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Abstract In this paper, we investigate the possibility of transient growth in
the linear perturbation of current sheets. The resistive magnetohydrodynamic
(MHD) operator for a background field consisting of a current sheet is non-
normal, meaning that associated eigenvalues and eigenmodes can be very sen-
sitive to perturbation. In a linear stability analysis of a tearing current sheet,
we show that modes that are damped as t → ∞ can produce transient energy
growth, contributing faster growth rates and higher energy attainment (within a
fixed finite time) than the unstable tearing mode found from normal-mode anal-
ysis. We determine the transient growth for tearing-stable and tearing-unstable
regimes and discuss the consequences of our results for processes in the solar
atmosphere, such as flares and coronal heating. Our results have significant
potential impact on how fast current sheets can be disrupted. In particular,
transient energy growth due to (asymptotically) damped modes may lead to
accelerated current sheet thinning and, hence, a faster onset of the plasmoid
instability, compared to the rate determined by the tearing mode alone.

Keywords: Magnetohydrodynamics · Instabilities · Magnetic Reconnection,
Theory

1. Introduction

The prototypical instability in resistive magnetohydrodynamics (MHD) is the
tearing instability. As the name suggests, this instability describes the growth
of the “tearing” of magnetic field or, to be more precise, the change in the field’s
magnetic topology. In two dimensions, the tearing instability creates a series of
magnetic islands, similar to Kelvin’s cats eyes (e.g. Schindler, 2006). In three
dimensions, the change in magnetic topology can be more complicated (e.g.
Priest, 2014).

The standard magnetic field configuration for the tearing instability is the
current sheet. The name derives from a thin layer of intense (compared to the
surrounding environment) current density located in a highly sheared magnetic
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field. Normally, the magnetic field points in opposite directions on either side of
the current sheet, with the width of the current sheet (where the change takes
place) being much smaller than the typical length scale of the large-scale system.

Since the seminal work of Furth et al. (1963), there have been many studies
of the tearing instability that consider effects such as different geometries or the
inclusion of extra physics (e.g. Pritchett et al., 1980; Terasawa, 1983; Tassi et
al., 2007; Tenerani et al., 2015). In the context of solar physics, magnetic recon-
nection (the change of magnetic topology) is a fundamental physical process, so
the tearing instability is of great interest in this field. Solar eruptions, ranging
from flares to jets to coronal mass ejections (CMEs) are often believed to be
triggered by magnetic reconnection (e.g. MacNeice et al., 2004; MacTaggart and
Haynes, 2014; MacTaggart et al., 2015). MHD simulations have demonstrated
that fast eruptive behaviour is strongly linked to the tearing of current sheets.

Although large-scale MHD simulations, such as those cited above, can describe
the nonlinear evolution of the tearing instability, they are not so effective when it
comes to analysing the onset of instability. The complex geometries, sensitivity
to boundary conditions and low (compared to the corona) Lundquist numbers
make a detailed analysis of the onset of instability very challenging. Therefore,
studies that focus only on the (linear) onset of the instability are still very
important.

When studying the onset of the tearing instability, the vast majority of studies
have focussed on normal-mode analysis (e.g. Chandrasekhar, 1961). That is,
solutions are sought with a time dependence of the form

φ ∼ exp(−iωt), (1)

where φ represents a variable of the system, ω is the frequency and t is time. If
=(ω) > 0, then φ grows exponentially as t → ∞. Otherwise, if =(ω) < 0, then
φ decays exponentially as t → ∞. The objective of normal-mode analysis is to
find the largest value of =(ω), which corresponds to the fastest growing mode.
The onset of the instablilty can, therefore, be recast as an eigenvalue problem
for eigenvalues ω. For the tearing instability, there is one eigenvalue such that
=(ω) > 0. Hence, there is only one mode that causes exponential growth in
the linearized system and is referred to as the tearing mode. It can be shown
analytically (Furth et al., 1963; Schindler, 2006) that the growth rate of the
tearing mode depends on the magnetic Lundquist number S (which we shall
define later) in the form S−α, where 0 < α < 1. For environments such as the
solar corona, where the magnetic Lundquist number is O(108) and above (e.g.
Hood and Hughes, 2011), the tearing mode growth rate is very slow compared
to rapidly occuring phenomena like flares. This has led researchers to study the
nonlinear tearing instability in order to find faster dynamics. However, it may
be the case that a faster onset of the instability can be found in the analysis of
the linearized system by including the energy growth ignored by normal-mode
analysis.

As mentioned above, eigenvalues describe the behaviour of growth or de-
cay as t → ∞. In normal-mode analysis, all eigenvalues satisfying =(ω) < 0
(exponential decay) are ignored. However, modes associated with these rejected
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eigenvalues can produce transient growth which, although it decays exponentially
as t → ∞, can produce significant energy growth within a finite time. If such
transient growth is large enough, the growth of the linear system could enter
the nonlinear regime much faster than by the growth rate of the tearing mode
alone. Therefore, the transient growth due to the damped modes of the system
could lead to current sheet disruption much faster than by the growth rate of
the (unstable) tearing mode.

