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Using Scanning Transmission Electron Microscopy (STEM) coupled with Dual Electron Energy Loss Spectroscopy
(DualEELS) and scanned diffraction, the corrosion and incorporation of Secondary Phase Particles (SPPs) in the
SPPs oxide layer of Zircaloy-4 material has been investigated. This study focuses on mapping the corrosion of Zr,Fe

Zircaloy-4 and Zr(Fe, Cr), precipitates during the oxidation process and depicting their morphology as the oxidation front
]S)TEI\]/;EL S advances through the material. It has been found that Zr,Fe SPPs retain the same general shape as in their pre

oxidation stage, and transform to a nanocrystalline homogeneous mixed oxide, with a strong crystallographic
texture, but hitherto unknown structure. The Zr(Fe, Cr), Laves-phase SPPs however, oxidise in a notably more
complicated manner. As the a-Zr around an SPP begins to oxidise, the SPP is completely encapsulated by the
ZrO, whilst much of the SPP remains initially unoxidised. But, on oxidation, significant elemental segregation
takes place, usually leaving a Cr,Os-rich cap, a nanocrystalline Zr,Cr mixed oxide body and veins of well-
crystallised metallic iron. Both forms of SPP have a different expansion on oxidation compared to the Zr, re-
sulting in cracking of the ZrO,.

1. Introduction

Worldwide, Zircaloy-4 (Zr-1.5%Sn-0.2%Fe-0.1%Cr) has been a
popular material of choice for the containment of nuclear fuel and other
structural components within commercial Pressurised Water Reactors
(PWRs), due to their high corrosion resistance [1], low thermal neutron
cross section [2], superior mechanical properties, and favourable che-
mical stability in highly aggressive environments. However, waterside
corrosion of these cladding materials results in the creation of an oxide
layer on the surface of the metal, resulting in degradation of their in-
tegrity over time. It is well established that the corrosion process of
zirconium base alloys is a multifaceted one, characterised by an initial,
rapid formation of a thin oxide layer on the surface of the material;
followed by a decreased oxidation rate which follows the square or cube
root of time [1,3], up until 24 um of oxide has grown on the surface of
the metal. Following this, a kinetic transition occurs and the oxidation
proceeds more rapidly again. This process is periodic, and may be re-
peated several times, until the oxide thickness grows almost linearly
with time [1]. A number of recent studies have elucidated the nanoscale
details of this process in the alpha-Zr phase in the Zircaloy [4-6]. In this
case, with the addition of alloying elements such as Sn, Fe and Cr to the
Zr base metal, up to a value of about 2 wt.%, the corrosion behaviour of
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the alloy becomes more predictable and less likely to suffer catastrophic
breakaway corrosion. The Fe and Cr alloying elements are shown to
have a solubility of < 150 wt. ppm in Zr-1.4% Sn [7], and 290 wt. ppm
[8] in Zircaloy-4. Therefore, much of the content of these elements
precipitate during the alpha-phase annealing as intermetallic-Zr com-
pounds, which sit as precipitates within the base metal [1]. It should be
noted that improved corrosion resistance with the addition of alloying
elements is not always the case, such as is seen in some binary alloy
systems. Although the addition of Cr to a Zr base alloy improves the
alloy’s resistance to oxidation [9], this improvement is offset by the fact
that the introduction of ZrCr, laves phase precipitates to the matrix can
result in embrittlement of the material [9]. In the Zr-Fe alloy system,
the laves C15-Fe,Zr phase is found to be the most stable phase [10],
although others (such as c-FeZrs), relatively less so [10]. Precipitates in
the Zr1%Fe system have also been seen to show an increased oxidation
rate when in contact with the gas:oxide surface [11].

There are two primary types of SPP which are found within Zircaloy
alloy series, namely Zr,(Ni, Fe) and Zr(Fe, Cr), type precipitates. The
former is an intermetallic C16 phase (isostructural with CuAl,), fre-
quently seen in Zircaloy-2 [12-15], whereas the latter mostly appears
as an hexagonal intermetallic Laves phase with the C14 structure, and is
seen frequently in both Zircaloy-2 and -4 [12,13,15-20].
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Early work by Chemelle et al. [12] aimed to investigate the mor-
phology and composition of SPPs in Zircaloy-2, using transmission
electron microscopy (TEM). They found that all precipitates were either
nickel-bearing with a tetragonal Zr,Ni-type phase (where Ni is partly
replaced by Fe), or chromium-bearing with a hexagonal ZrCr,-type
phase (where Cr is partly replaced by Fe). No iron-zirconium particles
were detected. Later, Charquet [7] found that an increased iron content
resulted in Zircaloy-4 having a better resistance to corrosion under
steam conditions. However, the results reveal that in a Zr-1.4% Sn
matrix, adding Fe in an amount equivalent to the (Fe + Cr) content in
Zircaloy-4 is less effective than the simultaneous addition of Fe and Cr.
Therefore, it was decided to study the influence of the Fe/Cr ratio in
Zircaloy-4 material. It was deduced that the optimum corrosion re-
sistance is obtained for Fe/Cr ratios in the range from 1.5 to 5. They
noted that, for ratios less than 4, the only precipitates observed corre-
spond to the Zr(Fe, Cr), phase, in which the proportions of iron and
chromium are comparable to their nominal concentrations. Moreover,
for larger Fe/Cr ratios, further phases of the type Zr,Fe and Zr;Fe were
found, highlighting that the substitution of Cr by Fe in ZrCr, is limited.

