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ABSTRACT 

Rationale: Inflammasome activation, with subsequent release of pro-inflammatory cytokines 

IL-1β and IL-18, has recently been implicated in atherosclerosis-associated inflammation.  

Objective: To assess in acute coronary syndrome (ACS) patients (1) inflammasome 

activation in circulating monocytes and (2) whether short-term oral colchicine, a recognised 

anti-inflammatory agent that has been shown to be cardio-protective in clinical studies, might 

acutely suppress inflammasome-dependent inflammation. 

Methods and Results: ACS patients (n=21) were randomised to oral colchicine (1 mg 

followed by 0.5 mg 1 hour later) or no treatment, and compared with untreated healthy 

controls (n=9). Peripheral venous blood was sampled pre- (day 1) and 24 hours post- (day 

2) treatment. Monocytes were cultured and stimulated with ATP. Analysis of key 

inflammasome markers was performed by ELISA. IL-1β secretion increased by 580.4 % 

(p<0.01) in ACS patients compared to controls but only with ATP stimulation. Untreated ACS 

patients secreted significantly higher levels of IL-18 vs healthy controls independent of ATP 

stimulation (p< 0.05). Colchicine treatment in ACS patients markedly reduced intracellular 

and secreted levels of IL-1β vs pre-treatment levels (p<0.05 for both), as well as significantly 

reducing pro-caspase-1 mRNA levels by 57.7 % and secreted caspase-1 protein levels by 

30.2 % vs untreated patients (p<0.05 for both). 

Conclusions: Monocytes from ACS patients are “primed” to secrete inflammasome-related 

cytokines and short-term colchicine acutely and markedly suppresses monocyte caspase-1 

activity, thereby reducing monocyte secretion of IL-1β. 

 

SUMMARY STATEMENT 

Inflammasome activation in monocytes is elevated in ACS patients versus healthy subjects. 

Acute colchicine therapy dramatically suppresses this activation, via inhibition of caspase-1 

gene transcription leading to reduced secretion of IL-1β, supporting a beneficial role for 

colchicine in atherosclerosis. 
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ABBREVIATION LIST 

ASC: apoptosis-associated speck-like protein containing caspase recruitment domain 

CAD: coronary artery disease 

CRP: C-reactive protein 

DAMPs: danger-associated molecular patterns 

IL-1: Interleukin-1 
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IL-18: Interleukin-18 

IL-6: Interleukin-6 

NLRP3: Nucleotide-binding oligomerisation domain-like receptors, pyrin domain-containing 3  
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INTRODUCTION 

 

Inflammation is central to the pathogenesis of atherosclerotic plaque progression and athero-

thrombotic vascular events with systemic inflammatory markers, e.g. C-reactive protein, 

correlating strongly with prognosis in acute coronary syndrome (ACS) patients (1). Indeed, 

these patients are particularly vulnerable to recurrent events in the early post-ACS period, 

likely driven by a pan-vascular inflammatory process resulting in a higher prevalence of 

vulnerable non-culprit plaque (2-4). Recent studies have demonstrated that the NLRP3 

(nucleotide-binding oligomerisation domain-like receptors, pyrin domain-containing 3) 

inflammasome, a cytosolic multiprotein complex found in monocytes, plays a key role in 

atherosclerosis-associated inflammation (5, 6). 

 

The NLRP3 inflammasome is the most-widely studied and clinically relevant inflammasome 

and is unique in its ability to be activated by a diverse range of stimuli, of which mechanisms 

are still being elucidated. In the context of atherosclerosis, inflammasome activation is 

proposed to be two phase process – firstly, a stress signal (e.g. cholesterol crystals, LPS, or 

danger-associated molecular patterns (DAMPs)) is sensed by NLRP3 which “primes” the 

inflammasome complex, leading to the assembly of NLRP3, apoptosis-associated speck-like 

protein containing caspase recruitment domain (ASC) and pro-caspase-1 (7, 8). Activation is 

completed following a second signal, for example extracellular ATP leading to rapid potassium 

efflux, caspase-1 activation and secretion of active IL-1β and IL-18 (9-12). IL-1β, in turn, is a 

key inflammatory cytokine that participates in athero-thrombosis. For example, IL-1β deficient 

mice are characterised by reduced atherosclerotic lesions (13), while IL-1β infusions in Apo 