There has been a lot of interest in the study of transient growth of the linear-
lized Navier-Stokes equations for shear flows (e.g. Reddy and Henningson, 1993;
Reddy et al., 1993; Schmid and Henningson, 1994; Hanifi et al., 1996). Math-
ematically, transient growth corresponds to the non-normality of the system.
What characterises a non-normal system is the non-orthogonality of eigenmodes.
To analyse the non-normal behaviour of such systems, a generalization of the
eigenvalue spectrum, known as the pseudospectrum, can be used (Trefethen and
Embree, 2005). Bobra et al. (1994) use pseudospectra to relate ideal and resis-
tive MHD spectra. They show that the resistive MHD eigenmodes, for sheared
background fields, are strongly non-orthogonal and, hence, can exhibit transient
growth. The effects of non-normal behaviour in MHD have also been studied
in the context of magnetic field generation (e.g. Farrell and Ioannou, 1999a,b;
Livermore and Jackson, 2006). In solar physics, transient energy growth has
attracted attention in solar wind applications (e.g. Camporeale et al., 2009;
Camporeale, 2012).

The effects of non-normal behaviour have not, to our knowledge, been ap-
plied to eruptive behaviour in the corona, which is the focus of this paper. By
considering a sheared background magnetic field (a current sheet) we will study
the effects of transient behaviour in the cases when the system is (spectrally)
stable and unstable to the tearing instability. We illustrate the non-normality of
the associated operator using a particular form of the pseudospectrum that is
simple to calculate once the eigenvalue spectrum has been obtained. The paper
is outlined as follows: the initial model equations and boundary conditions are
introduced, the background theory for calculating the optimal energy growth
is discussed, the spectra and energy growth envelopes are displayed for several
cases, and the paper concludes with a discussion of potential applications and
further work.

2. Model Description

To study the tearing instability, we consider the 2D incompressible MHD equa-
tions

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ−1(∇×B)×B, (2)

∂B

∂t
= ∇× (u×B) + η∇2B, (3)
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∇ ·B = ∇ · u = 0, (4)

where B is the magnetic field, u is the velocity, ρ is the (constant) density, p is
the plasma pressure, η is the constant magnetic diffusivity and µ is the magnetic
permeability. Although compressible MHD would be a more suitable model for
the solar atmosphere, we choose to use incompressible MHD for two reasons.
The first reason is simplicity - to illustrate our procedure, incompressible MHD
allows for an obvious measure of the disturbance energy. The theory that we shall
develop, however, could be extended to compressible MHD and more complicated
models. The second reason is that most of the literature on the tearing instability
uses incompressible MHD. Therefore, comparison with previous work can be
made more directly.

For our background (static) equilibrium,

p0 = p0(x), B0 = B0z(x)ez, u0 = 0, (5)

where the zero subscript corresponds to the equilibrium and

p0(x) +
1

2µ
B2

0z(x) = const. (6)

Before choosing a particular form for B0z(x), let us linearize the MHD equations.
Setting (u,B, p) = (u0,B0, p0) + (u1,B1, p1) results in the linearization

ρ
∂u1

∂t
= −∇p1 + µ−1(∇×B1)×B0 + µ−1(∇×B0)×B1, (7)

∂B1

∂t
= ∇× (u1 ×B0) + η∇2B1 (8)

∇ ·B1 = ∇ · u1 = 0. (9)

Note that we are assuming η � 1 which is typical in many solar and astrophysical
applications. We therefore ignore the contribution of diffusion on the background
equilibrium in Equation 8, expecting the dynamics of the instability to to occur
on a much shorter time scale than the diffusion time.

We now look for solutions of the form

u1 = [u(x, t), 0, uz(x, t)]
Teikz, B1 = [b(x, t), 0, bz(x, t)]

Teikz, (10)

where k is the wavenumber of disturbances in the z-direction. Taking the curl
of Equation 7, we eliminate p1. Using the solenoidal constraints in Equation 9,
we can eliminate uz and bz. This leaves:

∂

∂t

(
∂2u

∂x2
− k2u

)
=
ikB0z

µρ

(
∂2b

∂x2
− k2b

)
− ikB′′0z

µρ
b, (11)
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∂b

∂t
= ikB0zu+ η

(
∂2b

∂x2
− k2b

)
, (12)

where a prime denotes differentiation with respect to x.

2.1. Equilibrium

We choose a classic form for the background magnetic field known as the Harris
sheet. The magnetic field of the Harris sheet is given by

B0z(x) = B0 tanh

(
x

x0

)
, B′′0z(x) = −B0

x20

2

cosh2(x/x0)
tanh

(
x

x0

)
, (13)

where B0 is the maximal field strength and x0 measures the thickness of the
current sheet. The equilibrium pressure then comes from Equation (6) but is
not important for our calculations.

2.2. Non-dimensionalization

To non-dimensionalize the equations, consider

u = u0u
∗, b = B0b

∗, t = t0t
∗, x = x0x

∗, (14)

with

t0 =
x0
u0
, u0 =

B0√
µρ
, (15)

where u0 is the Alfvén speed. The linearized MHD equations become (after
dropping the asterisks)

∂

∂t

(
∂2u

∂x2
− k2u

)
= ikB0z

(
∂2b

∂x2
− k2b

)
− ikB′′0zb, (16)

∂b

∂t
= ikB0zu+ S−1

(
∂2b

∂x2
− k2b

)
, (17)

where

S =
x0u0
η

(18)

is the (non-dimensional) Lundquist number.

