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Abstract 

This article describes the development of closed form polynomial equations for 

compression and shear buckling to assess the effect of Bending-Twisting coupling on 

infinitely long laminated plates with simply supported edges.  The equations are used to 

generate contour maps, representing non-dimensional buckling factors, which are 

superimposed on the lamination parameter design spaces for laminates with standard 

ply orientations.  The contour maps are applicable to two recently developed databases 

containing symmetric and non-symmetric laminates with either Bending-Twisting or 

Extension-Shearing Bending-Twisting coupling.  The contour maps provide new 

insights into buckling performance improvements that are non-intuitive and facilitate 

comparison between hypothetical and practical designs.  The databases are illustrated 
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through point clouds of lamination parameter coordinates, which demonstrate the effect 

of applying common design heuristics, including ply angle, ply percentage and ply 

contiguity constraints. 
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Nomenclature 

A, Aij  = extensional stiffness matrix and its elements, i,j = x, y, s  

D, Dij  = bending stiffness matrix and its elements, i,j = x, y, s  

E1,2, G12  = in-plane Young’s moduli and shear modulus 

H  = laminate thickness (= number of plies, n  ply thickness, t) 

Nx, Ns  = compression and shear buckling load (N/mm)  

kx, ks  = non-dimensional buckling load factor for compression and shear 

n  = number of plies in laminate stacking sequence 

Qij  = reduced stiffness elements 

t  = ply thickness 

UE, UG  = laminate invariants for equivalent isotropic properties, EIso and GIso  

U, UR  = laminate invariants for orthotropic properties 

x,y,z  = principal axes 

  = buckling half-wave 
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ij  = Poisson ratio 

A , A

R   = lamination parameters for orthotropic extensional stiffness 

A

c
, A

Rc   = lamination parameters for coupled extensional stiffness 

D , D

R   = lamination parameters for orthotropic bending stiffness 

D

c
, D

Rc   = lamination parameters for coupled bending stiffness 

 

1. Introduction 

The effect of Bending-Twisting coupling continues to be ignored in studies relating to 

the buckling performance of plate or panel structures, which is broadly justified on the 

basis that the effects dissipate for laminates with a large number of plies.  However, 

there is a significant body of research demonstrating that compression buckling strength 

may be overestimated (unsafe) and shear buckling strength may be overestimated or 

underestimated (over-designed) if the effects of Bending-Twisting coupling are ignored.   

In this study, the effect of Bending-Twisting coupling on infinitely long laminated plates 

with simply supported edges is investigated, which complements an extensive literature 

on the subject, where the focus is primarily on finite length plates.   

The relative buckling performance of adopting non-symmetric laminate designs is also 

revealed.  With very few exceptions, the study of Bending-Twisting coupling effects has 

focussed entirely on symmetric designs.   

Recent research has led to laminate design databases containing Extension-Shearing [1] 

and/or Bending-Twisting coupling [2].  The results have demonstrated that the design 

spaces contain predominantly non-symmetric stacking sequences.  All are immune to 
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thermal warping distortions by virtue of the fact that their coupling stiffness properties 

are null (B = 0), as would be expected from symmetric laminate configurations.  

Heuristic design rules [3] are now applied to these databases to assess the effect on 

optimum buckling performance of practical rather than hypothetical designs.  The 

reduction in the design space is readily quantified through graphical representation of 

the lamination parameter design space. 

New insights into compression and shear buckling strength are provided via buckling 

factor contour maps, which are superimposed onto the lamination parameter design 

spaces.  Contour mapping is applied to cross-sections through the design space, to allow 

detailed interrogation of the effects of Bending-Twisting coupling on buckling strength.  

The mapping is also applied to external surfaces of the feasible domain of lamination 

parameters, since these surfaces represent the bounds on buckling strength.  The results 

are applicable to infinitely long plates with simply supported edges, which represent 

useful lower-bound solutions for preliminary design optimisation.   

Notable contributions addressing infinitely long plates [4,5] adopted non-dimensional 

parameters, which differ from the lamination parameters used here.  More importantly 

however, the buckling factor results presented were normalised by a bending stiffness 

parameter, which varies across the designs space, hence buckling performance is not 

directly comparable.  Early studies on finite length plates have also adopted these non-

dimensional parameters [6], as have the most recent studies [7], but a separate body of 

work has adopted lamination parameters [8-10] to aid optimum design.  Comparisons 

with the infinitely long plate results of this study are therefore possible only for aspect 

ratios that correspond to the asymptotic result. 

 



 5 

2. Design space interrogation 

Ply angle dependent lamination parameters allow the stiffness terms to be expressed as 

linear variables within convenient bounds.  However, the optimized lamination 

parameters must be matched to a corresponding laminate configuration within the 

feasible region, which is aided here by graphical representation of the lamination 

parameter design spaces [1,2].  In practical design however, heuristic rules are 

commonly applied, which generally involve constraints on ply percentages, ply 

contiguity and ply orientations [3].   

