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Abstract

Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-
family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH
proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is
recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass
spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined
the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was
measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but
transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with
mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The
PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile
suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an
invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365,
PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein
genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific
invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of
another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host
erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the
protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
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Introduction

Despite the recent renewed onslaught to tackle a disease that

infects 300-660 million people and kills one million each year

worldwide [1], the malaria parasite remains an elusive target.

During the asexual blood stage, which is responsible for the

disease, the parasite invades and develops within erythrocytes, but

the precise molecular mechanisms employed to gain entry into the

erythrocyte are still being worked out. A number of parasite

adhesion proteins have been identified as important in the

selection and invasion of host cells and have been grouped

according to structural and sequence homology rather than host

molecular specificity or cellular phenotype (reviewed in [2,3,4,5]).

The role of the actin-myosin motor complex in the invasion of

erythrocytes is also being elucidated [6,7]. Together, merozoite

surface proteins, the adhesion ligands and the motor complex add

up to a multifaceted molecular interaction that results in the

successful selection and invasion of host cells [3,4,5]. Understand-

ing the role played in the invasion cascade by adhesion proteins

with homologues in both human and rodent Plasmodium is of

paramount importance in the quest to design intervention tools

that will inhibit invasion pathways and so kill the parasite and

prevent disease.

Of the Plasmodium adhesion ligand families identified to date,

one of the most studied is the erythrocyte binding ligand family

(EBL), which includes P. falciparum erythrocyte binding antigen

(EBA)-175 and the Duffy binding protein (DBP) of P. vivax and P.

knowlesi (reviewed in [3,4]) located in the apical organelles of the
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merozoite. A second group of high molecular mass adhesion

proteins, which was first described in the rodent malaria parasite

Plasmodium yoelii as Py235 [8,9], is the reticulocyte binding-like

(RBL) super family, so named because of sequence homology with

the reticulocyte binding protein (RBP)-1 and RBP-2, of Plasmodium

vivax. In P. vivax, these proteins are thought to be involved in

erythrocyte selection as they bind to reticulocytes but not mature

erythrocytes thereby restricting P. vivax to the invasion of

reticulocytes [10]. P. falciparum contains a small group of genes

coding for proteins with similarities to Py235 and PvRBP, the

PfRH family [11,12,13]. In contrast to the PvRBP and PfRH gene

families, which are small, the Py235 multigene family contains at

least 11 members [9,14,15,16,17,18]. Analysis of the sequences on

fifteen contigs identified in the P. yoelii genome database [15],

which represent members of the Py235 gene family (and some of

which are incomplete), show they have overall conserved

structural elements [16,19,20].

The Py235 proteins have been implicated in the selection,

recognition and invasion of erythrocytes. For example, passive

immunization of mice with monoclonal antibodies (mAbs) 25.77

and 25.37 specific for Py235, or immunization of mice with mAb

25.77-affinity purified protein restricts the growth of the virulent

YM line of P. yoelii [8,21]. In these experiments the invasion profile

was switched from invasion of erythrocytes of all ages to invasion

of only reticulocytes, suggesting that the antibodies prevent

parasite recognition and invasion of mature erythrocytes. This

restriction in cell specificity resulted in a non-lethal infection

similar to that of the avirulent 17X line, in contrast to the normal

lethal phenotype of the YM parasite. Of note is the finding that a

combination of both protective mAbs together conferred greater

protection [22], suggesting that the epitope recognized by each of

the mAbs is not identical and may or may not be on distinct

members of the family.

Py235 proteins are released in soluble form from parasitized

cells maintained in vitro, and two of these are recognized by mAb

25.77 [23,24,25]. However, only one of these forms was detected

binding specifically and preferentially to the surface of mature

mouse erythrocytes [24]. Binding was to neuraminidase-resistant,

chymotrypsin- and trypsin-sensitive erythrocyte receptors, and the

binding was abolished by incubation with Py235-specific antibodies

[25].

Several invasion pathways coexist in a single parasite as

exemplified by P. vivax that requires selection of reticulocytes

(using the RBPs [26]) that are Duffy blood group antigen positive,

(using the DBP [27,28]) to successfully gain entry into the host cell.

In P. falciparum the Dd2 clone can switch from being dependent on

sialic acid for entry into the erythrocyte, allowing it to invade

neuraminidase-treated erythrocytes [29]. This change of pheno-

type has been found to be due to the up-regulation of PfRH4

[30,31]. Polymorphism due to amino acid substitutions in the

binding domain of PfRH5 leads to recognition of different

erythrocyte surface receptors, [32]. That several pathways are

available to a single parasite is further demonstrated by the

observation that invasion into an enzyme-treated cell is not all or

nothing even though enzymatic treatment goes to completion, (in

P. falciparum [11,33], and in P. yoelii [25]). Therefore, the invasion

pathway of a parasite depends not only on the set of ligands

expressed or silenced, some of which are coded by genes under

epigenetic control [34], but also on a molecular hierarchy that

determines which of the expressed ligands are used [2,3]. This

variant expression of adhesion-/invasion-related proteins is

thought to be primarily driven by immune evasion although it

may also help to increase the range of erythrocytes that can be

invaded [35,36].

Populations of P. yoelii asexual blood stage parasites express

multiple members of the py235 gene family [17,36,37]. Multiple

gene products were detected in individual schizonts although only

single products were identified in single merozoites, leading to the

suggestion that the presence of the family allowed clonal

phenotypic variation [38]. On the other hand, all merozoites

within schizonts reacted with mAb 25.77 [17], suggesting that they

either share the protein recognized by this antibody or the epitope

is present on multiple members of the family. We have previously

identified a specific erythrocyte binding member of the Py235

family (Py235EBP-1), which is recognized by mAb 25.77, and its

corresponding gene (py235ebp-1[PY01365]) [20].

Here, we describe the effect on parasite growth in vivo of deleting

the gene that encodes the Py235EBP-1 expressed in asexual blood

stages of the virulent P. yoelii YM line in order to better understand

the role of the Py235 protein family in erythrocyte recognition,

binding, and merozoite invasion. We also examine the expression

of other family members in this py235ebp-1 knock out (KO)

parasite line. Furthermore, we identify the proteins recognised by

the other protective mAb 25.37 to obtain an understanding of the

relationship in the invasion process between the two protective

mAbs and the Py235 proteins they recognize. Whilst there is no

difference in the level of expression of other genes in the family,

other proteins compensate for the loss of the erythrocyte binding

protein, highlighting the importance of functional redundancy to

provide plasticity in interaction with the host.

Results

py235ebp-1 (PY01365) can be deleted from the genome
of the virulent P. yoelii YM line

Disruption of the py235ebp-1 (PY01365) by insertion of the

DHFR cassette by double homologous recombination (Figure 1A)

was carried out. Southern blot analysis of digested gDNA from

transfected parasites selected with pyrimethamine identified a

single band of the expected size in this population, when the filter

was probed with a fragment of DHFR/TS (Figure 1B, lane 2). In

contrast, hybridization with the probe that binds to the 39 coding

region of py235ebp-1 (Fragment B), detected DNA in both the wild

Author Summary

Malaria parasites invade erythrocytes where they develop
and multiply before bursting out and invading fresh cells.
There are sequential steps to invasion; early in the process,
specific parasite proteins bind to molecules on the surface
of the erythrocyte. Tight binding forms a junction between
parasite and host cell leading to the next steps in the
invasion process. Several of these parasite proteins, which
establish contact with the host cell surface, are coded by
gene families. One family, first described in the rodent
parasite Plasmodium yoelii and found in all Plasmodium
spp, is often referred to as the reticulocyte binding ligand
family. In P. yoelii the proteins are called Py235 and are
coded by at least eleven genes. Previously, we identified
one family member which is the target of protective
antibodies that prevent parasite invasion. Here we have
deleted the gene for this protein and examined the
consequences. Other members of the family take the place
of the missing protein but their genes are not up-
regulated. The family provides the parasite with the
potential to recognize erythrocytes with different surface
receptors and evade the binding of protective antibodies
through plasticity at the level of its adhesion molecules.

