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ABSTRACT
Venue recommendation is an important application for Location-
Based Social Networks (LBSNs), such as Yelp, and has been exten-
sively studied in recent years. Matrix Factorisation (MF) is a popular
Collaborative Filtering (CF) technique that can suggest relevant
venues to users based on an assumption that similar users are likely
to visit similar venues. In recent years, deep neural networks have
been successfully applied to tasks such as speech recognition, com-
puter vision and natural language processing. Building upon this
momentum, various approaches for recommendation have been
proposed in the literature to enhance the e�ectiveness of MF-based
approaches by exploiting neural network models such as: word em-
beddings to incorporate auxiliary information (e.g. textual content
of comments); and Recurrent Neural Networks (RNN) to capture
sequential properties of observed user-venue interactions. How-
ever, such approaches rely on the traditional inner product of the
latent factors of users and venues to capture the concept of collabo-
rative �ltering, which may not be su�cient to capture the complex
structure of user-venue interactions. In this paper, we propose a
Deep Recurrent Collaborative Filtering framework (DRCF) with a
pairwise ranking function that aims to capture user-venue inter-
actions in a CF manner from sequences of observed feedback by
leveraging Multi-Layer Perception and Recurrent Neural Network
architectures. Our proposed framework consists of two compo-
nents: namely Generalised Recurrent Matrix Factorisation (GRMF)
and Multi-Level Recurrent Perceptron (MLRP) models. In particular,
GRMF and MLRP learn to model complex structures of user-venue
interactions using element-wise and dot products as well as the
concatenation of latent factors. In addition, we propose a novel
sequence-based negative sampling approach that accounts for the
sequential properties of observed feedback and geographical loca-
tion of venues to enhance the quality of venue suggestions, as well
as alleviate the cold-start users problem. Experiments on three large
checkin and rating datasets show the e�ectiveness of our proposed
framework by outperforming various state-of-the-art approaches.

1 INTRODUCTION
Location-Based Social Networks (LBSNs) such as Foursquare and
Yelp have become popular platforms that allow users to �nd in-
teresting venues to visit based on their preferences, share their
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location to their friends (i.e. making a checkin) as well as leave
comments on venues they have visited. Such implicit and explicit
feedback can be leveraged to study user’s behaviour in urban cities
as well as to make personalised recommendation of venues to visit.
Among various collaborative �ltering techniques, Matrix Factoris-
ation (MF) [12] is widely used to predict users’ ratings on venues by
leveraging explicit feedback (e.g. prior ratings of venues). �en, the
venue recommendations are generated by ranking the venues based
on their predicted ratings. However, users in LBSNs only focus on
the top-K ranked venues for recommendation, and explicit feedback
can be di�cult to collect. For these reasons, Bayesian Personalisa-
tion Ranking (BPR) [20], which aims to generate accurate ranked
lists of venues, and leverages implicit feedback, is more e�ective
than rating prediction-based models (i.e. regression models).

A challenge of implicit feedback from observing checkins is that
only positive feedback can be observed, and MF-based and BPR
models trained on only positive feedback are likely to be biased
to positive instances. To address this challenge, various negative
sampling approaches have been proposed [7, 20, 29]. For example,
a negative sampling approach proposed by Rendle et al. [20] in
BPR uniformly and randomly selects items/venues that the users
have not interacted with as negative instances. Moreover, users’
preferences are not static and change dynamically over time (e.g.
users may prefer to visit shopping malls at daytime but prefer to
visit bars in evenings) [11]. However, both MF and BPR can only
capture users’ long-term (static) preferences and not their short-
term (dynamic ) preferences. Meanwhile, recent observed feedback
can have more in�uence on users’ likely checkin behaviour than
historical feedback. For instance, consider a user who has recently
visited several art museums and a restaurant, sequentially. Models
that only capture the user’s long-term preferences will recommend
other museums to visit, whereas a model that can capture the user’s
short-term preferences might recommend a bar to visit instead.

Another challenge in recommendation systems is the problem
of cold-start users (i.e. users who have li�le observed feedback),
which can hinder the e�ectiveness of MF-based approaches. To
alleviate the cold-start user problem, various MF-based approaches
in literature have been proposed to leverage additional sources of
information such as friendships, textual content of comments and
geographical location of venues (e.g. [16–18, 29]). Previous stud-
ies [4, 11, 19, 25, 28, 32] have shown that the sequential properties
of user’s interactions (e.g. sequences of checkins or clicks) play an
important role in improving the quality of recommendation for var-
ious tasks. To e�ectively capture users’ dynamic preferences as well
as take previous feedback into account, various approaches have
been proposed to exploit Recurrent Neural Network models (RNN)
for recommendation systems (e.g. [25, 28, 32]). Such approaches
still rely on a dot product of latent factors of users and items to cap-
ture the user-item interactions in a Collaborative Filtering manner,



where similar users will obtain similar recommendations. However,
the dot product of latent factors may not be su�cient to capture
the complex structures of user-item interactions. To address this
challenge, He et al. [7] recently proposed a Neural Matrix Factoris-
ation (NeuMF) framework that leverages a Multi-Layer Perceptron
to learn the complex structures of user-item interactions. NeuMF
can generalise MF-based approaches by replacing the dot prod-
uct with a neural architecture that can learn an arbitrary function
from implicit feedback. In this work, we propose a Deep Recurrent
Collaborative Filtering framework that aims to learn the complex
structure of users’ static and dynamic preferences. In particular, our
contributions are summarised below:

• We propose a Deep Recurrent Collaborative Filtering frame
work (DRCF) with a pairwise ranking function for venue
recommendation. Our proposed framework di�ers from
the framework of He et al. [7] (NeuMF) in three aspects:
(1) DRCF can capture both user’s dynamic and static pref-
erences, while NeuMF can only capture user’s static prefer-
ences; (2) NeuMF ignores the dot product of latent factors
when making the prediction. In contrast, DRCF framework
exploits the dot products of latent factors to model the
user-venue interactions; and (3) DRCF aims to generate
accurate ranked list of venue, unlike NeuMF which aims
to accurately predict user’s rating on items. To the best
of our knowledge, our proposed framework (DRCF) is the
�rst study that extends NeuMF framework to model both
users’ static and dynamic preferences.

• Within the DCRF framework, we propose Generalised Re-
current Matrix Factorisation (GRMF) and Recurrent Multi-
Level Recurrent Perceptron (MRLP) models that exploit
Recurrent Neural Networks (RNN) models to capture users’
dynamic preferences. In contrast to existing RNN-based ap-
proaches [25, 28, 32] for recommendation systems, GRMF
and MLRP models do not only rely on the dot products
of latent factors but also element-wise product and con-
catenation of latent factors, which are weighted using the
Deep Neural Networks architecture.

• We propose a novel sequence-based (dynamic) negative
sampling approach that takes the sequential properties of
checkins and geographical location of venues into account
to enhance the e�ectiveness of the DRCF framework, as
well as alleviate the cold-start user problem.
• We conduct comprehensive experiments on 3 large-scale

real-world datasets from Foursquare, Yelp and Brightkite
to demonstrate the recommendation accuracy of DRCF.
�e experimental results demonstrate that DRCF consis-
tently and signi�cantly outperforms various state-of-the-
art venue recommendation approaches across three datasets.