E-/- mice enhances aortic plaque development (14). Moreover, we have recently shown, in 

ACS patients, that trans-coronary IL-1β and IL-18 levels strongly correlate with disease activity 

(15). 

 

Colchicine is an inexpensive potent anti-inflammatory drug. The LoDoCo trial demonstrated 

that long-term colchicine therapy in patients with stable coronary artery disease, lead to a 

reduced number of acute events over a 3 year period (16). We have recently demonstrated 

that short-term colchicine therapy in ACS patients reduces local coronary production of the 

inflammasome-specific cytokines, IL-1β and IL-18 as well as downstream IL-6 (15). Several 

anti-inflammatory mechanisms of colchicine have previously been reported including the 

inhibition of NLRP3 inflammasome protein assembly in macrophages by disrupting 

microtubule formation (17) as well as reducing neutrophil infiltration (18). Nonetheless, the 

mechanism of action of colchicine in the setting of ACS is still to be determined. Accordingly, 

we aimed here to characterise in ex vivo monocytes isolated from ACS patients (1) the 
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mechanisms of inflammasome activation and (2) the effects of colchicine therapy on cytokine 

secretion and inflammasome protein assembly. 
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MATERIALS AND METHODS 

 

Patient Selection, Treatment and Sample Collection 

 

Adult patients (> 21 years old) admitted at Royal Prince Alfred Hospital with an ACS were 

invited to participate in the study. ACS was defined as the clinical presentation characterised 

by recent onset chest pain, associated with ECG changes and/or positive cardiac enzymes - 

creatine kinase or troponin T, as per AHA guidelines (19). Patients were randomised in a 1:1 

fashion to receive either colchicine (1 mg, followed by 0.5 mg 1 hour later) or no therapy. 

Peripheral vein blood samples were drawn on day 1 (before colchicine administration in the 

active treatment group) and on day 2 (24 hours after the first sample) (Figure 1). In the active 

treatment arm, colchicine was administered immediately after the first blood sample was 

drawn and at least 20 hours before the second blood sample. Additionally, healthy individuals 

with no known co-morbidities, no documented coronary artery disease or cardiovascular risk 

factors were sampled (only day 1 sample) and served as controls. The study protocol was 

approved the local Ethics Review Committee and all patients gave informed written consent 

before participating in this study. 

 

Isolation and Culture Monocytes 

 

Venous blood was collected in EDTA tubes and immediately centrifuged at 1,400 rpm for 15 

minutes to remove plasma. Peripheral blood mononuclear cells were isolated using 

Lymphoprep (Cedarlane, Ontario, Canada) according to manufacturer’s instructions and as 

previously described (20). Cells were re-suspended in Dulbecco's Modified Eagle Medium 

supplemented with 5 % fetal bovine serum and a full blood cell count was performed. 

Monocytes were seeded at 8x104 cells/well on a 48-well plate in growth media and non-

adherent cells were removed 1 hour later. Cells were cultured for 3 hours, followed by 

stimulation of half the cells with ATP (Sigma-Aldrich, St Louis, USA; 5 mM) for 30 minutes 

(Figure 1). Notably, ATP stimulation was conducted to activate the P2X7 receptor leading to 

potassium efflux, thereby completing inflammasome activation (8). Monocyte lysates and cell 

media were collected and stored at -80°C for downstream analysis. 