Expression of Py235 Invasion-Related Genes

PLoS Pathogens | www.plospathogens.org 2 February 2011 | Volume 7 | Issue 2 | e1001288



type (WT) (2.3Kb) and the KO (3.8Kb) parasite lines as expected

(Figure 1B, lanes 3 and 4). Four individual clones (1 to 3 shown)

derived from the population of parasites gave a similar result with

both fragment B (Figure 1B, lanes 5 to 7) and the DHFR/TS

probe (Figure 1B, lanes 8 to 10), clearly showing that the PY01365

gene had been disrupted. Further evidence that the PY01365 gene

had been deleted from the P. yoelii genome was obtained by

chromosome analysis (Figure 1C). Hybridization with the probe

that binds to a 59 coding sequence of PY01365 (Fragment C),

detected a signal only in the WT parasite lanes, (Figure 1C, lanes 3

and 4). Hybridization with a probe that binds the 39 UTR of

DHFR/TS detected both the modified py235ebp-1 locus (chromo-

some 13/14) in the KO parasite line (Figure 1C, lanes 5 and 6)

and the endogenous dhfr locus (chromosome 7) in both KO and

WT parasites (Figure 1C, lanes 5 to 8). Hybridization of a

chromosome blot with the Fragment B probe identified a band in

all the lanes as expected (data not shown).

py235ebp-1 (PY01365) is a single copy gene in the P.
yoelii YM genome

Southern blot analysis of ten sets of double restriction enzyme

digested gDNA from WT P. yoelii YM-parasitized erythrocytes

probed with either Fragment B or C gave single bands under low

stringency washes (Figure 2). These data suggest that PY01365 is a

single copy gene in the line of P. yoelii YM parasites used in this

study. This conclusion is also supported by the absence of any

RNA-Seq reads mapping to any part of PY01365 from the

PY01365-KO parasite.

Figure 1. Targeted disruption of PY01365 (py235ebp-1) gene in P. yoelii. (A) Schematic showing the targeting construct used for gene
disruption by double homologous recombination into the PY01365 gene and the resultant targeted integrated locus. The positions of the DNA
probes (A, B and C) used in Southern blot analysis are indicated below the WT chromosomal locus. (B) Southern blot analysis of P. yoelii genomic DNA
from WT, transgenic parasites and cloned transgenic parasites, digested with Pci1 and Acc651. Probes used are a 921bp fragment of the Tg/DHFR
sequence (lanes 1, 2, 8, 9 and 10) and Fragment B, (lanes 3 to 7). The result of integration is seen at ,3.8 Kb (lanes 2 and 4 to 10); the unmodified
band at ,2.3Kb present in WT DNA was detected with Fragment B probe alone (lane 3). (C). Chromosomes from a cloned transgenic parasite line
(lanes 1, 2, 5 and 6) or WT parasites (lanes 3, 4, 7 and 8) were separated by pulse field gel electrophoresis and hybridized with Fragment C (lanes 1 to
4) and the Tg/DHFR probe (lanes 5 to 8). The position of chromosomes 13/14 and the endogenous DHFR on chromosome 7 is indicated.
doi:10.1371/journal.ppat.1001288.g001
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Merozoites in both WT and PY01365-KO parasitized
erythrocytes express proteins with epitopes recognized
by both mAb 25.77 and 25.37

The mAb 25.77 had previously been used to identify

Py235EBP-1, the product of the PY01365 gene. By IFA, this

mAb gives a punctuate pattern of fluorescence in the WT parasite

line (Figure 3A). Surprisingly, a similar pattern was also observed

for the PY01365-KO parasite line, even though Py235ebp-1 is no

longer being expressed. The pattern of reactivity (Figure 3B) was

similar but not identical to that of antibodies specific for the

micronemal protein, Apical Membrane Antigen 1 (AMA1) [39],

the erythrocyte binding ligand protein (EBL), which has a dense

granule location in this parasite line [40], and rhoptry neck

protein 4 (RON 4) [41]. Furthermore, when proteins released

into in vitro culture supernatant from radiolabeled WT and

PY01365-KO parasitized erythrocytes were immunoprecipitated

using mAbs 25.77 and 25.37 (Figure 3C), or bound to

erythrocytes, eluted and then immunoprecipitated (Figure 3D),

both mAbs recognized proteins of approximately 235 kDa

showing that Py235 proteins were expressed by both WT and

PY01365-KO parasite lines. Clearly the Py235 proteins now

expressed by the KO parasite line, although at least in part

different to those being expressed by the WT parasite, share

common epitopes bound by the antibodies.

Further confirmation that merozoites express epitopes recog-

nized by both mAb 25.77 and 25.37 was obtained using WT

parasitized erythrocytes in a dual labeling fluorescent assay. Alexa

Fluor 488-conjugated mAb 25.77 and Alexa Fluor 594-conjugated

mAb 25.37 were used to probe the same thin blood smears of

mixed stage WT P. yoelii YM parasites (Figure 3E). Overlay of the

individual images showed clearly that both antibodies recognized

the same parasites.

Two genes comprised of three different contigs encode
the Py235 proteins recognized by mAb 25.37

The gene encoding the protein recognized by mAb 25.77 and

expressed in WT parasites has previously been identified. A second

protective mAb 25.37 also recognizes Py235 proteins and we wished

to identify the protein(s) to which it binds. To identify the

corresponding genes, peptide mass fingerprinting was carried out

on the Py235 proteins affinity purified using mAb 25.37 from both

schizonts (Figure 4A) and from culture supernatant of WT parasites

maintained in vitro (Figure 4B) and fractionated by SDS-PAGE on a

5% gel. The peptides detected were derived from three contigs in

the genome database; one contained a full length (8172bp) py235

gene sequence, PY01185, and the remaining two contained partial

gene sequences (Table 1). Contig PY05995 is 2685bp in length and

contains sequence that aligned with the 59 end of other Py235 gene

Figure 2. Determination of the number of copies of PY01365 in the genome. Southern blot analysis of WT genomic DNA digested with
restriction enzymes. Panel A probed with Fragment C and digested with Hinc II and Hind III (lane 1), Hinc II and Acc 651 (lane 2), Hinc II and Bgl II (lane
3), Hinc II and Pvu I (lane 4) and Hinc II and Sca I (lane 5). Panel B probed with Fragment B and digested with Nco I and Sca I (lane 1), Nco I and Pvu I
(lane 2), Nco I and Pst I (lane 3), Nco I and Bgl II (lane 4) and Nco I and Acc 651 (lane 5). The migration of size markers (Kb) is indicated.
doi:10.1371/journal.ppat.1001288.g002
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family members, while PY03534 (5478bp) aligned with the 39 of

other Py235 genes. To establish whether or not these two contigs are

part of the same gene, primers designed to the 39-sequence of

PY05995 and to the 59-sequence of PY03534 were used to amplify

sequence from gDNA, and gave a single PCR product of the

expected size, 392bp (Figure 5A). Sequence analysis and alignment

with the gene sequences from the database showed perfect

alignment (Figure 5B) and confirmed that the contigs were part of

the same single full length Py235 gene, PY05995/PY03534. This

conclusion was further confirmed by read pairs of the RNA-Seq

data. 153 mates mapped to the end of PY03534 and the beginning

of PY05995, and the entire gene could be assembled from the

mapping reads (Figure 5C).

