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Abstract

The hydrogen Balmer series is a basic radiative loss channel from the flaring solar chromosphere. We report here
on the analysis of an extremely rare set of simultaneous observations of a solar flare in the Ho and Hg lines, at high
spatial and temporal resolutions, that were acquired at the Dunn Solar Telescope. Images of the C3.3 flare
(SOL2014-04-22T15:22) made at various wavelengths along the Ho line profile by the Interferometric
Bidimensional Spectrometer (IBIS) and in the HG with the Rapid Oscillations in the Solar Atmosphere (ROSA)
broadband imager are analyzed to obtain the intensity evolution. The Ha and HS intensity excesses in three
identified flare footpoints are well-correlated in time. We examine the ratio of Ho to HG flare excess, which was
proposed by previous authors as a possible diagnostic of the level of electron-beam energy input. In the stronger
footpoints, the typical value of the the Ha/H 3 intensity ratio observed is ~0.4-0.5, in broad agreement with
values obtained from a RADYN non-LTE simulation driven by an electron beam with parameters constrained (as
far as possible) by observation. The weaker footpoint has a larger Ha/H § ratio, again consistent with a RADYN
simulation, but with a smaller energy flux. The Ha line profiles observed have a less prominent central reversal
than is predicted by the RADYN results, but can be brought into agreement if the Ho-emitting material has a filling
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factor of around 0.2-0.3.
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1. Introduction

Solar flares are explosive phenomena occurring in the solar
atmosphere that indicate a rapid conversion of magnetic energy
into other forms of energy (kinetic, radiative, particle
acceleration, etc.). This process, which is believed to result
from magnetic reconnection within a region with highly
unstable magnetic field configurations, can produce electro-
magnetic radiation emission for almost the entire electro-
magnetic spectrum (depending on the energy involved, which
can span from 10?® to 10** erg), and is associated with an
increase in brightness of the corona, chromosphere, and
occasionally the photosphere (see, e.g., Fletcher et al. 2011
and references therein, for a review).

Several mechanisms are involved in such a broad range of
electromagnetic radiation emission at various atmospheric
heights. Flares are often contextualized in the well-known
CSHKP flare geometry (named for Carmichael 1964;
Sturrock 1966; Hirayama 1974 and Kopp & Pneuman 1976),
which suggests that when an instability sets in, magnetic
reconnection takes place (usually at the coronal level),
resulting in electrons and protons being accelerated. But
models dealing with coronal processes have little to say about
the details of the generation of flare chromospheric emission,
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particularly in the lower atmosphere. Initial models of
atmospheric emission lines were based on empirical models
of flaring atmospheres, or, assuming an electron-beam
plasma heating mechanism, radiative transfer simulations
(Canfield et al. 1984). However, more recently we have
started to turn to radiation-hydrodynamic (RHD) flare
simulations (Abbett & Hawley 1999; Allred et al. 2005 and
Kasparova et al. 2009), which model the effect of accelerated
particles traveling through the lower atmospheric layers,
impulsively heating the local plasma, and causing an
expansion of the chromosphere in a process termed chromo-
spheric evaporation.

To test and constrain the electron-beam energy transport
model, we need to identify sensitive diagnostic radiation
signatures, observations of which can be compared to the
output of targeted numerical simulations. In this regard,
the chromosphere presents an ideal test-bed for analyzing the
release and redistribution of energy from accelerated particles
in this region. In particular, observation and modeling of
spectral lines emergent from different layers of the chromo-
sphere can be used to understand how the chromosphere
responds to energy input at different heights, and thereby to
constrain the beam properties. But such investigations also
serve an additional, exploratory purpose by helping us to
identify the best ways—e.g., choices of wavelength, and
temporal and spectral resolutions—to get the maximum
diagnostic power from flare optical observations, which can
be very challenging to plan and execute.
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In this paper we present flare observations at high temporal
and spatial resolutions in the Ha and HS lines, with
accompanying RHD simulations. Though they are among
the strongest spectral lines emitted by flares, simultaneous
observations in these two lines are very rare. This flare is
therefore of interest, as we can probe the behavior of Ha and
H{ to obtain insight into the flare chromospheric excitation at
their different formation heights. The Ha, HB, and H+y lines
were investigated theoretically by Kasparova et al. (2009),
who used 1D radiation hydrodynamics and test particle
modeling to simulate the propagation, scattering, and
collisional energy loss of an electron beam (including direct
collisional excitation of the hydrogen lines by beam
particles), and calculate the emergent Balmer-line radiation.
They demonstrated that Balmer-line intensities are expected
to be correlated on sub-second timescales, and that the
intensity variations in line centers and line wings are
dependent on the atmospheric heating, and the parameters
of the electron beams.

It must be stressed that simultaneous Ha and HS observa-
tions for a flare are very rare. Therefore, the results obtained
from the present investigation could provide new and important
insights into the comprehension of flare emission mechanisms
in relevant wavelengths and atmospheric heights.

