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ABSTRACT
Recommending a ranked list of interesting venues to users based
on their preferences has become a key functionality in Location-
Based Social Networks (LBSNs) such as Yelp and Gowalla. Bayesian
Personalised Ranking (BPR) is a popular pairwise recommendation
technique that is used to generate the ranked list of venues of in-
terest to a user, by leveraging the user’s implicit feedback such as
their check-ins as instances of positive feedback, while randomly
sampling other venues as negative instances. To alleviate the spar-
sity that a�ects the usefulness of recommendations by BPR for
users with few check-ins, various approaches have been proposed
in the literature to incorporate additional sources of information
such as the social links between users, the textual content of com-
ments, as well as the geographical location of the venues. However,
such approaches can only readily leverage one source of additional
information for negative sampling. Instead, we propose a novel
Personalised Ranking Framework with Multiple sampling Crite-
ria (PRFMC) that leverages both geographical in�uence and social
correlation to enhance the e�ectiveness of BPR. In particular, we
apply a multi-centre Gaussian model and a power-law distribution
method, to capture geographical in�uence and social correlation
when sampling negative venues, respectively. Finally, we conduct
comprehensive experiments using three large-scale datasets from
the Yelp, Gowalla and Brightkite LBSNs. �e experimental results
demonstrate the e�ectiveness of fusing both geographical in�uence
and social correlation in our proposed PRFMC framework and its
superiority in comparison to BPR-based and other similar ranking
approaches. Indeed, our PRFMC approach a�ains a 37% improve-
ment in MRR over a recently proposed approach that identi�es
negative venues only from social links.

1 INTRODUCTION
With the emergence of Location-Based Social Networks (LBSNs)
such as Foursquare and Yelp, users can search for interesting venues
(e.g. restaurants and museums) to visit, share their location to their
friends by making a check-in at the venue they have visited or
leave a comment or rating to explicitly express their opinion about
the venue. Such implicit and explicit sources of feedback provide
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rich information about both users and venues, and thus can be
leveraged to study the user’s movement in urban cities, as well as
enhance the quality of personalised venue recommendations. Most
existing venue recommendation systems (e.g. [3, 7, 16, 25, 28, 29])
apply Collaborative Filtering (CF) techniques to suggest relevant
venues to users based on an assumption that similar users are
likely to visit similar venues. Various venue recommendation ap-
proaches [3, 7, 15, 16] have been proposed that extend Matrix Fac-
torisation (MF) [9], a popular CF-based technique that predicts a
user’s preference or rating on venues by exploiting explicit feedback
(e.g. ratings and comments). Rankings of venue suggestions are
then obtained based on the predicted user-venue rating generated
by the MF-based model. However, in practice, users only focus
on the top-K ranked list of venues, hence e�ective ranking-based
models (e.g. learning-to-rank) that aim to generate accurate top-K
venue suggestions are more useful than e�ective rating prediction-
based models (i.e. regression models) [19]. From this point of view,
MF-based approaches are not expected to perform as e�ectively as
learning-to-rank models for the venue recommendation task [20].
In addition, explicit feedback is relatively sparse in LBSNs, which
can degrade the e�ectiveness of the MF-based approaches [8].

To address the aforementioned challenges, various ranking-based
approaches (e.g. [19]) have been proposed to leverage implicit feed-
back (e.g. check-ins), which is more abundant than explicit feed-
back [19], to generate accurate venue suggestions. Bayesian Person-
alised Ranking (BPR) [19] is a pairwise ranking-based model that
is widely implemented and extended to leverage implicit feedback
to generate the top-K venue recommendations (e.g. [14, 21, 25, 30]).
�e pairwise ranking criterion of the BPR model for venue recom-
mendation is based on the assumption that a user prefers the visited
venues observed from their historical check-ins over the non-visited
ones. �is idea results in a pairwise ranking loss function that tries
to discriminate between a small set of visited venues and a very
large set of all unvisited venues. Due to the imbalance between
the user’s visited venues and non-visited venues, the BPR model
uniformly samples negative examples from the set of non-visited
venues to reduce the training time.

As users have typically only visited a very small proportion of
all venues in the LBSNs [21, 28], traditional BPR models typically
su�er from the sparsity problem1 that hinders the quality of the
personalised venue suggestions. To mitigate the sparsity problem,
various approaches have been previously proposed to leverage addi-
tional information such as social information [15, 21, 30], temporal
in�uence [4], textual content of comments [16, 29] as well as geo-
graphical information [3, 11, 12, 24, 25, 28]. In particular, a common
approach that enhances the performance of the BPR models under

1A common challenge in recommendation systems.



sparsity conditions is to extend the sampling criterion and pair-
wise ranking function of BPR to incorporate additional sources of
information (e.g. social links [21, 30] and geographical informa-
tion of venues [25]). However, a pairwise venue recommendation
framework that seamlessly incorporatesmultiple types of additional
information has not been previously proposed. Moreover, the var-
ious extended sampling criteria for BPR previously proposed in the
literature [14, 21, 25, 30] are based on pre-de�ned assumptions and
not on motivated by characteristics of users’ movement and social
interactions in LBSNs that have been observed in previous check-in
studies [3, 28, 29] (�is is further discussed in Section 3). Further-
more, such sampling criteria are not su�ciently �exible to incorpo-
rate additional sources of information. To address all of the afore-
mentioned challenges, we propose a novel Personalised pairwise
Ranking Framework with Multiple sampling Criteria (PRFMC) that
incorporates multiple types of additional information to e�ectively
sample negative examples and enhance the performance of the BPR
model. In particular, our contributions are summarised below:

• We propose a novel Personalised pairwise Ranking Frame-
work with Multiple sampling Criteria (PRFMC) for venue
recommendation that exploits probabilistic models to e�ec-
tively sample negative examples and generate personalised
venues to users. In addition, PRFMC is su�ciently �exi-
ble to permit extension to incorporate multiple additional
sources of information (�is is further discussed in Sec-
tion 4.1). To the best of our knowledge, our proposed
framework (PRFMC) is the �rst study that extends BPR to
incorporate multiple additional information.

• We propose a sampling criteria and pairwise ranking ap-
proach that applies the-state-of-the-art geographical and
social probabilistic models: namely Multi-centre Gaussian
and the power-law distribution models, to enhance the
performance of the BPR model for venue recommendation.
Our proposed approach di�ers from previous works [3, 28,
29] that exploit geographical in�uence and social correla-
tion to directly enhance the user-venue rating prediction
accuracy, whereas we leverage such in�uences to e�ec-
tively sample negative examples as well as enhance the
e�ectiveness of the BPR model.

• We conduct comprehensive experiments on three large-
scale real-world datasets from Yelp, Brightkite and Gowalla
to demonstrate the recommendation accuracy of PRFMC.
�e experimental results demonstrate that PRFMC consis-
tently outperforms various state-of-the-art venue recom-
mendation approaches in three datasets (Section 5).

