basin precipitation was 

driven by rainout of heavy isotopes during moisture transport across the basin 

determining δ18OP (i.e. the continental effect, sections 1.2.2 & 1.2.3), with this signal 

being transferred to the tree rings.  

In another recent study Volland et al. (2016) developed a well-replicated 

chronology from Cedrela montana trees growing in the mountain rainforest of southern 

Ecuador. Trees here were also shown to record δ18OP, though there was more variability 

between individual trees than in the Brienen et al. (2012) study. Volland et al. (2016) 

related δ18OTR to precipitation over the Andes and found negative associations, but did 

not test for relationships with precipitation over a larger area. The fact that δ18OTR 

records from two different sites in the Amazon primarily record the isotope signature of 

source water is an important finding, and illustrates the potential for δ18OTR to be used 

for high-resolution palaeoclimate reconstructions in the region. However, both Brienen 

et al. (2012) and Volland et al. (2016) also report strong positive relationships between 

SSTs in the ENSO region of the Pacific and δ18OTR, which could indicate a remote 

control on the signal, which is independent of the direct effect of precipitation on 
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δ18OTR. Thus, before δ18OTR can be reliably used to reconstruct climate, a deeper 

understanding of the mechanisms driving Amazon δ18OTR-climate relationships is 

required, beyond that suggested by correlation analyses.  

 

1.3 The Principle of Uniformitarianism 

Palaeoclimate reconstructions from tree rings rely on the principle of 

uniformitarianism, which is the assumption that relationships between climate and 

proxy data are constant over time (e.g. Speer, 2010). However, anthropogenic impacts 

on the environment have likely resulted in a violation of this principle. Although δ18OTR 

have been shown to be strongly related to precipitation over the Amazon (Brienen et al., 

2012), the δ18O signal recorded in cellulose is in fact very complex, and integrates 

information across different hydrological and plant physiological processes, potentially 

hindering the interpretation as a direct proxy for basin-wide rainout. For example, 

changes in the environmental conditions during evaporation from the ocean surface (e.g. 

Craig and Gordon, 1965, Pfahl and Sodemann, 2014), water recycling during moisture 

transport (e.g. Sturm et al., 2007), the degree of soil evaporation before plant water 

uptake (e.g. Kanner et al., 2014), and the various factors influencing plant physiology 

(e.g. Roden et al., 2000) could all add noise to the δ18OTR signal. It is therefore 

important to be aware of any trends in these various influences, in order to correctly 

interpret δ18OTR from the Amazon as a proxy for δ18OP and rainout processes over the 

basin.  

The first factors to consider are changes in the location of, and conditions at, the 

oceanic origin of moisture. Surface seawater salinity measurements have been used to 

infer spatial variation in seawater δ18O across the globe, with the highest values in the 

tropical and subtropical Atlantic (LeGrande and Schmidt, 2006). A change in 

atmospheric circulation patterns could possibly cause a change in the location of the 

primary moisture source and thus affect the δ18O of source water, and although 

modelling work suggests this is not an important source of interannual variability in 

δ18OP over the Andes, for which the Amazon is the main source of moisture (Vuille et 

al., 2003), long-term changes in ocean δ18O could possibly affect δ18OTR over longer 

timescales. Environmental conditions during evaporation from the ocean are also 
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important, as shown in the Craig-Gordon model (Fig. 1.1). For example, the increase in 

SSTs over the past few decades and longer (Stocker et al., 2013) will have reduced 

isotope fractionation during evaporation (Mook, 2000), though the effect of this on 

δ18OV is likely to be small (Majoube, 1971). Changes in RH at the ocean origin have 

also been observed to affect precipitation isotopes (Aemisegger et al., 2014, Pfahl and 

Sodemann, 2014), though in general RH over the oceans has remained relatively 

constant with increasing global temperatures (Hartmann et al., 2013). 

Deforestation and increasing atmospheric CO2 may have altered surface moisture 

fluxes in the Amazon and could thus have affected the δ18OTR signal. Lathuillière et al. 

(2012) observed that deforestation in Mato Grosso, Brazil, reduced evapotranspiration 

from forest by a quarter between 2000 and 2009 alone. Furthermore, rising atmospheric 

CO2 may have led to reductions in transpiration fluxes over the Amazon, by reducing 

stomatal conductance (de Boer et al., 2011a, Keenan et al., 2013). Reductions in the 

ratio of non-fractionating transpiration versus fractionating evaporation would result in 

steeper continental gradients in δ18OP as the effective rainout volume is higher when 

moisture recycling is reduced (see Fig. 1.2; Salati et al., 1979). However, it should also 

be noted that most deforestation to date has been along the southern border of the 

Amazon rainforest (Hansen et al., 2013), and approximately 80% of the original forest 

remains intact (Davidson et al., 2012). Therefore, deforestation is not yet expected to 

have had much impact on recycling over the core of the basin.  

The importance of evaporation from the soil prior to plant water uptake should 

also be considered, and will be briefly discussed here. Evaporation is a fractionating 

process so could cause the water taken up by plants to be enriched relative to the 

original precipitation (Ehleringer and Dawson, 1992). Increases in soil evaporation, 

which may result from rising global temperatures, could increase the isotope signature 

of source water and thus affect δ18OTR. Kanner et al. (2014) used a modelling approach 

to identify regions where soil evaporation might potentially obscure the δ18OP signal, 

and thus interfere with palaeoclimate reconstructions from δ18OTR. Their results suggest 

that soil water evaporation in the humid Amazon is not strong enough to have an 

important influence on δ18OTR, relative to the stronger controlling effects of δ18OP and 

δ18OV. 
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Changes in leaf functioning and environment could impact leaf water enrichment, 

as described in section 1.2.5. In addition to impacting basin-scale water recycling and 

thus δ18OP in areas downstream (i.e. the south and southwest of the Amazon basin), 

reductions in stomatal conductance in response to increased atmospheric CO2 (e.g. de 

Boer et al., 2011b, Lammertsma et al., 2011, Keenan et al., 2013) could have a direct 

effect on δ18OL of the trees being sampled. For example, reduced transpiration rates 

would allow more back diffusion of isotopically enriched water from the site of 

evaporation, lowering the Péclet number (e.g. Farquhar and Lloyd, 1993), and resulting 

in higher δ18OL and potentially higher δ18OTR values in the tree-ring proxy records (e.g. 

step 5 in Fig. 1.3). Apart from CO2, long-term changes in local climate may have also 

affected leaf-level enrichment (Cernusak et al., 2016). The effects of T and RH can be 

combined into a single factor influencing δ18OL: the leaf-to-air vapour pressure 

difference (VPD; Kahmen et al., 2011). As VPD increases there is more isotopic 

fractionation and leaf water becomes more enriched (Barbour and Farquhar, 2000). 

VPD increases with increasing leaf temperature and decreasing ambient vapour 

pressure. Leaf temperatures are likely to have increased following reduced evaporative 

cooling with rising CO2, which could be reflected in elevated δ18OTR. Although several 

studies have suggested that local environmental effects on δ18OTR are small (e.g. 

Brienen et al., 2012, Treydte et al., 2014, Volland et al., 2016, Cheesman and Cernusak, 

2016) the relative importance of controls may vary between sites and species, and all 

influencing factors must thus be taken into account. 

Finally, trees also experience strong environmental changes as they grow from a 

small seedling in the understory, to become a large canopy tree (for a comprehensive 

summary see Meinzer et al., 2011). Particularly important are the substantial changes in 

the light environment and the hydraulic challenges associated with increasing tree 

height. Age-related growth trends are well known, and tree-ring width series require 

standardisation to remove these trends prior to palaeoclimate reconstructions (Cook and 

Kairiukstis, 1990). In addition, there are ontogenetic effects on carbon isotopes (δ13C) in 

tree rings, related to the many environmental and structural variables affecting 

photosynthesis and gas exchange, which co-vary with height (McDowell et al., 2011). 

Ontogenetic effects in δ18OTR might therefore also be expected, as changes in leaf 

temperature and transpiration rate with height may influence δ18OL. However, studies 
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show that age-related δ18OTR biases vary in direction between species and sites (Treydte 

et al., 2006, Esper et al., 2010, Labuhn et al., 2014), and many studies find no 

significant ontogenetic effect on δ18OTR (Young et al., 2011, Sano et al., 2013, Kilroy et 

al., 2016, Xu et al., 2016). From these variable findings, it is clear that δ18OTR 

chronologies from new species and locations must be explicitly tested for ontogenetic 

effects. 

In summary, to extract meaningful climate data from δ18OTR it is important to be 

aware of the complex nature of the recorded signal, and understand that environmental 

conditions have not been uniform over the lifetimes of the sampled trees. These long-

term environmental trends are particularly important to consider when interpreting low-

frequency changes in δ18OTR. 

 

1.4 Aims and Research Questions 

The primary aim of this thesis is to develop a deeper understanding of the 

Amazon hydrological cycle using δ18OTR as a proxy for historical climate. This will 

provide valuable insight on natural hydrological variability and help to contextualise 

current climatic changes in the region. Stable isotope dendrochronology is still a 

relatively new field in the Amazon and thus this thesis will begin with some 

fundamental questions about the nature of tropical tree rings, before progressing to 

investigate δ18OTR signatures and what they can tell us about Amazon climate. Specific 

aims and research questions are formulated below. 

 

1.4.1 Test tree-ring periodicity across different sites in tropical South America 

The first step when undertaking dendrochronological research in a new site is to 

prove that trees form only one ring per year, as this is an important prerequisite for 

crossdating (Stokes and Smiley, 1968). Indeed, one of the advantages of using tree-ring 

δ18O instead of other δ18O records (e.g. speleothems or ice cores) for palaeoclimate 

reconstructions is that they can be reliably dated at an annual resolution (Bradley, 

2011). However, false (i.e. non-annual) tree rings may form in some tropical tree 

species and/or locations (e.g. Worbes, 1995, Borchert, 1999, Pearson et al., 2011). 

Previous work has shown that cambial dormancy and ring formation in C. odorata 
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occur during the dry season (Dünisch et al., 2002), although the precise environmental 

signal to which trees respond remains unclear. Furthermore, spatial variation in rainfall 

seasonality has been shown to cause C. odorata trees to differ in their period of growth, 

resulting in variation in the timing of ring formation across different sites (e.g. Costa et 

al., 2013). Since rainfall seasonality is not strictly annual across all parts of the basin, it 

might then be expected that ring formation is not always annual. Therefore, the first aim 

of this thesis is to check the annual character of tree rings in different sites across the 

Amazon basin. Radiocarbon dating will be used to check tree-ring dates in C. odorata 

samples from Bolivia, Venezuela and Suriname, as well as samples of the closely 

related C. montana from Ecuador (see Fig. 1.4 for examples of the rings in these two 

species).  

 

1.4.2 Develop and compare interannual δ18OTR series between different tropical 

tree species  

Brienen et al. (2012) showed that a δ18OTR chronology developed from C. odorata 

(which has very clear rings) was an effective proxy for basin-wide precipitation. C. 

odorata has shallow roots and therefore the source water it takes up is predominantly 

recent precipitation, and the δ18OP signal is preserved in cellulose. In principle, δ18OTR 

chronologies could also be constructed from other shallow-rooted species that do not 

have access to deep groundwater (which may contain water from precipitation events 

across several years, and would therefore have a smoother climate signal). Several 

tropical tree species besides C. odorata are known to form annual growth rings, some 

more distinctly than others (Worbes, 1999), though to date few have been analysed for 

δ18OTR. Ballantyne et al. (2011) measured δ18OTR in T. myrmecophila, P. tarapacana, 

and C. odorata, each from different countries in South America, Volland et al. (2016) 

constructed a robust δ18OTR chronology from C. montana from Ecuador, and Ohashi et 

al. (2016) studied intra-annual δ18OTR signals in Eschweilera coriacea, Iryanthera 

coriacea and Protium hebetatum from Brazil. The extent to which δ18OTR signals 

correspond between tree species will be investigated in this thesis, which will improve 

our understanding of how the signal is determined, and indicate whether other species 

may be suitable for developing palaeoclimate proxy records. δ18OTR signals in C. 

odorata, Tachigali vasquezii, Amburana cearensis, Peltogyne heterophylla, Bertholletia 
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excelsa, Cedrelinga catenaeformis, Couratari macrosperma and P. tarapacana from 

Bolivia will be measured and compared, thus substantially increasing the number of 

species used to develop δ18OTR series. Each species will be investigated to determine 

whether it shows a similar interannual δ18OTR signature to C. odorata. The results from 

this analysis could potentially improve the potency of δ18OTR as a palaeoclimate proxy 

in the Amazon, as longer-lived species could facilitate the extension of δ18OTR records 

back in time, and other species may be useful in regions where there are no natural C. 

odorata populations.  
 

Figure 1.4 – Tree rings in Cedrela. High-resolution scans show the tree-ring structures in Cedrela 
odorata and Cedrela montana, the two main study species in this thesis. 

 

1.4.3 Investigate spatial coherence between δ18OTR signatures from the Amazon  

Work in tropical and sub-tropical Southeast Asia has shown that regional 

variation in climate can cause correlations between δ18OTR records from distant sites. 

For example, δ18OTR chronologies from sites 150 km apart in Laos and Vietnam were 

found to correlate strongly at interannual timescales (r=0.77; Sano et al., 2012). In 

addition, three δ18OTR records from the southeast Tibetan Plateau show weaker but 

significant coherence between sites <800 km apart (r values ranged between 0.37–0.49; 

Liu et al., 2014). If, as hypothesised, δ18OTR signals in the Amazon are controlled by 

large-scale rainout processes during moisture transport (Brienen et al., 2012), one might 

expect to see coherence between δ18OTR chronologies from sites large distances apart. 

Furthermore, a greater understanding of the Amazon hydrological cycle can possibly be 

gained by developing δ18OTR records from different sites along the moisture transport 

pathway. For example, δ18OTR from sites on the Atlantic coast, and in the central and 

western Amazon, could offer insights into changes in the basin δ18OP gradient, and thus 

10 mm 10 mm

Cedrela odorata Cedrela montana
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whether precipitation-recycling ratios and patterns of rainout have changed over time. 

Furthermore, the difference between δ18OTR signals from the east and west of the basin 

may relate better to interannual variation in rainout over the basin than just a single 

δ18OTR chronology from the west (i.e. Brienen et al., 2012). 

To increase the spatial coverage of δ18OTR records in the Amazon, the first step 

will be to develop a second δ18OTR chronology from a new lowland rainforest site in 

northern Bolivia to see whether δ18OTR records cohere between sites several hundreds of 

kilometres apart. This would provide further support for a large-scale control on 

Amazon δ18OTR. In addition to the new lowland Bolivian site, tree-ring samples have 

also been collected from the Bolivian Altiplano, and sites in Suriname, Venezuela, 

Brazil and Ecuador for analysis in this thesis. Suriname represents the point at which air 

masses enter the basin from the Atlantic, the Venezuelan site is in northernmost South 

America, the Brazil site is in centre of the Amazon basin, and the sites in Bolivia and 

Ecuador are in the far west of the basin, on the margins of the Andes (see Fig. 2.1 in 

Chapter 2). Initially, pilot analyses will be conducted in sites that have not previously 

been studied, to test the potential for δ18OTR chronology development. The pilot δ18OTR 

time series will then be extended in sites that show good coherence between trees, as 

coherence indicates that trees can be precisely dated and that there is a common climate 

control on the δ18OTR signal. 

 

1.4.4 Identify the mechanisms controlling δ18OTR in the Amazon  

Although correlation analysis has shown that a δ18OTR chronology from northern 

Bolivia is a good proxy for precipitation over the whole Amazon region (Brienen et al., 

2012), the mechanism driving this relationship is not yet fully understood. In particular, 

it is not yet clear whether the relationship is definitely caused by rainout processes 

happening over the Amazon basin, or whether there could be a pan-tropical control on 

the signal (see 1.2.7). Clarification on this point is needed before δ18OTR records can be 

reliably used to reconstruct Amazon precipitation. This uncertainty will be addressed 

using two independent approaches: i) air-parcel trajectory modelling and ii) large-scale 

water vapour transport analysis. First, back-trajectories can be used to gain a better 

understanding of the controls on interannual variation in δ18OTR, by relating isotope 

signatures to processes such as the amount of upstream rainout, air mass exposure to 
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vegetation and temperature changes during transport. For example, a change in the 

amount of rainout along trajectories is expected to affect the degree of isotopic 

depletion (Dansgaard, 1964, Salati et al., 1979), and therefore influence δ18OTR 

signatures. In the second approach, reanalysis data will be used to calculate Amazon 

basin moisture inflow and outflow, and thus see whether δ18OTR records are able to 

capture large-scale patterns in the regional moisture balance. These analyses will show 

the extent to which interannual variation in δ18OTR is indeed controlled by processes 

happening over the basin. 

 

1.4.5 Extend Amazon δ18OTR records back in time  

At present δ18OTR chronologies from the Amazon do not extend beyond the limit 

of instrumental climate data (rainfall data are available from 1901 (e.g. Harris et al., 

2014), and the earliest river records begin in 1902 (e.g. HidroWeb, 2017)) and therefore 

cannot provide additional insights about historical hydrological variability. The 

published record from Brienen et al. (2012) spans a century, from 1901–2001, and the 

chronology from Volland et al. (2016) is from 1905–2011 (with a minimum replication 

of three trees). It would be valuable to extend Amazon δ18OTR records further back in 

time, ideally, far enough back to allow comparisons between δ18OTR signatures before 

and after anthropogenic impacts on the atmosphere became significant. Long records 

can be used to investigate drivers of Amazon hydrology at interannual, decadal and 

potentially even centennial scales. Insights on drivers of low-frequency climate 

variability are of particular interest, and may be gained from long δ18OTR records, 

provided there is no evidence for age-related effects on δ18OTR that would necessitate 

statistical de-trending (Loader et al., 2013). Finally, extending Amazon δ18OTR records 

will allow observed changes in Amazon climate, such as the intensification of the 

hydrological cycle since approximately 1990 (Gloor et al., 2013), and the recent severe 

droughts and floods (e.g. Zeng et al., 2008, Lewis et al., 2011, Marengo et al., 2011, 

Marengo and Espinoza, 2016), to be assessed in the context of historical change. This 

will help to evaluate whether these changes are within the bounds of natural variability 

or driven by anthropogenic influences.  



 

31 

 

1.4.6 Research questions 

The research questions relating to the aforementioned aims can be summarised as 

follows: 

1. How consistent is annual tree-ring periodicity across the Amazon? 

2. Do different tropical tree species show similar δ18OTR signatures? 

3. Do δ18OTR records from the Amazon show coherence at large spatial 

scales? 

4. Can a network of δ18OTR chronologies from sites across the basin provide 

further information about interannual variation in basin rainout, or changes 

in the precipitation-recycling ratio? 

5. What are the most important mechanisms driving interannual variation in 

Amazon δ18OTR?  

6. What can new long δ18OTR records presented in this thesis tell us about the 

Amazon hydrological cycle over the past two centuries? 

 

1.5 Thesis Outline 

As detailed in section 1.4, the aims of this thesis are to expand tree-ring research 

in Amazonia, and develop new δ18OTR chronologies that can be used to improve our 

understanding of the Amazon hydrological cycle. Chapter 1 has provided an overview 

of the literature to give context to the research, provided a rationale for the work and 

outlined the key aims and main research questions to be addressed. The rest of the thesis 

consists of six chapters: a chapter describing the methods, four research manuscripts, 

and a discussion section. 

The methodologies used in the thesis are summarised in Chapter 2. The chapter 

includes an overview of the sample sites, the procedures for tree-ring and isotope 

analysis, and an outline of the main statistical techniques used. Background on air-mass 

trajectory modelling and the methods for trajectory computation are also provided. 

It is important to verify the annual nature of tropical tree rings before they can be 

used to make inferences about climate. Thus, Chapter 3 uses radiocarbon dating to test 

ring periodicity in samples from Bolivia, Ecuador, Venezuela and Suriname, and uses 
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additional data from the literature to investigate what drives variability in growth across 

tropical South America. 

The δ18OTR signals from different species and sites in Bolivia are investigated in 

chapter 4. The level of synchronicity between records from different species or between 

samples from distant locations will indicate how powerful δ18OTR is as a palaeoclimate 

proxy. Possible causes for observed differences and/or similarities between records will 

be discussed. 

Chapter 5 seeks to better understand the mechanisms controlling δ18OTR 

signatures from the Amazon. This is necessary if δ18OTR records are to be reliably used 

to reconstruct palaeoclimate. Atmospheric back-trajectories are calculated and 

combined with remote sensing observations, and large-scale water vapour transport 

analysis is conducted, to determine whether basin-intrinsic processes control δ18OTR 

signals in trees from north Bolivia. 

In Chapter 6 two long δ18OTR chronologies from Bolivia and Ecuador are 

presented. These chronologies span 1799–2014 and are the longest and best-replicated 

δ18OTR records from tropical South America to date. The records are compared with 

each other, and against climate observations to identify controls on variation on short- 

and long-term timescales. Long-term trends in δ18OTR and other δ18O proxy records are 

evaluated and possible drivers discussed. 

The main findings from chapters 3–6 are drawn together and discussed in Chapter 

7. This section contains further in-depth critical analysis of the results and places them 

in the context of the literature. The key aims of the thesis are re-examined to see to 

whether they have been achieved, and any problems encountered during the research are 

discussed. Finally, the overall conclusions from the thesis are summarised. 
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Chapter 2: Materials and Methods 

2.1 Cedrela Growth and Cambial Dynamics 

Cedrela odorata, the main tropical tree species analysed in this thesis, is an 

obligate deciduous species that has been observed to shed its leaves once per year 

throughout most of its natural range, which extends from Mexico to Argentina 

(Pennington et al., 1981). Leaf shedding coincides with the start of the annual dry 

season, which is followed by a period of cambial dormancy that may persist for several 

months (Dünisch et al., 2002). Ring structure in Cedrela is described as ring-porous or 

semi-ring-porous as large vessels form during the reactivation of the cambium when the 

tree flushes its leaves at the start of the new growing season (Dünisch et al., 2002). As 

growth begins, an abundance of wide vessels is embedded in a band of paratracheal 

parenchyma, while the wood which forms later in the growing season contains fewer, 

narrower vessels (Dünisch et al., 2002; Vetter and Botosso, 1989). The parenchyma 

bands, which mark the end of cambial dormancy, clearly delineate one tree ring from 

the next, and thus make C. odorata a suitable tree species for tropical dendrochronology 

(Worbes, 1999, Brienen and Zuidema, 2005). 

2.2 Sampling Strategy 

Whole stem discs and increment cores were collected from sites across the 

Amazon basin for analysis in this thesis. Samples were collected from sites in 

Suriname, Brazil and Venezuela, as well as Bolivia and Ecuador to represent different 

points along the moisture transport pathway, from the Atlantic coast through to the 

interior and far west of the basin (Fig. 2.1). Most of the samples come from lowland 

tropical rainforest sites (0–200 m above sea level (a.s.l.)), though samples were also 

collected from a montane rainforest in Ecuador (2950 m a.s.l.) and from the Bolivian 

Altiplano (4400–4500 m a.s.l.). Discs were collected from trees that had already been 

felled for timber or during the installation of overhead power lines. Cores were taken 

using an increment borer, with trees sampled in 2–4 directions around the circumference 

of the trunk, at a height of approximately 130 cm from the ground.  
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Figure 2.1 – Network of tree-ring sampling sites across South America. The Amazon basin is 
indicated by a thick black line. The black arrow on the inset map indicates the mean wet season wind 
flow over the Amazon region. 
 

Several tropical tree species were sampled across the different sites. Cedrela 

odorata was sampled in all of the lowland sites, Cedrela montana and Polylepis 

tarapacana were sampled in the Ecuador and Bolivia highland sites respectively, while 

Tachigali vasquezii, Amburana cearensis, Peltogyne heterophylla, Bertholletia excelsa, 

Cedrelinga catenaeformis and Couratari macrosperma were sampled from lowland 

sites in northern Bolivia only. These Amazon tree species have all previously been 

shown to form annual rings in Bolivia (Argollo et al., 2004, Brienen and Zuidema, 

2005), Ecuador (Bräuning et al., 2009) and Brazil (Dünisch et al., 2002), apart from C. 

macrosperma, which has not previously been studied. 

 

2.3 Tree-Ring Analysis 

2.3.1 Sample preparation  

Loader et al. (2013) suggest a minimum of 10 trees should be used to construct 

reliable isotope chronologies for use in palaeoclimate reconstructions, particularly when 
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analysing low-frequency variation in climate. However, for sites that had not previously 

been analysed for δ18O, trial runs of approximately 30 rings from 3 different trees were 

conducted. For the species inter-comparison, a single individual was analysed from each 

species (e.g. Ballantyne et al., 2011) to maximise the number of species investigated. 

This pilot data was used to determine whether further analyses should be conducted. To 

prepare a good surface for ring analysis discs were polished with a mechanical sander 

using sandpaper up to 600 grit. Using a stereomicroscope to improve visibility, rings 

were marked along 2–4 radii for each disc, interconnecting every 10th ring between radii 

to ensure dating accuracy. Cores were prepared using a core-microtome (Gärtner and 

Nievergelt, 2010) and rings marked along 2–4 radii from each tree. Rings were 

measured using a LINTAB measuring stage to the nearest 0.01 mm and visually 

crossdated (e.g. Stokes and Smiley, 1968) using the tree-ring analysis software TSAP-

Win. Radii with the widest and clearest rings were selected for isotope analysis. These 

samples were scanned to preserve a copy of the ring markings for future reference. A 

bandsaw was used to cut up the discs and cores, separating a layer of wood 1 mm deep. 

Extraction of α-cellulose then followed one of two possible methodologies: 

 

Figure 2.2 – Photos showing the apparatus for two different cellulose extraction techniques. (a) The 
filter funnels and drainage module used for the batch extraction method from Wieloch et al. (2011), and 
(b) sample lath and perforated PTFE case used for the cross-section extraction method from Kagawa et 
al. (2015). 

 

A B 
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1. Rings along the 1 mm wood section were cut up into small pieces using a 

scalpel, making sure to take an equal amount of wood along the entire width of the ring 

so that the sample would not be not biased towards a particular period of growth. The 

extraction of α-cellulose then followed the batch method of Wieloch et al. (2011). First, 

the wood from each ring was transferred to a glass filter funnel, fitted with fine glass 

micromesh. Funnels were then inserted into a polytetrafluoroethylene (PTFE) ‘drainage 

module’ (see Fig. 2.2a), to enable the fluids to be easily exchanged during the extraction 

process, and placed into a water bath set to 60 °C. Samples were treated with 5% 

sodium hydroxide (NaOH) solution to remove resins, fatty acids and tannins from the 

wood. After 2 hours, the chemicals were drained using a vacuum pump and the step was 

repeated with fresh NaOH solution. Samples were then washed with boiling water to 

neutralise the pH, before being treated with acidified 7.5% sodium chlorite (NaClO2) 

solution. The NaClO2 solution was refreshed four times (approximately every 10 hours), 

and the expended solution pumped out each time. Once cellulose extraction was 

complete, the samples were white in appearance. Samples were washed again with 

boiling water until pH neutral, and then the material from each ring was rinsed with 

deionised water from the funnel into an Eppendorf labelled with the tree number and 

ring year. Next, samples were homogenised in a Retsch MM 301 mixer mill before 

being frozen and desiccated in the freeze-dryer. Finally, dried cellulose samples were 

weighed and packed into silver cups ready for δ18O analysis.  

2. In the second methodology, cellulose extraction preceded the isolation of 

material from each ring (e.g. Loader et al., 2002, Li et al., 2011, Kagawa et al., 2015). 

First, the 1 mm wood cross-sections (laths) were enclosed in cases made from 

perforated PTFE, ensuring that there was sufficient space around the wood for 

chemicals to circulate (see Fig. 2.2b). The encased laths were then placed into a PTFE 

container in a water bath set at 60 °C. Chemicals were added to the PTFE container, 

following the same steps described above, and ensuring that the encased wood laths 

were fully submerged. After the final washing step the samples were freeze-dried while 

still inside the PTFE cases. The fragile cellulose laths were then carefully removed from 

their cases and inspected with a stereomicroscope capable of transmitting light, as this 

helped to visualise the ring boundaries. Material from each ring was then separated 

using a scalpel and transferred to a labelled Eppendorf with 1–2 mL of deionised water. 
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Samples were then homogenised, freeze-dried (for a second time) and weighed into 

silver cups ready for δ18O analysis, as detailed above.  

The cross-section extraction method (2) was found to be much faster than the 

batch extraction method (1). The main time cost came from preparing the PTFE cases, 

but these could be re-used in later extractions. The time-consuming step of cutting up 

each ring into small slivers was no longer necessary, and the chemical solutions were 

added to a single container, rather than individual funnels. Thus, in one week it was 

possible to extract cellulose from 1074 tree rings, which is approximately four times 

more than could be processed in a week using the batch extraction method. This 

accelerated throughput of samples thus permitted higher replication. However, ring 

boundaries in the cellulose laths were slightly less distinct than in the polished surface 

of whole wood, and it was sometimes challenging to distinguish between, and isolate 

material from, very narrow rings. The cross-section extraction method is therefore 

suggested to be most appropriate for samples with wide and clear rings.  

 

Figure 2.3 – Cellulose extraction method comparison. δ18OTR values obtained using two different 
methods for cellulose extraction are compared. The dashed black line shows the expected 1:1 relationship 
and the solid black line shows the ordinary least squares regression relationship, the equation for which is 
given in the top left corner of the plot, along with the R-squared and root mean square error (RMSE). 
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A brief method comparison was conducted with a series of 21 rings from a tree 

from Cuyuja, Ecuador (see Fig. 2.3 and Appendix 2.1). δ18OTR values from the two 

methods correlate reasonably well (R2=0.76) and the slope and intercept of the 

regression do not differ significantly from 1 and 0 respectively (slope=0.83±0.22, 

intercept=3.33±5.33, 95% confidence intervals). However, the cross-section method 

gave consistently lower δ18OTR values, (mean offset = 0.8 ‰, root mean square error 

(RMSE)=0.98 ‰, n=21). It should be emphasised that the only difference between the 

two methods is whether the tree rings were separated before or after chemical treatment. 

Therefore, the offset must be caused by the reduced ability of the chemicals to permeate 

the wood in the cross-section method, possibly resulting in incomplete extraction 

(though all of the samples had a white appearance). Kagawa et al. (2015) found a 

stronger relationship and a negligible offset between values derived from standard and 

the cross-section extraction methods (R2=0.96, mean offset = 0.046 ‰, n=93), and an 

earlier study by Li et al. (2011) reported an offset of 0.2 ‰ (n=8), which was within the 

bounds of experimental error. Although, it must be noted that a slightly different 

standard extraction method was employed in both of these studies (i.e. following the 

Jayme and Wise method detailed by Loader et al., 1997). One potential cause for the 

larger offset observed in this study, is that cross-sections were cut using a bandsaw 

rather than the recommended diamond saw wheel, as these are costly and there was not 

one available. This meant that it was slightly harder to regulate section thickness. If the 

wood laths were slightly thicker than the recommended 1 mm then cellulose extraction 

may not have proceeded as effectively. Finally, although the method comparison did 

show a strong relationship between isotope values of cellulose extracted following the 

two different methods, due to the offset it was decided that either one or the other of 

these methods would be used for each site in the study, and cellulose δ18O values from 

the two methods would not be combined into a single δ18OTR chronology. 

 

2.3.2 Radiocarbon dating 

“Bomb-peak” radiocarbon (14C) dating was performed on selected samples from 

species and/or sites that had not previously been analysed for δ18O. Nuclear tests during 

the late 1950s caused an artificial peak in atmospheric 14C, which has since declined 

since the implementation of the Test Ban Treaty. The atmospheric 14C distribution from 
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1950 to the present is relatively well established (e.g. Hua et al., 2013), and thus organic 

material formed during this time can be dated with an accuracy of 1–2 years. Measuring 

the 14C content of tree rings has been shown to be a useful, independent method for 

validating the ages of crossdated tree rings (Worbes and Junk, 1989, Pearson et al., 

2011, Andreu-Hayles et al., 2015, Santos et al., 2015). In this study, 14C dating was 

used to check the annual character of tree rings in species and locations that had not 

previously been studied, as this is an important prerequisite for dendrochronological 

research. 

 

2.3.3 Oxygen isotope analysis 

The δ18O of each sample was measured using isotope-ratio mass spectrometry 

(IRMS). Isotope measurements were performed at the School of Earth and Environment 

at the University of Leeds, the NERC Isotope Geosciences Facilities at Keyworth in 

Nottingham, and the Department of Geography at the University of Leicester. Since the 

analysis protocols vary slightly between each of these institutions, a laboratory inter-

comparison was conducted to check the consistency of results. 

 

2.4 Data Processing 

2.4.1 Processing isotope data 

Raw δ18OTR measurements were compiled and checked prior to crossdating and 

chronology construction. First, any clearly anomalous results from the IRMS analysis 

(e.g. negative values) were deleted. δ18OTR series from a particular site were then 

crossdated between each other by pattern matching in the same way that ring-width data 

are usually crossdated (Douglass, 1941). Precise dating is essential for reliable 

palaeoclimate reconstructions but can sometimes be difficult in tropical trees, which 

may have challenging wood anatomy (Worbes, 2002). Problems include indistinct ring 

boundaries, false (non-annual) or discontinuous rings, and wedging rings (for examples 

of each see Fig. 2 in Brienen et al., 2016). The established δ18OTR chronology from 

Brienen et al. (2012) was used as a benchmark for dating. Where dating errors were 

identified through crossdating, or from radiocarbon analysis (2.3.2), the original 

samples (or high-resolution scans) were re-examined to see where mistakes had been 
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made during the initial ring counting. Finally, in sites where the trees showed a good 

match, chronologies were constructed by averaging data across the trees, with a 

minimum sample depth of three at any point along the chronology. 

 

2.4.2 Data analysis 

Data analysis was conducted to address the research questions listed in section 

1.4.6. The analysis was separated into three distinct stages: i) assessment of chronology 

quality, ii) chronology inter-comparison and iii) chronology interpretation. First, 

assessment of chronology quality involved measuring the reliability or robustness of the 

record, by measuring inter-tree variability. Records with more consistent signals 

between trees were considered to be more reliable. Signal consistency was assessed by 

calculating the expressed population signal (EPS), as defined by Wigley et al. (1984). 

An EPS threshold of 0.85 was used to distinguish between chronologies dominated by 

individual tree-level or stand-level signals. 

Records from different species and different sites were compared to determine the 

correspondence of δ18OTR signals. The Pearson’s product-moment correlation method 

was primarily used to compare δ18OTR series at interannual timescales. In addition, low-

pass Butterworth filters were applied to the records to determine, visualise and compare 

decadal variation in δ18OTR. Low-pass Butterworth filters are designed to remove the 

high frequency signal components, and are calculated using a specified order and cut-

off frequency. In this study, second order filters with a cut-off frequency of 0.2 

(removing variation at five-yearly timescales), were applied, with symmetrical padding 

at the start and end of the time series to avoid end effects. 

Finally, it was necessary to develop a thorough understanding of the climate 

signal contained in δ18OTR data, in order to correctly interpret the proxy record. To 

achieve this, correlation analyses between δ18OTR records and climate data were 

combined with a more process-based methodology involving back-trajectory modelling 

and water vapour transport analysis (see section 2.5). Together, these approaches helped 

to provide a clear understanding of how climate drives variation in δ18OTR records from 

the Amazon, and were used to support palaeoclimate inferences from long δ18OTR 

records. 
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All data analysis and visualisation was conducted using a combination of 

statistical software, including R version 3.2.2 (R Development Core Team, 2015), 

Interactive Data Language (IDL) version 8.2.3, and Python version 3.5.2 in the 

Scientific PYthon Development EnviRonment (Spyder) 3.1.2. 

 

2.5 Towards a More Mechanistic Understanding of Amazon δ18OTR 

Records 

Air parcel trajectory modelling and water vapour transport analysis was used to 

develop a more thorough understanding of how the history of an air parcel influences 

the isotopic composition of precipitation, and therefore the isotope signature recorded in 

Amazon tree rings. This section provides a brief background to trajectory modelling and 

explains how it has already been used to improve understanding of water vapour 

transport and isotope records from the Amazon (2.5.1). In addition, the specific 

methodologies for air-mass trajectory analysis (2.5.2), and the basin-scale water vapour 

transport analysis (2.5.3) applied in this thesis are described. 

 

2.5.1 Introduction to air parcel trajectory modelling 

The various methods of trajectory computation and application, and the errors 

associated with trajectory modelling, were summarised in a review by Stohl (1998). 

Trajectories are calculated using wind data, which can be observation-based or derived 

from models (Stohl, 1998). Back-trajectories, as the name suggests, describe the 

movement of air particles back in time from a defined location, and they have been 

widely used to monitor and predict the dispersal and long-range transport of 

atmospheric pollutants (e.g. Jaffe et al., 1999, Moy et al., 1994, Stohl, 1996). Back-

trajectories have also been employed to monitor the transport of atmospheric moisture 

(Aemisegger et al., 2014, Gimeno et al., 2010, Sodemann et al., 2008, Sodemann and 

Stohl, 2009). For example, Sodemann et al. (2008) developed a moisture source 

diagnostic to locate the origin of precipitation falling over Greenland. The authors 

traced humidity changes in parcels of air along transport pathways as the net difference 

between moisture uptake (from evaporation) and moisture loss (through precipitation 

events). This study used a Lagrangian framework, which means that each air parcel 
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trajectory was estimated as a function of its position coordinates and instantaneous 

velocity at different points in time (Berlemont et al., 1990). 

Lagrangian trajectory models have been used in several studies to quantify 

contributions to the water budget in the Amazon. For example, they have been used to 

track changes in atmospheric water vapour along back-trajectories and thus diagnose 

moisture source and sink regions (Stohl and James, 2005, Drumond et al., 2014). Also 

using back-trajectory analysis, Spracklen et al. (2012) found that the volume of 

precipitation produced by an air parcel was significantly related to the amount of 

vegetation the air parcel had encountered along the transport pathway. This study 

highlights the important contribution of evapotranspiration to atmospheric moisture in 

the Amazon, and elsewhere in the tropics. Furthermore, the authors estimate that current 

deforestation trends in the Amazon could reduce wet season and dry season 

precipitation by 12% and 21% respectively by 2050. In another recent study Bagley et 

al. (2014) applied forward trajectory modelling to determine spatial patterns of 

deforestation-induced precipitation reductions across the Amazon basin. Their results 

indicate that almost the whole of the central and western parts of the basin, and large 

areas in the south have already been affected by reductions in precipitation resulting 

from forest loss. Furthermore, precipitation-recycling ratios calculated using back-

trajectories were 7.3% higher in the dry season in drought years relative to wet years, 

suggesting that deforestation may lead to increases in drought severity (Bagley et al., 

2014). These studies illustrate how trajectory modelling can provide useful insights on 

water recycling in the Amazon. 

Trajectory modelling has also been used to gain a more mechanistic 

understanding of the factors controlling interannual variation in precipitation isotopes 

(both δ18O and δD) over the Amazon. This could be by simply characterising variability 

in the direction of transport pathways, and thus relating variation in precipitation 

isotopes to inferred variation in moisture origin (e.g. Vimeux et al., 2011, Insel et al., 

2013, Fiorella et al., 2015), or by comparing satellite observations of water vapour 

isotopes between trajectory-inferred moisture origins and observations over the Amazon 

(Brown et al., 2008). Other studies have related isotopes in precipitation to remote 

sensing observations of precipitation, or outgoing longwave radiation (OLR), which is 

inversely related to convective activity, along water vapour transport pathways over the 
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Amazon (Vimeux et al., 2005, Samuels‐Crow et al., 2014). Lastly, more complex 

representation of water vapour isotope composition along trajectories may be achieved 

by combining trajectories with simulated (Sturm et al., 2007) or observed (Brown et al., 

2013) isotope data. 

While useful, there are a few uncertainties associated with using trajectories to 

investigate Amazon isotope signatures. First, by definition, they primarily capture 

advection (i.e. transport by winds) and thus disregard (at least in their usual 

formulation) the full complexity of tropical atmospheric transport processes, including 

small-scale convective transport and atmospheric mixing (Stohl, 1998). Furthermore, 

Sturm et al. (2007) suggest that trajectory-based Rayleigh fractionation models may not 

be able to adequately describe the processes controlling isotopes in tropical rainfall, due 

to the large number of factors influencing the isotopic composition of precipitation. 

These include: the predominance of convective precipitation, evaporative input from 

vegetation, high moisture source variation and local topographical effects. Convective 

precipitation is potentially problematic because as air moves vertically, isotope 

exchanges occur between condensed water and vapour in the surrounding air 

(Dansgaard, 1964, Risi et al., 2008), processes which are unlikely to be captured in a 

simple Rayleigh rainout model. Furthermore, for a fixed volume of precipitation, 

variation in the strength of convection controls the extent to which an air parcel is 

depleted in heavy isotopes (i.e. local amount effects; Risi et al., 2008). In addition, 

variation in moisture origin may alter the initial isotope composition of vapour entering 

the basin, the volume of non-fractionating water fluxes from vegetation will vary 

through the year, and topography may influence temperature and therefore local 

fractionation effects. However, the simplicity of trajectories is also advantageous as 

they can be calculated with modest computational cost and can provide easily accessible 

information about air origin, which is not directly available from more complex general 

circulation models. 