In this paper, we study the flare SOL2014-04-22, which
occurred close to the western limb of the Sun, and compare
observational data acquired from ground-based and satellite
instruments with the results obtained from the Radiative
hydrodynamic (RADYN) code (Carlsson & Stein 1997, and
Allred et al. 2005, 2015) in order to investigate the behavior of
Ha and HQB, in response to the energy injected into the
chromosphere during flaring. From observations and RADYN
models of energy injection by an electron beam, we obtain and
compare the absolute Ha and H intensities, and their ratios, at
high temporal resolution. We find that variations of this ratio
between footpoints might be due to variations of the injected
energy flux between models, suggesting that a well-calibrated
Ha/HS ratio, and sufficiently high temporal and spatial
resolutions, could provide information on flare energy injec-
tion. We also examine the observed and simulated Hoa line
profile; the comparison allows us to constrain the filling factor
of Ha-emitting material.

We believe that this study is useful for planned future
observations with the next generation of large aperture solar
telescopes, such as the Daniel K. Inouye Solar Telescope
(formerly the Advanced Technology Solar Telescope, Keil
et al. 2010) and the European Solar Telescope (Collados
et al. 2010).

This paper is organized as follows. In Section 2 we describe
the observational data and in Section 3 the data analysis is
reported. In Section 4 the results obtained from the RADYN
models are reported and discussed. In Section 5 we draw our
conclusions.

2. Observations

An observing campaign was carried out on 2014 April 22 at
Dunn Solar Telescope (DST) at the US National Solar Observatory
in New Mexico, using two different instruments: the Interfero-
metric Bidimensional Spectrometer (IBIS, Cavallini 2006) and
the Rapid Oscillations in the Solar Atmosphere (ROSA, Jess
et al. 2010). The target of the observations was AR 12035,
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67.7W 12.4S, which is characterized by a 3y configuration (see
Figure 1).

The aim of the campaign was to determine: (a) the source
location, sizes, and eventual offset between flare sources at
different wavelengths, including any offset between the Ha
emission in the core and in the wings, in order to investigate
whether it is possible to deduce any spatial dependence of
energy deposition; (b) the time evolution of flare energy input
by examining intensity variations on the shortest possible
timescales; and (c) any evidence of continuum enhancement,
although we do have this aim in this study.

2.1. Ground-based Observations

The IBIS instrument acquired data in two consecutive time
intervals: the first data set was acquired during the pre-flare
phase, while the second one covered all the C3.3 flare (flare B)
evolution. More precisely, the first data set includes 1000 scans
of the Hov line centered at 6563 A from 14:22 UT to 15:05 UT;
each spectral profile was sampled with a total of 17 wavelength
points (average step = 0.2 A) in about 2.61 s. The second data
set consists of 900 scans of the Ha line from 15:08 UT to 15:44
UT, with the same spectral sampling used to acquire the first
data set. In both cases, the Ha line was acquired in spectral
mode without polarimetric measurements, with a pixel size of
about 0709 pixel .

For each narrowband filtergram, a simultaneous broadband
image (6610 + 50 A) was acquired, with the same exposure
time and the same field of view (FOV), characterized by a
circular shape, with a diameter of 90”. To reduce the seeing
degradation and obtain a homogeneous resolution across the
whole FOV of 1000 x 1000 pixels, the broadband images
have been restored using the Multi-Object Multi-Frame Blind
Deconvolution (MOMFBD, Lofdahl 2002) technique. We
computed the global and local shifts necessary to align and
destretch the broadband images with respect to the MOMFBD
restored broadband images. The same shifts have been applied
to the narrowband images.

Figure 1 (right panel) highlights the IBIS field of view with a
red circle on the SDO/HMI continuum, while Figure 2 shows
an example of the IBIS data in the continuum and in the core of
the Hav line.

Co-spatial and co-temporal observations of the same active
region were undertaken between 15:10:33 and 15:46:00 UT with
the Rapid Oscillations in the Solar Atmosphere (ROSA; Jess
et al. (2010)) imaging system installed at the DST. The data set
includes simultaneous imaging in the Ca 11 K core at 3933.7 A
(bandpass IOA) the G band at 4305. 5A (bandpass 9. 2A)
continuum 4170 A (bandpass 52.0 A) and the H core at 4861 A
(bandpass 0.1 A), which was obtained through the universal
Birefringent Filter (UBF). The G band and continuum observa-
tions were obtained with a spatial sampling of 07069 pixel ',
whereas the Ca 11 K and HQ observations have a spatial samphng
of 07138 pixel . The total field of view of ROSA images is
69" x 69", centered at S12.4 W67.3 in heliographic coordinates.
High-order adaptive optics (Rimmele 2004) were applied
throughout the observations to compensate for local seeing
fluctuations.

The images were reconstructed by implementing the speckle
algorithms of Woger et al. (2008), followed by de-stretching.
These algorithms have removed the effects of atmospheric
distortion from the data. The effective cadence after recon-
struction is reduced to about 9.238 s for HG, 2.3 s for Ca 11 K,
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Figure 1. Left: HMI/SDO magnetogram showing AR 12035 on 2014 April 22. White (black) regions indicate sites of positive (negative) longitudinal magnetic field.
Right: HMI/SDO continuum image showing the photospheric configuration of AR 12035 on the same day. The red circle, with a diameter of 90”, displays the IBIS
field of view; the blue box, with a size of ~59”, indicates the ROSA field of view. In this and in the following images, if not otherwise specified, north is on top and

west is to the right.