Comparison of the sequences of the proteins bound by
mAbs 25.37 and 25.77

Sequence data for the Py235 family was aligned and examined

for structural features. Partial or full length sequences were

compiled from the literature [15,16,17,19,42,43] resulting in

eleven essentially full length protein sequences, one almost full

length but lacking the C-terminus and two others, one represent-

ing the N- and the other the C-terminal sequence of one or two

further genes. The PY01365, PY01185, and PY05995/PY03534

sequences form a discrete subset of the family with a degree of

similarity in pairwise alignment of greater than 80% at the amino

acid sequence level (Table 2). None has the Asp-Ile-Asn (DIN)

repeats close to the C-terminus of the protein found in some

Figure 3. Detection of Py235 protein expression. (A) Indirect fluorescent antibody assay using mAb25.77 on 1% formaldehyde-fixed thin blood
smears of WT or PY01365-KO schizonts. For each parasite line the first panel shows mAb 25.77 reactivity, the second shows mAb 25.77 reactivity and
parasite nuclei labelled with DAPI, and the third shows the bright field image. (B) a dual labeling experiment of WT parasitized erythrocytes. In the
first column of panels the antibodies used were rabbit anti-EBL, mAb 45B1 (AMA1) and mAb 48F8 (RON4), each of which was detected by the
appropriate fluorescence-labelled second antibody. In the second column of panels the same cells were stained with mAb 25.77, which was detected
either with a fluorescence-labelled antibody (red) or was directly conjugated to a fluorescent dye (green). The third column of panels shows parasite
nuclei labelled with DAPI, with the fourth column of panels showing the overlay of all three previous panels in the row (MERGE). The fifth column of
panels shows the bright field images. (C) Immunoprecipitation analysis of WT (lanes 1, 3 and 5) and PY01365-KO (lanes 2, 4 and 6) parasite soluble
proteins released into culture supernatant using mAbs 25.77 (lanes 1 and 2), 25.37 (lanes 3 and 4) and normal mouse serum (lanes 5 and 6). The Py235
proteins detected by this analysis are shown. (D) Erythrocyte binding assay: detection of a single protein band eluted from erythrocytes and
immunoprecipitated using mAbs 25.77 (lanes 1 and 2) and 25.37 (lanes 3 and 4) and derived from WT (lanes 1 and 3) and KO (lanes 2 and 4) parasites,
respectively. The proposed identities (Py235EBP-1 and Py235EBP-2) are indicated. (E) Alexa Fluor 488-conjugated 25.77 (green) and Alexa Fluor 594-
conjugated 25.37 (red) were used in a dual labeling experiment of WT parasitized erythrocytes. The third of four panels of an identical field shows
parasite nuclei labelled with DAPI, with the fourth panel showing the overlay of all three previous panels (MERGE). Py235 proteins are recognised by
both mAbs in each schizont.
doi:10.1371/journal.ppat.1001288.g003
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members of the family. A further subgroup contains genes 11, 10,

PY03184_E3, PY02104_E5, and PY04438_PY0618_E8.

Expression of proteins encoded by the Py235 gene family
in the PY01365-KO parasite and their recognition by mAb
25.77

We were interested to identify the Py235 proteins expressed by

the PY01365-KO parasite line that were recognised by mAb 25.77

in the absence of Py235EBP-1. Py235 proteins affinity purified

using mAb 25.77 from both detergent-solubilised parasite

preparations (Figure 6A) and culture supernatant (Figure 6B) from

the PY01365-KO parasite line were fractionated on a 5% SDS-

PAGE gel and processed for mass spectrometry analysis.

MASCOT searches using the peptides and the NCBI database

gave significant matches to three Py235 contigs, PY01185,

PY05995 and PY03534 (Table 2), mirroring the results obtained

with mAb 25.37 and WT parasites. The results suggest that mAb

25.77 has a higher affinity for PY01365, than PY01185 and

PY05995/PY03534 protein products, since in the absence of

PY01365 mAb 25.77 was able now to detect the other proteins.

While mass spectrometry analysis of proteins affinity purified from

WT parasites using mAb 25.77 routinely clearly identified

PY01365 (Py235EBP-1) (Table 2), peptides derived from

PY01185, PY05995 and PY03534 were also present in small

amounts (data not shown). Due to the high number of unique

peptides required for positive identification of these large proteins,

the few unique peptides obtained for PY01185, PY05995 and

PY03534 was insufficient.

Identification of a second Py235 protein that binds to the
erythrocyte surface and is recognized by mAb 25.37 in
extracts of WT parasites and by mAb 25.77 in extracts of
the PY01365-KO parasite line

Radiolabeled proteins from WT and PY01365-KO parasites

that had been released into the supernatant of in vitro cultures were

used in erythrocyte binding assays. Proteins bound to and eluted

from the erythrocyte surface were immunoprecipitated using

mAbs 25.77 and 25.37. These mAbs recognized single protein

bands of approximately 235 kDa in this fraction (Figure 3C and

D). We have shown previously that of the several biosynthetically-

labeled Py235 proteins released into the supernatant of parasites

incubated in vitro, only one binds to the surface of erythrocytes and

is recognized by mAb 25.77 (Py235EBP-1). Similarly, we now

show that mAb 25.37 also recognizes two Py235 proteins released

into culture supernatants (Figure 3C) and that only one of them,

the upper of the two bands (Figure 3D), binds to erythrocytes. This

upper band has been identified as the protein encoded by the

gene, PY01185 (Figure 4A and B), identifying another Py235

protein that binds to the surface of erythrocytes and is recognized

by the protective mAb 25.37. This protein has been designated

Py235 erythrocyte binding protein-2 (Py235EBP-2), as the second

known erythrocyte binding protein from this family and encoded

by the PY01185 gene. Our result suggests that in WT parasites

there are at least two erythrocyte binding proteins, Py235EBP-1,

encoded by PY01365 and Py235EBP-2 encoded by PY01185. In

the PY01365-KO parasite line, the erythrocyte binding protein is

Py235EBP-2.

By western blotting, similar amounts of Py235 protein were

detected by mAbs 25.37 and 25.77 in extracts of both WT and

PY01365-KO parasites (Figure S1) indicating that there has been

no compensatory change in protein levels such as upregulation of

Py235EBP-2.

