
 Procedia Computer Science 18 (2013) 749 – 758

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.239

International Conference on Computational Science, ICCS 2013

High-Level Programming for Medical Imaging
on Multi-GPU Systems using the SkelCL Library

Michel Steuwer∗, Sergei Gorlatch

Department of Mathematics and Computer Science, University of Muenster, Einsteinstrasse 62, 48149 Muenster, Germany

Abstract

Application development for modern high-performance systems with Graphics Processing Units (GPUs) relies on low-level

programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs.

In this paper, we present SkelCL – a high-level programming model for systems with multiple GPUs and its implementa-

tion as a library on top of OpenCL. SkelCL provides three main enhancements to the OpenCL standard: 1) computations are

conveniently expressed using parallel patterns (skeletons); 2) memory management is simplified using parallel container data
types; 3) an automatic data (re)distribution mechanism allows for scalability when using multi-GPU systems.

We use a real-world example from the field of medical imaging to motivate the design of our programming model and we

show how application development using SkelCL is simplified without sacrificing performance: we were able to reduce the

code size in our imaging example application by 50% while introducing only a moderate runtime overhead of less than 5%.

Keywords: SkelCL, Multi-GPU Computing, Algorithmic Skeletons, LM OSEM Algorithm, Image Reconstruction

1. Introduction

Modern high-performance computer systems increasingly employ Graphics Processing Units (GPUs) and

other accelerators. The state-of-the-art application development for systems with GPUs is cumbersome and

error-prone, because GPUs are programmed using relatively low-level models like CUDA [1] or OpenCL [2].

These programming approaches require the programmer to explicitly manage GPU’s memory (including memory

(de)allocations, and data transfers to/from the system’s main memory), and to explicitly specify parallelism in

the computation. This leads to lengthy, low-level, complex and thus error-prone code. For multi-GPU systems,

programming with CUDA and OpenCL is even more complex, as both approaches require an explicit implemen-

tation of data exchange between GPUs, as well as separate management of each GPU, including low-level pointer

arithmetics and offset calculations.

In this paper, we describe the SkelCL (Skeleton Computing Language) – a high-level programming model for

parallel systems with multiple GPUs. The model is based on the OpenCL standard and extends it with three novel,

high-level mechanisms:

∗Corresponding author. Tel.: +49 251 8332744; fax: +49 251 8332742.

E-mail address: michel.steuwer@uni-muenster.de.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

750 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

1) parallel skeletons: pre-implemented high-level patterns of parallel computation and communication which

can be customized and combined to express application-specific parallelism;

2) parallel container data types: collections of data (e. g., vectors and matrices) that are managed automatically

across all GPUs in the system;

3) data (re)distributions: an automatic mechanism for describing data distributions and re-distributions among

the GPUs of the target system.

The paper describes how the SkelCL model is used for programming a sample real-world application from the

area of medical imaging, and how the model is implemented as the SkelCL programming library, using C++. Our

focus is on programming methodology; therefore, we motivate our work using one typical imaging application

and then study it in great detail throughout the paper.

The remainder of the paper is organized as follows. In Section 2, we introduce the application example used

throughout the paper – the LM OSEM algorithm for medical image reconstruction. The application is used to

identify requirements on a high-level programming model. Section 3 introduces the SkelCL programming model

and its C++ implementation in the SkelCL library. In Section 4, we present experimental results for the LM OSEM

algorithm using SkelCL, before we compare our contributions with related work and conclude in Section 5.

2. Iterative PET Image Reconstruction and the LM OSEM Algorithm

Our running application example in this paper is the LM OSEM algorithm [3, 4] for image reconstruction used

in Positron Emission Tomography (PET). In PET, a radioactive substance is injected into a human or animal body,

which is then placed inside a PET scanner that contains several arrays of detectors. As the particles of the applied

substance decay, positrons are emitted (hence the name PET) and annihilate with nearby electrons, such that two

photons are emitted in the opposite directions (see Fig. 1). These “decay events” are registered by two opposite

detectors of the scanner which records these events in a list. Data collected by the PET scanner are then processed

by a reconstruction algorithm to obtain a resulting image.