15:24: 5.57 UT

(a)
Figure 2. IBIS FOV after the flare peak: (a) continuum and (b) Hev line core.

and 2.112 s for the G band and continuum. Moreover, the FOV
is reduced as a result of the Speckle reconstruction algorithm,
as an apodisation windowing function is applied to the images
to reduce artifacts introduced by Fourier transforms. The
FOV of the reconstructed images is subsequently reduced to
58”65 x 58"65.

2.2. Space-based Observations

Context images acquired with the Helioseismic and Magnetic
Imager (HMI, Scherrer et al. 2012) and the Atmospheric Imaging
Assembly (AIA, Lemen et al. 2012) instruments on board the SDO
(Pesnell et al. 2012) were used to provide general information on
the magnetic field configuration and the morphology of the AR.
Data from the quadrant diodes at 1-7 A of Euv SpectroPhotometer
(ESP), part of the Extreme ultraviolet Variability Experiment
(EVE, Woods et al. 2012) on board SDO, were used to estimate
the GOES classification of the flare.

In order to have information on the high energy flare
emission we also used data acquired by the Reuven Ramaty
High Energy Solar Spectrometer Imager (RHESSI; Lin
et al. (2002)).

As described in the following section, a solar flare occurred
in NOAA 12035, starting at 15:17 UT, peaking at 15:21 UT,
and ending at 15:30 UT. GOES data were not available for this
event; however, EVE/ESP data represent a good proxy for
GOES data and allow us to classify it as a C3.3 flare (Hock
et al. 2013). It is important to highlight that a few minutes
before, another flare occurred at the solar limb very close to
NOAA 12035. To differentiate these events, we indicate with
the letter B the C3.3 flare under analysis, while the letter A
indicates the flare that occurred previously.

Full-disk continuum images and longitudinal magnetograms
taken by HMI in the Fe I line at 6173 A with a resolution of 1”
were used to complement the high-resolution data set of the
ground-based instruments.

The SDO/HMI images were aligned, taking into account the
solar differential rotation,using the IDL SolarSoft package
(Freeland & Handy 1998).

Data taken by AIA (Lemen et al. 2012) were used to study in
detail the temporal evolution of the flare in the coronal and
upper chromospheric layers. The AIA full Sun images were
processed with the usual SSW aia_prep routines (Boerner
et al. 2012, 2014). EUV and UV (1600 and 1700 A) images
have cadences of 12 and 24 s, respectively.

We reconstructed RHESSI CLEAN images using front
detectors 3 to 8, for the energy ranges 6-9 and 12-25keV
(Hurford et al. 2002). A sequence of 6-9 keV images with an
integration time of 32 s, stepping every 8 s, was constructed to
obtain the light curves of flares A and B, as described in
Section 3.
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Figure 3. Upper panel: emission recorded by GOES 1-8 A and SDO/EVE
ESP quad detector 1-7 A on 2014 April 22. It should be noted that between
14:10 UT and 17:00 UT, GOES data are missing. Bottom panel: enlargement
of the above panel, showing the details of the emission recorded by SDO/EVE
ESP. In both panels, the light blue and pink bands indicate the times of IBIS
acquisition. The red and violet curves show the AIA 131 A emission of flares
A and B; see Figure 4.

3. Data Analysis
3.1. The Flare Evolution

The first IBIS data set (from 14:22 to 15:05 UT) shows many
small brightenings in the wings of the Ha line, probably
Ellerman bombs occurring in a region of magnetic flux
emergence (Ellerman 1917; Kurokawa et al. 1982; Nindos &
Zirin 1998). During the acquisition of the second data set (from
15:08 UT to 15:44 UT) in the southwest quadrant of the Sun,
two flaring regions were observed: a limb flare (flare A) in AR
12036 (start time 15:11:34 UT, end time 15:30:22 UT, peak
time 15:16 UT), and a flare event (flare B) in AR 12035 (start
time 15:17 UT, end time 15:30 UT, peak time 15:21 UT).

These two flares therefore overlap in time, making it difficult
to use full Sun data, like, for instance, the RHESSI full Sun
spectral analysis or the SDO/EVE. However, using AIA and
RHESSI’s imaging capabilities, it is possible to infer the
contributions from each flare and retrieve some information.
GOES data are not available, therefore, we used the EVE/ESP
quadrant diode 1-7 A as a proxy (see Figure 3).