Elements of the extensional stiffness matrix [A] are related to the lamination parameters 

by: 

 
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2 / 2

/ 2 / 2
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 (1) 

where laminate invariants are defined in terms of the reduced stiffnesses: 
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 (2) 

UE and UG are invariants associated with the equivalent isotropic properties of the 

laminate: 
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 21E iso iso

G iso

U E

U G

 


 (3) 

where Eiso, Giso and iso are the equivalent isotropic properties of the composite material, 

defined as:  

Eiso = 2(1 + iso)Giso 

Giso = (Q11 + Q22  2Q12 + 4Q66)/8 

iso = (Q11 + Q22 + 6Q12  4Q66)/(3Q11 + 3Q22 + 2Q12 + 4Q66) = 1 – 2UG /UE 

(4) 

U is associated with orthotropy along axes 1 and 2, i.e. parallel and perpendicular to 

the fibre direction.   

UR has a complex physical meaning.  It is a residual property contained in all elements 

of the stiffness matrix and is a function of Axx, Axy and Ass.  It also produces square 

symmetry, i.e., Axx = Ayy, when the lamination parameter A  = 0. In this case, U is 

rendered zero, Ass = (Axx – Axy)/2 corresponds to - A

R  and, for off axis orientation of a 

laminate, , containing standard ply angles (0 + ), (90 + ), (45 + ) and (-45 + ), Axs 

= -Ays.  When A  = A

R  = 0, Ass = GisoH.   

The above equations are identical to the original equations [11].  Only the notation has 

been reformulated. The authors believe that this new notation is more intuitive, as it 

refers to the physical interpretation of the invariants and lamination parameters.  Also, 

since there are only two material properties for an isotropic material, only two 

invariants (UE and UG) are used to describe the equivalent isotropic properties of the 

laminate; the original definition of the lamination parameters uses three invariants (U1, 

U4 and U5) that are linearly dependent. 
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The ply orientation dependent lamination parameters are also related to the number of 

plies, n, by the following expressions: 

       
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       

     

       

   

/ cos 2 1 / cos 2

cos 2 cos 2 /

/ cos 4 1 / cos 4

cos 4 cos 4 /

/ sin 2 1 / sin 2

sin 2 si

A

A

R

A

c

n n n n n n

n n n n n

n n n n n n

n n n n n

n n n n n n

n n n n

  

 

  

 

  



        

 

       

 

        



  

    

  

    

  

   

o o o

o o o

o o o

       

       

        

       

     

n 2 /

/ sin 4 1 / sin 4

sin 4 sin 4 /

A

Rc

n

n n n n n n

n n n n n



  

 



       

 



  

    o o o
       

 (5)  

where the subscripts ±,  and  represent ±45°, 0° and 90°, respectively.  Note that 

A

Rc  = 0 for the standard angle ply configurations chosen here, hence the [A] matrix is 

described by a three dimensional lamination parameter coordinate, which reduces to a 

two dimensional coordinate if [A] is uncoupled.   

Elements of the bending stiffness matrix [D] have the same form as for the extensional 

stiffness and are related to the lamination parameters by: 

 
3

2 / 2

2 / 2
12

/ 2 / 2

D D D D D

E R R E G R R c Rc R

D D D D D

E G R R E R R c Rc R

D D D D D

c Rc R c Rc R G R R

xx xy xs

xy yy ys

xs ys ss

U U U U U U U U
H

U U U U U U U U

U U U U U U

D D D

D D D

D D D

    

    

    

   

   

   

     
 

      
    

 
 

  
 
 

D

     

 (6) 

Note also that D

Rc  = 0 for standard ply orientations, hence the [D] matrix is described by 

a three dimensional lamination parameter coordinate for all designs considered here. 
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2.1 Effect of design heuristics on the lamination parameter design space 

Ply percentages are applicable to the design of in-plane properties, which directly affect 

the extensional stiffness matrix [A].  The effect on the bending stiffness design space 

has not previously been assessed.   

Practical design is often based on ply percentages [3], which are readily converted from 

the associated ply numbers for each orienation. The 10% rule is applied here, which 

corresponds to the minimum ply percentage for each ply orientation.  These percentages 

can be mapped onto the lamination parameter design space as illustrated on Fig. 1.  

Figure 1(a) relates ply percentages† to the orthotropic parameters, A  and A

R , and Fig. 

1(b) introduces the anisotropic or coupling parameter, A

Rc , which is zero in balanced 

laminates.  The commonly applied 10% rule restricts the design space to the central 

triangular region indicated with broken lines.   