�e rest of this paper is organised as follows. We review related
literature on Venue Recommendation in Section 2. �en, we provide
the problem statement and describe the BPR model and extended
BPR models for venue recommendation in Section 3, as well as
some of their limitations. Our proposed PRFMC framework and
its components are described in Section 4. �e experimental setup
for our experiments is detailed in Section 5, while comprehensive
experimental results comparing the e�ectiveness of PRFMC with
various state-of-the-art approaches are reported in Section 6 and
concluding remarks follow in Section 7.

2 RELATEDWORK
Conventional Recommendation systems. Matrix Factorisation (MF)

is a collaborative �ltering-based approach widely used to predict
the ratings that users will give to items (e.g. movie and books), pro-
posed in [9]. Traditional MF techniques aim to �nd latent factors of
users and venues by leveraging the interactions between users and
venues. Various existing MF-based approaches in the literature (e.g.
[3, 12, 15, 16]) generate personalised venue recommendations by
ranking the venues based on the predicted user-venue preference
scores (e.g. rating). Such approaches can be identi�ed as pointwise
approaches [13]. Even though these approaches were designed
for the venue prediction task of personalised ranking, none were
directly optimised for ranking venues (i.e. focusing on ge�ing the
top-ranked suggestions that are relevant to users). Indeed, empiri-
cal studies have demonstrated that pairwise and listwise approaches
are generally more e�ective than pointwise approaches for general
information retrieval tasks such as web search [1, 2, 13].

However, unlike traditional information retrieval tasks, in the
venue recommendation task, the recommender system needs to
rank a large set of unvisited venues for each user, based on their
historical feedback (i.e. check-ins or ratings on venues they previ-
ously visited) rather than small sets of candidate web documents.
In addition, it is di�cult to extract user-venue features as users
typically visit a small set of venues in LBSNs. Hence, a listwise
approach is less suited for venue recommendation. Instead, Ren-
dle et al. [19] proposed a pairwise optimisation criteria, named
Bayesian Personalised Ranking (BPR), which maximises a poste-
rior estimation of pairwise ranking with Bayesian theory, in which
an assumption is that for each user, each user’s previously visited
venues are preferred over their venues they have not visited.

�eir empirical results demonstrated that BPR coupled with MF
outperforms pointwise approaches [19]. Later, Rendle and Freuden-
thaler [18] proposed a non-uniform sampling approach extended
from the BPR model to improve the convergence rate of the BPR
learning algorithm for tag Recommendation systems. Our pro-
posed PRFMC framework di�er from Rendle and Freudenthaler’s
approach into two aspects: (1) PRFMC aims to enhance the ef-
fectiveness of the BPR model by incorporating multiple types of
additional information using multiple sampling criteria, instead of
the convergence rate and (2) we address venue recommendation
rather than tag recommendation.

Venue recommendation with additional information. In contrast
to non-spatial items such as movies, books and tags in conventional
recommendation systems, the users of LBSNs must physically inter-
act with the venues to consume their o�ered products or services
(e.g. having lunch at restaurants). Various previously studies on
check-in datasets on LBSNs have shown that user’s movement on
LBSNs can be captured by a power-law distribution [23, 26] or a
multi-centre Gaussian distribution [3], while friends can in�uence
users to visit novel venues and such behaviour can be captured by
a power-law distribution model [28]. Previous literature has shown
that the geographical information of venues (e.g. [3, 7, 12, 12, 23,
25, 27]) and social correlation [12, 15, 16, 21, 23, 28, 30] as well as
textual content of comments (e.g. [17, 29]) are important factors
to improve the e�ectiveness of venue recommendation systems.
In particular, several approaches have been proposed to extend
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Figure 1: A typical user’s multi-centres check-in behaviour
sampled from the Brightkite dataset.

the BPR model to leverage additional information to enhance the
e�ectiveness of the BPR model [14, 21, 25, 30]. However, these
approaches can only incorporate one type of additional informa-
tion and are not su�ciently �exible to incorporate other additional
information. In addition, these approaches did not use either geo-
graphical in�uence or social correlation as explored in the previous
studies mentioned above (Further discussed in Section 3.3-3.4). Re-
cently, Loni et al. [14] proposed a pairwise ranking framework
that extends the BPR model to leverage multiple types of implicit
feedback (e.g. click and likes) for item recommendation. To the
best of our knowledge, this is the state-of-the-art in BPR-based
models that can incorporate multiple additional information. Later
in Section 6, we use this model as a baseline to compare with our
proposed PRFMC framework.

3 VENUE RANKING AND BPR
In this section, we �rst elicit the problem statement as well as the no-
tations used in this paper (Section 3.1). �en, we brie�y describe the
Bayesian Personalised Ranking (BPR) model (Section 3.2) followed
by the extended BPR models from the literature, which incorpo-
rate additional information and identify the limitations of these
models (Section 3.3 and 3.4). Finally, Section 3.5 summarises the
elicited limitations. Later, in Section 4, we describe our proposed
framework that addresses these limitations.

3.1 Problem Statement
�e task of venue recommendation is to generate a ranked list
of relevant venues that a user might visit given his/her historical
feedback (e.g. previously visited venues from their rating or check-
in feedback). �e historical feedback of users is represented as
a matrix R ∈ Rm×n wherem and n are the number of users and
venues, respectively. Let ru,i ∈ R denotes the rating or check-in
frequency of user u ∈ U on venue i ∈ V where U and V are the
set of users and venues in LBSN, respectively. Note that ru,i = 0
means that user u has neither le� a rating nor made a check-in at
venue i . Social links are represented as a matrix F ∈ Rm×m where
Fu is the set of user u’s friends.

In this paper, we de�ne three di�erent types of user’s feedback:
namely observed, potential and unobserved feedback. �e observed
feedback of user u is de�ned as the set of venuesV +u previously vis-
ited by user u, while the unobserved feedback of user u is de�ned as
the complementV−u ∈ V\V+u . �e potential feedbackVa

u of user
u is de�ned as a type of additional feedback that can be obtained

from an additional source of information a. For example, letVs
Fu

denote the social feedback that represents venues visited by the
user u’s friends but which user u has not visited before.

3.2 Bayesian Personalised Ranking
�e Bayesian Personalised Ranking (BPR) model proposed by Ren-
dle et al. [19] consists of a pairwise ranking function and a ranking-
based optimisation criterion with a gradient-based learning algo-
rithm for personalised venue recommendations. BPR creates user-
venue tuples D =

{
(u, i, j)|i ∈ V+u ∧ j ∈ V−u

}
by uniformly sam-

pling a user-venue pair (u, i) observed in R and a negative venue
j ∈ V−u not observed in R. Indeed, BPR treats venue j sampled
from the unobserved feedback as a negative example. However, we
argue that this negative sampling criterion is not intuitive because
venue j could be of interest to the user but he/she has not visited
it yet (Limitation 1). Given a tuple (u, i, j) ∈ D, the BPR pairwise
ranking function is de�ned as follows:

r̂u,i, j (Θ) := ŷu,i � ŷu, j , i ∈ V+u , j ∈ V−u (1)
where r̂u,i, j (Θ) is a pairwise ranking function that prefers venue i
over venue j , Θ denotes a set of parameters and ŷu,i is the predicted
check-in frequency of user u in venue i , which can obtained from
a matrix factorisation technique.