We used the AIA 131 A channel as a reference to distinguish
the two flares, because this AIA channel has a temperature
response close to the plasma temperatures that can be observed
by RHESSI at low energies. We were able to image each flare
independently with RHESSI, as shown in Figure 4. To evaluate
how each flare evolves, we defined a box around the location of
each flare (dotted boxes in Figure 4) and obtamed the average
emission in the AIA 131 A channel (in DN s™ plxel )

In Figure 5 we show, from top to bottom: RHESSI counts
(full Sun); AIA 131 A emission of flares A and B along with
RHESSI emission at 6-9keV derived from the images; and
AIA emission from each EUV and UV channel for flare B. The

Y (arcsecs)
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Figure 4. AIA 131 A image (reverse color) overlapped with the RHESSI
contours in the 6-9 keV range, showing the location of flares A and B (see

the text).
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Figure 5. From top to bottom: RHESSI counts (full Sun); AIA 131 A emission
of flares A and B along with RHESSI emission derived from images; and AIA
emission from each EUV and UV channel for flare B.

peak in the AIA 131 A channel occurs at 15:16:20 UT and
15:21:44 UT for flares A and B, respectively. From the AIA
131 A emission in the second panel of Figure 5 it is clear that
the gradual phase of flare A extends during the impulsive phase
of flare B. Therefore, we cannot use RHESSI full Sun
spectroscopic analysis to study flare B.

The analysis of the IBIS and ROSA data set allows us to
follow the flare evolution in the chromosphere, which is mainly
characterized by a loop-like structure with a cusp at its top (see,
e.g., the right panel of Figure 2) oriented toward the southwest.
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Figure 6. AIA 1600 A image acquired at 15:22:40 UT overlapped with the
HMI line-of-sight magnetic field (red: negative field, —2000, —1000, —500,
—200, —100 G, blue: positive field, 100, 200, 500, 1000, 2000 G).

The distance between the two footpoints, as determined from
the IBIS Ha image acquired at 15:24 UT (see Figure 2 right
panel), is 11,500 km, and assuming a semi-circular shape for
the loop-like structure, this has a length of ~18,000 km.

Comparing with continuum images (see Figure 2, left panel),
it is possible to establish that the flare developed between the
large (western) sunspot and a small pore located at the center of
the FOV. The large arch filament system (AFS) connecting the
other two main sunspots does not seem to show any variation
during the flare. i

In Figure 6 we show an AIA 1600 A image acquired at the
peak of the flare, with the overlapped contours (levels indicated
in the figure caption) denoting the longitudinal magnetic field
deduced from the HMI instrument. Note that the cusp region,
also observed at 6563 A (compare with Figure 2, right panel),
is quite evident, while the bright footpoints seem to be both
located in regions of positive magnetic field, which is due to
projection effects due to the proximity of the AR to the
western limb. i

The comparison between the AIA 94 A image acquired ~1
minute before the flare peak (see Figure 7) and the
RHESSI12-25 keV contours indicate that there are two main
sources of hard X-ray emission: the location of one corresponds
to the flaring loop-like structure, and the other is superimposed
on another bright structure to the east of the flaring loop. It is
worth noting that this feature was not in the IBIS and
ROSA FOVs.

3.2. Ho—Hp Comparison

We further investigate the flare event through the compar-
ison between Har and H3 images acquired by IBIS and ROSA,
respectively. In fact, although this event is not very energetic
and it is very close to the limb, the combined data set is unique
because it has both Ha: and Hf imaging.

Due to the fact that the images obtained by the two
instruments have different sizes and spatial resolution, we first
need to align the Ho and HG images. To this aim, we use the
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Figure 7. AIA 94 A image (reverse color) overlapped with the RHESSI
emission contours in the 12-25 keV range. The purple dashed circle indicates
the region of interest (ROI).

USAF target images and dot grid images (see, e.g.,
Kleint 2012), because the sample is the same during the
observing campaign, and furthermore, they were simulta-
neously acquired in the two channels. Through them it was
possible to calculate the parameters to rotate, rescale, and shift
the images in order to obtain the correct alignment between Ha
and HG images. Once obtained, these parameters were been
applied to the IBIS data set, i.e., the Ha images. Figure 8 shows
the result of the alignment procedure: the images have the same
orientation, size (456 x 478 pixels) and spatial sampling
(0”138 pixel ).

After the alignment we compared the light curves of these
two chromospheric lines in four boxes inside the field of view
indicated in Figures 8 ((b) and (c) panels). Three of these boxes
(A, B, and C) are on the bright areas of the flare, while the last
one (box D) is on a bright patch outside the flaring region. The
boxes have the same size, i.e., 40 x 40 pixels (=5”5 x 575).
We choose a box of this size to avoid losing information during
the flare brightness evolution. We note that the locations of the
flare emission inside the boxes are not fixed in space but they
moved during the evolution of the event. We obtained the light
curves of Ho and HB by taking the average intensity values
calculated over all the pixels inside each box. Moreover, to
better compare the intensities acquired with the IBIS and
ROSA instruments, we calibrated the intensit}g obtained by the
different cameras from DN to erg s~ cm > A~' sr! units as
follows: we determined the flat-field image intensity acquired
on the day of observation with both the IBIS and ROSA
cameras, and assuming that this flat-field intensity was equal to
the values provided in the Brault & Neckel Atlas (Brault &
Neckel 1987), we converted the measured intensity in DN to
fundamental units. We reiterate here that the cadences for the
reduced Ha and HG data sets are around 2.6 s and 9.2 s,
respectively.