�e rest of this paper is organised as follows. We review related
literature on venue recommendation in Section 2. �en, we brie�y
provide the problem statement, the MF-based and RNN-based ap-
proaches and the Neural Matrix Factorisation framework (NeuMF)
in Section 3. Our proposed DRCF framework and its components
are described in Section 4. �e experimental setup for our experi-
ments is detailed in Section 5, while comprehensive experimental
results comparing the e�ectiveness of DRCF with various state-of-
the-art approaches are reported in Section 6. Concluding remarks
follow in Section 7.

2 RELATEDWORK
Matrix Factorisation, proposed by Koren et al. [12], is a widely used
collaborative �ltering technique in recommendation systems. Tradi-
tional MF-based approaches leverage explicit and implicit feedback
(e.g. rating of venues and checkins) to model user’s preferences and
characteristic of venues. In particular, MF aims to �nd the latent
factors of users and venues to accurately predict the rating of the
user to unvisited venues. Various MF-based approaches have been
proposed in the literature (e.g. [3, 7, 14, 16–18]) to generate person-
alised venue recommendation to the users by ranking the unvisited
venues based on the predicted user-venue ratings. Such approaches
can be identi�ed as pointwise approaches [15]. However, as users in
LBSNs only focus on the top-K suggestions, MF-based approaches
that aim to optimise pointwise loss (e.g. Root Mean Square Error) are
less e�ective than approaches that are directly optimised for rank-
ing venues (i.e. focusing on the top-K ranked list of venues that are
relevant to user’s preferences) [1, 2, 15]. Rendle et al. [20] proposed
a pairwise optimisation criteria that can be applied with MF-based
approaches, named Bayesian Personalised Ranking (BPR), in which
an assumption is that for each user, the user’s previously visited
venues are preferred over their non-visited ones. Although previ-
ous literature [1, 2, 15] have demonstrated that listwise approaches
can be more e�ective than pairwise and pointwise approaches for
general information retrieval tasks such as web search, such listwise
approaches are not feasible in recommendation contexts, because
of the need to rank a large set of non-observed item/venues for
each user rather than small sets of candidate web documents.

�e aforementioned MF-based approaches assume that users’
preferences are static, hence users who have visited similar sets of
venues in di�erent orders would get similar venue suggestions. In-
deed, users’ preferences are not static and change dynamically over
time [11]. To leverage sequences of implicit feedback (e.g. checkins)
in order to model users’ dynamic preferences, existing approaches
in literature (e.g. [4, 19]) have been proposed based on Markov
Chains. However, such Markov Chains-based approaches have a
similar de�ciency as they can only model local sequential behaviour
between each pair of adjacent feedback items [28]. With the success
of Deep Neural Network models (DNN) in several domains such
as on speech recognition, computer vision and natural language
processing (e.g. [6, 9, 30]), various approaches (e.g. [25, 26, 28, 32]
have been proposed to exploit Recurrent Neural Networks (RNN)
models to capture users’ dynamic preferences from the observed
sequences of implicit feedback. For example, Tang et al. proposed
a MF-based approach that leverages Bidirected Long-Short Term
Memory, a recurrent neural network, to predict the rating of user
for movie recommendation, while Yu et al. [28] extended BPR to
incorporate RNN models to recommend a ranked list of items for
the user to purchase, given his previous sequence of item baskets.

Apart from the recommendation systems that exploit recurrent-
based models to leverage sequential properties of implicit feedback,
DNN models that learns user-item interactions have been explored
in the literature (e.g. [5, 7, 23]). Cheng et al. [5] proposed a Wide &
Deep learning approach for mobile application recommendation
system that exploits both linear models and DNNs to incorporate
various features of users and items. Recently, He et al. [7] explored
the advantages of DNNs in modelling user-item interactions in the
collaborative �ltering manner. In particular, they proposed a Neural
Matrix Factorisation (NeuMF) framework that exploits Multi-Level
Perception architecture to accurately predict the user’s item rating.



Figure 1: An illustration of the similarity between users and
vectors representing the latent factors of each user in user
latent space P . NB: Figure regenerated from [7].

3 MATRIX FACTORISATION APPROACHES
FOR RECOMMENDATION SYSTEMS

In this section, we �rst formalise the problem statement as well as
the notations used in this paper (Section 3.1). �en, we brie�y de-
scribe the Matrix Factorisation approaches (Section 3.2), the Neural
Collaborative Filtering framework (NeuMF) that exploits a deep
neural networks architecture to generalise MF-based approaches
(Section 3.3) and MF-based approach that exploits a Recurrent Neu-
ral Networks model to captures the dynamic preferences of users
(Section 3.4). Note that these MF-based approaches and frame-
work were not originally proposed for venue recommendation but
are �exible to do so. For simplicity, we explain these approaches
and framework in the context of venue recommendation. Finally,
Section 3.5 summarises the elicited limitations of these MF-based ap-
proaches. Later, in Section 4, we describe our proposed framework
that addresses these limitations.

3.1 Problem Statement
�e task of venue recommendation is to generate a ranked list of
venues ∈ V that a user might visit given his/her historical feedback
(e.g. previously visited venues from checkin data). LetV+u denote
the list of venues the user has previously visited, sorted by time
and Su denote the list of sequence of visited venues (e.g. ifV+u =
(v1,v2,v3), then Su = ((v1), (v1,v2), (v1,v2,v3))). st ∈ Su denotes
the sequence of visited venues of user u at time t (e.g. s2 = (v1,v2)).
We can represent all checkins by all users as a matrix C ∈ Rm×n
where m and n are the number of users and venues, respectively.
Let cu,i ∈ C denote a user u ∈ U visited venue i ∈ V . Ni is a set
of neighbouring venues that are nearby venue i . Note that cu,i = 0
means useru has neither le� a rating nor made a checkin at venue i .

3.2 Matrix Factorisation
Traditional Matrix factorisation-based approaches (MF) [12] assume
that users who share similar preferences (e.g. visit similar venues)
can in�uence each other. MF techniques aim to approximate the
matrix C by �nding a decomposition of C , i.e. a dot product of
latent factors of users P ∈ Rm×d and venues Q ∈ Rn×d where d
is the number of latent dimensions, C ≈ PTu Qi . In particular, the
predicted checkin of user u on venue i can be computed as follows:

ĉu,i = p
T
u qi = pu } qi =

d∑
k=1

pu,k Ûqi,k (1)

where } denotes the dot product and pu and qi are latent factor
of user u and venue i , respectively. Indeed, MF behaves as a linear

model of latent factors by assuming that each dimension of the la-
tent factor is independent and linearly combining those dimensions
with the same weight [7]. �e objective of MF is to minimise the
pointwise loss between the predicted checkin ĉu,i and the observed
checkin cu,i and the loss function is de�ned as follows:

L(Θ) =min
Θ

1
2

m∑
u=1

n∑
i=1

Ii, j · (cu,i − ĉu,i )2 +
λ

2 ‖Θ‖
2
F (2)

where Ii, j is an indicator variable that is 1 if user i makes a checkin
at venue j, otherwise 0. To avoid over��ing, a traditional regu-
larisation technique is added into Equation (2), where λ ≥ 0 is a
regularisation parameter, Θ = {P ,Q} denotes all the parameters to
be learnt and ‖.‖2F denotes the Frobenius norm.