Fig. 1. Two detectors register an event in a PET-scanner

2.1. The LM OSEM Algorithm

List-Mode Ordered Subset Expectation Maximization [3] (called LM OSEM in the sequel) is a block-iterative

algorithm for 3D image reconstruction. LM OSEM takes a set of events from a PET scanner and splits them into

s equally sized subsets. Then, for each subset S l, l ∈ 0, . . . , s − 1, the following computation is performed:

fl+1 = flcl; cl =
1

AT
N1

∑

i∈S l

(Ai)
T 1

Ai fl
. (1)

Here f ∈ Rn is a 3D image in vector form with dimensions n = (X × Y × Z), A – the so called system matrix,

element aik of row Ai is the length of intersection of the line between the two detectors of event i with voxel k of

the reconstruction image, computed with Siddon’s algorithm [5].
1

AT
N1

is the so-called normalization vector; since

it can be precomputed, we will omit it in the following. The multiplication flcl is performed element-wise. Each

subset’s computation takes its predecessor’s output image as input and produces a new, more precise image.

751 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

The structure of a sequential LM OSEM implementation is shown in Listing 1. The outermost loop iterates

over the subsets. The first inner loop (step 1) iterates over subset’s events to compute cl, which requires three sub-

steps: row Ai is computed from the current event using Siddon’s algorithm; the local error for row Ai is computed

and, finally, added to cl. The second inner loop (step 2) iterates over all elements of fl and cl to compute fl+1.

for (int l = 0; l < subsets; l++) {

/* read subset */

/* step 1: compute error image c_l */

for (int i = 0; i < subset_size; i++) {

/* compute A_i */

/* compute local error */

/* add local error to c_l */ }

/* step 2: update image estimate f */

for (int k = 0 ; k < image_size; k++) {

if (c_l[k] > 0.0) { f[k] = f[k] * c_l[k]; } } }

Listing 1. Sequential code for LM OSEM comprises one outer loop with two nested inner loops.

2.2. Parallelization of LM OSEM in OpenCL
LM OSEM is a rather time-consuming algorithm that needs parallelization: a typical 3D image reconstruction

processing 6 · 107 input events for a 150 × 150 × 280 PET image takes more than two hours on a modern PC.

Although the iterations of the outer loop in Listing 1 are inherently sequential, we can parallelize the two

calculation steps within one iteration as shown in Fig. 2 for a system comprising one CPU and two GPUs. Note

that these steps require different data distribution patterns:

Step 1: Subset’s events are copied from the CPU to all GPUs (upload) to compute the summation part of cl

concurrently. This step requires that the complete image estimate fl is available to all GPUs.

Step 2: For computing the next image estimate fl+1 in parallel, the current image estimate fl and the error

image cl computed in step 1 have to be distributed in disjoint parts (blocks) among all GPUs.

G
P
U

0
C
P
U

G
P
U

1

S fl

S fl

S fl

cl

cl

⇒

⇒

cl

cl

cl

fl

fl

fl

fl

fl

⇒

⇒

fl+1

Upload Redistribution Download

Step 1 Step 2

Fig. 2. Parallelization schema of the LM OSEM algorithm.

Thus, the parallelization schema in Fig. 2 requires a data redistribution phase between the two computation steps.

During step 1, each GPU computes a partial sum of cl. After step 1, all partial results are summed up and

redistributed disjointly to all GPUs. Note that for step 1, each GPU requires a full copy of the image estimate,

while in step 2 all GPUs update disjoint parts of it. After step 2, the disjoint parts of the image estimate are copied

from all GPUs back to the CPU (download).

752 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

In the following, we describe how the parallelization schema phases in Fig. 2 are implemented using OpenCL.