In order to better understand these SPPs, Meng et al. [13] then
analysed them in Zircaloy-2 using TEM and energy dispersive X-ray
spectroscopy (EDS). The most common were the Zr,(Fe,Ni)-type which
exhibited two size ranges, the larger ones being found at the a-Zr grain
boundaries. They had a composition of Zry(Fep4.0.5Nipe05), and a
body-centred tetragonal structure, as expected for this composition. The
smaller of these particles were found to be generally smaller than 1 um
and had an elliptical shape. The second SPP type found was the hex-
agonal Zr(Fe, Cr), Laves phase with a composition of Zr(Crgss.
0.57F€0.45.0.43)2. These particles had a size similar to the smaller
(< 1pum) Zry(Fe, Ni)-type precipitates and exhibited the expected
hexagonal C14 structure. These Zr(Fe,Cr), SPPs were also regularly
found to contain parallel stacking-faults. It should be noted that an SPP
size of 1 pm is around 5 times larger than what would be expected in
the largest SPPs in industrial alloys (of the order to 100-200 nm). As
Zircaloy-2 has a different composition to Zircaloy-4, the corrosion re-
sistance will differ between alloys, and thus, this reference may not be
entirely adequate for comparison between SPP size in work by Meng
et al. [13], and the current study.

Literature suggests that the oxidation process is considerably altered
when factors such as distribution, size and chemical composition of the
Zr(Fe, Cr), intermetallic precipitates in Zircaloy-2 and Zircaloy-4 and
Zr>(Fe,Ni) particles in Zircaloy-2 [17], are varied. However, there are
still many outstanding questions about the exact mechanisms by which
the oxidation of SPPs takes place. It is understood that the corrosion
resistance of the alloy is strongly dependant on microstructure with the
composition, size and volume fraction of SPPs being of particular im-
portance. Optimal balance of these properties allows for fine control of
life-limiting properties of the alloy such as corrosion resistance, hy-
drogen pick up and grain size [21]. In particular, it has been noted that
favourable nodular corrosion resistance requires fine precipitates [22],
whereas a certain minimum particle size is necessary for satisfactory
uniform corrosion behaviour [23].

The oxidation of the Laves phase precipitates has been studied
previously using conventional TEM and spot analysis with EDS. Pécheur
et al. [17] showed after oxidation in steam at 400 °C that such pre-
cipitates in Zircaloy 4 are often oxidised after the surrounding Zr matrix
is oxidised to ZrO,, that some diffraction patterns from oxidised SPPs
could be consistent with a tetragonal ZrO, phase, and that some iron
was redistributed as bcc metallic iron within the oxidised particles. De
Gabory et al. [20] also recently concluded that the oxidation of such
Cl4 Laves phase precipitates results in nanocrystalline areas with a
large phase content of tetragonal ZrO,. Pécheur [24] studied the oxi-
dation of similar precipitates in Zircaloy-4 in superheated lithiated
water. They found that it is not until ~300 nm from the metal-oxide
interface that SPPs begin to oxidise, and iron depletion is observed. It is
suggested that due to the dissolution of iron from the precipitates to the
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surrounding zirconia matrix at this point, the alloying elements can
modify the inner oxide grain properties, such as stabilising the tetra-
gonal ZrO, phase.

There are also reports in Zr-1%Fe alloys of iron oxide precipitates in
the oxide [11], although their structure was not determined, and there
was no quantification of their exact composition. There are, however,
very few observations of Zr,Fe precipitates in Zircaloy-4 [25] and no
known studies of the oxidation of such particles.

The current work is a systematic study of the structure and chem-
istry of SPPs in Zircaloy-4 after corrosion in pressurised water at 360 °C
covering both ZryFe and Zr(Fe, Cr), type precipitates. Specifically,
mapping of the chemistry using electron energy loss spectroscopy
(EELS) spectrum imaging using DualEELS is used to produce spatially
resolved quantitative maps of elemental content with few nanometre
resolution elucidating in detail the oxidation process. This is combined
with scanned diffraction to elucidate the crystallographic structure
within these nanocrystalline oxidised SPPs. It is shown that whilst the
oxidation of Zr,Fe is relatively straightforward, the oxidation of the
Laves phase precipitates is highly complex resulting in segregation into
bands of a mixed Cr-Zr oxide and well-crystallised a-Fe.

2. Experimental methods
2.1. Materials and corrosion

All samples were prepared and corroded by Amec Foster Wheeler.
The material of interest is standard recrystallised annealed (RXA)
Zircaloy-4 (Zr-1.5%Sn-0.2%Fe-0.1%Cr). Samples were mechanically
polished to remove surface scratches before being pickled in an HF
solution to remove 50 pm of material from all surfaces. The samples
were then exposed to pressurised water at 180 bar and 350 °C with a
room temperature pH of 10 for various durations to simulate PWR in-
reactor conditions [26,27]. The average dissolved hydrogen content
was measured to be 3.65 ppm using a calibrated hydrogen orbisphere.
Oxide thicknesses were average thicknesses, as inferred from weight
gain measurements using the relationship 15 mg/dm2 = 1 pm.