Reduced data sets, after applying the 10% rule to the databases containing Extension-

Shearing [1] and/or Bending-Twisting coupling [2] are presented as lamination 

parameter point clouds in Figs 2 and 3, where each point represents an individual or 

coincident laminate design.  The use of standard ply orientations produces a feasible 

design space defined by a regular tetrahedron.  The effect on the lamination parameter 

design space of applying the 10% rule is illustrated as isometric projections.  The 

bounds of the 10% rule form a triangular plane within the feasible region when the 

                                                 

† Erratum: 

In the published article (https://doi.org/10.1016/j.compstruct.2017.09.085), the 

ascending values corresponding to the ‘% of ±45 plies’ on Fig. 1(a) are incorrect, i.e., 

the values appear in descending order.  The values corresponding 90%, 80%, …., 10%, 

should therefore be replaced with 10%, 20%, …, 90%, respectively. 
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extensional stiffness is uncoupled, i.e. for Bending-Twisting coupled only designs, 

illustrated in Fig. 2(a) and (b), for symmetric and non-symmetric laminate designs, 

respectively.  By contrast, bounds of the 10% rule form a reduced tetrahedron for 

Extension-Shearing Bending-Twisting coupled designs, illustrated in Fig. 2(c) and (d), 

for symmetric and non-symmetric laminate designs, respectively.   

The corresponding lamination parameter point clouds for bending stiffness are 

illustrated in Fig. 3.  Here, the effect of the 10% rule appears to have had limited impact 

on the extent of the point clouds in comparison to the fully populated designs spaces 

[1,2].   

Additional design constraints, such as ply contiguity, are often applied in design 

practice.  Tables 1 and 2 demonstrate the number of laminate designs for Bending-

Twisting and Extension-Shearing Bending-Twisting coupled laminate designs, 

respectively, for different ply contiguity constraints (1, ≤2 and ≤3) within the 10% rule 

design space.  These results reveal that the common contiguity constraint of having no 

more than 3 adjacent plies with the same orientation, virtually match the constraint of 

the 10% rule, across ply number groupings with up to (n =) 18 plies, for both symmetric 

and non-symmetric designs. 

Orthographic projections of lamination parameter data for Extension-Shearing Bending-

Twisting coupled designs, given in Fig. 4 for symmetric laminates and in Fig. 5 for non-

symmetric laminates, provide high fidelity detail of the combined effects of the 10% 

rule and the ply contiguity constraint (≤3) most commonly used in aerospace 

applications.  Each point within the 3-dimensional design space represents a physical 

design, for which the stacking sequences are known.  These can be readily compared to 

the full design space, presented elsewhere [1].  It can be clearly seen that the major 
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impact on the reduced design space for extensional stiffness is not carried through to the 

design space for bending stiffness.  The fact that the point cloud of individual laminate 

designs extends to the bounds of the feasible region will be seen to have important 

implications on buckling strength.   

Note that the bias in the position of the lamination parameter point cloud towards the 

positive D

c
 region of the design space is a result of the first (surface) ply being set to 

+45; the point cloud is mirrored about the D

c
 axis if the signs of the angle plies are 

switched.   

 

2.2 Interpretation of Lamination parameter design spaces 

The data illustrated in Figs 4 and 5 can be interpreted in a number of ways for the 

purposes of preliminary design.  Lamination parameter design spaces, corresponding to 

the extensional stiffness data, can be interpreted through the ply percentage mapping in 

Fig. 1, which is an important consideration for material strength design.  Lamination 

parameters for bending stiffness may be interpreted through a similar mapping 

procedure for buckling strength.  The latter will help designers to understand the 

consequences of ignoring the effects of Bending-Twisting coupling in compression 

loaded plates as well as the potential for optimised design solutions in shear loaded 

plates, when common design heuristics are incorporated. 
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3. Buckling of Infinitely Long Plates 

Bounds on the buckling performance of (infinitely) long, simply supported, ‘symmetric’ 

Bending-Twisting coupled laminates have been extensively investigated under both 

compression [6] and/or shear [4].  Hence, in view of the significant number of non-

symmetric and other forms of sub-sequence symmetry recently identified [1,2], which 

result in a vast increase in the possible design space for Bending-Twisting coupled 

laminate designs, the possibility of additional gains in buckling performance, above 

symmetric laminates, can now be explored.   

 

3.1 Closed form solution for Compression Buckling 

Infinitely long compression loaded plates with simply supported edges provide a 

convenient lower-bound solution, and are useful for preliminary design.  A closed form 

solution, necessary to handle the vast number of designs, can also be used to assess the 

buckling strength exactly: 

 
2

2 2

, 2 4

1 1 1
2 2x xx xy ss yyN D D D D

b b
 




    
       

     

 (7) 

For Bending-Twisting coupled laminates, approximate closed form solutions must be 

adopted [5,7], or developed.   