 

2.5.2 Back-trajectory analysis 

The Reading Offline TRAJectory model (ROTRAJ), a Lagrangian atmospheric 

transport model, was used to calculate air-mass back-trajectories (Methven, 1997). 

Trajectories were calculated as follows: particles were released at a specified point in 
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space and time, and at each 30-minute time step gridded wind velocity data were read 

and interpolated to calculate the next position of the particle. Linear interpolation was 

used in the horizontal direction, and in time, and cubic interpolation was used in the 

vertical direction. In addition to particle position, other trajectory attributes, such as 

temperature, pressure and specific humidity, were determined using the same 

integration scheme. Trajectory position and attribute data were output every six hours. 

The back-trajectories calculated using ROTRAJ are kinematic (i.e. three-dimensional), 

and these have been shown to be more accurate than trajectories computed using other 

methods (Stohl and Seibert, 1998). However, the limitations of simple trajectory 

modelling must also be acknowledged (see section 2.5.1). 

In this work, gridded wind and attribute data were retrieved from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis 

dataset (Dee et al., 2011). The ERA-Interim dataset spans 1979–present and 

incorporates observations with model data. For each analysis cycle during data 

assimilation, information from the previous model cycle is combined with observational 

data to estimate the state of the climate system at a particular moment in time (Dee et 

al., 2011, Uppala et al., 2005). ERA-Interim data have a horizontal resolution of 

approximately 79 km and there are 60 vertical levels (<0.1 hPa). The hydrological cycle 

is thought to be better represented in ERA-Interim compared with previous ECMWF 

reanalyses, due to an improved atmospheric model and humidity analysis scheme (Dee 

et al., 2011).  

Ten-day back-trajectories arriving once a day (12:00) at Selva Negra, Bolivia 

(10˚5’S, 66˚18’W) were computed for the period 1998–present. Trajectories were 

initiated approximately 2 km above the surface (800 hPa), close to the height of low-

level moisture advection over the Amazon. Sensitivity analyses were conducted to test 

how variation in trajectory initiation height influenced the results. Following the 

methods of Spracklen et al. (2012) each trajectory was combined with remote sensing 

observations of precipitation and leaf area index (LAI), which was used as a proxy for 

evapotranspiration. Precipitation data were from the Tropical Rainfall Measuring 

Mission (TRMM; Huffman et al., 2007) and LAI data were from the Moderate 

Resolution Imaging Spectroradiometer (MODIS; Myneni et al., 2002). These variables 

were summed along each trajectory during its time over land to calculate either the total 
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amount of precipitation during transport over the basin (∑Precip), or exposure to 

vegetation (∑LAI). ∑Precip, ∑LAI and other trajectory attribute data were then related 

to δ18OTR. 

 

2.5.3 Large-scale water vapour transport analysis 

Finally, following the methods of Gloor et al. (2015), a basin-scale analysis of 

water vapour transport was conducted, using column-integrated water vapour flux data 

from the ERA-Interim reanalysis dataset. The amount of water vapour entering (inflow) 

and leaving (outflow) the Amazon basin were calculated to investigate whether δ18OTR 

records are able to capture interannual variability in the net moisture balance of the 

region. Inflow is an important variable, as it controls how much water vapour there is in 

the atmosphere over the basin, and thus has an effect on regional precipitation. Outflow, 

on the other hand, is itself controlled by the amount of precipitation over the basin. The 

difference between the water vapour inflow and outflow should be approximately equal 

to Amazon precipitation and runoff. Therefore, these variables provide an independent 

measure of the hydrological status of the Amazon basin. 
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Abstract 
Tropical tree rings have the potential to yield valuable ecological and climate 

information, on the condition that rings are annual and accurately dated. It is important 

to understand the factors controlling ring formation, since regional variation in these 

factors could cause trees in different regions to form tree rings at different times. Here 

we use ‘bomb-peak’ radiocarbon (14C) dating to test the periodicity of ring formation in 

Cedrela trees from four sites across tropical South America. We show that trees from 

Bolivia, Ecuador and Venezuela have reliably annual tree rings, while trees from 

Suriname regularly form two rings per year. This proves that while tree rings of a 

particular species may be demonstrably annual at one site, this does not imply that rings 

are formed annually in other locations. We explore possible drivers of variation in ring 

periodicity and find that Cedrela growth rhythms are most likely caused by 

precipitation seasonality, with a possible degree of genetic control. Therefore, tree-ring 

studies undertaken at new locations in the tropics require independent validation of the 

annual nature of tree rings, irrespective of how the studied species behaves in other 

locations.  

 

3.1 Introduction 

Tropical dendrochronology is a steadily growing field, and the number of species 

known to be suitable for tree-ring analysis is also rising. Annual ring formation has now 

been shown in 230 tropical tree species (Brienen et al., 2016a), providing a great 
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opportunity to further expand tropical tree-ring studies. Tropical tree rings and their 

associated characteristics can be used to reconstruct climate (e.g. Baker et al., 2016; 

Mendivelso et al., 2013; Schöngart et al., 2006; Vlam et al., 2014; Xu et al., 2015), 

inform sustainable forest management (e.g. Brienen and Zuidema, 2006; De Ridder et 

al., 2013; Schöngart, 2008), study forest dynamics (e.g. Brienen et al., 2010; Vlam et 

al., 2017) and monitor forest responses to climate change (e.g. van der Sleen et al., 

2015; Zuidema et al., 2012) but cf. (Brienen et al., 2016b). With such important 

applications, it is vital to understand what drives ring formation and thus how growth 

dynamics might vary between sites, even within a single species.  

Temperature, which induces cambial dormancy and ring formation at high 

latitudes, has limited seasonality in the tropics (Jacoby, 1989), and seasonal variation in 

rainfall is instead thought to be the most common cue for growth periodicity and tree-

ring formation (Brienen et al., 2016a). During an extreme dry period, water stress can 

result in cambial dormancy and this may be accompanied by discernible changes to the 

structure of the xylem, thus resulting in a growth band or tree ring (Bräuning et al., 

2008a; Dünisch et al., 2002; Mendivelso et al., 2013; Worbes, 1999, 2002). Deciduous 

trees shed their leaves in response to the water stress, only to flush their leaves again 

and thereby reactivate the cambium once tree water status has been restored (Borchert, 

1999). Periodic flooding and the ensuing anoxia can provide a similar trigger for ring 

formation in floodplain tree species (Schöngart et al., 2002). However, several studies 

have also highlighted the important influence of seasonality in daily insolation (amount 

of solar radiation per unit area) and photoperiod on tropical tree phenology, with 

phenological changes (such as shedding/flushing leaves) sometimes occurring in 

advance of the climate changes (such as water stress/onset of rains) that the trees might 

be expected to be responding to (Borchert et al., 2005; Borchert et al., 2015; Elliott et 

al., 2006; Lisi et al., 2008; Rivera et al., 2002). Furthermore, besides external cues, 

intrinsic plant rhythms are also likely to play some role in governing cambial activity 

(e.g. Callado et al., 2013; Villalba, 1985). This shows that identifying the trigger factor 

for growth rhythms in tropical trees is not always straightforward, as different tropical 

tree species respond to different cues (Borchert et al., 2015), and there could also be 

differences in response between sub-populations of the same species (e.g. Ruiz et al., 

2013; Stubblebine et al., 1978).  
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Although the exact environmental trigger for ring formation in tropical trees may 

still be under discussion, it follows that regional variation in the stimulus may cause 

variation in growth periodicity. Indeed, previous work in the tropics has shown that a 

single species may have different growth rhythms under different environmental 

regimes (Costa et al., 2013). A species that forms distinct annual rings at a location with 

seasonal precipitation may form vague or false (non-annual) rings at a location with low 

or irregular precipitation seasonality, or may not form visible growth rings at all 

(Borchert, 1999; Boysen et al., 2014; Pearson et al., 2011; Priya and Bhat, 1999). Tree-

ring formation may therefore occur at regular intervals (i.e. annual/biannual rings) or at 

irregular intervals (intermittent false rings) depending on the seasonality of 

environmental conditions (Gourlay, 1995; Jacoby, 1989). Thus, care should be taken 

when analysing tree rings from a new species, or from a known species in a new 

location (Brienen et al., 2016a).  

Tree-ring periodicity can be tested using ‘bomb-peak’ radiocarbon (14C) dating. 

Thermonuclear tests during the late 1950s caused an artificial increase in atmospheric 
14C (peaking around 1963–64), which has slowly been removed from the atmosphere 

since the 1962 Test Ban Treaty (Levin et al., 2008). From 1950 onwards, atmospheric 
14C signatures have been recorded across the globe at sites away from localized 

emissions sources (such as large cities and volcanoes), and, despite small variations, 

such as at the onset of the thermonuclear tests, these signatures are mostly well-

distributed across the hemispheres (Hua et al., 2013; Levin and Hesshaimer, 2000; 

Levin et al., 2008 and references therein). This means that organic material from the last 

60 years can be dated with an accuracy of 1–2 years by measuring its 14C content, 

providing a means to validate tree-ring dates (e.g. Andreu-Hayles et al., 2015; Bormann 

and Berlyn, 1982; Pearson et al., 2011; Santos et al., 2015; Worbes and Junk, 1989). 

This study focuses on Cedrela odorata and its highland relative Cedrela montana. 

Cedrela spp. have been used extensively in tree-ring studies in South America and are 

widely believed to form annual rings (e.g. Ballantyne et al., 2011; Bräuning et al., 2009; 

Brienen and Zuidema, 2005; Costa et al., 2013; Dünisch et al., 2002; Espinoza et al., 

2014; Tomazello-Filho. et al., 2000; Worbes, 1999). The aim is to use bomb-peak 14C 

dating to test the annual character of tree rings from four sites across the Amazon basin 

that vary in their precipitation and insolation seasonality. We complement this analysis 
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with tree-ring and growth rhythm data of Cedrela from various additional sites from 

Central and South America, and discuss what might be driving the observed variability 

in tree-ring periodicity.  

 

3.2 Methods 

 The samples used in this study came from four locations across the Amazon 

basin: Reserva Forestal de Caparo in Venezuela (7.45°N, 70.98°W, 150 m above sea 

level (a.s.l.)), a logging concession near Matapi, Suriname (4.90°N, 56.85°W; 60 m 

a.s.l.), Cuyuja, Ecuador (0.45°S, 78.04°W; 2950 m a.s.l.), and Selva Negra, Bolivia 

(10.10°S, 66.31°W; 160 m a.s.l.). These locations and their corresponding climate 

diagrams are shown in Figure 3.1. Four additional sites where Cedrela growth data are 

available from the literature are also shown for comparison: Manaus, Amazonas State, 

Brazil (Dünisch and Morais, 2002), Aripuanã, Mato Grosso State, Brazil (Dünisch et 

al., 2003), Nova Iguaçu, Rio de Janeiro State, Brazil (Costa et al., 2013) and Ejido Pich, 

Campeche State, Mexico (Brienen et al., 2010). Temperature and precipitation data are 

from local weather stations or extracted from the Climatic Research Unit (CRU) TS3.24 

0.5° x 0.5° dataset (Harris et al., 2014) and downloaded via Climate Explorer (Trouet 

and Van Oldenborgh, 2013). Daily insolation data were downloaded from the NASA 

(National Aeronautics and Space Administration) website 

(http://data.giss.nasa.gov/ar5/srlocat.html) and averaged over the period 1990–2000. 

Growth and phenology data are also shown in Figure 3.1. Sources of these data are as 

follows: Mexico (Brienen et al., 2010), Venezuela (Worbes, 1999), Suriname (personal 

communication, P. Teunissen), Ecuador (Bräuning et al., 2009), Bolivia (Brienen and 

Zuidema, 2005) and Brazil (e.g. Manaus (Dünisch and Morais, 2002), Aripuanã 

(Dünisch et al., 2003) and Nova Iguaçu (Costa et al., 2013)). 

 The main climatic features of each site will now be briefly summarised. While 

temperature shows little seasonality at any of the sites, there is some variability in 

rainfall regime. Mexico, Venezuela, Bolivia, Aripuanã and Nova Iguaçu all have one 

pronounced dry season, with precipitation falling below 50 mm for three consecutive 

months or more (Fig. 3.1a, b, f–h). Ecuador and Manaus also have a single distinct dry 

season when monthly precipitation falls below 100 mm for at least three consecutive 
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months (Fig. 3.1d, e). In Suriname, precipitation has a bimodal distribution, peaking in 

January and June, and does not fall below 100 mm in any month (Fig. 3.1c). Insolation 

distributions also vary, with sites furthest from the Equator experiencing a single annual 

insolation peak (i.e. Fig. 3.1a, f–h) and sites close to the Equator experiencing two 

insolation peaks in each year (i.e. Fig. 3.1b–e). 

 C. odorata was sampled in Bolivia, Venezuela and Suriname, and the closely 

related species C. montana was sampled in the high elevation site in Ecuador (hereafter 

referred to by genus name only). Stem discs were collected in 2011 (Bolivia), 2013 

(Ecuador) and 2014 (Suriname) from trees felled for timber or during the installation of 

overhead power lines. The Venezuelan samples were collected in 2012, using an 

increment borer to collect cores from living trees. Discs were polished using an orbital 

sander with sandpaper up to grit 600 to improve ring visibility. On each disc rings were 

marked on 2–4 radii and every 10th ring was interconnected between radii to crosscheck 

counting accuracy, and account for wedging rings (Brienen et al., 2016a). A core-

microtome (Gärtner and Nievergelt, 2010) was used to prepare the surface of the cores 

from Venezuela. Rings on the cores were then marked, measured using a LINTAB 

measuring stage to the nearest 0.01 mm, and visually crossdated across 2–3 radii. Disc 

sections (cut using a bandsaw) and cores were then scanned at high resolution using an 

Epson Expression 11000XL scanner (Fig. 3.3a–c). As the rings were particularly 

narrow on the samples from Suriname, the microtome was used to cut thin sections (~10 

µm thick) that were scanned with an Epson Perfection V700 Photo scanner (Fig. 3.3d) 

to optimise ring visibility. Rings on the samples from Suriname were observed to 

frequently follow a regular pattern of a narrow ring followed by a wide ring, possibly 

indicating the presence of non-annual rings (e.g. Gourlay, 1995). Where this pattern was 

identified the narrow rings were assumed to be false and thus the wide and narrow rings 

were initially counted together as a single annual ring and dated accordingly. All rings 

were dated following the convention of Schulman (1956), where the assigned calendar 

date corresponds with the year that the tree started growing. 
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Fig. 3.1 – Map of Cedrela study sites 
and their climate diagrams. The 
four sites sampled in this study (dark 
blue circles) and four sites where 
Cedrela growth periodicity data are 
available from the literature (dark 
blue triangles) are shown. The altitude 
of each site is given in m above sea 
level (m a.s.l.). The date range at the 
top left of each climate diagram is the 
period of temperature and 
precipitation observations. The values 
in black at the top right are the mean 
annual temperature and the total 
annual precipitation. Values in black 
on the left side of each diagram are 
the maximum and minimum annual 
temperatures. Note that the 
precipitation scale changes above 100 
mm, indicated by a change to solid 
blue fill. Average daily insolation data 
are also shown (dashed green line). 
Horizontal green bars at the top of 
each graph show the main growing 
period for Cedrela at each of the sites. 
Open and filled black circles show the 
periods of Cedrela leaf-fall and leaf-
flush respectively, with data from 
systematic monitoring. Open and 
filled red circles show the periods of 
Cedrela leaf-fall and leaf-flush 
respectively, with data from casual 
observations. Sources for the climate, 
insolation, growth and phenology data 
used for each site are given in the 
Methods. 
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To independently validate this initial ring age-assignment, between one and three 

trees from each site were selected for bomb-peak 14C dating. This approach is a useful 

method for validating crossdated tree-ring samples (e.g. Andreu-Hayles et al., 2015; 

Baker et al., 2015; Bormann and Berlyn, 1982; Pearson et al., 2011; Santos et al., 2015; 

Worbes and Junk, 1989). All measurements were performed on α-cellulose or 

holocellulose extracts rather than whole wood, as these wood fractions are immobile 

and will thus produce more precise radiocarbon dates than if whole wood were used 

(Leavitt and Bannister, 2009). For each sample, 2–4 rings putatively dated from 1955 to 

1985 were selected for analysis, and the wood cut from each individual ring using a 

scalpel (in total 25 samples from 8 different trees). Cellulose extraction for the 

Suriname samples was conducted in Leeds, following the batch method of Wieloch et 

al. (2011). These samples were then sent for 14C analysis by means of accelerator mass 

spectrometry (AMS) in Bothell, USA by DirectAMS (http://www.directams.com). 

AMS analysis used NIST Ox-II standards (Stuiver, 1983) for normalization, and IAEA-

C7 as secondary standards (Le Clercq et al., 1997). Graphitisation of CO2 produced by 

combustion of organic materials was via the zinc reduction method (Vogel, 1992). All 

other samples were analysed at the W. M. Keck Carbon Cycle Accelerator Mass 

Spectrometer (KCCAMS Facility) located at the Earth System Science Department at 

the University of California in Irvine, USA. At KCCAMS holocellulose was isolated 

following a method adapted from Leavitt and Danzer (1993) with AnkomTM F57 

Dacron filter bags (25 µm effective pore size) used as sample pouches. Wood samples 

loaded in pouches were lined up in a Soxhlet apparatus and initially treated with a 2:1 

mixture of >99.5 % toluene and HPLC grade ethanol for 24 hours, and later by pure 

HPLC ethanol for another 24 hours. Subsequent processing used hot Milli-Q water to 

remove solvent residues, followed by bleaching at 70 °C with a sodium chlorite solution 

acidified with 2 ml of 100% glacial acetic acid. Once samples turned white, they were 

washed with Milli-Q water and gently dried at 50 °C in a conventional drying oven. 

After extraction of holocellulose, samples were removed from pouches, combusted and 

graphitized following established protocols (Santos et al., 2007). Wood blank (14C-free) 

and secondary standards (FIRI-J and FIRI-H; Scott, 2003), as well as cellulose extract 

(IAEA-C3; Rozanski et al., 1992) were processed alongside samples for background 

corrections and quality control purposes. High-precision 14C measurements were 
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conducted at an in-house modified AMS compact instrument (Beverly et al., 2010) via 

multiple analyses of the primary and normalizing standard Oxalic Acid I (OX-I). All 
14C results were corrected for background effects and isotopic fractionation due to 

photosynthesis, sample processing and spectrometer analysis, with δ13C measured on 

prepared graphite directly at the spectrometer, as described by Santos et al. (2007).  

To check the accuracy of the individual tree-ring dates their respective fraction 

modern carbon values (F14C, defined as the ratio of the radioactivity of the sample to 

the radioactivity of the modern standard; Reimer et al., 2004) were plotted alongside 

atmospheric radiocarbon bomb-peak calibration curves from designated zones in the 

Northern and Southern Hemispheres (e.g. NHZ2 and SHZ3; Hua et al., 2013). The 

calendar dates that had been assigned initially (following Schulman’s convention, see 

above) were converted to a decimal date that was centred in the middle of the growing 

season for each site (green bars in Fig. 3.1), as this is when trees photosynthesise 

atmospheric 14CO2 and form tree-ring cellulose. For example, the ring 2000 would be 

adjusted to 2001.0, 2001.25 and 2000.5 in samples from Bolivia, Ecuador, and 

Venezuela respectively, as these dates fall within the growing season at each location 

(see growth data sources above). Samples from Suriname were not adjusted relative to 

the initial assigned dates, as the main growing period for Cedrela is unknown for this 

site. 

 

3.3 Results and Discussion 

 The measured F14C values were plotted alongside the atmospheric 14C 

calibration curves from Hua et al. (2013). The samples from Bolivia, Ecuador and 

Venezuela all fall on or between these curves (Fig. 3.2a–c), indicating that these trees 

have been accurately dated by counting rings and that Cedrela forms annual growth 

rings at each of these locations. High-resolution scans of samples from these locations 

illustrate the correspondence between tree-ring dates (black annotations) and 

radiocarbon dates (blue annotations, Fig. 3.3a–c). These results are consistent with 

previous tree-ring studies, which report annual ring formation in Cedrela spp. from 

Bolivia (Brienen and Zuidema, 2005), Ecuador (Bräuning et al., 2009) and Venezuela 

(Worbes, 1999). Furthermore, the excellent agreement between 14C in tree rings and 
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existing bomb-peak calibration curves shows that well-dated tropical tree-ring records 

can potentially be used to refine low-latitude intra-hemispheric 14C calibration curves 

between 1950 and 1970, when distributions of atmospheric 14C were more variable 

across the globe, as previously described. This could lead to present intra-hemispheric 
14C calibration curves being redefined in tropical regions. 
 
 

 
Fig. 3.2 – Results from radiocarbon (14C) analysis. Measured F14C values (circles) plotted over the 
northern hemisphere (NH) and southern hemisphere (SH) 14C bomb datasets compiled by Hua et al. 
(2013). (a–c) Samples from Bolivia (tree 17), Ecuador (trees 45, 46 and 60) and Venezuela (tree 01) all 
fall on top or between these calibration curves. (d–f) Samples from Suriname (trees 04, 06 and 11) plotted 
using the initial sample age estimates (red circles) and the age estimates if trees are assumed to regularly 
form two rings per year (green circles). In each panel, the location-specific atmospheric 14C calibration 
curve presently accepted by the radiocarbon community (as per Hua et al., 2013), is highlighted in blue. 
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The Suriname samples were initially dated using a ‘best-guess’ approach, based 

on the assumption that a narrow ring followed by a wide ring should be counted as one 

single year. The initial estimated calendar dates fall far from the calibration curves (red 

circles, Fig. 3.2d–f), showing that the initial ring dating was inaccurate. The original 

samples were then re-inspected and the rings were dated assuming that the trees formed 

i) a single ring each year and ii) consistently two rings per year. Figure 3.3d shows a 

scan of Suriname sample 06 with the revised dates from these two approaches annotated 

in red (approach i) and green (approach ii). Only the second approach produced any 

sample dates close to the results from 14C analysis (blue annotations). When plotted 

against these adjusted dates (green circles), the F14C values fall either exactly on 

(Suriname_06, Fig. 3.2e) or closer to (Suriname_04 and Suriname_11, Fig. 3.2d & f) 

the bomb calibration curves. Samples from Suriname_04 appear to be overestimated by 

1–3 years, while samples from Suriname_11 appear to be underestimated by 2–3 years. 

Nevertheless, these results are a strong indication that in Suriname Cedrela forms two 

rings every (or nearly every) year. The slight offsets that remain for Suriname_04 and 

Suriname_11 suggest there could still be some minor dating errors with either one or 

two rings missed or miscounted. For example, in Figure 3.2f the green circles fall to the 

left of the radiocarbon calibration curves, suggesting that there may have been one or 

two false rings in the Suriname_11 sample. To the authors’ knowledge this is the first 

time that the formation of two rings per year has been reported in Cedrela, and shows 

that dendrochronologists should take a cautious approach when analysing samples from 

new sites in the tropics. Furthermore, if a species regularly forms two rings per year at a 

particular site then conventional dendrochronological crossdating methods (see Stokes 

and Smiley, 1968) may not detect that ring formation is not annual. Ring periodicity 

thus needs to be validated using radiocarbon dating, or by correlating a robust ring-

width or isotope chronology against climate data over a sufficiently long period. 

 To explore what might be driving the observed spatial variation in growth 

periodicity it is first necessary to understand how tree rings form in Cedrela. Cedrela is 

an obligate deciduous species and throughout most of its natural range (from Mexico to 

northern Argentina; Pennington et al., 1981) leaf shedding and associated dormancy 

occur strictly once per year, during the annual dry season (Fig. 3.1; Brienen and 

Zuidema, 2005; Costa et al., 2013; Worbes, 1999). Thus, in Bolivia, trees are leafless 
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from July to September (Brienen and Zuidema, 2005), in Ecuador from October to 

December (Bräuning et al., 2009) and in Venezuela from December to March (Worbes, 

1999), although the exact dates of leaf-fall and leaf-flush may vary between years. The 

cambium is inactive during this leafless period and a marginal parenchyma band marks 

the cessation of growth (Brienen and Zuidema, 2005; Dünisch et al., 2002; Marcati et 

al., 2006). Ring structure in Cedrela is described as ring-porous or semi-ring-porous as 

large vessels form during reactivation of the cambium, resulting in an abundance of 

wide vessels embedded within the parenchyma band, and fewer, narrower vessels in the 

wood which forms later in the growing season (Dünisch et al., 2002; Vetter and 

Botosso, 1989). This pattern is clear in samples from all of the sites in this study (side 

panels, Fig. 3.3). Leaf-fall behaviour of Cedrela in Suriname has not been 

systematically monitored so it is not known whether biannual ring formation 

corresponds to (or is induced by) biannual leaf exchange. Casual observations have 

been made of trees flowering and fruiting at the turn of the year (from 

September/October to February/March), and in 2010 and 2015, trees were observed to 

flush their leaves between March and May (personal communication, P. Teunissen). 

This is broadly similar to neighbouring Guyana where Cedrela flowers from August to 

November and fruiting occurs in January to March (Polak, 1992; ter Steege and 

Persaud, 1991), though leaf-fall behaviour has also not been consistently observed here. 

Despite this knowledge gap, the factors controlling growth dynamics of tropical trees 

can still be explored in an attempt to understand the regional variation in Cedrela ring 

formation reported here.  

Growth periodicity in Cedrela may be driven by variation in an external 

environmental signal (e.g. precipitation or insolation), or by an intrinsic biological 

rhythm. These candidate drivers will be discussed in turn, using data from each of the 

sample sites complemented with data from the literature. First, rainfall and insolation 

distributions are compared with periodicity of ring formation in Cedrela. In Suriname, 

where Cedrela forms two rings each year, rainfall has a bimodal distribution. This is 

likely due to the oscillating position of the inter-tropical convergence zone (ITCZ) 

which follows maximum solar radiation and thus moves southward across the continent 

during austral summer and northward again during austral winter (Garreaud et al., 

2009). For this reason, at the ‘climatic equator’, which in South America centres around 
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Fig. 3.3 – Annotated high-resolution scans of tree-ring samples. One tree each from (a) Bolivia (tree 17), (b) Ecuador (tree 60), (c) Venezuela (tree 01) and (d) Suriname (tree 
06). Black arrows indicate the parenchyma bands counted as ring boundaries during the initial tree-ring dating process. For Suriname only we show two extra annotations: ring 
boundaries if a tree forms one ring per year (red markings) or two rings per year (green arrows). Blue brackets and lines indicate the tree rings selected for 14C analysis with their 
initial assigned years shown in black. Note that a tree ring may grow across two calendar years (e.g. 2000/01), depending on the main growing period at a particular location (see Fig. 
1). Radiocarbon-derived calendar age ranges (±2V) are shown in blue and were translated from the F14C values and uncertainties obtained from 14C-AMS using the free online 
CALIBomb software (http://calib.org/CALIBomb/) and the available intra-hemispheric datasets of Hua et al. (2013), e.g. SHZ3 (Bolivia and Ecuador) and NHZ2 (Venezuela and 
Suriname). New age estimates (assuming trees form two rings per year) are in green. When marking 2 rings per year the first and second rings are denoted a and b respectively. 
  

http://calib.org/CALIBomb/
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4–5°N, there may be two wet seasons as the ITCZ passes over two times in each year 

(Borchert et al., 2005). In contrast, the other seven sites show only one distinct wet and 

dry season per year, and at all of these seven sites Cedrela has been shown to form one 

ring each year. At these seven sites the trees grow mainly during the wet season and are 

leafless during the driest part of the year (Fig. 3.1a, b, d–h). This provides a strong 

indication that tree rings at these sites are formed in response to seasonal water 

availability. The phenology of Suriname Cedrela has not been studied, so it is not 

known whether the species changes its leaves twice a year here, but it is possible that 

one of the two rings forms during a period of temporary cambial dormancy when the 

trees are still in leaf (Borchert, 1999). However, it should also be noted that the seasonal 

water deficit in Suriname is much less pronounced than at the other sites, with monthly 

precipitation never falling below 100 mm. A recent analysis used remote sensing data to 

show that tropical forests in central and north-eastern Amazonia, where mean annual 

precipitation exceeds 2000 mm, are able to sustain or enhance photosynthetic activity 

during the dry season (Guan et al., 2015), contrasting the notion of growth being limited 

by drought. 

The second potential environmental stimulus for ring formation is insolation, 

which is known to have an important influence on tropical tree phenology (Borchert et 

al., 2005; Borchert et al., 2015). For example, some species have been observed 

flushing their leaves twice a year at the Equator in response to two insolation peaks per 

year, and only once a year farther from the Equator where insolation has just one peak 

per year (Borchert et al., 2015; Calle et al., 2010). Daily insolation data are shown in 

Figure 3.1 (green lines). The Suriname site is closest to the ‘insolation equator’ which, 

at ~3°N, is the latitude where insolation has the lowest year-round variation (Borchert et 

al., 2015). Across the other study sites, where Cedrela is known to exchange its leaves 

once per year and form annual rings, there is no clear relationship between insolation 

seasonality and Cedrela growth rhythm. Of these seven sites, some have two peaks of 

insolation per year (Ecuador, Venezuela and Manaus), and some just one peak of 

insolation per year (Bolivia, Aripuanã, Nova Iguaçu and Campeche; Fig. 3.1). 

Therefore, we believe that solar insolation is not the primary driver of the distinct 

biannual ring formation of Cedrela in Suriname. Furthermore, periods of leaf-fall do not 

consistently coincide with increasing, decreasing, peak or minimum insolation, though 
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leaf-flush occurs more commonly when insolation is increasing or nearing its annual 

maximum (Fig. 3.1). 

Controls on growth periodicity can also be endogenous (Bräuning et al., 2008b). 

Ring formation may not be a plastic response to an external cue but could instead be 

driven by a biologically-determined growth rhythm. In other words, different 

populations of Cedrela may be adapted to shed their leaves at a specific time each year, 

coinciding with the local seasonality in water deficit. This is supported by observations 

of Costa et al. (2013) who showed that Cedrela growing in southern Brazil exhibited 

regular cambial dormancy during the dry season, even in years when there was no water 

deficit, thus implying some conservatism in growth behaviour. Furthermore, providence 

trials (where seeds sourced from different origins are grown under the same conditions) 

have shown that Cedrela from drier sites show more pronounced leaf-fall behaviour 

than Cedrela from wetter sites, indicating that variation in phenology is at least partly 

controlled by phylogeny (Newton et al., 1999). As Cedrela odorata is also known to 

have one of the highest levels of population differentiation of any tree species yet to be 

tested, with moist- and dry-adapted lineages (Cavers et al., 2003; Muellner et al., 2009), 

it seems feasible that regional differences in ring periodicity might be associated with 

phylogenetic differences.  

Finally, a comparison with Cedrela growing in plantations in Cameroon at a 

similar latitude (3.5°N) to the Suriname Cedrela (4.90°N) can provide further clues as 

to what controls tree growth in this species. The Cedrela trees from Cameroon are 

known to form annual rings (Détienne and Mariaux, 1977), and as the annual course of 

insolation in Cameroon is almost identical to that in Suriname (Fig. 3.4) where rings are 

biannual, it is unlikely that insolation is the primary driver of Cedrela ring formation. 

Therefore, the differences in growth rhythm between Cameroon and Suriname must 

either be due to differences in climate or due to some internal (i.e., genetically 

controlled) growth rhythm of the plantation trees in Cameroon. As in Suriname, rainfall 

has a bimodal distribution in Cameroon (Fig. 3.4) but the dry periods in Cameroon are 

more extreme and trees only stop growing during the long dry season from December to 

February (Détienne and Mariaux, 1977). As the Cameroon trees were most likely 

introduced from central America (most commercial Cedrela trees are), and as trees in 

Central America stop growing during the same period (December to February, e.g. 
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Mexico, Fig. 3.1a), the distinct annual growth rhythm of the Cameroon trees may thus 

also be a genetic relict from the original population of these plantation trees. In 

conclusion, the available evidence suggests that insolation is unlikely to be a driver of 

growth periodicity in Cedrela, but climate seasonality and/or genetics are likely to be 

important. 

 

3.4 Summary and Outlook 

Radiocarbon dating has been used to confirm that Cedrela, a tree widely used in 

tropical tree-ring studies, forms annual rings in Bolivia, Ecuador and Venezuela but two 

rings per year in Suriname. This result shows that annual tree-ring formation in a 

species at one site cannot automatically be extrapolated elsewhere. The rhythm of tree-

ring formation at new locations needs to be established if tree rings are to be used for 

dating, especially in tropical sites with low climatic seasonality. With incomplete 

phenological data it is difficult to draw definite conclusions about what controls 

Cedrela growth rhythms, though it seems that rainfall seasonality, not solar insolation, 

is the environmental cue triggering tree-ring formation, with a probable genetic 

influence. In sites with relatively aseasonal climates, like in Suriname, phenological  
 

Figure 3.4 – Precipitation and insolation data from Cameroon and Suriname. Annual precipitation 
(upper panels) and insolation (lower panels) in Cameroon and Suriname. Precipitation data are from CRU 
TS3.24 0.5° x 0.5° and insolation data were downloaded from http://data.giss.nasa.gov/ar5/srlocat.html. 

http://data.giss.nasa.gov/ar5/srlocat.html


 

74 

 

observations and dendrometer measurements of Cedrela cambial dynamics, possibly 

combined with relocation experiments, would help us to better understand the spatial 

differences in growth dynamics of this scientifically and commercially important 

species. 
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Abstract 

A tree-ring oxygen isotope (δ18OTR) chronology developed from one species 

(Cedrela odorata) growing in a single site has been shown to be a sensitive proxy for 

rainfall over the Amazon basin, thus allowing reconstructions of precipitation in a 

region where meteorological records are short and scarce. Although these results 

suggest there should be large-scale (>100 km) spatial coherence of δ18OTR records in the 

Amazon, this has not been tested. Furthermore, it is of interest to investigate whether 

other, possibly longer-lived, species similarly record interannual variation of Amazon 

precipitation, and can be used to develop climate-sensitive isotope chronologies. In this 

study, we measured δ18O in tree rings from seven lowland and one highland tree species 

from Bolivia. We found that crossdating with δ18OTR gave more accurate tree-ring dates 

than using ring width. Our “isotope crossdating approach” is confirmed with 

radiocarbon “bomb-peak” dates, and has the potential to greatly facilitate development 

of δ18OTR records in the tropics, identify dating errors, and check annual ring formation 

in tropical trees. Six of the seven lowland species correlated significantly with C. 

odorata, showing that variation in δ18OTR has a coherent imprint across very different 
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species, most likely arising from a dominant influence of source water δ18O on δ18OTR. 

In addition, we show that δ18OTR series cohere over large distances, within and between 

species. Comparison of two C. odorata δ18OTR chronologies from sites several hundreds 

of kilometres apart showed a very strong correlation (0.80, p<0.001, 1901-2001), and a 

significant (but weaker) relationship was found between lowland C. odorata trees and a 

Polylepis tarapacana tree growing in the distant Altiplano (r=0.39, p<0.01, 1931-2001). 

This large-scale coherence of δ18OTR records is probably triggered by a strong spatial 

coherence in precipitation δ18O due to large-scale controls. These results highlight the 

strength of δ18OTR as a precipitation proxy, and open the way for temporal and spatial 

expansion of precipitation reconstructions in South America.  

 

4.1 Introduction 

Palaeo proxies allow reconstruction of past climates beyond the limit of 

instrumental records, and thus help the interpretation of recent and on-going climatic 

changes. Tree rings have the potential to be particularly useful climate archives since 

they are widely distributed and often allow reconstructions at annual resolution or 

higher (Briffa, 1999). In the tropics, however, it has long been assumed that trees do not 

form visible growth rings (e.g. Whitmore, 1998). Nonetheless, studies in recent decades 

show that in fact many tropical tree species do form annual rings, in response to 

seasonal variation in rainfall (Worbes, 1999), or an annual flood-pulse (Schöngart et al., 

2002). Indeed, annual ring formation has been observed and verified in 67 tree species 

from tropical lowland rainforest alone (Zuidema et al., 2012). Despite these advances, 

useful tree-ring-based climate reconstructions are notably scarce in the tropics (see the 

International Tree-Ring Data Bank; Grissino-Mayer and Fritts, 1997), an important 

region in terms of global climate. This is due in part to the difficulty of developing 

climate-sensitive proxies from tropical tree species; ring-width patterns often match 

poorly between trees, making crossdating a challenge (Groenendijk et al., 2014, Stahle, 

1999), and growth responses to interannual climate variation are often relatively weak 

(e.g. Brienen and Zuidema, 2005, Schollaen et al., 2013, van der Sleen et al., 2015, 

Worbes, 1999) due to generally favourable growth conditions, especially in warm and 
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humid climates. Alternative methods are therefore required in the tropics to extract 

useful climate information from tree rings. 

One promising approach is to use the oxygen isotope composition of tree rings 

(δ18OTR) to reconstruct past precipitation. Unlike variation in ring width, δ18OTR in 

several tropical sites have been shown to be highly sensitive to variations in rainfall 

amount, at local and regional scales (e.g. Anchukaitis and Evans, 2010, Brienen et al., 

2012, 2013, Schollaen et al., 2013, Xu et al., 2011). In a particularly successful study, a 

δ18OTR chronology constructed from eight Cedrela odorata trees from a single site in 

northern Bolivia showed a clear signal of precipitation integrated over the whole 

Amazon basin, demonstrated by a close correlation between Amazon River discharge at 

Obidos, Brazil and the δ18OTR record (r=0.58; Brienen et al., 2012). This correlation 

suggests that C. odorata is an excellent recorder of the isotopic composition of 

precipitation (δ18OP), which in turn is a good proxy for basin-wide precipitation. C. 

odorata is a shallow-rooted species (Cintron, 1990), only using water from the top soil 

layers (Schwendenmann et al., 2014). Thus, the water taken up by the tree (source 

water) predominantly comes from recent precipitation, and this is probably the reason it 

so precisely records year-to-year variation in δ18OP (Brienen et al., 2012). δ18OP is itself 

influenced by several factors which affect the rate of rainout and return of isotopes to 

the atmosphere, including the continental effect, altitude effect, amount effect and 

recycling of water by vegetation (see Dansgaard, 1964, Rozanski et al., 1993, Risi et al., 

2008, and Salati et al., 1979). In the lowland forest of northern Bolivia, the location of 

the trees used in this study, cumulative rainout of heavy isotopes during transport of 

water vapour across the continent from the Atlantic seems to be the dominant control of 

variation in δ18OP (i.e. the continental effect; Brienen et al., 2012, Pierrehumbert, 1999, 

Salati et al., 1979, Sturm et al., 2007). Equilibrium fractionation during condensation in 

rainclouds results in preferential removal of heavy isotopes during rain events 

(Dansgaard, 1964) and leads effectively to a Rayleigh distillation process, such that 

precipitation downwind becomes more and more isotopically depleted. If C. odorata 

indeed records such large-scale effects, one would expect trees from sites several 

hundreds of kilometres apart to show the same interannual variation in δ18OTR. Such 

coincidence of isotopic variation would not only be helpful in tree-ring dating and 
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construction of tree-ring chronologies, but would also confirm the case for large-scale 

effects controlling δ18OP in the Amazon basin. 

Apart from C. odorata, the potential for the development of isotope chronologies 

has thus far been tested for very few tree species in tropical South America (see 

Ballantyne et al., 2011). Using additional, possibly longer-lived tree species allows for 

an increase in the spatial and temporal coverage of precipitation reconstructions in 

South America and beyond. However, it is currently not known to what degree other 

tree species (with similar and different rooting behaviours) show the same δ18OTR 

signals, because other factors influence δ18OTR besides source water isotopic 

composition (δ18OS). Several of these factors are conceptualized in the mechanistic 

model presented by Roden et al. (2000), which we briefly summarize here. 

Starting at the roots, water uptake from the soil is a non-fractionating process, so 

water reaching the leaves has a very similar isotopic composition to soil water 

(Ehleringer and Dawson, 1992). In the leaf, water is isotopically enriched relative to the 

source water. There are two components to this process: enrichment of heavy water at 

the site of evaporation in the leaf (due to preferential transpiration of isotopically light 

water) and back diffusion of some of this heavy water to the rest of the leaf (Barbour et 

al., 2004, Roden et al., 2000). This second component, the back diffusion of heavy 

water from the evaporative site, affects the isotope ratio of bulk leaf water (δ18OL) and 

consequently the isotopic signal in cellulose precursors, which form throughout the leaf 

(Sternberg, 2009). The magnitude of back diffusion of heavy water is primarily 

determined by the rate of transpiration: under high (low) transpiration rates, advection 

of unenriched water from the vein is higher (lower), reducing (increasing) back 

diffusion, and thus causing δ18OL to be more similar to (more enriched than) δ18OS 

(Song et al., 2013). The ratio of advective to diffusive transport is known as the Péclet 

number (Farquhar and Lloyd, 1993) and this has an important moderating influence on 

δ18OL (and thus the δ18O of fixed sugars).        

In a final step, the δ18O signal of sugars produced in the leaf further changes 

before conversion to cellulose. Sugars formed in the leaf are transported to the stem 

where some of the oxygen atoms may exchange with stem water oxygen during 

cellulose synthesis, determining the final isotope signature (Hill et al., 1995). This 

exchange is important, as it acts to partially “uncouple” δ18OTR from leaf physiology 
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(Offermann et al., 2011), and reinforces the signal of the source water. Experimental 

evidence shows that the degree of exchange is positively related to the turnover time of 

non-structural carbohydrates (Song et al., 2014a), thus leading to differences between 

species in the degree to which δ18OTR represents δ18OS (Song et al., 2014b). 