2.3. Boundary Conditions

We require that b→ 0 and u→ 0 as x→ ±∞. However, since numerical simula-
tions typically range bewteen finite values, we shall approximate the boundary
conditions as b = u = 0 at x = ±d for some d > 0. This approach will make
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possible comparisons to simulations of tearing instabilities more feasible. Also,
since the tearing instability develops in a thin boundary layer near x = 0, a
value of d much larger than the width of the boundary layer will result in
a good approximation. In the Appendix, we perform one of our subsequent
calculations in the half-plane (x, z) ∈ [0,∞) × (−∞,∞). Comparing this to
the corresponding result from the closed domain reveals that the exact form of
the boundary conditions is not of vital importance for the results of this paper.

3. Background Theory

In this section we discuss the background theory for determining the optimal
energy growth and how non-normal contributions are included. Our aim is to
solve the full initial value problem, rather than just the eigenvalue problem.
However, in order to determine the effects of different modes on energy growth,
we recast the initial value problem in terms of a selection of eigenvalues and
(corresponding) eigenmodes. By considering the kinetic and magnetic energies,
we define a (physically) suitable norm for the system and use this to determine
the optimal energy growth.

3.1. Operator Equations

In anticipation of the numerical approach that we shall describe later, we write
the linearized MHD equations as a maxtrix-vector system. Equations 16 and 17
can be written in the form

∂

∂t
Mv = Lv, (19)

with

M =

(
D2 − k2 0

0 I

)
, L =

(
0 LI

ikBz LR

)
, v =

(
u
b

)
, (20)

and

LI = ikBz(D2 − k2)− ikB′′z , LR = S−1(D2 − k2), D =
∂

∂x
, (21)

where I represents the identity operator. If we consider solutions of the form

v = ṽ exp(−iωt), ω ∈ C, (22)

we can transform the initial value problem of Equation 19 into the generalized
eigenvalue problem

−iωMṽ = Lṽ. (23)

Making the assumption of Equation 22 restricts us to examining growth or decay
in the limit of t→∞ only. In normal-mode analysis, we would solve Equation 23
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for the eigenvalue with the largest value of =(ω) > 0. This approach, however,
misses the possibilty of transient growth due to eigenmodes with corresponding
eigenvalues satisfying =(ω) < 0, i.e. damped modes.

In our calculations of transient growth, we shall make use of the eigenvalue
spectrum calculated from Equation 23 and the corresponding eigenmodes. In
practice, however, we shall only need to consider a finite number of eigenmodes
since not all eigenfuctions will contribute non-normal behaviour. Therefore,
we restrict ourselves to the space SN spanned by the first N least damped
eigenmodes of M−1L:

SN = span{ṽ1, . . . , ṽN}. (24)

We expand the vector functions v ∈ SN in terms of the basis {ṽ1, . . . , ṽN}:

v =

N∑
n=1

κn(t)ṽn. (25)

Note that the expansion coefficients κn are functions of t since we are solving
the full initial value problem of Equation 19 and not the restricted problem of
Equation 23. We can restate Equation 19 in the simple form

dκ

dt
= −iΛκ, Λ ∈ CN×N , κ ∈ CN , (26)

with

κ = [κ1 . . . , κN ]T, Λ = diag[ω1 . . . , ωN ]. (27)

The operator Λ represents the linear evolution operator,M−1L, projected onto
the space SN .

3.2. Energy Norm

In order to complete the transformation of the vector functions v to coefficients
κ, we must consider the scalar product and its associated norm. To measure
the disturbance energy, we consider the combination of the (nondimensional)
disturbance kinetic and magnetic energies

EV =
1

2

∫
V

(|u|2 + |b|2) dV. (28)

From Equation (9) we have

Du+ ikuz = 0, Db+ ikbz = 0. (29)

Therefore, by virtue of Parseval’s equivalence (e.g. Tichmarsh, 1948), we can
write

EV =

∫
k

1

2k2

∫ d

−d
(|Du|2 + k2|u|2 + |Db|2 + k2|b|2) dx dk. (30)
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Following previous works (e.g. Reddy and Henningson, 1993), we take the energy
density E as

E =
1

2k2

∫ d

−d
(|Du|2 + k2|u|2 + |Db|2 + k2|b|2) dx. (31)

Since Equation 31 provides a sensible measure of the energy for a given k, we
define the energy norm as

‖v‖2E =
1

2k2

∫ d

−d
(|Du|2 + k2|u|2 + |Db|2 + k2|b|2) dx (32)

For any v1,v2 ∈ SN , the inner product associated with the above energy norm
can be written as

(v1,v2)E =
1

2k2

∫ d

−d
vH2 Qv1 dx, (33)

where

Q =

(
k2 −D2 0

0 k2 −D2

)
, (34)

and the superscript H represents the complex-conjugate transpose. The inte-
grands in Equations 32 and 33 can be related via integration by parts. Equation
33 can be written as

(v1,v2)E =
1

2k2

∫ d

−d
vH2 Qv1 dx = κHQκ, (35)

where the matrix Q has components

Qij = (ṽi, ṽj)E =
1

2k2

∫ d

−d
ṽHj Qṽi dx. (36)