 

Protein Analysis 

 

Changes in cellular or excreted protein levels were measured by enzyme-linked 

immunosorbent assay (ELISA), to determine the expression of key inflammasome related 

markers including: IL-18 (MBL International, Woburn, USA), IL-1β, IL-6 and pro-IL-1β (RnD 



6 
 

systems, Minneapolis, USA) and caspase-1 (Cusabio, Wuhan, China). Importantly, the 

antibodies used in IL-1β and pro-IL-1β ELISA are specific to each antigen. Results from cell 

lysates were normalised to total protein concentration as determined by a BCA assay. 

 

RNA Isolation and RT-PCR 

 

RNA was isolated using RNeasy Isolation Kit (Qiagen, USA) according to the manufacturer’s 

instructions. cDNA was synthesised using Iscript (Biorad, USA) and then subjected to qRT-

PCR performed using IQ Sybr mix (Biorad). Primers used for amplification are detailed below. 

Delta delta Ct method was used to determine gene changes (21). 

  Forward (5’-3’) Reverse (5’-3’) 

Pro-IL-18 ATCGCTTCCTCTCGCAACAA TCCAGGTTTTCATCATCTTGC 

Pro-IL-1β CAGAAGTACCTGAGCTCGCC GAAGCCCTTGCTGTAGTGGT 

NLRP3 CTTCTCTGATGAGGCCCAAG GCAGCAAACTGGAAAGGAAG 

Pro-caspase-1 ACTGCCCAAGTTTGAAGGACA CACTTCCTGCCCACAGACAT 

ASC (PYCARD) CTCCTCAGTCGGCAGCCAAG CAAGTCCTTGCAGGTCCAGT 

Gapdh TTCAACAGCGACACCCACT TTCCTCTTGTGCTCTTGCT 

 

Statistical Analysis 

 

Continuous variables are reported as mean ± standard error of the mean (SEM). Differences 

in continuous variables (e.g. IL-1 concentration) were analysed via paired or unpaired t-test 

as appropriate, and Welch correction utilised where data sets had non-equal variances. 

Multiple comparisons were analysed with one-way ANOVA. Proportional differences in 

categorical variables were tested via the use of Fisher’s Exact Test. All tests were 2-tailed with 

the acceptable type 1 error set at P<0.05. Statistical analysis was performed with GraphPad 

Prism 6.0 (GraphPad Software, Inc, La Jolla, USA). 
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RESULTS 

 

Between May and June 2014, 21 consecutive consenting ACS patients were enrolled, of 

whom 10 received colchicine and 11 received no therapy. Additionally, 9 healthy volunteers 

were also sampled (7 males and 2 females, mean age 40 years old). Baseline characteristics 

for the colchicine-treated and colchicine-untreated groups are shown in table 1. Groups were 

comparable in all categories, although there was a trend to higher rates of previous MI and 

revascularsation procedures (either PCI or surgery) in the no treatment arm (previous MI 11 % 

vs 55 %, p = 0.063). Of note, the use of recommended drugs in the setting of ACS was very 

high in both groups, with 100 % use of aspirin, all but one patient on a thienopyridine, more 

than 80 % on statins and more than 70 % on -blockers. The size of myocardial infarct as 

assessed by creatinine kinase elevation was also similar between groups. 

 

Monocytes from ACS patients secrete inflammasome-related cytokines  

 

IL-1β 

In unstimulated conditions, monocytes isolated from healthy controls and ACS patients 

exhibited similar intracellular levels of pro-IL-1β and IL-1β (pro-IL-1β: 37.28 ± 8.17 vs 49.16 ± 

7.17 pg/µg protein; IL-1β: 116.76 ± 11.59 vs 179.58 ± 69.03 pg/µg protein, respectively). 

Similarly, secreted levels of IL-1β in non-stimulated cells did not differ between healthy control 

and ACS groups (49.69 ± 5.63 and 49.77 ± 4.43 pg/mL, respectively). ATP stimulation did not 

significantly change intracellular pro-IL-1β but non-significantly increased intracellular IL-1β 

levels in ACS patient monocytes versus healthy controls (pro-IL-1β: 126.33 ± 35.77 vs 83.97 

± 19.01 pg/µg protein; intracellular IL-1β: 382.0 ± 96.60 vs 235.40 ± 41.96 pg/µg, respectively). 