Several studies have examined how interannual δ18OTR records vary between 

different temperate tree species, and within and between sites (Li et al., 2015, Marshall 

and Monserud, 2006, Saurer et al., 2008, Singer et al., 2013, Reynolds-Henne et al., 

2009). Coherence in δ18OTR records between species varies considerably. Saurer et al. 

(2008) analysed six tree species in Switzerland and found a weak common interspecies 

signal in δ18OTR (mean inter-series correlation=0.23), with the strongest relationship 

between spruce and beech (r=0.68). The authors attribute these correlations to 

temperature influencing δ18OS and an influence of precipitation through its effect on 

local humidity. Li et al. (2015) found a strong relationship between pine and oak δ18OTR 

records in Japan (r=0.67), driven by summer precipitation amount controlling δ18OS. In 

other temperate studies trends in δ18OTR differed strongly between species (Marshall 

and Monserud, 2006, Reynolds-Henne et al., 2009, Singer et al., 2013). These inter-

species differences were variously attributed to species-specific partitioning of source 

water within the soil profile (Marshall and Monserud, 2006, Saurer et al., 2008, Singer 

et al., 2013), differences in plant physiology (Reynolds-Henne et al., 2009, Saurer et al., 

2008), and differences in phenology (Saurer et al., 2008), although isolating the drivers 

of inter-specific differences in δ18OTR can be a challenge.  

This paper focuses on tropical South America and aims: i) to determine whether 

or not an established Bolivian δ18OTR chronology can be used as a reference curve to 

verify dating of new isotope records, ii) to assess how well δ18OTR signals correspond 

between species, and iii) to investigate coherence of δ18OTR signals between distant 

sites. For this purpose, we analyse multi-decadal δ18OTR records for eight tropical tree 

species from three lowland moist forest sites and one site in the Bolivian Altiplano. 

Among these are five light-demanding tree species, two shade-tolerant tree species and 

one high altitude shrub. To address the first question, isotope series that were dated by 

ring counting were compared with a well-replicated and verified δ18OTR record from 

Brienen et al. (2012). Dating of re-aligned series was verified using radiocarbon “bomb-

peak” dating (e.g. Worbes and Junk, 1989). The δ18OTR record for each lowland species 
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was then compared with the geographically closest C. odorata chronology to assess 

interspecies signal correlations.  Finally, to assess spatial coherence of δ18OTR signals, 

C. odorata records from lowland sites >300 km apart were first compared with each 

other, and then with a Polylepis tarapacana series from the Altiplano (>1000 km away).  

 

4.2 Materials and Methods 

4.2.1 Study species 

We selected eight tropical tree species that form clear and annual rings (Brienen 

and Zuidema, 2005, Argollo et al., 2004): seven are Bolivian lowland rainforest tree 

species (Cedrela odorata, Tachigali vasquezii, Amburana cearensis, Peltogyne 

heterophylla, Bertholletia excelsa, Cedrelinga catenaeformis and Couratari 

macrosperma), while one species (Polylepis tarapacana) only grows at high altitudes in 

the Bolivian Altiplano. Hereafter species will be referred to by their generic names only. 

Ring anatomy for the lowland species (except for Couratari) is described in Brienen 

and Zuidema (2005), and for Polylepis in Argollo et al. (2004). Relevant ecological 

characteristics are described below, and summarized in Table 4.1.  

The lowland species vary in their growth rates and regeneration requirements. 

Cedrela, Tachigali and Cedrelinga reach the highest diameter growth rates (3.2–4.8 cm 

year-1), while Amburana, Peltogyne and Bertholletia show slower diameter growth rates 

(e.g. ~1.8 cm year-1, Table 4.1). All of the lowland species, except for Peltogyne and 

Couratari, seem to require gaps at some stage during their regeneration, and are 

classified as light-demanding (Brienen and Zuidema, 2006). Peltogyne is the most 

shade-tolerant species with the densest wood. Leaf phenology differs between species, 

from obligate deciduous leaf habit in Cedrela and Amburana, which lose their leaves 

for several months, to evergreen or brevi-deciduous in other species. Cedrela prefers 

well-drained soils, has a superficial root system (Cintron, 1990), and predominantly 

uses water from the top 30 cm of the soil profile (Schwendenmann et al., 2014). 

Amburana is often found on deep, well-drained or otherwise calcareous soils (Leite, 

2005) and Bertholletia also seems to favour well-drained sites. For the other species, we 

have very little information on soil preferences or rooting depth.  Species also vary in 

their adult stature - Bertholletia and Cedrelinga are the tallest species, reaching over 2 
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m in diameter and heights of up to 50 m (classified as “emergents”), while the other 

lowland species are canopy trees, growing to maximum heights of 25–35 m.  

The only species in this study from the Altiplano, Polylepis, has the highest 

altitudinal range of any tree in the world, growing from 3900–5200 m elevation (Solíz 

et al., 2009). These trees grow slowly due to the cold and dry climate, and can live for 

over 700 years (Solíz et al., 2009). Precipitation is the main growth-limiting factor in 

these dry highlands (Morales et al., 2004), making Polylepis particularly useful for 

climate reconstructions (Morales et al., 2004, Solíz et al., 2009). Trees at these altitudes 

remain small (rarely exceeding 7m in height; Domic and Capriles, 2009), and radial 

growth patterns are often highly eccentric.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 – Map of sample sites in the southwest Amazon. The locations of sample sites in this study 
(circles) and the location of the Polylepis chronology from Ballantyne et al. (2011; triangle) are indicated. 
The species sampled at each site are as follows: Cedrela and Couratari from Selva Negra, Amburana 
from Purisima, Tachigali, Peltogyne, Bertholletia and Cedrelinga from Riberalta and Polylepis from 
Sajama. The Amazon basin catchment area is shaded in pale green. Lowland sites are shown in black and 
Altiplano sites are shown in red. 
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Table 4.1 – Traits of different tropical tree species. Growth strategy, leaf-fall behaviour, adult stature, maximum observed age, maximum growth rate, rooting depth 
and habitat of the eight study species are given. Maximum diameter growth rate is the mean of the five highest annual growth rates observed in different trees.   

Species name Family Growth strategy Leaf-fall 
behaviour Adult stature Max. observed 

age (years) 
Max. growth 

rate (cm year-1) Rooting depth Habitat 

Cedrela odorata Meliaceae Light-demanding Obligate deciduous Canopy 308a 3.2a Shallow 
Evergreen - 

seasonally dry 
forest 

Amburana cearensis Leguminosae Light-demanding Obligate deciduous Canopy 243a 1.8a ? 
Evergreen - 

seasonally dry 
forest 

Peltogyne heterophylla Leguminosae Shade-tolerant Brevi-deciduous Canopy 254a 1.8a ? Tropical lowland 
moist forest 

Tachigali vasquezii Leguminosae Light-demanding Brevi-deciduous Canopy 35a 4.8a ? Tropical lowland 
moist forest 

Couratari macrosperma Lecythidaceae Shade-tolerant ? Canopy-Emergent ? ? ? Tropical lowland 
moist forest 

Cedrelinga catenaeformis Leguminosae Light-demanding Brevi-deciduous Emergent 123a 3.7a ? Tropical lowland 
moist forest 

Bertholletia excelsa Lecythidaceae Light-demanding Obligate deciduous Emergent 427a 1.9a ? Tropical lowland 
moist forest 

Polylepis tarapacana Rosaceae High altitude shrub Evergreen ? 705b ? ? Cold, high altitude 
desert 

a Brienen and Zuidema (2005) 
b Solíz et al. (2009) 
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4.2.2 Regional setting 

Tree-ring samples for this study come from lowland rainforest sites in northern 

Bolivia, except for the Polylepis sample which originated from the Bolivian Altiplano, 

close to the Sajama volcano at an altitude of 4400–4500 m (Fig. 4.1; 18°06’S, 68°53’W; 

Solíz et al., 2009). The Amburana sample is from the private property Purisima, in 

Pando (11°24’S, 68°43’W; 170 m.a.s.l.), while the Tachigali, Peltogyne, Bertholletia 

and Cedrelinga samples were obtained from logging concession areas approximately 40 

km to the east of the town Riberalta (10°55’S, 65°40’W; 160 m.a.s.l.). These two sites 

are described by Brienen and Zuidema (2005). The Couratari and Cedrela samples are 

from a third lowland site, Selva Negra (10°5’S, 66°18’W; 160 m.a.s.l.), 90 km north of 

Riberalta and approximately 325 km northeast of the Purisima site. All of the lowland 

sites have a similar climatology, with total annual precipitation between 1675 - 1850 

mm (Cobija and Riberalta station data, GHCN-Monthly version 2, Peterson and Vose, 

1997, accessed from Climate Explorer (http://climexp.knmi.nl)), and a distinct dry 

period during the austral winter (June–August) with less than 100 mm of rain per 

month. For Amburana, Tachigali, Peltogyne, Bertholletia and Cedrelinga stem discs 

were collected between October 2002 and September 2003 from trees that had been 

felled, or that had died of natural causes (see Brienen and Zuidema, 2005 for sampling 

protocols). Discs of Couratari and Cedrela were collected in 2011 from trees felled for 

timber. The Polylepis disc was collected in 2003. Between 5 and 31 discs were 

collected per species. Sampling height varied from 0.5–2.0 m above the ground, and 

discs ranged from 30–200 cm in diameter. 

 

4.2.3 Oxygen isotope analysis 

Stem discs were collected and polished with sandpaper up to grit 600 using a 

mechanical sander. Rings were then marked and crossdated (see section 4.2.4 for full 

description). Old trees with good internal crossdating were selected for isotope analysis. 

For Cedrela we selected nine trees, while for the other species only one tree was 

selected. While we acknowledge that a single individual is not sufficient to develop a 

climate sensitive chronology, this approach is well suited to explore coherence in 

δ18OTR between different species and a well-developed chronology. Using one tree per 

species allowed us to maximize the number of species included in this study (see also 
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Ballantyne et al., 2011, Saurer et al., 2008). Each ring was individually cut up using a 

scalpel, sampling equally from the entire width of the ring to ensure even representation 

of the whole growing season. In some instances where rings were very narrow it was 

not possible to isolate sufficient wood for analysis, and the final isotope series therefore 

show some missing data-points. We extracted α-cellulose from the wood following the 

batch method of Wieloch et al. (2011). Cellulose was homogenized using a mixer mill 

(Retsch MM 301) and then freeze-dried. Samples were then weighed into silver 

capsules for isotope analysis.        

Oxygen isotope data presented here were measured at three different labs: the 

British Geological Survey’s Stable Isotope Facility (part of the NERC Isotope 

Geosciences Facilities) (NIGF; Keyworth, Nottingham, UK); the School of Earth and 

Environment (SEE) at the University of Leeds, UK; and the German Research Centre 

for Geosciences (GFZ; Potsdam, Germany). Analysis of the Cedrela samples was 

performed at NIGF utilising a ThermoFinnigan (Bremen, Germany) TC/EA linked to a 

Delta+XL isotope ratio mass spectrometer (IRMS) at 1400 °C. 18O/16O ratios were 

converted to δ18O values with reference to VSMOW by comparison with co-run IAEA-

CH-3 cellulose (assuming δ18O=+31.9±0.5 ‰ (mean±1SD); Hunsinger et al., 2010). 

The within-run precision of IAEA-CH-3 δ18O was ≤0.2 ‰ (1 SD). Standards were 

included at an interval of every eight samples. For the other species (Tachigali, 

Amburana, Peltogyne, Bertholletia, Cedrelinga, Couratari and Polylepis) 18O/16O ratios 

were measured in SEE at the University of Leeds, using continuous flow mass-

spectrometry. Cellulose samples were thermally decomposed in an Elementar Vario 

Pyrocube in the absence of oxygen at 1450 °C, prior to analysis by an Isoprime 

continuous flow mass spectrometer. 18O/16O ratios were converted to δ18O values versus 

VSMOW with reference to cellulose from Sigma-Aldrich, UK (Lot#SLBD2972V; for 

clarity hereafter referred to as Leeds Sigma cellulose). The Leeds Sigma cellulose was 

analysed at SEE against IAEA-CH-3 cellulose (assuming δ18O=+31.9±0.5 ‰; 

Hunsinger et al., 2010) and assigned a value of 29.2±0.2 ‰. Standards were included at 

an interval of every twelve samples. The “reference” δ18OTR chronology from Brienen 

et al (2012; hereafter referred to as Cedrela2012) was analysed at GFZ utilising a “low” 

temperature pyrolysis (1080 °C) in an element analyser (Carlo Erba) coupled to an 

OPTIMA (Micromass Ltd., UK) IRMS. Two standards, IAEA-CH-3 and Merck 
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cellulose (Darmstadt, Germany), were included at an interval of every eight samples. At 

the time, their δ18O values were defined as +32.6±0.3 ‰ and +28.7±0.3 ‰ (Boettger et 

al., 2007). This method is no longer in use at GFZ. Currently, a ThermoFinnigan 

(Bremen, Germany) TC/EA set to 1400 °C, coupled to a Delta V Advantage IRMS is 

utilized. Re-analysis of IAEA-CH-3 and Merck cellulose resulted in δ18O values of 

+32.95±0.3 ‰ and +28.20±0.3 ‰ respectively, after calibration against a different 

batch of Sigma-Aldrich cellulose (Lot#92F0243; +27.3 ±0.3 ‰, Boettger et al., 2007, 

Loader et al., 2015), IAEA-601 (benzoic acid; δ18O = +23.15±0.3 ‰) and IAEA-602 

(benzoic acid; δ18O = +71.28±0.5 ‰; Brand et al., 2009). For an inter-laboratory 

comparison, the Leeds Sigma-Aldrich cellulose was analysed at each of the labs, 

yielding the following values: +29.1±0.2 ‰ (NIGF; n=23), +29.2±0.2 ‰ (SEE; n=20), 

and +30.2±0.35 ‰ (GFZ; n=17). Note that the ca. 1 ‰ offset between Leeds Sigma 

cellulose analysed at GFZ and the other two laboratories is consistent with the ca. 1 ‰ 

difference between the δ18O values assigned to IAEA-CH-3. Hence the Cedrela2012 

chronology measured at GFZ is likely to be offset by approximately 1 ‰ from the other 

datasets. However, we abstained from applying a correction to Cedrela2012 as 

interannual variance of δ18O is of greater importance in this study than absolute values.  

 

4.2.4 Dating calibration and radiocarbon verification 

Exact dating of tree rings is a necessity for palaeoclimate reconstructions. In tree 

rings this is often done by matching ring-width patterns between dated and undated 

chronologies, also called crossdating (Speer, 2010). Dating of tropical tree rings through 

this technique poses a particular challenge, as ring anatomy is often less clear in 

comparison with temperate trees, and regularly presents wedging (locally absent) or 

false rings (e.g. Priya and Bhat, 1998, Worbes, 2002). In addition, interannual variation 

in climate may not be the main driver of variation in growth, thus resulting in low 

common signals in ring width, and poor crossdating statistics (Brienen and Zuidema, 

2005). Here we use a different approach to correct for dating errors, through crossdating 

the isotope series from each species with an established isotope chronology. The 

method and approach are outlined below. 

First, tree rings were cross-dated using the standard ring-width approach: rings 

were marked and visually cross-dated across 2–4 radii on intact discs, ensuring every 
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tenth ring interconnected between radii to detect errors. Rings were measured and a 

quality control was conducted using correlation analysis (program COFECHA; 

Grissino-Mayer, 2001, Holmes, 1983). Ring-width series were de-trended using a 

flexible cubic spline method, and a tree-ring chronology was built with ARSTAN, only 

using series that passed the quality control. For several species, inter-tree correlations 

were low (r<0.3; Brienen and Zuidema, 2005), and they presented a varying degree of 

problems during crossdating using standard ring-width. As a result, for most species 

only approximately half of the trees were incorporated in the ring-width chronologies. 

For full details see Brienen and Zuidema, (2005).  

Second, δ18OTR records developed in this study were aligned against the published 

C. odorata δ18OTR chronology from Brienen et al. (2012, i.e. Cedrela2012). We initially 

performed a visual comparison, allowing the identification of tree-ring sections where 

mistakes in the original dating could have been made due to missing rings or the 

inclusion of false rings. The original sample of wood was then re-inspected to see 

whether any rings had been missed (to support adding in a ring), or falsely identified (to 

support ring deletion from the series; see Table 4.3). Curves were only shifted if wood 

anatomical features in the original sample suggested false or wedging rings.  

Finally, the dating of the newly aligned chronologies was verified using 

radiocarbon “bomb-peak” dating for species Bertholletia, Couratari, Amburana, 

Peltogyne and Cedrelinga. This methodology utilizes the near doubling of atmospheric 
14C during the nuclear tests of the 1960s to date modern organic material (e.g. Worbes 

and Junk, 1989). Cellulose extracted from the rings dated as 1975 (using the isotope 

crossdating approach described above) were analysed in Bothell, USA by DirectAMS. 

The 14C concentrations were normalized to a value of δ13C=–25 ‰ to correct for 

isotopic fractionation during photosynthesis. The SHCal13 radiocarbon calibration 

curve from Hogg et al. (2013) was used alongside the bomb extension curve from Hua 

et al. (2013) to convert pMC (per cent Modern Carbon) values to actual calendar dates 

using the free online CALIBomb software (http://calib.qub.ac.uk). Calendar dates were 

assigned to rings according to the year in which the growth started. Thus, the ring 

spanning calendar years 1975 to 1976 is here called 1975. The original and adjusted 

tree-ring dates of all the trees analysed in this study are presented in Appendix 4.1, 

http://calib.qub.ac.uk/
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together with plots showing the original and adjusted data series of those trees where 

dating changes were applied.  

 

4.2.5 Statistical analysis 

Using the δ18OTR data from the nine Cedrela trees, we constructed an isotope 

chronology for the period 1901–2001 (hereafter referred to as Cedrela2015). The 

minimum number of samples at any point along the chronology is three. “Expressed 

Population Signal” (EPS) values were calculated according to Wigley et al. (1984), 

using the formula (N*rmean)/(1+(N–1) * rmean), where N is the number of time series and 

rmean is the mean inter-series correlation coefficient. An EPS threshold of 0.85 is 

generally used to determine whether individual tree-level (<0.85) or stand-level (>0.85) 

signals dominate a chronology (Wigley et al., 1984). We correlated the Cedrela2015 

chronology with the Cedrela2012 chronology, and the different species’ δ18OTR records 

were correlated with either Cedrela2012 or Cedrela2015, depending on which was 

geographically closest to the sample site of that species. The Polylepis series was also 

compared with the Navado Sajama ice-core record (data extracted from Hardy et al., 

2003), and the published Polylepis δ18OTR chronology from Ballantyne et al. (2011). All 

correlations used the “Pearson’s product-moment correlation” method and were 

calculated in the statistical program R (R Development Core Team, 2015). This method 

uses the formula rXY = (cov(X,Y))/(σXσY) where rXY is the correlation coefficient, cov is 

the covariance and σX and σY are the standard deviations of the time series X and Y 

respectively. To visualise decadal trends, a second order, low-pass Butterworth filter 

with a cut-off frequency of 0.2 was applied in both the forward and reverse directions 

for each series, using the R package “signal” (Ligges et al., 2015). 

 

4.3 Results and Discussion 

4.3.1 Crossdating tree-ring oxygen isotope series  

Radiocarbon dating proves that δ18O can be used to date tree rings more 

accurately than simple ring counting (Table 4.2). For three out of the five species tested 

for radiocarbon (Couratari, Amburana, and Cedrelinga) the δ18OTR-adjusted ring dates 

match the radiocarbon age estimates. For these species mistakes made during the initial  
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Table 4.2 – “Bomb-peak” radiocarbon dating results. Calendar dates were assigned to tree rings 
according to the year in which the growth started. Thus, a ring may be correctly dated if the radiocarbon 
age estimate encompasses the δ18OTR-adjusted age estimate plus one year. Per cent Modern Carbon 
(pMC) values were converted to calendar dates using the free online CALIBomb software 
(http://calib.qub.ac.uk).  

 

ring counting were correctly identified through comparison of their δ18OTR-series with 

the Cedrela2012 reference chronology. The validation of this technique is an important 

result, since it shows that δ18OTR can help with the detection of false or missing 

rings, potentially offering a simple way to correct for minor dating inaccuracies. The 

ability to precisely crossdate δ18OTR series over different sites and species could also 

facilitate the construction of new chronologies. A similar method was used to date dead 

tropical wood through crossdating high-resolution δ13C series with precipitation records 

(Fichtler et al., 2010), and other tropical studies have highlighted the utility of high-

resolution isotope measurements in cases where ring detection is difficult (e.g. Boysen 

et al., 2014, Pons and Helle, 2011) or rings are not visible at all (e.g. Anchukaitis and 

Evans, 2010, Poussart et al., 2004). In a comparison of pine and oak δ18OTR from Japan, 

Li et al. (2015) suggest that oxygen isotopes can also be used to crossdate between 

angiosperm and gymnosperm species. Nevertheless, crossdating interannual δ18OTR 

variability with an established chronology for dating verification has not, to the best of 

our knowledge, been previously applied in a tropical context.  

For all species, except Tachigali and Polylepis, our analysis indicates that rings 

must have been missed during the initial ring counting based purely on macroscopical 

wood anatomy (i.e., before comparison of the oxygen isotope series with the reference 

chronology, see Table 4.3). The exact number of rings missed in the Bertholletia record 

is unknown, although radiocarbon dating suggests a disparity of 1–4 years up to 1975. It 

was not possible to use δ18OTR to correct the dating of Bertholletia or Peltogyne, as 

these species showed a low degree of synchronicity with the reference isotope curve 

Species δ13C pMC 
1 σ 

erro
r 

Ring 
counting 

age 
estimate 

δ18OTR-
adjusted 

age 
estimate 

Radiocarbon 
age (1SD) 

Radiocarbon 
age (2SD) 

Correctly 
dated? 

Couratari –22.9 134.73 0.37 1979 1975 1976.5–1977 1976–1978 Yes 
Amburana –21.2 135.16 0.36 1979 1975 1976–1977 1975.5–1978 Yes 
Cedrelinga –20.5 136.81 0.37 1978 1975 1975.5–1976.5 1974.5–1976.5 Yes 
Bertholletia –23.0 146.51 0.38 1975 1975 1973 1972.5–1974 1–4 years out 
Peltogyne –21.6 159.81 0.42 1975 1975 1964 or 1967 1964 or 1967–8 7–12 years out 

http://calib.qub.ac.uk/
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making curve fitting impossible. Of all the species Peltogyne and Couratari had the 

highest number of dating errors, as revealed by radiocarbon dating (Table 4.3). For 

Peltogyne 13 rings were missed in the outermost part of the sample, the sapwood, where 

rings are markedly less distinct (Brienen and Zuidema, 2005), while for Couratari eight 

rings were identified which had been missed during the original mark-up, 

predominantly in sections with reduced ring visibility, or where rings were very narrow. 

Additional mistakes arose due to misidentification of resin bands as rings, particularly 

in Cedrela, a species that is known to form non-annual resin bands (Dünisch et al., 

2002). These problems in ring dating using only standard, anatomical ring detection 

methods confirm the continuing challenges in tropical tree-ring analysis (Groenendijk et 

al., 2014, Stahle, 1999). 

 
Table 4.3 – Errors during analysis of tree rings in different tropical species. Dating corrections were 
applied following verification from radiocarbon (14C) analysis. Columns indicate the number of rings that 
were inserted or deleted based on comparison of the respective δ18OTR series with the reference 
Cedrela2012 δ18OTR chronology, or corrections made due to 14C dating (only for Peltogyne). The mistake 
rate was calculated by dividing the number of corrected rings by the length of the series. 

 

Species Record 
period 

Dating with δ18OTR Radiocarbon dating 
Mistake rate 

Rings inserted Rings deleted Rings inserted Rings deleted 

Cedrela       
Tree 11 1920–2010 1 3 - - 0.0444 

Tree 12 1941–2010 0 0 - - 0 

Tree 13 1915–2010 2 1 - - 0.0316 

Tree 14 1908–2010 0 3 - - 0.0294 

Tree 16 1884–2010 0 0 - - 0 

Tree 20 1904–2010 4 3 - - 0.0660 

Tree 21 1898–2010 0 1 - - 0.00893 

Tree 23 1897–2010 8 1 - - 0.0796 

Tree 27 1903–2010 0 0 - - 0 

Tachigali 1990–2002 0 0 - - 0 

Amburana 1897–2000 2 0 0 0 0.0194 

Couratari 1892–2008 8 0 0 0 0.0690 

Peltogyne 1929–1990 - - 13 0 0.2131 

Cedrelinga 1950–1999 3 0 0 0 0.0612 

Bertholletia 1896–2001 - - - - ? 

Polylepis 1931–2002 0 0 - - 0 
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4.3.2 Cedrela chronology 

The nine Cedrela trees from Selva Negra show high synchronicity in their δ18OTR 

(Fig. 4.2; mean inter-tree correlation (rmean) for 1901–2001 is 0.71), and a high 

“Expressed Population Signal” (EPS; Wigley et al., 1984) of 0.96, suggesting that 

G18OTR is dominated by a strong external control (N.B. EPS calculated using the raw, 

unadjusted series = 0.73). The signal becomes noisier further back in time, most likely 

due to an accumulation of undetected dating errors. This has been observed before in 

tropical δ18OTR records (e.g. van der Sleen et al., 2015). The rmean and EPS values for 

the Cedrela record presented here are highly comparable with the results for Cedrela2012 

(Brienen et al., 2012; rmean=0.63, EPS=0.97, 1900–2001), and suggest similar drivers to 

the Cedrela2012 chronology, i.e. G18OP (Brienen et al. 2012). It indicates that Cedrela is a 

well-suited species for reconstructing G18OP. Cedrela trees are shallow-rooted and 

favour sites with good drainage (Cintron 1990), using water from the top 30 cm of the 

soil profile (Schwendenmann et al., 2014). We thus expect G18OTR of Cedrela to 

predominantly reflect the isotopic composition of recent rainfall, and be only minimally 

influenced by groundwater, which could potentially dampen the interannual variability 

of the chronology.  

In contrast to δ18OTR, inter-tree correlation and EPS values for tree-ring width 

were much lower for the nine Cedrela2015 trees (rmean=0.17, EPS=0.64). This has been 

found for other tree species across the tropics. For example, Fokienia hodginsii in Laos 

(Xu et al., 2011), Entandrophragma utile in Cameroon (van der Sleen et al., 2015) and 

Mimosa acantholoba in Mexico (Brienen et al., 2013) all show better coherence in 

δ18OTR than in growth. These studies show that in the tropics δ18OTR are often more 

sensitive than ring width to external climate forcings, and therefore make a better 

climate proxy. One exception is Tectona grandis (teak) in Indonesia, where inter-tree 

synchronization in δ18OTR and ring width are more comparable (e.g. Poussart et al., 

2004, Schollaen et al., 2013). 

Given the high cost of isotope measurements it is of interest to quantify the 

minimum number of trees needed to establish a robust δ18OTR chronology. An EPS 

above 0.85 has been suggested to imply good internal coherence, with the minimum 

number of cores needed to exceed this threshold dependent on the strength of the 

common signal (i.e. when the inter-series correlation is low, more cores are required to  
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Figure 4.2 – δ18OTR time series from nine Cedrela odorata trees from Selva Negra, Bolivia. Grey lines 
represent individual trees, and the black line shows the mean composite chronology from 1901 to 2001. 
The mean inter-tree correlation for the period 1901–2001 is 0.71 and the Expressed Population Signal 
(EPS) is 0.96. 

 

build a satisfactory chronology; Wigley et al., 1984). The results of Cedrela imply that 

this threshold would have been exceeded with just three trees when using δ18OTR. In 

contrast, to create a standard ring-width chronology approximately 28 trees would have 

been required to reach an EPS of 0.85 (see Cook and Kairiukstis, 1990). 

 

4.3.3. Inter-specific coherence in tree-ring oxygen isotopes  

The δ18OTR records of five of the six lowland species showed significant 

correlations with the closest Cedrela δ18OTR chronology (Fig. 4.3). Only Bertholletia 

showed no significant relationship (r=–0.15, p=0.14, 1901–2001, n=96). Although the 

Tachigali series only spans a short period (13 years), it showed the strongest 

relationship with Cedrela2015 (r=0.90, p<0.001, 1990–2001, n=13), approximately 100 

km away. Peltogyne also correlated quite well with Cedrela2015 (r=0.39, p<0.01, 1929–

1990, n=60), but had a stronger relationship with the Cedrela2012 curve from the more 

distant Purisima site (r=0.58, p<0.001, 1929–1990, n=60). Amburana also correlated 

well with Cedrela2012 from the same location (r=0.41, p<0.001, 1901–2000, n=98). The 

relationship between Cedrelinga and Cedrela2015 was slightly weaker (r=0.33, p<0.05, 

1950–1999, n=50), as was the correlation between Couratari and Cedrela2015 (r=0.27, 

p<0.05, 1901–2001, n=89). These close inter-species relationships most likely arise 

from a dominant imprint of interannual variation in G18OP on G18OTR, via a strong 

influence of G18OS.  
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Correlations between the different lowland tree species were also evaluated. 

Bertholletia was excluded from the analysis due to the uncertainties with regard to its 

dating precision. The mean inter-species correlation coefficient for six species including 

Cedrela2015 is 0.37. This value is slightly higher than that found by Saurer et al. (2008) 

for trees in a temperate region (rmean=0.23), comparing records from sites with smaller 

distances between them (<160 km vs. <325 km in this study). The observed differences 

in correlations between these studies can possibly be explained by higher levels of 

precipitation during the growing season for our Amazon site compared to the temperate 

study, thus reducing the influence of residual soil water which may dampen variation in 

δ18OS (Treydte et al., 2014). In addition, the sites in the Saurer et al. (2008) study are 

situated in a heterogeneous mountainous environment with varying altitudes (480–1400 

m.a.s.l.), and as δ18OP varies strongly with altitude (Dansgaard, 1964), this may explain 

the lower correspondence between their trees. 

Despite showing similar trends in δ18OTR, we observed a degree of variation 

between the isotope series for the different species. The two most likely causes for this 

variation are differences in partitioning of water sources between species, and species-

specific differences in plant physiology. Differences in partitioning of water sources 

arise due to differences in rooting structure/depth (spatial partitioning), due to 

differences between species’ growing season, or due to timing of wood formation 

(temporal partitioning). Rooting depth affects δ18OS due to the existence of isotopic 

gradients in soil water. These arise from surface evaporation enriching the isotope 

signal at the surface, and mixing of precipitation with residual pools of groundwater in 

lower soil layers (Ehleringer and Dawson, 1992, Tang and Feng, 2001). While model 

simulation experiments suggest that the influence of soil evaporation on G18OTR is likely 

to be minimal in the Amazon basin (Kanner et al., 2014), xylem water δ18O of tropical 

trees in Panama show inter-species variation up to 7 ‰, reflecting downward isotopic 

gradients in soil water, and differences between species in water uptake depth 

(Schwendenmann et al., 2014). For the species in this study, little is known about the 

rooting depth (Table 4.1), but differences in phenology may provide some indication. 

Retention of leaves during the dry season could indicate that trees have access to deeper 

groundwater (Borchert, 1994, Jackson et al., 1995, Schwendenmann et al., 2014), and 
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Figure 4.3 – Comparing δ18OTR signatures between tropical tree species. Grey lines show Cedrela 
δ18OTR signatures and black lines show δ18OTR signatures in six other tropical tree species. Pearson 
correlation coefficients and significance levels are shown at the top of each panel. In some cases, records 
are discontinuous because there was insufficient sample material for isotope analysis in years with very 
narrow rings. A low-pass Butterworth filter was applied to each series to visualise decadal variation. 
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water uptake from deeper soil layers during this dry period may affect the interannual 

δ18O signal recorded in cellulose. For example, Cedrelinga, which is brevi-deciduous 

with a gradual turnover of leaves at the end of the dry season (Brienen and Zuidema, 

2005), showed only a weak correlation with Cedrela. 

In addition to spatial partitioning of source water, species may also vary in timing 

of their water uptake and wood formation through the year. This temporal partitioning 

may be as important, since seasonal variation in δ18OP is large in Bolivia (i.e. approx. 9 

‰, data from the Global Network of Isotopes in Precipitation (GNIP; see also Brienen 

et al., 2012), and studies elsewhere have shown that such variability can be reflected in 

δ18OTR (e.g. Schollaen et al., 2013). Differences in timing of water uptake and wood 

formation could mean species record δ18OP over slightly different timeframes. 

Amburana and Cedrela are strictly deciduous, with defoliation occurring from July to 

October for both species (Brienen and Zuidema, 2005). These species are therefore 

likely to use water during the same period in the year, possibly causing the good 

correspondence between their δ18OTR records. Bertholletia, another deciduous species, 

showed no relationship with the Cedrela δ18OTR record at interannual or decadal 

timescales, but this may be because it retains its leaves well into the start of the dry 

season, suggesting it may grow for longer and use water from the start of the dry 

season. This could also be true for the other brevi-deciduous species, which never 

appear completely leafless for extended periods (see Table 4.1). 

Differences in plant physiology may also explain some of the variability seen 

between δ18OTR records. For example, “effective path length” (the pathway of water 

movement through the leaf to the site of evaporation and an important determinant of 

the Péclet effect), has been found to drive variation in δ18OL within and between species 

(e.g. Kahmen et al., 2008, Song et al., 2013). In addition, interspecific variation in 

transpiration rates and transpiration responses to changes in relative humidity (RH) may 

affect the degree to which variation in δ18OS is maintained in δ18OTR for the different 

species. For example, leaf water enrichment may have a relatively greater influence on 

δ18OTR than source water influences for those species with generally lower transpiration 

rates, or for species whose growing season extends into the dry season when RH is 

expected to be lower. This may be another reason why Bertholletia shows no 
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correlation with Cedrela δ18OTR. However, exchange of oxygen atoms between 

cellulose-precursors and non-enriched stem water during phloem loading (Gessler et al., 

2013) and/or cellulose synthesis (Song et al., 2013) reinforces the signature of source 

water on δ18OTR such that short-term variation in δ18OL may not be reflected in the final 

δ18OTR signal (Treydte et al., 2014). The extent of exchange may vary between species, 

and is thought to explain why oak δ18OTR records from Japan showed lower sensitivity 

to changes in RH than pine δ18OTR records (Li et al., 2015). The degree of exchange is 

positively related to the time between carbohydrate production in the leaf and cellulose 

synthesis in the stem (i.e the turnover time of carbohydrates, Song et al., 2014a), and 

may itself vary considerably between species. These physiological processes may all 

contribute, in part, to the variation observed between δ18OTR records in this study. 

 

4.3.4 Spatial coherence of oxygen isotopes in tree rings 

Despite the considerable distance between sites (approx. 325 km), there is a 

strong correlation between the Cedrela2015 chronology and the published Cedrela2012 

record (Brienen et al., 2012; Fig. 4.4; r=0.80, p<0.001, 1901–2001, n=101). This 

suggests that factors influencing G18OTR in this part of the Amazon basin are acting at a 

large scale. Poussart et al. (2004) also report synchronization of G18OTR in two Samanea 

saman trees thought to be from different forests in Java, Indonesia, although the precise 

origins of the trees are unknown. A strong correlation between G18OTR records from 

relatively distant sites can arise from either a strong source water signal, or spatially 

coherent changes in RH influencing transpiration and thus the Péclet number and δ18OL 

(see section 4.1). Since RH depends on local climate conditions and may thus vary over 

short distances, we expect that the common interannual variation between the two 

chronologies is mostly driven by a dominant source water influence on δ18OTR. 

Assuming that plant source water is predominantly recent precipitation, as opposed, for 

example, to groundwater, the strong coherence between these Cedrela records also 

reveals that G18OP is itself coherent over wide areas. Thus G18OP in the study region is 

primarily controlled by large-scale processes, such as Rayleigh rainout (continental 

effect) and evaporative recycling during moisture transport to the site of precipitation, 

rather than a local amount effect (Dansgaard, 1964, Salati et al., 1979, Rozanski et al., 

1993). This hypothesis was previously suggested by Brienen et al. (2012), based on  
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Figure 4.4 – A comparison of Cedrela δ18OTR chronologies from two distant sites in Bolivia. 
Interannual variation in the Cedrela2015 chronology from Selva Negra is shown in black, and variation in 
the Cedrela2012 chronology from Purisima is shown in grey (record from Brienen et al., 2012). The 
Pearson correlation coefficient is 0.80 for the full period, 1901–2001. A low-pass Butterworth filter was 
applied to each series to visualise decadal variation. 
 

comparisons of δ18OTR with δ18OP records from the basin (from GNIP), and with local 

and basin-wide climate.  

Further support for spatial coherence in G18OTR comes from a comparison of the 

Altiplano Polylepis record and the lowland Cedrela2015 chronology. The correlation 

between these two records is significant, but much weaker than the correlation between 

the two lowland Cedrela chronologies (i.e. r=0.39, p<0.01, 1931–2001, n=71). A 

weaker correlation is expected for several reasons. Firstly, the two records are simply 

further apart (approx. 1000 km). Secondly, Polylepis grows in the Altiplano, a very dry 

plateau with an average height of approximately 3800 m, and the factors controlling 

G18OTR are likely to differ between the lowland and the highland trees. Thirdly, while 

the dominant source of moisture for the Altiplano is the Amazon basin (Garreaud, 

2000), orographic precipitation as air masses rise over the foothills of the Andes will 

increase the rainout of heavy isotopes (i.e. the "altitude effect"; Dansgaard, 1964, 

Grootes et al., 1989, Rozanski et al., 1993), and subsequent transport of moisture over 

approximately 200 km of dry, high-altitude desert will further alter Altiplano G18OP in 

comparison with the Amazon. These additional alterations to the G18O signal of moisture 

originating from the Amazon probably explain the greater variability in the Altiplano 

series (i.e. standard deviation for Polylepis is 2.3 ‰ vs. 1.07 ‰ for Cedrela). The  
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Figure 4.5 – A comparison of tree-ring and ice-core δ18O records from the Altiplano. The Polylepis 
δ18OTR record is shown in black and the Sajama ice-core δ18O record is shown in blue. The Pearson 
correlation coefficient is 0.44 for the period 1948–1996. A low-pass Butterworth filter was applied to 
each series to visualise decadal variation. 
 
Polylepis series was also found to correlate with two other Altiplano isotope series: the 

nearby Nevado Sajama ice-core δ18O record (r=0.44, p<0.001, 1948–1996, n=49; Fig. 

4.5) and a Polylepis G18OTR record from Volcan Granada, Argentina, approximately 500 

km to the south (r=0.30, p<0.05, n=67; Ballantyne et al., 2011). This suggests that 

G18OP retains a reasonable degree of coherence over the plateau. The spatial coherence 

of G18O records from distant sites provides further evidence for a broad common signal 

in G18OP, extending from the Amazon basin to the Altiplano, and confirms the 

interpretation of highland δ18O records such as ice cores as, at least partially, a record of 

precipitation over the Amazon basin (Brienen et al., 2012, Hoffmann, 2003).  

 

4.4 Conclusions 

Comparison of δ18OTR series from eight tropical tree species from four sites 

ranging from lowland rainforest to the Bolivian Altiplano showed that δ18OTR can be 

used to crossdate tree-ring chronologies from the tropics with higher accuracy than 

simple ring-width measurements. Six of the seven lowland species analysed show 

matching interannual variation in δ18OTR, suggesting they all preserve variation in 

source water isotopic composition. We found that δ18OTR records correlated well over 

large distances (<1000 km), which suggests a dominant influence of source water on the 

cellulose signal, and that G18OP in this region is similar over large spatial scales. The 
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coherent imprint of δ18OTR across different species and sites has important implications 

for future studies in the Amazon, offering the potential to reconstruct G18OP, and thus 

rainfall over a large and globally important area. In context of the recent hydrological 

intensification (Gloor et al., 2013) and uncertainties about the direction of future 

precipitation changes in the Amazon (Zhang et al., 2015), development of a network of 

extended δ18OTR records across the Amazon would be a significant step towards a better 

understanding of the region’s complex hydrology. 
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Abstract  
 

Oxygen isotope ratios in tree rings (δ18OTR) from northern Bolivia record local 

precipitation δ18O and correlate strongly with Amazon basin-wide rainfall. While this is 

encouraging evidence that δ18OTR can be used for palaeoclimate reconstructions, it 

remains unclear whether variation in δ18OTR is truly driven by within-basin processes, 

thus recording Amazon climate directly, or if the isotope signal may already be 

imprinted on incoming vapour, perhaps reflecting a pan-tropical climate signal. We use 

atmospheric back-trajectories combined with satellite observations of precipitation, 

together with water vapour transport analysis to show that δ18OTR in Bolivia are indeed 

controlled by basin-intrinsic processes, with rainout over the basin the most important 

factor. Furthermore, interannual variation in basin-wide precipitation and atmospheric 

circulation are both shown to affect δ18OTR. These findings suggest δ18OTR can be 

reliably used to reconstruct Amazon precipitation, and have implications for the 

interpretation of other palaeoproxy records from the Amazon basin. 