Upload. The simplified OpenCL implementation of the upload phase is shown in Listing 2. Uploading of the

event vector S is performed in lines 3–6, while lines 9–12 show the upload of the image estimate fl. In OpenCL,

we have to manage each GPU explicitly, therefore, for each GPU, we create a set of buffers (s gpu and f gpu)

and we use a loop (line 1) to repeat all memory operations for each GPU. For performance reasons, we use

asynchronous copy operations, specified using the CL FALSE flag (line 3 and 9): this allows data transfers to

multiple GPUs to overlap. We perform different operations with S (distribute among all GPUs) and fl (copy to

each GPU), therefore, there are differences when specifying the amount of bytes to copy (lines 4 and 10) and the

offsets in the CPU memory (lines 5 and 11). Altogether eleven such memory operations – each with different

amounts and offsets – appear in the OpenCL source code.

1 for (int gpu = 0; gpu < gpu_count; gpu ++) {

2 // upload S
3 clEnqueueWriteBuffer(command_queue[gpu], s_gpu[gpu], CL_FALSE , 0,

4 sizeof(float) * size_of_s / gpu_count ,

5 (void*)&s_cpu[gpu * size_of_s / gpu_count],

6 0, NULL , NULL);

7

8 // upload fl
9 clEnqueueWriteBuffer(command_queue[gpu], f_gpu[gpu], CL_FALSE , 0,

10 sizeof(float) * size_of_f ,

11 (void*)&f_cpu [0],

12 0, NULL , NULL); }

Listing 2. Implementation of the upload phase in OpenCL (ommitting error checks for brevity)

Step 1. The implementation of step 1 performs the operations shown in Listing 1: first computing Ai, then the

local error for Ai and finally adding the local error to cl. Because of GPU memory restrictions, the OpenCL

implementation is not straightforward, such that, for the sake of brevity, we will not discuss it in more detail here.

Redistribution. Listing 3 shows an OpenCL pseudocode for the redistribution phase. To download the data from

all GPUs, we use the clEnqueueReadBuffer function and perform the operations asynchronously, but this time,

we have to wait for the operations to finish. For such synchronization, OpenCL uses events, associated with an

operation (line 3) for waiting for the operation to finish (line 4). After all downloads have finished, we combine

the different values of cl to a new value of cl on the CPU (line 7), and upload the blocks of cl to the GPUs. Even if

we only copied data between GPUs, without processing them on the CPU, we still would have to download them

to the CPU because direct GPU-to-GPU transfers are currently not possible in OpenCL.

1 // download all c_l values from the GPUs to the CPU

2 cl_event events[gpu_count];

3 for (int gpu = 0; gpu < gpu_count; gpu ++) { clEnqueueReadBuffer(..., &events[gpu]); }

4 clWaitForEvents(gpu_count , events);

5

6 // combine data on CPU

7 combine(...);

8

9 // upload block of the new c_l version to each GPU

10 for (int gpu = 0; gpu < gpu_count; gpu ++) { clEnqueueWriteBuffer(...); }

Listing 3. OpenCL pseudocode for the redistribution phase

Step 2. Listing 4 shows the implementation of step 2. In OpenCL, computations are specified as kernels which

are created from the source code specifying the computation. The computation in step 2 is, therefore, described

as a string in lines 3 – 5. The operations used here are the same as in the sequential code in Listing 1.

For executing the computations of step 2, we have to perform the following steps for each GPU:

• create an OpenCL kernel from the source code (requires 50 lines of code in OpenCL);

• compile the kernel specifically for the GPU (requires 13 lines of code in OpenCL);

• specify kernel arguments one-by-one using the clSetKernelArg function (line 12 – 17);

753 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

• specify execution environment, i. e., how many instances of the kernel to start (line 20 – 21);

• launch the kernel (line 23 – 24).