Figure 9 shows the intensity as a function of time deduced
from Ha (black) and HG (orange) images for the four boxes. In
particular, the intensity relative to the Ha line has been



THE ASTROPHYSICAL JOURNAL, 850:36 (11pp), 2017 November 20 Capparelli et al.

(a) IBIS 6610 A continuum (b) IBIS Hoc core

(c) ROSA Hp core

—150§ —1502 ]

—170%— _17()%, ,

-1802 —180%— E

—1902* -190é E

o0f ts2tresBUT Y oree 1 ol il
840 850 860 870 880 890 840 850 860 870 880 890 7‘521‘0‘ e ééb — ‘5&0‘ e ‘8‘%‘0‘ — ééb e éé‘o“ =

X (arcsecs) X (arcsecs)

X (arcsecs)

Figure 8. (a) Image acquired in the IBIS continuum at 6610 A; (b) IBIS Hav image of the same FOV (reversed color); (c) ROSA H{ image (inverted color) after the
alignment procedure with the IBIS corresponding image. The boxes in (b) and (c) indicate the regions A, B, C, and D that are used to determine the intensity evolution

(see Figures 9 and 10).

determined by averaging the intensity at the center of the line
(6562.8 A) and in an adjacent point along the line profile
(6562. 9A) covering a total A\ = 0.1 A, comparable to the
bandwidth of the Hf filter employed with the ROSA
instrument. However, because the cadence of Ha images was
higher than H{3 data, the sampling to determine the Ha
intensity was greater. To highlight the energy released during
the flare, the intensities of all the light curves were obtained by
subtracting the pre-flare intensity calculated by averaging the
intensity in each box during 2 minutes in a time interval before
the flare, i.e., from 15:10:00 UT to 15:12:00 UT.

Analysis of these plots indicates that the intensity excess of
the H/3 line is generally higher than the Ha intensity during the
impulsive phase of the flare; in particular, the former can reach
values up to ~0.3 x 10° (box A) ~1. 8 X 106 (box B), and
~1.1 x 10° (box C) erg s~ "em™2 A~ sr , while the latter
reaches values of ~0.2 x 10° (box A) NO 7 x 10° (box B),
and ~0.5 x 10° (box C) erg s'em 2 A ~1 (see the first
three panels of Figure 9). The light curves obtamed in box D
appear flat for both the lines during all time of analysis (see the
bottom panel of Figure 9). In the same plot, the vertical black
lines show the estimated start (dashed) and peak (solid) flare
times deduced by EVE/ESP.

The ratio of the two core spectra intensities has potential
diagnostic importance for the comprehension of chromospheric
flares (Kasparova et al. 2009). In order to detect any possible
signature of different emission among the two wavelengths, we
calculated the ratio between the Ha and the H/3 intensity for all
the boxes in which we applied an 11-point smoothing function
in order to remove the excess noise. The ratio values have been
calculated with the common acquisition time of the two
instruments, namely from 15:10 UT to 15:45 UT. The bottom
panel in Figure 10 presents the temporal evolution of this ratio,
where the different colors indicate the intensity ratio obtained
for each box (see the legend). In the same figure, the intensities
of the Ha (top panel) and HS (middle panel) lines are reported
as a function of time for each box. Figure 10 shows that the two
chromospheric lines respond to the flare energy input in the
same way, highlighting a similar shift between peaks in
intensity and an energy distribution comparable to the
corresponding box. Specifically, the Ha light curves of boxes
A, B, and C have similar behavior, with a similar peak in

intensity and similar decay phases. Similar behavior, albeit
with different values of intensity, is seen in the corresponding
Hg light curves.

The bottom panel in Figure 10 shows that the Ha/HS
intensity ratios during the flare tend to a constant value for the
boxes inside the flaring region (approximately around 0.4 for
boxes B and C and around 0.8 forbox A), while before and
after the flare, the values are generally higher, with a variable
trend for all the boxes. Outside the flaring region (box D) the
ratio is highly unstable, with large oscillations before, during,
and after the energy input, due to the low values of the intensity
that cause large errors.

3.3. Spatial Offset

Following the aim of the observing campaign, to evidence a
possible spatial offset among each chromospheric sources, we
looked at the maximum intensity value inside the corresponding
box (note, it is possible that this location will not occur exactly in
the same pixels for both Ho and HG channels). In Figure 11 we
report the spatial offset as a function of time between the brightest
points in the Ho and Hf line cores for boxes A and B and the
offset between the brightest points in the Ha core and Ha
continuum wing. We display the results only for boxes A and B
because they are more relevant as they are located in the
footpoints of the flare loop. The analysis of this plot shows a
spatial offset in the range of 2”-3" between the sources imaged in
the Ho and Hf3 line cores, but in box A this offset decreases to
072 after the impulsive phase of the flare, while remaining
constant for box B. The distance between the brightest points
observed in the Ha core and Ha wing is constant for box A,
around a value of 3”, while it varies from 1”-5” for box B.