Once the training process of MF is �nished, the distance of the
latent factors of users who have visited similar venues will be close
in the latent factor space (i.e. similar users will get similar venue
suggestions). He et al. [7] argued that the dot product of latent
factors may not be su�cient to capture the complex structures of
user-item interactions. Figure 1 illustrates a limitation of the dot
product operation explored by He et al. [7], which can degrade
the e�ectiveness of MF-based approaches. �e table in the �gure
provides the cosine similarity between the latent factors of pairs
of users, e.g. p1 and p2 are the latent factors of user u1 and u2,
respectively, and the cosine similarity between u1 and u2 is 0.5. Let
us �rst consider users u1, u2 and u3. �e vectors in Figure 1 present
the geometric relative angles of p1 , p2 and p3 in the latent factor
space. From the angles of the vectors, we can see that u1 shares
more common preferences with u2 than u3. Next, let us consider
u4, the highlighted row in the table. In fact, u4 is most similar to
u1, followed by u3 and u2. Placing p4 closest to p1 (the two possible
geometric positions between p1 and p4 in latent factor space are
presented as red-dashed lines) results p4 is closer to p2 than p3.
�is scenario can lead to a large pointwise loss (i.e. u4 gets similar
venue suggestions to u2, rather than u3). Modelling such complex
structures of user-venue interactions is challenging.

3.3 Neural Matrix Factorisation (NeuMF)
To address the aforementioned challenge of MF-based approaches
that rely on the dot products of latent factors, He et al. [7] proposed a
Neural Matrix Factorisation Filtering framework (NeuMF) that con-
sists of two components, namely: Generalised Matrix Factorisation
(GMF) and Multi-Level Perceptron (MLP) models to capture complex
structures of user-venue interactions from their implicit feedback
using element-wise product and concatenation of latent factors
where the dimensions of the latent factors are treated dependently.

3.3.1 General framework. Figure 2 illustrates the multiple
layers of the NeuMF framework; the output of one layer serves as
the input of the layer abover. �e connections between layers of
NeuMF framework are presented using red-do�ed lines, the layers
that are not connected with the red-do�ed lines are not part of
NeuMF (i.e. the RMF and RNN layers). Starting at the bo�om of the
�gure, the input layer consists of a binary sparse vector with one-
hot encoding that represents user vUu and venue v Ii , respectively.
�e sparse vectors of user and venue are fed into the embedding
layer. �e outputs of the embedding layer can be seen as the latent
factors of user pu = PTvUu and venue qi = QTv Ii in the context of
factorised model. Next, the latent factors are fed into the Neural
Collaborative Filtering layers (i.e. hidden layers) to discover certain



Figure 2: Deep Recurrent Collaborative Filtering Frame-
work. �e connections of each layer linked by the red-dotted
lines illustrate the NeuMF framework.

latent structures of user-venue interactions. �e �nal output layer
provides the predicted checkin ĉu,i , which is de�ned as follows:

ĉu,i = aout (h(ϕGMF ⊕ ϕMLP )) (3)

where aout denotes the activation function, ⊕ denotes the concate-
nation of two layers, ϕGMF and ϕMLP , and h(x) = (WT x +b) is the
hidden layer –W and b are the weight matrix and bias vector, re-
spectively. Overall, θh = {W ,b} denotes a set of parameters of the
hidden layers. h(x) ensures that each dimension of the latent factors
from ϕGMF and ϕMLP are dependent. He et al. [7] proposed to use
the sigmoid function σ (x) = 1/(1 + e−x ) as the activation function
aout . �e combination of GMF and MLP models enables NeuMF to
model user-venue interactions as non-linear latent factor models.
In particular, GMF and MLP models capture user-venue interaction
using element-wise product and concatenation of latent factors,
respectively (further discussed in Section 3.3.2 and Section 3.3.3
below). Similar to MF’s loss function (Equation (2)), the framework
aims to minimise the Root Mean Square Error (RMSE) between
the predicted checkin ĉu,i and the observed checkin cu,i . However,
as mentioned in Section 1, users in LBSNs only focus the top-K
ranked list of venues for obtaining recommendations, and hence
we argue that the training of NeuMF that aims to minimise a re-
gression metric (RMSE) may not provide an e�ective top-K ranked
list of venues (Limitation 1). Moreover, to alleviate the challenge
of implicit feedback mentioned in Section 1, i.e. lack of negative
instances, He et al. [7] proposed to apply traditional negative sam-
pling, as de�ned in BPR, to randomly select unvisited venues as
negative instances. However, we argue that more e�ective negative
sampling approaches should take both the sequential properties of
observed feedback as well as the geographical location of venues
into account (Limitation 2).

3.3.2 Generalised Matrix Factorisation model (GMF). As
discussed in Section 3.2, He et al. [7] argued that the dot-product
may not be su�cient to capture the complex structures of user-
venue interactions. �ey proposed a Generalised Matrix Factorisat-
ion model (GMF) to address the limitation of MF-based approaches
that relies on dot product operation, which is de�ned as follows:

ϕGMF = pGu ⊗ qGi (4)

where ⊗ denotes the element-wise products of two latent factors
and pGu = PTGv

U
u (see red-dashed lines with ⊗ operation in Figure 2)

and qGi = Q
T
Gv

I
i are the latent factors of user u and venue i that are

projected from the GMF user and venue embedding layers1 (PG and
QG ), resp. (see the black nodes in the embedding layer of Figure 2).

3.3.3 Multi-Level Perceptron model (MLP). Next, He et
al. [7] proposed a Multi-Layer Perceptron model (MLP) that aims
to capture complex structure of user-venue interactions using the
concatenation of the latent factors, which is de�ned as follows:

ϕMLP = aL(hL(...a1(h1(pMu ⊕ qMi )))) (5)

where L is the number of layers and pMu = PTMv
U
u and qMi =

QT
Mv

I
i are the latent factors of user u and venue i that are pro-

jected from MLP user and venue embedding layer, PM and QM ,
respectively (see black nodes in the embedding layers of Figure 2).
θe = {PG , PM , ...,QM } denotes the set of parameters of the embed-
ding layers. Although the activation function aL can be a sigmoid,
a hyperbolic tangent (tanh) or a Recti�ed Linear Unit (ReLU), they
applied ReLU as the activation function for the hidden layer hL to
alleviate the saturation problem (i.e. neurons stop learning when
their output is near either 0 or 1, a problem that can be su�ered
by the sigmoid and tanh functions). By concatenating pMu and qMi ,
MLP is more �exible than the GMF and the factorised models since
both the dot-product and element-wise product operations require
the dimension d of the latent factors to be identical. However, We
argue that both GMF and MLP can only capture the users’ static pref-
erences, while previous works [4, 11, 19, 25, 28, 32] have shown that
users’ dynamic preferences also play an important role in e�ective
recommendation systems (Limitation 3). In addition, although
GMF and MLP can capture di�erent structures of user-venue in-
teractions by using both element-wise product and concatenation
of latent factors, we argue that the NeuMF framework should not
ignore the structure of user-venue interactions that can be captured
by the dot-product of latent factors (Limitation 4).