2.2. Microscopy

Using a FEI Nova Nanolab instrument, samples were lifted out as
cross sections through the oxide. Protection of the sample surface was
done using electron beam, and then ion beam deposited platinum be-
fore initial thinning with 30 kV Gallium ions was performed. Samples
were then lifted out and attached to suitable copper support grids with
platinum, and final thinning was performed using lower energy Ga
beams down to 5 kV.

Scanning transmission electron microscopy (STEM) and EELS-
spectrum imaging (EELS-SI) using a probe corrected JEOL ARM200F
(cold FEG) with a GIF Quantum ER electron energy loss spectrometer
with DualEELS functionality. Typically, a probe semiconvergence angle
of 29 mrad was employed for EELS-SI acquisition and a post-specimen
lens setup that gave a spectrometer acceptance angle of 36 + 0.4
mrad. Step sizes for EELS-SI were typically a few nm.

In order to determine crystallographic information of the particles,
scanned diffraction was performed with the same instrument using
aberration-corrected Lorentz-mode (i.e. objective lens switched off, and
the probe formed using the condenser lenses and the aberration cor-
rector, with a small convergence angle) [28]. Acquisition of the scanned
diffraction datasets was controlled using the Diffraction Imaging plug-
in for Spectrum Imaging within Gatan Digital Micrograph. Datasets for
ZroFe and Zr(Fe, Cr),-type SPPs in the oxide were acquired using the
30 um condenser lens aperture which gives a convergence angle of 1.5
mrad and a diffraction-limited probe size of ~0.8 nm, a 40 cm camera
length to give the appropriate size of diffraction pattern on the Gatan
Orius CCD camera, and a 0.5 s exposure time per pixel for the Zr(Fe,
Cr), dataset, and a 0.2 s exposure time per pixel for the Zr,Fe dataset.
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All phases were calibrated on the assumption that the matrix of the
bulk material was primarily monoclinic ZrO,, as consistent with Garner
et al. [5] and many other studies.

2.3. EELS data analysis

Post-acquisition, datasets were processed using a sequence of steps,
all performed within Gatan Digital Micrograph (version 2.3), in order to
separate the real spectroscopic signals from artefacts and noise, and to
quantify the resulting datasets. Full details of these post-processing
steps can be found at [29,30].

Digital Micrograph quotes a cross sectional error of 25% for an M
shell, 10% for an L shell and 5% for a K shell. This is due to the fact that
in general, the error in the K shell can be calculated from hydrogenic
calculations, and so can be calculated to high accuracy. The L shell
however, contains more quantum effects, and as there is more splitting
of sub shells, this calculation is not so simple, and a 10% error is
quoted. The M shell is more complicated again as the cross section error
is calculated by the number of electrons involved, and so is quoted as
25%. This is most likely too high. More detailed analysis of the accuracy
of these calculations is included in Egerton [31]. Errors in this work
were originally calculated on this basis, however, it should be noted
that for two neighbouring elements with the same edge, the error in the
absolute cross section will be similar in magnitude and direction in
most cases [31], causing the systematic errors to mostly cancel each
other out.

Random statistical errors were also analysed according to Poisson
statistics. However, due to our setup where hundreds or thousands of
spectra are collected for every SPP, the statistics are so good that the
fractional random error 1/VN is negligible. So, it is concluded that the
primary component of the error arises from the uncertainty in where
the background and signal window is set in Digital Micrograph. In order
to calculate this, the width, and onset energy of the background and
signal windows were altered slightly several times, in order to de-
termine the average difference in the cross sections due to several
window alterations. An average error of better than 5 at.% was found in
all cases, and is quoted as the general error of all elemental quantifi-
cations.

All images shown are oriented so that the vertical direction upwards
is towards the outer surface of the oxide scale, and the vertical direction
downwards is towards the metal bulk.

3. Results

This study has focussed on the morphology and chemical compo-
sition of both Zr,Fe and Zr(Fe, Cr), SPPs found within samples of
Zircaloy-4, as the oxidation front advances through the metal matrix.
Particular attention was paid to mapping the particles both pre-, and
post- oxidation. However, there are a few instances where the Zr(Fe,
Cr), particles are seen to sit right at the metal-oxide interface, just
undergoing, or having just undergone oxidation. Special mention will
be made of these instances in Section 3.4 when discussing the corrosion
of these binary particles.

3.1. ZryFe SPP in metal

Whilst Zr,Fe SPPs have rarely been reported in the literature, in the
work of which this publication forms a part, more than 30 different
Zircaloy-4 specimens have been prepared and analysed and Zr,Fe-type
precipitates have been observed on multiple occasions (even if they are
still rarer than Laves phase SPPs). Fig. 1 shows elemental maps of Zr
and Fe of one such particle within the unoxidised metal, together with a
background-subtracted EEL spectrum covering the range from 500 to
800 eV (which includes oxygen-K and iron-L, 5 edges). This specimen
has an oxide thickness of 4.05 um and thus, is a post transition spe-
cimen. The SPP is located ~3 pm below the metal oxide interface.
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Quantification of this high-loss data has shown that there is no
detectable chromium content within this particle, as can be seen in the
EEL spectrum in Fig. 1c, where the white lines of Cr above 575 eV are
notably absent. The absolute composition of the particle is shown in
Table 1 below and this is fully consistent with the idealised Zr,Fe
stoicheometry.