1 // step 2 (in Fig. 2)

2 source_code_step_2 =

3 "__kernel void step2(__global float* f, __global float* c_l , int offset , int size) { \

4 int id = get_global_id (0) + offset; \

5 if (id < size && c_l[id] > 0.0) { f[id] = f[id] * c_l[id]; } }";

6

7 for (int gpu = 0; gpu < gpu_count; gpu++) {

8 // create kernel (50 lines of code)

9 // compile kernel (13 lines of code)

10

11 // specifying kernel arguments :

12 clSetKernelArg(kernel_step2[gpu], 0, sizeof(cl_mem), (void*)&f_buffer[gpu]);

13 clSetKernelArg(kernel_step2[gpu], 1, sizeof(cl_mem), (void*)&c_l_buffer[gpu]);

14 int offset = gpu * (size_of_f / gpu_count);

15 clSetKernelArg(kernel_step2[gpu], 2, sizeof(int), (void*)&offset);

16 int size = MIN((gpu + 1) * (size_of_f / gpu_count), size_of_f);

17 clSetKernelArg(kernel_step2[gpu], 3, sizeof(int), (void*)&size);

18

19 // specify execution environment

20 int local_work_size [1] = { 32 };

21 int global_work_size [1] = { roundUp (32, size_of_f / gpu_count) };

22 // launch the kernel

23 clEnqueueNDRangeKernel(command_queue[gpu], kernel_step2[gpu],

24 1, NULL , &global_work_size , &local_work_size , 0, NULL , NULL); }

Listing 4. Implementation of step 2 in OpenCL (omitting error checks for brevity)

Download. The implementation of the download phase is similar to the upload phase (Listing 2).

2.3. Requirements to a High-Level Programming Model
The described implementation of the LM OSEM algorithm reveals the main problems and difficulties that the

application developer has to overcome when using OpenCL. Our analysis show that to simplify programming for

a system with multiple GPUs, the following high-level abstraction are desirable:

Parallel container data types. Compute intensive applications, like the LM OSEM algorithm, typically operate

on a (possibly big) set of data items. The LM OSEM algorithm operates on lists (of events) and three-dimensional

images (the reconstruction image fl and the error image cl). As shown in Listing 2, managing memory is error-

prone because low-level details, like offset calculations, have to be programmed manually.

A high-level programming model should be able to make collections of data automatically accessible to all

processors in a system and it should provide an easy-to-use interface for the application developer.

Recurring patterns of parallelism. While the concrete operations performed in the LM OSEM algorithm are

(of course) application-specific, the general structure of parallelization resembles parallel patterns that are com-

monly used in many applications. In step 1, for computing the error image cl, the same sequence of operations is

performed for every event from the input subset, which is the well-known map pattern of data-parallel program-

ming [6]. In step 2, two images (the current image estimate fl and the error image cl) are combined element-wise

into the output image (fl+1), see line 5 of Listing 4, which is again the common zip pattern of parallelism. It would

be, therefore, desirable to express the high-level structure of an application using pre-defined common patterns,

rather than describing the parallelism manually in much detail.

Distribution and redistribution mechanisms. To achieve scalability of applications on systems comprising multi-

ple GPUs, it is crucial to decide how the application’s data are distributed across all available GPUs. As shown

in Fig. 2, the LM OSEM algorithm requires two different distributions for its two computational steps. Distribut-

ing and re-distributing data in OpenCL is cumbersome because data transfers have to be managed manually and

performed via the CPU, as shown in Listing 3. Therefore, it is important for a high-level programming model to

allow both for describing the data distribution and for changing the distribution at runtime.

754 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

3. The SkelCL Programming Model and the SkelCL Library

We develop our SkelCL [7] programming model as an extension of the standard OpenCL programming

model [2], which adds to OpenCL the three features that we identified as desirable in Section 2.3:

• parallel container data types for unified memory management between CPU and GPUs;

• algorithmic skeletons for expressing parallel computation patterns on GPUs;

• data distribution and re-distribution mechanisms for programming multi-GPU systems.