 

 5.1 Introduction  

Relationships between oxygen isotopes (δ18O) and environmental variables have 

often been the basis for palaeoclimate reconstructions, but relying on empirical 
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correlations alone without an understanding of the underlying mechanisms may lead to 

misinterpretations of proxy records (McCarroll and Loader, 2004). In the Amazon, δ18O 

in palaeoarchives (including speleothems, lake and marine sediments, and ice cores; 

(e.g. Maslin and Burns, 2000, Thompson et al., 2013, Kanner et al., 2013, Moquet et al., 

2016, Vuille et al., 2012 and references therein), offer valuable insights for climate in 

the absence of quality instrumental data. In addition to these, δ18O in annual tree rings 

(δ18OTR) have been identified as a useful tool for precipitation reconstructions 

(Ballantyne et al., 2011, Brienen et al., 2012, Baker et al., 2015). δ18OTR reflects soil 

water δ18O, modified, to a greater or lesser extent, by plant physiological influences, 

including leaf-water enrichment at the site of evaporation, back-diffusion of this 

enriched water to the rest of the leaf (the Péclet effect), and biological fractionation 

during metabolic processes (Barbour et al., 2004, Roden et al., 2000). Local climate can 

affect plant physiology, and thus δ18OTR (Kahmen et al., 2011), though Brienen et al. 

(2012) found δ18OTR from the warm, humid rainforest of northern Bolivia recorded local 

precipitation δ18O (δ18OP), with limited evidence of a local climate influence, possibly 

because leaf-water isotopic enrichment is low when relative humidity is high (Cernusak 

et al., 2016). Instead, δ18OTR was found to correlate with precipitation over the whole 

Amazon basin during the last century (Brienen et al., 2012). The authors hypothesize 

that this relationship is driven by rainout of heavy isotopes during moisture transport 

over the Amazon basin, although δ18OTR was also found to correlate with the El Niño-

Southern Oscillation (ENSO), possibly indicating an alternative proximal driver of 

interannual variation. Similar relationships with ENSO have been reported for δ18OTR 

records elsewhere in the tropics, including Ecuador (Volland et al., 2016), Central 

America (Anchukaitis and Evans, 2010), northern Australia (Boysen et al., 2014) and 

several sites in Southeast Asia (Poussart et al., 2004, Xu et al., 2011, 2013, 2015, Sano 

et al., 2012, Schollaen et al., 2015). This leaves some doubt over the extent to which 

interannual variation in δ18OTR in Bolivia is driven by processes within the Amazon 

basin, or is more representative of processes occurring at the pan-tropical scale. This is 

important to clarify if such isotope data are to be reliably used to reconstruct climate 

and potentially validate output from general circulation models (GCMs) in the Amazon 

(Henderson-Sellers et al., 2002). 
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Contrasting interpretations of δ18O in Andean ice cores (δ18OICE) suggest that the 

drivers of variation in δ18OP in the Amazon region are still not fully understood. It has 

been proposed that tropical ice cores record changes in temperature, as they do at higher 

latitudes (Thompson et al., 1995, 2000, 2006), but analyses using Rayleigh fractionation 

models instead suggest that ice cores primarily reflect changes in regional hydrology 

(Grootes et al., 1989, Pierrehumbert, 1999, Hoffmann, 2003a, Samuels‐Crow et al., 

2014). Rayleigh models predict the depletion of water vapour isotopes during moisture 

transport across the Amazon basin as heavy isotopes are preferentially removed during 

precipitation events (Dansgaard, 1964, Salati et al., 1979). A recent Rayleigh-based 

model, which included the influence of South American cold-air incursions (typically 

associated with positive precipitation anomalies in the western Amazon basin (Hurley et 

al., 2015)), was able to simulate ~74 % of the daily variability in Andean snowfall δ18O 

(Hurley et al., 2016). However, studies have also shown Rayleigh models could be an 

oversimplification in tropical South America, not least due to large-scale water 

recycling by vegetation (Salati et al., 1979, Sturm et al., 2007, Brown et al., 2008). This 

is because transpiration at steady state is a non-fractionating process, which returns 

heavy isotopes to the atmosphere and accounts for the weak continental gradient in 

δ18OP over the Amazon (Salati et al., 1979, Insel et al., 2013). Transpiration therefore 

needs to be considered in an assessment of the controls on Amazon δ18OP. 

Several recent studies have used trajectory modelling as a tool to develop a better 

understanding of Amazon water vapour transport. Trajectory analysis can be used to 

identify moisture origins and detect changes in atmospheric transport/circulation that 

might influence δ18OP (van der Ent et al., 2010, Insel et al., 2013, Drumond et al., 2014, 

Fiorella et al., 2015, Spracklen et al., 2012). Trajectories have also been used in 

conjunction with GCMs (Sturm et al., 2007) and satellite isotope data (Brown et al., 

2008) to track isotope changes during atmospheric transport. Furthermore, transport 

analysis has previously been used to identify climate controls on water isotopes in 

precipitation in the western Amazon (Vimeux et al., 2005, Villacís et al., 2008). In both 

of these studies upstream rainout was identified as the most important factor in 

determining the isotopic composition of precipitation, with local environmental 

variables having little or no effect on the signal. However, these studies, which spanned 

5 years and 22 months respectively, specifically looked at controls on seasonal isotope 
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variability and were too short to thoroughly investigate controls on isotope variation at 

interannual timescales. 

Here we aim to resolve the ambiguity surrounding the interpretation of tree-ring 

δ18O records from the Amazon, and thus strengthen the use of these, and other δ18O 

proxy records, in palaeoclimate reconstructions and for possible use in validating 

climate models. Existing records of δ18OP in the region (e.g. in the Global Network of 

Isotopes in Precipitation (GNIP) database, IAEA/WMO, 2016) are often short and 

discontinuous, preventing a detailed assessment of climate controls at interannual 

timescales. The δ18OTR record that we use here is continuous and annual, and can 

therefore be calibrated against modern climate data and used to identify mechanisms 

driving interannual variability. To achieve this, we use air-mass back-trajectories 

combined with satellite observations of precipitation and leaf area index (LAI), which is 

a good proxy for evapotranspiration in the tropics (Spracklen et al., 2012), and fields 

from the ERA-Interim reanalysis (which combines model data with observations) to 

investigate the causal drivers of interannual variation in δ18OTR over a 32-year period. 

 

5.2 Data and Methodology  

This study uses a δ18OTR chronology developed from nine trees from Selva Negra, 

Bolivia (10°5'S, 66°18'W; 160 m.a.s.l.), which has been shown to record local 

precipitation δ18O (see Baker et al., 2015, Brienen et al., 2012). We used two 

approaches to identify the influence of Amazon basin processes on the observed δ18OTR 

signal: 1) trajectory modelling to reconstruct air-mass histories and 2) large-scale water 

vapour transport analysis.  

 To assess the relationship between δ18OTR and air mass history we used a 

Lagrangian atmospheric transport model to calculate kinematic back-trajectories. ERA-

Interim reanalysis wind fields were retrieved from the European Centre for Medium-

Range Weather Forecasts (ECMWF; http://www.ecmwf.int/en/research/climate-

reanalysis/era-interim) to drive the model, with trajectory position output every 6 hours. 

We calculated 10-day back-trajectories arriving daily (12.00 UT) 2 km above the 

surface (800 hPa) at Selva Negra for the period 1998–2011. This height is likely to be 

within the bounds of low-level moisture advection and close to the height of 
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precipitation onset (Andreae et al., 2004). There are uncertainties associated with 

trajectories as they are inherently simplistic, and may struggle to capture all of the 

complexities of tropical atmospheric circulation, particularly sub-grid-scale convective 

transport processes (Stohl, 1998). Here we use 3-dimensional trajectories, which have 

been shown to be more accurate than other calculation methods (Stohl and Seibert, 

1998). Altitude sensitivity analysis confirms our results to be robust within 1–4 km 

above the surface (Appendix 5.1). 

Trajectories were used to reconstruct air-mass histories, including precipitation 

and exposure to vegetation. Precipitation data come from the Tropical Rainfall 

Measuring Mission (TRMM) 3B42 V7 product, which combines data from TRMM and 

other satellites (Huffman et al., 2007). We summed precipitation along each back-

trajectory for 10 days or until it reached the coast (whichever of these came first). This 

was done by accumulating precipitation at the trajectory latitude (lat) and longitude 

(lon) for every 6-hr time-step (t) and then averaging these values across a number of 

trajectories (n) to find mean accumulated precipitation (∑Precip), according to the 

equation: ∑ 𝑃𝑟𝑒𝑐𝑖𝑝 (𝑙𝑎𝑡𝑛 (𝑡), 𝑙𝑜𝑛𝑛 (𝑡))Δ(𝑡)−40
𝑡=0 . Trajectories were averaged across 

different time periods (3-months, wet season (October–April) and dry season (May–

September)) to extract the relative influence of ∑Precip on δ18OTR for different periods 

of the year. The analysis was limited to those trajectories arriving on days with rain >0 

mm at Selva Negra, as these are the air-mass histories that contribute to the δ18OTR 

signal. LAI data from the Moderate Resolution Imaging Spectroradiometer (MODIS, 

Myneni et al., 2002) were used to calculate accumulated LAI (∑LAI) using the same 

methodology. The influences of other climatic variables, including temperature, were 

also analysed (see Appendix 5.2).  

 In our second approach, we used ERA-Interim data to conduct an analysis of 

large-scale moisture transport into and out of the Amazon basin. Wind fields from 0–4 

km above the surface were averaged and used to identify the dominant atmospheric 

transport patterns for the wet season (October–April), and define basin inflow and basin 

outflow transects (Fig. 5.3a). Column-integrated northward and eastward water vapour 

fluxes were used to estimate average wet season moisture flow across these transects for 

the period 1979–2010/11. Wind and moisture transport anomalies were calculated for 

years with high and low δ18OTR values to qualitatively characterise differences in 
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circulation. A more detailed discussion of the methodology can be found in Appendix 

5.2 (Sternberg, 2009, Sternberg and DeNiro, 1983, Bruijnzeel et al., 2011, Callède et al., 

2008, Huffman, 1997, LeGrande and Schmidt, 2006, Majoube, 1971, Samanta et al., 

2011, Smith et al., 2006, Yan et al., 2016). 

 
 
 

 
Figure 5.1 – Annual climate for the tree-ring sample site in northern Bolivia, and example wet and 
dry season back trajectories. (a) Climate diagram for Selva Negra, Bolivia (10°5'S, 66°18'W). 
Temperature and precipitation data are from 65–67.5°W, 9–11.5°S CRU TS3.21, 1960–2010. Monthly 
δ18OP data are averaged from 4 stations in the GNIP database (IAEA/WMO, 2016). Error bars represent 
the maximum and minimum observations in each month across all sites. (b) Daily trajectories arriving at 
800 hPa on days with precipitation >0 mm at Selva Negra (black circle) during the 2010/11 wet season 
(Oct-Apr). (c) As in b but for the 2010 dry season (May-Sep). Trajectories are plotted over a 
topographical map of South America (Shuttle Radar Topographic Mission data). 
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5.3 Results  

The mean climatology for our tree-ring sampling-site, Selva Negra, is shown in 

Figure 5.1a, based on data from the Climatic Research Unit (CRU). Temperature is 

fairly constant throughout the year but precipitation is highly seasonal, and there is a 

distinct dry season (precipitation <100 mm month-1) from May–September. The tree 

species used to construct the δ18OTR chronology (Cedrela odorata) grows primarily 

during the wet season, with growth usually beginning in September/October and ending 

in April/May (Dünisch et al., 2003, Brienen and Zuidema, 2005). Air-mass histories 

from this period are therefore likely to have most influence on δ18OTR. Seasonal 

variation in δ18OP is also shown in Figure 5.1. The lowest values are reached towards 

the end of the wet season, with a 2-month lag between peak rainfall and minimum 

δ18OP. The highest δ18OP values are in the driest months, sometimes exceeding 0 ‰. 

Atmospheric transport is predominantly from the north and northwest during the wet 

season (Fig. 5.1b), while dry season trajectories are more easterly.  

A three-month moving window correlation analysis between interannual 

precipitation and interannual δ18OTR reveals significant relationships between ∑Precip 

and δ18OTR throughout the wet season months, coinciding with the main growing period 

of Cedrela odorata (Fig. 5.2a). Correlations are consistently negative, so larger 

upstream precipitation corresponds with smaller δ18OTR values, and vice versa. The 

strongest three-month correlation occurs in November–January (r=–0.84, p<0.001, 

1998–2010/11, n=13) when precipitation is reaching its annual peak (Fig. 5.1a). When 

trajectories from the dry and wet seasons are considered separately only ∑PrecipWET is 

significantly related to δ18OTR. This close relationship is shown in Figure 5.2b. Although 

the time series is relatively short (13 years) the relationship is highly significant (r=–

0.85, p<0.001, n=13) with >70% of the interannual variation in δ18OTR explained by 

∑PrecipWET. This provides a clear indication that the mechanism driving variation in 

δ18OTR on interannual timescales is rainout during moisture transport over the Amazon 

basin. 

To determine whether the correlation between δ18OTR and ∑PrecipWET is driven 

by interannual variation in the position and speed of the transport pathway or 

interannual variation in the precipitation amount over the basin we conducted two 

sensitivity experiments where we systematically controlled for variation in precipitation 
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and trajectory position in the calculation of ∑PrecipWET. Experiment 1 used 

climatological precipitation (i.e. not interannually varying) from the observed 

trajectories and experiment 2 used observed precipitation data from trajectory paths kept 

constant from year to year (see Appendix 5.2). Significant relationships between 

∑PrecipWET and δ18OTR were found in both of these experimental scenarios, suggesting 

that interannual variation in Amazon basin precipitation and variation in atmospheric 

circulation are both important in driving the relationship (Appendix 5.3). 

 
Figure 5.2 – Relationships between δ18OTR and precipitation along air-mass back-trajectories. (a) 
Three-month moving correlation coefficients between δ18OTR and mean accumulated TRMM 
precipitation (∑Precip, trajectories from 1998–2010/11). Pink and blue boxes show the dry and wet 
seasons respectively. The bars at the right side of the plot show the mean correlation coefficients for the 
dry season (May-Sep) and wet season (Oct-Apr). Broken horizontal lines mark the significance threshold 
(p<0.05). (b) Interannual variation in ∑PrecipWET and δ18OTR from 1998–2010. Shading indicates 95% 
confidence intervals. Pearson’s r is –0.85 (p<0.001). Note that the scale for δ18OTR has been reversed.  
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The effects of other air-mass history attributes on δ18OTR were also investigated. A 

positive relationship between δ18OTR and ∑LAI (which is directly associated with 

evapotranspiration, see Spracklen et al. (2012)) was anticipated since evaporative 

recycling might be expected to return isotopically heavy water back to the atmosphere, 

and thus reduce continental rainout (Salati et al., 1979). In fact, δ18OTR and ∑LAI were 

found to anti-correlate during the wet season (Appendix 5.4). This may be due to the 

positive correlation between ∑LAI and ∑Precip across all wet season trajectories from 

2000–2011 (r=0.31, p<0.001, n=1981). Further analysis showed ∑LAI also correlated 

strongly with trajectory time spent over land (r=0.82, p<0.001, n=1981), thus the 

relationship between ∑LAI and δ18OTR arises because ∑LAI is a proxy for travel time, 

and longer times provide more opportunity for fractionation processes such as rainout to 

occur. The effects can be teased apart by controlling for the effect of ∑Precip on δ18OTR 

and ∑LAI, resulting in mostly non-significant relationships between ∑LAI and δ18OTR 

(Fig. A5.4.1). We also looked at the influence of temperature during atmospheric 

transport. Temperature data were from ERA-Interim and specific to the horizontal and 

vertical position at each trajectory time-step. Mean back-trajectory temperature was 

found to have no significant relationship with δ18OTR.  

To complement the analysis above, and to overcome the limitations of a short 

temporal record of remote-sensing data, a basin-scale analysis of water vapour transport 

was carried out using ERA-Interim reanalysis data from 1979–2011 (Fig. 5.3, Appendix 

5.5). Figure 5.3d shows a strong negative relationship between net wet season moisture 

balance (water vapour inflow – water vapour outflow) and both Selva Negra δ18OTR 

(r=–0.76, p<0.001, n=32), and the δ18OTR record from Brienen et al. (2012) (r=–0.73, 

p<0.001, n=23). The difference between water vapour inflow and outflow should be 

approximately equal to net rainout, and indeed correlates strongly with annual Amazon 

River discharge measured at Óbidos (r=0.80, p<0.001, n=32, Appendix 5.6). These 

results further support the idea that tree rings from the southern Amazon capture large-

scale patterns of precipitation and moisture recycling. When inflow and outflow are 

considered separately it becomes clear that the relationship between δ18OTR and basin 

moisture balance is entirely driven by variation in the amount of outflowing water 

vapour as δ18OTR correlates strongly with moisture outflow, and only weakly with 

inflow (r=0.80, p<0.001 vs. r=–0.35, n=32, p<0.05, Selva Negra record). This is 
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consistent with the results from our trajectory analysis, since variation in outflow will 

be directly affected by variation in rainout over the basin. Compared with the variation 

in the outflow, moisture inflow shows relatively low interannual variation (5.8 vs. 14.7 

%), which may further explain why δ18OTR correlates poorly with inflow. These 

findings confirm that convection and moisture removal over the basin drive interannual 

variability in δ18OTR. 

 

5.4 Discussion  

Amazon climate is characterised by highly seasonal precipitation, with moisture 

transported in from the tropical Atlantic and then moving westward and southward over 

the basin (Figs. 5.1, 5.3a & Appendix 5.7). The significant anti-correlations between 

δ18OTR and ∑PrecipWET (Fig. 5.2b), and between δ18OTR and basin moisture balance 

(Fig. 5.3d), demonstrate a clear link between the amount of moisture removed from the 

atmosphere during transport across the basin and isotopic variability. The analysis 

provides a mechanistic link to explain why tree rings at the far end of the Amazon basin 

can record precipitation over a region approximately 6 M km2 (Brienen et al., 2012). 

The preferential removal of heavy isotopes during each precipitation event during 

moisture transport depletes the water vapour remaining in the atmosphere according to 

the Rayleigh model (Dansgaard, 1964), and thus years with more rainout correspond 

with more depleted values in the δ18OTR record. This large-scale control on the isotope 

signal can account for the excellent coherence between δ18OTR records from sites >300 

km apart (Baker et al., 2015). Our results are also in agreement with studies examining 

the climatic drivers of isotope variability in South American precipitation on shorter 

timescales (Vimeux et al., 2005, Villacís et al., 2008). Correlation coefficients are 

strongest during the wettest months (Fig. 5.2a), which is in line with previous findings 

from regional circulation models (Sturm et al., 2007). It is worth observing that the 

severe droughts of 2005 and 2010 are not distinguishable in our isotope record as these 

were predominantly dry season phenomena (Marengo et al., 2011, Espinoza et al., 

2011). 

Interannual variation in basin-wide precipitation and interannual variation in 

transport route are both shown to be important factors affecting variation in δ18OTR in 
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the Amazon (Appendix 5.3). This confirms that within-basin processes determine the 

isotope signal in north Bolivia. Circulation changes have been highlighted before as a 

potential source of variation in South American δ18OP. Firstly, variation in the 

contribution of moisture from isotopically distinct sources has been suggested as an 

important control on δ18OP at interglacial (Pierrehumbert, 1999, Cruz et al., 2005) but 

also interannual (Insel et al., 2013, c.f. Vuille et al., 2003) timescales. However, spatial 

variation in ocean surface δ18O (δ18OSW) in the main moisture source region for the 

Amazon is <1 ‰ (Appendix 5.8), and thus variation in trajectory origin is unlikely to 

explain much of the 4–6 ‰ variability in δ18OTR. Alternatively, different transport 

pathways may be associated with different amounts of rainout (e.g. due to differences in 

topography, path length over land and climate), and thus interannual variation in 

circulation may drive interannual variation in δ18OP (Fiorella et al., 2015). Wind and 

moisture transport anomalies suggest it is this second source of variability that is 

important at our sample site and over the timescale of our study (Fig. 5.3, Appendix 

5.5). Although there is substantial spatial variability in circulation between years, high 

δ18OTR years show a clear pattern of strengthened winds and enhanced moisture outflow 

from the southwest corner of the Amazon basin, along the path of the South American 

Low-Level Jet. Conversely, in low δ18OTR years the anomalies are reversed, with 

weaker wind flow and less moisture transported out of the basin. These circulation 

changes in the south of the basin explain why interannual variation in outflowing 

moisture is strongly related to δ18OTR. Furthermore, this analysis can explain why 

δ18OTR from Bolivia correlates strongly with ENSO (Brienen et al., 2012): during a 

positive (negative) ENSO phase such as 1997/98, (2008/09) circulation changes 

accelerate (decelerate) transport out of the Amazon basin, thus leading to lower (higher) 

basin precipitation and higher (lower) δ18OTR values (Fig. 5.3). This shows how a pan-

tropical climate phenomenon like ENSO influences basin-scale processes, which in turn 

control interannual variation in δ18OTR. This ENSO influence on δ18OTR has been 

reported at other sites in the tropics due to ENSO’s far-reaching impact on precipitation 

(e.g. Xu et al., 2015, Volland et al., 2016, Schollaen et al., 2015, Anchukaitis and 

Evans, 2010, Sano et al., 2012, Poussart et al., 2004). 
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Figure 5.3 – Relationship between 
δ18OTR and mean wet season 
Amazon basin moisture balance. (a) 
Map of mean wet season (Oct-Apr, 
1979-2010/11) wind vectors 0–4 km 
above the surface and the transects 
used to calculate water vapour inflow 
to, and outflow from, the Amazon 
basin (shaded in grey). (b) Map of wet 
season wind and sea level pressure 
anomalies in 1997/98 (a high δ18OTR 
year). (c) As in b but for 2008/09 (a 
low δ18OTR year). (d) Interannual 
variation in net wet season water 
vapour import (inflow – outflow) and 
δ18OTR from two sites in northern 
Bolivia (see Baker et al. (2015) for a 
detailed comparison of these records). 
Shading indicates 95% confidence 
intervals. Correlation coefficients 
between δ18OTR and (inflow – outflow) 
are given (p<0.001). Note that the 
scale for δ18OTR has been reversed. All 
climate data are from the ERA-Interim 
reanalysis. 
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We find a negative relationship between δ18OTR and air mass exposure to 

vegetation during the wet season, driven by a positive correlation between ∑LAI and 

∑Precip. We had anticipated δ18OTR to positively correlate with ∑LAI, which is a proxy 

for evapotranspiration (Spracklen et al., 2012), since evapotranspiration reduces the 

effective rainout by returning heavy isotopes to the atmosphere. Indeed, previous 

studies report a low continental gradient in δ18OP over the Amazon due to large-scale 

water recycling offsetting the rainout of heavy isotopes (Salati et al., 1979, Insel et al., 

2013). However, ∑Precip and ∑LAI are not in fact independent: ∑LAI is a function of 

travel time over land, which influences the degree of fractionation likely to have 

occurred along the trajectory. The negative correlations between δ18OTR and ∑LAI 

largely disappear when controlling for the effect of ∑Precip, though a significant 

negative relationship persists during November–January (Appendix 5.4). This result 

illustrates that disentangling confounding influences on δ18OTR can sometimes prove a 

challenge.  

The findings in this study have implications for the interpretation of palaeoproxies 

in the Amazon beyond δ18OTR. Specifically, they add support to the growing evidence 

base that δ18O recorded in, e.g., tropical ice cores and speleothems, seem to largely 

reflect hydroclimate variability and not temperature variability (Grootes et al., 1989, 

Pierrehumbert, 1999, Hoffmann, 2003a, Vimeux et al., 2005, Moquet et al., 2016, 

Samuels‐Crow et al., 2014, Hurley et al., 2015, Hurley et al., 2016, Hoffmann, 2003b), 

though it must be noted that the timescales of these studies vary from interglacial scales 

to just a few years. However, others have argued against trying to disentangle the 

effects of precipitation and temperature on δ18O, due to the strong correlation between 

these variables at interannual timescales in the tropics (e.g. Vuille et al., 2003). To 

complete our analysis, we used a simple Rayleigh-based model to simulate interannual 

variation in δ18OTR (Appendix 5.9). The Rayleigh model predicts isotopic composition 

as a function of the fraction (f) of water vapour remaining in the atmosphere. Outputs 

from our trajectory analysis were used to calculate f keeping all temperature-dependent 

parameters constant from year to year. Figure A5.9.1 shows the evolution of water 

vapour isotopes along a sample trajectory, and the Rayleigh-predicted δ18OTR value in 

each year. Our simulated δ18OTR values match well with observations (r=0.91, p<0.001, 

2000–2010, root-mean-square error ≈1.6 ‰, n=11), but were twice as variable (range = 
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8.8 vs. 4.3 ‰). This analysis shows that the factors controlling Amazon δ18OTR are well 

understood. To some degree the same factors are likely to influence δ18OICE records 

from the Andes, as suggested by the relationships between lowland δ18OTR and δ18OICE 

from Quelccaya and Huascarán over recent times (r=0.77 and 0.68 respectively 

(Brienen et al., 2012)). A direct correlation between a composite δ18OICE record and 

Amazon River discharge measured at Óbidos shows that Amazon precipitation can 

explain about 50 % of the variation in δ18OICE from 1950–1984 (Appendix 5.2). The 

shift of ~6 ‰ in δ18OICE since the Last Glacial Maximum (LGM) (Thompson et al., 

2000) is comparable to between-year differences of <5.5 ‰ (e.g., 1997 vs. 2008) seen 

within one decade of our δ18OTR record, which can be almost entirely explained by 

changes in Amazon moisture balance. It is therefore feasible that variation in Amazon 

hydrology could account for most of the change in δ18OICE since the LGM (i.e. a 

decrease in rainout since the LGM causing an increase in δ18OICE), without needing to 

invoke large shifts in temperature (Pierrehumbert, 1999). However, it should be noted 

that during the LGM δ18OSW would have been ~1 ‰ higher due to the difference in 

global ice volume, though spatial gradients in tropical δ18OSW were similar to the 

present day (Holloway et al., 2016).  

The results presented here show that basin rainout is the most important 

mechanism driving interannual variability in Amazon δ18OTR over the duration of our 

tree-ring records, though other factors may be important at longer timescales. For 

example, occasional very depleted δ18OP values have been reported from rain events in 

the wet season at eastern coastal sites (Salati et al., 1979, Matsui et al., 1983), thought to 

be caused by a southward shift of the inter-tropical convergence zone (ITCZ) reducing 

the initial isotope value of incoming moisture. In a review of South American monsoon 

history inferred from stable isotopes, Vuille et al. (2012) suggest that latitudinal shifts in 

the ITCZ may be influential at the scale of several decades to centuries. In addition, sea 

surface temperature anomalies in the Pacific and Atlantic oceans are well known to 

affect Amazon climate (Richey et al., 1989, Yoon and Zeng, 2010, Marengo and 

Espinoza, 2016), and are therefore likely to influence δ18OTR indirectly, by causing more 

or less precipitation and driving changes in circulation (Vuille et al., 2003, Thompson et 

al., 2013). Longer δ18OTR records than that presented in this paper could possibly shed 

more light on these decadal-scale influences.  
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5.5 Summary  

Trajectory modelling and large-scale water vapour transport analysis have been 

used to identify climatic controls on interannual variation in δ18OTR. The most important 

single control on δ18OTR is rainout during moisture transport over the Amazon basin. 

Interannual variation in atmospheric circulation is another important influence, 

providing further evidence that within-basin processes regulate δ18OTR. These results 

provide a mechanistic link to explain why a δ18OTR chronology from a single site at the 

end of the basin can be good proxy for precipitation over the entire Amazon region, 

with wider implications for the interpretation of other palaeoproxies in the Amazon. 
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Abstract 

 
Changes to the Amazon hydrological cycle may have important consequences for 

world’s largest tropical forest, and the biodiversity contained therein. However, a 

scarcity of long-term climate data in the region can make it hard to evaluate recent 

climatic variability. Two tree-ring oxygen isotope (δ18OTR) chronologies, from northern 

Bolivia and the Ecuadorian Andes, which may offer insights on Amazon hydrology 

over the past two centuries, are presented here. The Ecuador record spans 1799–2012 

(<16 trees) and the Bolivia record spans 1860–2014 (<32 trees), making them the 

longest δ18OTR records from the Amazon, and the best-replicated δ18OTR records from 

the tropics to date. The two chronologies correlated well at interannual and decadal 

timescales, despite coming from sites >1500 km apart. Both δ18OTR records were 

strongly related to Amazon River discharge measured at Óbidos, and upwind 

precipitation, suggesting a common climatic driver of interannual variability. In both 

records a strong increase in δ18OTR was observed up until approximately 1950. The 

increase is consistent with positive trends in other δ18O proxy records from across the 

Amazon. A factorial approach was used to quantify all possible drivers of this long-term 

increase, as δ18OTR may not be governed by the same controls at centennial and 

interannual timescales. Results from this analysis suggested a reduction in rainout 

fraction over the basin as the most likely cause for the increase, driven by rising sea 

surface temperatures (SSTs) in the North Atlantic. The upward trend in δ18OTR reverses 
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over the past 1–2 decades, with the lowest δ18OTR value recorded in Bolivia in 2008. 

These changes are consistent with the observed strengthening of the Amazon 

hydrological cycle since approximately 1990. Overall, it was shown that while the link 

between δ18OTR and the hydrological cycle is intricate, such tree-ring-derived records 

provide unique constraints about hydrological cycling in the past.  

 

6.1 Introduction 

The water and carbon cycles are closely coupled in the Amazon basin (Gatti et al., 

2014), which is the largest freshwater drainage basin in the world. Perturbations in one 

cycle can therefore have important consequences for the other (e.g. Phillips et al., 2009, 

Lewis et al., 2011, Marengo and Espinoza, 2016, Gatti et al., 2014). The fate of Amazon 

vegetation under future change scenarios has been the subject of much discussion in the 

literature, with some model-based analyses suggesting climate feedbacks could cause 

precipitation reductions, system destabilisation and possible widespread forest loss (Cox 

et al., 2004, Malhi et al., 2009, Huntingford et al., 2008, Zemp et al., 2017). However, 

an analysis of rain gauge and river flux data from the region instead shows that 

precipitation in the Amazon has actually increased since approximately 1990 (Gloor et 

al., 2013), though wet and dry season precipitation anomalies are becoming increasingly 

variable (Marengo and Espinoza, 2016, Fu et al., 2013, Espinoza et al., 2014), and are 

projected to continue to do so into the future (Boisier et al., 2015).  

Despite the importance of assessing climate change for the conservation of carbon 

stocks and biodiversity, the number of monitoring stations in the Amazon reporting data 

has fallen since the late 1980s (see Appendix 6.1), and there are few long-term 

instrumental records. This makes it hard to assess recent changes in hydrology in the 

context of historic variability. Proxy climate data, such as oxygen isotopes (δ18O), can 

potentially provide some insight on past hydrological variation (Mook, 2000). However, 

conventional G18O archives such as tropical ice cores can be affected by post-

depositional processes (Hardy et al., 2003), may have little or no replication due to the 

expense and time needed to retrieve samples (Bradley, 2011) and are becoming 

increasingly threatened by anthropogenic warming (Thompson et al., 2000). There have 

been a growing number of speleothem δ18O records from the Amazon in recent years 
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(e.g. Vuille et al., 2012, Kanner et al., 2013, Moquet et al., 2016, Novello et al., 2016, 

Wang et al., 2017 and references therein), though these also have low replication, and 

highly variable temporal resolution (e.g. <1–150 years). Thus, it is desirable to identify 

other tropical proxies that can provide a reliable record of on-going change, as well as 

helping to improve our understanding of past hydrological variation.  

It was shown in a previous study that G18O preserved in tree rings (δ18OTR) from 

northern Bolivia correlate well with interannual variation in precipitation over the whole 

Amazon basin and could therefore be used to better understand Amazon hydrology in 

the past (Brienen et al., 2012). Trajectory modelling has since been used to provide a 

mechanistic link to explain this relationship, with δ18OTR inversely related to the amount 

of precipitation along transport pathways (Baker et al., 2016). This is due to the controls 

on isotopes in precipitation (δ18OP) in the Amazon, which have long been known (e.g. 

Dansgaard, 1964, Salati et al., 1979). During tranport of moisture across the basin, the 

water molecules containing heavy isotopes are more likely to condense and fall as rain, 

depleting the isotope composition of water vapour remaining in the atmosphere 

following a Rayleigh distribution (Dansgaard, 1964). However, although δ18OTR show 

promise as a proxy for reconstructing interannual variation in precipitation, as yet there 

have been no well-replicated δ18OTR chronologies from the region that extend beyond 

the limit of instrumental data (though Ballantyne et al. (2011) did develop a 184-year-

long record from a single individual of C. odorata).  

While the climate controls on interannual variation in δ18OTR from the Amazon 

are well understood, the factors influencing long-term trends have not yet been 

examined. Previous studies on δ18O records from the Amazon have tended to apply 

known drivers of interannual variation to interpret longer-term (e.g. centennial) trends 

in δ18O (Bird et al., 2011, Vuille et al., 2012, Kanner et al., 2013). This approach to 

proxy data interpretation is not reliable because it assumes that the same factors drive 

variation at different timescales, and that all alternative drivers of variation have 

remained constant through time (i.e. the assumption of uniformitarianism; Bradley, 

2011), while neither of these assumptions may be valid in reality. To accurately 

reconstruct palaeoclimate from long proxy records all potential sources of variability 

must be carefully considered. 
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The aim of this paper was to use δ18OTR records from the Amazon to improve our 

understanding of temporal variation in regional hydrology and its controls since the 

early 1800s. Long δ18OTR records can also provide insights about how recent changes to 

the hydrological cycle compare with natural climatic variability. Two annually resolved 

and well-replicated δ18OTR chronologies from the western margin of the Amazon basin 

are presented. These records span the last two centuries making them the longest δ18OTR 

records from the region to date. Comparisons with climate data were made to analyse 

and assess whether the records are influenced by a common climatic driver, and a 

factorial approach was to investigate the cause of a long-term increase in δ18OTR since 

the early 1800s. 

 

6.2 Methods 

6.2.1 Sample collection 

This study combines samples from three lowland rainforest sites in northern Bolivia and 

a montane forest in the eastern Ecuadorian Andes (Fig. 6.1). The Bolivian samples are 

from primary forests in Purisima (11.40°S, 68.72°W, 170 m above sea level (a.s.l.) and 

Selva Negra (10.10°S, 66.31°W, 160 m a.s.l.), and a secondary forest in El Tigre 

(10.98°S, 65.72°W, 165 m a.s.l.). δ18OTR chronologies from Purisima and Selva Negra 

have been presented in previous publications (see Brienen et al., 2012, Baker et al., 

2015, Baker et al., 2016), though the present study uses additional samples and extends 

the analysis further back in time. All of the Bolivia sites are located relatively close 

together and thus have a similar climate. Total annual precipitation is approximately 

1700 mm and highly seasonal, with a wet season (defined here as months with 

precipitation >100 mm) from October to April, which coincides with the main growing 

season for trees here (Brienen and Zuidema, 2005). Mean annual temperature is 26.2 °C 

with little seasonal variation (climate data are from 1960–2004, from the Riberalta 

meteorological station in the Global Historical Climatology Network-Monthly (GHCN-

M) database (Peterson and Vose, 1997) accessed via KNMI (Koninklijk Nederlands 

Meteorologisch Instituut) Climate Explorer: http://climexp.knmi.nl).  

 

http://climexp.knmi.nl/
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Figure 6.1 – Map of δ18O proxy records from the Amazon. The Amazon basin (grey shading), tree-ring 
sampling sites (brown circles; CY=Cuyuja, P=Purisima, SN=Selva Negra, ET=El Tigre), the 
meteorological station at Óbidos (green circle; OB) and the locations of other δ18O proxy records, 
including records from speleothems (black hexagons; CAS=Cascayunga cave (Reuter et al., 2009), 
HC=Huagapo cave (Kanner et al., 2013), CUR=Curupira cave (Novello et al., 2016)), a lake sediment 
record (blue circle; LP=Laguna Pumacocha (Bird et al., 2011)) and an ice-core record (dark blue triangle; 
QIC=Quelccaya ice core (Thompson et al., 2013)) are shown. 
 

The Ecuadorian samples are from Cuyuja (0.45°S, 78.04°W, 2950m a.s.l.), which 

is much cooler on account of its higher elevation (mean annual temperature is 10.5 °C). 

Annual precipitation is approximately 1500 mm, which is similar to that of the Bolivian 

sites, though precipitation seasonality is lower in Ecuador (climate data are from the 

Papallacta meteorological station (3150 m a.s.l., 20 km away from sample site) from the 

period 1949–2008 (discontinuous) and available from the INAMHI (Instituto Nacional 

de Meteorologia e Hidrologia): http://www.serviciometeorologico.gob.ec). The wet 

season in Cuyuja is from March to September, and although there are no observations of 

leaf phenology or seasonal growth rhythms in this location, studies have shown that C. 

montana trees in southern Ecuador grow from December/January to April/May 

(Bräuning et al., 2009) before losing their leaves, with senescence possibly triggered by 

reduced light intensities at the height of the wet season (Bräuning et al., 2008). 

http://www.serviciometeorologico.gob.ec/
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Stem discs were collected from Purisima in 2002, from Selva Negra in 2011 and 

from Cuyuja in 2013, from trees that had already been felled. Living trees in Selva 

Negra and Cuyuja were also sampled using a 10-mm increment borer to collect cores 

approximately 130 cm from the ground in 2–4 directions around the circumference of 

the tree. In 2015 cores were also taken from living trees in El Tigre to capture more 

recent tree growth. Cedrela odorata trees were sampled in Bolivia and the closely 

related species C. montana was sampled in Ecuador. 

 

6.2.2 Sample preparation 

Discs were polished with sandpaper (up to grit 600) using a Bosch orbital sander, 

to improve the visibility of the tree rings. On each disc rings were counted along 2–4 

radii, with every 10th ring interconnected between radii to ensure that no rings had been 

missed or misidentified. This was particularly important in samples from Ecuador 

where wedging (locally absent) rings were common. The oldest discs with the clearest 

rings were selected for isotope analysis (17 trees from Bolivia and 10 trees from 

Ecuador). Cores from younger trees were also analysed to assess the effect of ontogeny 

on δ18OTR signals. Cores were prepared using a core-microtome (Gärtner and 

Nievergelt, 2010) and on each core rings were marked and measured in the 

perpendicular direction to the ring boundaries using a LINTAB measuring stage. Ring 

widths were visually crossdated (Stokes and Smiley, 1968) between 2–4 cores from 

each tree to identify where rings might have been missed/misidentified. Cores with the 

widest and clearest rings were chosen for isotope analysis (17 cores from Bolivia and 13 

cores from Cuyuja). 

Isotope analysis was conducted on α-cellulose, which was extracted from whole 

wood using two different methods. First, samples from Bolivia were prepared using a 

scalpel to isolate and cut up the wood from each individual tree ring, making sure that 

the full width of the ring was evenly sampled. Wood from each ring was then put into 

separate filter funnel and cellulose extraction was conducted following the batch 

method of Wieloch et al. (2011). After extraction cellulose samples were transferred to 

Eppendorf tubes for homogenisation using a Retsch MM 301 mixer mill and then 

freeze-dried before being packed into silver cups for isotope analysis (see below).  
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The samples from Ecuador were analysed following an alternative technique 

whereby cellulose is extracted before the rings are separated from each other. The 

followed protocol was based on the methods of Kagawa et al. (2015) and Li et al. 

(2011), which build on earlier work by Loader et al. (2002). In brief, a bandsaw was 

used to cut sections of wood approximately 10 mm wide, 1 mm thick and between 50 

and 100 mm long. These wood laths were scanned at high resolution and then sewn into 

perforated polytetrafluoroethylene (PTFE) cases, prior to chemical treatment to extract 

the cellulose following the procedure of Wieloch et al. (2011). This methodology 

permits much higher throughput of samples (in one week approximately 1000 tree rings 

could be treated, with the potential for even more than this) and the process of chemical 

exchange during the extraction process is also greatly accelerated. After extraction, the 

cellulose laths were freeze-dried while still inside their PTFE cases. Dried laths were 

inspected using a stereomicroscope with a transparent stage and mirror to reflect 

transmitted light and optimise ring visibility. Rings were carefully separated using a 

scalpel with reference to the wood scans to identify each ring correctly. Purified 

cellulose from each ring was then homogenised and freeze-dried as above, before being 

packed into silver cups. 

 

6.2.3 Oxygen isotope analysis 

The isotope series presented here were measured in four laboratories. Samples 

from Purisima were analysed at the German Research Centre for Geosciences (GFZ) in 

Potsdam, Germany; Selva Negra samples were analysed at the British Geological 

Survey's Stable Isotope Facility (part of the NERC Isotope Geosciences Facilities 

(NIGF)) in Keyworth, Nottingham, UK; the El Tigre samples were analysed in the 

School of Earth and Environment (SEE) at the University of Leeds; and Ecuador 

samples were analysed in the Department of Geography at the University of Leicester. 

Methods for δ18O analysis at GFZ, NIGF and SEE have been described at length in a 

previous study (Baker et al., 2015), thus for brevity only describe the methods 

employed at the University of Leicester are described. 