The matrix Q is both Hermitian and positive definite. We can, therefore, factor
Q according to Q = FHF (e.g. Trefethen and Bau, 1997), leading to

(v1,v2)E = κH2 Qκ1 (37)

= κH2 F
HFκ1 (38)

= (Fκ1, Fκ2)2. (39)

The associated vector norm satisfies

‖v‖E = ‖Fκ‖2, v ∈ SN . (40)

This relationship between the energy norm and the L2 norm will be useful for the
practical calculation of the optimal energy growth that we shall discuss shortly.
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3.3. Optimal Growth

The formal solution of the initial value problem 19 can be written as

v = exp(M−1Lt)v0, v0 = v(0). (41)

Using Equation 25 we can transform the above result to

κ = exp(−iΛt)κ0, κ0 = κ(0). (42)

The optimal transient growth of the disturbance energy is given by the norm of
the matrix exponential

G(t) ≡ G(t, S, k) = max
v0 6=0

‖v(t)‖2E
‖v0‖2E

(43)

= max
κ0 6=0

‖Fκ(t)‖22
‖Fκ0‖22

(44)

= max
κ0 6=0

‖F exp(−iΛt)κ0‖22
‖Fκ0‖22

(45)

= max
κ0 6=0

‖F exp(−iΛt)F−1Fκ0‖22
‖Fκ0‖22

(46)

= ‖F exp(−iΛt)F−1‖22. (47)

Equation 47 follows from Equation 46 via the definition of an induced norm.
The curve traced out by G(t) vs. t represents the maximum possible energy

amplification, which for each instant of time is optimized over all possible initial
conditions with unit energy norm (Schmid and Henningson, 1994). The initial
disturbance that optimizes the amplification factor can be different for different
times. Therefore, G(t) should be thought of as the envelope of the energy growth
of individual initial conditions with unit energy norm. Henceforth, we shall refer
to G(t) as the optimal energy envelope.

4. Numerical Procedure

In this section we briefly outline the main numerical procedures for the required
calculations. Until now, we have presented the theory in terms of the underly-
ing operators. Since a practical solution requires a (finite) discretization of the
problem, we shall henceforth refer to matrices rather than operators and eigen-
vectors rather than eigenmodes. When referring back to an equation containing
operators, it will be implicit that we are now considering the discretized version
of that equation and, hence, are strictly dealing with finite matrices rather than
operators.
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4.1. Discretization for the Eigenvalue Problem

We follow previous works on non-normal stability by expanding the variables
in terms of Chebyshev polynomials. These functions are defined in the interval
[−1, 1]. It is trivial to convert from the problem domain [−d, d] to the Chebyshev
domain via y = x/d, with y ∈ [−1, 1]. A function can be approximated on the
Chebyshev interval as

f(y) =

N∑
n=0

anTn(y), (48)

where

Tn(y) = cos[n cos−1(y)] (49)

and the an are constants. The unknown variables, u and b in Equation 19
are expanded in the form of Equation 48. Derivatives are also expressed in
terms of Chebyshev polynomials and make use of standard recurrence relations
(e.g. Abramowitz and Stegun, 1964). In order to use these recurrence relations,
the expanded equations are then required to be satisfied at the Gauss-Lobatto
collocation points

yj = cos

(
πj

N

)
. (50)

If we consider the eigenvalue problem of Equation 23, the expansion in terms
of Chebyshev polynomials produces a matrix-vector system where the matrices
(for the generalized eigenvalue problem) contain spectral differentiation matrices
and the vector contains the expansion coefficients an.

Boundary conditions are included in rows of one of the matrices of the dis-
cretized generalized eigenvalue problem. The corresponding rows in the other
matrix are chosen to be a complex multiple of these rows. By choosing a large
complex multiple, spurious modes associated with the boundary conditions can
be mapped to a part on the complex plane far from the region of interest (far
below the eigenvalues near =(ω) = 0). To illustrate this approach, consider the
discrete form of Equation 23

−iωMx = Lx (51)

where M and L are finite matrices and x represents an eigenvector. We can
write

M =



T0(1) T1(1) · · ·
T ′′0 (y1)− k2T0(y1) T ′′1 (y1)− k2T1(y1) · · ·

...
...

...
T ′′0 (yN−1)− k2T0(yN−1) T ′′1 (yN−1)− k2T1(yN−1) · · ·

T0(−1) T1(−1) · · ·
...

...
. . .


, (52)
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where we indicate the layout of the top-left section of the matrix (see the def-
inition of M in Equation 20). Boundary conditions have been included in the
1st and Nth rows. The same rows in L are chosen as a complex multiple of the
corresponding rows in M (Reddy et al., 1993). In this paper, we multiply the
rows by −8000i. For brevity, we do not display the full matrix of the discretized
problem.

Once the system is fully discretized, the generalized eigenvalue problem can
be solved by standard methods. In this paper, we perform the calculations in
MATLAB.