For orthotropic laminates, the following buckling equation, representing a 2 

dimensional, 4
th

 order polynomial can be solved against the exact closed form buckling 

solution from equally spaced points across the lamination parameter design space: 
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         
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        

 (8) 

where in this case, k = kx, and is defined by: 

2

,

, 2

x

x

Iso

N b
k

D



   

 

(9) 

Normalisation of the buckling factor, k, involves the bending stiffness, Diso, of the 

equivalent isotropic laminate, for which all lamination parameters are zero, hence: 

Diso = UEH
3
/12 (10) 

This normalisation ensures that buckling factor results are comparable across the design 

space; the relative change in buckling factor kx is the same as the relative buckling load 

Nx,.  Exact buckling factor results are established at 15 sample points, corresponding to 

the grid point intersections formed by the equilateral triangles illustrated on the cross-

section in Fig. 6(a).  These results give rise to the coefficients c1 – c15 in Eq. (8), leading 

to the following closed form solution, which is applicable to all fully uncoupled 

laminates [12], for IM7/8552 carbon-fiber/epoxy material with Young’s moduli E1 = 

161.0GPa and E2 = 11.38GPa, shear modulus G12 = 5.17GPa and Poisson ratio 12 = 

0.38: 

   

     

2 2

,

4 2 2

4.000 1.049 1.217 0.340

0.360 0.034     

D D D D

x R R

D D D

R

k    

  

  

 

   

 
 

(11) 

Equation (11) is used to develop the isolines of constant buckling factor, kx,, illustrated 

on Fig. 6(b).  The top corners of the triangular region of Fig. 6(b), representing 

laminates with 90 or 0 degree plies only, have buckling factor kx, = 1.68 (with 
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buckling half-waves b/ = 1.94 = (Dyy/Dxx)
¼
 and /b = 1.94, respectively), whereas the 

bottom corner, representing laminates with 45 plies only, has buckling factor kx, = 

5.05 (with buckling half-wave  = b).  The centre of the contour map, at which all 

lamination parameters are zero, represents the fully isotropic laminate and gives the 

classical buckling factor result, kx, = 4.00. 

The 3-dimensional representation of the feasible design space in Fig. 6(a) indicates the 

positions through which other cross-sections are taken in order to maintain constant 

magnitude of Bending-Twisting coupling ( D

c
 ≠ 0).  In these cases an exact infinite strip 

analysis [13] has been adopted to generate buckling factors at the same relative grid 

point locations, as illustrated on Fig. 6(a), for each discrete cross-section throughout the 

lamination parameter design space.  This analysis was also used as a validation process 

for the compression buckling results.  Coefficients for other cross-sections throughout 

the lamination parameter design space, 0 ≤ D

c
 ≤ 0.9, are given in Table 3.   

Note: 

 When D

c
 = ±1.0, the design space degenerates to a single point with kx, = 

2.19. 

 Lamination parameter bounds are -1.0 ≤ D

c
 ≤ 1.0.  Negative D

c
 are 

identical to positive D

c
. 

The buckling strength relationship at any cross-section is determined by substituting the 

appropriate coefficients of Table 3 into Eq. (8).  Note that the number of significant 

figures in the coefficients of Table 3 have been reduced, but are sufficient to maintain a 

buckling factor accurate to 2 decimal places. 
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3.2 Closed form solution for Shear Buckling 

There are no closed form solutions for orthotropic laminates in shear, hence the 

following section develops new closed form solutions for shear bucking, using the exact 

infinite strip analysis [13] to generate buckling factors at the grid point locations 

illustrated on Fig. 6(a) and develop the polynomial coefficients for each slice through 

the lamination parameter design space, representing Bending-Twisting coupled designs, 

following the same procedure used for compression buckling in the foregoing sub-

section.   

For the orthotropic laminate, the closed form solution for positive and negative shear 

loading is identical, and is obtained by substituting the calculated coefficients from the 

1
st
 column of Tables 4 and 5, respectively, into Eq. (8).   

   

         
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3 3 2 2 4
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5.336 – 2.914 – 0.518 –1.303 – 0.213 1.048
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D D D D D D

R R R

D D D D D D D

R R R

D D D D D D D

R R R

k



     

      

      

   

   

  

 

 

 

   

      

     (12) 

where in this case, k = ks, and is defined by: 

2

,

, 2

s

s

Iso

N b
k

D



    (13) 

and gives the classical shear buckling factor result, ks, = 5.34 [14], for the isotropic 

design, i.e., when all lamination parameters are set to zero.  The resulting contour map 

is illustrated in Fig. 6(c), illustrating isolines of constant buckling load factor across the 

lamination parameter design space.  Positive shear direction is defined together with 
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positive fibre angle direction in Fig. 6(a), for a plate of width b and infinite length (a = 

).  The top corners of the triangular region of Fig. 6(c), representing laminates with 

90 and 0 degree plies only, have shear buckling factors ks, = 4.91 and 1.31, 

respectively, whereas the bottom corner, representing laminates with 45 plies only, 

has buckling factor ks, = 5.61.   

For Bending-Twisting coupled laminates, D

c
 ≠ 0, coefficients for other cross-sections 

within the lamination parameter designs space, 0 ≤ D

c
 ≤ 0.9, are presented in Table 4 

for positive shear and Table 5 for negative shear.   