Given the tuples D, the BPR optimisation criterion is as follows:

BPROpt (D) = arдmax
Θ

∑
(u,i, j)∈D

ln σ (r̂u,i, j (Θ)) − λ‖Θ‖2 (2)

where σ (x) = 1
1+e−x is a logistic function and λ‖Θs ‖2 is a reg-

ularisation term to prevent over��ing, where ‖.‖2F denotes the
Frobenius norm. For each sampled tuple, the BPR algorithm up-
dates parameters Θ with a Stochastic Gradient Descent approach
based on the ranking criterion that venue i should be ranked higher
than venue j (see [19] for further details).

3.3 BPR with Geographical In�uences
As mentioned in Section 2, the geographical information is an
important factor that in�uences the users’ decision on visiting
novel venues, while the performance of BPR can be signi�cantly
decreased due to the sparsity problem. To alleviate this problem,
Yuan et al. [25] extended the BPRmodel to incorporate geographical
information (GBPR).�ey assumed that a user is likely to visit venue
д if it is nearby to venues that the user has previously visited,V+u .
Given a useru and a venue they have visited i ∈ V+u , GBPR samples
venue д from the potential feedback Vд

u,i , a set of geographical
neighbours of venue i within a µ threshold distance, which the
user u has not visited before, as a negative example to alleviate
the sparsity problem. �en, they proposed a pair ranking function
that prefers an unvisited neighbourhood venue д ∈ Vд

u,i over an
unvisited venue j ∈ V−u . �e GBPR pairwise ranking function is
de�ned as follows:
r̂u,i,д, j (Θ) := ŷu,i � ŷu,д ∧ ŷu,д � ŷu, j , i ∈ V+u ,д ∈ V

д
u,i , j ∈ V

−
u
(3)

In previous studies examining users’ movements on LBSNs [3, 28,
29], it has been shown that users are likely to visit venues nearby to
a venue that they o�en visit (e.g. their o�ce). However, GBPR [25]
uniformly samples negative venues nearby to any previously visited



venues, regardless of how few other venues they have visited in
the same area.

To illustrate this, consider Figure 1, showing the character of a
user in di�erent cities (centres) of the USA. In centre 1, the user has
only visited one venue, while he/she has visited various venues in
centre 2. Hence, the user is more likely to visit venues nearby to
venues in centre 2 rather than centre 1. However, we argue that
GBPR’s negative sampling approach uniformly samples negative
venues nearby to previously visited venues regardless of the number
of venues (visited) in the neighbourhood, which may lead to a non-
optimal negative sampling approach (Limitation 2).

3.4 BPR with Social Correlations
Apart from the extended BPR model that incorporates geographical
information asmentioned above, there are two recent works [21, 30]
that have incorporated social information to sample negative exam-
ples based on di�erent criteria. Zhao et al. [30] proposed a social
BPR model (SBPR) that leveraged social links to sample negative
examples. �ey assumed that users are likely to visit venues previ-
ously visited by their friends. �e negative sampling criterion and
ranking function of SBPR are similar to GBPR’s (Equation (3)) but
substitute V дu,i with V

s
Fu

(i.e. a set of venues visited by the user u’s
friends but which user u has not visited before). Recently, Wang
et al. [21] proposed a �ner-grained social BPR that extended SBPR
by considering a relationship between friends, in terms of Strong
and Weak-ties (SWBPR): strong-ties are friends who share mutual
friends while weak-ties are friends that do not share mutual friends.
In doing so, their intuition is that venues previously visited by
weak-tie friends might be of more interest to the user than venues
previously visited by strong-tie friends because weak-tie friends
are more likely to introduce novel venues. To illustrate their intu-
ition, the authors assumed that strong-tie friends could be friends
from the same high school so they share mutual friends and their
preferences are likely to be similar. In contrast, weak-tie friends
can introduce new venues that are more interesting. We summarise
their proposed ranking criteria as follows:

r̂u,i � r̂u, j , if


i ∈ V+u ∧ j ∈ V joint

u or

i ∈ V joint
u ∧ j ∈ Vweak

u or

i ∈ Vweak
u ∧ j ∈ Vstronд

u or

i ∈ Vstronд
u ∧ j ∈ Vnone

u

(4)

whereV joint
u is a set of venues visited by at least one strong-tie

and weak-tie friends of user u,Vweak
u andVstronд

u as the set of
venues visited by at least one of weak-tie friends and strong-tie
friends, respectively andVnone

u is a set of venues visited by neither
user u nor his/her friends.

Similar to GBPR, the negative sampling criteria of SBPR and
SWBPR do not rely on the social correlation explored in previous
literature [28] (Limitation 3). As mentioned in Section 2, Zhang
et al. [28] found that the social check-in frequency and similarity
between friends greatly a�ects the user’s behaviour to visit new
venues. Moreover, we argue that GBPR, SBPR and SWBPR require
a pre-de�ned sampling assumption to generate the potential feed-
back (e.g. Vs

Fu
and Vweak

u ), which is not su�ciently �exible to

permit extension to incorporate other types of additional informa-
tion (Limitation 4). For instance, GBPR is not su�ciently �exible
to permit extension to incorporate social information.

3.5 Summary of Limitations
To conclude, in the analysis of this section, we have identi�ed four
limitations of the negative sampling approaches used in BPR-based
approaches in the literature:
Limitation 1: �is limitation de�nes the inherent disadvantage
of uniformly sampling negative examples from a set of unvisited
venues (BPR’s negative sampling criterion).
Limitation 2: Sampling approaches for which this limitation ap-
plies are based on pre-de�ned assumptions of how geographical
pa�erns de�ne appropriate negative venues to sample.
Limitation 3: Sampling approaches for which this limitation ap-
plies are based on pre-de�ned assumptions of how social interac-
tions de�ne appropriate negative venues to sample.
Limitation 4: Sampling approaches that are built upon pre-de�ned
assumptions are not su�ciently �exible to incorporate di�erent
types of additional information.

4 VENUE RECOMMENDATIONWITH SOCIAL
AND GEOGRAPHICAL INFORMATION

In this section, we explain how we exploit geographical and so-
cial information to e�ectively sample negative feedback venues to
enhance the e�ectiveness of BPR. In particular, in Section 4.1, we
propose a novel Personalised Ranking Framework with Multiple
Sampling Criteria (PRFMC) for venue recommendation systems.
PRFMC aims to address Limitations 1 & 4) in Section 4.1. Sec-
tions 4.2 & 4.3 explain the components of PRFMC that address
Limitations 2 & 3. Later, in Section 6, we demonstrate the ef-
fectiveness of PRFMC in comparison with various state-of-the-art
venue recommendation systems.