4.2. Optimal Quantities

4.2.1. Energy Growth

To calculate the optimal energy growth, we make use of singular value decom-
position (SVD). Writing A = F exp(−iΛt)F−1, we can decompose this matrix
as

AV = ΣU, (53)

where U and V are unitary matrices and Σ is a matrix containing the singular
values, ordered by size. It can be shown that ‖A‖2 = σ1, where σ1 is the largest
singular value of A (e.g. Trefethen and Bau, 1997). Via Equation 47, we use this
property to determine the optimal energy growth. Again, we use MATLAB to
calculate the SVD.

4.2.2. Optimal Disturbances

In order to determine the initial disturbance that will create the maximum
possible amplification at a given time t0, we can make further use of the SVD.
Let A = F exp(−iΛt0)F−1. If σ1 is the largest singular value of A then, as
described above,

σ1 = ‖F exp(−iΛt0)F−1‖2 = ‖ exp(−iΛt0)‖E. (54)

If we perform a decomposition, as before, and now focus only on the column
vectors of U and V corresponding to σ1, we obtain

Av1 = σ1u1. (55)

The effect of A on an input vector v1 results in an output vector u1 stretched by
a factor of σ1. That is, v1 represents an initial condition that will be amplified by
a factor σ1 due to the mapping F exp(−iΛt0)F−1, where t0 is the time when the
amplification is reached (e.g. Schmid and Henningson, 1994). On the subspace
SN , the optimal initial disturbance can be expressed as

κ1 = F−1v1. (56)
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5. Spectra and Perturbed Matrices

In this section we present some of the results from solving the generalized eigen-
value problem of Equation 23. To be more precise, we solve the discretized version
of Equation 23 subject to the numerical scheme outlined in the previous section.
Throughout the rest of the paper, unless specified otherwise, we will set d = 10.
Let us consider S = 1000 and examine the spectra for the cases k = 0.5 and
k = 1.2. Figure 1 displays these two spectra.

Re(ω)
-0.5 0 0.5

Im
(ω

)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

tearing mode

(a)

Re(ω)
-1.5 -1 -0.5 0 0.5 1 1.5

Im
(ω

)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

(b)

Figure 1. Spectra for the discrete generalized eigenvalue problem, Equation 23, for S = 1000
and (a) k = 0.5 and (b) k = 1.2. In (a), the unique eigenvalue corresponding to the tearing
mode is highlighted.
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For the tearing problem set up in this paper, it can be shown analytically that
the equilibrium can only become tearing-unstable for 0 < k < 1. The spectrum
in Figure 1a is for k = 0.5 and the system is, therefore, linearly unstable to the
tearing instability. As can be seen from this spectrum, there is only one unsta-
ble eigenvalue, labelled as corresponding to the tearing mode. This eigenvalue
is ≈0.0131, which is equivalent to the value obtained from a finite difference
solution of the same problem (Hood, private communication). The layout of
the spectrum is qualitatively similar to other tearing-unstable spectra that have
been calculated for similar boundary conditions and background equilibria (e.g.
Goedbloed et al., 2010). There is a distinct branching structure that is found in
the spectra of many non-normal matrices (Reddy et al., 1993).

In the spectrum for k = 1.2, in Figure 1b, there are no eigenvalues with
=(ω) > 0. There is still, however, a branching structure similar to the previous
spectrum. The branch points of the spectra indicate the non-normal behaviour
of this resistive MHD problem. This means that eigenvectors with eigenvalues
satisfying =(ω) < 0 can contribute transient growth to the amplification of
energy. In order to reveal this non-normal behaviour, consider the following
description. Let A be a matrix from which the eigenvalues of the problem are
found, and let E be a matrix such that ‖E‖2 ≤ 1. Consider, also, a small
parameter ε � 1. A complex number, z, is in the pseudospectrum of A, σε(A),
if z is in the spectrum of A + εE (a similar statement can be made for finite
operators). For a normal matrix, points z ∈ σε can differ from corresponding
points in the spectrum of A by O(ε), i.e. by the size of the perturbation (e.g.
Trefethen and Embree, 2005).

For a non-normal matrix, however, the difference can be much larger. Instead
of the eigenvalues of A + εE differing from those of A by, at most, O(ε), they
can differ by O(1). Such behaviour is particularly present at the branch points
of spectra.

If A represents the unperturbed matrix of the spectra displayed in Figure 1,
Figure 2 displays the spectra of A + εE (for k = 0.5, 1.2) where ε = O(10−6)
and the entries of E are random and taken from a normal distribution. The
eigenvalues of A+ εE, for six different random matrices E, are shown in red.

The pseudospectrum of A would be the subset of the complex plane given by

σε =
⋃

‖E‖2≤1

σ(A+ εE). (57)

As demonstrated in Figure 2, however, only a few matrices E are required to
reveal the non-normal character of the matrix A.

There are several equivalent definitions of pseudospectra (Trefethen and Em-
bree, 2005). The definition we have presented here gives the simplest and most
practical demonstration of non-normal behaviour. For our current purposes, this
version of the pseudospectrum will suffice.