Note: 

 When D

c
 = 1.0, the design space degenerates to a point with minimum and 

maximum ks, = 1.38 and 8.84, for positive and negative shear, respectively.   

 Lamination parameter bounds are -1.0 ≤ D

c
 ≤ 1.0.  Negative D

c
 produce the 

same effect as a reversal in the shear load direction, hence only positive D

c
 are 

given. 

 

3.3 Contour mapping 

The closed form solution of Eq. (8), together with the associated coefficients of Tables 

3-5, are used to develop the selection of contours maps that follow.   

This contour mapping is applied to selected cross-sections through the design space, to 

allow detailed interrogation of the effects of Bending-Twisting coupling on buckling 



 16 

strength.  Each cross section through the tetrahedron becomes progressively smaller as 

the design space degenerates to a single point. 

Figure 7 represents a series of compression buckling factor contour maps, 

corresponding to discrete and gradually increasing magnitude of Bending-Twisting 

coupling D

R  = 0.1, 0.3, 0.5 and 0.7.  The symmetric contours of the fully uncoupled 

designs, illustrated in Fig. 6(b), now give way to increasing asymmetry in the contour 

pattern.  Previous work on compression loaded infinitely long plates [2] revealed that 

for hypothetical cases, buckling strength reduction can be up to 57%; corresponding to 

angle-ply only designs.  The data illustrated in Fig. 5 suggests that the 10% rule does 

nothing to reduce this risk if the design is poorly chosen.   

Figure 8 and 9 represent the equivalent series of positive and negative shear buckling 

factor contour maps, respectively.  These reveal minima and maxima on the sloping 

boundary of the feasible design space.  Previous work on shear buckling of infinitely 

long plates [1] revealed hypothetical buckling strength increase (reduction) can be up to 

58% (75%), which did not take account of these local maxima (minima). 

To investigate the global optima, the mapping procedure is applied to external surfaces 

of the feasible domain of lamination parameters, and illustrated as orthographic 

projections in Figs 10 and 11. These surfaces contain the upper bounds on buckling 

factor.  The contours also reveal local optima in locations that are non-intuitive.  For 

example: the off-centre spot height on the front and back sloping surfaces of the 

compression buckling contours of Figs 10(a) and (c) and; the global optimum for shear 

buckling corresponds to ks, = 9.06 @ ( D , D

R , D

c
) = (-0.18, -0.64, -0.82), which 

exceeds ks, = 8.84 @ ( D , D

R , D

c
) = (0, 1, -1) on the front (sloping) face of Fig 11(c), 
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corresponding to a hypothetical angle-ply only design, [45]nT.  A practical and near 

optimum design from the database, [453/90/45/90/45/45/0]S, satisfies both ply 

percentage and ply contiguity constraints, and leads to ks, = 8.98 @ ( D , D

R , D

c
) = (-

0.17, -0.65, -0.80). 

 

4. Conclusions 

 The impact of the 10% rule on reducing the lamination parameter design space 

for extensional stiffness has been shown to be similar for both symmetric and 

non-symmetric designs, with standard ply orientations and up to 18 plies.   

 The reduced design space, resulting from the application of the 10% rule, has 

been shown to virtually match to the application of the common design 

constraint of limiting the number of contiguous plies, i.e. adjacent plies with the 

same orientation, to a maximum of 3. 

 No significant impact has been observed on the size of the lamination parameter 

design space for bending stiffness as a result of the combined effect of the 10% 

rule and limiting the number of contiguous plies to a maximum of 3.  This 

implies that the upper and lower bounds on buckling strength, for both 

symmetric and non-symmetric designs, are not significantly affected by 

commonly applied heuristic design rules.   

 New insights have been given for optimum compression and shear buckling 

strength for infinitely long plates, through the superposition of contour maps 
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onto the lamination parameter design space for composite laminates with 

Bending-Twisting coupling.  
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Figures 

 

 

(a) 
 

(b) 

Figure 1 - Lamination parameter design space with ply percentage mapping for: (a) 

orthotropic stiffness ( A , A

R ) and; (b) anisotropic stiffness ( A

c
) relating to differing 

angle-ply percentages.  The 10% design rule constraint is also illustrated. 
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(a) (b) (c) (d) 

Figure 2 - Isometric view of lamination parameter design spaces for extensional 

stiffness, with 10% rule applied, corresponding to: (a) Symmetric and (b) Non-

symmetric Bending-Twisting coupled laminates with up to 18 plies and; (c) Symmetric 

and (d) Non-symmetric Extension-Shearing Bending-Twisting coupled laminates with 

up to 18 plies. 