4.1 Personalised Ranking Framework with
Multiple Sampling Criteria

For a given user u and unvisited venue i , we calculate the user’s
preference score su,i based on the product rule as follows:

su,i =
∏
a∈A

Pa (i |u) (5)

where Pa (i |u) is the estimated probability that user u will visit
venue i , which takes a source of additional information a into ac-
count. Note that the product rule has been widely used to fuse
di�erent probabilistic models for venues recommendations in pre-
vious works [3, 27–29] and has shown high robustness. Indeed, the
higher the score, the more likely user u will visit venue i . Unlike
those previous pointwise approaches (e.g. [28, 29]) that rank venues
based on the score su,i computed in Equation (5), we propose to
leverage this score to e�ectively sample negative examples to en-
hance the e�ectiveness of BPR. Moreover, the user’s preference
score su,i is su�ciently �exible to be extended to incorporate dif-
ferent types of additional information, such as textual comments,
withinA. �e overall process of PRFMC is described in Algorithm 1.
Later in Sections 4.2 & 4.3, we discuss the probabilistic models that
can be combined into Equation (5).



Algorithm 1 Learning Algorithm for PRFMC
1: Input: usersU, venuesV , visited venuesV+u and social links

Fu for each u ∈ U
2: Output: Θ =

{
P ∈ Rm×d ,Q ∈ Rn×d ,b ∈ Rn

}
3: P ∼ U (0, 1),Q ∼ U (0, 1)
4: T ← 0 // iteration number
5: repeat
6: for T ← 1 to |U| do
7: u ← draw a random user fromU
8: i ← draw a random visited venue fromV+u
9: j,k ← draw random unvisited venues fromV−u
10: if su,k > su, j then
11: swap j and k
12: end if
13: Compute gradients of Pu , Qi , Q j , Qk , bi , bj , bk
14: // Equation (11 - 15)
15: Updated the above parameters
16: // Equation (10)
17: end for
18: until convergence

To tackle Limitations 1& 4, we uniformly sample two unvisited
venues j,k ∈ V−u and then calculate the user’s preference score su, j
and su,k (see Algorithm 1 Lines: 9-11). �en, the PRFMC pairwise
ranking function is de�ned as follows:

r̂u,i, j,k (Θ) :=
{
ŷu,i � ŷu, j ∧ ŷu, j � ŷu,k , if su, j > su,k
ŷu,i � ŷu,k ∧ ŷu,k � ŷu, j , otherwise (6)

Asmentioned above in Section 3.4, previous sampling approaches [21,
25, 30] that generate potential feedback (e.g. Vд

u,i or V
s
u ) based

on a particular pre-de�ned sampling criterion are not su�ciently
�exible to incorporate di�erent types of additional information
(Limitation 4). In contrast, our proposed PRFMC is more �exi-
ble, since to incorporate additional sources of information we can
simply de�ne a new probability component Pa (i |u), where a is the
additional source of information, within Equation (5). Indeed, to
extend the sampling approaches proposed by [21, 25, 30] to incor-
porate additional information we need to 1) adjust the sampling cri-
terion, then 2) adjust the pairwise ranking function and re-calculate
Equations (7)-(8) and (11)-(15). However, with PRFMC, we need
only to extend the preference score function su,i in Equation (5) to
incorporate additional probabilistic models.

Based on our proposed pairwise ranking function, the objective
of PRFMC can be optimised by maximising the value of the Area
Under the ROC curve (AUC), which is a technique widely used to
optimise pairwise ranking approaches in the literature [19, 21, 24,
25, 30]. In particular, a large AUC value indicates that the venues
previously visited by a user V +u are likely to be ranked higher than
venues the user has not visited before V −u , and non-visited venues
with higher preference score su,i aremore likely to be ranked higher
than the non-visited ones with a lower score. LetΘ denote the set of
all parameters to be optimised, which consists of the latent factors
of users P ∈ Rm×d and venues Q ∈ Rn×d where d is the number
of latent dimensions, and b ∈ Rn is the venues’ check-in frequency
bias parameter.

For each user u ∈ U, the likelihood function of PRFMC can be
expressed as follows:

L(Θ) =
∏
u ∈U

( ∏
i ∈V+u

∏
j ∈V−u

P(r̂u,i � r̂u, j | Θ)

∏
j ∈V−u

∏
k ∈V−u

P(r̂u, j � r̂u,k | Θ)
) (7)

�e likelihood function in Equation (7) aims to optimise the value of
Area Under the ROC Curve (AUC) (i.e. maximising the probability
that venue i ∈ V+u is ranked higher than venue j ∈ V−u and that
venue j is ranked higher than venue k ∈ V−u ). To optimise the
AUC likelihood function, we approximate the probability function
P using the sigmoid function σ (x), so that the likelihood function is
di�erentiable. �en, following common practice [19], our proposed
likelihood function of PRFMC can be formulated as follows:

J(Θ) = arдmax
Θ

∑
u ∈U

[ ∑
i ∈V+u

∑
j ∈V−u

ln(σ (r̂u,i − r̂u, j )) +

∑
j ∈V−u

∑
k ∈V−u

ln(σ (r̂u, j − r̂u,k ))
]
−

λp
∑
u ∈U

‖Pu ‖2F − λq
∑
i ∈V
‖Q − i‖2F − λb

∑
i ∈V

b2i

(8)
In Equation (8), regularisation terms are added to avoid over��ing
where λp , λq , λn are regularisation parameters and ‖.‖2F denotes
the Frobenius norm. We use matrix factorisation to predict r̂u,i , the
check-in frequency of user u on venue i based on their historical
check-ins, obtained by calculating the dot product of the latent
factors of the user Pu and the venue Qi , as follows:

r̂u,i = PTu Qi + bi =
d∑
f =1

pu,f × qi,f + bi (9)

Recall that d is the number of latent factors and bi is the check-in
frequency model parameter for venue i .