SkelCL inherits all properties of OpenCL, including its support for heterogeneous parallel systems. While

the main OpenCL program is executed sequentially on the CPU – called the host – computations are offloaded to

parallel processors – called devices. In this paper, we focus on systems comprising multiple GPUs, therefore, we

use the terms CPU and GPU, rather than more general terms host and device.

3.1. Parallel Container Data Types

SkelCL offers two container classes – vector and matrix – which are transparently accessible by both, the

CPU and the GPUs. The vector abstracts a one-dimensional contiguous memory area while the matrix provides

an interface to a two-dimensional memory area. Upon creation of a container on the CPU, memory is allocated

on the GPUs automatically; when a container on the CPU is deleted, the memory allocated on the GPUs is freed

automatically. In a SkelCL program, a vector object can be created and filled with data like this:

Vector<int> vec(size);

for (int i = 0; i < vec.size(); ++i){ vec[i] = i; }

The advantage of the container data types in SkelCL as compared with OpenCL is that data transfers between

the memories of the CPU and GPUs are performed implicitly. All computations in SkelCL accept containers as

their input and output. Before execution, the SkelCL implementation ensures that all input containers’ data is

available on all participating GPUs. This may result in implicit (automatic) data transfers from the CPU memory

to GPU memory, which in OpenCL would require explicit programming. Similarly, before any data is accessed

on the CPU, the implementation of SkelCL ensures that this data on the CPU is up-to-date. This may result in

implicit data transfers from the GPU which are performed automatically too. Thus, the container classes frefree

the programmer from low-level memory operations like allocation (on GPU) and data transfers between CPU and

GPU, such as those shown in Listing 2.

3.2. Patterns of Parallelism (Algorithmic Skeletons)

In original OpenCL, computations are expressed as kernels which are executed in a parallel manner on a GPU.

As shown in Listing 4, the application developer must specify in the OpenCL program how many instances of a

kernel are launched. In addition, kernels usually take pointers to GPU memory as input and contain program code

for reading/writing single data items from/to it. These pointers have to be used carefully, because no boundary

checks are performed by OpenCL.

To free the application developer from these low-level programming issues, SkelCL extends OpenCL by means

of high-level programming patterns, called algorithmic skeletons [6]. Formally, a skeleton is a higher-order func-

tion that is parameterized by one or more application-specific customizing functions and is executable in a pre-

defined parallel manner, while hiding the details of parallelism and communication from the user [6].

The current version of SkelCL provides six skeletons: map, zip, reduce, scan, mapOverlap, and allpairs. Due

to lack of space, we only describe the first three skeletons for vectors, with v, vl and vr denoting vectors with

elements vi, vli and vri where 0 < i ≤ n. For a more extensive and formal discussion of skeletons see [6].

• The map skeleton applies a unary function f to each element of an input vector v, i. e.

map f [v1, v2, . . . , vn] = [f (v1), f (v2), . . . , f (vn)]

In a SkelCL program, a map skeleton is created as an object for a unary function f , e. g. negation, like this:

Map<float(float)> neg("float func(float x)return -x; ");

755 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

The map object can then be called as a function with a vector as argument:

resultVector = neg(inputVector);

The map skeleton is defined accordingly for matrices.

• The zip skeleton operates on two vectors vl and vr, applying a binary operator ⊕ pairwise:

zip (⊕) [vl1, vl2, . . . , vln] [vr1, vr2, . . . , vrn] = [vl1 ⊕ vr1, vl2 ⊕ vr2, . . . , vln ⊕ vrn]

In SkelCL, a zip skeleton object for adding two vectors is created like this:

Zip<float(float, float)> add("float func(float x, float y)return x+y; ");

and can then be called as a function with a pair of vectors as arguments:

resultVector = add(leftVector, rightVector);

The zip skeleton is defined accordingly for matrices.

