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Abstract—In this work, we present a simulation 

study of vertically stacked lateral nanowires 

transistors (NWTs) considering various sources of 

statistical variability. Our simulation approach is 

based on various simulations techniques to capture 

the complexity in such ultra-scaled device. 

I.      INTRODUCTION 

Gate all around nanowire transistors (GAA NWTs) 
promise an improved transistor’s electrostatics, offering 
better performance at lower supply voltages and 
significantly reducing the short channel effects. Arranging 
multiple GAA NWTs in vertically stacked lateral (VSL) 
configuration is a promising structure to increase the drive 
current for 7nm CMOS technology and beyond [1]. Also 
in current technology nodes, the variability is becoming 
important in nanoscale transistors due to process deviation 
and intrinsic properties of materials and interfaces. There 
are numerous sources of statistical variability (SV) such as 
Random Discrete Dopants (RDD), Wire Edge Roughness 
(WER) and Metal Gate Granularity (MGG), which 
dominate the NWT behaviour.  Due to the inherited SV 
related to doping and gate patterning, it is very important 
to include SV information in process design kits (PDKs). 
Accurate statistical reliability (SR) information is crucial 
in defining the reliability criteria, and for supporting 
reliability-aware statistical design. For example, NBTI 
and PBTI degradations are associated with injection and 
trapping of carriers in defect states in the gate stack during 
device operation [2].  

II. METHODOLOGY 

In this work, we study the SV of Si n-channel GAA 

NWTs with an elliptical cross-section of 7 nm x 5 nm. 

The device has a 0.4nm interfacial SiO2 and 0.8nm HfO2 

(High-k) layers as shown in Fig.1. The doping 

concentrations are as follows: channel - 1014/cm3, 

source/drain extensions - 1020/cm3, and source/drain 

contacts - 4x1020/cm3. In our recently published work [3] 

we investigated the performance of vertically stacked 

lateral (VSL) NWTs. In this work, we examined the 

effects of SV and SR on the performance of VSL 

configured NWT. For this work two computational 

methods have been used: a Poisson-Schrödinger model 

(PS) coupled with Monte Carlo (MC) technique and 

quantum corrected drift-diffusion model. The flowchart in 

fig 2, illustrates the overall simulation methodology.  The 

quantum corrections obtained from the Poisson-

Schrödinger solution is used in the MC simulations to 

deliver predictive simulation results. Then the drift-

diffusion simulator is calibrated against the MC result and 

used for efficient SV and SR simulations.  An ensemble of 

1000 devices has been simulated for the statistical 

analysis. 

III. RESULTS AND DISCUSSION 

The simulated statistical ID-VG characteristics are shown 

in Fig 3(top). The correlation between different FOM as a 

function of trap density is shown in Fig. 4.  The 

simulation data presented in Fig.5 include the main 

sources of SV and the interplay between interface traps 

and the FOM correlation. For example, the anti-

correlation coefficient is lower (-0.95) between Ion and 

VT compared to when SV is not considered (-1) for VSL 

NWT with the double channels.   Moreover, the 

distribution of ION and Ioff also shows more variability 

when both interface traps and sources of SV are 

considered as shown in Fig 5.  Fig. 6 (top left) shows 

DIBL distribution for 1000 devices at five different 

scenarios. The average of the distribution is almost the 

same for all devices that include sources of SV (blue, red 

and black curves). The standard deviation is also very 

similar for those three cases and does not follow entirely 

the Gaussian distribution the two cases. When we 

consider only interface traps in the uniformly doped 

device, the DIBL has a lower value than in the other three 

scenarios where variability sources are included. Also for 

all cases, the average value increases with increasing trap 

density in the oxide. Similarly, the distribution does not 

follow an entirely Gaussian distribution. Fig. 6 (bottom) 

present the Ion and IOFF current distribution for the 

ensemble of 1000 devices with and without sources of 

statistical variability and traps in the oxide, 

correspondingly. Like before the average value of both 

Ion and Ioff is shifted to higher values. Moreover, for all 

devices with included statistical variability, values of Ion 

and Ioff follow a Gaussian distribution. For the devices 

with interface traps only and no variability sources, the 

distribution is very similar in both cases.  Fig. 6 (bottom 

right) reveals the threshold voltage distribution for all five 

scenarios. As expected when only the devices with 

statistical variability are considered, the average value of 

the distribution increases because of increasing the charge 

trapping but the standard deviation is almost identical in 

all cases. Like the data presented above the uniformly 

doped devices with just charge trapping in the oxide 

shows different behaviour than the other three cases. In 

those two cases, the average value of VT also moves to 

higher values when the trap concertation is increased. Fig. 

7 shows the distributions of threshold voltage subject to a 

combination of VS and ITC for both two & three VSL 

NWTs. 

IV. CONCLUSIONS 
Detailed simulation of SV and SR study of 5 nm NWT-

based CMOS technology at 5nm is presented. Local 
variability sources including RDD, GER, WER and MGG 
are considered in this studying in addition to ITC. The 
presence of SV sources in the simulations affects the SR 
results dramatically. 
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Fig. 1 (right) 3D schematic view a Si nanowire transistor (NTW) and 
material information for the two channel Si NWT(left),  Cross-sectional 
TEM [1] image of two channel Si NWT. 

 

 

Fig 2: The simulation tool calibration flow chart 

 

 

 

Fig. 3(top) Linear transfer characteristics for the ensemble with 
 RDD, LER and MGG for double channel Si NWT at LG=12 nm  
calibrated DD methods. (Bottom) 3D schematic of effects of SV 
 and SR on the  potential 

 
Fig. 4  Distribution of and correlations between extracted FOM from the 
TCAD simulations of individual ITC  1x1012 cm-1 and  4x1012 cm-1 for 
double NWT (left) and triple NWT (right). 

 

Fig. 5 Correlations between extracted FOM from the TCAD simulations 
for both ITC and VS effect (RDD, WER, MGG and R) for double NWT 
(left) and triple NWT (right). 

 

   

   

Fig. 6 Normal probability QQ-plot of DIBL, Idsat, Ioff, and VT distributions 
due to individual VS effect of (RDD, LER, MGG, and R), and in their 
combination with 1x1012 cm-1 and  1x1012 cm-1 ITC . 

 

 

Fig. 7 Distributions of threshold voltage subject to VS effect of (RDD, 
LER, MGG, and R), and in their combination with 1x1012 cm-1 and  
1x1012 cm-1 ITC 4x1012 cm-1 ITC for three VSL NWTs(left), and Two 
VSL NWT (right) 
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