 

 

(a) (b) (c) (d) 

Figure 3 - Isometric view of lamination parameter design spaces for bending stiffness, 

with 10% rule applied, corresponding to: (a) Symmetric and (b) Non-symmetric 

Bending-Twisting coupled laminates with up to 18 plies and; (c) Symmetric and (d) 

Non-symmetric Extension-Shearing Bending-Twisting coupled laminates with up to 18 

plies.  
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(a) 

Figure 4 - Lamination parameter design spaces for symmetric Extension-Shearing 

Bending-Twisting coupled laminates with 7  n  18, with 10% rule and ply contiguity 

constraints (≤3) applied, corresponding to isometric and orthographic projections (plan, 

front elevation and side elevation) for: (a) extensional stiffness ( A , A

R , A

c
) and; (b) 

bending stiffness ( D , D

R , D

c
). 
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(a) 

Figure 5 - Lamination parameter design spaces for non-symmetric Extension-Shearing 

Bending-Twisting coupled laminates with 7  n  18, with 10% rule and ply contiguity 

constraints (≤3) applied, corresponding to isometric and orthographic projections (plan, 

front elevation and side elevation) for: (a) extensional stiffness ( A , A

R , A

c
) and; (b) 

bending stiffness ( D , D

R , D

c
).    
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(a) (b) (c) 

Figure 6 - Three-dimensional representation of the feasible design space indicating (a) the positions through which two dimensional cross-

sections have been taken.  Positive shear load and positive fibre orientation are defined in the thumbnail sketch.  Sections representing fully 

uncoupled laminates [12] in bending, correspond to: (b) compression buckling contours, kx, (= Nxb
2
/2

DIso) and; (c) positive/negative shear 

buckling contours, ks, (= Nsb
2
/2

DIso). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7 - Compression buckling factor contours, kx, (= Nxb
2
/2

DIso), for: (a) D

c
 = 0.1: 

D

c
 = 0.3, D

c
 = 0.5 and D

c
 = 0.7, representing Bending-Twisting coupled laminates.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8 - Positive shear buckling factor contours, ks, (= Nsb
2
/2

DIso), for: (a) D

c
 = 0.1: 

D

c
 = 0.3, D

c
 = 0.5 and D

c
 = 0.7, representing Bending-Twisting coupled laminates.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9 - Negative shear buckling factor contours, ks, (= Nsb
2
/2

DIso), for: (a) D

c
 = 

0.1: D

c
 = 0.3, D

c
 = 0.5 and D

c
 = 0.7, representing Bending-Twisting coupled 

laminates.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10 - Lamination parameter design space surface contours for Compression 

buckling factor, kx, (= Nxb
2
/2

DIso), corresponding to 3
rd

 angle orthographic projections 

of: (a) Rear (sloping) face with; (b) Left (sloping) face; (c) Front (sloping) face and; 

Right (sloping) face. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11 - Lamination parameter design space surface contours for Positive Shear 

buckling factor, ks, (= Nsb
2
/2

DIso), corresponding to 3
rd

 angle orthographic projections 

of: (a) Rear (sloping) face; (b) Left (sloping) face; (c) Front (sloping) face and; Right 

(sloping) face. 
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Table 1 – Effect of ply contiguity constraints on the 10% rule design space for: (a) Symmetric and; (b) Non-symmetric Bending-Twisting 

coupled laminates. 

 

 (a) Symmetric laminates (b) Non-symmetric laminates 

n 1 ≤2 ≤3 10% 1 ≤2 ≤3 10% 

7 4 - - 4 - - - - 

8 - 6 - 6 - - - - 

9 10 14 18 18 - - - - 

10 - 20 - 24 - - - - 

11 14 30 44 48 8 14 16 16 

12 - 96 104 128 - - - - 

13 68 164 242 260 38 216 272 276 

14 - 422 - 534 36 204 220 224 

15 240 676 980 1,080 232 2,746 3,628 3,734 

16 - 1,572 1,790 2,302 158 2,064 2,734 2,868 

17 690 2,736 4,184 4,612 1,480 27,716 39,258 41,142 

18 - 6,000 7,142 9,324 826 21,180 31,568 34,154 
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Table 2 – Effect of ply contiguity constraints on the 10% rule design space for: (a) Symmetric and; (b) Non-symmetric Extension-Shearing 

Bending-Twisting coupled laminates. 

 

 (a) Symmetric laminates (b) Non-symmetric laminates 

n 1 ≤2 ≤3 10% 1 ≤2 ≤3 10% 

7 2 - - 2 - - - - 

8 - - - - - - - - 

9 26 40 42 42 4 8 - 8 

10 - 34 - 36 - - - - 

11 94 150 190 192 8 38 48 48 

12 - 214 224 260 8 32 36 36 

13 382 934 1,258 1,300 146 916 1,240 1,292 

14 - 1,114 1,264 1,560 36 412 560 592 

15 1,380 4,796 6,940 7,320 924 14,212 19,970 21,152 

16 - 5,104 6,102 7,882 266 5,554 8,498 9,288 

17 4,720 21,840 33,478 36,176 6,582 165,022 251,098 270,848 

18 - 22,016 27,772 37,212 1,896 62,632 102,178 114,638 
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Table 3 – Compression buckling coefficients for Eq. (8) for 0  D

c
 < 1.0. 