Expression of Py235 genes in the WT and PY01365-KO
parasite lines

To test the hypothesis that there had been a switch, for example

the up-regulation of other members of the Py235 family expressed

in the PY01365-KO parasite line, two methods were used:

quantitative RT-PCR (qPCR) for some specific members and

RNA-Seq for all known members of the family.

qPCR was carried out using primers specific to the genes of

interest and to reference genes coding for PyEBL (PY04764),

which is expressed at the same developmental stage as Py235

proteins, and the gene for the constitutively expressed protein Pyb-

tubulin (PY05711) (Table 2). Of the 3 genes in the Py235 family

that were examined, PY01365 had the lowest transcription level

followed by PY05995/PY03534, with PY01185 having the highest

transcription level in the WT parasite line (Figure 7a).

Two reference genes, PyEBL and Pyb-tubulin had similar

amounts relative to each other in both parasite lines. The

Figure 4. Identification by mass spectrometry analysis of
proteins recognized by mAb 25.37 in extracts of schizonts
and culture supernatants. Py235 proteins were purified from
detergent-lysed erythrocytes containing WT parasites and from the
supernatant of cultured parasites by affinity chromatography on mAb
25.37 and resolved by SDS-PAGE on a 5% polyacrylamide gel. Protein
bands were stained, excised, reduced and alkylated and digested with
trypsin and then the peptides were analyzed by MALDI-ToF mass
spectrometry. The peptide mass fingerprints obtained identified two
Py235 proteins in schizont extracts (PY01185 and PY03534, panel
A),with the products of an additional contig (PY05995) also in the
supernatant, (panel B).
doi:10.1371/journal.ppat.1001288.g004

Table 1. Genes identified by mass spectrometry analysis of
proteins purified from WT and KO parasites.

mAb
Parasite
preparation WT Py01365-KO

25.77 Schizont PY01365 (145) Py01185 (157)

PY05995/PY03534 (136)

Culture supernatant Py01365 (93) Py01185 (98)

PY05995/PY03534 (46)

25.37 Schizont PY01185 (98) ND

PY05995/PY03534
(90)

Culture supernatant PY01185 (40) ND

PY05995/PY03534
(90)

All reported MASCOT scores (in brackets) are significant at a minimum of
p,0.005; ND, not done.
doi:10.1371/journal.ppat.1001288.t001
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quantification cycle (Cq) value obtained for PY01365 was similar to

those for the negative controls (-RT or no template control),

confirming that PY01365 had been deleted from the genome of P.

yoelii YM in the PY01365-KO line. Fold change transcriptional

calculations between the KO and WT lines were made. There was a

fold change increase of 1.5 in the transcription level of PY01185 in

the KO line, and for PY05995/PY03534 the fold change increase

was 1.9. The measured fold change decrease of PY01365 in the KO

line was 350, showing its absence in the PY01365-KO line.

In the RNA-Seq data, the Pearson correlation of all expressed

genes between both parasite lines is nearly 0.99 (0.9899136),

taking the log of the geometric mean [44] (Figure S2). Also the

ratio of expression between the two reference genes of the qPCR

(PY04764 and PY05711) was between 0.9 and 1.1 (Table 3). The

data show that within the family, in the WT parasite, two genes

are very poorly expressed (PY02104 and PY06381). Preliminary

analysis of P. yoelii YM genomic DNA suggests that PY06381 is

absent from this genome (data not shown). Of the remaining genes

Figure 5. PCR amplification of a py235 gene fragment spanning two contigs, PY05995 and PY03534. (A) A single PCR product of 392bp
was obtained using a forward primer designed on DNA sequences from within the last 200 nucleotides of the 39 coding sequence of PY05995 and a
reverse primer from within the first 200 nucleotides of the 59 coding sequence of PY03534. (B) Alignment of part of the amino acid sequence
translated from the directly sequenced PCR product with the relevant PY05995 and PY03534 amino acid sequences (obtained from the NCBI
database). The PCR product sequence aligned perfectly with that of the two contigs and filled a 24 nucleotide gap coding for the eight amino acid
residues indicated in red. (C) Confirmation of PY05995 and PY03534 concatenation by RNA-Seq. The two sequences were linked in the RNA-Seq data
by 153 read pairs that mapped to the end of PY05995, and the beginning of PY03534. The graphs present the expression in the WT (green) and
PY01365-KO (red) parasite lines. The two red diamonds joined by a line indicates the position of the qPCR primers.
doi:10.1371/journal.ppat.1001288.g005

Table 2. Protein sequence identity and similarity.

Protein sequence identity/similarity (%)

Gene product PY01185
PY05995/
PY03534 PY00649 PY04630 11 PY03184_E3 10 E8 E5_PY2104**

PY01365 68/81 68/80 57/75 57/74 50/68 51/69 50/68 51/70 50/69

PY01185 86/93 60/76 59/75 51/69 51/70 50/69 51/70 52/70

PY05995/
PY03534 *

59/75 58/75 51/69 52/70 49/68 51/69 51/69

PY00649 (E1) ** 85/91 63/76 64/77 63/77 63/78 63/77

PY04630 (E2) ** 63/76 64/77 60/75 60/76 60/75

11 (PY03184)** 98/99 73/85 73/83 70/83

PY03184_E3* 73/85 73/84 70/83

10 (PY04960)** 77/87 72/84

E8 (PY06018)** 72/84

Pairwise alignment was carried out using published sequences.
*Indicates where a gene has been compiled by the alignment of more than one contig.
**Indicates where a contig or partial sequence (named in brackets) is a smaller fragment with identical sequence within the region of overlap.
doi:10.1371/journal.ppat.1001288.t002
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all are expressed (geometric means 159.56 to 725.4) with the

PY05054 transcript being most abundant. Comparing the WT

and PY01365-KO lines, as expected PY01365 is not expressed in

the PY01365-KO parasite line but is clearly present and expressed

in the WT, confirming the deletion of the PY01365 gene

(Figure 7b). For the other members of the family the average

ratio of expression in KO versus WT lines was 1.022 and for

PY05995 and PY01185 it was 1.406 and 0.999, respectively. This

indicates that there was no compensatory significant upregulation

of expression of any of the other Py235 genes in the KO parasite.

Similar in vivo growth kinetics are observed for both WT
and PY01365-KO parasite lines

To evaluate the phenotypic effect of deleting py235ebp-1 from

the genome of the virulent P. yoelii YM line, for example on the age

of the host cell invaded or on the course of infection, groups of 5

mice were injected with parasitized erythrocytes. P. yoelii parasites

of the KO line showed no changed preference for a particular host

cell type relative to WT parasites. All host cell types, both mature

erythrocytes and reticulocytes, were invaded, indicating that

deletion of the PY01365 gene (py235ebp-1) did not restrict the

parasites to invasion of reticulocytes. In mice made reticulocytemic

there was no difference in cell preference or growth rate between

the two parasite lines (data not shown). Parasite growth kinetics for

all groups of mice were very similar and there was no clear

difference in the parasite multiplication rate (Figure 8). Only in the

group injected with a thousand parasitized erythrocytes was there

a significant reduction in parasite growth, when comparing the

KO and WT parasite lines (P,0.05). Disruption of the PY01365

gene was not lethal to the parasite and no phenotype was

detectable with respect to the age of host cell invaded.

Discussion

We were interested to examine the effect on growth in vivo of

deleting the gene that encodes the Py235EBP-1 protein expressed

in asexual blood stages of the virulent P. yoelii YM line.

Additionally, we wished to examine the expression of other family

members in this py235ebp-1-KO parasite line and identify the

proteins recognised by the other protective mAb 25.37 in WT

parasites.