Looking at the eigenvalues of the perturbed matrix, there are two main fea-
tures that emerge. The first is that for large parts of the spectra, the eigenvalues
of A+εE differ from the eigenvalues A by O(ε), indicating normal behaviour. The
second feature is that near the branch points of the spectra, the difference is now
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Figure 2. Same spectra as in Figure 1 but now with eigenvalues of the perturbed matrices
included and shown in red.

much larger. For both spectra displayed, a perturbation of O(10−6) produces a
difference of O(10−1) between the eigenvalues of the matrices A and A+εE at the
branch locations. This jump of five orders of magnitude is a clear signal of non-
normality and, hence, the possibility of significant transient growth. Estimating
the pseudospectrum of Equation 57 with just a few random matrices E is the
recommended approach for determining if the system in question is non-normal
since it is easily determined from the spectrum which we use for determining
the optimal transient growth. Plotting the pseudospectrum estimate, as done
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in Figure 2, also reveals what eigenvectors will produce non-normal effects and
then should, therefore, be included in the subspace SN .

6. Optimal Energy Growth

6.1. Spectrally-Stable k

As stated previously, the onset of the tearing instability, for the present setup,
occurs only for 0 < k < 1 in normal-mode analysis. However, as demonstrated
in the previous section, the system is non-normal and allows for the possibility
of transient growth, even for k > 1. To get an overview of the optimal energy
growth for spectrally stable k, we calculate maxt≥0G(t) for different k. For
the calculation of G(t), we only consider contributions from eigenvalues with
−1.4 < =(ω) < 0. This will mean that for different values of k, different numbers
of eigenvalues (and therefore eigenvectors) will be used in the calculations. How-
ever, this range captures most of the effects of the non-normality, as suggested
by the pseudospectra, and does not disguise the main results. The values of
maxt≥0G(t) for a range of k > 1 and for the cases S = 100 and S = 1000 are
displayed in Table 1.

Table 1. Maxima of G(t) in time for k > 1 and
magnetic Lundquist numbers S = 100, 1000.

k maxG(t, S = 100) maxG(t, S = 1000)

1.1 1.6 8.48

1.2 1.51 10.86

1.3 1.41 11.79

1.4 1.35 11.42

1.5 1.29 11.57

For S = 100, the optimal energy growth is small and does not even double
in size for the values of k displayed. This result is important as the mag-
netic Lundquist number for many simulations can be of O(100). Therefore, any
transient growth would not be noticed. Moving up to S = 1000, the optimal
energy growth can increase by an order of magnitude. In the solar corona,
where S ≈ O(108) and higher, it is therefore possible that transient growth
for spectrally stable k could become large enough to excite the nonlinear phase
of the tearing instability. An example of a G(t) envelope for k = 1.1, S = 1000
is shown in Figure 3.

In light of the results of Table 1, we may ask how the transient energy growth
can increase with increasing S? One way to answer this question is to consider a
simple upper bound for the energy growth. For an initial value problem, suppose
that ωI is the imaginary part of the least damped eigenvalue of Λ. It then follows
that

exp(ωIt) ≤ ‖ exp(−iΛt)‖E (58)
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Figure 3. An example of an optimal energy envelope G(t) for S = 1000 and k = 1.1.

≤ ‖F‖2‖F−1‖2 exp(ωIt) (59)

≤ κ(F ) exp(ωIt), (60)

where κ(F ) = ‖F‖2‖F−1‖2 is the standard notation for the condition number
of the matrix F (not to be confused with κ from Equation 25). If κ(F ) = 1 in
Equation 60, we have equality and the energy bound is determined by the least
damped eigenvalue alone. If, however, κ(F )� 1, then there is the potential for
substantially larger energy growth at early times, even though it may be that
ωI < 0. For the tearing-stable case studied above, ωI ≈ 0 and so the energy
bound is given by κ(F ). Table 2 shows how the condition number varies for
some values of S when k = 1.1.

Table 2. S vs. κ(F ) for k = 1.1.

S 10 50 100 500 1000 5000

κ(F ) 20 690 1.6×104 2×108 3×108 3.8×108

Clearly, using κ(F ) as an upper bound for the energy is too loose for practical
considerations. However, the purpose of displaying these results is to convey the
following: as S increases and, hence, the diffusion term in the induction equation
is multiplied by a smaller coefficient S−1, it may reasonably be expected that
the energy bound tends to an ideal MHD limit, where the onset of instability
is governed entirely by eigenvalues. However, the opposite is true, allowing for
(non-normal) transient effects to play a significant role. As S increases, the
eigenvectors (related to F via the inner product in Equation 39) become more
ill-conditioned, as discussed in Bobra et al. (1994).
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Stricter bounds (both upper and lower) for the energy growth can be deter-
mined using pseudospectral theory (Trefethen and Embree, 2005). However, such
considerations go beyond the scope of the present paper and will be considered
in future work.

6.2. Spectrally-Unstable k

For 0 < k < 1, a normal-mode analysis would produce the eigenvalue with the
highest positive value of =(ω), which would represent the growth rate of the
linearly unstable system. For the tearing instability, the growth rate behaves as
S−α for 0 < α < 1, which, for coronal values, is very slow. For a discussion the
various values of α, determined by eigenvalue analysis in different regimes, the
interested reader is directed to Tenerani et al. (2016).

