

Exploring the relationship between Strava cyclists and all cyclists*.

Dr. David McArthur, Dr. Jinhyun Hong, Dr. Mark Livingston, Kirstie English

*This presentation contains preliminary results which are subject to change. Please do not cite.

University of Glasgow Active travel

- Walking and cycling can generate large benefits
 - Reduced congestion
 - Reduced emissions
 - Improve health
 - Time savings
- Transport Scotland wants 10% of journeys to be made by bicycle by 2020; with cities responsible for achieving this

Do interventions work?

- Evaluating the effectiveness of interventions is difficult due to the lack of data
- Manual counts take place on specific links/points, but these are expensive and hence infrequent
- Automatic counters can be used but these are also expensive and tend to be sparsely located
- Maintenance and calibration is required to keep them working properly

New data

- Activity tracking apps are used by many people and provide valuable new data about activities
- The Strava cycling app uses GPS to track cyclists' journeys
- This offers the possibility of having data at a fine spatial and temporal scale for a large number of people
- The data are already being collected all over the world

STRAM

- The name is taken from the Swedish word sträva, meaning to strive
- It can be used to track running and cycling activities
- Users can track their activities over time and compare to the activities of their friends or the user community
- Users can also compete in competitions
- The app comes in a free and premium version. The premium version offers extra features and costs £5.99 a month or £49.99 per year

STRAM

STRAM

- Users have to start and stop the tracking
- They can tag whether or not their trip is a commute or not
- Strava also gather some demographic information about their users

University of Glasgow Data

The movement data collected by the app is raw GPS trajectories represented as a triple (latitude, longitude, timestamp)

University Data of Glasgow

- The GPS trajectories are not made available to researchers
- The data is aggregated and provided to researchers/planners through Strava Metro
- Data are provided as:
 - Origins and destinations with route information (at output area level)
 - Minute-by-minute link counts of cycling flows
 - Information about waiting times at junctions
 - Aggregate demographic information

Iniversity Problems

- We know not all cyclists use the app for every journey
- It is unlikely that a random sample of cyclists use the Strava app
- In Glasgow in 2015 there were 13,684 athletes who recorded 287,833 activities
- The median distance was 14.9 km
- Of this sample 11,216 were male (1,698 female)
- Can the sample tell us anything useful?

Our approach

- Firstly, we can visualise the data and do a basic sanity check; the patterns look like what we would expect given our knowledge of Glasgow
- We can compare it to other sources of data
- We use the annual two-day cordon counts which are conducted in Glasgow city centre
- We match the links where the counts take place to the same link in the Strava data

City Centre Cordon - Cycling Results Summary Plan 2014

University of Glasgow Cordon Count (CC)

- Cycle trips are counted in blocks of 30 minutes for 14 hours over two days in September each year
- We use data from 2013, 2014 and 2015
- We aggregate both the CC and the Strava data into four different temporal scales, specifically by:
 - Hour
 - Commuting time (peak hours versus non-peak)
 - Day
 - Two-day (i.e. annual)

University of Glasgow Correlations

	Sample size	Correlation
Hourly	3192	0.781
Peak Vs Non-peak	684	0.861
One day	228	0.882
Two days	114	0.887

University of Glasgow Further Work

- We have some additional hypothesis about how these correlations my vary:
 - Does Strava have a higher market share in rich areas e.g. the West End of Glasgow?
 - Is the market share of Strava changing over time?
 - Does the weather affect the percentage of cyclists using Strava?
 - Does the time of day affect the share of cyclists using Strava?

Models

- We have experimented with negative binomial regression models
- The number of total cyclists is modelled as a function of, among other things, the number of Strava cyclists
- This allows us to explore the factors influencing the link between the cycling flows
- It also allows us to adjust the Strava flows to an estimate of total flows across the network

Independent	Model 1		Model 2		Model 3		Model 4	
	Coeffecient	P=	Coeffecient	P=	Coeffecient	P=	Coeffecient	P=
Strava	0.084	0.000***	0.265	0.000***	0.098	0.000***	0.105	0.000***
Commuting (ref non-commuting)								
AM	0.317	0.001***	0.506	0.000***	0.305	0.001***	0.177	0.055
PM	0.553	0.000***	0.823	0.000***	0.542	0.000***	0.449	0.000***
Year (ref:2013)								
Year (2014)	0.162	0.077	0.154	0.086	0.147	0.140	0.125	0.162
Year (2015)	0.046*	0.619	0.001	0.989	0.141	0.152	0.007	0.938
Region (ref:east)								
North	0.074	0.468	0.083	0.409	0.083	0.419	-0.099	0.387
South	0.318	0.002	0.361	0.000***	0.320	0.002**	0.149	0.194
West	0.731	0.000	0.695	0.000***	0.742	0.000***	0.927	0.000***
Interactions								
Strava*am			-0.181	0.000***				
Strava*pm			-0.200	0.000***				
Strava*2014					0.001	0.946		
Strava*2015					-0.030	0.013*		
Strava*North							0.102	0.001**
Strava*South							0.037	0.033
Strava*West							-0.057	0.000***
Intercept (con)	3.057	0.000	2.882	0.000***	3.028	0.000	3.099	0.000***
Dispersion	1.074		1.120		1.081		1.141	

University of Glasgow Conclusions

- Strava shows good correlation with observed cycle counts
- The correlation is higher the more we aggregate the observations
- These correlations change depending on different factors
- This seems to correspond with what has been found in the literature