Note that our proposed framework PRFMC allows �exibility
in using more-sophisticated MF-based check-in prediction mod-
els or other predictive models for calculating r̂u,i in Equation (9)
(e.g. Tensor Factorisation model [22]). Finally, we use Stochastic
Gradient Descent (SGD) to �nd a local maximum of the objective
function (Equation (8)). In particular, for each iteration (Algorithm 1
Lines: 13-15), given a random feedback tuple of user u who has
visited venue i , but not visited venue j and k , (u, i, j,k) ∈ D ={
(u, i, j,k)|i ∈ V+u ∧ j,k ∈ V−u

}
, we update the model parameter

θ ∈ Θ based on the gradient of its corresponding parameter ∂J
∂x

while �xing the others, until convergence, as follows:

θ (T+1) = θ (T) + η(T) · ∂J
∂θ
(θ (T)) (10)

�e gradients of latent factor matrices Pu ,Qi ,Q j ,Qk and venue
bias bi ,bj ,bk are calculated as follows:
∂J
∂Pu

= δ (r̂u, j −r̂u,i )(Qi −Q j )+δ (r̂u,k −r̂u, j )(Q j −Qk )−λpPu (11)

∂J
∂Qi
= δ (r̂u, j−r̂u,i )Pu−λqQi

∂J
∂bi
= δ (r̂u, j−r̂u,i )−λbbi (12)



∂J
∂Q j

= (δ (r̂u,k − r̂u, j ) − δ (r̂u, j − r̂u,i ))Pu − λqQ j (13)

∂J
∂bj
= (δ (r̂u,k − r̂u, j ) − δ (r̂u, j − r̂u,i )) − λbbj (14)

∂J
∂Qk

= −δ (r̂u,k − r̂u, j )Pu −λqQk
∂J
∂bk
= δ (r̂u,k − r̂u, j ) −λbbk

(15)
�e computational complexity of our proposed PRFMC frame-

work consists of the calculation of MF, our proposed pairwise learn-
ing algorithm as well as the preference score function (Equation (5)).
In particular, the training time of MF scales linearly with the num-
ber of check-ins in R [9]. Regarding the complexity of our proposed
pairwise learning algorithm, the computation of each gradient is
O(d) (Equations (11)-(15)), where d is the number of latent factors.
Since the probabilistic models in Sections 4.2 & 4.3 can be pre-
computed the complexity of the scoring function is O(1). �e total
complexity of PRFMC is O(T · |U| · d), where T is the number of
iterations and |U| is the number of users. In this respect, the com-
putational complexity of PRFMC is equivalent to BPR, GBPR, SBPR
and SWBPR and our proposed framework PRFMC is similar e�-
cient and scalable to large datasets. In the next section, we describe
how to integrate state-of-the-art probabilistic models into PRFMC.

4.2 A Negative Sampling Criterion with
Geographical In�uence

As discussed in Section 3.3, Yuan et al. [25] enhanced the e�ec-
tiveness of BPR by sampling negative examples from unvisited
venues nearby a previously visited venue i , Vд

u,i . We argued in
Section 3.3 that their proposed sampling criterion ignores the users’
geographical movement, which has been widely explored in pre-
vious literature [3, 23, 26, 27, 29], and can lead to a non-optimal
sampling approach. To address Limitation 2, we propose a novel
sampling criterion that takes the users’ geographical movement
into account, which is captured by leveraging the probabilistic
model (Multi-centre Gaussian [3] model). In particular, we use this
model to estimate the preference score su,i in Equation (5).

A previous study [3] on users’ behaviour in LBSNs using check-in
datasets have found that users typically visit venues located around
several centres (e.g. home, o�ce and travel places), and hence the
probability of a user visiting a venue is inversely proportional to the
distance from its nearest centre. To capture these users’ movements,
we apply the Multi-centre Gaussian model (MGM) proposed by
Cheng et al. [3] to calculate the probability of a user u, visiting
venue i , given a multi-centre of the user Cu as follows:

Pm (i |Cu ) =
∑

cu ∈Cu
P(i ∈ cu )

f αcu∑
j ∈Cu f αj

N(i |µcu ,σcu )∑
j ∈Cu N(i |µ j ,σj )

(16)

Equation (16) consists of a marginalisation of the product of three
terms, namely:

• P(i ∈ cu ), ∝ 1/dist(i, cu ), is inversely proportional to the
distance between venue i and the centre cu .

• f αcu∑
j∈Cu f αj

denotes the normalised e�ect of check-in fre-
quency ru,cu on the centre cu , where α ∈ (0, 1] controls
the check-in frequency property (i.e. the smaller α is the
less signi�cant e�ect on the check-in frequency).

• N(i |µcu ,σcu )∑
j∈Cu N(i |µ j ,σj )

denotes the probability of a venue belong-
ing to the centre cu , whereN(i |µcu ,σcu ) is the probability
density function of a Gaussian distribution, while µcu and
σcu correspond to the mean and covariance distances of
venues located around the centre cu .

Next, we use a greedy clustering algorithm, proposed by Cheng
et al. [3], to �nd the multi-centres of a userCu . For each user u, we
start from the most visited venue of the user inV+u , and combine
all other visited venues from V+u whose distance is less than κ
kilometres from the selected venue, into a given region. If the ratio
of the total check-in number of venues in this region to the user’s
total check-in number is greater than a threshold ϕ, we set these
check-in venues as a region and determine the most visited check-in
venue as the centre of the region. Algorithm 2 shows the procedure
for discovering the multiple centres of all users.

Algorithm 2 Multi-centre Discovering Algorithm [3]
1: for u ∈ U do
2: Sort all venues inV+u according to visiting frequency
3: ∀i ∈ V+u , vi .centre = −1
4: centre list = ∅, centre no = 0
5: for i = 1→ |V+u | do
6: centre no + +, centre = ∅
7: centre .total f req = 0
8: centre .add(vi ), centre .total f req += vi . f req
9: for j = i + 1→ |V +u | do
10: if vi .centre == −1 ∧ dist(vi ,vj ) ≤ κ then
11: vj .centre = centre no, centre .add(vj )
12: centre .total f req += vj . f req
13: end if
14: end for
15: if centre .total f req ≥ u .total f req × ϕ then
16: centre list .add(centre)
17: end if
18: end for
19: return centre list for u
20: end for

4.3 A Negative Sampling Criterion with Social
Correlation

Previous works [3, 21, 28–30] have shown that friends can in�uence
each other (i.e. they are likely to visit similar venues). As argued in
Section 3.4, previous works by Zhao et al. [30] and Wang et al. [21]
sampled the negative venues from venues previously visited by
the user’s friends (e.g. V s

Fu
and Vweak

u ) based on their proposed
pre-de�ned sampling assumptions (Limitation 3), which did not
take social interactions previously observed in other works [28]
into account. Indeed, Zhang et al. [28, 29] found that users are more
likely to visit venues that their friends o�en visited and similarly
friends are also likely to visit similar venues and such social interac-
tions follow the power-law distribution. To address Limitation 3,
we propose to apply the social relevance model based on the power-
law distribution proposed by Zhang et al. [28] to e�ectively sample
negative examples to enhance the e�ectiveness of BPR. Note that
our contribution in this section di�ers from that of Zhang et al. [28],



since we apply the social relevance model to e�ectively sample neg-
ative examples, while Zhang et al. used this model to predict a user’s
rating on unvisited venues. Later in Section 6, we demonstrate that
our proposed sampling approach signi�cantly outperforms several
social-based BPR approaches. �e social relevance model consists
of three steps: social aggregation, distribution estimation of social
check-in frequency and social relevance score computation.

Step 1: Social aggregation. Given a user u and an unvisited
venue i , we aggregate the check-in frequency of user u’s friends on
venue i , as follows:

xu,i =
∑
f ∈Fu

rf ,i (17)

�en we transform the social check-in frequency into normalised
relevance based on the social check-in frequency distribution, which
is learned from the historical check-in of all users.