We have previously shown that although there are several

biosynthetically-labeled soluble Py235 proteins released into the

supernatant of parasites incubated in vitro, only one of these

proteins binds to the surface of erythrocytes and is recognized by

the protective mAb 25.77 [24]. We show here that the second

protective mAb 25.37 also recognizes two Py235 proteins in the in

vitro culture supernatant, namely the products of PY01185 and

PY05995/PY03534. We have obtained peptide mass and

sequence information from the Py235 proteins either purified

from parasitized erythrocytes or from the in vitro culture

supernatant, which identifies the corresponding genes as members

of the Py235 family. As in the case of the proteins recognized by

mAb 25.77, only one of the two Py235 proteins, the upper of the

two protein bands, PY01185, binds to erythrocytes. Therefore

PY01185 is the gene identified as coding for the erythrocyte

binding protein recognized by 25.37, which has been designated

Py235 erythrocyte binding protein-2 (Py235EBP-2).

We sought to identify the proteins being expressed by the

py235ebp1-KO parasite line that could still be recognized by mAb

25.77. Interestingly, proteins affinity purified from both detergent

solubilized parasites and culture supernatant using mAb 25.77

were shown to be Py235EBP-2 (PY01185) and PY05995/

PY03534 - the same gene products recognized by mAb 25.37 in

WT parasites. Our results clearly show that in WT parasites there

are two erythrocyte binding proteins, namely, Py235EBP-1,

recognized by the protective mAb 25.77 and encoded by

PY01365 and Py235EBP-2 recognized by the protective mAb

25.37 and encoded by PY01185. In the PY01365-KO parasite

line, the erythrocyte binding protein recognized by mAb 25.77 is

Py235EBP-2. Immunofluorescence studies indicate that each

merozoite within a schizont expresses proteins recognized by both

protective mAb 25.77 and 25.37 and that proteins recognized by

the protective mAbs are expressed by all merozoites; this confirms

and extends the conclusions of Narum et al [17]. The location of

the proteins still needs to be resolved: in the immunofluorescence

studies there was only partial overlap of mAb 25.77 staining and

that of other antibodies specific for microneme, dense granule and

rhoptry neck proteins.

It has been reported that some P. yoelii lines contain two copies

of the PY01365 gene [45]. For the YM line we have analysed, the

data indicate that only one copy of the gene is present. This

conclusion is based on the Southern blot analysis of separated

chromosomes, and of digested gDNA, and is supported by the

qPCR and RNA-Seq analyses. However, other members of the

gene family with a significant homology to PY01365 may be

detected with certain probes at low stringency. This is in

agreement with work carried out by Iyer et al [36]. The absence

of the PY06381 gene in the YM genome is consistent with an extra

gene being detected on chromosome blots of 17X parasites [18].

We examined gene transcription in both the WT and PY01365

parasites by qPCR and as expected, there was no difference in the

mRNA levels of PyEBP and Pyb-tubulin between the WT and

KO parasite lines. Of the 3 genes in the py235 family whose

transcriptional level was examined, PY01365 had the lowest

transcription level followed by PY05995/PY03534 and then

PY01185. This result is in contrast to that of Iyer et al [36] who

reported that PY01365 was the most highly expressed Py235

family member. This difference may be due to the use of different

P. yoelii YM parasite lines with different gene copy numbers. There

Figure 6. Identification using mass spectrometry analysis of
proteins from the PY01365-KO parasite line, which are
recognized by mAb 25.77. Py235 proteins were purified from a
detergent-lysate of PY01365-KO parasitized erythrocytes or the
corresponding culture supernatant by affinity chromatography on
mAb 25.77. Fractions of purified protein eluted sequentially from the
affinity column were resolved by SDS-PAGE on a 5% polyacrylamide gel.
The protein bands were excised, reduced and alkylated and digested
with trypsin, and the peptides analyzed by MALDI-ToF mass spectrom-
etry. The peptide mass fingerprints were used to identify the genes
encoded by the purified proteins. (A) Proteins purified from schizonts:
band1, PY01185; band 2, PY01185; band 3, PY03534. (B) Proteins
purified from culture supernatant: Band 1, PY01185; band 2, PY03534.
Essentially two Py235 contigs were identified from both the schizont
and supernatant preparations.
doi:10.1371/journal.ppat.1001288.g006
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was a small difference in the level of transcription of PY01185 and

PY05995/PY03534 between the WT and KO parasite lines. A

more detailed analysis of the Py235 family using RNA-Seq

indicated that most of the Py235 gene family is transcribed in these

asexual blood stage parasites and there is no change following the

deletion of PY01365 other than in the absence of products from

this gene. Thus the redundancy in the function of this family must

occur at the protein level rather than being reliant on genes being

up-regulated; PY01185 protein probably takes over the function of

PY01365, although the level and role of other Py235 proteins

cannot be addressed. This result is in contrast to the picture in P.

falciparum where individual RH protein genes are under epigenetic

control and change in expression can lead to change in receptor

recognition and host cell invasion pathway. It is possible that the

expression of most of the Py235 genes at the same time could

contribute to the noted virulence of the YM parasite [46].

Targeted disruption of py235ebp-1 (PY01365) did not lead to a

change in the invasion phenotype. Although there was a significant

difference in the course of infection in groups of mice injected with

1000 parasitized erythrocytes (P,0.05), there was no significant

difference in the groups of mice that received either 200 or 5000

WT and KO parasites. It will be of interest to delete both

PY01365 and PY01185, since this double deletion might be

expected to result in a much more severe phenotype.

The most puzzling result was that we were unable to detect at a

significant level by affinity purification the PY01185 and

PY05995/PY03534 proteins in extracts of WT parasites using

mAb 25.77 even though the transcripts were present in the

parasite at similar or higher levels than that of PY01365. In

contrast these proteins were clearly detectable with mAb 25.77 in

extracts from the KO parasite line using exactly the same

methodology and could be purified from the extract of WT

parasites using the second mAb, 25.37. One limitation of MALDI-

TOF fingerprinting is that large proteins require a relatively large

number of matched peptides to generate a significant MASCOT

score. The few peptides unique to PY05995/PY03534 identified

on detailed analysis of the peptide mass finger print data were

insufficient to establish the presence of PY01185 and PY05995/

PY03534 in the proteins extracted from WT parasite using mAb

25.77 and so these proteins were below the level of detection by

mass spectrometry. Even if the level of transcription as judged by

qPCR and RNA-Seq did not correlate with the level of protein

expression, this does not explain the discordant results obtained

with the two antibodies. It is possible that the two mAbs may

recognize common binding domains in the Py235 proteins but

with different affinities, dependent upon the precise amino acid

sequence of the antigens. It is conceivable that in the absence of

Py235EBP-1 (which may have a higher affinity for mAb 25.77)

Figure 7. Analysis of Py235 gene family expression. (A) Quantitative real time RT-PCR (qPCR) analysis of genes that encode proteins
recognized by the protective mAbs. Comparison of transcription levels of genes, expressed as number of copies transcribed per 161029 g DNA. qPCR
was carried according to the MIQE guidelines. All qPCR reactions were set up in triplicates. The result of a representative experiment is shown.
Transcripts from three PY235genes: PY01365, PY01185 and PY05995/PY03534 were examined from both WT and PY01365-KO parasites. (B) RNA-Seq
coverage plot for PY01365 and flanking genes. The gene models are in light blue. The lines represent the coverage plots for the numbers of reads: the
green line is for WT and the red line for PY01365-KO parasite lines, respectively. The knocked out gene PY01365 is not expressed, unlike two
neighboring genes, PY00128 and PY01366 that are expressed at similar levels in both parasite lines. PY00129 is not expressed.
doi:10.1371/journal.ppat.1001288.g007
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other members of the family, such as Py235EBP-2, and PY05995/

PY03534, can now bind to mAb 25.77.