• The reduce skeleton computes a scalar value from a vector using an associative binary operator ⊕, i. e.

red (⊕) [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ · · · ⊕ vn

For example, to sum up all elements of a vector, the reduce skeleton is created and called as follows:

Reduce<float(float)> sum_up("float func(float x, float y)return x+y; ");

result = sum_up(inputVector);

In SkelCL, rather than writing low-level kernels, the application developer customizes suitable skeletons by

application-specific functions which work on basic data types and, therefore, are often much simpler than kernels

that work with pointers. Skeletons can be executed on both single- and multi-GPU systems. On a multi-GPU

system, the calculation specified by a skeleton is performed automatically on all GPUs of the system.

3.3. Data Distributions
For multi-GPU systems, SkelCL’s parallel container data types (vector and matrix) abstract from the separate

memory areas on multiple GPUs, i. e., container’s data is accessible by each GPU. To simplify the partitioning

of a container on multiple GPUs, SkelCL supports the concept of distribution that specifies how a container is

distributed among the GPUs. It allows the application developer to abstract from managing memory ranges which

are shared or partitioned across multiple GPUs.

CPU

GPUs0 1

(a) single

CPU

GPUs0 1

(b) copy

CPU

GPUs0 1

(c) block

CPU

GPUs0 1

(d) overlap

Fig. 3. Distributions of a vector in SkelCL.

Four kinds of distribution are currently available to the application developer in SkelCL: single, copy, block,

and overlap (see Fig. 3 for illustration on a system with two GPUs). If set to the single distribution (Fig. 3a),

container’s whole data is stored on a single GPU (the first GPU if not specified otherwise). The copy distribution

(Fig. 3b) copies container’s entire data to each available GPU. With the block distribution (Fig. 3c), each GPU

stores a contiguous, disjoint block of the container. The overlap distribution (Fig. 3d) is used for the mapOverlap

skeleton: it stores on both GPUs a common block of data from the border between the GPUs. The application

developer can set the distribution of containers explicitly or every skeleton selects a default distribution for its

input and output containers otherwise. The distribution of a container can be changed at runtime: this implies data

exchanges between multiple GPUs and the CPU, which are performed by the SkelCL implementation implicitly.

As shown in Listing 3, implementing such data transfers in the standard OpenCL is a cumbersome task: data has

to be downloaded to the CPU before it can be uploaded to other GPUs, including the corresponding length and

offset calculations; this results in a lot of low-level code which is completely hidden when using SkelCL.

756 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

3.4. The SkelCL Library

The SkelCL Library is our current implementation of the SkelCL programming model. It provides to the user

a C++ API that implements the features of the SkelCL programming model, and thus liberates the application

developer from writing low-level boilerplate code. In addition, the library provides some commonly used utility

functions, e. g., for program initialization. For flexibility, SkelCL skeletons can accept additional arguments if

the customizing function works not only on a skeleton’s input containers, but needs access to additional data [7];

containers passed as additional arguments to a skeleton are automatically transfered to the GPUs. SkelCL can also

be used in combination with existing OpenCL codes, as SkelCL is designed as an extension of OpenCL, rather

than a replacement for it.

In OpenCL, kernels are compiled at runtime of the host program in order to be executable on different GPUs.

Therefore, in the SkelCL library implementation, the customizing functions are provided as strings to their skele-

tons. SkelCL implementation merges the customizing function with the pre-implemented skeleton-specific pro-

gram code to build a valid OpenCL kernel automatically. The generated kernel fetches one or more data items

from its input containers (vectors or matrices), passes them to the customizing function, and yields the function’s

result, e. g., by writing it to the output container. Rather than working with pointers to GPU memory (like kernels

do), customizing functions in SkelCL take a single data item as input and return a single result. The SkelCL

implementation of the vector container resembles the interface of the vector from the C++ Standard Template

Library (STL), i. e., it can be used as a replacement for the standard vector. Internally, the containers manage

pointers to the corresponding areas of the main memory (accessible by the CPU) and GPU memory. For possible

optimizations of the kernel’s source code, we rely on the optimization capabilities of the OpenCL compiler.