Cellulose δ18O values were determined by pyrolysis in a high temperature furnace 

equipped with a glassy carbon reactor. Cellulose encapsulated in silver cups was 

converted to CO at a temperature of 1350 °C using a SerCon HT (high temperature) 
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furnace coupled to a SerCon Hydra 20-20 continuous flow isotope-ratio mass 

spectrometer (IRMS). δ18O values (where δ =((((18O/16Osample)/(18O/16Ostandard)) −1) ×

 1000) were calculated with reference to two standards: cellulose from Sigma-Aldrich, 

UK (Lot#SLBD2972V) and whole wood Spruce Powder from Elemental Microanalysis. 

Precision was typically <0.2 ‰ (n=12). 

 

6.2.4 Dating δ18OTR series 

Crossdating δ18OTR series against an established δ18OTR chronology from the same 

region has been shown to be a cheap and effective way to verify tree-ring dates (Baker 

et al., 2015). δ18OTR chronologies from Purisima and Selva Negra have already been 

established (e.g. Baker et al., 2015, Brienen et al., 2012), and new δ18OTR records from 

Selva Negra and El Tigre were aligned with these published records. Where dating 

errors were suspected, the original samples of wood were then re-inspected to see 

whether any tree rings had been missed or miscounted. For the development of the 

Ecuador δ18OTR chronology a different procedure was followed: trees were matched 

against each other, since the site at Cuyuja is too far (>1500 km) from the Bolivia sites 

to assume that trees show similar interannual δ18OTR signals. Some of the δ18OTR data 

from Ecuadorian increment cores could not be crossdated, probably due to the high 

incidence of wedging rings, which could only be identified by careful scrutiny of 

complete discs. The non-matching series, which were all from small trees (2 from El 

Tigre and 7 from Cuyuja) were thus excluded from the composite chronologies. 

 Finally, one tree from Selva Negra and three trees from Cuyuja were selected for 

‘bomb-peak’ radiocarbon (14C) analysis to independently validate tree-ring dates. The 
14C measured in tree rings from both of these sites show excellent agreement with 

existing 14C calibration curves, proving trees have been precisely dated (Baker et al., 

2007).  

 

6.2.5 Data analysis  

Mean δ18OTR chronologies were constructed for Ecuador and Bolivia, with a 

minimum of three trees averaged at any point along each chronology (Appendix 6.2). 

The Bolivia record combines δ18OTR data from all three sites (a total of 32 trees) and 

spans 1860–2014 (data from 1901–2010 has been published previously (see Baker et 
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al., 2016, Baker et al., 2015, Brienen et al., 2012)). δ18OTR signals in trees from 

Purisima correlate strongly with trees from Selva Negra (Baker et al., 2015) and they 

have a similar standard deviation (0.9 ‰ and 1.1 ‰ respectively), but the trees from 

Purisima are consistently more enriched (by ~2.7 ‰). At least 1 ‰ of this offset is 

attributable to the fact that the series were measured in different laboratories, which 

assigned different isotope values to the same standard (for full details refer to the 

interlaboratory comparison in Baker et al., 2015). The cause for the rest of the offset is 

unclear, though it could be related to differences in soils between the two sites affecting 

soil water residence times, or due to physiological differences between sub-populations 

of C. odorata. Before constructing the mean chronology for Bolivia all Purisima δ18OTR 

values were thus offset by 2.7 ‰ to standardise the means between the different sites. 

The Ecuador record combines data from 16 trees, spans 1799–2012 and is presented 

here for the first time.  

Mean inter-tree correlation coefficients (rmean) and ‘Expressed Population Signal’ 

(EPS) statistics were used to measure δ18OTR chronology reliability. EPS is a measure of 

the extent to which a chronology is dominated by individual tree-level (EPS<0.85) or 

stand-level (EPS>0.85) signals (Wigley et al., 1984) and is calculated using the 

formula: EPS = (N * rmean) / (1 + (N – 1) * rmean) where N is the number of individual 

trees. A moving-window analysis was used to calculate running rmean and EPS statistics, 

using a window of 30 years, to show changes in chronology quality through time.  

δ18OTR records were compared against each other, and with climate data, to 

identify controls at interannual, decadal and centennial timescales. Spatial correlation 

analyses were performed to reveal relationships between δ18OTR records and regional 

climate. All correlations presented use the Pearson’s product-moment correlation 

method and are between the unfiltered, interannual time series, unless otherwise 

indicated. Linear trends were identified using ordinary least squares (OLS) regression. 

To visualise low frequency trends in δ18OTR records and climate data, a second order, 

low-pass Butterworth filter with a cut-off frequency of 0.2 was applied in forward and 

reverse directions to each data series. Data analysis was conducted using Python 3.5.2 

in the Scientific PYthon Development EnviRonment (Spyder) 3.1.2, and Interactive 

Data Language (IDL) version 8.2.3. 
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Climate data were downloaded via KNMI Climate Explorer, unless otherwise 

stated. Monthly precipitation and temperature observations (1901–2015) come from the 

Climatic Research Unit (CRU) TS3.24.01 product at 0.5° x 0.5° resolution (Harris et al., 

2014). Spatial correlation analyses only used CRU data from the period 1953–1989 

when the interpolated precipitation product includes data from >50 stations in the 

Amazon region (defined here as 15°S–5°N, 50–80°W, Appendix 6.1). Monthly sea 

surface temperature (SST) data are from the National Oceanic and Atmospheric 

Administration (NOAA) Extended Reconstruction Sea Surface Temperature (ERSST) 

dataset version 4 at 2° x 2° resolution (Huang et al., 2015). ERSST data were used from 

1880 onwards, due to increasing uncertainty before this time (Huang et al., 2016). In 

addition, reconstructed North Atlantic SST anomalies for the period 1799–2006 from 

Mann et al. (2009) were used. This reconstructed dataset is based on multiple proxy 

records, including tree rings, ice cores, corals, speleothems and marine sediments. 

Monthly Amazon flow data, measured at Óbidos, are from the Agência Nacional de 

Águas (ANA) in Brazil (HidroWeb, 2017) with missing values reconstructed using 

linear relationships with hydrometric data from stations at Taperinha and Manaus 

(Antico and Torres, 2015). Lastly, monthly mean international sunspot number data for 

1799–2015 were accessed from the Solar Influences Data Analysis Centre (SIDC, 

2017).  

 

6.3 Results and Discussion 

6.3.1 Record description and inter-comparison 

The δ18OTR series and composite chronologies from Ecuador and Bolivia are 

presented in Figure 6.2. These records span two centuries (1799–2014) and are the 

longest and best-replicated δ18OTR records from tropical South America to date. The C. 

odorata trees comprising the Bolivia chronology show high inter-tree synchronicity in 

δ18OTR (rmean=0.69) and an EPS of 0.99 (Fig. 6.2b), which strongly indicates that δ18OTR 

signals are governed by an external control. There is slightly more variability between 

C. montana δ18OTR series from Ecuador (rmean=0.45), possibly due to the different 

cellulose extraction method used (see section 2.2.1), though an EPS of 0.93 still 

suggests that the chronology is dominated by stand-level influences (Fig. 6.2a; Wigley 
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et al., 1984, N.B. EPS calculated using the raw, unadjusted series = 0.73). Moving 

window rmean and EPS statistics decline for the most recent part of the Ecuador 

chronology (Fig. A6.2.1), probably due to the inclusion of the six increment cores, 

which could not be as carefully dated as the discs (see section 6.2.4), and because the 

rings in the discs tended to be very compressed in the outside edge, possibly resulting in 

errors during ring counting or when isolating the cellulose from each ring. However, in 

general both chronologies are well replicated, show coherent signals between trees and 

are sufficiently robust for further analysis.  

The Ecuador and Bolivia records correlate well at interannual timescales (r=0.57, 

p<0.001, 1860–2012, n=153), despite coming from sites which are >1500 km apart and 

have an elevation difference of approximately 2750 m. Low-pass filters also reveal 

close similarities in their decadal and long-term trends (Appendix 6.3). Correlations 

between nearby δ18OTR records can be caused by changes in local relative humidity 

(RH) 
 

Figure 6.2 – New δ18OTR chronologies from Ecuador and Bolivia. Grey lines represent individual trees 
(16 for Ecuador, 32 for Bolivia) and the black lines show the mean composite chronologies. The mean 
inter-tree correlation (rmean) and expressed population signal (EPS) values for the composite chronologies 
are indicated. 
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affecting stomatal conductance and consequently leaf water isotope enrichment (e.g. 

Andreu-Hayles et al., 2016, Labuhn et al., 2014, Xu et al., 2011). However, the large 

distance between the sample sites suggests another climatic control on the signal, which 

is independent of local conditions. Similarity between δ18OTR records from far distant 

sites, and between δ18OTR and other stable isotope proxy records, have been reported 

before in the Amazon (Ballantyne et al., 2011, Brienen et al., 2012, Baker et al., 2015, 

Volland et al., 2016). These connections have been attributed to strong regional 

coherence of δ18O in precipitation (δ18OP), caused by the link between precipitation in 

the basin and the location and strength of large-scale atmospheric overturning cells (i.e. 

Hadley and Walker cells, e.g. Nobre et al., 2009). This same reason is the likely 

explanation for the close correspondence between the records in this study, with the 

δ18OP signal recorded in cellulose with minimal modification of the signal in response 

to local climate effects (Barbour et al., 2004).  

 

6.3.2 What drives interannual and decadal variation in G18OTR from Ecuador?  

The climatic factors controlling interannual variation in δ18OTR records from 

northern Bolivia are already well understood (e.g. Baker et al., 2016, Brienen et al., 

2012): rainout of heavy isotopes during moisture transport across the Amazon basin,  

Figure 6.3 – Correlations between δ18OTR and gridded precipitation. Maps show the relationship 
between the Ecuador (a) and Bolivia (b) G18OTR records and precipitation from CRU for four months 
during the growing season (Dec–Mar, 1953–1989). Black triangles show the location of the tree-ring 
sample sites. The colour bar indicates the strength of the correlation coefficients and blue and red 
contours show where correlations are significant (p<0.05). The broken black line in (a) shows the area 
from which precipitation data were averaged in the time series shown in Fig. 6.4. 
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and strong recycling of water vapour through vegetation, drive variation in δ18OP 

(Dansgaard, 1964, Salati et al., 1979, Insel et al., 2013, Villacís et al., 2008, Vimeux et 

al., 2005, Pierrehumbert, 1999), and this signal is preserved in tree rings. Since the 

Ecuador and Bolivia δ18OTR chronologies correlate well with each other and since both 

records are from the far west of the basin, it is likely they are controlled by a similar 

mechanism, though this has yet to be shown. This section focuses on identifying the 

factors controlling interannual and decadal variation in Ecuador δ18OTR, and show how 

these differ from / relate to the known controls on δ18OTR from Bolivia. 

Maps showing correlations between δ18OTR and gridded climate data can provide 

guidance about the causes of interannual variation and trends in δ18OTR. Figure 6.3 

shows correlations between Ecuador and Bolivia δ18OTR records and December–March 

CRU precipitation time series. These months coincide with the mature phase of the 

South American summer monsoon (SASM; Raia and Cavalcanti, 2008), and the 

growing season for Cedrela at each site. The emerging patterns for the two records are 

very similar, though the region of negative correlation extends further south for the 

Bolivia record. This corresponds to differences in pathways of moisture transport, with 

air parcels travelling to Ecuador over the more northern part of the basin (Appendix 

6.4). Both maps also show a clear dipole, with δ18OTR anticorrelated with precipitation 

over northern South America, but positively correlated with precipitation in the 

southeast of the Amazon basin. This anti-phasing between precipitation in the northeast 

Brazil and the rest of the basin has been observed before, and is driven by the balance 

between moisture convergence and updraft over the basin, and subsidence and 

divergence of moisture in the surrounding regions (Cruz et al., 2009, Bordi et al., 2015). 

The dipole is modulated on orbital timescales by insolation affecting the intensity of the 

SASM: when summer insolation is high (low) in the southern hemisphere, a strong 

(weak) SASM strengthens (weakens) the Hadley and Walker circulations, increasing 

(reducing) subsidence and aridity in the region over northeast Brazil (Cruz et al., 2009).  

Precipitation averaged over the north of the Amazon from December to March 

(region indicated in Fig. 6.3a) correlates well with Ecuador δ18OTR (r=–0.57, p<0.001, 

1901–2012, n=112), as does Amazon River discharge measured at Óbidos, which 

integrates precipitation over approximately 80% of the Amazon basin (r=–0.63, 

p<0.001, 1903–2012, n=110; Fig. 6.4). Correlations with the Bolivia record are slightly 
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stronger (Appendix 6.5), but this may be because the Bolivia record is slightly better 

constrained, as it has higher replication and lower inter-tree variability. A recent study 

analysing climate signals in a δ18OTR chronology from the south of Ecuador found a 

better correlation with local CRU precipitation than with local station data, but the 

authors did not test for relationships with precipitation over a wider area (Volland et al., 

2016). The authors hypothesise that moisture transported into the Andes from the 

Amazon is likely to influence δ18OTR in Ecuador, and the results presented here support 

this suggestion, with precipitation over the whole of northern South America affecting 

Ecuador δ18OTR. No significant correlation between δ18OTR and local or regional 

temperature was found once variation in regional precipitation had been accounted for 

(Appendix 6.6). This is in agreement with previous studies showing that temperature 

does not have an important influence on δ18OTR in the Amazon (Volland et al., 2016, 

Brienen et al., 2012). Overall, these results provide a strong indication that the Ecuador 

δ18OTR chronology is subject to the same controls as the Bolivia δ18OTR chronology, i.e. 

successive precipitation events during moisture transport across the Amazon cause the 

progressive depletion of water vapour isotopes (e.g. Dansgaard, 1964, Salati et al., 

1979), and this signal is recorded in cellulose.  

 
Figure 6.4 – Effect of Amazon precipitation and runoff on δ18OTR from Ecuador. Interannual 
variation in the δ18OTR record from Ecuador (black line, scale reversed), precipitation from CRU averaged 
over the region indicated in Fig. 6.3a (Dec–Mar, light blue line) and Amazon River discharge measured at 
Óbidos, which integrates precipitation over approximately 80% of the Amazon basin (Jun–Aug, dark blue 
line, line is thinner where data has been reconstructed from other river records). A low-pass Butterworth 
filter was applied to each series to visualize decadal variation. Values indicate the interannual Pearson 
correlation coefficients between δ18OTR and the other time series for the full period shown (p<0.001). 
Note that the river data is offset because peak river flow lags peak precipitation by 4–6 months. 
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To test the skill of potential regression-based reconstructions of Amazon 

hydrology from δ18OTR, split-period regression statistics, including the reduction of error 

(RE) and the coefficient of efficiency (CE) were calculated (National Research Council, 

2006). Each isotope chronology was divided into two equal-length subsets (i.e. 1903–

1957 and 1958–2012), which were used alternately for model calibration and 

verification. To calibrate the model, one subset of the δ18OTR data was regressed against 

Amazon River discharge data from the equivalent period (this dataset was used as it is 

the longest and most reliable record of Amazon hydrology), while the second subset 

was used to independently verify the model. Positive RE and CE statistics were returned 

for both the Bolivia and Ecuador chronologies, regardless of which subset was used to 

calibrate the regression model (Table A6.7.1), indicating that both records can generate 

models with skill in predicting Amazon river discharge. The statistics for models 

developed using the Ecuador chronology are lower than for models based on the Bolivia 

chronology, possibly due to diverging trends in the Ecuador calibration and validation 

periods. For this reason, and because it cannot be assumed that the factors driving 

interannual variability in δ18OTR operate on longer timescales (see section 6.4), this 

study refrains from applying a transfer function to explicitly reconstruct Amazon 

hydrology. 

To investigate larger-scale controls on Ecuador δ18OTR the record was correlated 

with SST data (Fig. 6.5). The pattern of correlation is similar to that between the 

Quelccaya ice-core δ18O record and SSTs (Fig. 3 in Thompson et al., 2013), indicating 

that these Andean records have similar large-scale controls. The two main regions of 

influence are the equatorial Pacific, and the tropical North Atlantic (TNA). SST data 

extracted from these two regions (marked by broken lines in Fig. 6.5a) were plotted as 

time series (Figs. 6.5b & c). Previous work in the Amazon has highlighted the influence 

of Pacific SSTs on δ18OTR via the influence of the El Niño-Southern Oscillation (ENSO; 

Brienen et al., 2012, Volland et al., 2016, Ballantyne et al., 2011), and the effect on the 

δ18OTR record from Bolivia is particularly strong (Appendix 6.8). However, this is the 

first time an important Atlantic influence has been shown, and thus the focus here. TNA 

SSTs correlate with Ecuador δ18OTR at interannual and decadal timescales (Fig. 6.5b). 

The start points of 10-day back-trajectories from the sample site were over-plotted to 

provide some indication of the origin of water vapour relative to the regions of highest  
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Figure 6.5 – Correlation between δ18OTR from Ecuador and sea surface temperature (SST) data. (a) 
Map showing the relationship between the δ18OTR record from Ecuador and gridded SST data from 
NOAA for four months during the growing season (Dec-Mar, 1880–2012). The location of the δ18OTR 
sample site is indicated by a black triangle. The colour bar indicates the strength of the correlation 
coefficients and blue and red contours show where correlations are significant (p<0.05). Broken black 
lines indicate regions from which SST data were averaged in the time series shown in panels b and c. (b) 
Interannual variation in SSTs from the tropical North Atlantic (red line) and the Ecuador δ18OTR record 
(black line). (c) As in b, but for SSTs from the Niño 3.4 region of the Pacific. A low-pass Butterworth 
filter was applied to each series to visualize decadal variation. Values indicate the interannual Pearson 
correlation coefficients between δ18OTR and the other time series for the full period shown (p<0.001). 

 

correlation (Appendix 6.9). It is interesting to observe that most of these points fall in 

between the two regions of positive correlation in the Atlantic, suggesting that the effect 

of SSTs on δ18OTR is not direct (i.e. does not result from temperature-dependent 

fractionation during evaporation from the sea surface). Instead, it can be explained 

through a significant inverse relationship between TNA SSTs and precipitation 

upstream of the sample site, in the Guyanas and eastern Venezuela (Dec–Mar, Fig. 



 

141 

 

A6.10.1a). Pacific SSTs affect precipitation in a similar but wider area over the same 

time period (Fig. A6.10.1b). An Atlantic control on Amazon hydrology has only been 

well understood in recent decades: warm (cold) TNA SSTs cause the northward 

(southward) displacement of the inter-tropical convergence zone (ITCZ), thus driving 

lower (higher) precipitation in the southern and western parts of the basin, 

predominantly during the dry season (Yoon and Zeng, 2010, Espinoza et al., 2011, 

Marengo et al., 2011, Fernandes et al., 2011, Zeng et al., 2008, Yoon, 2016). The results 

show that TNA SSTs also significantly influence precipitation over the northern 

Amazon at the height of the wet season (Dec–Mar), which in turn affects the signal 

recorded in δ18OTR. 

A recent study reported a connection between solar activity and Amazon River 

discharge over the last century, due to the influence of sunspots on Atlantic SSTs 

(Antico and Torres, 2015). Specifically, they suggest that maxima and minima in the 

sunspot cycle respectively increase or decrease the difference between SSTs in the 

tropical North and tropical South Atlantic, thus weakening or strengthening the trade 

winds that transport moisture into the Amazon basin. In turn, this affects the amount of 

precipitation and runoff over the Amazon. While an interesting finding, the analysis was 

limited by the length of instrumental river records, which only extend back to 1903. 

Since the Ecuador record provides a proxy for Amazon basin hydrology over the last 

two centuries it can be used to conduct a more rigorous test of the relationship between 

sunspots and the Amazon hydrological cycle over the period 1799–2012. Following 

Antico and Torres (2015), the ensemble empirical mode decomposition (EEMD) 

method described by Wu and Huang (2009) was used to decompose the Ecuador record 

into its intrinsic oscillatory modes. Figure 6.6 shows the third modes of variability (as 

used by Antico and Torres) of annual (October–September) Amazon River discharge at 

Óbidos and Ecuador δ18OTR, alongside the smoothed international sunspot number 

record (three-year moving average). Significance thresholds were adjusted to account 

for the reduced effective sample size (neffective) of the smoothed time series. The results 

show good agreement with those of Antico and Torres (2015) over the 20th century, 

with sunspot number showing an anti-correlation with discharge (r=–0.49, p<0.01, 

neffective =32), and a positive correlation with δ18OTR (r=0.6, p<0.001, neffective= 32) from 

1903–2012 (note that discharge and δ18OTR are themselves inversely related, Fig. 6.4). 
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If sunspots drive variation in Amazon hydrology one would expect the positive 

relationship between sunspot number and δ18OTR to continue back in time. However, in 

the period before 1900 the relationship between the two records breaks down (r=–0.29, 

p=0.12, 1799–1902, neffective=30). This could suggest either that the relationship between 

δ18OTR and Amazon hydrology is not robust, or that the postulated relationship between 

sunspots and Amazon hydrology is not robust. The mechanisms linking δ18OTR with 

Amazon hydrology are increasingly well understood, as described above (i.e. Baker et 

al., 2016, Brienen et al., 2012), while the means by which sunspots might affect 

Amazon hydrology are still relatively little studied. It is possible that the effect of 

sunspots on Amazon hydrology is not stationary, or else that the finding by Antico and 

Torres (2015) is coincidental, as the relationship over the full 200-year period is non-

significant (r=0.20, p=0.12, neffective=62). This example illustrates that long, annually 

resolved δ18OTR proxy records provide more insights than instrumental data alone. 

 
Figure 6.6 – Testing the effect of sunspots on Amazon hydrology. Decadal variation in Amazon River 
flow measured at Óbidos (blue line), international sunspot number (red line) and decadal variation in 
δ18OTR from Ecuador. The decadal river flux and δ18OTR data are the third ensemble empirical mode 
decomposition (EEMD) modes of the raw time series shown in Figure 6.4. Values indicate the Pearson 
correlation coefficients between sunspot number and the other time series for periods shown by arrows. 
 

6.4 Long-Term Trends in δ18OTR  

Both records show a significant positive trend in δ18OTR over their full length. The 

trend in the Ecuador record is 1.24 ‰ 100yr-1 (p<0.001, 1799–2012) and in Bolivia 0.37 

‰ 100yr-1 (p<0.001, 1860–2014). However, the trends are not constant through time. 
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Both series show strong upward trends in δ18OTR in the period before 1900 (i.e. 2.11 and 

2.43 ‰ 100yr-1 for 1860–1900, Ecuador and Bolivia respectively), but after 1900 the 

trends become gradually weaker, reaching a plateau at approximately 1950, and even 

becoming negative in the last 1–2 decades. The long Ecuador record, which shows 

approximately a 3 ‰ increase since the early 1800s, is the focus of this section. Similar 

(but weaker) positive trends over the past two centuries have been observed in other 

δ18O proxy records, predominantly from the western part of the Amazon basin, 

including ice cores, lake sediments and speleothems (Fig. 6.7). These trends range from 

0.17–1.03 ‰ 100yr-1 for the common period of 1800–1971. The common long-term 

increase in different proxy records suggests that at least part of the increase in δ18OTR is 

due to an increase in δ18OP, although the rate of δ18O increase is the strongest in the 

tree-ring record. This might be related to the fact the site is the furthest north, or due to 

some influence of tree physiology, or because the trees only grow, and thus record δ18O, 

for a few months during the Amazon wet season (i.e. are seasonally biased). Long-term 

increases in Amazon δ18O records have previously been interpreted as showing a 

reduction in precipitation during the SASM (e.g. Bird et al., 2011, Vuille et al., 2012, 

Kanner et al., 2013). However, these studies assume that the factors driving interannual 

variability apply at longer timescales, and confounding sources of variation are not 

considered. In this study, the confounding factors that might contribute to the observed 

increase in δ18OTR are as follows: 

1. Ontogenetic effects 

2. Tree-level response to increasing atmospheric CO2 

3. Changes in the leaf-to-air vapour pressure difference 

4. Increase in seawater δ18O at moisture origin 

5. Effect of increasing SSTs on fractionation during evaporation from the 

ocean surface 

6. Change in the lapse rate 

7. Change in local amount effects 

8. Reduction in rainout fraction over the Amazon (i.e. the ratio of total 

precipitation to vapour transported into the basin) 

Each of these factors is considered in turn, and the potential contribution to the trend in 

δ18OTR is quantified (summarised in Table 6.1). 
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Table 6.1 – Summary of factors that may contribute to the long-term increase in δ18OTR. The 
estimated contribution of each factor is shown. 

 

6.4.1 Testing for an ontogenetic influence on δ18OTR 

When analysing long isotope series, it is important to consider the possible 

influence of ontogeny. The records in this study are mostly constructed from large discs, 

thus the early part of the record contains more juvenile rings than the later part, and 

therefore any age-related biases might result in erroneous trends in δ18OTR. Work on 

juniper trees from Pakistan first revealed age biases in δ18OTR, with series from juvenile 

trees showing negative trends in δ18OTR not evident in δ18OTR series from older trees 

over the same time period (Treydte et al., 2006). Since then it has become apparent that 

the direction of ontogenetic biases can differ between different species and across 

climatic zones, with negative (Esper et al., 2010) and positive (Labuhn et al., 2014) age 

biases being reported, and other studies which find no significant ontogenetic influence 

on δ18OTR (Young et al., 2011, Sano et al., 2013, Xu et al., 2016, Kilroy et al., 2016). 

Given this variability, it is important to check whether there is any evidence for an 

effect of ontogeny on Cedrela δ18OTR records from the Amazon. 

To test for an ontogenetic influence on δ18OTR from Selva Negra, for each year 

from 2001–2010 the mean δ18OTR value for that year was calculated using only small 

trees (<20 cm diameter at breast height (DBH), 10 trees in total) and only large trees 

(>60 cm DBH, 9 trees in total). δ18OTR values in small and large trees were found to be 

highly correlated (R2=0.92, Fig. A6.11.1), and the slope of the regression is not 

significantly different from 1 (0.85±0.21, 95% confidence interval). This is a strong 

indication that there is no effect of ontogeny on δ18OTR in C. odorata. It was not 

possible to use the same approach to test for ontogenetic effects in C. montana as there 

was insufficient data from small trees. Instead, the δ18OTR values from the seven old C. 

Factor Predicted contribution to the increase in 
δ18OTR (‰) 

Ontogenetic effects 0 

Tree-level response to increasing atmospheric CO2 0.39 

Changes in the leaf-to-air vapour pressure difference 0.61 

Increase in seawater δ18O at moisture origin 0 
Effect of increasing SSTs on fractionation during evaporation from the ocean 
surface 0.086 

Change in the lapse rate 0.13 

Change in local amount effects 0 

Reduction in rainout fraction over the Amazon 1.78 
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montana trees that included isotope measurements from young rings (<20 cm DBH) and 

older rings (>20 cm DBH), were plotted using different colours to differentiate between 

the two phases. δ18OTR values in young rings closely follow the values and trends in 

older rings and there are no trailing sections, which might be expected if there were 

strong trends during the early years of growth (Fig. A6.11.2). Overall, it was concluded 

that ontogeny does not have an important influence on δ18OTR in either of the records 

presented in this study and there was thus no need to apply de-trending procedures to 

remove biological age trends. This means that these records can be used to assess low 

frequency variation in climate. Next, possible environmental drivers for the upward 

trend in δ18OTR are explored. 

 

6.4.2 Tree-level response to rising CO2 

The upward trend in δ18OTR could be related to the rise in atmospheric CO2 since 

the Industrial Revolution, which may have affected trees’ stomatal conductance and 

transpiration rates (e.g. Keenan et al., 2013, van der Sleen et al., 2015). Observations 

from Free Air CO2 Enrichment (FACE) experiments show that trees dynamically reduce 

their stomatal conductance (gs) in response to elevated CO2, in order to optimise carbon 

gain (Ainsworth and Long, 2005). Studies have also highlighted increasing structural 

adaptations, with plants reducing the physical capacity of their leaves to conduct water 

as CO2 rises, by changing stomatal density and/or size (de Boer et al., 2011, 

Lammertsma et al., 2011). Experiments show that plants have higher leaf cellulose δ18O 

when gs is reduced (e.g. Barbour and Farquhar, 2000, Barbour et al., 2000), partly due 

to gs affecting the transpiration rate. Transpiration is inversely related to the isotope 

enrichment of bulk leaf water (δ18OL), as the flow of unenriched water from the stem 

opposes the back diffusion of enriched water from the site of evaporation into the rest of 

the leaf (i.e. the Péclet effect; Cernusak and Kahmen, 2013, Farquhar and Lloyd, 1993). 

Analyses on tree cores from FACE experiments in temperate sites have shown that 

elevated CO2 (150–200 ppm above ambient) and the resulting reductions in gs can cause 

small but significant increases in δ18OTR, showing that δ18OL signals can be transferred 

to stem cellulose (Battipaglia et al., 2013). Thus, one may ask, can the δ18OTR increase 
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Figure 6.7 – Long-term trends in different δ18O proxy records from the Amazon. Interannual 
variation in δ18O in tree rings from Ecuador (black line, this study), Cascayunga cave speleothem (light 
blue line; Reuter et al., 2009), lake sediment (cyan line; Bird et al., 2011), Huagapo cave speleothem (red 
line; Kanner et al., 2013), Quelccaya ice core (dark blue line; Thompson et al., 2013) and Curupira cave 
speleothem (green line; Novello et al., 2016). The locations of these records are shown in Figure 6.1. 
Significant trends for the common period of 1800–1971 are shown, and the slopes of the trend lines are 
indicated. 
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of 3 ‰ be explained by this effect of rising CO2 on transpiration rates? Increasing CO2 

has been estimated to reduce maximum gs (gmax) by an average of 0.34% ppm-1 

(Lammertsma et al., 2011), so an industrial atmospheric CO2 increase of approximately 

120 ppm, due to fossil fuel burning and cement production, might therefore be expected 

to have caused reductions in gmax on the order of 40%. Using the Péclet-modified Craig-

Gordon (PMCG) model, as described by Farquhar and Lloyd (1993), Sternberg (2009) 

and others, a 40% reduction in gs was estimated to cause <0.4 ‰ increase in δ18OTR (see 

Appendix 6.12). Finally, carbon isotope (δ13C) measurements could possibly be used to 

calculate changes in tree water-use efficiency (WUE = carbon assimilation/gs), and thus 

infer tree-level responses to rising CO2 in a more precise way. Hietz et al., (2005) 

measured δ13C in Cedrela from Brazil and estimate a 34 % increase in WUE from the 

1930s to the 1990s. If carbon assimilation remained constant over this period, then a 34 

% WUE increase would correspond to a maximum decrease in gs of 25 %, but as the 

authors note, the actual decrease in gs is likely to be much smaller than this in the humid 

tropics, where water is unlikely to be limiting. Therefore, the estimated contribution 

from rising CO2 to the trend in δ18OTR is probably lower than the suggested value of 0.4 

‰. In conclusion, while the increase in atmospheric CO2 may have contributed to the 

observed positive trend, it is unlikely to be the primary driver. 

 

6.4.3 Changes in leaf-to-air vapour pressure difference 

Humidity and (to a lesser extent) temperature (T) changes affect the degree of 

fractionation during evaporation from the leaf (e.g. Cernusak et al., 2016), and thus 

influence δ18OL. For example, controlled greenhouse experiments on cotton plants 

showed that a 33% reduction in relative humidity (RH) increased δ18OL by 3–4 ‰ 

(Barbour and Farquhar, 2000). Kahmen et al. (2011) investigated the effect of leaf-to-air 

water vapour pressure difference (VPD, determined by RH and T), on δ18O in different 

plant tissues of Metrosideros polymorpha along an altitudinal gradient in Hawaii. They 

used a mechanistic model of plant physiology to explore the effect of variation in VPD 

on cellulose δ18O. Although the δ18O of xylem water decreased with elevation, they 

found that leaf and stem cellulose δ18O increased, due to increasing VPD at higher 

altitudes. An increase in VPD might therefore contribute to the observed long-term 

increase in Ecuador δ18OTR.  
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We consider local changes in T and RH to quantify the potential influence of 

VPD on δ18OTR. Station data from the Andes show that local temperatures have 

increased by an average of 0.68 °C since 1939 (Vuille et al., 2008). This can be used, 

together with present-day measurements of T (10.5 °C) and RH (90%) from the 

Papallacta meteorological station (2003–2012), to estimate the change in RH since 

1939.  Saturation vapour pressure (es) is calculated from T with the equation: 𝑒𝑠 =

0.6108𝑒
(17.27 × 𝑇)
(𝑇 + 237.3) (e.g. Karamouz et al., 2012) and actual vapour pressure (ea) with: 𝑒𝑎 =

𝑅𝐻 × 𝑒𝑠. Assuming that ea has remained constant, RH is estimated to have decreased 

by 4% over the last eight decades. The PMCG model was used to calculate that a T rise 

of 0.68 °C and a RH decrease of 4% would cause δ18OTR to increase by approximately 

0.6 ‰ (Appendix 6.12). In combination with the response to increased CO2 (section 

6.4.2), plant physiological responses might thus explain circa 1 ‰ of the 3 ‰ increase 

in δ18OTR over the past 200 years. This could explain why tree rings record a stronger 

increase in δ18O than other proxy records from the Amazon (Fig. 6.7). However, it is 

also necessary to acknowledge the limitations of these calculations. Typical literature-

derived parameter values, which are not specific for the species or site, were used, and 

thus introduce a degree of uncertainty. Furthermore, recent work in the Australian 

tropics has cast doubt on whether enrichment at the leaf level may be preserved in stem 

cellulose at all, due to plasticity in the extent of post-photosynthetic exchange reactions 

under varying levels of humidity (Cheesman and Cernusak, 2016, Voelker and Meinzer, 

2017). Therefore, the estimated 1 ‰ contribution of leaf level enrichment to the 

increase in δ18OTR could rather be considered a maximum estimate of plant 

physiological influence. 

 

6.4.4 Increase in seawater δ18O at moisture origin 

The trend in δ18OTR could be driven by an increase in ocean surface δ18O (δ18OSW) 

in the region of evaporation. This could be due to a shift in the origin of source water, 

though previous work has shown that spatial variation in δ18OSW in the main source 

region for the Amazon is fairly low (<1 ‰; Baker et al., 2016). Alternatively, there 

could be temporal variation in δ18OSW. This can be tested over recent decades by 

looking at trends in surface seawater salinity, which is often (though not always) 

linearly related to δ18OSW (Craig and Gordon, 1965, LeGrande and Schmidt, 2006). 
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Observations and model simulations of ocean salinity since 1950 have shown that 

enhanced evaporation from warming oceans has caused surface salinity to increase over 

most of the Atlantic (Durack and Wijffels, 2010, Durack et al., 2012). However, the 

main moisture source region for the sample site (inferred from the cluster of grey 

crosses in Fig. A6.9.1) corresponds to a region where salinity has seen a weak but 

significant decline since 1950 (Fig. 5b in Durack and Wijffels, 2010). Thus, it seems 

unlikely that δ18OSW would have enriched over the same time period. In addition, global 

seawater δ18O has only changed by approximately 1 ‰ since the Last Glacial Maximum 

(Schrag et al., 2002), so changes larger than this in the last two centuries would also not 

be expected. 

 

6.4.5 Effect of increasing SSTs on fractionation during evaporation from the ocean 

surface 

Temperature-dependent fractionation during evaporation from the surface of a 

body of water is well understood (e.g. Craig and Gordon, 1965, Mook, 2000, Majoube, 

1971). The relationship between fractionation and temperature is inverse, as at higher 

temperatures there is a smaller difference between the amount of energy needed to 

evaporate light and heavy molecules of water and therefore fractionation is lower 

(Mook, 2000). The fractionation between liquid water and water vapour 

(𝜀v/l, approximately equal to δ18Oliquid – δ18Ovapour) can be calculated using the equation 

from Majoube (1971) reformulated as in Mook (2000): 𝜀𝑣/𝑙 = −7356
𝑇

+ 15.38 where T is 

the temperature in kelvin. Using this equation, it was calculated that a SST increase of 1 

°C (e.g. 1900–2000, Fig. 6.5b) would result in just a 0.086 ‰ increase in the isotopic 

composition of evaporated vapour. To achieve the 3 ‰ increase in δ18O seen in the tree-

ring record an improbable 35 °C SST rise would be needed. From this it can be inferred 

that temperature-driven reductions in fractionation during evaporation from the 

moisture source are not an important driver of the long-term trend in δ18OTR.  

 

6.4.6 Change in the lapse rate 

In a previous study an increase in the lapse rate (the rate of temperature change 

with altitude in °C km-1) was suggested to explain an increase in the offset between 

lowland and highland δ18O records from the Amazon during the Younger Dryas (van 
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Breukelen et al., 2008). Observation and model data from the Andes show rates of 

warming increase with altitude, and this trend is projected to continue over the next 

century (Vuille et al., 2003, Vuille et al., 2008, Bradley et al., 2006). Since there is less 

isotope fractionation at higher temperatures (e.g. Mook, 2000) it is possible that faster 

warming at high altitudes since 1800 has steadily reduced the depletion of atmospheric 

water vapour during orographic precipitation, possibly explaining the increase in the 

highland δ18OTR record. The isotope lapse rate (the rate of change in δ18OP with altitude 

in ‰ km-1) divided by the temperature lapse rate gives the expected isotope change per 

degree of warming (‰ °C-1). This allows us to calculate the temperature change that 

would be required to explain the 3 ‰ increase in δ18OTR. Mean annual δ18OP and 

temperature data from a transect along the eastern Ecuadorian Andes, which passes 

close to the sample site, were used to calculate the isotope and temperature lapse rates 

(Garcia et al., 1998). Highland data come from Papallacta (3150 m a.s.l.) and lowland 

data from Lago Agrio (297 m a.s.l.). The isotope lapse rate of –1.3 ‰ km-1 calculated 

here is approximately half the global average of –2.8 ‰ km-1 (Poage and Chamberlain, 

2001). Using the regional (global) isotope lapse rate, a 12.8 °C (5.8 °C) temperature rise 

would be needed at the sample site relative to the lowlands to explain the 3 ‰ rise in 

δ18OTR. The Andes have seen a temperature rise of 0.68 °C from 1939–2006 (Vuille et 

al., 2008) while CRU temperature data shows the Amazon region as a whole has 

warmed by 0.14 °C over the same period. Thus, the increased warming in the highlands 

could only explain around 0.13 ‰ of the increase in δ18OTR.  

 

6.4.7 A change in local amount effects 

The local ‘amount effect’ refers to the inverse relationship between precipitation 

amount per unit time (e.g. mm month-1) and the isotope composition of that 

precipitation (Dansgaard, 1964). Raindrops become further enriched as they fall through 

the air, due to re-evaporation and diffusive exchange processes between the rain 

droplets and the surrounding water vapour (Risi et al., 2008). However, these 

enrichment processes are less effective during heavy precipitation events as rain falls 

more quickly and RH is high. A thought experiment can be conducted to imagine the 

influence on δ18OP (and thus δ18OTR) of a change in local amount effects during 

moisture transport over the basin. In two scenarios, the same volume of precipitation 
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occurs along a trajectory, such that the fraction of water vapour remaining in the 

atmosphere at the end of the trajectory is the same in each case. In the first scenario, all 

of the precipitation falls during a single heavy rainfall event, while in the second 

scenario there is continuous light precipitation along the full length of the trajectory. 

Although the total rainout is the same in each case, water vapour will be isotopically 

heavier at the end of the trajectory in the first scenario than in the second scenario. 

Aerosols in smoke from fires in the Amazon have been shown to cause delays in the 

onset of precipitation, and increase the frequency of heavy rainfall events (Andreae et 

al., 2004). Therefore, an increase in biomass burning in the region may have caused 

changes in local amount effects (i.e. by shifting rainout patterns towards scenario 1). 

However, the effect of smoke on clouds in the Amazon is minimal during the wet 

season (Andreae et al., 2004), which is the period relevant for this study. Therefore, the 

Ecuador δ18OTR record is not expected to be strongly affected by changes in local 

amount effects. 

 

6.4.8 A reduction in rainout fraction over the Amazon 

The final environmental driver for increasing δ18OTR that is considered, is a 

reduction in rainout fraction over the Amazon, an idea that was first proposed by 

Brienen et al. (2012). It was shown in section 6.3.2 that δ18OTR from Ecuador and 

Bolivia record interannual and decadal variation in Amazon hydrology, modulated by 

Pacific and Atlantic SSTs. The long-term increase in δ18OTR and other δ18O proxy 

records (Fig. 6.7) might therefore reflect a reduction in precipitation during the wet 

season. Indeed, other studies have interpreted lake sediment, ice-core and speleothem 

δ18O records from the Amazon in this way, and suggest that the change is driven by 

temperature increases over the North Atlantic forcing a northward shift in the ITCZ 

(Bird et al., 2011, Vuille et al., 2012). However, an alternative explanation, not 

considered by these studies, is that the upward trend is caused by an increase in the 

volume of water vapour coming into the basin, thus reducing the proportion of vapour 

that rains out. Both of these processes would cause a reduction in rainout fraction over 

the Amazon. The Rayleigh equation: δ18OVAP(𝑡) = (1000 + δ18OVAP(0)) ∙

𝑓(𝑡)(𝛼−1) − 1000) can be used to calculate that the fraction (f) of vapour remaining in 

the atmosphere at time t (i.e. at the sample site) must have increased by approximately 



 

152 

 

25% to cause a 3 ‰ rise in vapour δ18O (δ18OVAP; assuming a temperature dependent 

fractionation factor (α) of 1.0102 (calculated from a temperature of 15 °C), and an 

initial water vapour δ18O (δ18OVAP(0)) of –11 ‰). Though this sounds large, Bordi et al. 