In the absence of the gene coding for the Py235EBP-1, other

family member proteins carry out the same function; this

redundancy facilitates binding and erythrocyte invasion. We show

that the removal of the erythrocyte ligand expressed by PY01365, in

the py235ebp1-KO line allows other expressed members of the

py235 gene family to be used. In this instance, there was no change

in phenotype with respect to the age of host cell invaded and

mediated by the new set of parasite ligands. The invasion

phenotype/pathway of a parasite depends not only on the set of

ligands expressed or silenced, but also on a molecular/functional

hierarchy that determines which of the expressed ligands are used

[3], reviewed by Cortes [2]. Several pathways probably coexist in a

single parasite so that invasion into different cells such as those in

different mammalian hosts or experimentally generated, such as

enzyme-treated cells is not all or nothing even though enzymatic

treatment goes to completion, (in P. falciparum, [11,33] and in P. yoelii

[25]). Our data would also fit in with the ‘limited space hypothesis’

proposed for the P. falciparum (PfRH family) whereby the position of

a particular PfRH ligand at the apex of the merozoite determines

which ligand is used for invasion [47,48]. In this current study,

perhaps the absence of Py235EBP-1 allows space for the binding of

another member of the Py235 family member, such as Py235EBP-2

(PY01185) to initiate erythrocyte invasion.

Different levels of protein expression in Plasmodium that are not

matched by the level of transcription as seen by qPCR or RNA-

Seq may arise through post-transcriptional controls of these

proteins [34]. The sub-telomeric location of invasion-associated

multigene families, including the Py235 family [18], may be

important for variant expression, alternatively, new forms of

protein regulation at the level of translation [49] may occur.

However, none of these mechanisms appears to contribute to our

findings because the level of proteins seems to be unchanged.

Analysis of the protein sequences we have identified showed that

they are coded by a subset of the Py235 family. For example, they

all lack the short repetitive sequence based on the tripeptide, Asp-

Ile-Asn (DIN), which is located just N-terminal to the transmem-

brane domain. The significance of this is obscure but the

observation does cast doubt on the validity of using this repeat

sequence as a diagnostic marker for the expression of all genes in

the Py235 family [37,38,50].

In this study we have shown by targeted disruption that the

py235ebp-1 (PY01365) gene is not essential to the parasite and the

KO did not result in a change in the invasion phenotype with

respect to the age of mouse cell invaded or the parasite growth

rate. However, deletion of py235ebp-1 did seem to result in an

alteration in the level or accessibility of other Py235 protein family

members such that they became able to bind to mAb 25.77; the

proteins coded by PY01185 and PY05995/PY03534 appeared to

compensate for the absence of py235ebp-1 (PY01365). The basis for

this new accessibility is obscure, but it is possible that these

proteins form complexes either with each other or other proteins,

which could make the antibody binding site cryptic. Our result

suggests that in WT parasites there are at least two Py235

erythrocyte binding proteins, Py235EBP-1, (recognized by mAb

25.77 and encoded by PY01365) and Py235EBP-2 (recognized by

mAb 25.37 and encoded by PY01185). In the PY01365-KO

parasite line, the erythrocyte binding protein is changed to

Py235EBP-2 recognized by both mAb 25.77 and 25.37 in the

absence of Py235EBP-1. In conclusion, in the absence of

Py235EBP-1, invasion of erythrocytes by P. yoelii takes place using

Py235EBP-2, an alternative Py235 erythrocyte binding protein;

modulation of erythrocyte binding appears to occur at the level of

the proteins without significant changes in gene expression.

Materials and Methods

Ethics statement
All animal work protocols were reviewed and approved by the

Ethical Review Panel of the MRC National Institute for Medical

Research and approved and licensed by the UK Home Office as

governed by law under the Animals (Scientific Procedures) Act

1986 (Project license 80/1832, Malaria parasite-host interactions).

Animals were handled in strict accordance with the ‘‘Code of

Practice Part 1 for the housing and care of animals (21/03/05)’’

available at http://www.homeoffice.gov.uk/science-research/animal-

research/. The numbers of animals used was the minimum

consistent with obtaining scientifically valid data. The experi-

mental procedures were designed to minimize the extent and

duration of any harm and included predefined clinical and

parasitological endpoints to avoid unnecessary suffering.

Animals and parasites
Female BALB/c mice, with an average weight of 18 to 22 g and

6 to 8 weeks old were obtained from the specific pathogen-free

unit at the MRC National Institute for Medical Research. The

cloned virulent YM line of P. yoelii [46,51], was obtained from Dr.

David Walliker, University of Edinburgh. Parasites were passaged

no more than five times in the same mouse strain, before returning

to a fresh stabilate.

Alignment of the py235 gene and protein family
sequences

All full-length and partial py235 gene sequences identified in the

database (www.PlasmoDb.org) were retrieved and Clustal X 1.81

Table 3. Expression of members of the Py235 family and two
control genes determined by RNA-Seq.

GeneID
PY01365-KO
geomean

WT
geomean

KO/WT
ratio

PY05995 224.35 159.56 1.41

PY04438 375.55 290.44 1.29

PY05995/PY03534 285.07 242.87 1.17

PY03534 296.67 280.52 1.06

PY06018 492.73 470.69 1.05

PY05054 739.29 725.4 1.02

PY01185 345.7 346.1 1.00

PY02104 9.85 9.9 0.99

PY04930 278.96 280.66 0.99

PY06381 1 1.01 0.99

PY00649 189.27 194.45 0.97

PY03184 397.21 424.47 0.94

PY02033 255.2 278.54 0.92

PY04630 225.25 255.74 0.88

PY03432 281.15 347.29 0.81

PY01365 1.12 398.3 0.00

PY04764* 301.64 328.15 0.92

PY05711* 1947.33 1772.46 1.10

The expression is the geometric mean of the mapping RNA-Seq reads for each
parasite line. * erythrocyte binding protein (PY04764) and b-tubulin (PY05711).
doi:10.1371/journal.ppat.1001288.t003
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[52] was used to align them. Areas of sequence similarity and

difference were identified at both the amino acid and nucleotide

levels and analysed using Bioedit [53]. The sequence information

was then used to design gene-specific reagents, and compare

features of the individual sequences.