3.2. ZryFe SPP in oxide

As the oxidation front continues to advance through the a-Zr, sec-
ondary phase particles meeting this interface will be subject to corro-
sion. The oxidation front will proceed to oxidise the SPP and the sur-
rounding material, leaving behind an oxidised SPP stranded in the
oxide layer. EEL mapping, HAADF imaging, and scanned diffraction of
one such oxidised Zr,Fe SPP are shown in Fig. 2. This post transition
specimen has an oxide thickness of 4.72 pm, with the SPP found 3 pm
above the metal:oxide interface.

It is clear that the core of the oxidised SPP is rich in iron, as seen in
Fig. 2a, but there is little evidence of any strong internal segregation of
the iron - the variation of intensity in the iron map from centre to edge
in the SPP is due to this being a ~100 nm precipitate fully embedded in
a thin section thicker than this. Just quantifying the composition using
the region of the energy loss spectrum shown in Fig. 2e covering the O-
K and Fe-L, 3 edges results in the composition shown in Table 2. The
calculated composition was achieved by doing some simple balancing
of equations, based on the assumption that an ideally stoichiometric
ZryFe particle oxidises to a mixture of Fe;O3 and ZrO,. The measured
composition lies within one standard deviation of the calculated com-
position giving us confidence that this assumption of full oxidation to
Fe** and Zr*™ is likely.

A very small chromium-rich region can be seen at the edge of the
SPP in Fig. 2b. Whether this arose from a separate Cr-containing SPP on
the edge of the Zr,Fe SPP, or from a small amount of Cr in the Zr,Fe is
not clear.

An HAADF image of another oxidised Zr,Fe is shown in Fig. 2c. This
shows a very fine, apparently nanocrystalline structure. Additionally, it
appears to have expanded in the oxidation direction, but also seems to
be associated with a crack in the neighbouring ZrO,. This suggests that
the expansion on oxidation for this phase and the Zr are different,
leading to such cracking effects.

Fig. 2d shows a typical diffraction pattern from a scanned nano-
diffraction dataset from the SPP also shown in Fig. 2a. The same dif-
fraction pattern was seen across the particle, but with frequent small
rotations of the spot pattern. Even in this pattern, whilst it is clear that
it corresponds to a zone axis pattern, there are arcs of several spots for
each reflection. Thus, the nanocrystallites that comprise the particle
display a very strong crystallographic texture. The pattern shown could
correspond to a <114) pattern of a cubic structure of lattice parameter
4.7 A, and such an indexing is included on the pattern. This is un-
expected, since iron doping of ZrO,, whilst it stabilises tetragonal [32],
and possibly cubic phases [33], has previously only been shown to
result in lattice parameters down to 5.034 A for Zro cFeg 40y [33].
Conversely, this would also not be explained by the formation of
magnetite Fe304 or maghemite Fe,O3 (cubic spinels with lattice para-
meters 8.35-8.4 A [half the lattice parameter would be ~ 4.2 A]). It is
possible that this is a metastable hydrated phase formed at these low
temperatures in superheated water and which bridges the lattice
parameter gap between ~4.2 and ~5 A for iron oxide and zirconia, but
this is uncertain at this point and requires further investigation.

3.3. Zr(Fe, Cr), SPP in metal

As expected, Zr(Fe, Cr), precipitates were commonly observed in
the metal matrix. Fig. 3 is acquired from a post transition specimen
which has an oxide layer of 4.05 um and depicts two such Zr(Fe, Cr),
SPPs located 2.8 um from the metal:oxide interface. These SPPs
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Fig. 1. EELS spectrum imaging of a Zr,Fe SPP in the unoxidised metal,
about 3 pm below the metal:oxide interface: a) map of zirconium areal
density; b) map of iron areal density; ¢) EEL spectrum showing iron-Ly 3
edges at 721 and 708 eV respectively which depict a high Fe content
within the SPP. The SPP contains no detectable Cr, as shown by the lack of
the chromium-L, 5 edges at 584 and 575 eV respectively.
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Table 1
Chemical composition of a typical Zr,Fe particle found in the metal
as determined by EELS analysis.

Element Composition (at.%)
Zr (My,5 edge) 62 = 5
Fe (Ly,3 edge) 38 £ 5

together, have an average diameter of 0.3-0.35 um and are not uniform
in shape, but have a very definite, faceted outline. The size of these
precipitates are consistent with the size of Zr,(Fe, Ni) precipitates found
in Zircaloy-2 by Meng et al. [13] (< 1 um), with a Fe/Cr ratio of 0.83.
Whilst both Cr and Fe are found throughout, it should be noted that
there is also some evidence of a Fe concentration within the centre of
one precipitate. It may also be noted that there is a clear O enrichment
at the edges of the SPPs, over and above the slight surface oxidation on
the FIB-prepared specimen. It may be that some of the Cr or Zr in such
particles reacts with any dissolved oxygen in the alpha-Zr matrix to
form a thin surface oxide layer on such particles. Integrating the spectra
from much of the particles and quantifying the edges yields the bulk
composition shown in Table 3. This is very much as expected for Zr(Fe,
Cr)s.