Notably, ATP stimulation of ACS patient monocytes also resulted in a significant increase in 

IL-1β secretion compared with healthy subjects (436.70 ± 95.33 pg/mL vs 123.20 ± 48.39; p 

= 0.008; Figure 2A). To directly compare the effects of ATP stimulation between groups, the 

percentage increase in pro-, intracellular and secreted IL-1β between unstimulated and ATP-

stimulated monocytes was analysed. ATP-stimulation lead to comparable changes in pro-IL-

1β, however markedly increased intracellular and secreted IL-1β in ACS v healthy monocytes 

(intracellular 314.7 ± 52.92 % v 215 ± 18.61 %, respectively, p=0.091 and secreted: 823.3 ± 

157.6 % v 242.9 ± 67.84 %, respectively, p<0.01; Figure 2B). 

 

IL-18 

Intracellular (unstimulated: control 13.99 ± 1.62, ACS 39.05 ± 7.93 pg/µg protein, p = 0.006; 

ATP-stimulated: control 18.29 ± 3.00, ACS 74.74 ± 26.29 pg/µg protein, p = 0.045) and 

secreted (unstimulated: control 7.10 ± 3.35, ACS 53.26 ± 7.70 pg/mL, p<0.001; ATP-
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stimulated: control 19.73 ± 10.56, ACS 73.33 ± 21.08 pg/mL p = 0.032) IL-18 levels were 

significantly higher in ACS patients compared to healthy controls (Figure 2C). However, in 

contrast to IL-1β, ATP increased monocyte IL-18 secretion from both healthy controls and 

ACS patients to a comparable extent in both groups (248.9 ± 57.53% and 183.5 ± 57.69%, 

respectively; Figure 2D).  

 

Plasma cytokine levels 

Plasma levels of IL-18 and IL-1β were similar between groups, however IL-6 levels were 

significantly higher in ACS compared to healthy controls (35.10 ± 8.79 vs 6.70 ± 0.86 ng/mL, 

respectively; p = 0.04) (Supplemental Figure 1). 

 

Caspase-1 

Secretion of the active p20 caspase-1 subunit was not significantly different between ACS 

patients and healthy controls, and was unaffected by ATP-stimulation (unstimulated: 192.88 

± 27.53 vs 268.60 ± 67.91 pg/mL, respectively; ATP-stimulated: 176.29 ± 24.69 vs 247.59 ± 

48.91 pg/mL, respectively). 

 

Inflammasome-related transcript levels 

In unstimulated conditions, pro-IL-18 mRNA in ACS monocytes was significantly higher 

compared with healthy subjects (100.30 ± 7.79 % vs 160.70 ± 13.19 %; p = 0.034), however 

mRNA levels of ASC, NLRP3, pro-caspase-1 and pro-IL-1β were otherwise similar between 

groups (Figure 3). In either group, ATP stimulation did not further increase mRNA transcript 

levels (Supplemental Figure 2). 

 

As ATP stimulation markedly increased intracellular and secreted IL-1β in ACS monocytes 

(suggesting complete inflammasome activation), colchicine or no treatment effects were 

expressed as a ratio of ATP-stimulated IL-1β levels /unstimulated IL-1β levels. Conversely, as 

pro-IL-1β, IL-18, secreted caspase-1 and transcript levels of ASC, NLRP3, pro-caspase-1, 

pro-IL-1β and pro-IL-18 were not significantly increased by ATP stimulation, colchicine effects 

on these mediators were analysed in unstimulated conditions only. 