3.4 Recurrent Neural Networks-based Approaches
Recently, various approaches have been proposed to enhance the
e�ectiveness of MF-based approaches for recommendation systems
by exploiting Recurrent Neural Networks (RNN) [28, 32] to leverage
sequential properties of observed implicit feedback. For example,
Zhang et al. [32] proposed a RNN-based approach that models users’
dynamic preferences from sequences of clicks as follow:

du,t = σ (Xqi,t + Rdu,t−1) (6)
where qi denotes the latent factor of item i the user visited at time t
andhut−1 is the dynamic preferences of the user at previous time t−1.
R is a recurrent connection weight matrix that captures sequential
signals between every two adjacent hidden states du,t−1 and du,t
and X is a transition matrix between the latent factors of venues
and users. We note that θr = {R,X } denotes a set of parameters of
RNN layers. For example, if a model consists of two RNN layers,
we will have θr = {R1,R2,X1,X2}. σ (x) is the sigmoid function.
�en, similar to MF-based approaches, they apply the dot product
to estimate the probability that user u will checkin at venue i given
his recently click sequences, i.e. ĉu,i = dTu,tqi . �e approach of
Yu et al. [28] is similar to that of Zhang et al., but the application
of BPR to train their proposed RNN-based model. We argue that
1 �e embedding layer is equivalent to latent factors of MF-based approaches.



there are two limitations that need to be addressed. First, their
proposed approach does not take the user’s static preferences into
account (Limitation 5). Although we can apply more sophisticated
RNN-based models (e.g. Long-Short Term Memory model) that are
capable of dealing with long sequences of observed feedback, such
models are computationally expensive. Indeed, a venue that the
user has visited a couple of months ago has less impact to user’s
preference than a venue recently visited. Hence, an accurate model
need to be capable to capture both the static and dynamic preference
of users is more likely to generate be�er venue recommendation.
Second, to model user-venue interactions in a collaborative �lter-
ing manner, their approach still relies on the dot products of latent
factor of venues qi and the user’s dynamic preference du,t . How-
ever, as mentioned above, previous work [7] has shown that the
dot product of latent factors may not be su�cient to capture the
complex structure of user-venue interactions (Limitation 6).

3.5 Summary of Limitations
To conclude, in the above analysis, we have identi�ed four limita-
tions of NeuMF and two limitations of RNN-based models:
Limitation 1: �ere is an inherent disadvantage in the NeuMF for
identifying the top-ranked venues to present to users.
Limitation 2: Negative sampling approaches for which this lim-
itation applies (BPR, DREAM, NeuMF) do not account for the se-
quential properties of checkins and the geolocation of venues.
Limitation 3: MF-based approaches for which this limitation ap-
plies (GMF, MLP, NeuMF) assume that the users’ preferences are
static and do not account for the sequential properties of checkins.
Limitation 4: MF-based approaches for which this limitation ap-
plies (GMF, MLP, NeuMF) ignore the dot product of latent factors
that capture user-venue interactions.
Limitation 5: RNN-based approaches (RNN, DREAM) that exploit
recurrent models to capture the users dynamic preference but do
not take the users’ static preferences into account.
Limitation 6: RNN-based approaches that exploit recurrent mod-
els to capture user’s dynamic preferences for which this limitation
applies (RNN, DREAM) model user-venue interaction using the dot
product of latent factors to generate the venue recommendations.

In summary, there is no previous work that exploits RNN to
capture both the dynamic and static preferences of users, and cap-
ture user-venue interactions with three operations: namely dot and
element-wise products and concatenation. In the next section, we
propose a framework that addresses these limitations.

4 DEEP RECURRENT COLLABORATIVE
FILTERING FRAMEWORK

In this section, we propose a novel Deep Recurrent Collaborative
Filtering framework (DRCF) with a pairwise ranking function and
a novel sequence-based (dynamic) geo-based negative sampling
approach for venue recommendation (Section 4.1). �e proposed
framework consists of three components: namely Generalised Re-
current Matrix Factorisation (GRMF), Recurrent Multi-Level Per-
ceptron (MLRP) and Recurrent Matrix Factorisation (RMF) models,
which will be discussed in Section 4.2, Section 4.3 and Section 4.4,
respectively. In particular, our overall framework aims to address
Limitations 1, 2 & 4 in Section 4.1, while the GRMF and MLRP
models aim to address Limitations 3 and the RMF model aims to
address Limitations 5 & 6. Later, in Section 6, we demonstrate

the e�ectiveness of DRCF framework and its components in com-
parison with state-of-the-art venue recommendation systems.

4.1 Uni�ed Framework
Our proposed DRCF framework is illustrated in Figure 2. �e DRCF
framework consists of multiple layers and the connections between
layers are presented using both blue-dashed and red-do�ed lines.
DRCF di�ers from NeuMF framework in various aspects. Starting
at the bo�om of the �gure, at the input layer, we extend the NeuMF
framework to leverage sequences of checkins of each user u, su .
In embedding layers, there are four additional embedding layers
that are highlighted in green in Figure 2: namely GRMF and MLRP
user (venue) embedding layers that are used in the RMF model,
PGd (QGd ) and PMd (QMd ), respectively. Later in Section 4.4, we
explain why we need these four additional layers. Recurrent Neural
Networks (RNN) layers are included in our framework (pink and
purple in Figure 2) to encapsulate dynamic user preferences. In the
Neural CF layers, we include RMF layers to discover certain latent
structures of user-venue interactions. �e �nal output layer is the
predicted checkin ĉu,i , which is de�ned as follows:

ĉu,i = aout (h(ϕGRMF ⊕ ϕMLRP ⊕ ϕRMF )) (7)
where aout is the activation function, h is the hidden layer and
ϕGRMF , ϕMLRP and ϕRMF denote the GRMF, MLRP and RMF mod-
els that are described in Sections 4.2, 4.3 and 4.4, respectively. To
address Limitation 4, our proposed DRCF framework seamlessly
integrates the RMF model that captures user-venue interactions
using the dot-product of latent factors, discussed in Section 4.4.

Next, instead of training the DRCF framework to minimise the
pointwise loss between predicted checkin ĉu,i and observed checkin
cu,i , as in Equation (2), we address Limitation 1 by proposing to
apply Bayesian Personalised Ranking (BPR) to learn the parameters
Θ = {θr ,θe ,θh }, as follows:

J(Θ) =
∑
u ∈U

∑
st ∈Su

∑
k ∈Ni−st

∑
j ∈V−st

[
log(σ (ĉu,i − ĉu,k )) − log(σ (ĉu,k − ĉu, j ))

]
(8)

where i is a venue most recently visited in st , k is an unvisited venue
that is nearby to venue i and Ni is a set of venues that are nearby
to venue i . Note that venues j and k are negative instances that we
sample using our proposed dynamic geo-based negative sampling
approach. �is contrasts with the traditional negative sampling
approach that is widely applied in previous literature [7, 20], which
randomly selects negative instances from a static pool of negative
venues V−u = V − V+u . Instead, we address Limitation 2 by
proposing a novel dynamic geo-based negative sampling approach,
DRCFdдeo , that enhances the e�ectiveness of the DRCF framework
and alleviate the cold-start user problem by taking sequences of
checkins st at time t and the geographical location of venue i , i.e.
its neighbour venues Ni , into account. In particular, our proposed
dynamic negative sampling approach (see lines 8-11 in Algorithm 1)
samples an unvisited neighouring venue k and an unvisited dis-
tance venue j from a dynamic pool of negative venues Ni − st and
V−st not visited by the user in the current sequence of checkins st ,
respectively, rather than a static pool of negative venues as in the tra-
ditional negative sampling approach (V −V+u ). Moreover, we also
propose a static geo-based negative sampling approach, DRCFsдeo ,