Cloning of targeting construct
PY01365 (py235ebp-1) gene sequences were amplified from P. yoelii

YM line genomic DNA using gene specific primers. A 500bp

fragment from the 59UTR of PY01365 (Fragment A) was amplified

with forward primer, (restriction sites are underlined), 59-

gccgggggcccACTATAACACTAATTATTTATTATAAAACG-39

and reverse primer, 59-gccggaagcttATGTATGTATCTATG-

TATGCATGCATG-39. A region from the 39 coding sequence of

PY01365 (Fragment B) was amplified with forward primer, 59-

gccgggaattcACGAACTCACTCGAATACAAAGTCGTTTAG-

39 and reverse primer, 59-ggcggtctagaATAATTTTTATAT-

TTTGCATCATCATTATTATTATGG-39. Fragment A PCR

product was digested with ApaI and Hind III and Fragment B PCR

product was digested with EcoRI and XbaI. The targeting construct

was made by the cloning of fragments A and B sequentially into the

plasmid vector pBSDHFR, in which the Toxoplasma gondii

dihydrofolate reductase/thymidylate synthase gene (DHFR/TS) is

flanked by the upstream and downstream control elements from P.

berghei DHFR/TS. First, Fragment A was cloned into pBSDHFR

that had been digested with Apa1 and Hind III and the inserted

DNA sequence was verified by sequencing. This construct was

digested with EcoRI and XbaI, and then Fragment B cloned into it,

and its sequence verified. The final targeting construct was digested

with the enzymes ApaI and XbaI and inserted by double

homologous recombination into the PY01365 gene following

transfection of the virulent YM line of P. yoelii.

Transfection of parasites
Transfection of parasites was carried out essentially as described

previously [54,55]. Briefly, erythrocytes containing late stage

parasites, were harvested at 20 to 25% parasitaemia and schizonts

were purified by centrifugation for 25 min at 600 g at room

temperature (RT) on a 55% Nycodenz (Nycoprep) cushion

(NYCOMED Pharma AS). 56107 schizonts were mixed with

90 ml AMAXA nucleofactor T-cell solution (plus supplements) and

5 mg of targeting construct DNA was added. These parasites were

transfected using AMAXA Nucleofector programme U33. Imme-

diately, 100 ml of RPMI 1640 medium containing 20% foetal calf

serum (FCS) was added to the transfected parasites and the

suspension injected intravenously (i.v.) into the tail vein of a single

Figure 8. Parasite growth in vivo. The course of parasite growth was monitored in groups of 5 Balb/c mice infected intravenously (i.v.) on day 0
with 200, 1000, or 5000 WT or PY01365-KO parasitized erythrocytes. A Giemsa-stained blood smear from each mouse was made daily from day 3, the
parasitaemia was counted and used to monitor the course of infection up to day 6. Error bars are standard error of mean (SEM). The bars are: 200 KO
(vertical patterned), 200 WT (light gray), 1000 KO (horizontal patterned), 1000 WT (dark gray), 5000 KO (white), and 5000 WT (black).
doi:10.1371/journal.ppat.1001288.g008
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mouse. Electroporation of parasites with targeting construct and

injection into individual mice was carried out twice independently

using the above conditions.

Twenty seven hours post injection, day (D)1, and on D3 and D4

mice were treated with 1 mg kg 21 pyrimethamine, intraperitoneally

(i.p.). From day 2 post injection, pyrimethamine was administered

continuously in the drinking water at a final concentration of 70 mg/

ml. Three sets of control mice were set up. One set was injected with

transfected schizonts as above but did not receive any drug treatment,

a second set was injected with schizonts in T-cell solution (without

DNA or electroporation) and was drug treated as above, and the

third set of controls was as the second set but without subsequent

drug treatment. The parasitaemia of each set of mice was monitored

daily. Stabilates of drug resistant parasites were made and stored in

liquid nitrogen, additionally the parasites were used to infect naı̈ve

mice (26107–56107 parasitized erythrocytes, administered i.v.) for a

second round of drug pressure. These mice were given pyrimeth-

amine continuously in their drinking water as above. Parasites were

allowed to grow sufficiently for samples to be taken for analysis and

for stabilates to be made. After verification of the pyrimethamine-

resistant parasites by PCR and Southern blot analysis, the transgenic

parasite line was cloned by limiting dilution using 10 mice injected i.v

so that each inoculum contained a maximum of one parasite. Four

clones were obtained and genotyped.

Southern blot analysis
Genomic DNA (gDNA) was isolated from leukocyte-depleted,

Percoll-purified late stage WT and PY01365-KO parasitized

erythrocytes lysed in a buffer containing SDS. The DNA was phenol

chloroform extracted and precipitated with ethanol. Various

restriction enzymes were used to digest the gDNA and samples were

resolved by electrophoresis on a 0.8% agarose gel and transferred

onto Hybond N+ in 7.5 mM NaOH overnight. The filter was

neutralized in 2 x SSC and UV cross-linked prior to hybridisation

[13]. DNA probes used were: Fragment B (see above), and a 739 bp

TgDHFR DNA sequence PCR amplified from plasmid DNA using

the forward primer: 59-GCCGGGATCCCATCATTCGACCCT-

GATATATATAACGA-39 and the reverse primer: 59-GCCG-

GGAATTCATTCTAAAAATTCATAGTAATAAGGTG-39.

For an estimation of the number of copies of PY01365 in the P.

yoelii genome, WT gDNA was digested with various restriction

enzymes in double digest reactions and the samples transferred onto

nylon filters as above. DNA probes used were Fragment B, (as above)

and Fragment C derived from the 59 coding sequence of PY01365,

amplified using the forward primer: 59- ATCATCTGCACCAT-

CATTCGAC-39 and the reverse primer: 59- CAATATGGAATC-

TAATAGACG-39. DNA probes were labelled using DECAprime II

labelling system (Ambion) and hybridized to the filters.

Pulse field gel electrophoresis
Chromosomes from leukocyte–depleted, Percoll-purified late

stage WT and PY01365-KO parasites were fractionated by

contour-clamped homogeneous electric field (CHEF) electropho-

resis as described [18]. The gel was blotted and hybridized

sequentially with three different probes. First a probe that binds to

the 59 coding region of py235ebp-1 (Fragment C); second, a probe

that binds to the 39 coding region of py235ebp-1 (Fragment B);

and finally, a probe that binds to the 39 UTR of DHFR/TS.

Protein purification, mass spectrometry analysis and
bioinformatics

Erythrocytes were harvested from BALB/c mice infected with

P. yoelii YM WT or PY01365-KO lines and depleted of leukocytes

[23]. Py235 protein from both supernatant and detergent

solubilized parasite preparations was purified on separate columns

by affinity chromatography using mAb 25.77 as described

previously [20]. Affinity chromatography using mAb 25.37 was

also carried out as above but only using WT parasites.

Proteins eluted from the affinity columns were subjected to

SDS-PAGE under reducing conditions on a 5% polyacrylamide

gel and visualised using colloidal blue stain (Novex). Bands were

excised, reduced, alkylated and digested with trypsin [56]. Peptide

mass fingerprinting was carried out using a Reflex III MALDI-

ToF mass spectrometer (Bruker Daltonik, Germany). The peptide

mass fingerprints were used to query sequences in both the rodent

malaria database [15] and the general non-redundant database at

the National Centre for Biotechnology Information, (NCBI;

http://www.ncbi.nlm.nih.gov). The gene accession numbers

identified were used to carry out further searches of the NCBI

database to obtain full gene sequence information.

PCR amplification of a py235 gene to link two contigs
Two of the three py235 sequences identified by mass

spectrometry analysis using peptides from 25.37-affinity purified

protein, did not correspond to full-length genes, instead they

corresponded to two contigs, PY05995 and PY03534. A gene

specific forward primer was designed based on DNA sequences

from the last 200 nucleotides of the 39 coding sequence of

PY05995 (Forward primer 59-GAAATGAAACGTACAAAA-

GATGACATC-39), and a reverse primer was designed based on

the first 200 nucleotides of the 59 coding sequence of PY03534

(Reverse primer 59-CTGTATATGATTGTTCTATTAAAT-

TAC-39). Using WT gDNA, PCR amplification was carried out

using Pfu ultra DNA polymerase (Strategen). The PCR product

was directly sequenced (Cogenics), analysed, aligned and assem-

bled with the PY05995 and PY03534 contigs to create a single

py235 gene, using Bioedit [53].