3.4. Zr(Fe, Cr), SPP at metal-oxide interface (during oxidation)
As the oxidation front advances into the metal, particles are seen
which are in the process of being oxidised. It is expected on the basis of

electronegativity values that the first constituent to oxidise will be the
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zirconium, followed by chromium and finally iron: Zr has an electro-
negativity of 1.33, Cr 1.66 and Fe 1.83. As shown below, this is con-
sistent with the observations in this work

Fig. 4 shows an oxidised cluster of SPPs just inside the ZrO, scale, so
the oxidation front had just moved past these precipitates when the
sample was removed from the autoclave and prepared for STEM ana-
lysis. This post transition specimen has an oxide thickness of 2.96 um as
calculated from weight gain measurements, and is located in the oxide,
just at the oxide:metal interface. Overall, the majority of the particles
are clearly rich in Cr and appears to be the Zr(Fe, Cr), type which has/
have been at least partially oxidised. Whilst Fe is found throughout, it is
clearly segregated strongly to bands within the particle. There is Cr
throughout much of the particle, but there are some particularly rich
areas at points. Wherever Cr is rich, there is also plenty of Zr (although
naturally much less than in the pure ZrO, matrix surrounding). The
oxygen map shows that the Fe-rich veins are very low in O, and also the
areas closest to the unoxidised metal are very low in oxygen. A crack is
observed intersecting with the particle to the top right, especially
visible in this oxygen map, as previously also noted for the oxidation of
Zr,Fe.

Integrating the spectra from much of the two Zr(Fe, Cr), particles
and quantifying the edges yields the bulk composition shown in
Table 4. This is reasonably consistent with the bulk cation composition
for an unoxidised particle shown in Table 3, although a little high in Zr,
however, there may have been some ZrO, matrix overlapped with the
edges of the SPP. The oxygen: metal content is only 1:1, rather than 3:2
for Cr oxide or 2:1 for Zr oxide, suggesting that this particle is nowhere
near totally oxidised.

Four regions highlighted in Fig. 4e have been selected, and their
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Table 2

Chemical composition of a typical oxidised Zr,Fe particle as determined by EELS analysis.

Element Measured Composition Stoichemetric Composition
(at.%) (at.%)

O (K edge) 87 + 84.6

Fe (Ly3 edge) 13 + 15.4

Corrosion Science 128 (2017) 213-223

Fig. 2. EELS spectrum imaging of a Zr,Fe SPP
stranded in the oxide post corrosion: a) map of iron
areal density: b) map of chromium areal density; ¢) a
false coloured HAADF image of a different oxidised
Zr,Fe SPP showing the nanostructured nature of
particle; d) a diffraction pattern from a scanned dif-
fraction experiment on the SPP shown in a), a ten-
tative indexing on the basis of a face centred cubic
unit cell is included; e) an EEL spectrum showing the
SPP body (red) and areas of Cr deposits (green). (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

low- and high-loss EEL spectra shown in Fig. 4f and g respectively.
The region at the bottom centre of the oxidised SPP highlighted with
a blue dot in Fig. 4e is unlike most parts of the SPP and shows almost no
Cr, and low Fe content compared to the rest of the oxidised SPP. The
low-loss which represents this (region 1 in Fig. 4f) shows a three peaked
spectral signature, typical of an oxide (the highest peak being asso-
ciated with the N, 3 edge of Zr). The high-loss spectrum for this area
(region 1 in Fig. 4g) confirms the oxidation of this area showing a
strong peak of oxygen at 532 eV. The Fe L3 edge is also present,
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a)

however, there is no detectable Cr within this area of the SPP. This
leads to the assumption that this area is an oxidised small Zr,Fe pre-
cipitate, which was originally neighbouring a cluster of Zr(Fe, Cr), SPPs
prior to oxidation.

The orange dot in Fig. 4e highlights one of the Fe-rich veins in the
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Fig. 3. High-loss quantification of Zr(Fe, Cr), SPP: a)
map of zirconium areal density: b) map of oxygen
areal density; ¢) map of iron areal density; d) map of
chromium areal density; and e) false colour RGB
composite of SPP where green = Cr and red = Fe.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

SPP, and low- and high-loss spectra are shown as region 2 in Fig. 4f and
g. The low-loss EEL spectrum has just a single plasmon peak at about
25 eV, entirely consistent with a metal (and in a similar to position to
that for pure iron [34]). The high-loss signature for this area confirms
that there is minimal oxygen content over and above surface oxide in
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Table 3
Chemical composition of a typical unoxidised Zr(Fe, Cr), particle as
determined by EELS analysis.

Element Composition (at.%)
Zr (My 5 edge) 346 £ 5
Fe (Ly3 edge) 40.7 = 5
Cr (Ly 3 edge) 247 £ 5

this area, as well as little Cr content. As Fe is the final constituent to
oxidise according to the electronegativity argument presented above, it
appears that the Cr and Zr have monopolised the oxygen supply during
corrosion resulting in the segregation of separate veins of metallic iron.
The fact that many of these bands run perpendicular to the corrosion
direction suggest that Fe is rejected by the growing oxide until it builds
up into a sufficient concentration to precipitate separately, and that this
process repeats itself multiple times in oxidisation of such an SPP. This
particular vein, however, runs at an angle to the growth direction, and
it is speculated that this could have originally marked the boundary
between two neighbouring Zr(Fe, Cr), SPPs.