 

 
D

c
 

 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

c1 4.000 3.976 3.903 3.781 3.606 3.374 3.078 2.708 2.198 1.903 

c2 0.000 -0.014 -0.054 -0.119 -0.210 -0.329 -0.481 -0.674 -0.905 -1.384 

c3 -1.049 -1.049 -1.049 -1.050 -1.053 -1.060 -1.078 -1.099 -1.369 -0.042 

c4 -1.217 -1.235 -1.291 -1.391 -1.539 -1.742 -2.012 -2.395 -3.022 -2.872 

c5 0.000 0.000 -0.001 -0.003 -0.006 -0.012 -0.024 -0.008 -0.421 2.058 

c6 0.000 0.007 0.027 0.057 0.098 0.145 0.195 0.229 0.300 -0.358 

c7 0.000 -0.014 -0.073 -0.185 -0.360 -0.598 -0.894 -1.195 -1.324 -1.151 

c8 0.000 -0.001 0.000 -0.001 -0.001 -0.001 -0.004 0.029 -0.299 1.621 

c9 0.000 0.004 0.009 0.009 0.003 -0.014 -0.044 -0.108 -0.114 -1.027 

c10 0.340 0.351 0.390 0.452 0.542 0.671 0.843 0.997 0.975 3.589 

c11 -0.360 -0.399 -0.509 -0.697 -0.993 -1.456 -2.213 -3.501 -5.882 -11.944 

c12 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.012 -0.092 0.451 

c13 0.000 -0.002 -0.003 -0.004 -0.004 -0.003 0.001 0.003 0.055 -0.238 

c14 -0.034 -0.032 -0.041 -0.052 -0.066 -0.083 -0.127 -0.262 -0.581 0.594 

c15 0.000 -0.018 -0.047 -0.068 -0.065 -0.008 0.159 0.561 1.484 3.064 
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Table 4 – Positive shear buckling coefficients for Eq. (8) for 0  D

c
 < 0.9. 

 

 
D

c
 

 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

c1 5.336 4.943 4.539 4.123 3.693 3.245 2.776 2.279 1.701 1.356 

c2 -2.914 -2.841 -2.761 -2.675 -2.581 -2.476 -2.354 -2.203 -1.971 -1.822 

c3 -0.518 -0.542 -0.57 -0.602 -0.64 -0.685 -0.741 -0.808 -1.106 -0.02 

c4 -1.303 -1.332 -1.372 -1.423 -1.493 -1.591 -1.738 -1.985 -2.425 -1.929 

c5 -0.213 -0.211 -0.21 -0.208 -0.206 -0.205 -0.206 -0.191 -0.565 1.597 

c6 1.048 1.059 1.073 1.089 1.109 1.135 1.174 1.245 1.487 1.082 

c7 -0.236 -0.183 -0.132 -0.073 0.006 0.12 0.3 0.591 1.1 1.212 

c8 0.031 0.031 0.033 0.036 0.04 0.044 0.049 0.075 -0.22 1.476 

c9 -0.197 -0.19 -0.191 -0.197 -0.205 -0.211 -0.216 -0.204 -0.016 -0.809 

c10 0.405 0.363 0.332 0.301 0.257 0.187 0.064 -0.195 -0.657 1.608 

c11 -0.443 -0.469 -0.516 -0.586 -0.687 -0.831 -1.044 -1.367 -1.873 -3.69 

c12 -0.001 0.001 0.001 0.002 0.003 0.003 0.004 0.013 -0.08 0.406 

c13 0.022 0.016 0.013 0.01 0.01 0.014 0.015 0.023 0.103 -0.26 

c14 -0.185 -0.176 -0.179 -0.194 -0.223 -0.263 -0.332 -0.469 -0.65 0.901 

c15 0.472 0.487 0.523 0.584 0.672 0.804 1.001 1.286 1.739 1.455 
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Table 5 – Negative shear buckling coefficients for Eq. (8) for 0  D

c
 < 0.9. 

 