3.4. Evolution of the Ho Line Profile

In order to investigate the temporal evolution of the Ho line
profile and to compare it with the simulations shown in Section
4, we selected a time interval of 10 minutes during the flare
evolution, starting at 15:15:50 UT, and calculated the average
intensity at each point of the line acquired by IBIS (it should be
noted that a similar analysis for the ROSA H/3 data set could
not be performed because in this case we only have images in
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(dashed) and peak (solid) times of the flare. The co-temporal drops at the end of
the sequence are related to the bad seeing conditions.

the line center). Again, this analysis was only carried out for
boxes A and B.

Figure 12 (left panel) shows that in box A the Ha line shows
a stronger increase in the red wing, compared to the blue wing,
and that the line core is shifted blueward. In box B, the line
exhibits both red and blue wing enhancements (see Figure 12,
right panel). The core is more enhanced than in box A but it
does not go into emission. In box B the core shows a very small
redshift during the rise phase (up to 200 s, see Figure 12, right
panel), shifting to shorter wavelengths afterward. In both boxes
A and B, the line does not show a central reversal. Deng et al.
(2013) reported similar observations, in contrast to typical
observations of the Ha line profile (Canfield et al. 1990; de La
Beaujardiere et al. 1992; Kuridze et al. 2015).

4. RADYN Simulations

We used the radiative hydrodynamic code RADYN
to compute the Ha and Hf line profiles and to calculate
the intensity ratio of the line cores for comparison with the
observations. Our idea is to adopt the model closest to
the observation features, using the RHESSI imaging spectrosc-
opy integrated over 2 minutes during the main impulsive phase
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Figure 10. Temporal evolution of the Ha excess intensity (top panel) and the
Hpf excess intensities (middle panel) in boxes A, B, C, and D indicated in
Figure 8 (b)—(c)). The bottom panel shows the temporal evolution of the ratio
Ha/HQ. Different colors indicate different boxes (see the legend in the plot).
The vertical black lines show the estimated start (dashed) and peak (solid) flare
times.
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Figure 11. Temporal evolution of the offset of the brightest points imaged in

the Ha and H/3 line cores inside boxes A and B (solid lines). The dashed lines
indicate the same, but for the Ha core line and Hae wing.

(15:20:00-15:22:00 UT). Figure 13 shows RHESSI photon
spectra for the hard X-ray source spatially integrated over the
ROI displayed in Figure 7. The spectra were fitted with an
isothermal-plus-thick-target model, shown in Figure 13 with
the orange line, and the resulting parameters are: emission
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Figure 13. RHESSI photon spectra for the hard X-ray source over the ROI
indicated by the purple dashed circle in Figure 7 and integrated for the interval
15:20:00-15:22:00 UT. The orange line is the isothermal-plus-thick-target
model. The isothermal model is the green line, defined by two parameters:
emission measure EM and temperature 7 (see the text). The non-thermal thick-
target model is the blue line, defined by three parameters: low energy cutoff E,,
spectral index 6, and total number of electrons per second above E,.

measure EM = 1.3 x 10*® cm™; plasma temperature T =
13 MK; number of electrons per second injected F = 2 x 10°°
electrons s~ above E = E. = 7keV; spectral index § = 6.4;
total non-thermal power P,g, = 2.7 x 10" ergs™'; and total
non-thermal energy E, ¢ = 3 x 10% erg. From these para-
meters, two RADYN simulations were employed here, the
first one, marked by F9.5, with a peak of energy flux of
FRx — 3 x 10%ergem 2s ™' and a total amount of energy
Fi's = 0.3 x 10" erg cm2; and the second one, indicated by
F10, with a peak of FB® = 10%ergem 2s™' and a total

amount of energy Fi9t = 10''ergcm 2. For both the runs a

beam with an isotropic pitch angle distribution in the forward
hemisphere was used with the Fokker—Planck solution to the
non-thermal electron distribution (Allred et al. 2015). A
triangular, pulse-shaped heating flux was applied for 20 s (with
a peak after 10 s), and the atmosphere was allowed to relax for
15 additional seconds. The initial atmosphere before the
switch-on of the beam was the VAL3C semi-empirical
atmosphere (Vernazza et al. 1981). The electron-beam energy
distribution is defined as a power-law with a spectral index of
6 = 6 and a low energy cutoff E. = 10keV. Considering the
location of the flare on the solar disk, to simulate the projection
effect we used p = 0.23 in both F9.5 and F10 runs.

Using the Ha and Hf lines profiles calculated with
RADYN, we computed the ratio of the line core intensities,
A = 6563 A for Ho and \ = 4861 A for H, for both models
F9.5 and F10, the results of which are shown in Figure 14. In
both models, for the duration of the energy input, the ratio of
Ha to HG is smaller than 1. In F10 the ratio starts around
0.6-0.7, then settles at 0.4 after 10 s, very similar to the
observed ratios of boxes B and C. In F9.5 the ratio swings
between 0.6-0.8, closer to the observed ratios of box A, which
is the weakest flare kernel.