Much of the SPP is dominated by the mixed, Cr, Zr oxide.
Representative spectra of this phase are taken from the area highlighted
in Fig. 4e in purple and shown as region 3 in Fig. 4f and g. As for other
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Table 4
Chemical composition of a typical oxidised Zr(Fe, Cr), particle as
determined by EELS analysis.

Element Composition (at.%)
Zr (M4 5 edge) 19.7 = 5
O (K edge) 50.2 = 5
Fe (Ly,3 edge) 19.1 = 5
Cr (Ly,3 edge) 11.1 = 5

oxide areas, a 3-peak structure is seen in the low-loss. Here, the high-
loss spectrum demonstrates an oxidised region containing Cr, some Fe
(and some Zr, not shown in this spectrum)

An area on the tip of the SPP is highlighted with a green dot in
Fig. 4e with spectra shown as region 4 in Fig. 4f and g, whose low-loss
EEL spectrum shows a composition somewhere between the oxidised
regions 1 and 3, and the Fe-rich metallic region 2. The high-loss spec-
trum is principally chromium oxide, with little Fe. This is consistent
with Cr being one of the first constituents to oxidise, resulting in a Cr
rich SPP tip (since this area would have been the first region of the SPP
to come into contact with the metal-oxide interface).
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Fig. 4. High-loss quantification of a Zr(Fe, Cr), precipitate at the oxidation front showing: a) map of zirconium areal density; b) map of oxygen areal density; ¢) map of iron areal density;
d) map of chromium areal density; e) RGB composite of all phases where pink = Zr, blue = O, red = Fe and green = Cr, with 3 areas highlighted and their corresponding; f) low-loss
and; g) high-loss spectral signatures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. High-loss quantification of Zr(Fe, Cr), precipitate encapsulated by oxide showing; a) map of zirconium areal density; b) map of oxygen areal density; c) map of iron areal density;
d) map of chromium areal density; e) scan diffraction image showing diffraction pattern of body of SPP; g) scan diffraction image showing diffraction pattern of Fe-rich veins of SPP and;
f) RGB composite of all phases where pink = Zr, blue = O, red = Fe and green = Cr,] with 3 areas highlighted and their corresponding; h) low-loss and; i) high-loss spectral signatures.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.5. Zr(Fe,Cr), SPP in oxide

Fig. 5 shows maps and scanned diffraction from a Zr(Fe, Cr), par-
ticle ~0.9 ym from the metal:oxide interface of a specimen with a
2.96 um oxide layer. The structure seen here is totally consistent with
the process that was seen as starting in Fig. 4. The segregation of Cr and
Fe within the particles has continued to produce the very banded
structure shown in Fig. 5a-d and f. As before the majority is a Zr and Cr
rich oxide, interspersed with Fe-rich, oxygen-poor bands. As for the
other precipitates, cracking can be seen at the tip of this precipitate.

Again, three regions of interest were selected to allow more detailed
examination of the spectra, and these areas are highlighted by dots in
Fig. 5f, with their corresponding low- and high-loss electron energy loss
spectra shown in Fig. 5h and i, respectively.

The region highlighted in blue in Fig. 5f (region 1 in Fig. 5h and i)
selected only the contributions to the data set coming from the Fe-rich
banding and the low- and high-loss spectral signatures of the bands
lying within the SPP shown. Here, the low-loss EEL spectrum shows
more of a third peak at lower energy, suggesting some oxidation, but
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not as strong as in some full oxides shown in Fig. 4f. The high-loss
spectrum shows an oxygen K-edge, a weak Cr-L, 3 edge, and a strong Fe-
L, 5 edge. This suggests that the phase is still iron-rich, but contains
more oxygen than immediately after the oxidation front passed
through, as for the data shown in Fig. 4. Diffraction patterns from the
scanned diffraction dataset of such regions all look similar to Fig. 4g,
with a strong crystallographic texture, such that there are just slight
rotations of this pattern. The spots shown are the 110 reflections of bcc
iron, demonstrating that these areas are still principally metallic iron,
albeit with more dissolved oxygen content than earlier in the oxidation
process

A representative region within the Cr, Zr-rich body of the SPP is
shown with a red dot in Fig. 5f which gives the spectra shown region 2
in Fig. 5h and i. This shows an SPP body which is rich in Cr and O (and
Zr, not shown in the spectrum), and which is also deficient in Fe. Fig. Se
shows a representative diffraction pattern from a scanned nanodif-
fraction dataset of the body of the SPP. This mainly displays diffuse
rings of intensity at an angle corresponding to a plane spacing of 2.73 A.
This ring is better defined than a typical amorphous diffraction ring, but
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the individual spots are difficult to resolve in most cases, suggesting
that this material is composed of extremely small nanocrystals, of just a
few nm in size. This ring at 2.73 A could correspond to diffraction from
{1014} planes in Cr,03 (the strongest reflection from this structure in X-
ray diffraction). Thus, the phase could be interpreted as mainly nano-
crystalline Cr;03. There are also reflections for monoclinic ZrO, in this
area, which could also contribute to the ring.