(2015) used ERA-Interim reanalysis data to show that total column water vapour has 

increased by around 13% over the Amazon since 1979, which is comparable with 

another analysis (using the same reanalysis dataset) showing that wet season water 

vapour import to the Amazon has increased by approximately 15% over the same 

period, due to warming SSTs in the TNA (Gloor et al., 2015). Thus a 25% increase in 

incoming water vapour could feasibly explain the full 3 ‰ increase in δ18OTR since 

1800. Alternatively, the increase could also be caused by a 25% reduction in wet season 

precipitation over the same timeframe, and there are insufficient instrumental data over 

the relevant period to confirm or refute this. Furthermore, if the 1.22 ‰ that can 

possibly already be explained by other hypotheses (Table 6.1) is deducted, then only a 

16% reduction in rainout fraction from either mechanism is required over the last two 

centuries.  

Since both a reduction in precipitation and an increase in incoming water vapour 

have been associated with increasing TNA SSTs, historical Atlantic SST data were 

examined to look for support that the long-term increase in δ18OTR could be caused by a 

reduction in rainout fraction through either of these mechanisms. As instrumental data is 

not available back to 1800, a decadal North Atlantic SST reconstruction from Mann et 

al. (2009) was used. It should be noted that this reconstructed SST dataset is for the full 

North Atlantic, not just the tropical region. The reconstruction is based on 1138 proxy 

datasets, including tree-ring, ice-core, speleothem, coral and marine sediment records. 

The filtered Ecuador δ18OTR chronology shows a close resemblance to the reconstructed 

SST record up until approximately 1970, after which the records correspond less well. 

Furthermore, both series show an upward trend over the past 200 years. Therefore, it is 

suggested that warming SSTs since 1800 have driven a long-term reduction in rainout 

fraction over the Amazon, which has caused an increase in wet season δ18OP and this 

signal is recorded in tree rings in the west of the basin. The mechanism by which 

Atlantic SSTs affect the rainout fraction remains ambiguous. It could be by determining 

the position of the ITCZ and therefore affecting the amount of precipitation over the 

basin (see section 6.3.2), or by controlling the amount of moisture supplied to the 
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Amazon region and thus influencing proportional rainout. An isotope-enabled general 

circulation model (GCM) may offer further insights on these potential mechanisms, and 

could possibly be used in future work to resolve the current ambiguity.  

 
Figure 6.8 – Relationship between δ18OTR from Ecuador and sea surface temperatures in the North 
Atlantic (NA SST). The thick red line shows reconstructed decadal NA SST data from Mann et al. 
(2009), who estimated SSTs using a large proxy dataset. Observed annual mean NA SST anomalies from 
NOAA are also shown from 1880 for comparison against the reconstructed data (thin red line; averaged 
over 0–60°N, 75.5–7.5°W). In both cases anomalies are defined relative to a 1961–1990 reference period. 
Thick and thin black lines respectively indicate decadal and interannual variation in δ18OTR from Ecuador. 
A low-pass Butterworth filter was applied to the interannual δ18OTR record to visualize decadal 
variability. The Pearson correlation coefficient between the Mann NA SST reconstruction and decadal 
δ18OTR is 0.52 (1799–2006, p<0.001). 

 

6.5 The Recent Intensification of the Amazon Hydrological Cycle 

The long-term increase in δ18OTR levels out in the middle of the 20th century, and 

reverses over the most recent period (Figs. 6.2 & A6.3.1). This will now be explored, to 

see whether it is consistent with the recent amplification of the Amazon hydrological 

cycle, characterised by increased precipitation seasonality and thus higher wet season 

precipitation in recent decades (e.g. Gloor et al., 2013, Fu et al., 2013). Both records 

show declines in δ18OTR over the past 1–2 decades, though this is particularly notable in 

the Bolivia record, with a decline in the maxima since the mid-1990s and the lowest 

value in the whole chronology observed in 2008. The 2008/2009 wet season coincided 

with one of the most severe flood events ever recorded in the Amazon, and the highest 

ever maximum water level at Óbidos (Marengo and Espinoza, 2016). The difference 

between the Ecuador and Bolivia records may be due to the fact that Ecuador δ18OTR is 

more influenced by precipitation in the northern part of the basin (Fig. 6.3) and 
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precipitation over this region (light blue line in Fig. 6.4) hasn’t increased as much as it 

has over the whole basin (dark blue line in Fig. 6.4; see also Gloor et al., 2013). Gloor 

et al. (2015) suggest the amplification of Amazon hydrology may be due to increased 

warming in the Atlantic, coupled with a switch to the cold phase of the Pacific Decadal 

Oscillation (PDO) in the 1990s. Model experiments have revealed an important 

teleconnection between the Atlantic and Pacific oceans, with increased Atlantic 

warming driving an acceleration of Pacific trade winds, subduction of heat in the Pacific 

and colder Pacific SSTs (McGregor et al., 2014, England et al., 2014). The Atlantic 

Multidecadal Oscillation (AMO) also changed from a cold to a warm phase in the 

1990s, which, superimposed on anthropogenic warming has resulted in an 

‘unprecedented’ cross-basin difference in SSTs and increased precipitation over the 

Amazon basin (Kucharski et al., 2016, McGregor et al., 2014). It is argued that the 

recent flattening, or even decline, in δ18OTR is a result of the increase in wet season 

precipitation associated with a strengthened Amazon hydrological cycle, which has 

reversed the long-term upward trend in δ18OTR over the past two centuries. 

 

6.6 Summary  

The two longest and best-replicated δ18OTR records from the Amazon basin to date 

have been presented in this study. The chronologies from Bolivia (<32 trees, 1860–

2014) and Ecuador (<16 trees, 1799–2012) show coherent isotope signatures, indicating 

they are both governed by the same large-scale climate controls. Analyses have 

confirmed that δ18OTR can be used to monitor hydrological changes over the whole 

Amazon region on short- and long-term timescales. Furthermore, since the chronologies 

extend substantially beyond the limit of regional hydrological data, they can provide 

new insights on Amazon hydrology and the factors that control it. Specifically, both 

records were found to show a long-term increase in δ18OTR, which is the clearest 

evidence yet of a long-term increase in wet season δ18OP in the western Amazon over 

the past 200 years. The increase in δ18OTR is related to a gradual rise in SSTs in the 

North Atlantic over the same period. The mechanism behind the Atlantic influence 

could either be through a reduction in precipitation over the basin caused by a 

northward shift of the ITCZ, or by rising SSTs causing an increase in water vapour 
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imported to the basin. Both of these mechanisms would result in a reduction in the 

rainout fraction over the Amazon basin, but they cannot be distinguished without 

additional evidence, possibly from an isotope-enabled GCM. The upward trend has 

reversed in recent decades, consistent with an intensification of the Amazon 

hydrological cycle since the 1990s. These records provide proof of long-term changes in 

Amazon hydrology, although careful analysis is required to correctly interpret these 

complex datasets. 
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Chapter 7: Discussion 

 
The Amazon rainforest resides within the world’s largest drainage basin and is an 

important global store of carbon and biodiversity (Phillips et al., 2008). Regional 

climate is dominated by the diverse and complex interactions between the biosphere and 

the atmosphere, including the extensive exchanges of water, CO2, energy and various 

chemical species (Silva Dias et al., 2002, Bonan, 2008). Rain gauge and river flux data 

from the Amazon show that the hydrological cycle has intensified in recent decades, 

with a growing divergence between the climate of the wet and the dry seasons (Gloor et 

al., 2013), and an increase in the frequency of extreme flood and drought events 

(Marengo and Espinoza, 2016). Such changes have the potential to destabilise the 

region, and, due to the close interdependency of the forest and the climate, could result 

in future forest losses (Cox et al., 2004, Huntingford et al., 2008, Zemp et al., 2017). 

However, climate predictions for the Amazon as yet remain far from certain (Boisier et 

al., 2015), and understanding of regional hydrology is limited by the scarcity of 

instrumental climate observations, particularly long-term climate records, which would 

provide historical context to recent and on-going hydrological changes.   

The purpose of this thesis was to develop a deeper understanding of the Amazon 

hydrological cycle through analysing stable oxygen isotopes in tree rings (δ18OTR) from 

the region. Due to earlier misconceptions that tropical trees do not form annual rings 

(e.g. Whitmore, 1998) dendrochronological research is still a relatively young field in 

tropical South America (Boninsegna et al., 2009). Therefore, it was first necessary to 

test the annual character of tree rings from different sites in the study. δ18OTR records 

were then developed from a range of different tree species and compared from multiple 

sites across the basin. Next, to facilitate the palaeoclimate interpretation of new δ18OTR 

chronologies from the Amazon, the mechanistic drivers of interannual variability were 

investigated using an approach combining trajectory modelling and vapour transport 

analysis. Finally, Amazon δ18OTR records were extended backwards in time, beyond the 

limit of instrumental climate data.  

This chapter of the thesis collates the findings from chapters 3–6, providing 

further in-depth critical analysis and discussion of the literature (7.1). The extent to 
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which the original thesis aims and research questions have been achieved and answered 

is assessed, while also considering some of the difficulties encountered during the 

course of the research (7.2). In the following sections, the limitations associated with 

δ18OTR proxy records are reviewed (7.3) and the research implications and directions for 

future work are discussed (7.4). Finally, the chapter closes with a summary of the 

overarching conclusions that can be drawn from the thesis (7.5). 

 

7.1 Overview of Findings and General Discussion 

The results presented in this thesis represent a substantial advance of tree-ring 

stable isotope research in tropical South America. Here, a brief synopsis of the major 

findings from each chapter is given, followed by a synthesis of the results in the context 

of the literature. 

 

7.1.1 Chapter summaries 

In Chapter 3 the radiocarbon (14C) signatures of tree-ring samples from sites 

across the Amazon were analysed to evaluate variation in growth periodicity. Cedrela 

spp. from three out of four sites analysed (i.e. Bolivia, Ecuador and Venezuela) were 

shown to form one ring per year, supporting previous studies in the same (Brienen and 

Zuidema, 2005, Bräuning et al., 2009, Worbes and Junk, 1999) and other (Dünisch et 

al., 2002, Dünisch et al., 2003, Costa et al., 2013, Brienen et al., 2010) tropical 

locations. However, in Suriname, where dendrochronological research has not been 

previously undertaken, Cedrela trees were found to form two rings nearly every year. 

From analyses of climate data and phenological observations from the literature it was 

concluded that the seemingly anomalous growth pattern in trees from Suriname is most 

likely to be caused by a combination of precipitation seasonality and an influence of 

genetics. 

The first stable oxygen isotope series of the thesis were shown in Chapter 4. This 

chapter focused on tree-ring samples from Bolivia, comparing interannual δ18OTR 

signatures between sites and tree species. Samples were dated by comparison to an 

established δ18OTR chronology, and also using 14C dating. A new δ18OTR record 

developed from nine Cedrela odorata trees was presented, and it was shown that δ18OTR 
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signals had higher inter-tree synchronicity than ring-width signals, indicating that 

δ18OTR preserves a coherent climate signal. In addition, the new chronology was shown 

to correlate strongly (r=0.80, n=101) with the δ18OTR record from Brienen et al. (2012), 

despite coming from a site over 300 km away, evidence that δ18OTR records in the 

Amazon cohere at large spatial scales. Finally, δ18OTR records from six of the seven 

other tropical tree species analysed were found to correlate significantly with C. odorata 

δ18OTR, including a species growing in a site 1000 km away on the Bolivian Altiplano, 

providing further support for large-scale coherence of δ18OTR signatures. However, 

correlations of the individual species δ18OTR records with C. odorata varied (r=0.27–

0.90), possibly due to species-specific partitioning of water in the soil profile, or 

differences in plant physiology. 

The mechanisms driving interannual variability in Amazon δ18OTR records were 

investigated in Chapter 5. Remote sensing observations of precipitation and leaf area 

index (LAI) were combined with air-mass trajectories, and large-scale transport of 

water vapour, as estimated by reanalysis of meteorological data, was analysed to 

determine whether δ18OTR signals are truly controlled by processes happening over the 

Amazon basin. The results confirm earlier suggestions that rainout of heavy isotopes 

during moisture transport over the Amazon is the primary factor controlling year-to-

year variation in δ18OTR from northern Bolivia, and that these records are able to capture 

basin-scale variability in Amazon hydrology (Brienen et al., 2012). These results 

provide the verification required for Amazon δ18OTR chronologies to be reliably used to 

reconstruct palaeoclimate at interannual timescales. 

Chapter 6 presented the two longest and best-replicated δ18OTR records from the 

Amazon to date. Although the records come from sites 1500 km apart in Ecuador and 

Bolivia, they were found to correlate well at both interannual and decadal timescales. 

Correlation analyses show that the Ecuador δ18OTR record is controlled by the same 

large-scale controls as δ18OTR from Bolivia, namely the amount of upwind precipitation 

during passage of moisture over the basin. Since the records are long (214 years and 

155 years for the Ecuadorian and Bolivian records respectively), the low-frequency (i.e. 

centennial) signals in the records could also be analysed. After quantifying all possible 

sources of variability, it was concluded that the observed long-term increase in δ18OTR 

since the early 1800s most likely reflects a reduction in the proportion of water vapour 
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that rains out over the Amazon basin. The increase in δ18OTR corresponded well with an 

increase in Atlantic sea surface temperatures (SSTs) over the same period, indicating a 

remote driver of change. Finally, the two long δ18OTR records were used to contextualise 

the recent intensification of the Amazon hydrological cycle. 

 

7.1.2 Synthesis of results 

This thesis fits into a wider body of tree-ring isotope studies from across the 

tropics (see van der Sleen et al., 2017 for a recent review). The field is still relatively 

new, particularly in comparison with temperate regions (see the International Tree-Ring 

Data Bank, ITRDB, 2015), and has only begun to develop over the past 10–15 years. 

Stable isotope dendroclimatology is particularly valuable in the tropics, as there is often 

a paucity of instrumental climate data beyond the last few decades in these regions (e.g. 

Boninsegna et al., 2009). There have been relatively few δ18OTR studies in tropical 

South America (i.e. Evans and Schrag, 2004, Ballantyne et al., 2011, Brienen et al., 

2012, Volland et al., 2016, Ohashi et al., 2016), or in Africa, where there have been 

some very preliminary studies in dry tropical sites (Verheyden et al., 2004, Gebrekirstos 

et al., 2011, Williams et al., 2012) and, more recently some longer δ18OTR records from 

humid tropical sites (van der Sleen et al., 2015, Colombaroli et al., 2016). However, 

δ18OTR studies in tropical Southeast Asia are more numerous, with research conducted 

in a variety of different countries (e.g. Poussart et al., 2004, Xu et al., 2011, Sano et al., 

2012, Zhu et al., 2012, Schollaen et al., 2013, Xu et al., 2013, Xu et al., 2015, 

Muangsong et al., 2016, Harada et al., 2017). The main findings of the thesis will be 

reviewed in the context of this literature, comparing the controls on δ18OTR from the 

Amazon with controls on δ18OTR records from elsewhere in the tropics. 

One of the main results of the work presented here is that δ18OTR signatures in the 

Amazon are governed by large-scale climate controls. This is exemplified by the 

excellent coherence between Cedrela δ18OTR records from distant sites, first within 

Bolivia (sites 325 km apart, r=0.80, n=101, Chapter 4), and between sites in Bolivia and 

Ecuador (sites 1500 km apart, r=0.57, n=153, Chapter 6), and also the slightly weaker 

correlation between lowland Cedrela δ18OTR and Polylepis δ18OTR from the Bolivian 

Altiplano (sites 1000 km apart, r=0.39, n=60, Chapter 4). These results strongly indicate 

that precipitation isotopes (δ18OP) in the Amazon cohere at the same large spatial scales, 
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and that these δ18OP signatures are recorded in tree-ring cellulose. There are insufficient 

data from Africa to assess spatial coherence in tropical δ18OTR signals here, though 

several studies in the monsoon region of Southeast Asia have explicitly investigated 

this. Sano et al. (2012) showed a strong coherence between their δ18OTR chronology 

from Vietnam with another record 150 km away in Laos (r=0.77). From this they 

concluded that there is a regional hydrological control on δ18OTR. Xu et al. (2015) 

extended the comparison to include a record from a site in northwest Thailand, and 

found significant correlations with the δ18OTR chronologies from Laos and Vietnam, 

which are 500 and 700 km away from the Thailand site respectively (r=0.4 for both 

correlations). It should be noted that although sample replication was relatively low in 

both of these studies (e.g. Sano et al. (2012) measured isotope ratios in six trees and Xu 

et al. (2015) analysed just four trees), Expressed Population Signal (EPS) values 

exceeding 0.85 were reported, indicating that the constructed chronologies were 

adequately robust. Further north, on the high-elevation Tibetan Plateau (approximately 

30°N), δ18OTR chronologies have also been shown to correlate at large distances (<800 

km; Grießinger et al., 2011, Liu et al., 2013, An et al., 2014, Liu et al., 2014), though 

these relationships were weaker and the direction of low-frequency trends did not 

correspond between all records analysed. In these Tibetan studies, wood was pooled 

from multiple trees prior to isotope analysis (e.g. Grießinger et al., 2011, Liu et al., 

2013, An et al., 2014). This time- and cost-saving approach is nonetheless 

dissatisfactory, since much valuable information is lost, and inter-tree isotope variability 

cannot be assessed. This makes it more difficult to assess the quality of the resulting 

chronologies, and could possibly explain why correlations between these records were 

lower than elsewhere in Southeast Asia. Overall, these studies show that δ18OTR signals 

in tropical and subtropical Southeast Asia are controlled by regional climate signals 

operating at a similarly large scale to that observed over the Amazon, though the 

distances between the compared Amazon δ18OTR records are larger, and the 

relationships stronger.  

The scale of coherence between δ18OTR records is a good indication of the scale at 

which palaeoclimate data can be reconstructed, and thus the results from the Amazon 

provide additional support that δ18OTR signals can be used to reconstruct whole-basin 

climate (Brienen et al., 2012). However, it is important to explicitly evaluate the 
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reconstruction potential of the δ18OTR records presented in this study. First, the EPS 

values for the Bolivia and Ecuador chronologies are exceptionally high (0.99 and 0.93 

respectively), indicating a strong inter-tree correlation in both records. A high EPS 

(>0.85) is an essential condition for chronologies used to reconstruct climate, as it is 

indicative of a strong external control on the proxy signal (Wigley et al., 1984). van der 

Sleen et al., (2015) report a maximum EPS of just 0.74 for their chronology from 

Cameroon, and although the authors demonstrate significant correlations between their 

five individual tree records, the low EPS value suggests that future studies in the region 

ought to include a higher number of trees to construct a chronology sufficiently robust 

for climate reconstructions. Where reported, δ18OTR studies in Southeast Asia tend to 

show EPS values higher than the generally accepted threshold of 0.85 (e.g. Sano et al., 

2012; Schollaen et al., 2013; Xu et al., 2015), though not always (e.g. Xu et al., 2011), 

and, as noted previously, some Southeast Asian studies cannot calculate EPS statistics 

due to limitations of their chosen methodology (e.g. Grießinger et al., 2011, Liu et al., 

2013, An et al., 2014). The Pearson correlation coefficients between Amazon δ18OTR 

chronologies and Amazon River discharge presented here are also relatively high (r=–

0.63 and r=–0.75, n=110 and 112 for Ecuador and Bolivia respectively), a further 

indication that these records are suitable for reconstructing palaeoclimate. Indeed, these 

r values are some of the highest reported for δ18OTR-climate relationships in the tropics 

(cf. Sano et al., 2012, Schollaen et al., 2013 and Xu et al., 2015), and also compare 

favourably with δ18OTR-climate r values reported for temperate sites, where 

dendroclimatology is a much longer-established field (e.g. Treydte et al., 2007, Wilson 

et al., 2016). Finally, positive split-period regression statistics (e.g. reduction of error, 

RE, and coefficient of efficiency, CE, Appendix 6.7) indicate that regression-based 

models developed from the Bolivia and Ecuador δ18OTR chronologies have skill in 

predicting Amazon runoff. However, an actual reconstruction of Amazon climate was 

not attempted in this study, due to the various confounding factors, discussed in Chapter 

6, that might have affected the δ18OTR records over longer timescales, and would thus 

introduce error to any climate reconstruction. Therefore, the δ18OTR chronologies were 

used to help understand past changes in Amazon hydrology, without reconstructing it 

absolutely. 
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In order to glean useful information from proxy records it is necessary to have a 

good grasp of the underlying processes that control relationships between climate and 

proxy data. Thus, another important outcome from this thesis is the new insight into the 

mechanisms driving interannual variability in δ18OTR records from the Amazon (Chapter 

5). During the wet season, rainout of heavy isotopes during precipitation along transport 

pathways over the basin was shown convincingly to be the dominant factor influencing 

δ18OTR, confirming an earlier hypothesis (Brienen et al., 2012). This can explain the 

good correlations observed between δ18OTR chronologies from Ecuador and Bolivia, and 

Amazon River discharge measured at Óbidos, which integrates precipitation over nearly 

80% of the Amazon basin (Callède et al., 2004). Research by van der Sleen et al. (2015) 

in Cameroon identified a similar control on interannual δ18OTR signatures in 

Etandrophragma utile, which is in the same family as C. odorata (Meliaceae). The 

authors showed negative relationships between the δ18OTR chronology and wet season 

precipitation over a large region in Central and West Africa, predominantly to the south 

of their tree-ring sample site, and conclude that rainout during moisture transport over 

the continent determines the δ18OTR signal. Early work in continental Southeast Asia 

also suggested that δ18OTR recorded a regional wet season precipitation signal (Poussart 

and Schrag, 2005), although dating uncertainties and limited replication constrained the 

conclusions that could be drawn. Subsequent studies using more robust isotope 

chronologies have since confirmed the importance influence of wet season precipitation 

on δ18OTR in Southeast Asia (Zhu et al., 2012, Xu et al., 2013, Xu et al., 2015). Thus, 

large-scale regional rainout signals are recorded in δ18OTR records from across the 

tropics, including West Africa, Asia and the Amazon, by causing the depletion of heavy 

isotopes during atmospheric transport (Dansgaard, 1964). In contrast, δ18OTR records 

from southern Mexico show a different signal: they do not record continental rainout 

but are predominantly influenced by coastal storms and local amount effects (Brienen et 

al., 2013). This illustrates that δ18OTR chronologies from different tropical locations are 

affected by different kinds of hydrological regime, and it is important to fully 

understand the factors that influence the δ18OTR signal at each new study location. 

Remote controls on interannual and decadal variability in tropical precipitation 

can also be inferred from δ18OTR records. In this thesis, spatial correlations between 

δ18OTR chronologies from Bolivia and Brazil, and SSTs in the surrounding ocean basins, 
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revealed important areas of influence in the equatorial Pacific and the tropical North 

Atlantic (TNA, Chapter 6). A Pacific influence on δ18OTR from tropical South America 

has been reported before (e.g. Evans and Schrag, 2004, Ballantyne et al., 2011, Brienen 

et al., 2012), and can be explained by the well-known effect of the El Niño-Southern 

Oscillation (ENSO) on Amazon hydrology (Garreaud et al., 2009). During a positive 

ENSO phase precipitation over the Amazon is suppressed, resulting in less isotope 

depletion during air passage across the basin, and a higher δ18OTR signature, with the 

reverse scenario during La Niña conditions (i.e. negative phase of ENSO). ENSO was 

shown to have a stronger effect on the δ18OTR chronology from Bolivia than the record 

from Ecuador, reflecting spatial variation in the influence of ENSO on Amazon 

precipitation (e.g. Yoon and Zeng, 2010). Relationships between ENSO and δ18OTR 

have also been reported for Central America (e.g. Anchukaitis and Evans, 2010), many 

sites in Southeast Asia (e.g. Xu et al., 2011, Zhu et al., 2012, Sano et al., 2012, Xu et al., 

2013, Schollaen et al., 2015, Xu et al., 2015), and also for tropical Australia (Boysen et 

al., 2014). However, no ENSO signal was detected in a δ18OTR chronology from 

Cameroon (van der Sleen et al., 2015), despite a reported influence of ENSO on 

precipitation during the West African monsoon (Joly and Voldoire, 2009). This could 

be due to a mismatch between the region where ENSO affects precipitation, and the 

region where precipitation influences δ18OTR, potentially suggesting that the site in 

Cameroon is not ideally located to capture full precipitation variability during the 

monsoon. There is currently poor agreement between reconstructions of ENSO in the 

pre-instrumental period, highlighting a need for additional robust proxy datasets (Sano 

et al., 2012). δ18OTR records from sites on both sides of the Pacific have now been 

shown to be sensitive to ENSO variability, and thus may be used to improve our 

understanding of this important driver of pantropical climate. 

An influence of TNA SSTs on interannual and decadal δ18OTR variability has also 

been shown in this thesis, and is particularly evident in the high-elevation chronology 

from Ecuador. This is a novel result, and is thought to be related to the effect of Atlantic 

SSTs on the position of the inter-tropical convergence zone (ITCZ). The ITCZ is a band 

of mostly convective precipitation over the region where the trade winds converge close 

to the equator, forming the ascending branch of the Hadley circulation (Garreaud et al., 

2009). Its position is determined by the location of the warmest pool of SSTs, and thus 
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tropical Atlantic SST anomalies can deflect it northward or southward, respectively 

resulting in negative or positive precipitation anomalies over the Amazon (Yoon and 

Zeng, 2010). Analysis of data from the Global Network of Isotopes in Precipitation 

(GNIP) database (IAEA/WMO, 2016) has shown that the ITCZ affects the isotope 

composition of precipitation (δ18OP) in South America (Matsui et al., 1983, Garcia et 

al., 1998). Passage of the ITCZ over the Amazon is associated with strong precipitation 

and anomalously low δ18OP values (Salati et al., 1979, Garcia et al., 1998). Thus, its 

northward displacement by anomalously warm TNA SSTs would have two important 

effects: first, rainout of heavy isotopes upstream of the sample site would be reduced, 

and second, local amount effects will be weaker if precipitation events are less intense 

(Dansgaard, 1964). A speleothem δ18O record from southern Brazil reveals an analogue 

to this effect over much longer timescales, with latitudinal shifts in insolation maxima, 

caused by the precessional cycle, driving changes in the mean position of the ITCZ 

(Cruz et al., 2005). Solar insolation maxima close to the study site in southern Brazil 

caused enhanced convective activity and more depleted δ18OP values recorded in the 

speleothem. The ITCZ is also known to influence δ18OP in Southeast Asia (Araguás-

Araguás et al., 1998), and given that it is an important determinant of climate in tropical 

Africa, it is likely to affect δ18OP here as well (Lutz et al., 2011, van der Sleen et al., 

2015), though δ18OP data from this region are scarce (Rozanski et al., 1993).  

New multi-centennial δ18OTR records from the Amazon presented here have 

permitted an assessment of low frequency variability in Amazon hydrology. The 

absence of ontogenetic effects in the δ18OTR chronologies from Ecuador and Bolivia 

meant there was no need to apply de-trending procedures, and thus low frequency 

climate signals were retained. The main low frequency feature of the long δ18OTR 

chronologies is a long-term increase in δ18OTR since the early 1800s, which is thought to 

reflect an increase in Amazon δ18OP that is then recorded in cellulose (Chapter 6). The 

cause of the increase, which corresponds with a gradual rise in Atlantic SSTs over the 

same timeframe, was deduced to be a reduction in the rainout fraction over the basin. 

The positive trend in δ18OTR reaches a peak at around 1950, and from the 1980s it 

becomes weakly negative. Other δ18O proxy records from the Amazon show similar but 

weaker long-term increases in δ18O (e.g. Reuter et al., 2009, Thompson et al., 2013, 

Kanner et al., 2013, Novello et al., 2016, Bird et al., 2011). These increases have been 
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interpreted as a weakening of the South American summer monsoon (SASM; e.g. Bird 

et al., 2011, Vuille et al., 2012, Kanner et al., 2013), which is a term widely (but 

incorrectly) used interchangeably with wet season precipitation amount over the 

Amazon. In other words, these studies interpret Amazon δ18O records as showing a 

long-term drying trend over the most recent warming period. However, as discussed in 

Chapter 6, a positive trend in δ18O can only be interpreted as a reduction in wet season 

precipitation if there has been no change in the volume of water vapour coming into the 

basin, and this cannot be assumed over longer timescales. In this analysis, the increase 

in δ18OTR was interpreted more cautiously, as either reflecting a real long-term reduction 

in wet season precipitation amount (and there are insufficient instrumental data over the 

relevant period to confirm or refute this), or an increase in the volume of water vapour 

imported to the Amazon, thus reducing the fraction of water vapour that rains out. 

Additional work is needed to disentangle these possible interpretations, and this could 

potentially be achieved by using an isotope-enabled general circulation model (GCM) 

or by collecting additional δ18OTR data (see section 7.4). 

The δ18OTR records presented here are the longest from the Amazon (i.e. 155 and 

214 years), though 400-year-long records have been developed from Vietnam and Laos 

in Southeast Asia (Sano et al., 2012, Xu et al., 2013). These records also show an 

increase over the past 200 years (approximately 2 ‰), which Xu et al. (2013) interpret 

as a weakening of the Indian summer monsoon caused by warming tropical SSTs. 

While an interesting and potentially accurate observation with close similarities to the 

findings from the Amazon, the inference by Xu et al. (2013) is based on positive 

correlations between their δ18OTR record and other δ18OTR records from Tibet, Nepal and 

Vietnam, which cannot be considered entirely independent. Furthermore, as with other 

δ18O proxy studies from the Amazon, the study lacks a thorough discussion of other 

potential drivers of the long-term δ18O increase. A key message from the work 

presented in this thesis is that proxy data must be interpreted more carefully in future 

studies, and drivers of variation operating at different timescales should be considered 

separately. Articles should always include a transparent and upfront discussion of the 

limitations associated with δ18O data, which are useful but imperfect records of past 

climate.  
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In addition to these climatic inferences, there are further methodological insights 

arising from the thesis, which will be mentioned here. δ18OTR signals were shown to be 

more sensitive to interannual climate and correspond better between trees than tree-ring 

width (TRW) signals. Formerly, tropical and subtropical dendrochronological studies 

have observed relationships between climate and TRW, which have been used to 

extrapolate backwards in time and reconstruct historical climate (e.g. studies in South 

and Central America: Villalba et al., 1998, Worbes, 1999, Enquist and Leffler, 2001, 

Brienen and Zuidema, 2005, studies in Africa: Fichtler et al., 2004, Schöngart et al., 

2006, and studies in Asia: Ram et al., 2008, Schollaen et al., 2013). However, in some 

of these cases TRW-climate relationships were fairly weak because environmental 

conditions in the tropics are more generally favourable for tree growth and show lower 

interannual variability than in temperate regions. Furthermore, climate reconstructions 

from TRW were called into question by Doughty et al. (2014) who demonstrated that 

reductions in diameter growth of tropical trees may not necessarily reflect a reduction in 

whole tree productivity due to allocation trade-offs. The higher climate sensitivity of 

δ18OTR relative to TRW has been shown before in studies from across the tropics (e.g. 

Xu et al., 2011, Sano et al., 2012, Brienen et al., 2013, Xu et al., 2013, van der Sleen et 

al., 2015), confirming that δ18OTR are generally more suitable than TRW for low 

latitude palaeoclimate reconstructions.  

In relation to this, it was possible to precisely date Amazon tree-ring samples by 

pattern matching new δ18OTR records against a previously established, well-dated δ18OTR 

chronology. Using this technique, samples from Bolivia were dated within and between 

sites, and between species. Crossdating between δ18OTR series from Ecuador also 

enabled construction of an accurate chronology. This is an important methodological 

observation that could potentially facilitate the development of further Amazon δ18OTR 

records. Leavitt et al. (1985) were the first to show that crossdating stable isotope series 

could be used to date tree rings of unknown age in a study of δ13C in tree rings from 

Arizona. It requires isotope signals to be regionally coherent, and/or show similar 

patterns between tree species, although the technique is less effective when samples 

have missing rings. Since this early study δ18OTR have been used to date tree rings in 

both temperate (e.g. Li et al., 2015) and tropical (e.g. Xu et al., 2013) locations, and it 

has now been successfully applied in the Amazon. However, there are some valid 
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concerns with such ‘tuning’ of proxy archives, summarised in a review by Blaauw 

(2012). These include the assumption that the so-called ‘established’ chronology is 

absolutely dated, which may not be the case, and also the assumption of synchronicity 

between the established chronology and the new chronology, where there might be 

none. While acknowledging these potential issues, it is thought that the approach 

applied in this thesis was sufficiently careful to circumvent these problems. First, the 

record from Brienen et al., (2012) that was used as the ‘benchmark’ series is only 100 

years long, and thus the dating could be validated by comparison with regional river 

records, which date back to 1903 (HidroWeb, 2017). This contrasts with the multi-

millennia records discussed by Blaauw (2012), that are often dated using age models, 

which are inherently uncertain. In addition, where adjustments were made to δ18OTR 

series in this study, such as the multi-species records in Chapter 4, the newly dated 

records were confirmed (at least up until the 1960s) using 14C dating. It is true, that the 

records from Bolivia were assumed to be synchronous, due to their relatively close 

proximity, but adjustments were only made when there was evidence in the original 

wood sample to support making them. Finally, it should be emphasised that the Bolivia 

and Ecuador records presented in Chapter 6 were not tuned or fitted to one another, but 

constructed independently, and were nevertheless found to correlate well. Therefore, the 

observed synchronicity across the Amazon region is not simply an artefact of the 

methodology, but a true phenomenon caused by the large-scale environmental controls 

on δ18OTR in this region.   

Another dating tool that has proved useful in this work is ‘bomb-peak’ 14C 

analysis. It has been used to demonstrate variation in tree-ring periodicity across 

tropical South America, and also used to verify dates of δ18OTR series from multiple 

tropical tree species. In some cases, major discrepancies were found between dates 

obtained by simple ring counting and dates inferred from 14C data. For example, C. 

odorata trees from Suriname were discovered to form approximately two rings per year, 

and 13 indistinct rings were shown to have been missed in the outermost section of a 

Peltogyne heterophylla sample from Bolivia. Using 14C measurements to independently 

validate tree-ring dates is particularly valuable when working with tropical trees, as 

wood anatomy can sometimes be challenging and may result in a high rate of errors 

(Worbes, 2002, Brienen et al., 2016). Several previous tropical δ18OTR studies have used 
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14C measurements to check tree-ring dates estimated by ring counting (e.g. Pearson et 

al., 2011, Ballantyne et al., 2011), or dates estimated from isotope age models (Evans 

and Schrag, 2004, Poussart and Schrag, 2005, Ohashi et al., 2016). Lastly, in addition to 
14C measurements aiding tree-ring research, work in this thesis has shown that 

dendrochronology may be able to help the 14C community. Measurements of 14C in tree 

rings from Bolivia, Ecuador and Venezuela showed excellent agreement with existing 
14C calibration curves, and therefore tropical tree-ring records can possibly be used to 

refine, or even develop new regional 14C calibration curves. 

 

7.2 Appraisal of Thesis Aims 

In this section, the original thesis aims, which were summarised into six key 

research questions set out in Chapter 1, are reviewed. The degree to which each 

question has been answered is evaluated, and some of the challenges that were 

encountered during the research are explained. 

 

7.2.1 How consistent is annual tree-ring periodicity across the Amazon? 

To answer this question tree-ring samples from four sites across the basin were 

dated using 14C analysis, and additional growth data for four further sites were taken 

from the literature. These sites are relatively well distributed geographically, and are 

thus suitable for testing the spatial consistency of tree-ring periodicity. Within a single 

tree species (C. odorata), periodicity was found to vary between different sites, 

regularly forming two rings per year in Suriname and one ring per year elsewhere in the 

neotropics. This result is important because it shows that tropical dendrochronologists 

must not assume annual ring formation in a previously untested species or site, due to 

spatial variation in the factors controlling tree growth. These factors were investigated, 

to try and identify the reason why trees in Suriname form two rings per year. 

Precipitation seasonality and genetics were highlighted as the most likely causes, 

though limited phenological data made it difficult to determine the precise mechanism 

of control. Furthermore, the study focussed on C. odorata and its highland relative C. 

montana only, and growth in other Amazon tree species may be affected by different 

environmental factors. 
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7.2.2 Do different tropical tree species show similar δ18OTR signatures? 

Interannual δ18OTR signatures were compared across eight tropical tree species 

from Bolivia, five of which had not previously been analysed for δ18OTR. The study was 

the first in the tropics to explicitly investigate δ18OTR signals between different tree 

species, though it should be noted that the eight species only represent a tiny fraction of 

the 230 tropical tree species that are now known to form annual rings (Brienen et al., 

2016). To maximise the number of species in the study only one tree from each species 

was analysed, with the exception of C. odorata. Significant relationships with C. 

odorata were identified for six out of the seven other species, showing that tropical tree 

species do show similar δ18OTR signatures, though the strength of the correlations varied 

among species. Since only one tree from each species was analysed, it cannot be certain 

whether weak or insignificant relationships were due to species-specific differences in 

plant physiology, or simply because the individual measured happened to show a 

different signal. It would have been preferable to develop well-replicated chronologies 

for each of the species in the study but this was not possible due to time and financial 

costs. Scarce data on tree characteristics, such as rooting depth, also made it challenging 

to determine the cause of inter-species differences. Where δ18OTR signals did correlate 

between species it was concluded that this was most likely due to a shared source water 

δ18O signal, and suggests that species besides C. odorata may be suitable for 

reconstructing Amazon palaeoclimate.  

 

7.2.3 Do δ18OTR records from the Amazon show coherence at large spatial scales? 

Robust δ18OTR chronologies were shown to correlate well at interannual and 

decadal timescales between sites 325 km apart in Bolivia (r=0.80, n=101), and also 

between sites in Bolivia and Ecuador that were 1500 km apart and separated by 2750 m 

in altitude (r=0.57, n=153). This confirms that Amazon δ18OTR records do cohere at 

very large spatial scales, and is a strong indication of a similarly large-scale coherence 

in δ18OP, which is controlled by a large-scale environmental driver. The second of these 

relationships is particularly notable, as rainout of heavy isotopes during orographic 

uplift over the Andes might have been expected to dominate the isotope signal in trees 

from Ecuador (Rozanski et al., 1993). These δ18OTR chronologies, which were shown to 

correlate between distant sites, originated in the far western and southwestern margins 
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of the basin and it was not possible to assess large-scale δ18OTR coherence for other 

parts of the Amazon. It is anticipated that δ18OTR from the western Amazon would show 

the strongest regional relationships, as precipitation isotopes here reflect cumulative 

fractionation processes over the basin, whereas sites on the Atlantic coast are more 

strongly influenced by local amount effects (Vimeux et al., 2005, Villacís et al., 2008, 

Vuille et al., 2012). However, additional δ18OTR chronologies from sites in the centre or 

east of the basin have not yet been developed (see section 7.2.4). 

 

7.2.4 Can a network of δ18OTR chronologies from sites across the basin provide 

further information about interannual variation in basin rainout, or changes in the 

precipitation-recycling ratio? 

The original intention was to develop a network of chronologies from sites across 

the basin, including records from strategic locations along the moisture transport 

pathway. It was hoped that these records would provide further insights about basin 

rainout, and that they might show whether there have been changes in the continental 

gradient in δ18OP (caused, for example, by deforestation or reduced stomatal 

conductance in response to rising atmospheric CO2). The map in Chapter 2 (Fig. 2.1) 

showed sites in Suriname, Venezuela and Brazil where samples of C. odorata were 

collected for analysis in this thesis. Unfortunately, pilot δ18OTR analyses from these sites 

did not show promising results, as δ18OTR series did not match very well between trees 

(see Fig. 7.1). This meant that it was not possible to construct the network of robust 

chronologies required to address this question. The reasons why it seemed to be more 

challenging to construct δ18OTR records from these sites compared to sites in Bolivia 

and Ecuador are discussed in the next few paragraphs. 

The samples from Venezuela came from Reserva Forestal de Caparo (RFC) and 

C. odorata trees from this reserve have already been shown to form clear annual rings 

(e.g. Worbes, 1999). However, preliminary δ18OTR series from three C. odorata trees 

from RFC showed little interannual correlation over a period of approximately 30 years 

(EPS=0.56), though there is some similarity between the low frequency signals (Fig. 

7.1a). The dating of one of these samples (Ven_01) has been confirmed by 14C analysis. 

The rings were clearly visible on this sample, which was a 40-mm wide disc section, 

while 10 mm increment cores were analysed from the other two trees. The dating of 
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these trees is unlikely to be wrong, thus other reasons must explain the differences 

between the isotope series. RFC is close to the River Caparo, which has shaped the 

landscape over time, causing small variations in topography, and is also known to 

influence the local groundwater (Worbes, 1999). Thus, the site is comprised of shallow 

dips/depressions with boggy, clayish soils and pools of water, and small banks where 

the soils are better drained. Since the river water may have a different δ18O signature to 

precipitation falling at RFC, and pooled water is also more likely to be influenced by 

fractionating evaporation and water residence time, trees growing in the depressions 

may take up water with a different δ18O signature to trees growing on the banks. Indeed, 

trees Ven_01 and Ven_13 both grew in depressions, while Ven_30 grew on a bank, 

strongly indicating that the poor correspondence between the δ18OTR series is due to 

inter-tree differences in source water δ18O (δ18OS). Variation in physiology between 

trees might also contribute to the lack of a shared signal observed between the RFC 

records, but since δ18OTR signals in C. odorata from other sites are dominated by δ18OS 

(e.g. Brienen et al., 2012), δ18OS is also expected to be the dominant control on δ18OTR 

in C. odorata from Venezuela. 