Quantitative real time RT-PCR (qPCR)
Total RNA was prepared [57] from leukocyte-depleted, Percoll-

purified late stage WT and PY01365-KO parasitized erythrocytes

using Trizol (Invitrogen Life Technologies). RNA samples were

first treated with RNase-Free DNase I (Quiagen) and cleaned up

using RNeasy MiniElute to remove contaminating gDNA. First

strand cDNA was synthesized using 1 mg RNA, AMV reverse

transcriptase (RT) and random primers according to the

manufacturer’s instructions (Promega). RT-PCR amplification

using the synthesized cDNA was carried out and samples

amplified without the addition of RT were included as controls.

Gene specific primers were designed for the Py235 genes of

interest PY01365, PY01885, and PY05995/PY03534 and the

reference genes, P. yoelii erythrocyte binding protein (PyEBL) and

Pyb-tubulin (Table S1). Short regions of the genes (150bp–193bp)

were amplified using gDNA extracted from purified late stage WT

P. yoelii YM parasites. cDNA was used as a template to PCR

amplify Pyb-tubulin. PCR products were cloned into TA vector,

and clones containing inserts were identified by PCR and the

insert DNA verified by sequencing.

qPCR was carried according to the MIQE guidelines [58].

qPCR reactions (25 ml) were set up in triplicates in Absolute SYBR

Green mix (containing Thermo-Start, DNA polymerase and ROX

Dye) (Abgene), 0.2 mM each primer and 1 ml cDNA and amplified

in an ABI Prism 7000 Sequence Detection System (Applied

Biosystems). Cycle conditions were 50uC, 2 min; 95uC, 15 min; 40

cycles of 95uC, 15 s; 60uC, 1 min. gDNA was used to check that

amplification efficiencies of primers were comparable and

plasmids used to generate standard curves were included in each
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assay. Transcript levels for each gene in the WT and PY01365-

KO parasite lines were quantified and normalized with Pyb-

tubulin and PyEBL. For analysis, cDNA prepared from two

independent RNA samples was used.

RNA-Seq analysis
Parasites were purified using a MACS type-D depletion column

with a SuperMACS II magnetic separator (Miltenyi Biotec

GmbH) [59]. RNA from the purified WT and PY01365-KO

parasite lines, prepared as described above, was sequenced and

analyzed as described [44]. Briefly, the RNA of both samples was

depleted of ribosomal RNAs with exonuclease and sequenced on

an Illumina GA II platform using the Illumina RNA-seq protocol.

Of the approximately 61 million 76-base pair paired-end reads per

run, around 95% percent mapped with SSAHA2 [60] against the

P. yoelii 17XNL genome sequence (GeneDB: ftp: ftp://ftp.sanger.

ac.uk/pub/pathogens/P_yoelii/June_2010/). From the coverage

of the uniquely mapped Illumina reads, a perl script was used to

calculate the geometric mean for expression of each predicted

gene, representing the level of messenger RNA. We compared the

expression in both samples by obtaining the ratio of expression

values for each gene.

Immunofluorescent antibody (IFA) assay
IFA assay of Py235 protein expression in WT and PY01365-

KO parasites was carried out using mAb 25.77 on formaldehyde

fixed parasitized erythrocytes, followed by Alexa Fluor 488-

conjugated affinity purified goat anti-mouse IgG (Molecular

Probes). In colocalization studies EBL was detected using rabbit

antibodies provided by Dr Osamu Kaneko. Alternatively the slide

was first probed with mAbs specific for either RON4 (48F8) or for

AMA1 (45B1) [39] followed by Alexa Fluor594 congugated

secondary antibody. After washing, this was followed by

incubation with mAb 25.77 directly congugated to Alexa

Fluor488. In a separate assay, Alexa Fluor 488-conjugated 25.77

mAb was used to probe thin blood smears of mixed stage WT P.

yoelii YM parasites, followed by Alexa Fluor 594-conjugated 25.37

mAb in a dual labeling experiment [61]. mAbs were labeled with

Alexa Fluor (Molecular Probes) succinimidyl esters according to

the manufacturer’s instructions. The labeled antibodies were

separated from excess labelling reagent by gel filtration on PD-10

columns (Amersham Pharmacia), eluted using PBS/1% BSA. All

slides were examined and images captured on an Axioplan 2

imaging system (Zeiss).

Western blotting
Percoll-purified late stage parasites were solubilized under

reducing conditions in a buffer containing DTT, resolved by

SDS-PAGE on a 5% Bis-Tris polyacrylamide gel and transferred

onto nitrocellulose membrane. Primary antibodies (at 10 mg/ml)

were used to immunostain the membrane and were detected by

incubation with HRP-congugated goat anti-mouse IgG (H+ L)

antibody (Bio-Rad) and the ECL Western Blotting detection

reagent (GE Healthcare/Amersham). Protein bands were visual-

ized on a Kodak BioMax MR film. The blots were stripped with

Restore PLUS according to the manufacturer’s instructions and

then probed with mAb 48F8 to detect PyRON4 [41] as a control

for protein loading.

Erythrocyte binding assay and immunoprecipitation
[35S]methionine/cysteine (Promix, GE Healthcare, Little Chal-

font, UK)) radiolabeled proteins from P. yoelii YM (WT and

PY01365-KO) either released into culture supernatant, extracted

in a buffer containing 0.5% (w/v) sodium deoxycholate, or eluted

from erythrocytes were immunoprecipitated using mAbs 25.77

and 25.37, hyperimmune serum (HIS) and normal mouse serum

(NMS). The erythrocyte binding assay and immunoprecipitations

were carried out as described previously [24].

Course of parasite infection in vivo
Groups of 5 Balb/c mice were infected i.v. on day 0 with either

200, 1000, or 5000 WT or PY01365-KO parasitized erythrocytes

[62]. Blood smears from each mouse were made daily from D3,

stained with Giemsa’s reagent and infected cells counted to

monitor the course of infection.

Supporting Information

Figure S1 Western blot analysis of lysates from WT and

PY01365-KO parasites. Percoll purified late stage parasites of

both PY01365-KO (Lanes 1) and WT (Lanes 2) lines were

solubilized under reducing conditions, resolved by SDS-PAGE on

a 5% polyacrylamide gel and transferred onto nitrocellulose

membrane. The membrane was probed with either (A) mAb

25.77, or (B) mAb 25.37 and all the tracks were then probed with

mAb 48F8 (PyRON4) as a loading control. The positions of the

proteins recognized by the mAbs are indicated.

Found at: doi:10.1371/journal.ppat.1001288.s001 (1.84 MB TIF)

Figure S2 Scatter plot of log expression measured with the

geometric mean, comparing all genes of the WT and the KO

parasite line.

Found at: doi:10.1371/journal.ppat.1001288.s002 (0.38 MB TIF)

Table S1 Unique primers used in quantitative real time RT-

PCR (qPCR) amplification.

Found at: doi:10.1371/journal.ppat.1001288.s003 (0.06 MB

DOC)
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