Finally, the region highlighted by a green dot is shown in Fig. 5f
(region 3 in Fig. S5h and i) was selected to include only contributions
from a Cr-rich ‘cap’ of the precipitate (note, a Zr-rich cap is seen just
above this in Fig. 5a). This region’s high-loss spectrum is depleted in Fe,
but rich in Cr and O.

All this, is then consistent with the theory that Zr oxidises first,
shortly followed by Cr, and that the iron is pushed out of the oxide into
separate regions, which never oxidise fully.

4. Discussion

Whilst there have been many previous studies of the oxidation of
SPPs in Zircaloys, most studies have left significant unanswered ques-
tions. In particular, most studies to date have either performed some
imaging and some diffraction, or some imaging and some single point
chemical analysis. Performing spatially resolved chemical mapping,
and correlating this with the actual crystallographic structure is es-
sential to a complete understanding of what actually happens when
SPPs in Zircaloys are oxidised. Of course, the spectroscopic mapping
only became possible in recent years, as a result of major technical
advances, such as fast DualEELS [35,36]. The scanned diffraction also
only became possible in recent years due to modern STEM instruments
with the ready achievement of sub-nm, low-convergence angle probes
[28] together with suitable CCD cameras and control software.

One of the interesting outcomes of the work is that the oxidation of
the rarer Zr,Fe SPPs is totally different to that of more common Zr
(Cr,Fe), SPPs. Specifically, the Zr,Fe SPPs oxidise to form a nanocrys-
talline precipitate that appears chemically homogeneous down to the
5 nm scale, with a composition corresponding of full oxidation to Fe®*
and Zr**. These precipitates, however, display very strong crystal-
lographic texture and a clear diffraction pattern throughout. The one
mystery is that this diffraction pattern does not fit to either a well-
known tetragonal ZrO, or any known Fe,O3; phase but seems to be
possible to index to a cubic (or pseudocubic) structure with a lattice
parameter close to 4.7 A. Further work would be needed to elucidate
exactly what is going on here.

In contrast to this homogeneity in the oxidation of Zr,Fe particles,
Zr(Fe, Cr), oxidation results in huge segregation within the SPP into
chromium and zirconium mixed oxide regions and metallic bec iron
regions. It is really quite remarkable that well-crystallised metallic iron
is formed as a result of the corrosion process in veins parallel to the
corrosion front. Presumably this happens by a mechanism whereby the
Zr and Cr are oxidised into some form of mixed oxide, which does not
welcome Fe in its structure, thus the Fe diffuses away from the newly
formed oxide into the unoxidised part of the SPP. This will gradually
enrich in Fe until the concentration is so high that Fe is then pre-
cipitated and the crystallite grows rapidly with all the super-saturated
Fe at the growth front accreting onto it to form large plate like single
crystals. Once the Fe supersaturation has been precipitated, this pro-
cedure repeats itself, and this happens multiple times in oxidising a Zr
(Fe, Cr), SPP. The reader may be wondering why the Fe and Cr do not
readily intermix in the oxide form, when Cr,O3; and Fe,O; are iso-
structural (with the hematite/corundum structure). This is, however,
well known from previous studies of the oxidation of Fe-Cr-Al alloys,
where separate layers of Cr oxides and Fe/Fe oxides are found on the
surfaces [37,38]. This is to be expected when one considers the Fe,Os3-
Cry03 phase diagram [39] where, whilst there is complete solid solu-
bility, significant phase segregation into Fe,Os-rich and CryOs-rich
phases would occur under most preparation conditions.
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In all cases examined in this paper, cracking can be seen at the edge of
SPPs after oxidation. After further examination however, the cracking
patterns around Zr,Fe precipitates are different to those around Zr(Fe, Cr),
precipitates. Oxidised Zr,Fe particles typically show lateral cracking in the
ZrO, to one or other side of the SPP. In contrast to this, Zr(Fe, Cr), pre-
cipitates typically show cracks at the top (and sometimes the bottom) of
the particle. This latter tendency was not just seen in this work, but has
also been seen by de Gabory et al. [20,40], Proff et al. [11], and Pécheur
[21]. This difference can easily be explained by strain arguments. As the
ratio of the molar volumes of zirconium (Zr) to zirconia (ZrO,) (denoted
the Pilling-Bedworth number) is in the range 1.48-1.56 [41-46], the re-
sulting oxide film must expand on oxidation [47]. This results in the
production of a stress gradient across the oxide, which appears at a
maximum at the metal:oxide interface and a minimum at the oxide:gas
interface [48]. We calculate a Pilling-Bedworth ratio of 1.51 based on
published lattice parameters [49,50]. If Zr,Fe is fully oxidised to a mixture
of ZrO, and a-Fe,0s3, this Pilling-Bedworth number would be 1.67 (using
a-Fe,0O3; parameters from [51] and Zr,Fe parameters from [52]); this
number may change slightly for a mixed Zr,Fe oxide, but would likely still
exceed 1.51. Seeing as, to a first approximation, oxidation could be seen as
a linear process happening along the surface normal direction (and not an
isotropic expansion, as suggested by Proff et al. [46], full oxidation of a
ZroFe particle would result in the particle being in compressive strain
along the growth direction and the surrounding matrix being in tensile
strain along that same direction. This would have the effect of opening
cracks in the ZrO, perpendicular to the growth direction, exactly as ob-
served.