Previous studies on C. odorata from Brazil have shown that trees form annual 

rings at sites near Manaus (Dünisch et al., 2002, Dünisch and Morais, 2002), Aripuanã 

(Dünisch et al., 2003), and Nova Iguaçu (Costa et al., 2013). The samples analysed here 

come from the Mamirauá Sustainable Development Reserve (MSDR), which is further 

west than these sites, and close to the main stem of the Amazon River (here called the 

Solimões). Preliminary δ18OTR series show some agreement, but insufficient to 

construct a robust chronology (EPS=0.48, Fig. 7.1b). It was not possible to use 14C 

dating on these samples as they were too young, and thus there could be dating 

inaccuracies, particularly as cores were analysed rather than whole stem discs. As has 

been mentioned previously (e.g. Worbes, 2002), and as observed with the samples from 

Ecuador analysed in this thesis, complete discs are essential for detecting anatomical 

features such as wedging rings, which can cause problems in tropical 

dendrochronology. In addition, the trees sampled in MSDR were close to the seasonally 

flooded forest, but at a higher elevation. Although these trees do not experience 

flooding every year, it has been suggested that in years with strong flooding 

(approximately every five years), they could also be affected, possibly resulting in the 
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formation of a false (i.e. non-annual) ring during the period of inundation (J. Schöngart, 

personal communication). Depending on which trees are influenced by the flood, false 

rings may form in some trees but not in others. This could explain why it was not 

possible to crossdate δ18OTR series from this part of Brazil. 
 
 

 
Figure 7.1 – Preliminary δ18OTR data from other sites in the Amazon. Interannual variation in δ18OTR 
in three Cedrela odorata trees from (a) Venezuela, (b) Brazil, and (c) Suriname. 
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Lastly, the samples from Suriname came from a logging concession near Matapi 

in the northwest of the country. Dendrochronology has not previously been conducted 

in Suriname, but work presented in this thesis has demonstrated that trees here form two 

rings nearly every year. Each ring was individually analysed for δ18OTR, and then annual 

values were obtained by averaging δ18OTR values from two rings, weighted by their 

width (Appendix 7.1). There are some low frequency features in common between the 

δ18OTR series, though these features do not align, and at the interannual timescale 

correlations are weak or non-existent (EPS=0.27, Fig. 7.1c). Tree-ring analysis was 

conducted on complete discs, and 14C data were used to precisely date the samples, so 

dating inaccuracies are unlikely to explain the very poor correspondence between the 

three trees. The trees may have taken up water from different sources, but as the 

samples were cut by a logging company, the precise origins and site conditions for the 

trees are not known. Without further information, it is not possible to explain the lack of 

a common signal in these δ18OTR records. 

In summary, as noted in Chapter 4, it is challenging to identify the reasons why 

δ18OTR signatures don’t match between trees without collecting additional data. 

Hypotheses to explain why trees in Venezuela, Brazil and Suriname show high inter-

tree variability in comparison with sites in the western Amazon have been discussed, 

with suggestions including possible differential water sources and the irregular 

occurrence of false rings. However, these ideas must remain speculative without further 

data. 

 

7.2.5 What are the most important mechanisms driving interannual variation in 

Amazon δ18OTR?  

Climatic drivers of variation in Amazon δ18OTR have previously been identified 

using correlation analyses, but it is also important to fully understand the mechanisms 

behind these relationships. Multiple approaches were employed to identify the 

mechanistic drivers of interannual variability in δ18OTR, with a focus on records from 

Bolivia, as these had previously been suggested to be a good proxy for precipitation 

over the whole Amazon basin (Brienen et al., 2012). Atmospheric trajectories combined 

with remote sensing observations of precipitation, and insights from reanalysis data, 

were used to show that rainout processes during moisture transport over the basin 
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control interannual δ18OTR variability in the southwest corner of the Amazon. This 

confirms that these records can be reliably used to reconstruct the moisture balance of 

the entire region. One limitation of the approach is that the analysis was restricted to the 

few recent decades when satellite and reanalysis data were available. This was sufficient 

to investigate the causal drivers of interannual variation, but it was not possible to 

explore the drivers of low frequency signals in Amazon δ18OTR records using this 

methodology. One method that could possibly be used to achieve this in the future 

would be to use an isotope-enabled GCM (see section 7.4). 

 

7.2.6 What can new long δ18OTR records presented in this thesis tell us about the 

Amazon hydrological cycle over the past two centuries? 

Long, annually resolved and well-replicated δ18OTR chronologies from the 

Amazon, which extend beyond the instrumental record, have been presented in this 

thesis. In addition to investigating the drivers of interannual and decadal variability, 

these provided the first opportunity to analyse and interpret low frequency signals in 

Amazon δ18OTR. The δ18OTR chronology from Ecuador shows a strong upward trend, 

which is also apparent in the slightly shorter record from Bolivia. Since δ18OTR signals 

have already been shown to reflect Amazon hydrology at interannual and decadal 

timescales, it might seem logical to assume that low frequency signals are also 

determined by changes in Amazon hydrology. Indeed, previous studies have interpreted 

long δ18O proxy records by developing simple linear regression models over the period 

of available instrumental data, and using these to reconstruct climate over multiple 

centuries (e.g. Xu et al., 2013, Thompson et al., 2013). However, there are actually 

numerous confounding sources of variation over long timescales, and these must be 

carefully considered to ensure that proxy records are correctly interpreted. In this thesis, 

an attempt was made to quantify the contribution of each of these sources of variability 

to the 3 ‰ rise in δ18OTR since the early 1800s. It was concluded that a change in the 

rainout fraction over the Amazon was likely to be driving the majority of the increase. 

This could be caused by a long-term reduction in Amazon precipitation, as suggested by 

other δ18O proxy studies (Bird et al., 2011, Vuille et al., 2012, Kanner et al., 2013), but 

can also be explained by an increase in the volume of water vapour coming into the 

basin. These results are tantalising, but it is difficult to distinguish between the two 
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mechanisms from δ18OTR data alone. However, both interpretations indicate long-term 

changes in the Amazon climate system over the past two centuries.  

As well as using extended δ18OTR chronologies to positively identify drivers of 

hydrological variation in the Amazon, previously suggested drivers of variability can 

also be investigated in a more robust way. For example, the new δ18OTR record from 

Ecuador was used to interrogate an assertion that sunspots are a remote control on the 

Amazon hydrological cycle. The 200-year-long δ18OTR record was used to show that a 

relationship between decadal variation in Amazon River discharge measured at Óbidos 

and sunspot number observed over the 20th century by Antico and Torres (2015), is 

probably coincidental. This is an interesting result and shows that long δ18OTR 

chronologies can also provide new insights by challenging conclusions drawn from 

shorter instrumental climate datasets. 

 

7.3 How Useful Are Amazon δ18OTR Proxy Records? 

In this thesis δ18OTR chronologies from multiple sites in the Amazon have been 

developed and analysed. These records have provided valuable insights about the 

drivers of variation in Amazon hydrology on interannual, decadal, and even centennial 

timescales. These results are particularly important in a region where instrumental 

climate data are extremely limited. However, there are also a few limitations associated 

with proxy δ18OTR data, some of which have already been alluded to, but will be 

explicitly stated in the paragraphs below. 

First, developing stable isotope chronologies is a costly and labour-intensive 

process, and the time between sample collection through to constructing a robust and 

well-replicated δ18OTR record can be considerable. Errors at any stage in the process can 

potentially have an impact on the final results, but particularly during the initial ring 

identification and counting. Tropical trees often have challenging ring structures (e.g. 

Worbes, 2002, Brienen et al., 2016), and in this research wedging rings were 

encountered especially frequently (e.g. Fig. 7.2). These could only be identified by 

analysing complete discs, which explains why discs were generally easier to date and 

produced better results than increment cores. Furthermore, trees from some of the study 

locations were found to form non-annual rings, illustrating the necessity for independent 
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dating validation of δ18OTR records. This could be using ‘bomb-peak’ 14C dating, by 

comparing against climate data, or, as illustrated in Chapter 4, by pattern-matching 

δ18OTR signatures again a previously established δ18OTR chronology. 

Once a δ18OTR chronology has been developed, care must be taken to interpret the 

signal correctly, although this may not always be straightforward. δ18OTR signals are 

complex and incorporate information from a large number of processes, both during the 

course of the hydrological cycle (e.g. Mook, 2000), and within the tree itself (e.g. Fig. 

1.3 in Chapter 1). These sources of variability must be acknowledged, particularly over 

longer timescales when other factors affecting δ18OTR, besides the climate variable of 

interest, may have changed. These factors complicate data interpretation, but if they can 

be accounted for it may still be possible to extract useful climate information. Though in 

some cases additional data may be required to completely disentangle the δ18OTR signal. 

There are temporal and spatial limitations on the hydrological insights that can be 

derived from Amazon δ18OTR records. First, the δ18OTR records presented in this thesis 

are constructed from trees that only grow during the wet season, and thus they can only 

record information about climate during this part of the year. This seasonal bias is  

 

Figure 7.2 – Example of wedging tree rings in Cedrela montana from Ecuador. 
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unavoidable with tree-ring records, which require trees to stop growing during a 

particular season in order to form an annual ring. However, it is important to appreciate 

that this also means that δ18OTR records do not provide a complete representation of 

climate throughout the year. Furthermore, while these records provide useful 

information about large-scale hydrological changes in the Amazon, on their own they 

cannot provide detail about spatial variation in hydrology. For example, analyses of 

river flux data have shown opposing discharge trends in northern and southern Amazon 

sub-basins since the mid 1970s (e.g. Espinoza et al., 2009, Gloor et al., 2015), but the 

δ18OTR records currently available are not able to reflect this regional variability. A 

cross-basin network of δ18OTR records would be needed to capture these changes, but as 

shown in section 7.2.4, this could be difficult to construct.  

To summarise, Amazon δ18OTR records are useful records of past climate, 

provided data are interpreted carefully. Although quite a lot of effort must be expended 

to develop a robust chronology, the climate insights that can be gained can be very 

informative, and may provide important historical context for on-going hydrological 

changes in the region (e.g. Gloor et al., 2013), that would otherwise be lacking. 

Although the records developed so far are able to capture large-scale variation in wet 

season hydrology, further records are needed to represent dry season climate and 

capture historical climate variability across the basin. 

 

7.4 Research Implications and Suggestions for Future Research 

The growth periodicity of Cedrela spp., which are commonly used in 

dendrochronological studies (e.g. Worbes, 1999, Tomazello Filho. et al., 2000, Dünisch 

et al., 2002, Brienen and Zuidema, 2005), has been shown to vary between tropical 

sites, and tree rings within a species can be bi-annual as well as annual (Chapter 3). This 

result has relevance beyond a single species or region, as it emphasises the importance 

of dating verification, and that tree-ring records from new tropical locations should be 

interpreted with caution (Brienen et al., 2016). The factors controlling tree growth 

rhythms in South America were also explored, but could be investigated using a more 

systematic approach, for example by growing seedlings from multiple locations in a 
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greenhouse experiment (e.g. Ruiz et al., 2013). This would help us to better understand 

regional variation in ring periodicity, and possibly help to predict whether sites may be 

suitable or unsuitable for constructing δ18OTR chronologies.  

Consistent δ18OTR signatures between different species and sites were shown in 

Chapter 4. This work has broadened the pool of species that can be used for δ18OTR 

chronology construction, with Amburana cearensis and Tachigali vasquezii showing 

particular promise. The latter would be especially suitable for high-resolution isotope 

analysis due to its fast growth rate (Brienen and Zuidema, 2005). Indeed, investigating 

seasonal δ18OTR signals between tropical tree species (e.g. Ohashi et al., 2016) could 

help to explain some of the observed inter-species differences, for example, by 

revealing whether trees grow and take up precipitation during slightly different periods 

in the year. Furthermore, crossdating new δ18OTR series against an established isotope 

record was shown to be effective, and thus existing δ18OTR records from Bolivia and 

Ecuador could facilitate future chronology development in the Amazon.  

To aid the interpretation of tropical δ18OTR signals, trajectory modelling was 

combined with satellite observations of precipitation. This showed that interannual 

δ18OTR signals in the southwest Amazon are primarily controlled by the amount of 

precipitation during atmospheric moisture transport over the basin (Chapter 5). The 

success of this original methodology is such that it could be employed to investigate 

δ18OTR signals elsewhere in the tropics. The ROTRAJ trajectory model from Reading 

University (Methven, 1997) was used here, but there are other Lagrangian atmospheric 

transport models that are also freely available, for example, HYSPLIT (Stein et al., 

2015) and FLEXPART (Stohl et al., 2005). In addition, it may be beneficial to use 

trajectories as part of a more sophisticated moisture source diagnostic approach, such as 

that used by Drumond et al. (2014). This could help further our understanding of 

interannual variation in δ18OTR by showing varying contributions from different ocean 

regions in different years, and variability in the degree of moisture recycling through 

vegetation. 

In Chapter 6 δ18OTR records from Bolivia and Ecuador were shown to be good 

indicators of wet season precipitation in the Amazon basin. The Cedrela spp. used to 

construct these records only grow during the wet months (e.g. Brienen and Zuidema, 

2005, Bräuning et al., 2009) and thus can only tell us about climate during this period. 
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Other Amazon tree species may record climate over a different part of the year. For 

example, trees in the floodplain forest predominantly grow during the non-flooded 

phase, which begins in the dry season, and they cease growing and form an annual ring 

during the flood pulse (Worbes and Junk, 1989, Schöngart et al., 2002). Studies have 

found positive correlations between growth increment and the duration of the non-

flooded phase, in some floodplain tree species (Schöngart et al., 2004, Schöngart et al., 

2005). Therefore, δ18OTR chronologies constructed from these species could possible 

provide complementary palaeoclimate evidence to the Amazon δ18OTR records that have 

already been developed. 

The long δ18OTR records from Bolivia and Ecuador are the first from the Amazon 

to extend beyond the limit of instrumental data and thus provide new information about 

regional climate (Chapter 6). The longest of these records extends back to 1799, but it 

may be possible to develop records even longer than this, if sufficiently old, ring-

forming trees can be found (see Worbes and Junk, 1999). The most interesting feature 

in the long δ18OTR records presented here, is the upward trend through most of the 19th 

century and into the first half of the 20th century. This could possibly indicate a drying 

trend in the Amazon over this period, or increasing water vapour over the basin, but 

these mechanisms cannot be distinguished without further information. Additional 

δ18OTR data could potentially help to clarify the issue. Although it was not possible to 

develop one during this research, a long-term δ18OTR record from the northeast coast of 

South America would provide valuable information about the isotope composition of 

incoming water vapour. Comparing a coastal δ18OTR record with existing δ18OTR records 

from the west of the basin would show whether there has been a decrease in the δ18OP 

gradient across the Amazon, which would indicate the upward trend in δ18OTR is caused 

by a reduction in rainout, rather than an increase in incoming water vapour. Although 

constructing a reliable δ18OTR chronology from this region maybe challenging, 

particularly if trees tend to form two rings a year, as they do in Suriname, such a record 

would provide valuable further insights about long-term variability in Amazon 

hydrology. 

In addition, an isotope-enabled GCM could possibly be used to investigate the 

drivers of low-frequency δ18OTR variability, and help determine the cause of the long-

term increase. Unlike the mechanistic approaches used to identify drivers of interannual 
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δ18OTR variability in this study (i.e. trajectory modelling and vapour transport analysis), 

which require satellite and reanalysis data that are only available over the last few 

decades, an isotope-enabled GCM simulates the physical processes that influence proxy 

isotope data, and can therefore be run over much longer periods (e.g. Tindall and 

Haywood, 2015). For example, isotope-enabled GCMs have previously been used to 

distinguish between drivers of variation in coral δ18O records (Russon et al., 2013), and 

have also been used to interpret δ18O proxy records from the Amazon (Vuille et al., 

2012). However, Vuille et al. (2012) used the GCM to identify mechanisms controlling 

interannual variability in δ18OP, and then applied these results to interpret centennial-

scale trends in δ18O. This is not a satisfactory approach because it assumes that the same 

factors control variation at different timescales when this may not be the case. Future 

work should focus on model simulations of long-term trends in δ18O, in order to clarify 

the interpretation of the long δ18OTR records from the Amazon presented in this thesis. 

Lastly, coherent isotope signals were observed between trees at some sites in the 

Amazon, but not at other sites. Possible reasons for this were discussed in section 7.2.4, 

but the precise reasons remain unclear. First, it is necessary to establish whether the 

water taken up by trees has the same isotope composition as precipitation. This could be 

achieved by measuring soil and xylem water δ18O, and comparing these values with 

measurements of δ18OP. If source/stem water δ18O (δ18OS) values differ from δ18OP 

values then the reasons for this could also be investigated, for example by examining 

soil type, or variation in soil water partitioning (e.g. Schwendenmann et al., 2014). 

Alternatively, if δ18OS and δ18OP values are found to be similar then inter-tree 

differences must be caused by variation in tree physiology. Such analyses would help us 

to understand how tropical δ18OTR signals are determined, and could inform site choice 

in future δ18OTR studies.  

 

7.5 Conclusions 

During the course of this research, the field of stable isotope dendrochronology in 

the Amazon has been substantially expanded. The primary aim was to develop a deeper 

understanding of the Amazon hydrological cycle using δ18OTR as a palaeoclimate proxy, 

and specifically, to identify short- and long-term drivers of hydrological variability. 
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Evidence presented here has confirmed that interannual δ18OTR records from the 

Amazon capture basin-scale variation in precipitation, and can thus be reliably used to 

reconstruct historical climate in the region at interannual timescales. The long δ18OTR 

chronologies from Bolivia and Ecuador, which together provide over 200 years of proxy 

climate data, were used to investigate drivers of hydrological variability and thus 

address the key research question. In conclusion, the primary interannual control on 

Amazon wet season precipitation amount is variation in SSTs in the surrounding ocean 

basins. Specifically, SSTs in the central tropical Pacific were found to be positively 

related to δ18OTR in Ecuador and Bolivia, due to their negative influence on 

precipitation over the basin. The Ecuador δ18OTR record was also found to be controlled 

by SSTs in the tropical North Atlantic, which determine the latitudinal position of the 

ITCZ and thus also affect Amazon precipitation. However, interpretation of the δ18OTR 

records over longer timescales remains somewhat ambiguous. A strong upward trend in 

δ18OTR from the early 1800s up until the mid-20th century indicates a decrease in the 

rainout of heavy isotopes over the Amazon basin. This trend implies a change in the 

functioning of the Amazon hydrological cycle over this period, which could either be 

caused by a long-term reduction in Amazon wet season precipitation, or by an increase 

in incoming water vapour during the wet season. Additional data are required to resolve 

this uncertainty, either from further δ18OTR records, or by using an isotope-enabled 

GCM to provide mechanistic insights. Overall, these results represent an important 

advance in our knowledge of Amazon hydrology, and pave the way for further tree-ring 

research that will optimise our understanding of climate in this globally important 

region. 
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Appendices 

Appendix 2.1 – Cellulose extraction method comparison 

Two cellulose extraction techniques were employed in this thesis: the batch 

extraction method from Wieloch et al. (2011) and the cross-section extraction method 

from Kagawa et al. (2015). The batch method involves separating and cutting up each 

individual tree ring with a scalpel prior to cellulose extraction. The cross-section 

method involves cutting sections of wood approximately 1 mm thick, which are 

contained within perforated polytetrafluoroethylene (PTFE) cases for the cellulose 

extraction process. With this method tree rings are separated with a scalpel after 

extraction is complete. To compare the results of these methods a sample of Cedrela 

montana from Cuyuja, Ecuador with wide and clear rings was selected. Cellulose was 

then extracted from a series of 21 rings using the batch method and the cross-section 

method. After extraction, the cellulose for each ring was homogenised, freeze-dried and 

weighed into silver cups for oxygen isotope analysis at the School of Earth and 

Environment at the University of Leeds. The results are shown in Figure 2.3. 
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Appendix 4.1 – Raw isotope data with original and adjusted tree-ring dates 

The raw tree-ring oxygen isotope (δ18OTR) values for each individual tree included 

in the multi-species analysis, and the trees used to construct the Selva Negra 

chronology, are presented in Tables A4.1.1 and A4.1.2 respectively. The original and 

adjusted tree ring dates are given to clearly show where changes have been made 

following crossdating against the established δ18OTR chronology from Brienen et al., 

(2012) and/or in light of the results from radiocarbon dating. In addition, the samples 

that had their tree ring dates adjusted were plotted to show the original and new data 

series (Figs. A4.1.1 and A4.1.2). 
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Table A4.1.1 – Raw tree-ring oxygen isotope (δ18OTR) data from the seven tropical tree species included 
in the multi-species analysis presented in Chapter 4. Dates assigned following initial ring counting 
(original) and isotope crossdating (adjusted) are shown. Data are given in units of per mil (‰). 

  Couratari Amburana Bertholletia Tachigali 
Year Original Adjusted Original Adjusted Unadjusted Unadjusted 
2002 23.98   25.59     23.59 
2001 22.34   24.12   25.92 23.44 
2000 22.30 23.98 23.42 25.59 24.62 24.27 
1999 24.57 22.34 25.30 24.12 23.76 22.65 
1998 22.64 22.30 23.11 23.42 24.61 22.50 
1997 21.85 24.57 23.58 25.30 24.24 25.23 
1996 23.74 22.64 25.13 23.11 23.65 22.67 
1995 21.27 21.85 24.26 23.58 23.54 22.19 
1994 23.68 23.74 24.35 25.13 25.42 24.40 
1993 25.31 21.27 22.03 24.26 24.09 22.60 
1992 20.91 23.68 22.38   24.53 22.55 
1991 20.52 25.31 24.15 24.35 23.06 24.90 
1990 21.54   21.22   23.49 23.35 
1989 23.61   24.56 22.03 24.96   
1988 23.88 21.54 23.97 22.38 25.46   
1987 22.72 23.61 21.37 24.15 24.02   
1986 23.50 23.88 24.56 21.22 20.03   
1985 24.30 22.72 22.21 24.56 22.99   
1984 24.25 23.50 23.19 23.97 25.99   
1983 23.94 24.30 24.48 21.37 25.50   
1982 24.82 24.25   24.56 27.08   
1981 23.57 23.94 23.16 22.21 27.03   
1980 23.36 24.82 23.90 23.19 26.08   
1979  23.57 21.43 24.48 25.93   
1978 24.39   23.42   25.71   
1977 24.65   23.43 23.16 24.52   
1976 23.37 23.36 24.69 23.90 22.99   
1975 23.38   23.48 21.43 22.67   
1974 24.41 24.39 22.66 23.42 26.79   
1973 24.86 24.65 25.04 23.43 24.98   
1972 25.24 23.37 25.98 24.69 22.73   
1971 23.65 23.38 27.00 23.48 25.63   
1970 25.58   24.63 22.66 24.78   
1969 23.95 24.41 27.24 25.04     
1968 22.94 24.86 25.87 25.98     
1967 24.16 25.24 27.64 27.00 24.50   
1966 24.32 23.65 25.64 24.63 24.13   
1965 25.46 25.58 23.97 27.24 25.33   
1964 23.77   25.32 25.87 25.21   
1963   23.95 25.57 27.64 24.53   
1962 24.82 22.94 25.76 25.64 24.25   
1961 24.29 24.16 25.73 23.97 24.09   
1960 25.48   25.52 25.32 25.32   
1959 25.69 24.32 24.22 25.57 21.89   
1958 23.82 25.46 26.03 25.76 25.44   
1957 24.35 23.77 24.85 25.73 24.54   
1956 24.23   24.53 25.52 23.96   
1955 24.56 24.82 25.52 24.22 27.83   
1954 25.20 24.29 25.33 26.03 25.00   
1953 25.52 25.48 25.08 24.85 27.08   
1952 24.52 25.69 26.70 24.53 26.45   
1951 25.74 23.82 26.26 25.52 29.04   
1950 24.02 24.35 26.59 25.33 25.48   
1949 23.98 24.23 25.27 25.08 24.64   
1948 22.56 24.56 26.59 26.70 24.59   
1947 25.11 25.20 25.54 26.26 29.04   
1946 25.80 25.52 27.37 26.59 24.69   
1945 23.22 24.52 26.34 25.27 26.02   
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Table A4.1.1 – Continued. 
  Couratari Amburana Bertholletia Tachigali 

Year Original Adjusted Original Adjusted Unadjusted Unadjusted 
1944 26.02 25.74 25.37 26.59 25.82   
1943 24.94 24.02 26.58 25.54 26.55   
1942 25.58 23.98 23.80 27.37 27.91   
1941 25.99 22.56 24.77 26.34 26.51   
1940 22.62 25.11 25.35 25.37 25.60   
1939 23.54 25.80 24.81 26.58 24.78   
1938 25.55 23.22 24.73 23.80 27.31   
1937 25.71 26.02 23.91 24.77 25.25   
1936 27.12 24.94 25.26 25.35 26.38   
1935 22.67 25.58 25.14 24.81 25.02   
1934 23.30 25.99 26.44 24.73 27.27   
1933 26.55 22.62 24.55 23.91 25.53   
1932 25.62   26.63 25.26 25.21   
1931 24.29 23.54 24.22 25.14 27.45   
1930 23.77 25.55 24.19 26.44 24.41   
1929 26.21 25.71 28.39 24.55 24.82   
1928 27.12   24.15 26.63 25.84   
1927 23.53 22.67 26.25 24.22 25.32   
1926 26.02 23.30 22.88 24.19     
1925 22.02 26.55 24.73 28.39 26.32   
1924 23.88 25.62 24.38 24.15 26.22   
1923 24.53 24.29 9.54 26.25 23.08   
1922 24.73 23.77 25.64 22.88 27.68   
1921 24.67 26.21 23.93 24.73 24.75   
1920 25.81 25.10 24.74 24.38 27.49   
1919 24.15 23.53 23.63   27.25   
1918 25.73 26.02 25.15 25.64 26.37   
1917 23.79 22.02 23.93 23.93 24.07   
1916 25.75 23.88 23.60 24.74 24.95   
1915 24.56 24.53 26.69 23.63 26.37   
1914 25.11 24.73 23.15 25.15 25.45   
1913 25.20 24.67 23.49 23.93 24.64   
1912   25.81 23.60 23.60 21.37   
1911 23.69 24.15 26.69 26.69 24.38   
1910 22.84 25.73 23.15 23.15 24.73   
1909 22.97 23.79 23.49 23.49 22.34   
1908 24.98 25.75 22.62 23.60 26.88   
1907 23.57 24.56 23.77 26.69 25.57   
1906 26.04 25.11 25.46 23.15 23.41   
1905 25.00 25.20 25.86 23.49     
1904 24.06     22.62 24.86   
1903 23.78 23.69 24.80 23.77     
1902 22.97 22.84 24.58 25.46 22.43   
1901 20.78 22.97 24.23 25.86 24.64   
1900 22.81 24.98 23.49   25.10   
1899   23.57 23.98 24.80 24.38   
1898   26.04 22.01 24.58 22.62   
1897   25.00 23.86 24.23 23.83   
1896   24.06   23.49 25.04   
1895   23.78   23.98     
1894   22.97   22.01     
1893   20.78   23.86     
1892   22.81         
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Table A4.1.1 – Continued. 
  Peltogyne Cedrelinga Polylepis 

Year Original Adjusted Original Adjusted Unadjusted 
2002 21.08   29.73   23.28 
2001 24.33   26.48   21.11 
2000 20.99   29.46   21.95 
1999 24.51   26.87 29.73 17.82 
1998 25.52   26.58 26.48 22.47 
1997 21.76   26.83 29.46 24.49 
1996 24.58   26.71 26.87 19.89 
1995 21.03   25.09 26.58 24.24 
1994 24.95   25.63 26.83 23.37 
1993 21.50   26.00 26.71 19.18 
1992 26.33   25.77 25.09 20.20 
1991 24.23   25.97 25.63 23.29 
1990 24.14 21.08 26.70 26.00 21.89 
1989   24.33 26.12 25.77 23.60 
1988 24.91 20.99 25.40 25.97 21.61 
1987 23.23 24.51 32.73 26.70 22.24 
1986 23.59 25.52 24.34 26.12 18.61 
1985 24.11 21.76 26.50 25.40 18.93 
1984 23.59 24.58 24.67 32.73 17.61 
1983 24.46 21.03 28.11 24.34 22.28 
1982 23.17 24.95 26.25 26.50 27.31 
1981 25.57 21.50 27.58 24.67 22.98 
1980 25.29 26.33 25.78 28.11 21.99 
1979 25.40 24.23 25.32 26.25 22.18 
1978 27.13 24.14 24.14 27.58 19.39 
1977 24.04   24.32 25.78 19.79 
1976 25.96 24.91 22.99 25.32 18.54 
1975 25.37 23.23 25.58 24.14 18.54 
1974 25.06 23.59 24.92 24.32 16.57 
1973 24.24 24.11 23.97 22.99 19.92 
1972 24.07 23.59 26.14 25.58 18.88 
1971 21.86 24.46 26.96 24.92 17.63 
1970 25.83 23.17 28.25 23.97 19.31 
1969 23.95 25.57 22.81 26.14 22.01 
1968 26.52 25.29 22.73 26.96 19.59 
1967 23.27 25.40 28.37 28.25 19.49 
1966 24.14 27.13 27.84 22.81 22.45 
1965 21.48 24.04 29.98 22.73 23.40 
1964 24.22 25.96 24.63 28.37 23.18 
1963 23.21 25.37 28.86 27.84 20.27 
1962 23.60 25.06 24.75 29.98 18.36 
1961 23.95 24.24 25.82 24.63 19.83 
1960 24.13 24.07 27.59 28.86 20.96 
1959 25.75 21.86 24.62 24.75 19.45 
1958 23.21 25.83 21.97 25.82 22.68 
1957 23.10 23.95 25.45 27.59 23.21 
1956 24.45 26.52 25.77 24.62 23.61 
1955 23.12   24.80 21.97 20.28 
1954 25.56 23.27 22.20 25.45 19.32 
1953 24.91 24.14 26.03 25.77 18.81 
1952 24.67 21.48   24.80 19.19 
1951 24.42 24.22   22.20 20.42 
1950 25.43 23.21   26.03 23.03 
1949 24.26 23.60     21.06 
1948 25.14 23.95     24.53 
1947 24.34 24.13     22.88 
1946 21.27 25.75     21.35 
1945 22.64 23.21     21.99 
1944 22.73 23.10     21.63 
1943 25.26 24.45     20.77 
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Table A4.1.1 – Continued. 
  Peltogyne Cedrelinga Polylepis 

Year Original Adjusted Original Adjusted Unadjusted 
1942 26.26 23.12     21.85 
1941   25.56     26.66 
1940   24.91     25.56 
1939   24.67     23.59 
1938   24.42     20.96 
1937   25.43     22.76 
1936   24.26     22.22 
1935   25.14     22.38 
1934   24.34     19.81 
1933   21.27     18.89 
1932   22.64     18.14 
1931   22.73     17.26 
1930   25.26       
1929   26.26       
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Table A4.1.2 – Raw tree-ring oxygen isotope (δ18OTR) data from the nine Cedrela odorata trees from 
Selva Negra. For some trees isotopes were measured in multiple radii. Data are given in units of per mil 
(‰). 

  Tree_11 Tree_12 Tree_13 Tree_14_a Tree_14_c 
Year Original Adjusted Unadjusted Original Adjusted Original Adjusted Unadjusted 
2010 20.82 20.82 21.25 22.78       20.37 
2009 23.12 23.12 22.73 19.14 22.78     20.54 
2008 19.43 19.43 17.20 22.41 19.14     18.19 
2007 21.54 21.54 21.27 23.25 22.41 19.66   20.23 
2006 23.56 23.56 22.76 20.54 23.25 21.33   21.58 
2005 20.92 20.92 20.52 21.47 20.54 22.21   19.59 
2004 21.84 21.84 21.06 23.49 21.47 21.87   21.72 
2003 22.95 22.95 23.38 22.05 23.49 21.58   21.85 
2002 23.35 23.35 22.25 21.54 22.05 21.71   21.43 
2001 22.44 22.44 22.07 21.53 21.54 21.21   20.93 
2000 23.27 23.27 21.09 21.01 21.53 20.52   20.89 
1999 21.29 21.29 21.59 21.21 21.01 23.84     
1998 20.49 20.49 20.64 23.84 21.21 20.71     
1997 23.99 23.99 24.25 21.95 23.84 20.64 23.84   
1996 22.13 22.13 21.34 20.58 21.95 21.72 20.71   
1995 20.16 20.16 20.27 22.96 20.58 20.06 20.64   
1994 23.07 23.07 22.60 21.56 22.96 20.36 21.72   
1993 20.28 20.28 21.05 21.21 21.56 23.09 20.06   
1992 21.38 21.38 19.36 23.14 21.21 21.61 20.36   
1991 23.83 23.83 23.57 22.57 23.14 22.50 23.09   
1990 22.56 22.56 22.41 23.07 22.57 20.02 21.61   
1989 23.16 23.16 18.87 20.42 23.07 21.55 22.50   
1988 20.72 20.72 20.55 22.27 20.42 23.18 20.02   
1987 22.96 22.96 22.18 23.84 22.27 20.50 21.55   
1986 23.23 23.23 23.96 20.20 23.84 21.49 23.18   
1985 21.31 21.31 20.48 21.92 20.20 21.94 20.50   
1984 22.40 22.40 22.39 21.22 21.92 20.98 21.64   
1983 24.00   21.43 23.50 21.22 23.46 20.98   
1982 21.31 24.00 18.94 20.99 23.50 21.00 23.46   
1981 22.79 21.31 20.25 22.43 20.99 20.22 20.42   
1980 24.09 22.79 20.61 24.31 22.43 22.06 22.06   
1979 22.08 24.09 24.30 21.87 24.31 23.25 23.32   
1978 23.54 22.08 22.47 22.74 21.87 23.40 21.07   
1977 22.70 23.54 22.68 22.78 22.74 21.07 21.69   
1976 20.03 22.70 23.50 20.11 22.78 21.69 21.73   
1975 22.16 20.03 19.85 20.94 20.11 21.73 18.79   
1974 20.44 22.16 20.99 20.52 20.94 18.79 19.83   
1973 23.59 20.44 19.87 21.26 20.52 19.83 18.92   
1972 22.16 23.59 21.56 21.71 21.26 18.92 20.51   
1971 20.43 22.16 21.63 19.91 21.71 20.51 19.78   
1970 22.63 20.43 19.19 22.71 19.91 19.78 18.56   
1969 23.90 22.63 21.66 22.61 22.71 18.56 20.72   
1968 22.90 23.90 23.33 22.95 22.61 20.72 21.65   
1967 21.31 22.90 23.21 20.54 22.95 21.65 21.72   
1966 23.72 21.31 21.63 24.53 20.54 21.72 19.31   
1965 22.62 23.72 24.44 21.67 24.53 19.31 23.02   
1964 22.71 22.62 22.81 23.70 21.67 23.02 21.24   
1963 21.34 22.71 22.98 20.71 23.70 21.24 21.66   
1962 20.27 21.34 21.23 20.36 20.71 21.66 19.90   
1961 22.29 20.27 21.07 22.01 20.36 19.90 19.41   
1960 23.75 22.29 22.38   22.01 19.41 21.00   
1959 22.49 22.49 23.34     21.00 21.76   
1958 22.49 22.68 22.30     21.76 21.51   
1957 22.68 22.68 22.59     21.51 21.76   
1956 22.68 21.62 22.76     21.76 21.28   
1955 21.62 19.32 20.19     21.28 19.69   
1954 19.32 19.32 20.73     19.69 20.42   
1953 19.32 21.47 22.08     20.42 20.78   
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Table A4.1.2 – Continued. 
  Tree_11 Tree_12 Tree_13 Tree_14_a Tree_14_c 

Year Original Adjusted Unadjusted Original Adjusted Original Adjusted Unadjusted 
1952 21.47 19.65 20.05     20.78 19.33   
1951 19.65 22.93 21.40     19.33 20.42   
1950 22.93 22.78 22.57     20.42 22.04   
1949 22.78 23.29 21.00     22.04 20.47   
1948 23.29   22.27     20.47 21.68   
1947 21.94 21.94 22.58     21.68 21.94   
1946 22.99 22.99 23.68     21.94 22.28   
1945 21.92 21.92 21.94     22.28 20.49   
1944 22.77 22.77 21.05     20.49 21.19   
1943 22.25 22.25 21.05     21.19 21.29   
1942 20.11 20.11 21.24     21.29 20.61   
1941 22.48 22.48 21.84     20.61 21.42   
1940 22.05 22.05       21.42 21.67   
1939 23.42 23.42       21.67 22.50   
1938 21.39 21.39       22.50 20.26   
1937 21.88 21.88       20.26 20.40   
1936 21.92 21.92       20.40 20.71   
1935 20.62 20.62       20.71 21.76   
1934 25.10         21.76 22.02   
1933 20.17 20.17       22.02 18.86   
1932 22.06 22.06       18.86 21.83   
1931 20.39 20.39       21.83 21.01   
1930 21.49 21.49       21.01 22.32   
1929 22.66 22.66       22.32 20.33   
1928 20.28 20.28       20.33 20.95   
1927 19.68 19.68       20.95 20.81   
1926 22.22 22.22       20.81 19.36   
1925 23.31 23.31       19.36 23.86   
1924 21.73 21.73       23.86 19.72   
1923 18.99 22.13       19.72 22.24   
1922 25.27 20.59       22.24 19.42   
1921 20.59 23.70       19.42 20.51   
1920 23.70 20.94       20.51 20.26   
1919 20.94         20.26 20.21   
1918 17.40         20.21 21.58   
1917 19.43         21.58 17.81   
1916 22.34         17.81 21.27   
1915 20.87         21.27 20.75   
1914           20.75 20.71   
1913           20.71 22.18   
1912           22.18 19.88   
1911           19.88 23.17   
1910           23.17 20.27   
1909           20.27 19.81   
1908           19.81 19.31   
1907           19.31 18.48   
1906           18.48     
1905             21.87   
1904           21.87 19.46   
1903           19.46 22.07   
1902           22.07 18.01   
1901           18.01 19.30   
1900           19.30 20.05   
1899           20.05 20.16   
1898           20.16 20.71   
1897           20.71 19.83   
1896           19.83 22.03   
1895           22.03 20.18   
1894           20.18 19.32   
1893           19.32 20.74   
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Table A4.1.2 – Continued. 
  Tree_11 Tree_12 Tree_13 Tree_14_a Tree_14_c 

Year Original Adjusted Unadjusted Original Adjusted Original Adjusted Unadjusted 
1892           20.74 22.29   
1891           22.29 20.62   
1890           20.62 18.79   
1889           18.79 19.26   
1888           19.26 21.57   
1887           21.57 20.53   
1886           20.53 17.77   
1885           17.77 22.14   
1884           22.14     
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Table A4.1.2 – Continued. 
  Tree_16 Tree_20 Tree_21_c2 Tree_21_c1 Tree_21_c 

Year Unadjusted Original Adjusted Unadjusted Original Adjusted Unadjusted 
2010 21.37 21.49 21.49 21.69       
2009 22.62 21.79 21.79 21.59       
2008 17.65 18.98 18.98 19.59       
2007 22.24 20.24 20.24 21.81       
2006 21.05 22.78 22.78 23.04       
2005 20.25 20.37 20.37 20.73       
2004 19.28 22.12 22.12 22.85       
2003 22.21 22.49 22.49 23.55       
2002 23.21 22.49 22.49 21.06       
2001 21.71 21.43 21.43 22.79       
2000 22.32 22.21 22.21 21.69       
1999 19.86 21.03 21.03 22.05       
1998 19.81 20.58 20.58 20.61       
1997 24.47 23.85 23.85 24.61       
1996 23.04 22.16 22.16 22.57       
1995 21.40 19.81 19.81 21.38       
1994 22.03 21.96 21.96 22.67       
1993 20.83 20.44 20.44 21.30       
1992 21.01 20.44 20.44 21.06       
1991 24.02 23.50 23.50 23.81       
1990 23.04 22.00 22.00 22.56       
1989 23.49 22.46 22.46 23.40       
1988 20.52 19.67 19.67 20.52       
1987 22.74 21.41 21.41 22.32       
1986 23.73 23.21 23.21 23.76       
1985 20.08 20.03 20.03 21.32       
1984 22.77 22.09 22.09 22.46       
1983 22.44 20.75 20.75 21.74       
1982 24.56 23.35 23.35 24.12       
1981 20.78 20.64 20.64 20.92       
1980 22.11 22.17 22.17 22.77       
1979 24.15 23.69 23.69 24.10       
1978 21.97 21.16 21.16 21.66       
1977 22.68 22.79 22.79 22.74       
1976 20.61 22.27 22.27 22.48       
1975 20.61 19.31 19.31 19.17       
1974 21.57 20.84 20.84 21.84       
1973 20.02 19.21 19.21 20.02       
1972 19.35 21.95 21.95 22.00       
1971 19.15 21.33 21.33 21.32       
1970 20.26 19.24 19.24 20.56       
1969 22.12 21.98 21.98 21.75   22.30   
1968 23.16 22.82 22.82 22.96 22.30 23.00   
1967 22.70 23.24 23.24 23.29 23.00 23.00   
1966 20.85 20.67 20.67 20.96 23.00 21.10   
1965 23.23 23.46 23.46 24.21 21.10 23.80   
1964 22.39 22.31 22.31 21.82 23.80 21.90   
1963 23.24 22.39 22.39 23.17 21.90 23.10   
1962 21.12 20.47 20.47 22.97 23.10 21.00   
1961 20.82 20.50 20.50   21.00 20.70   
1960 21.92 21.70 21.70   20.70 22.00   
1959 22.84 23.15 23.15   22.00 23.90   
1958 22.76 22.00 22.00   23.90 22.50   
1957 22.42 22.89 22.89   22.50 22.40   
1956 22.30 20.05     22.40 22.00   
1955 19.25       22.00 20.50   
1954 19.65       20.50 20.10   
1953 21.50 20.59     20.10 22.90   
1952 19.64       23.50 19.50   
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Table A4.1.2 – Continued. 
  Tree_16 Tree_20 Tree_21_c2 Tree_21_c1 Tree_21_c 