Algorithm 1 An Optimisation Algorithm of DRCF
1: Input: U,V and sequences of visited venues S.
2: Output: Θ = {θr ,θe ,θh }
3: initial θr ,θe ,θh
4: N ← 0 // iteration number
5: repeat
6: for N ← 1 to |U| do
7: u ← draw a random user fromU
8: for st in Su do
9: i ← a venue most recently visited in st

10: k ← draw a random unvisited venue from Ni − st
11: j ← draw a random unvisited venue fromV − st
12: Compute gradients of θr ,θe ,θh
13: Update the above parameters
14: end for
15: end for
16: until convergence

that samples an unvisited neighouring venue k and a distant neg-
ative venue j from a static pool of negative venues Ni − V+u and
V − st not visited by the user in the current sequence of checkins
st , respectively. Later in Section 6, we compare the e�ectiveness of
the proposed dynamic and static geo-based negative sampling ap-
proaches, DRCFdдeo and DRCFsдeo , respectively, with DRCF alone,
which does not consider any k (neighbouring unvisited venues)
during training. �e gradients of θr ,θe ,θh can be estimated by the
back propagation through time algorithm proposed by Rumelhart
et al. [22], which we omit due to the space constraints. �e opti-
misation algorithm of DRCF and the proposed dynamic geo-based
negative sampling approach are described in Algorithm 1.

4.2 Generalised Recurrent Matrix Factorisation
(GRMF)

In this section, we explain how we exploit Recurrent Neural Net-
work models (RNN) to capture users’ dynamic preferences in the
collaborative �ltering manner as well as how to integrate the dot
products of latent factors into the GMF model. In particular, we aim
to address Limitation 3 by extending the GMF model to leverage
sequential properties of checkins. As mentioned in Section 2, users’
dynamic preferences play an important role to enhance the e�ec-
tiveness of factorised models [4, 11, 19, 25, 28, 32]. For example,
users in the evening are more likely to visit a bar directly a�er
they have visited restaurant. However, such behaviour cannot be
captured by the GMF model because it does not take the sequen-
tial properties of checkins into account during the training process
(Limitation 3). We propose GRMF, an extension of the GMF model
mentioned in Section 3.3.2, to exploit an RNN model as follows:

ϕGRMF =
[
dGu,t ⊗ pGu ⊗ qGi

]
(9)

where dG is the user’s dynamic preferences of user u at time t that
are projected from the RNN layer, pGu and qGi are the latent factors
of user u and venue i that are projected from the GRMF embed-
ding layers, respectively. Indeed, the proposed GRMF model is the
element-wise product of latent factors (see the connection between
red-dashed and blue lines under the GRMF layer with ⊗ operation
in Figure 2). Note that we do not consider the choice of recurrent

models and RNN se�ings in this work, which have already been
explored in previous literature (e.g. [24, 25]).

4.3 Multi-Level Recurrent Perceptron (MLRP)
As mentioned in Section 3.3.3, we argue that the e�ectiveness of the
MLP model can be enhanced by leveraging the sequential properties
of checkins. In particular, similar to previous section, we propose
to extend the MLP model to exploit RNN-based model to capture
users’ dynamic preferences to address Limitation 3 as follows:

ϕMLRP =
[
aL(hL(...a1(h1(dMu,t ⊕ pMu ⊕ qMi ))))

]
(10)

where dM is the user’s dynamic preferences of user u at time t that
is projected from the RNN layer, pMu and QM

u are the latent factor
of user u and venue i that are projected from the MLRP Embedding
layer, respectively (see the connection between red-dashed and blue
lines under the MLRP layer with ⊕ operation in Figure 2). Note dif-
ferences between pGu (qGi ) (dGu,t ) and pMu (qMi ) (dMu,t ) in Equations (9)
& (10), we exploit di�erent embedding and RNN layers for each
model in order to independently learn the complex structures of
both dynamic and static user-venue interactions from di�erent mod-
els (i.e. the GRMF captures the interactions using the element-wise
product operation, while the MLRP capture the interactions using
the concatenation). Again, the e�ectiveness of the framework that
allows di�erent models to learn from di�erent set of embedding
layers have been explore in previous literature [7]. Although our
proposed DRCF framework allows di�erent models to learn inde-
pendently, in the output layer (Equation (7), we exploit a hidden
layer h to seamlessly and dependently integrate those models to
generate the ranked-list of venues to the users. In the next section,
we explain RMF, the last component of the DRCF framework, which
incorporates the dot products of latent factors.

4.4 Recurrent Matrix Factorisation (RMF)
In this section, we propose a Recurrent Matrix Factorisation (RMF)
model that captures both the users’ static and dynamic preferences
using the dot products of latent factors as follows:

ϕRMF =
[
( dGdu,t︸︷︷︸
dynamic

+ pGdu︸︷︷︸
static

)}qGdi
]
⊕

[
( dMd

u,t︸︷︷︸
dynamic

+ pMd
u︸︷︷︸

static

)}qMd
i

]
(11)

where dGdu,t (dMd
u,t ) are the latent factors of the dynamic preferences

of user u at time t that are projected from the GRMF (MLRP) RNN
layer. pGdu (pMd

u ) and qGdi (qMd
i ) are the latent factor of user u and

venue i that are projected from the GRMF (MLRP) embedding lay-
ers, respectively. �erefore, the RMF model addresses Limitation
5 by incorporating latent factors, dGdu,t (dMd ) and pGdu (pMd

u ), that
represent both users’ dynamic and static preferences. Indeed, in
order to allow GRMF, MLRP and RMF models to learn indepen-
dently, we follow He et al. [7] to train the RMF models by using
di�erent sets of embedding and RNN layers (see green nodes in the
embedding layer and purple nodes in the RNN layer of Figure 2).
Each of the GRMF, MLRP and RMF models use di�erent operations
(i.e. GRMF and MLRP use element-wise product and concatenation,
while RMF uses dot product). In doing so the complex structures of
user-venue interactions are independently captured by these three
models using the di�erent operations.

Moreover, to address Limitation 6, unlike previous RNN-based
approaches [28, 32] mentioned in Section 3.4, we do not directly



use the dot product of latent factors to generate the venue recom-
mendations. Instead, we concatenate the RMF model with GRMF
and MLRP models and exploit a hidden layer h to determine the in-
�uence of each model (see Equation (7)). In summary, our proposed
DRCF framework that consists of GRMF, MLRP and RMF models
can comprehensively capture the complex structures of dynamic
and static user-venue interactions by leveraging the sequential prop-
erties of checkins using dot products, element-wise products and
concatenation of latent factors. To the best of our knowledge, the
proposed DRCF framework is the �rst that exploits those three op-
erations to capture the dynamic and static user-venue interactions.