Figure 15 shows the temporal evolution of the synthesized
Ha line profile for both the F10 and F9.5 flare models. In the
F9.5 model, the line, initially in absorption, goes into emission
with a clear presence of a central reversal. Through the duration
of the energy input, the line wings around A\ =~ —0.5 are
much more pronounced than the line core. During the first 15s
of the energy input, the entire line profile is shifted toward
longer wavelengths, with the blue wing being stronger than the
red wing. From then until the end of the energy input at t =
20 s, the line shifts slightly redward from the rest wavelength
and the wings are more symmetric. When the energy input
stops, the intensity of the wings and core decreases
substantially, a red-wing asymmetry appears, and the core is
shifted A\ > 0.

In the F10 model, the line also goes into emission with a
central reversal, with a much more pronounced intensity of the
line core with respect to the wing intensities, compared to the
F9.5 model. As noted by Kuridze et al. (2015), a red wing
asymmetry (i.e., the red wing intensity stronger than the blue
wing) develops in the first 5 s, before reverting to a blue wing



THE ASTROPHYSICAL JOURNAL, 850:36 (11pp), 2017 November 20

T B3 T T T T

15 P Ho core 6563 A model F9.5 -
Sy Ha. core 6563 A model F10
r fan Hp core 4861 Amodel F9.5 - - — - 7]
L Sogow Hp core 4861 A model F10 ]
R "\
I ERRY
- r ' ERRN N
Ih . i , <
a ' \
- \
< 10 : \ n
"I' \
E ! \ |
3] I \
D B i \ 1
g) L ! \ 4
6 1 \
k=)
= 5

0.8

T
< 06 -
I 4
@
5 ]
o
= e B
(L -
.% 0.4 i N
g Fii .
Fay 4
LY i
sy
0.2hf 3 4
-'I'l;: F10 (bkg-sub) B
[ 1
Lo F10 ]
0O0EM b, o v 0 e Y
0 5 10 15 20 25 30 35

Time [s]

Figure 14. Time evolution of the intensity and the ratio of the core in the Ha
and Hf lines, for the F9.5 and F10 models (see the legend). The black dotted
lines show the shape of the energy input.

asymmetry after that time. The line core shifts to opposite
directions: blueward and then redward. The wing asymmetry is
created by an excess of absorption by the moving plasma above
the height of formation of the Ha line, as pointed out by
Kuridze et al. (2015), i.e., a red asymmetry does not necessarily
indicate the presence of downward moving plasma, nor does a
blue asymmetry indicate upwardly moving plasma. When the
energy input ends, the line intensity drops rapidly, and the
wings become much less pronounced (even disappearing), but
the line remains in emission until the end of the simulation.

The synthetic Ha line profiles obtained from the RADYN
simulations are different from the profiles observed with IBIS,
as described earlier. The line profiles in both boxes A and B
remain mostly in absorption throughout the event, with a
stronger increase in the core intensity than in the wing
intensities.

It is possible that not all the pixels inside the box are
activated by the flares, so the “filling factor”, defined as
ff=1/(N + 1), is smaller than 1. We have tried to simulate
this filling factor effect with the RADYN lines by averaging N
times the pre-flare line profile with the flaring lines, namely
Iy = ff Upiare + Nlpre—flare). In practical terms, this brings the
calculated lines closer to the observed line shape. For both the
F9.5 and F10 models, we found solutions that qualitatively
reproduce the observations: Npgs =2 and Ngjo = 5, with
filling factor values ffpys = 0.333and ffg;, = 0.167. Figure 16
shows the line profiles using that filling factor. The plots show
that the line is in absorption, prior to a small enhancement of
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Figure 15. Time evolution of the Ha line profile calculated with RADYN, for
the F9.5 (top) and F10 (bottom) flare models.

the wings around A\ 4+ 1.0 A. In F10 there is a small
enhancement at A\ + 1.0 A, and in F9.5 the blueshift of the
line core followsthe observations closer than that of F10. In
absolute values of I,, F10 gives a better agreement in
I(AX = 0), with F9.5 being too weak.

Note that with HG we do not have line scans as we do with
Ha. The HS images are from the core of the line, and have a
relatively broad filter width in comparison to the Ha scans.
Therefore, the RADYN simulation cannot be used for a direct
comparison for the H{ images.