In some situations, our SkelCL implementation can optimize data transfers: e. g., after executing a skeleton,

the output data remains in the GPU memory; this has the advantage that if the output container is used as the input

to another skeleton, no data transfer has to be performed. Such lazy copying implemented in SkelCL minimizes

costly data transfers between the CPU and GPUs.

4. Implementing the LM OSEM Algorithm using SkelCL

We assess the programming effort and runtime performance of our approach by comparing the SkelCL imple-

mentation of the LM OSEM algorithm against its OpenCL implementation.

Programming effort. The parallel SkelCL code in Listing 5 fully retains the original sequential structure of List-

ing 1, which makes it well structured and easily understandable. The sequential loops are replaced by skeleton

calls (line 18 and 24) which take the code from the corresponding loop’s body, and only 5 lines of code are added

for data distribution (lines 13 – 15 and 20 – 21). The computation of the error image is expressed using a map

skeleton (lines 1 – 4). Due to memory restrictions, it is not possible to apply the map skeleton to the whole vector

s: map is rather applied to a vector of size 512 (line 9), such that for every index a block of elements is processed

using the loop in line 2. Since detecting memory restrictions and applying blocking automatically is non-trivial,

SkelCL currently relies on the user to resolve such situations. The event vector, the image estimate, and the error

image are passed as additional arguments to the skeleton. The zip skeleton is used for updating the error image

(line 5 – 6).

The SkelCL-based implementation of the LM OSEM is considerably shorter than the OpenCL code: with 232

lines of code (customizing functions: 200 lines, host program: 32 lines) as compared to 436 lines of code (kernel

functions: 193 lines, host program: 243 lines) in the OpenCL-based implementation; we save almost 50% of the

lines of code. When using SkelCL, we do not have to implement the tedious and lengthy initialization of OpenCL.

Expressing the computations as skeletons liberates us from dealing with pointers in the kernel and repeatedly

performing the same sequence of steps for each computation. By using container data types, we avoid additional

programming effort to implement data transfers between CPU and GPU or between multiple GPUs, and we obtain

a multi-GPU-ready implementation of LM OSEM for free.

757 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

1 Map <void(int)> computeC_l("void func(int index , event* s, float* f, float* c_l) { \

2 for (int i = index; i < subset_size ; i+=512) { \

3 // compute A_i // compute local error // add local error to c_l \

4 } }");

5 Zip <float(float , float)> updateF("float func(float f_i , float cl_i) { \

6 if (cl_i > 0.0) return f_i * cl_i; else return f_i; }");

7

8 Vector <float > f = readStartImage ();

9 Vector <int > index = createIndexVector (512);

10 for (i = 0; i < num_iterations; ++i) {

11 Vector <event > s = read_subset (); // read subset s from file

12 Vector <float > c_l(image_size);

13 s.setDistribution(block);

14 f.setDistribution(copy);

15 c_l.setDistribution(copy , add);

16

17 /* step 1. compute error image c_l */

18 computeC_l(index , s, f, c_l);

19

20 f.setDistribution(block);

21 c_l.setDistribution(block);

22

23 /* step 2. update image estimate f */

24 f = updateF(f, c_l); }

Listing 5. SkelCL code of the LM OSEM algorithm

Runtime performance. We tested the performance of our implementations using an NVIDIA Tesla S1070 system

comprising 4 Tesla GPUs. Each GPU consists of 240 streaming processors.

Fig. 4 compares the runtime of one iteration for our SkelCL and OpenCL implementations using one, two,

and four GPUs, correspondingly. While the differences in the programming effort to implement the two versions

are significant, the differences in runtime are very small. When running on a single GPU, both implementations

take the same time (3.66 seconds) to complete. With two and four GPUs, the OpenCL implementation slightly

outperforms the SkelCL implementation, being 1.2% and 4.7% faster. We presume that the increasing overhead

is caused by the more complex data distribution performed when using more GPUs. Comparing to the significant

reduction in programming effort (50%), the runtime overhead of less than 5% is arguably a moderate one.