5 EXPERIMENTAL SETUP
In this section, we evaluate the e�ectiveness of our proposed DRCF
framework and its components by comparing with state-of-the-
art venue recommendation approaches. In particular, to address
Limitations 1 - 6, we answer the following research questions:

RQ1 Can we enhance the e�ectiveness of the components of the
DRCF framework for venue recommendation systems, namely
the GRMF and MLRP models, by (a) leveraging the sequen-
tial properties of checkins to capture the users’ dynamic and
static preferences, (b) incorporating the dot product of la-
tent factors into the models and (c) training those models to
generate accurate ranked lists of venues for users?

RQ2 Are the MF-based models that capture both users’ dynamic
and static preferences using either the element-wise product
or concatenation of latent factors more e�ective than state-
of-the-art RNN-based approaches that only model the users’
dynamic preference using a dot product of latent factors?

Furthermore, as discussed in Section 3.3.1, no previous a�empt has
proposed negative sampling approaches that take the geographical
location of venues into accounts to address the cold-start problem.
Hence, our third research question:

RQ3 Can our proposed dynamic geo-based negative sampling
approach that leverages both sequential properties of checkins
and geographical location of venues enhance the e�ectiveness
of DRCF and alleviate the cold-start problems?

In the remainder of this section, we describe the experimental
setup in terms of datasets and measures (Section 5.1), baselines (Sec-
tion 5.2) and algorithm parameters (Section 5.3). �e experimental
results and analysis follow in Section 6.

5.1 Datasets & Measures
We conduct experiments using publicly available large-scale LBSN
datasets. In particular, to show the generalisation of our proposed
framework across multiple LBSN platforms and sources of feed-
back evidence, we use two checkin datasets from Brightkite2 and
Foursquare3, and a rating dataset from Yelp4. We follow the com-
mon practice from previous works [8, 13, 20, 29, 31] to remove
venues with less than 10 checkins/ratings. Table 1 summarises the
statistics of the �ltered datasets. To evaluate the e�ectiveness of our
proposed framework, following previous works [7, 8, 20], we adopt
a leave-one-out evaluation methodology: for each user, we select
her most recent checkin/rating as a ground truth and randomly
select 100 venues that she has not visited before as the testing set,
where the remaining checkins/ratings are used as the training set.
2 h�ps://snap.stanford.edu/data/ 3 h�ps://archive.org/details/201309 foursquare
dataset umn 4 h�ps://www.yelp.com/dataset challenge

Table 1: Statistics of the three used datasets.
Brightkite Foursquare Yelp

Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

�e venue recommendation task is thus to rank those 101 venues
for each user, aiming to rank highest the recent, ground truth
checkin/rating. We conduct two separate experiments, namely:
Normal Users (those with ≥ 10 checkins) and Cold-start Users (< 10
checkins) to evaluate the e�ectiveness of our proposed DRCF frame-
work and its components in the general and cold-start se�ings.
Recommendation e�ectiveness is measured in terms of Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG) on the
ranked lists of venues – as applied in previous literature [7, 8, 28, 29].
In particular, HR considers the ranking nature of the task, by taking
into account the rank(s) of the venues that each user has previously
visited/rated in the produced ranking, while NDCG goes further by
considering the checkin frequency/rating value of the user as the
graded relevance label. Lastly, signi�cance tests use a paired t-test.

5.2 Baselines
Our proposed Deep Recurrent Collaborative Filtering (DRCF) frame-
work consists of three components, namely: Generalised Recurrent
Matrix Factorisation (GRMF), Multi-Level Recurrent Perceptron
(MLRP) and Recurrent Matrix Factorisation (RMF) models. We
�rst compare our proposed DRCF framework with the NeuMF
framework as well as state-of-the-art MF-based and RNN-based
approaches, which can be categorised as the traditional MF-based
approaches, RNN-based approaches and Deep Neural Network-
based approaches. Note that such approaches may not be originally
proposed for venue recommendation but are �exible to do so with-
out any disadvantages. �en, we compare the components of our
proposed framework with the components of state-of-the-art Neu-
ral Matrix Factorisation framework (NeuMF) [7], the GMF and MLP
models. Our baselines are summarised below:

5.2.1 Traditional MF-based approaches.

MF. �e traditional matrix factorisation proposed by Koren et
al. [12] that aims to accurately predict the users’ checkin on the
unvisited venues.

BPR. �e classical pairwise ranking approach, coupled with ma-
trix factorisation for user-venue checkin frequency prediction, pro-
posed by Rendle et al. [20].

GeoBPR. A state-of-the-art BPR model that incorporates geo-
graphical in�uence proposed by Yuan et al. [29]. �eir model as-
sumes that neighbourhood venues of venues previously visited by
users should be ranked higher than the distant ones. �is model
uses a static negative sampling approach that incorporates the
geographical location of venues.

5.2.2 RNN-based approaches.

RNN. A sequential click prediction with recurrent neural net-
works approach proposed by Zhang et al. [32] (see Section 3.4).

DREAM [28]. A state-of-the-art RNN model that incorporates
BPR for ranking optimisation. As DREAM is originally proposed for

https://snap.stanford.edu/data/
https://archive.org/details/201309_foursquare_dataset_umn
https://archive.org/details/201309_foursquare_dataset_umn
https://www.yelp.com/dataset_challenge


next shopping-basket recommendation, to permit a fare comparison
with our proposed DRNN, we reimplement DREAM to treat a single
checkin as the shopping-basket purchase.

5.2.3 Deep Neural Network (DNN)-based approaches.

NeuMF. A state-of-the-art Neural Matrix Factorisation frame-
work5 proposed by He et al. [7], which consists of two components:
namely Generalised Matrix Factorisation (GMF) and Multi-Level
Perceptron (MLP) (see Section 3.3).

GMF. A component of the NeuMF framework that models the
user-venue interaction using the element-wise product of latent
factors (see Section 3.3.2).

MLP. A component of the NeuMF framework that models the
user-venue interaction using the concatenation of latent factors
(see Section 3.3.3).

We implement all baselines and our proposed approach using
Keras6, a deep learning framework built on top of �eano7. �e
choice of recurrent models is �xed to the RNN model proposed by
Zhang et al. [32], as used by Yu et al. [28]. Finally, we omit the
Markov Chain-based baselines (e.g. [21]), as experimental results
in [28] showed that RNN-based models are more e�ective than
Markov Chain-based ones. Similarly, we omit state-of-the-art MF-
based approaches (e.g. eALS [8]) as He et al. [7] showed that the
NeuMF framework signi�cantly outperforms such approaches.

5.3 Recommendation Parameter Setup
Following [16, 17, 27, 29], we set the dimension of the latent factors
d of our proposed DRCF framework and all of the MF-based, RNN-
based and DNN-based baselines to be identical: d = 10 across three
datasets. Following He et al. [7], we randomly initialise all hidden,
embedding and RNN layers’ parameters, θr ,θe ,θh , with a Gauss-
ian distribution (with a mean of 0 and standard deviation of 0.01)
and apply the mini-batch Adam optimiser [10] to optimise those
parameters, which yields faster convergence than SGD and auto-
matically adjusts the learning rate for each iteration. We initially
set learning rate to 0.0018 and set the batch size to 256. Finally, to
permit a fair comparison between MF-based approaches that exploit
a Multi-Level Perceptron architecture to capture the user-venue
interactions using the concatenation of latent factors (i.e. the MLP
and MLRP models), we employ three hidden layers, L = 3. As the
impact of the hidden layer’s size L and dimension size d have been
explored in previous work [7, 8], we omit varying the size of the
hidden layers and the dimension of the latent factors in this work.
Indeed, the larger size of hidden layers and dimension may cause
over��ing and degrade the generalisation of the models [7, 8].