We used the F9.5 and F10 models to qualitatively explore a
weak and a strong case. To determine which of the two runs is
closer to observations we have to derive the total amount of
energy injected in the two models. RADYN solves equations
along one dimension, but the observation results are related to
boxes of two dimensions. Our idea is to translate the filling factor
discussion in an area value in order to obtain a size for the flaring
elements. Comparing the observed and synthetic Ho line profiles
(see Figure 12 and 14), we obtained a different value of filling
factor from F9.5 and F10 runs. Knowing the size of the box used
in the observations (5”5 x 5”5), we can easily convert them to a
simulated flaring area: ~3”2 x 3”2 for F9.5 and ~2"2 x 22
for F10. To estimate the projection effect, from the location of the
flare source on the solar disk we obtained p = 0.3, and using
this value, the effective flaring areas are then Ags = 17.5 x
10'® cm? and A& = 8.8 x 10'% cm?. From the RHESSI photon
spectra fit parameters and using the effective flaring areas,
we found F = Py, /Ags ~ 0.15 x 10" ergs ' cm 2 and F =
By /AEE ~ 0.31 x 10" ergs—' cm ™2 The real problem here is
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(see the text). Top: F9.5 model, ff = 0.167. Bottom: F10 model, ff = 0.048.

that the RHESSI values are derived from the whole flare (see the
ROI in Figure 7), not just one source (box), but the F9.5 model
appears closer to the observations.

5. Conclusions

The aim of this work was to clarify some aspects related to
energy release and redistribution in the chromospheric layer of
the solar atmosphere during a solar flare. Therefore, we
investigated the chromospheric response to the sudden energy
input, locating the sources, the sizes, and the eventual offset
between flare sources in different wavelengths. Our approach
was to look at the features of two chromospheric lines during a
C3.3 solar flare, using high-resolution ground-based data
acquired during an observing campaign carried out at Dunn
Solar Telescope. Although the location of the flare on disk was
not ideal and the intensity of the event was relatively low, the
uniqueness of this data set in terms of the resolution (both
spatial and temporal), the lines used (both Ha scans and HS
core images) and the fact that all phases of the flare were
observed, provides novel insights into the behavior of the
chromosphere during a flare.

In a previous work, Kasparovd et al. (2009) simulated
Balmer lines during impulsive flare heating and investigated
the correlation between Ha: and H( lines. The authors tried to
use the Ha/HQ ratio to check whether they are sensitive to
electron-beam presence, i.e., whether they are significantly
different if the non-thermal collisional rates are included in the
simulations. In this paper we displayed the light curves from
observed Ha and HJ lines, where, in the flaring region, the H

10

Capparelli et al.

Avkms']
50 0 50

t=10.00s Av[kms']
-50 0

t=10.00s
50 -100

- 13F

Height [Mm]
Height [Mm]
N
T

- 11

A a1 [A)

Figure 17. Intensity contribution functions for the Ha (left) and HS (right)
lines after 10 s of F9.5 flare heating. The diagrams are plotted in inverse
grayscale so that darker shades indicate higher intensities. The line profile is
overplotted as a blue line. The red lines indicate the height at which 7 = 1.
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intensity excess is greater than those of Ha during the flare
energy input, as noted by KaSparova et al. (2009).

We employed the radiative hydrodynamic code RADYN to
compute the synthetic Ho and Hf line profiles to compare
them with our observations. For both the F9.5 and F10 runs the
HQ intensity is greater than Ha, while the intensity ratio is
around 0.4 in the F10 model after the energy peak, which is in
agreement with the observed ratios for the different regions of
the flare. Similar ratios from different inputs implies that the
Ha and Hp lines are affected similarly by the amount of
energy, and this indicates that this ratio is sensitive to the
amount of energy deposited in the chromosphere.

Our results for the line ratios are in agreement with the
findings of KaSparova et al. (2009). In KaSparova et al. (2009),
Flarix gives intensities in erg s~ ' cm > Hz ' sr™ ' and also line
ratios are computed from those values, while in this paper we
used erg s~' cm 2 A=" st™! as I, units. As confirmed by
private communication with the authors, the ratio should be
around 0.5 after adjusting to the same units of 7, used in this
paper, which is very close to our results.

Furthermore, by comparing the observed and synthetic Ha
line profile evolutions, there is good agreement using a filling
factor” approach. The simulated Ha profiles present a clear
central reversal, while the observed line profiles were enhanced
during the flare, but remained mostly in absorption. We have
interpreted the weakly enhanced Ha line profiles as an effect of
a low filling factor, estimated to be ff =~ 0.33 or ff =~ 0.17,
using models F9.5 and F10, respectively. The simulated
intensity ratios, with the pre-flare level subtracted, yield, for
the low filling factor cases, values of 0.4-0.5. This is simply
because the same filling factor was applied for both the Ha and
Hg line profiles. Furthermore, converting the filling factor in
terms of flaring area, we obtained values of total energies for
the F9.5 and F10 models, indicating the F9.5 closer to the
observations.

Concerning the analysis related to the spatial offset, because
the flare is located close to the limb, we can read the results as
diagnostic of the formation heights of the two line cores.
Figure 17 displays the line contribution functions (Carlsson &
Stein 1997) after 10 s of F9.5 flare input, where the Ha core
formation height is higher than about 40 km with respect to the
Hg core (wings formation heights are the same). The observed
spatial separation is in qualitative agreement with the RADYN
simulation, and the observed spatial offset is much larger, but
this may be due to one-dimensional limit of RADYN code, so
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it is hard to make an actual comparison with imaging
observations. Therefore, a possible suggestion for future
observations in both spectral lines would be to search for
flaring active regions very close to the solar limb, in order to
further investigate the spatial offset.
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