Now for the case of Zr(Fe, Cr), SPPs, the volume expansion of full
oxidation to a mixture of m-ZrO,, Cr,O3 and a-Fe,O3 should give a
Pilling-Bedworth ratio of about 1.89 (based on published lattice para-
meters used above and for Cr,O3 from [53]) which would again result
in the SPP being in compressive strain and the adjacent ZrO, in tensile
strain; this is similar to that for pure ZrCr, of 1.78 [46]. But, these SPPs
are not fully oxidised. In fact, our conclusions are that much of the Fe is
not oxidised and instead precipitates as metallic bcc iron. When this is
taken into account, the Pilling-Bedworth ratio is much smaller, just 1.53
for all iron remaining as metal and all Zr and Cr being fully oxidised
(using lattice parameters for alpha iron from [54]). This would be close
enough to the 1.51 for ZrO, such that stress and cracking would be
minimal. But, if some of the Cr was also unoxidised (e.g. dissolved in
the ferrite), the Pilling-Bedworth ratio would be smaller than 1.53 and
the SPP would not quite fill the void created by the oxidation of the
surrounding Zr. This is exactly what is observed where small voids or
cracks are typically seen at the outer tip of such oxidised Laves phase
SPPs. It is also true that differences in thermal expansion could con-
tribute to such void formation, although this has not been calculated
here as that would be a more complex calculation requiring detailed
knowledge of the thermal expansion behaviour of all phases involved.
Nevertheless, it is believed that thermal expansion mismatches would
have a minimal effect [46].

This clearly demonstrates therefore, that Zr,Fe SPPs will inevitably
result in cracking of the oxide scale due to the expansion mismatch with
the Zr matrix on oxidation. Since Zr,Fe is only believed to form at
higher iron content [7], it may be that this effect could be reduced by
reducing iron content somewhat. Indeed, this could be one reason why
Charquet [7] found a worse corrosion resistance for high Fe:Cr ratios in
Zircaloy. This happens in addition to any cracking that appears due to
mechanical mismatches resulting from the undulation of the metal-
oxide interface [55].

The formation of small voids above partially oxidised Zr(Cr,Fe),
Laves-phase SPPs is probably similar to the formation of crescent
shaped cracking above unoxidised SPPs in the oxide layer of Zr1%Cr
samples [11] and in unoxidised or partially oxidised SPPs in other
studies. This is probably less significant for the formation of connected
cracking, as they are generally just some free space at the SPP imposing
no tensile strain on the zirconia scale.
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5. Conclusions

Coupled STEM imaging, DualEELS and scanned diffraction has been
used to provide a comprehensive study of the oxidation of SPPs in
Zircaloy-4 during corrosion in superheated water. Two main forms of
SPP are found, the frequently observed Zr(Fe, Cr), Laves-phase type, as
well as some Zr,Fe particles (isostructural with Zr,Ni).

ZroFe precipitates begin as fairly round, homogenous precipitates
within the metal matrix, and oxidise in a fairly uniform manner, to a
nanocrystalline, fully oxidised Fe>* Zr** mixed oxide. There is a strong
crystallographic texture developed in oxidation, but the crystalline
phase was unidentified and neither matches tetragonal ZrO, nor any
known phase of Fe,Os. Instead, the diffraction pattern was consistent
with a <114) pattern of a cubic structure with a lattice para-
meter ~4.7 A.

Zr(Fe, Cr), precipitates begin as very faceted structures within the
metal matrix, with O enrichment of the outside rim. Fe concentration is
also seen to increase in specific areas within the centre of precipitates.
Such SPPs develop into a more elongated shape upon oxidation, with a
strongly banded elemental segregation. There are three phases found: i)
a Cr rich cap which we presume to be Cr,O3; with some Fe substitution;
ii) a Zr, Cr nanocrystalline oxide body with an approximate 3:2 ratio of
Zr:Cr, and very little Fe content. The diffraction pattern reveals a ring
pattern of randomly oriented nanocrystallites, with a ring consistent
with some reflections of either Cr,O5; or monoclinic ZrO, or a mixture of
the two; iii) veins of well-crystallised metallic a-Fe with low oxygen
content, with a strong texture mostly running parallel to the metal-
oxide interface.

The Zr,Fe precipitates cause cracking in the vicinity because the
expansion on oxidation is larger than for the Zr — ZrO, reaction putting
the ZrO, either side into tensile strain. On the other hand the Zr(Fe, Cr),
can leave small voids or cracks at the upper tip due to the incomplete
oxidation of the iron which results in less expansion of the SPP than the
Zr — ZrO,. Providing an understanding of the corrosion process of SPPs
within Zircaloys such as has been presented in this work, which can
provide elemental distribution, valence state and crystal structure,
gives an understanding beyond that previously obtained on the complex
corrosion that takes place. This may also provide some information on
the possible influence of SPPs on the overall corrosion behaviour of
Zircaloy-4 in simulated reactor conditions.
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