6 EXPERIMENTAL RESULTS
Tables 2 & 3 report the e�ectiveness of various approaches in term of
the HR@10 and NDCG@10 on the three used datasets. In particular,
Table 2 reports e�ectiveness for all users, while Table 3 reports re-
sults for Cold-Start users. We focus �rst on Table 2, which contains
four groups of rows: �e �rst group, denoted vs. Baselines, reports
the e�ectiveness of our proposed DRCF framework compared to
baselines, including the NeuMF framework as well as MF-based
and RNN-based approaches. �e second and third groups report
5 h�ps://github.com/hexiangnan/neural collaborative �ltering
6 h�ps://github.com/fchollet/keras 7 h�p://deeplearning.net/so�ware/theano/
8 �e default learning rate se�ing of the Adam optimiser in Keras.

the results of the components of our proposed DRCF framework
(the GRMF and MLRP models) in comparison with components
of the NeuMF framework (the GMF and MLP models) as well as
state-of-the-art RNN-based approaches (Component Ablation of
GRMF and MLRP row, respectively). �e fourth group reports the
improvement of DRCF framework when incorporating either our
proposed dynamic or static geo-based negative sampling approach
that takes the geographical location of venues into account9.

Firstly, on inspection of the �rst group of rows of Table 2, we note
that the relative venue recommendation quality of the baselines on
the three datasets in terms of the two measures are consistent with
the results reported for the various baselines in the corresponding
literature [7, 28, 32]. For instance, NeuMF outperforms MF and BPR
across three datasets. Similarly, DREAM outperforms RNN and BPR
across the three datasets. Note that previous works [7, 28, 32] used
di�erent datasets, while our reimplementations of their proposed
approaches obtain similar relative improvements.

Comparing DRCF with the various baselines in the �rst group
of rows of Table 2, we observe that DRCF consistently and signif-
icantly outperforms NeuMF, DREAM, BPR, RNN and MF, for HR
and NDCG, across all datasets. For instance, DRCF improves NDCG
by 23% over NeuMF for the Foursquare dataset. �ese results imply
that our proposed framework that takes both users’ dynamic and
static preferences as well as the dot products of latent factors into
account is more e�ective than the NeuMF framework [7] using the
same source of information.

Next, we note that unlike the Brightkite and Foursquare checkin
datasets, the Yelp dataset consists of only user-venue ratings, and
hence the sequential properties of visits to venues cannot be ob-
served. We observe that the RNN-based approaches (RNN and
DREAM) that consider the users’ dynamic preferences are more
e�ective than the traditional MF-based approaches (MF and BPR)
across the checkin datasets, while are outperformed by BPR for
Yelp dataset since those RNN-based approaches cannot leverage
the sequential properties of rating data. However, our proposed
DRCF, which considers both the users’ dynamic and static prefer-
ences, is still the most e�ective across the di�erent type of datasets.
In addition, we observe that DRCF consistently and signi�cantly
outperforms its two components GRMFrdb and MLRPrdb for both
measures across the three datasets, except for HR on the Brightkite
dataset, where GRMFrdb is statistically indistinguishable from
DRCF (di�erence in HR < 1%).

Within the second and third groups of rows in Table 2, we fur-
ther analyse the e�ectiveness of our proposed DRCF framework by
comparing its components (GRMF and MLRP) with the components
of NeuMF framework (GMF and MLP) as well as RNN-based ap-
proaches (RNN and DREAM). Since our proposed GRMF and MLRP
models both consists of three components: the RMF layer that in-
corporates the dot product of latent factors; the RNN layer that
models the users’ dynamic preferences; and BPR for pairwise rank-
ing optimisation (instead of using a pointwise loss function). To
determine the importance of the GRMF’s and MLRP’s components,
we follow an ablation methodology, by recording the e�ectiveness
of the GRMF and MLRP when each of those three components is
removed in turn. For simplicity, we denote d as the RMF layer, r as
the RNN layer and b as the BPR optimiser. For example, GRMFrb
denotes that RMF layer is removed from the model.
9 For the �rst three groups of rows, recall from Section 4.1 that DCRF does not sample
unvisited neighbouring venues during sampling.

https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/fchollet/keras
http://deeplearning.net/software/theano/


Overall, we observe similar tends as for DRCF framework, where
GRMF and MLRP consistently and signi�cantly outperform the
RNN, DREAM, GMF and MLP models for the two measure across
the three datasets. In terms of the speci�c impacts of the three com-
ponents of GRMF and MLRP (c.f. RQ1), we observe that all three play
important roles in the e�ectiveness of GRMF and MLRP models as
signi�cant decreases are o�en observed when each component is re-
moved. More speci�cally, for RQ1(a), w.r.t. the sequential properties
of checkins as modelled by the r RNN layers, signi�cant decreases
of both GRMFrdb and MLRPrdb are consistently observed com-
pared to GRMFdb and MLRPdb , respectively. �ese results imply
that the user’s dynamic preference can signi�cantly improve the
e�ectiveness of the GRMF and MLRP models. In particular, we
observe the largest decreases when the r RNN layers are removed
from the MLRP model (see MLRPdb in the third group).

For RQ1(b), concerning the dot product (d), similar trends are ob-
served as in RQ1(a) where signi�cant decreases for both GRMFrdb
and MLRPrdb are consistently observed compared to GRMFrb and
MLRPrb . More speci�cally, we observe the largest decrease when
RMF layer (d) is removed from the GRMF model for the checkin
datasets. �ese results implies that RMF layers play an important
role to the GRMF model and combination of element-wise product
used in GRMF and dot-product used in the RMF layer can signi�-
cantly improve the e�ectiveness of the GRMF model.

For RQ1(c), viz. the BPR optimiser (b), similar trends are ob-
served as in RQ1(a) and RQ1(b) where signi�cant decreases of both
GRMFrdb and MLRPrdb are consistently observed across three
datasets when these two models are degraded into pointwise-based
approaches (c.f. GRMFdr and MLRPdr ). �is can be explained by
the bene�ts of pairwise approaches in generating more e�ective
suggestions than pointwise approaches, discussed in Section 3.3.1.

Overall, the strong results for GRMF and MLRP demonstrate the
e�ectiveness of GRMF and MLRP models in comparison with the
state-of-the-art approaches. Moreover, our DRCF framework com-
bined with the GRMF and MLRP components provides a signi�cant
bene�t across various datasets and measures, compared to various
existing state-of-the-art approaches.