0

1

2

3

1 2 4
Number of GPUs

R
un

tim
e

in
 s

ec
on

ds

SkelCL

OpenCL

Fig. 4. Average runtime of one iteration of the LM OSEM algorithm using SkelCL and OpenCL.

758 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

5. Conclusion and Related Work

This paper presented the SkelCL high-level programming model for multi-GPU systems and its implemen-

tation as a library. We focused on programming methodology and, therefore, deliberately restricted ourselves

to a single sample real-world application as motivation example and benchmark for experiments. Additional

application examples can be found on the SkelCL website http://skelcl.uni-muenster.de, including LU

decomposition, computation of the Mandelbrot set, matrix multiplication, Jacobi stencil computations, B+ tree

traversal, the Mersenne Twister, etc. SkelCL is freely available as open source software.

The SkelCL programming model significantly raises the level of abstraction: it combines parallel patterns to

express computations, parallel container data types for simplified memory management and a data (re)distribution

mechanism to improve scalability in systems with multiple GPUs. Our SkelCL library significantly reduces the

amount of source code necessary to implement the sample imaging application (by 50%) and frees the appli-

cation developer from low-level memory management and other tedious programming tasks. The performance

experiments show that SkelCL introduces a moderate overhead of less than 5% as compared to the arguably more

complicated and error-prone OpenCL implementation.

A considerable amount of work exists in the filed of algorithmic skeletons; for an overview we refer to [6].

There are several related approaches to raise the level of program abstraction in GPU programming. While SkelCL

can be used for programming multiple OpenCL capable GPUs, the CUDA-based Thrust [8] library simplifies

programming only for a single NVIDIA GPU. As SkelCL, SkePU [9] is a skeleton library targeting multi-GPU

systems. In contrast to our work which is based entirely on the portable OpenCL, SkePU is implemented with

multiple back-ends which restrict the application developer to the back-ends’ smallest common set of functions

and, thus, prevents the user from applying optimizations, like using the fast local GPU memory.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments.

References

[1] NVIDIA CUDA C Programming Guide, Version 5.0 (February 2013).

[2] A. Munshi, The OpenCL Specification, Version 1.2.

[3] A. J. Reader, K. Erlandsson, M. A. Flower, R. J. Ott, Fast Accurate Iterative Reconstruction for Low-Statistics Positron Volume Imaging,

Physics in Medicine and Biology 43 (4) (1998) 835.

[4] M. Schellmann, S. Gorlatch, D. Meiländer, T. Kösters, K. Schäfers, F. Wübbeling, M. Burger, Parallel Medical Image Reconstruction:

From Graphics Processors to Grids, in: Proceedings of the 10th International Conference on Parallel Computing Technologies, PaCT ’09,

Springer-Verlag, Berlin, Heidelberg, 2009, pp. 457–473.

[5] R. L. Siddon, Fast Calculation of the Exact Radiological Path for a Three-Dimensional CT Array, Medical Physics 12 (2) (1985) 252–255.

[6] S. Gorlatch, M. Cole, Parallel Skeletons, in: Encyclopedia of Parallel Computing, 2011, pp. 1417–1422.

[7] M. Steuwer, P. Kegel, S. Gorlatch, SkelCL – A Portable Skeleton Library for High-Level GPU Programming, in: 2011 IEEE 25th

International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2011, pp. 1171–1177.

[8] J. Hoberock, N. Bell, Thrust: A Parallel Template Library (2009).

[9] J. Enmyren, C. Kessler, SkePU: A Multi-Backend Skeleton Programming Library for Multi-GPU Systems, in: Proceedings 4th Int.

Workshop on High-Level Parallel Programming and Applications, 2010, pp. 5–14.