 
D

c
 

 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

c1 5.336 5.719 6.092 6.456 6.811 7.157 7.495 7.825 8.119 8.624 

c2 -2.914 -2.999 -3.074 -3.146 -3.218 -3.291 -3.369 -3.452 -3.516 -3.987 

c3 -0.518 -0.488 -0.464 -0.443 -0.424 -0.406 -0.389 -0.363 -0.489 0.431 

c4 -1.303 -1.293 -1.283 -1.273 -1.264 -1.256 -1.252 -1.261 -1.284 0.574 

c5 -0.213 -0.214 -0.216 -0.218 -0.218 -0.220 -0.219 -0.199 -0.481 1.100 

c6 1.048 1.047 1.044 1.040 1.034 1.025 1.012 0.999 1.099 -0.324 

c7 -0.236 -0.227 -0.254 -0.295 -0.339 -0.385 -0.421 -0.442 -0.429 -1.614 

c8 0.031 0.024 0.022 0.020 0.020 0.020 0.021 0.040 -0.203 1.024 

c9 -0.197 -0.163 -0.153 -0.155 -0.160 -0.165 -0.178 -0.187 -0.035 -1.803 

c10 0.405 0.353 0.354 0.374 0.403 0.436 0.469 0.466 0.464 4.874 

c11 -0.443 -0.370 -0.346 -0.353 -0.386 -0.449 -0.551 -0.702 -0.902 -2.378 

c12 -0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.007 -0.072 0.284 

c13 0.022 0.011 0.007 0.007 0.009 0.015 0.017 0.024 0.104 -0.616 

c14 -0.185 -0.134 -0.116 -0.114 -0.123 -0.135 -0.158 -0.221 -0.266 2.259 

c15 0.472 0.368 0.326 0.319 0.335 0.381 0.466 0.579 0.746 -0.588 
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Figure Captions 

Figure 1 - Lamination parameter design space with ply percentage mapping for: (a) 

orthotropic stiffness ( A , A

R ) and; (b) anisotropic stiffness ( A

c
) relating to differing 

angle-ply percentages.  The 10% design rule constraint is also illustrated. 

Figure 2 - Isometric view of lamination parameter design spaces for extensional 

stiffness, with 10% rule applied, corresponding to: (a) Symmetric and (b) Non-

symmetric Bending-Twisting coupled laminates with up to 18 plies and; (c) Symmetric 

and (d) Non-symmetric Extension-Shearing Bending-Twisting coupled laminates with 

up to 18 plies. 

Figure 3 - Isometric view of lamination parameter design spaces for bending stiffness, 

with 10% rule applied, corresponding to: (a) Symmetric and (b) Non-symmetric 

Bending-Twisting coupled laminates with up to 18 plies and; (c) Symmetric and (d) 

Non-symmetric Extension-Shearing Bending-Twisting coupled laminates with up to 18 

plies. 

Figure 4 - Lamination parameter design spaces for symmetric Extension-Shearing 

Bending-Twisting coupled laminates with 7  n  18, with 10% rule and ply contiguity 

constraints (≤3) applied, corresponding to isometric and orthographic projections (plan, 

front elevation and side elevation) for: (a) extensional stiffness ( A , A

R , A

c
) and; (b) 

bending stiffness ( D , D

R , D

c
). 

Figure 5 - Lamination parameter design spaces for non-symmetric Extension-Shearing 

Bending-Twisting coupled laminates with 7  n  18, with 10% rule and ply contiguity 

constraints (≤3) applied, corresponding to isometric and orthographic projections (plan, 
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front elevation and side elevation) for: (a) extensional stiffness ( A , A

R , A

c
) and; (b) 

bending stiffness ( D , D

R , D

c
).   

Figure 6 - Three-dimensional representation of the feasible design space indicating (a) 

the positions through which two dimensional cross-sections have been taken.  Positive 

shear load and positive fibre orientation are defined in the thumbnail sketch.  Sections 

representing fully uncoupled laminates [12] in bending, correspond to: (b) compression 

buckling contours, kx, (= Nxb
2
/2

DIso) and; (c) positive/negative shear buckling 

contours, ks, (= Nsb
2
/2

DIso). 

Figure 7 - Compression buckling factor contours, kx, (= Nxb
2
/2

DIso), for: (a) D

c
 = 0.1: 

D

c
 = 0.3, D

c
 = 0.5 and D

c
 = 0.7, representing Bending-Twisting coupled laminates.   

Figure 8 - Positive shear buckling factor contours, ks, (= Nsb
2
/2

DIso), for: (a) D

c
 = 0.1: 

D

c
 = 0.3, D

c
 = 0.5 and D

c
 = 0.7, representing Bending-Twisting coupled laminates.   

Figure 9 - Negative shear buckling factor contours, ks, (= Nsb
2
/2

DIso), for: (a) D

c
 = 

0.1: D

c
 = 0.3, D

c
 = 0.5 and D

c
 = 0.7, representing Bending-Twisting coupled 

laminates. 

Figure 10 - Lamination parameter design space surface contours for Compression 

buckling factor, kx, (= Nxb
2
/2

DIso), corresponding to 3
rd

 angle orthographic projections 

of: (a) Rear (sloping) face with; (b) Left (sloping) face; (c) Front (sloping) face and; 

Right (sloping) face. 

Figure 11 - Lamination parameter design space surface contours for Positive Shear 

buckling factor, ks, (= Nsb
2
/2

DIso), corresponding to 3
rd

 angle orthographic projections 
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of: (a) Rear (sloping) face; (b) Left (sloping) face; (c) Front (sloping) face and; Right 

(sloping) face. 