Year Unadjusted Original Adjusted Unadjusted Original Adjusted Unadjusted 
1951 21.55 23.76     21.50 21.90   
1950 22.02 22.78     19.50 22.30   
1949 21.99 22.87     21.90 22.10   
1948 22.76 22.93 22.78   22.30 22.60   
1947 22.38 21.81 22.87   22.10 22.70   
1946 23.60 21.40 22.93   22.60 22.90   
1945 22.25 22.34 21.81   22.70 21.40   
1944 22.27 21.45 21.40   22.90 22.10   
1943 22.30 22.33 22.34   21.40 22.00   
1942 21.36 21.93 21.45   22.10 21.70   
1941 22.00 23.27 22.33   22.00 22.70   
1940 22.60 20.06 21.93   21.70 22.40   
1939 23.05 21.55 23.27   22.70 23.00   
1938 19.66 21.43 20.06   22.40 21.40   
1937 21.64 22.31 21.55   23.00 22.20   
1936 21.70 22.25 21.43   21.40 22.50   
1935 21.29 18.91 22.31   22.20 22.80   
1934 21.73 22.05 22.25   22.50 22.60   
1933 18.76 21.67 18.91   22.80 20.30   
1932 22.05 22.55 22.05   22.60 22.90   
1931 20.66 21.15 21.67   20.30 21.80   
1930 22.70 20.36 22.55   22.90 24.10   
1929 20.52 20.50 21.15   21.80 22.00   
1928 22.17 20.33 20.36   24.10 22.60   
1927 21.66 23.77 20.50   22.00 22.10   
1926 22.68 19.88 20.33   22.60 20.90   
1925 22.31 22.25 23.77   22.10 25.30   
1924 19.63 19.66 19.88   20.90 21.30   
1923 22.02 20.66 22.25   25.30 23.40   
1922 18.97 22.04 19.66   21.30 20.20   
1921 19.79 20.45 20.66   23.40 22.00   
1920 20.47   22.04   20.20 22.60   
1919 21.17 18.84 20.45   22.00 21.50   
1918 22.70 21.04     22.60 22.80   
1917 20.56 21.79 18.84   21.50 20.00   
1916 21.32 20.60 21.04   22.80 22.10   
1915 22.11 23.94 21.79   20.00 22.70   
1914 19.78 20.51 20.60   22.10 22.00   
1913 20.69 20.09 23.94   22.70 24.10   
1912 18.97 19.41 20.51   22.00 21.90   
1911 23.87 20.49     24.10 24.20   
1910 20.19 20.64     21.90 20.10   
1909 18.80 22.70 20.09   24.20 22.00   
1908 20.49 22.67 19.41   20.10 18.40   
1907 21.66   20.49   22.00 21.50   
1906 22.78   20.64   18.40 22.30   
1905 23.40   22.70   21.50 23.40   
1904 22.82   22.67   22.30 22.40   
1903 19.97       23.40 20.80   
1902 23.01       22.40 24.00   
1901 21.74       20.80 22.90   
1900 22.23       24.00 22.50   
1899 23.13       22.90 23.50   
1898 19.12       22.50 21.30   
1897 19.74       23.50 21.40 24.90 
1896 23.99       21.30 22.10 22.20 
1895 20.84       21.40   24.50 
1894 20.78       22.10   20.40 

        
1893 21.13           22.40 
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Table A4.1.2 – Continued. 
  Tree_16 Tree_20 Tree_21_c2 Tree_21_c1 Tree_21_c 

Year Unadjusted Original Adjusted Unadjusted Original Adjusted Unadjusted 
1892 22.10           22.00 
1891 21.38           22.20 
1890 22.29           21.50 
1889 21.64           22.90 
1888 22.62           21.70 
1887 23.72           23.70 
1886 22.39           23.60 
1885 22.82           22.50 
1884 22.39           23.80 
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Table A4.1.2 – Continued. 
  Tree_23 Tree_27 

Year Original Adjusted Unadjusted 
2010 21.22 21.22 21.29 
2009 21.45 21.45 22.22 
2008 19.12 19.12 17.46 
2007 21.56 21.56 22.41 
2006 23.11 23.11 22.62 
2005 20.22 20.22 20.43 
2004 22.42 22.42 22.26 
2003 23.65 23.65 21.82 
2002 22.61 22.61 22.91 
2001 22.18 22.18 22.49 
2000 23.04 23.04 22.52 
1999 21.69 21.69 21.28 
1998 21.86 21.86 19.81 
1997 24.28 24.28 22.60 
1996 23.02 23.02 22.83 
1995   21.05 20.71 
1994 21.05 23.12 21.41 
1993 23.12 21.46 20.71 
1992 21.46 21.65 21.26 
1991 21.65 24.06 24.18 
1990 24.06 23.13 22.70 
1989 23.13 23.37 23.14 
1988 23.37 20.60 20.45 
1987 20.60 22.64 23.14 
1986 22.64 24.17 22.68 
1985 24.17 21.42 21.66 
1984 21.42 22.30 22.12 
1983 22.30 22.19 21.89 
1982 22.19 24.14 24.05 
1981 24.14 21.57 22.24 
1980 21.57 22.51 22.93 
1979 22.51 23.67 23.70 
1978 23.67 21.33 21.71 
1977 21.33 22.95 23.24 
1976 22.95 23.57 22.70 
1975 23.57 20.88 20.27 
1974 20.88 21.27 20.78 
1973 21.27 20.37 20.58 
1972 20.37 22.88 22.02 
1971 22.88 22.28 21.46 
1970 22.28 20.45 20.25 
1969 20.45 22.66 21.89 
1968 22.66 23.25 22.88 
1967 23.25 23.06 22.56 
1966 23.06 21.03 21.55 
1965 21.03 21.14 23.49 
1964 21.14 21.89 22.41 
1963 21.89 22.22 21.85 
1962 22.22 21.37 21.36 
1961 21.37 20.38 20.38 
1960 20.38 21.93 22.35 
1959 21.93 22.87 22.99 
1958 22.87 23.08 22.31 
1957 23.08 23.06 22.86 
1956 23.06 23.41 22.12 
1955 23.41 24.23 20.01 
1954 24.23 21.79 20.36 
1953 21.79 19.68 21.57 
1952 19.68 19.67 19.73 
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Table A4.1.2 – Continued. 
  Tree_23 Tree_27 

Year Original Adjusted Unadjusted 
1951 19.67 21.75 20.87 
1950 21.75 21.91 22.72 
1949 21.91 21.56 21.74 
1948 21.56 22.38 22.44 
1947 22.38 22.60 23.01 
1946 22.60 23.34 23.35 
1945 23.34 21.92 22.01 
1944 21.92   21.26 
1943 22.72   21.84 
1942 22.72   21.92 
1941 22.72   22.72 
1940 22.72   22.76 
1939 22.72   23.36 
1938 22.72   21.09 
1937 21.84   20.98 
1936 23.35   21.77 
1935 21.86   22.58 
1934 22.78   22.32 
1933 21.93   20.08 
1932 20.18   21.40 
1931 24.40 21.84 21.42 
1930 20.37 23.35 22.39 
1929 22.80 21.86 21.19 
1928 20.11 22.78 21.76 
1927 21.00 21.93 21.35 
1926 21.10 20.18 20.91 
1925 20.69 24.40 24.41 
1924 22.60 20.37 20.21 
1923 20.42 22.80 22.75 
1922 21.78 20.11 20.89 
1921 21.72 21.00 21.32 
1920 21.91 21.10 20.88 
1919 22.91 20.69 21.08 
1918 25.21 22.60 21.56 
1917 20.96 20.42 19.35 
1916 23.96 21.78 22.11 
1915 20.26 21.72 22.30 
1914 22.07 21.91 21.88 
1913 20.55 22.91 22.06 
1912 23.59   20.18 
1911 24.02 25.21 20.50 
1910 19.77 20.96 20.50 
1909 22.93 23.96 21.70 
1908 19.86 20.26 20.80 
1907 22.35 22.07 21.10 
1906 22.90 20.55 20.70 
1905 19.59 23.59 23.30 
1904 20.94 24.02 23.20 
1903   19.77 19.40 
1902   22.93   
1901   19.86   
1900   22.35   
1899   22.90   
1898   19.59   
1897   20.94   
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Fig. A4.1.1 – The original (red) and adjusted (black) time series for the four trees in the multi-species 
analysis that had their tree ring dates revised following isotope-crossdating and/or radiocarbon dating.   
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Fig. A4.1.2 – The original (red) and adjusted (black) time series for the six Cedrela trees that had their 
tree ring dates revised following isotope-crossdating.   
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Appendix 5.1 – Altitude sensitivity analysis 

Figure A5.1.1 – Plots showing the sensitivity of correlations between tree-ring cellulose δ18O (δ18OTR) 
and trajectory variables (accumulated precipitation (∑Precip), accumulated leaf area index (∑LAI), mean 
trajectory temperature and mean travel time over land) to changes in altitude. A pressure of 900 hPa is 
equivalent to approximately 1 km above the surface, and 600 hPa equivalent to approximately 4 km 
above the surface. 
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Appendix 5.2 – Supplementary methods for Chapter 5 

Site: The δ18OTR record used in this study is a composite of nine trees from Selva 

Negra, a lowland rainforest site in northern Bolivia. The site and δ18OTR record (1901–

2001) are described in detail by Baker et al. (2015), including methods for isotope 

analysis. The most recent part of the record (2002–2010) is presented here for the first 

time. 

Data: Precipitation data are from the Tropical Rainfall Measuring Mission 

(TRMM; http://trmm.gsfc.nasa.gov/) multi-satellite 3B42 V7 3-hr product available at 

0.25° x 0.25° resolution. Data were retrieved online from 

http://mirador.gsfc.nasa.gov/cgi-

bin/mirador/presentNavigation.pl?tree=project&dataset=3B42:%203-

Hour%200.25%20x%200.25%20degree%20merged%20TRMM%20and%20other%20s

atellite%20estimates&project=TRMM&dataGroup=Gridded&version=007&CGISESSI

D=b42f21c2e1ea87f58ea24190e943e910. The 3B42 product combines data from 

TRMM and other satellites to estimate precipitation (Huffman et al., 2007). Three-

hourly data were summed to daily data for use in the analysis. Monthly mean leaf area 

index (LAI) data are from the Moderate Resolution Imaging Spectroradiometer 

(MODIS; http://modis.gsfc.nasa.gov/data/dataprod/mod15.php; Myneni et al., 2002). 

We use the Collection 5 Boston University 0.25° x 0.25° product (MODIS C5_BU), 

which uses strict data quality flags (Samanta et al., 2011) and is available for the period 

2000–present. A monthly LAI climatology was calculated using data from 2000–2011 

to overcome missing data pixels in some years and unrealistic temporal variation (Yan 

et al., 2016). Temperature and precipitation data for Figure 1 are from 65–67.5°W, 9–

11.5°S Climatic Research Unit TS3.21 at 0.5° x 0.5° resolution for the period 1960–

2010 (downloaded through Climate Explorer: https://climexp.knmi.nl). Monthly 

precipitation δ18O data are averaged from 4 stations in the Global Network of Isotopes 

in Precipitation (GNIP; IAEA/WMO, 2016) database (Porto Velho, Rurrenabaque, Rio 

Branco and Trinidad), downloaded through WISER (Water Isotope System for Data 

Analysis, http://www-naweb.iaea.org/napc/ih/IHS_resources_isohis.html). Shuttle 

Radar Topographic Mission (SRTM) data were downloaded from USGS (U.S. 

Geological Survey) EarthExplorer (http://earthexplorer.usgs.gov/) and spatially 

averaged to 0.25° x 0.25° resolution. 

http://trmm.gsfc.nasa.gov/
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&dataset=3B42:%203-Hour%200.25%20x%200.25%20degree%20merged%20TRMM%20and%20other%20satellite%20estimates&project=TRMM&dataGroup=Gridded&version=007&CGISESSID=b42f21c2e1ea87f58ea24190e943e910
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&dataset=3B42:%203-Hour%200.25%20x%200.25%20degree%20merged%20TRMM%20and%20other%20satellite%20estimates&project=TRMM&dataGroup=Gridded&version=007&CGISESSID=b42f21c2e1ea87f58ea24190e943e910
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&dataset=3B42:%203-Hour%200.25%20x%200.25%20degree%20merged%20TRMM%20and%20other%20satellite%20estimates&project=TRMM&dataGroup=Gridded&version=007&CGISESSID=b42f21c2e1ea87f58ea24190e943e910
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&dataset=3B42:%203-Hour%200.25%20x%200.25%20degree%20merged%20TRMM%20and%20other%20satellite%20estimates&project=TRMM&dataGroup=Gridded&version=007&CGISESSID=b42f21c2e1ea87f58ea24190e943e910
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&dataset=3B42:%203-Hour%200.25%20x%200.25%20degree%20merged%20TRMM%20and%20other%20satellite%20estimates&project=TRMM&dataGroup=Gridded&version=007&CGISESSID=b42f21c2e1ea87f58ea24190e943e910
https://climexp.knmi.nl/
http://www-naweb.iaea.org/napc/ih/IHS_resources_isohis.html
http://earthexplorer.usgs.gov/
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Transport model: We used the Reading Offline TRAJectory (ROTRAJ) 

Lagrangian atmospheric transport model developed by John Methven 

(http://www.met.reading.ac.uk/~swrmethn/offline/UGAMP_tech44.ps) to calculate 

kinematic back-trajectories. 3D wind fields from the ECMWF ERA-Interim reanalysis 

dataset were used to drive the model, with trajectory position output every 6 hours. The 

ERA-Interim reanalysis assimilates model output and observations, creating a best 

estimate of the state of the climate through time while constraining the trajectories to 

have a rooting in reality. 10-day back-trajectories (40 x 6-hour time-steps) were 

calculated arriving once a day at four altitudes above the surface (corresponding to air 

pressures of 900, 800, 700 and 600 hPa). Our results were consistent from 900–600 hPa 

(approximately 1–4 km above the surface, Supplementary Figure 2). As well as 

accumulating precipitation and LAI along each trajectory, at each time-step the 

temperature specific to the horizontal and vertical position of the trajectory was 

extracted from ERA-Interim, and these values were subsequently averaged to find the 

mean trajectory temperature. We used a 1° resolution land-ocean mask from the 

National Oceanic & Atmospheric Administration (NOAA) to constrain our analysis 

over land (http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). For each 

trajectory, we calculated the distance and travel time over land. Trajectories were found 

to travel at similar speeds in both the wet (October–April) and dry (May–September) 

seasons (mean (±1σ) = 6.1±1.7 and 6.3±1.7 m s-1 respectively). Mean trajectory time 

over land was found correlate well with to δ18OTR (Figure S2). 

Trajectory experiments: Trajectory experiments were conducted to determine 

whether correlations between δ18OTR and ∑Precip are driven by interannual variation in 

transport pathway or interannual variation in basin precipitation. To resolve this, we 

systematically controlled for variation in precipitation (experiment 1) and variation in 

trajectories (experiment 2) in the calculation of ∑PrecipWET (Table S1). Experiment 1 

used the observed daily trajectories with a daily precipitation climatology (1998–2011) 

to calculate ∑PrecipWET. In experiment 2 a fixed random selection of trajectories and 

the observed precipitation data were used to calculate ∑PrecipWET. All trajectories were 

used in these calculations, not only those arriving on wet days as this would have 

retained some information about the interannual variability in rainfall amount.  

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
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Vapour transport analysis: Amazon water vapour inflow and outflow were 

calculated using the ‘vertical integral of northward water vapour flux’ and ‘vertical 

integral of eastward water vapour flux’ variables from the ERA-Interim reanalysis 

dataset (http://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/). These 

integrate water vapour fluxes across all model levels, from the surface to 0.1 hPa. ERA-

Interim wind data averaged from 0–4 km above the surface (1000, 900, 800, 700, 600 

and 500 hPa pressure levels) were used to calculate wet season (October–April) 

anomalies relative to the 1979-2010/11 mean. Column-integrated moisture transport and 

mean sea level pressure anomalies were calculated using the same methodology (data 

also from ERA-Interim). All data were downloaded at monthly resolution from 1979–

2011. River discharge data measured at Óbidos were downloaded from the Agência 

Nacional de Águas (ANA) in Brazil (http://hidroweb.ana. gov.br; maximum monthly 

discharge) and averaged from October–September. 

Rayleigh calculation: The isotopic composition of atmospheric vapour (δ18OVAP) 

at Selva Negra, Bolivia was calculated for each year using the Rayleigh equation: 

δ18OVAP(𝑡) = (1000 +  δ18OVAP(0)) ∙ 𝑓(𝑡)(𝛼−1) − 1000 where δ = (
(18O

16O
)

sample

(
18O
16O

)
standard

− 1) × 1000 

and δ18OVAP(0) is the initial isotope composition of the water vapour (in units of per 

mil), f(t) is the fraction of the original vapour remaining in air travelling across the 

Amazon, (equivalent to (1 – r), where r is runoff) and α is the temperature-dependent 

fractionation factor during condensation. Parameter details and associated references are 

given in Table S2. Vapour isotope values were then converted to δ18OP values following 

the equation δ18OP = α(1000 + δ18OVAP) -1000, and finally to δ18OTR values, δ18OTR ≈ 

δ18OP + 27. The 27 ‰ constant used to convert δ18OP to δ18OTR accounts for biological 

fractionation during cellulose synthesis (Sternberg, 2009, Sternberg and DeNiro, 1983). 

This is not a species-specific value and offsets <4 ‰ have been observed, even between 

δ18OTR records from the same species at different sites (Baker et al., 2015). Therefore, 

this value of 27 may be considered somewhat arbitrary. Thus, to calculate the root-

mean-square error reported in the manuscript we first removed the offset (~4 ‰) 

between our simulated and observed δ18OTR values. In these Rayleigh calculations, we 

kept temperature and all temperature-dependent parameters constant with f the only 

source of interannual variability.  

http://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/
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Ice-core analysis: Isotope data from the Huascarán and Quelccaya ice cores in the 

Peruvian Andes were downloaded from the NOAA Ice Core Gateway 

(http://www.ncdc.noaa.gov/paleo/icecore/trop,(Thompson et al., 1995, Thompson et al., 

2013)). A composite of these was correlated with Amazon River discharge measured at 

Óbidos (which correlates precipitation over ~77% of the Amazon basin (Callède et al., 

2008)) giving a Pearson correlation coefficient of –0.71 (1950–1984). 

Error analysis: 95% confidence limits were calculated for the mean time series 

presented in Figures 2 and 3. Confidence intervals for δ18OTR were estimated from the 

standard deviation of isotope values from individual trees, assuming a normal 

distribution. ∑Precip values were not normally distributed and thus confidence limits 

for this series were obtained by bootstrap resampling. There are no error estimates 

available for ERA-Interim so confidence limits for net wet season water vapour import 

could not be calculated. Ocean source regions for the Amazon (inferred from van der 

Ent and Savenije, 2013) were used to select ocean surface δ18O (δ18OSW) data 

(LeGrande and Schmidt, 2006) to quantify spatial variability in source δ18O (Figure S7). 

To estimate the error in our Rayleigh simulation we propagated the errors in four key 

terms of the model (δ18OVAP(0), P, ET and q0) according to the following equation: 

 
σδ18OVAP(t)2  = f(2α-2) ∙ σδ18OVAP(0)2 + (δ18OVAP(0)(α-1) ∙ f(α-2))2 ∙ (((N2∆t2)/q02) ∙ (σP2 + σE2) + ((((∑P-

E)∆t)2)/q04) ∙ σq02) 

 

The values we used for each of these terms and their relevant sources are given in 

Table S3. The influence of temperature (which affects the α term) was found to be 

minimal and thus it was not included in the error analysis. We estimate the error to be 

0.43 ‰, which is much less than the interannual variation of our simulation. 

 
 
 
 
 
 
 
 

http://www.ncdc.noaa.gov/paleo/icecore/trop
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Appendix 5.3 – Determining whether basin climate or air transport pathway has a 

more important influence on δ18OTR 

 Experiments were conducted to isolate the influence of interannual variation in 

precipitation on wet season accumulated precipitation (∑PrecipWET) from the influence 

of interannual variation in circulation (see Appendix 5.2 for full details). In each 

experiment ∑PrecipWET is calculated for each year using the defined criteria and the 

resulting series correlated with δ18OTR. 

 

Table A5.3.1 – Results from trajectory sensitivity experiments. 

 

 
 
 
  

Experiment description Correlation with 
δ18OTR 

Control (regular wet season calculation) –0.85 (p<0.001) 
Experiment 1: interannual variation in climate removed (observed 
trajectories, daily precipitation climatology) –0.83 (p<0.001) 

Experiment 2: interannual variation in transport pathway removed (fixed 
random trajectories, correct precipitation) –0.75 (p<0.01) 
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Appendix 5.4 – Relationships between tree-ring oxygen isotope composition 

(δ18OTR) and leaf area index accumulated along back trajectories 

 

 
Figure A5.4.1  – Three-month moving correlation coefficients between δ18OTR and mean accumulated 
MODIS leaf area index (∑LAI, trajectories from 2000–2010/11). Blue bars show the values for the 
normal correlation, and red bars show the partial correlation coefficients (controlling for the effect of 
∑Precip on δ18OTR). Pink and blue boxes show the dry and wet seasons respectively. The bars at the right 
side of the plot show the mean correlation coefficient for the dry season (May–Sep) and wet season (Oct–
Apr). Broken horizontal lines mark the significance threshold (p<0.05).  
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Appendix 5.5 – Wind and moisture transport anomalies over the Amazon in years 

with high and low tree-ring oxygen isotope (δ18OTR) values 

 
Figure A5.5.1 – (a–c) Wind anomalies (vectors) and sea level pressure anomalies (shaded contours) for 
the three years with the highest δ18OTR values from 1979–2010/11. (d–f) As in a–c but for the three years 
with the lowest δ18OTR values from 1979–2010/11. Data are from the ERA-Interim reanalysis dataset, 
1979-2010/11. 
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Figure A5.5.2 – (a–c) Moisture transport anomalies (vectors) and sea level pressure anomalies (shaded 
contours) for the three years with the highest δ18OTR values from 1979–2010/11. (d–f) As in a–c but for 
the three years with the lowest δ18OTR values from 1979–2010/11. Data are from the ERA-Interim 
reanalysis dataset, 1979-2010/11. 
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Appendix 5.6 – Comparing interannual variation in vapour inflow to and outflow 

from the Amazon basin with variation in Amazon River discharge 

 
 
Figure A5.6.1 – Interannual variation in mean wet season water vapour inflow (dark blue line) and 
outflow (red line) along the transects shown in Figure 3, the difference between inflow and outflow 
(black line) and Amazon river discharge measured at Óbidos (light blue line). 
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Appendix 5.7 – Interannual variation in air transport pathways to sample site in 

northern Bolivia 

 
 
Figure A5.7.1 – Plots showing back trajectories arriving on days with precipitation >0 mm at Selva 
Negra, Bolivia (10°5'S, 66°18'W; 160 m.a.s.l.) during the wet season (Oct–Apr) for the years 1998-
2010/11.  
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Appendix 5.8 – Spatial variation in isotope composition at moisture origin  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A5.8.1 – (a) Map of spatial variation in ocean surface δ18O (δ18OSW; data from LeGrande and 
Schmidt (2006)). Black box shows the approximate source regions for the Amazon basin (inferred from 
van der Ent and Savenije (2013)). (b) Histogram of δ18OSW values extracted from the Amazon source 
region indicated in panel a.  
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Appendix 5.9 – Rayleigh-based simulation of interannual variation in tree-ring 

oxygen isotope composition (δ18OTR) 

 

 
 
 
Figure A5.9.1 – (a) Rayleigh-predicted evolution of atmospheric water vapour δ18O along a sample back-
trajectory. (b) Interannual variation in observed (black line) and Rayleigh-simulated (blue line) δ18OTR. 
The Pearson correlation coefficient is 0.91 (p<0.001). Root-mean-square error ≈1.6 ‰ (calculated with 
offset between simulated and observed values removed). Shading indicates the estimated error for the 
observed and simulated values (see Appendix 5.1). 
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Table A5.9.1 – Parameters used in Rayleigh simulation and their associated references. 

 
 
 
  

Parameter Description Value (unit) Source 
(if applicable) 

δ18OVAP(0) Initial isotopic 
composition –11.92 (‰) Matsui et al. (1983), Belem 

mean wet season value 

f 

Fraction of water vapour 
remaining in atmosphere 
(equivalent to (1 - r) 
where r is runoff) 

1 − (
∑𝑃𝑟𝑒𝑐𝑖𝑝 − ∑𝐸𝑇

𝑞0
) n/a 

∑ET Cumulative 
evapotranspiration ∑ET = 0.44 x ∑LAI – 0.25 (kg m-2) Equation from Bruijnzeel et al. 

(2011) 

q0 Initial specific humidity 61.57 (kg m-2) 

Maximum wet season total 
column water vapour over 
Atlantic Ocean in Amazon 
coastal region. Data from ERA-
Interim. 

α 
Equilibrium 
fractionation factor from 
vapour to liquid 

ln α = 1.137 T-2 – 0.4156 T-1 – 
0.0020667 Majoube (1971) 

T Temperature 288.3 (K) Mean wet season trajectory 
temperature 
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Table A5.9.2 – Parameters used in error propagation for Rayleigh simulation. 

 
  

Parameter Description Value (unit) Source 
(if applicable) 

f Fraction of water vapour remaining in atmosphere 
(equivalent to (1 - r) where r is runoff) 0.48 Mean value from Rayleigh model 

α Equilibrium fractionation factor 1.0102 Value at mean wet season trajectory 
temperature 

δ18OVAP(0) Initial isotopic composition –11.92 (‰) Matsui et al. (1983), Belem mean wet 
season value 

σδ18OVAP(0) Error in δ18OVAP(0) 0.17 (‰) 
Assumed from variation in ocean 
surface δ18O (LeGrande and Schmidt, 
2006). 

N Average number of trajectory time-steps over land 24.89 Calculated from trajectories 

∆t Length of 1 trajectory time-step 0.25 (days) 
Technical Report 
(http://www.met.reading.ac.uk/~swrmet
hn/offline/UGAMP_tech44.ps) 

q0 Initial specific humidity 61.57 (kg m-2) 
Wet season total column water vapour 
over Atlantic Ocean in Amazon coastal 
region. Data from ERA-Interim. 

σq0 Error in initial specific humidity 1.86 (kg m-2) σ of ERA-Interim data 

P Typical TRMM precipitation value under trajectory 
over land 9.88 (kg m-2) Average across all wet season 

trajectories, all years. 

σP Error in TRMM precipitation estimated as random 
error plus systematic error, combined in quadrature. 4.96 (kg m-2) (Huffman, 1997, Smith et al., 2006, 

Spracklen et al., 2012) 

LAI Typical MODIS LAI value under trajectory over 
land 5.36 (m2 m-2) Average across all wet season 

trajectories, all years. 

ET Typical evapotranspiration value, estimated from 
LAI 2.11 (kg m-2) (Bruijnzeel et al., 2011) 

σET Error in ET estimated as error in LAI measurement 
and error in conversion, combined in quadrature 0.66 (kg m-2) (Bruijnzeel et al., 2011, Yan et al., 

2016) 
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Appendix 6.1 – Number of climate stations in CRU precipitation dataset over time 

 

 
Figure A6.1.1 – Number of stations in the CRU precipitation dataset over the Amazon region indicated in 
the inset map. 
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Appendix 6.2 – Statistical analysis of tree-ring oxygen isotope (δ18OTR) chronology 

quality 

 
Figure A6.2.1 – (a) Mean interannual variation in δ18OTR from Ecuador; (b) sample depth; (c) moving 
window inter-tree correlation calculated using a 30-year window and (d) moving window EPS calculated 
using a 30-year window. 
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Figure A6.2.2 – (a) Mean interannual variation in δ18OTR from northern Bolivia; (b) sample depth; (c) 
running inter-tree correlation calculated using a 30-year window and (d) running EPS calculated using a 
30-year window. 
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Appendix 6.3 – Correlation between tree-ring oxygen isotope (δ18OTR) records 

from Ecuador and Bolivia 
 

Figure A6.3.1 – Mean δ18OTR chronologies from Ecuador (black line) and Bolivia (dark blue line). The 
interannual Pearson correlation coefficient is 0.57 (p<0.001, 1860–2012). A low-pass Butterworth filter 
was applied to each series to visualize decadal variation.  
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Appendix 6.4 – Air transport pathways to sample sites in Ecuador and Bolivia  

To identify the main moisture transport pathways to each of our sites (Fig. S5), 

10-day kinematic back trajectories were calculated using the Reading Offline Trajectory 

model (ROTRAJ;  Methven, 1997). ERA-Interim reanalysis wind fields were 

downloaded from the European Centre for Medium-Range Weather Forecasts 

(ECMWF, http://www.ecmwf.int/en/research/climate-reanalysis/era-interim) to drive 

the model. We calculated trajectories for the period 1998–2013, arriving daily (12.00 

UT) at 800 hPa at each site (equivalent to 2 km above the surface in Bolivia, and at the 

surface in Ecuador). Precipitation data from the Tropical Rainfall Measuring Mission 

(TRMM) 3B42 v7 product (Huffman et al., 2007) were averaged to daily resolution and 

used to select only those trajectories that arrived on days with rain at the sample site, as 

these are the air mass histories expected to affect the δ18OTR signal.  

 
Figure A6.4.1 – Plots showing 10-day back-trajectories arriving on days with precipitation >0 mm at 
Cuyuja, Ecuador (a) and Selva Negra, Bolivia (b) from December to March in 2000/2001. 
 
  

  B   A 

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
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Appendix 6.5 – Effect of Amazon precipitation and runoff on the tree-ring oxygen 

isotope (δ18OTR) record from Bolivia 

 
Figure A6.5.1 – Interannual variation in the δ18OTR record from Bolivia (black line, scale reversed), 
precipitation from CRU averaged over the region indicated in Fig. 2 (Dec–Mar, light blue line) and 
Amazon river discharge measured at Óbidos, which integrates precipitation over approximately 80% of 
the Amazon basin (Jun–Aug, dark blue line, line is thinner where data has been reconstructed from other 
river records). A low-pass Butterworth filter was applied to each series to visualize decadal variation. 
Values indicate the interannual Pearson correlation coefficients between δ18OTR and the other time series 
for the full period shown (p<0.001). Note that the river data is offset because peak river flow lags peak 
precipitation by 4–6 months. 
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Appendix 6.6 – Testing for local and regional temperature effects on tree-ring 

oxygen isotopes (δ18OTR) from Ecuador  

 
Table A6.6.1 – Pearson correlation coefficients and partial correlation coefficients between the δ18OTR 
record from Ecuador and local and north Amazon temperature data from CRU (Dec–Mar). 

 Correlation with δ18OTR Correlation with δ18OTR controlling for North 
Amazon precipitation 

Local temperature  
(1.5°S–0°N, 77.5–79°W) 0.31 (p=0.058) –0.079 (p=0.64) 

North Amazon temperature (5°S–
12.5°N, 50–80°W) 0.52 (p<0.001) 0.12 (p=0.48) 

 
 
 
Appendix 6.7 – Split-period regression statistics 

 
Table A6.7.1 – Summary statistics for the split-period regression of the Ecuador and Bolivia δ18OTR 
chronologies against June–August Amazon River discharge measured at Óbidos. 

Ecuador r2 for OLS 
model n Mean squared 

error (MSE) 
Reduction of 

error (RE) 
Coefficient of 

efficiency (CE) 

Model 1 
Calibration 1958–2012 0.36 44 303.99 0.36 - 

Verification 1903–1957 - - 281.01 0.28 0.23 

Model 2 
Calibration 1903–1957 0.58 44 152.65 0.58 - 

Verification 1958–2012 - - 429.06 0.14 0.09 

 

Bolivia r2 for OLS 
model n Mean squared 

error (MSE) 
Reduction of 

error (RE) 
Coefficient of 

efficiency (CE) 

Model 1 
Calibration 1958–2012 0.66 55 160.46 0.66 - 

Verification 1903–1957 - - 256.70 0.35 0.30 
Model 2 
Calibration 1903–1957 0.52 55 177.11 0.52 - 

Verification 1958–2012   236.99 0.52 0.50 
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Appendix 6.8 – Correlating the tree-ring oxygen isotope (δ18OTR) record from 

Bolivia with sea surface temperature (SST) data 

Figure A6.8.1 – (a) Map showing the relationship between the δ18OTR record from Ecuador and gridded 
SST data from NOAA for four months during the growing season (Dec-Mar, 1880–2012). The location of 
the δ18OTR sample site is indicated by a black triangle. The colour bar indicates the strength of the 
correlation coefficients and blue and red contours show where correlations are significant (p<0.05). 
Broken black lines indicate regions from which SST data were averaged in the time series shown in 
panels b and c. (b) Interannual variation in SSTs from the tropical North Atlantic (red line) and the 
Ecuador δ18OTR record (black line). (c) As in b, but for SSTs from the Niño 3.4 region of the Pacific. A 
low-pass Butterworth filter was applied to each series to visualize decadal variation. Values indicate the 
interannual Pearson correlation coefficients between δ18OTR and the other time series for the full period 
shown (p<0.001). 
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Appendix 6.9 – Comparing trajectory-inferred moisture origins with the ocean 

regions that influence tree-ring oxygen isotopes (δ18OTR) in Ecuador 

The start points of 10-day back trajectories from our sample site in Ecuador (see 

Appendix 6.4) were plotted onto a map of correlations between Ecuador δ18OTR and sea 

surface temperatures (SSTs). This provides some indication of the origin of water 

vapour relative to the regions where SSTs have an important influence on δ18OTR.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure A6.9.1 – Map showing the relationship between the δ18OTR record from Ecuador and gridded sea 
surface temperature (SST) data from NOAA (close-up of Fig. S7), for four months during the growing 
season (Dec-Mar, 1880–2012). Grey crosses show the end-points of daily 10-day back trajectories from 
the δ18OTR sample site (black triangle) for Dec–Mar, 1998–2013 (Text S1). The colour bar indicates the 
strength of the correlation coefficients and blue and red contours show where correlations are significant 
(p<0.05). 
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Appendix 6.10 – Effect of sea surface temperatures (SSTs) on Amazon 

precipitation  

 
Figure A6.10.1 – Maps showing the correlation between tropical North Atlantic (a) and Pacific (b) SSTs 
from NOAA (averaged over regions indicated in Figs. 5a & S7a) and gridded precipitation from CRU for 
four months during the growing season (Dec-Mar, 1953–1989). The Ecuador sample site is indicated by a 
black triangle.  
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Appendix 6.11 – Testing for ontogenetic effects on tree-ring oxygen isotopes 

(δ18OTR) from Bolivia and Ecuador 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A6.11.1 – Relationship between the mean δ18OTR value calculated from small trees (<20 cm dbh) 
and large trees (>60 cm dbh) from Selva Negra, Bolivia, for each year from 2001 to 2010.  
 

Figure A6.11.2 – δ18OTR series from Cuyuja, Ecuador with young rings (<20 cm dbh) and older rings 
(>20cm dbh) plotted in yellow and grey respectively. 
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Appendix 6.12 – The Péclet-modified Craig-Gordon (PMCG) model. 

The PMCG model was used to quantify: i) the effect of rising atmospheric CO2 on 

G18OTR, and ii) the effect of increasing local temperature (T) and decreasing relative 

humidity (RH) on G18OTR. For (i) the 120-ppm rise in atmospheric CO2 since the start of 

the Industrial Revolution was assumed to have reduced stomatal conductance (gs) by 

40% (e.g. Lammertsma et al., 2011), while all other parameters were kept constant. For 

(ii) T was reduced by 0.68 °C (Vuille et al., 2008) and RH increased by 4% (see 

calculations in text), while all other parameters were kept constant.  

 
Table A6.12.1 (opposite) – Equations and parameter values in the PMCG model. Calculated values are 
given in italics. References for literature-derived values and equations are given. 
  



 

236 

 

Factor Present-day 
(400 ppm CO2) 

Lower CO2 (280 
ppm) 

Lower T and 
higher RH Unit References 

Stomatal conductance (gs) 0.16 0.27 0.16 mol m-2 s-1 Motzer et al. (2005) 

Stem water (δ18OS; assumed to have the same composition at precipitation) -6.4 -6.4 -6.4 ‰ Garcia et al. (1998) 

Temperature (T) 10.5 10.5 9.82 °C 
Papallacta station data 

Relative humidity (RH) 0.9 0.9 0.94 % 

Atmospheric vapour δ18O (δ18OV) -11.3 -11.3 -11.3 ‰ Clark et al. (2014) 

Stomatal resistance rs =  1
g𝑠

  6.25 3.75 6.25 m2 s mol-1  

Boundary layer resistance (rb) 0.2 0.2 0.2 m2 s mol-1 Barbour and Farquhar (2000) 

Equilibrium fractionation: ε∗ = 2.644 – 3.206 (103

T
) + 1.534 (106

T2 ) 10.41 10.41 10.47 ‰ Bottinga and Craig (1968) 
Barbour (2007) 

Kinetic fractionation: εk =  (32rs+22rb)
(rs+rb)

 31.69 31.49 31.69 ‰ Farquhar et al. (2007) 

Ambient vapour pressure: ea = (0.61365 ×  e
17.502 × T
T + 240.97) ×  RH 1.15 1.15 1.14 kPa Cernusak et al. (2016) 

We assume that leaf temperature is the same as ambient temperature Intercellular vapour pressure: ei = (0.61365 ×  e
17.502 × T
T + 240.97) 1.27 1.27 1.22 kPa 

Ratio of ambient and intercellular vapour pressures: (ea

ei
) 0.9 0.9 0.94   

Leaf water δ18O at the site of evaporative enrichment: 

δ18OE =  δ18OS +  ε∗ +  εk + (δ18OV − εk − δ18OS) (
ea

ei
) 2.77 2.75 1.37 ‰ Sternberg et al (2009) 

Evapotranspiration rate:  

ET =  
– 2 × 10−5(gs × 1000)2 + 0.0125(gs × 1000) – 0.2351

1000  
0.0013 0.0017 0.0013 mol m-2  s-1 Relationship with gs determined using data from Motzer et al. (2005) 

fitted with a polynomial function 

Effective path length (L) 0.08 0.08 0.08 m Barbour and Farquhar (2000) 

Molar concentration of water (C) 55600 55600 55600 mol m-3 
Sternberg (2009) 

Diffusivity of H2
18O in water (D) 2.66×10-9 2.66×10-9 2.66×10-9 m2  s-1 

Péclet number: ρ =  ET × L
C × D

 0.68 0.91 0.68  Barbour and Farquhar (2000) 

Fraction of enriched water: α = (1− e−ρ

ρ
) 0.73 0.66 0.73   

Bulk leaf water δ18O: 
δ18OL =  ((1 −  α)  ×  δ18OS) + (α ×  δ18OE) 0.26 -0.39 -0.76 ‰ 

Sternberg (2009) 
δ18O of carbohydrates synthesised in the leaf: 

δ18OCARB =  δ18OL + 27 27.26 26.61 26.24 ‰ 

Proportion of carbohydrate δ18O that exchanges with stem water (ϕ) 0.4 0.4 0.4  

Tree-ring cellulose δ18O: 
δ18OTR =  ϕ ×  (δ18OS + 27) + (1 − ϕ)(δ18OCARB) 24.73 24.33 23.98 ‰ 

Difference in δ18OTR from present-day – 0.39 0.61 ‰  
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Appendix 7.1 – Preliminary δ18OTR data from Venezuela, Brazil and Suriname 

One of the aims of this thesis was to develop a network of δ18OTR records from 

sites across tropical South America. In sites where stable isotope dendrochronology had 

not previously been conducted pilot δ18OTR series were initially developed for three 

trees, to test the potential for chronology development. This was to avoid investing too 

much time or too many resources trying to construct robust chronologies in unsuitable 

sites. If these pilot δ18OTR series did not show a strong common signal then no further 

isotope measurements would be made in that location.  

Results from radiocarbon (14C) analysis showed that trees in Suriname form two 

rings each year. Isotope measurements were conducted on each ring individually, so to 

obtain annual δ18OTR values it was necessary to use weighted averaging. Each δ18OTR 

value was weighted by the width of that ring as a fraction of the full growth in that year. 
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