Since normal-mode analysis ignores any energy growth that decays as t→ 0,
the possibility of faster energy growth due to transient effects is often neglected.
To demonstrate the possible effect of transients on the growth rate, Figure 4
displays the optimal energy growth envelopes for two cases: the optimal energy
growth due to the tearing mode alone and the optimal energy growth due to the
combination of the tearing mode and spectrally stable eigenvectors. This example
is calculated for S = 1000 and k = 0.2 and when transient effects are included,
we consider eigenvectors with corresponding eigenvalues with imaginary parts
bounded below by =(ω) = −0.6.

t
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Figure 4. Optimal energy growth curves G(t) for S = 1000 and k = 0.2. Key: =(ω) > −0.6
(solid), =(ω) > 0 (dash).

The dashed curve represents the optimal energy growth using only the tearing
mode. This envelope could be produced if we performed a normal-mode analysis.
Comparing this curve to the case where other eigenvectors are included in the
calculation reveals very interesting behaviour. By t ≈ 20, G(t) from the solid
curve increases to ≈ 30 (note that the Figure displays logG(t)), compared to
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that of the dashed curve which only increases to ≈ 1. Including the effects
of transient growth has resulted in an optimal energy growth that proceeds
much more rapidly, at short times, compared the contribution from the linearly
unstable mode alone. By t ≈ 40, the solid curve begins to plateau and the growth
rate is now less than the dashed curve. This is due to the initial transients
decaying and having less effect on the energy growth. From t ≈ 60 and beyond,
both curves become parallel. This behaviour is to be expected as the contribution
from the unstable mode dominates as t → ∞. It is clear from Figure 4 that
including the effects of the transients can increase the optimal energy growth
substantially.

As mentioned before, the curves of G(t) are envelopes of the optimal energy
growth and so, in practice, they may not be reached if the initial perturbation is
not optimal. However, what Figure 4 reveals is that even if the optimal energy
growth is not attained, the gap between the envelopes for growth with and
without transient effects can be large. Hence, even a non-optimal perturbation
can produce fast energy growth that could amplify the energy to an order of
magnitude (or more) greater than that predicted by normal-mode analysis,
within a given time.

6.3. Optimal Distubances

The optimal energy envelopes described in the last section represent, at every
point in time, the energy amplification optimized over all initial conditions with
unit energy norm. As described in Section 4.2.2, we can determine the optimal
perturbation from the same analysis used to calculate G(t). That is, for a given
time, we can determine the initial perturbation that produces the optimal energy
amplification at that time. To illustrate this, Figure 5 shows the optimal initial
values for the x-component of the velocity at times t = 30, 40 for the case
S = 1000, k = 0.2.

The other components of u and b at t = 0 can also be found. For brevity,
we omit displaying them here. The purpose of calculating the optimal initial
conditions is described in the following section.

7. Discussion

7.1. Summary

In this paper, we have demonstrated that the linear onset of the tearing insta-
bility can exhibit large transient energy growth due to the non-normality of the
associated resistive MHD operator. This energy amplification is found by solving
the full initial value problem rather than just the eigenvalue problem of normal-
mode analysis. The latter theory is only concerned with the asymptotic growth
of the linear system and ignores transient effects. From our illustrative examples
we have shown that transient energy growth can be amplified much faster than
than that determined purely from normal-mode analysis. This behaviour has
been demonstrated for both tearing-stable and tearing-unstable values of the
wavenumber.
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(a)

(b)

Figure 5. Optimal initial ux for (a) t = 30, (b) t = 40.

To determine the optimal energy growth, we have made use of the eigenvalues
and eigenvectors of the system. By plotting pseudospectra, we reveal that a
subset of eigenvectors contributes to transient energy growth. The eigenvectors of
this subset have eigenvalues ω with =(ω) < 0, which are ignored by normal-mode
analysis.

The optimal energy envelopes that we calculate increase in amplitude with
the magnetic Lundquist number S. These curves represent the possible energy
amplification that can be achieved if the initial condition is optimal. However,
even if the initial condition is not optimal, there is still the possibility for energy
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growth that is much faster than the growth rate determined from normal-mode
analysis. This means that transient energy growth could, potentially, trigger the
nonlinear phase of the tearing instability much sooner than previously expected.
If this is the case, the implications for the tearing instability in solar physics
would be substantial.

7.2. Solar Applications

7.2.1. Coronal Phenomena

In the solar corona, two important phenomena that are often linked to current
sheets and their dissipation are coronal heating and solar eruptions. For the first
of these, the “nanoflare” theory suggests that the corona is heated by many
“small” heating events (or flares) spread throughout the coronal magnetic field
(Parker, 1988). The tearing of current sheets, that develop from the complex
deformation of magnetic fields, is one possible way that the magnetic field can
release its energy as heat. Recent models of the nonlinear development of the
MHD kink instability have revealed the development of many small-scale current
features that could act as nanoflares (e.g. Hood et al., 2016). Our results sup-
port the idea of coronal heating via tearing instabilities as perturbations could
excite large transient growth which, in turn, could potentially readily generate
nanoflares.