With respect to research question RQ2, we observe that the
GRMF model that uses the element-wise products of latent factors
to capture both users’ dynamic and static preferences consistently
and signi�cantly outperforms DREAM across three datasets, while
signi�cant di�erences between MLRP models and DREAM are
observed in Brighkite and Foursquare. However, there is no sig-
ni�cant di�erence between MLRP models and DREAM in the Yelp
dataset because, as discussed above, these models cannot leverage
sequential properties of ratings from the Yelp dataset.

From the fourth group of rows in Table 2, we demonstrate that
the e�ectiveness of DRCF can be further enhanced with our pro-
posed dynamic geo-based negative sampling approach10. In partic-
ular, we observe that our proposed dynamic negative sampling ap-
proach can signi�cantly improve the e�ectiveness of DRCF in term
of NDCG for the Brightkite and Foursquare datasets. In addition,
DRCFdдeo consistently and signi�cantly outperforms GeoBPR, the
state-of-the-art BPR model that considers the geographical location
of venues, across all three datasets. However, for the Yelp dataset,
where the sequential properties of checkins cannot be obtained,
the static sampling approach (DRCFsдeo ) signi�cantly outperforms
10 Recall that DRCF results in the �rst three groups of rows do not use the dynamic
geo-based negative sampling approach proposed in Section 4.1.

Figure 3: Test recommendation HR & NDCG of various ap-
proaches with respect to the number of iterations.

the dynamic sampling approach (DRCFdдeo ). Overall, the proposed
dynamic geo-based sampling approach can signi�cantly improve
the e�ectiveness of DRCF across three datasets. In addition, Fig-
ure 3 reports the test performance of DRCFdдeo and the baselines
on Brightkite dataset with all users, with respect to the number of
iterations. From the �gure, we observe that DRCFdдeo outperform
the baselines at every iteration and converges faster than others11.

Finally, we address the third research question, by reporting the
e�ectiveness of DRCF and state-of-the-art approaches for cold-start
users. Indeed, within the �rst group of rows in Table 3, we observe
that DRCF consistently outperforms all of the baselines for NDCG
across three datasets (signi�cantly so for all baselines except RNN,
and DREAM for Foursquare). In addition, by incorporating our
proposed dynamic geo-based sampling approach into the DRCF
framework (DRCFdдeo ), DRCF can be signi�cantly improved (for
both measures, across all datasets). �erefore, in response to re-
search question RQ3, we �nd that our proposed dynamic geo-based
sampling approach that takes the geographical location of venues
into account can enhance the e�ectiveness of DRCF framework as
well as alleviate the cold-start problems.

7 CONCLUSIONS
In this paper, we proposed a novel Deep Recurrent Collaborative
Filtering (DRCF) framework with a pairwise ranking function for
venue recommendation, positioned within six elicited limitations in
the state-of-the-art approaches. In particular, the proposed frame-
work consists of two components (GRMF and MLRP models) that
aim to capture both the users’ dynamic and static preferences from
their sequences of their checkins. In addition, we proposed a novel
sequential-based negative sampling approach that takes the geo-
graphical location of venues into account to alleviate the cold-start
problem. Our comprehensive experiments on three large-scale
datasets from the Brightkite, Foursquare and Yelp LBSNs demon-
strate the signi�cant improvements of our proposed DRCF frame-
work and its components as well as the sequential-based sampling
approaches for venue recommendation in comparison with various
state-of-the-art venue recommendation approaches in both normal
and cold-start se�ings. Indeed, on the Foursquare dataset, DRCF
improves NDCG by 23% over the recent NeuMF framework [7]. For
future work, we plan to extend DRCF framework to incorporate
additional neural network layers such as Convolutional Neural
Networks which would allow to capture the semantic properties

11 We observed similar trends for the other datasets – we omit those �gures for brevity.



Table 2: Performance in terms of HR@10 and NDCG@10
between various approaches. �e best performing result is
highlighted in bold; − and ∗ denote a signi�cant di�erence
compared to the best performing result, according to the
paired t-test for p < 0.05 and p < 0.01, respectively.

Normal Users Experiments
Brightkite Foursquare Yelp

Model HR NDCG HR NDCG HR NDCG
vs. Baselines

MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*
RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4963* 0.2676*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
NeuMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4934* 0.2729*
GRMFrdb 0.7363 0.5670* 0.8805* 0.6814* 0.5209* 0.2890*
MLRPrdb 0.7291* 0.5790* 0.8873* 0.7046* 0.4771- 0.2652*
DRCF 0.7419 0.6048 0.8952 0.7223 0.5162 0.2963

Component Ablation of GRMF
RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
GMF 0.7072* 0.4500* 0.7753* 0.4874* 0.4809* 0.2570*
GRMFdr 0.7380* 0.5199* 0.8523* 0.6126* 0.4383* 0.2232*
GRMFdb 0.7460 0.5326* 0.8281* 0.5765* 0.5164- 0.2864-
GRMFrb 0.6704* 0.4772* 0.8273* 0.5984* 0.5210 0.2841*
GRMFrdb 0.7363* 0.5670 0.8805 0.6814 0.5209 0.2890

Component Ablation of MLRP
RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
MLP 0.6780* 0.4805* 0.7638* 0.4846* 0.4656* 0.2492*
MLRPdr 0.7185* 0.4536* 0.8755* 0.5627* 0.4121* 0.2131*
MLRPdb 0.6851* 0.4923* 0.8012* 0.5326* 0.4740* 0.2604*
MLRPrb 0.6985* 0.5390* 0.8709* 0.6737* 0.4917 0.2705
MLRPrdb 0.7291 0.5790 0.8873 0.7046 0.4771* 0.2652*

Geographic Negative Sampling
DRCF 0.7419* 0.6048* 0.8952* 0.7223 0.5162* 0.2963*
GeoBPR 0.7339* 0.4672* 0.8216* 0.5395- 0.5570* 0.3032*
DRCFsдeo 0.7847 0.6047* 0.9086 0.7217 0.5682 0.3134
DRCFdдeo 0.7852 0.6210 0.9095 0.7214 0.5618* 0.3064*

Table 3: As per Table 2, but only for Cold-Start users.
Brightkite Foursquare Yelp

Model HR NDCG HR NCDG HR NDCG
vs. Baselines

MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*
BPR 0.7519 0.4907* 0.7792- 0.4961* 0.5273- 0.2946*
RNN 0.6486* 0.3694 0.5909 0.4041* 0.3856* 0.1901*
DREAM 0.7452 0.4969* 0.7987 0.5379* 0.4523* 0.2239*
NeuMF 0.7160* 0.5894- 0.7922 0.6227- 0.5102* 0.2734*
GRMFrdb 0.7409- 0.5618* 0.8442 0.6542 0.5399 0.3083
MLRPrdb 0.7418- 0.5779* 0.8377 0.6138* 0.4928* 0.2788*
DRCF 0.7526 0.5980 0.8377 0.6645 0.5330 0.3136

Geographic Negative Sampling
DRCF 0.7526* 0.5980* 0.8377- 0.6645- 0.5330* 0.3136*
GeoBPR 0.8093 0.5262* 0.7468- 0.4717* 0.5802- 0.3202*
DRCFsдeo 0.8041 0.6009* 0.8636 0.6748- 0.5948 0.3410
DRCFdдeo 0.8094 0.6199 0.8896 0.7074 0.5877 0.3318-

of textual content of comments and thereby further enhance the
quality of venue recommendations.
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