Step 2: Distribution estimation of social frequency. In real-
world datasets, the social check-in frequency random variable x
follows a power-law distribution [28], the probability density func-
tion of which is de�ned by:

fSo (x) = (β − 1)(1 + x)−β , x ≥ 0, β > 1 (18)

where β is estimated by the check-in matrix R and the social links
matrix F , as follows:

β = 1 + |U||V|

∑
u ∈U

∑
i ∈V

ln(1 +
∑
f ∈Fu

rf ,i )

−1

(19)

Step 3: Social relevance score computation. �e estimated
probability density function fSo in Equation (18) is monotonically
decreasing with respect to the social check-in frequency x , but the
social relevance score should be monotonically increasing with
regard to the social check-in frequency, because users who have
friends with whom they have common visited venues should have
high social relevance scores. �us, we de�ne the social relevance
score of xu,l in Equation (17) based on the cumulative distribution
function of fSo , given by:

Ps (i |u) =
∫ xu,i

0
fSo (z)dz = 1 − (1 + xu,i )1−β (20)

such that P(i |u) is monotonically increasing with respect to the
social check-in frequency xu,i . Moreover, based on the cumulative
distribution probability P(i |u) in Equation (20), the social check-in
frequency xu,i is transformed into a social relevance score that
re�ects the relative position of xu,i in all the social check-in fre-
quencies of users on venues.

5 EXPERIMENTAL SETUP
In the remainder of the paper, we evaluate the e�ectiveness of our
proposed PRFMC framework by comparing with state-of-the-art
venue recommendation approaches. In particular, we aim to address
two research questions, which we now elicit. Firstly, as argued by
Limitations 2 & 3, previous works sample negative venues based
on pre-de�ned assumptions with respect to the type of additional
information that they use (e.g. users like venues previously visited
by friends). However, as argued in Section 3, an e�ective negative

Table 1: Statistics of three datasets
Yelp Brightkite Gowalla

Number of users 40,228 25,063 72,953
Number of venues 34,932 48,177 131,328
Number of ratings or check-ins 987,050 3,309,555 3,487,258
Number of social links 1,598,096 33,290 330,762
% density of User-Venue matrix 0.0702 0.2740 0.0363

sampling approach should build upon known results for identify-
ing the user’s movement and social interactions. Hence, our �rst
research question is:

RQ1 Can we e�ectively sample negative venues by leveraging the
geographical in�uence and social correlation?

Furthermore, as discussed in Section 2, no previous a�empt
has combined the negative sampling approaches to enhance the
performance of venue ranking approaches. Hence, our second
research question is the following:

RQ2 Is a negative sampling approach based on multiple crite-
ria more e�ective than a sampling approach with a single
criterion in improving the quality of venue suggestions?

Note that Limitations 1 & 4 have been addressed in the PRFMC
framework discussed in Section 4.1 and do not require experimen-
tal veri�cation. In the remainder of this section, we describe the
experimental setup in terms of datasets (Section 5.1), baselines (Sec-
tion 5.2) and algorithm parameters (Section 5.3). �e experimental
results and analysis follow in Section 6.

5.1 Datasets & Measures
All our experiments are conducted using publicly available large-
scale LBSN datasets. In particular, to show the generalisation of our
proposed framework across multiple LBSN platforms and sources
of feedback evidence, we use two check-ins datasets from Gowalla
and Brightkite2, and a rating dataset from Yelp3. For each dataset,
we conduct experiments using a 5-fold cross-validation, where each
fold has 60% training, 20% validation and 20% test instances (check-
ins/ratings). Due to the high sparsity of the datasets, we follow the
common practice from previous works [6, 10, 19, 25, 29] to �lter out
users/venues with less than 10 interactions. Table 1 summarises
the statistics of the �ltered datasets.

For each dataset, we measure the quality of the ranked venue
recommendations in terms of Mean Average Precision (MAP), Nor-
malised Discounted Cumulative Gain (NDCG) and Mean Reciprocal
Rank (MRR), which are widely used in the recent recommendation
literature [14, 21, 25, 30]. In particular, MAP and MRR consider the
ranking nature of the task, by taking into account the rank(s) of the
venues that each user has previously visited/rated in the produced
ranking, while NDCG goes further by considering the check-in fre-
quency/rating value of the user as the graded relevance label. Lastly,
signi�cance tests are conducted using a paired t-test with p < 0.01.

5.2 Baselines
In this paper, we propose a novel Personalised Ranking Frame-
work with Multiple sampling Criteria (PRFMCMS ) that consists of

2h�ps://snap.stanford.edu/data/
3h�ps://www.yelp.com/dataset challenge

https://snap.stanford.edu/data/
https://www.yelp.com/dataset_challenge


two components: namely Multi-centre Gaussian and Social power-
Law distribution models. We compare the e�ectiveness of each
component (i.e. PRFMCM incorporates geographical information
and PRFMCS incorporates social links) with state-of-the-art venue
recommendation approaches that incorporate similar additional
sources of information. In particular, we compare PRFMCMS , with a
number of baselines, which can be grouped into categories, namely:
traditional BPR, geo-based approaches, social-based approaches
and hybrid approaches combining social- and geo-based BPR. In the
following we explain our implementation of each baseline in details.
All baselines and our proposed PRFMC framework are implemented
using LibRec [5], a Java library for recommendation systems.

5.2.1 Traditional BPR.

BPR. �is is the classical pairwise ranking approach, coupled
with matrix factorisation for user-venue rating/check-in frequency
prediction proposed by Rendle et al. [19].

5.2.2 Geo-based approaches.

GMG. �is is a Multi-center Gaussian Model that incorporates
geograpical in�uence proposed by Cheng et al. [3]. Recommenda-
tions are generated by ranking all venues according to the score
computed by Equation (16) (see Section 4.2 for further details).

GBPR. �is is a state-of-the-art BPR model that incorporates the
geographical in�uence model proposed by Yuan et al. [25]. �eir
model assumes that neighbourhood venues of venues previously
visited by users should be ranked higher than the distant ones (see
Section 3.3 for further details).

5.2.3 Social-based approaches.

SPLD. �is is a Social Power-Law Distribution model that incor-
porates social in�uences proposed by Zhang et al. [28]. In particular,
venue recommendations are generated by ranking all venues ac-
cording to the score computed by Equation (20).

SBPR. �is is a Social BPR model that leverages social informa-
tion proposed by Zhao et al. [30]. �eir model’s ranking criterion
assumes that venues previously visited by the user’s friends should
be ranked higher than venues neither the user nor his/her friends
visited (see Section 3.4 for further details).

SWBPR. A state-of-the-art BPR model that is extended from
SBPR proposed by Wang et al. [21]. �is model considers Strong
andWeak Social ties of the user’s friends. �eir ranking criterion
assumes that venues visited by weak tie friends should be ranked
higher than venues visited by strong tie friends, because weak tie
friends are likely to introduce novel and diverse venues (again,
Section 3.4 provides further details).