For the second phenomenon, current sheets are believed to play an important
role at the onset, and subsequent nonlinear development, of solar eruptions. Such
current sheets would be manifest in the flares associated with the initiation of
CMEs, jets and surges. Simulations of CME-type eruptions often reveal a com-
bination of reconnection above and below the CME, referred to as the breakout
theory of CMEs. In particular, simulations, both 2D and 3D, demonstrate that
tearing reconnection above and below the CME heralds the onset of an eruption
(e.g. MacNeice et al., 2004; MacTaggart and Haynes, 2014). The onset of jets
and surges has also been linked to the tearing of current sheets (e.g. MacTaggart
et al., 2015). The onset of jets and eruptions is an important topic, not only for
theoretical interest but for space weather applications. Therefore, understanding
all aspects (normal and non-normal) of the onset of the tearing instability is vital.

7.2.2. Quasi-Singular Current Sheets and the Plasmoid Instability

Recent work by Pucci and Velli (2014) has highlighted that the aspect ratio of
current sheets has a threshold value, after which, equilibrium cannot be reached
and the current sheet must reconnect. Various simulations have revealed that a
fast tearing instability can develop for large S and have growth rates proportional
to S1/4 (Lourerio et al., 2007; Lapenta, 2008). Hence, in the limit as S → ∞,
there would be, in the words of Pucci and Velli (2014), an “infinitely unstable
mode” which is impossible in ideal MHD. By a simple and clever scaling argu-
ment, they show that once the current sheet aspect ratio is O(S1/3), a laminar
current sheet cannot be supported and fast tearing must proceed.

Although we agree with main conclusion of Pucci and Velli (2014), we would
suggest an alternative path to reaching their result. Their analysis is based
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entirely on eigenvalues and eigenvectors and so ignores the contribution of any
transient growth. As the possible energy amplification of transient growth in-
creases with S, a much faster onset of the tearing instability could be found
that is due to transient growth. Such transient growth depends on the initial
perturbation. Hence, the result of Pucci and Velli (2014) can be thought of as a
lower bound, when there are no effects of transient growth. As soon as there are
perturbations that can induce transient growth, energy amplification will grow
faster, thus exciting the tearing instability faster, as shown in the example in
Figure 4.

Further recent work by Comisso et al. (2016) attempts to describe a general
theory of the plasmoid instability, formulated by means of a principle of least
time. In their analysis, they find that the scaling relationships for the final aspect
ratio, the transition time to rapid onset, the growth rate and the number of
plasmoids depend on the size of the initial disturbance amplitude, the rate of
current sheet evolution, and the Lundquist number. We agree that the initial
conditions are important for the onset of the instability, however, we would
suggest that the theory of Comisso et al. (2016) could be extended to include
transient effects like those described in this paper. Using scalings for the tearing
mode alone will not give a complete description of the transient phase of the
instability.

7.3. Future Work

This work can proceed in two main directions. The first is to include extra physics
(e.g. two fluid effects) to study how this would effect transient growth. The sec-
ond, and perhaps most important, is to use optimal initial perturbations as initial
conditions in nonlinear resistive MHD simulations. This task will determine if
transient growth can lead to a fast nonlinear phase of the tearing instability or if
nonlinear terms saturate the transient growth. It will be particularly interesting
to determine if the nonlinear tearing instability can be excited by perturbations
with k > 1, i.e. spectrally-stable perturbations.

Although we have suggested that our results can extend those of previous
studies (such as Pucci and Velli (2014) and Comisso et al. (2016)) there remains
much further work to understand how the damped part of the eigenvalue spec-
trum perturbs the current sheet and drives reconnection, particularly at very
high values of S.
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Appendix

Throughout this paper we have performed calculations with boundary conditions
u = b = 0 at x = ±d. This has been done so that our results can be easily
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compared to other works and to nonlinear simulations which typically use such
boundary conditions. Since the tearing instability develops in a boundary layer
near x = 0, the precise nature of the boundary conditions should not play a
strong role on the onset of the instability. To illustrate this, we solve the discrete
form of Equation 23, with S = 1000 and k = 0.5, in the half-plane and compare
the resulting spectrum to that in Figure 1a.

Anticipating a symmetric solution in b and an antisymmetric solution in u
about x = 0, we set the boundary conditions at x = 0 to be

u =
db

dx
= 0. (61)

As x→∞, we set

u = b = 0. (62)

In order to represent this boundary numerically, we consider a large domain
denoted by 0 ≤ x ≤ xmax. In order to expand the variables using Chebyshev
polynomials, we need to map our coordinates to the domain −1 ≤ y ≤ 1. This
is achieved through

x = a
1 + y

b− y
, (63)

where

a =
xmaxxi

xmax − 2xi
and b = 1 +

2a

xmax
. (64)

This mapping clusters the grid points near the boundary layer at x = 0 and
places half of the grid points in the region 0 ≤ x ≤ xi (Hanifi et al., 1996).
In this example, we take xmax=100 and xi = 15. The resulting spectrum is
displayed in Figure 6.

By inspection, the comparison with Figure 1a yields few differences. The
eigenvalue corresponding to the tearing mode now has a value ≈ 0.0111, which
is still similar to that calculated for the other boundary conditions. Two isolated
eigenvalues near =(ω) = 0 in Figure 1a are now pushed nearer the main branches
in Figure 6. Apart from these minor differences, the spectra calculated from
different boundary conditions are very similar. This result suggests that the
exact form of boundary conditions, assuming they do not interfere dynamically
with the boundary layer at x = 0, will not radically change the behaviour of the
onset of the tearing instability.
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