5.2.4 Hybrid (social & geo)-based approaches.

GeoSo. A state-of-the-art probabilistic model that incorporates
both geographical and social in�uences proposed by Zhang et
al. [28]. To permit a fair evaluation, we have re-implemented their
GeoSoCa approach to consider only geographical and social infor-
mation, and ignore the categorical properties of venues, in common
with our proposed approach that also does not consider categories.

GSBPR. �is model combines GBPR and SBPR together by as-
suming that the neighbourhood venues visited by the user’s friends
should be ranked higher than the distant ones. �e optimisation
criterion of this model is BPROpt (Dдs ), where:

Dдs =
{
(u, i,k, j) | i ∈ V +u ∧ k ∈ V

д
u,i ∩V

s
Fu ∧ j ∈ V −u

}
.

Indeed,Dдs contains tuples (u, i,k, j)where useru has visited venue
i , k is neighbouring venue of venue i that the user has not visited
but his/her friends have visited, and j is a venue never visited by
neither user u nor by his/her friends.

BPRMC. �is is a state-of-the-art BPR model that can simulta-
neously incorporate multiple sampling approaches (i.e. GBPR and
SBPR) based on a pre-de�ned weight of each sampling approach
proposed by Loni et al. [14]. �is approach is a suitable baseline, as
it permits a fair comparison of our proposed PRFMC framework
with another that considers multiple sampling approaches.

5.3 Recommendation Parameter Setup
To permit a fair comparison, our proposed PRFMC framework and
all of the BPR-based baselines deploy Matrix Factorisation (MF) as
the prediction function. Following common practice [15, 16, 21, 25],
the MF’s parameters are set as follows: the dimension of the latent
factorsd = 10, and the regularisation parameters λp , λq , λb = 0.001.
To the fullest extent possible, we apply the parameters used by
the baselines and probabilistic models (GMG, SPLD and GeoSo)
when these were applicable, i.e. when the values reported in the
corresponding papers were recommended for the datasets we use in
this paper. For instance, following [3], we set MGM’s parameters as
follows: ϕ = 0.02, the distance threshold κ = 15 and the frequency
control parameter α = 0.2. SWBPR’s parameters are determined
using the validation set for each fold. Similarly, for other approaches
not previously reported on these datasets, we determine the values
for their parameters using the validation set for each fold.

6 EXPERIMENTAL RESULTS
Table 2 reports the e�ectiveness of various approaches in term of
the MAP, NDCG and MRR measures on the three di�erent datasets.
�e grouped columns of the table correspond to the grouping of
baseline approaches based upon the sources of additional infor-
mation, as discussed in Section 5.2, along with the corresponding
implementation of PRFMC.

Firstly, on inspection of Table 2, we note that the relative venue
recommendation quality of the baselines on the three datasets in
terms of two measures are consistent with the results reported for
the various baselines in the corresponding literature [14, 21, 25,
30]. For instance, GBPR outperforms BPR by 3-9% across three
datasets [25] and SWBPR outperforms SBPR by 0.22-25% across
three datasets. Note that previous works [14, 21, 30] used di�erent
datasets, while our reimplementations of their proposed approaches
obtain relatively similar improvements. We now analyse in turn
each group of approaches based upon the source of additional
information employed.

Models with Geographical In�uence. Within the Geo-based group
of columns in Table 2, we compare PRFMCM with MGM and GBPR,
which are the probabilistic model and extended BPR model that



Table 2: Performance in terms of MAP, NDCG and MRR of various approaches. For each type of additional information and
evaluation measure, the best performing result is highlighted in bold and ∗ indicates signi�cant di�erences in terms of paired
t-test with p < 0.01, comparing to the best performing result. Percentage di�erences compared to BPR are denoted by ∆.

Dataset Measure Geo-based Social-based Hybrid geo- & social-based
BPR MGM GBPR PRFMCM SPLD SBPR SWBPR PRFMCS GeoSo GSBPR BPRMCGS PRFMCMS

Yelp

MAP 0.1974 0.0080* 0.2037* 0.2071 0.0011* 0.2014* 0.2051* 0.2101 0.0062* 0.2016* 0.2042* 0.2109
∆ -95.94% 3.18% 4.89% -99.44% 2.03% 3.89% 6.45% -96.86% 2.12% 3.44% 6.81%

NDCG 0.3253 0.1575* 0.3467* 0.3587 0.1246* 0.3451* 0.3521* 0.3625 0.1581* 0.3432* 0.3519* 0.3690
∆ -51.58% 6.58% 10.25% -61.70% 6.07% 8.21% 11.43% -51.41% 5.48% 8.15% 13.41%

MRR 0.2186 0.0197* 0.2343* 0.2402 0.0031* 0.2275* 0.2384* 0.2506 0.0137* 0.2295* 0.2361* 0.2492
∆ -90.96% 7.19% 9.91% -98.59% 4.11% 9.07% 14.68% -93.73% 5.01% 8.04% 14.01%

Gowalla

MAP 0.0703 0.0511* 0.0724* 0.0826 0.0003* 0.0722* 0.0758* 0.0843 0.0503* 0.0724* 0.0732* 0.0933
∆ -27.35% 3.01% 17.50% -99.59% 2.79% 7.91% 19.99% -28.41% 3.07% 4.11% 32.76%

NDCG 0.2485 0.2307* 0.2578* 0.2929 0.1054* 0.2669* 0.2678* 0.2894 0.2259* 0.2592* 0.2717* 0.3174
∆ -7.17% 3.71% 17.83% -57.60% 7.40% 7.76% 16.43% -9.11% 4.28% 9.32% 27.69%

MRR 0.0881 0.1142* 0.0951* 0.1259 0.0010* 0.0877* 0.1098* 0.1364 0.0779* 0.0958* 0.0906* 0.1510
∆ 29.61% 7.93% 43.00% -98.85% -0.42% 24.63% 54.82% -11.53% 8.78% 2.87% 71.47%

Brightkite

MAP 0.1561 0.0459* 0.1607* 0.1854* 0.0749* 0.1518* 0.1528* 0.1649 0.1132* 0.1470* 0.1525* 0.1857
∆ -70.62% 2.94% 18.76% -52.05% -2.77% -2.11% 5.62% -27.46% -5.81% -2.34% 18.95%

NDCG 0.3026 0.1997* 0.3109* 0.3618 0.2124* 0.3042* 0.3007* 0.3165 0.2816* 0.2939* 0.3055* 0.3647
∆ -34.00% 2.73% 19.56% -29.81% 0.53% -0.62% 4.58% -6.95% -2.88% 0.96% 20.50%

MRR 0.1738 0.0786* 0.1841* 0.2170 0.1202* 0.1688* 0.1692* 0.1916 0.1577* 0.1614* 0.1696* 0.2193
∆ -54.77% 5.88% 24.86% -30.84% -2.89% -2.67% 10.24% -9.25% -7.14% -2.41% 26.16%

incorporate geographical in�uence, respectively. We observe that
PRFMCM consistently and signi�cantly outperforms MGM and
GBPR for MAP, NDCG and MRR across all datasets. �is implies
that our proposed negative sampling approach that considers the
user’s movement captured by the Multi-centre Gaussian model
(MGM) is more e�ective than the GBPR approach [25], which it-
self relies on a pre-de�ned assumption on the likely relevance of
neighbouring venues, as summarised by Limitation 2. In particu-
lar, PRFMCM can enhance the e�ectiveness of the BPR model by
approximately 4-43% for three metrics across the three datasets.

Models with Social Correlation. Next, we consider the social-
based column group, to compare the e�ectiveness of PRFMCS with
SPLD, SBPR and SWBPR. Trends that are similar in nature to those
observed for the geo-based approach group are observed, in that the
PRFMCS signi�cantly outperforms the probabilistic model (SPLD)
and extended BPR models that incorporate social information (i.e.
SBPR and SWBPR) based on the pre-de�ned sampling assumptions
that venues previously visited by friends are likely to be visited
Limitation 3. Interestingly, the relatively low results for SBPR and
SWBPR across MAP, NDCG and MRR on the Brightkite dataset are
likely due to the sparsity of the social links between the users in
Brightkite LBSN (see Table 1). In contrast, PRFMCS can improve
the e�ectiveness of BPR, whereas SBPR and SWBPR both do not.
Indeed, we �nd that sampling negative venues using the power-law
distribution model is more e�ective than the pre-de�ned sampling
criteria proposed by [21, 30]. Moreover, exploiting the power-law
distribution model to sample negative venues is more useful to
enhance the quality of venue recommendation than simply ranking
venues according to the score computed by SPLD model. In partic-
ular, PRFMCS can enhance the e�ectiveness of the BPR model by
5-54% for three metrics across the three datasets.

Together, the analyses conducted individually for the geo- and
social-based models allow us to conclude that for research question

RQ1, leveraging the geographical in�uence and social correlation
through PRFMC increases the various ranking metrics by approx-
imately 4-43% and 4-54%, for the geo- and social-based negative
sampling approaches, respectively, and thereby overall signi�cantly
outperforms the MGM, GBPR, SPLD, SBPR and SWBPR approaches.

Hybrid geo- and social-based models. Next, we consider the de-
ployment of hybrid models that combine both geo- and social-based
additional sources of information within the negative sampling.
In doing so, we compare our proposed framework PRFMC with
BPRMC and GSBPR. In particular, we compare our proposed frame-
work that is comprised of geographical and social components
PRFMCMS , with the state-of-the-art BPR models that can incorpo-
rate multiple sampling criteria BPRMCGS .

We �rst discuss the e�ectiveness of GSBPR, BPRMCGS &PRFMCMS
in comparison with each of their constituent geo-based and social-
based component baselines. In particular, from Table 2 we observe
that the results of GSBPR are generally not higher than both of
its constituents that each consider only one sampling criterion
(i.e. GBPR and SBPR). �is implies that simply combining the sam-
pling criteria (as done by GSBPR) is not a suitable approach. In
contrast, BPRMCGS is more e�ective than GSBPR at combining
multiple sampling criteria. Moreover, by comparing BPRMCGS
with GBPR and SBPR, we �nd that, for three metrics in the Yelp
dataset, BPRMCGS outperforms the extended BPR models that
consider only a single sampling criterion (i.e. GBPR and SBPR).
However, for the Gowalla and Brightkite datasets, the e�ectiveness
of BPRMCGS greatly decreases when one of the constituent sam-
pling criterion is not e�ective. For instance, regarding the results
of GBPR, SBPR and BPRMCGS in terms of MAP and MRR in the
Brightkite dataset, we observe that when the performance of SBPR
decreases, the e�ectiveness of BPRMCGS also decreases. A similar
observation is found for BPRMCGS in terms of MRR in the Gowalla



dataset. �ese results imply that BPRMCGS cannot distinguish the
e�ectiveness of its combined sampling criteria.

Next, we compare the e�ectiveness of PRFMC that considers dif-
ferent sampling criterion (i.e. PRFMCM , PRFMCS and PRFMCMS ).
�e results show that our proposed framework PRFMCMS which
samples negative examples based on both geographical in�uence
and social correlation – captured by the Multi-centre Gaussian
model and the power-law distribution, respectively – outperforms
both PRFMCS and PRFMCM , across all three metrics on all three
datasets, with a single exception, namely: AUC for the Brightkite
dataset, where PRFMCM slightly outperforms PRFMCMS . �is
single exception is likely explained by the comparative under-
performance of PRFMCS for that metric and dataset. Overall,
the strong results for PRFMCMS demonstrate the e�ectiveness
of PRFMC in combining di�erent types of sampling criteria. In
addition, unlike BPRMCGS , the e�ectiveness of PRFMCMS does
not decrease if one of the fused sampling criteria is not e�ective.

Hence, in response to research question RQ2, we �nd that our
PRFMC framework provides a signi�cant bene�t across various
datasets andmeasures, compared to various existing state-of-the-art
single criterion negative sampling approaches as well as probabilis-
tic models (i.e. MGM, SPLD and GeoSo). Indeed, among the results
reported in Table 2, all of the highest improvements over the clas-
sical BPR baseline, for all three measures on all three datasets, are
by the PRFMCMS hybrid negative sampling approach. Indeed, for
the Gowalla dataset, PRFMCMS a�ains a 71% improvement over
the MRR of BPR, as well as 37% and 59% improvements in MRR
over the recently proposed SWBPR [21] and GBPR [25] approaches
(Table 2: 0.1098→0.1510; 0.0951→0.1510), respectively.

7 CONCLUSIONS
In this paper, we explored various techniques to e�ectively sample
negative examples to improve the e�ectiveness of the BPR model
for venue recommendation on LBSNs. In particular, we proposed
a novel Personalised Ranking Framework with Multiple sampling
Criteria (PRFMC) to incorporate di�erent sources of additional in-
formation. In addition, we proposed negative sampling approaches
that exploit existing probabilistic models (i.e. Multi-centre Gaussian
and the power-law distribution models) in a new manner, namely
to consider previously observed users’ movement and social inter-
actions, when sampling negative training instances.

Our comprehensive experiments on three large-scale datasets on
Yelp, Gowalla and Brightkite LBSNs demonstrate the e�ectiveness
of our proposed framework (PRFMC) as well as the sampling ap-
proaches for venue recommendation, which are superior to various
state-of-the-art venue recommendation approaches. For instance,
on the Gowalla dataset, PRFMCMS a�ains a 37% improvement in
MRR over the recently proposed SWBPR approach [21]. Moreover,
these improvements are a�ained without increased computational
complexity compared to the baseline approaches. For future work,
we plan to apply more sophisticated probabilistic models to capture
the semantic in�uence of textual contents of comments le� by the
user’s friends to further improve the e�ectiveness of our proposed
sampling approach.
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