 

Colchicine reduces intracellular and secreted IL-1β in monocytes from ACS patients 

 

On day 2, monocytes from untreated ACS patients exhibited comparable levels of intracellular 

and secreted IL-1β versus day 1 (D1) samples (Figure 4 A-B, red bars). However, colchicine 

treatment significantly reduced intracellular and secreted IL-1β levels versus pre-treatment 
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levels (intracellular IL-1β: D1 252.40 ± 39.01 % vs D2 137.90 ± 16.72 %, p = 0.008; Figure 

4A; secreted IL-1β: D1 903.60 ± 262.50 % vs D2 307.9 ± 99.28, p = 0.010; Figure 4B).  

Pro-IL-1β and intracellular levels of IL-18 were unaffected by colchicine treatment (Figure 4C), 

however secreted IL-18 levels was reduced (colchicine-treated D1 60.41 ± 14.57 vs D2 33.67 

± 3.48, p = 0.09; Figure 4D).  Peripheral venous plasma levels of IL-18 or IL-1β were not 

affected by colchicine treatment (Supplemental Figure 3). 

 

Colchicine treatment reduces pro-caspase-1 mRNA levels but no other inflammasome-related 

mRNA transcripts 

 

To investigate whether colchicine affected gene transcription, RNA was isolated from ACS 

patient monocytes and levels of key inflammasome transcripts were measured by qRT-PCR. 

There was no significant difference in mRNA levels for pro-IL-1β, pro-IL-18, ASC or NLRP3 

between ACS monocytes on day 1 and day 2, in either treated or untreated patients (Figure 5 

A-D). Pro-caspase-1 mRNA levels in non-treated ACS monocytes were significantly higher on 

day 2 (144.40 ± 21.50 %) versus day 1 (101.10 ± 0.36 %), p = 0.038. This rise was not 

observed in colchicine-treated ACS patients (D1: 102.70 ± 0.82 % vs D2: 86.71 ± 14.97 %; p 

= 0.275; Figure 6A). In non-treated patients, pro-caspase-1 mRNA levels increased between 

day 1 and 2 by 51.94 ± 22.09 %, whereas, in colchicine treated patients, levels decreased by 

5.73 ± 12.48 % (p = 0.04; Figure 6B). 

 

Colchicine reduces caspase-1 protein secretion 

 

Secretion of the active p20 caspase-1 subunit in monocytes from untreated patients did not 

significantly differ between day 1 and 2 (p = 0.38). However, in colchicine treated patients, 

caspase-1 secretion decreased significantly from 249.7 ± 41.03 pg/mL on day 1 to 120.0 ± 

16.51 pg/mL on day 2 (p = 0.017; Figure 6C). Between sampling time points p20 caspase-1 

secretion increased by 75.52 ± 39.52 % in non-treated patients, while in treated-patients 

secretion decreased by 30.19 ± 14.28 % (p = 0.03; Figure 6D). 

  



10 
 

DISCUSSION 

 

In this study we have shown for the first time that (i) that monocytes from ACS patients exhibit 

features of inflammasome activation and (ii) that acute colchicine treatment significantly 

attenuates caspase-1 mRNA transcript levels and protein secretion, in turn markedly reducing 

cellular and secreted IL-1 levels (Figure 7). 

 

Increased production of inflammasome-related cytokines from ACS patient monocytes 

 

In vitro studies have previously determined that inflammasome activation is a two-step 

process– firstly involving a stress signal to ‘prime’ the inflammasome complex and a second 

signal (ATP) which results in complete activation, with active caspase-1 cleaving pro-IL-1  

into active secreted IL-1β (8). In our study, ATP stimulation resulted in a significant increase 

in IL-1β secretion in ACS patients compared with healthy controls, suggesting that, in ACS 

patient monocytes, the inflammasome components are assembled and the complex is 

‘primed’, yet requires a second signal (e.g, ATP) to complete activation, leading to IL-1 

secretion. Conversely, in healthy subjects, the inflammasome is not primed and therefore IL-

1 secretion is markedly less after ATP stimulation. This concept is supported by similar levels 

of pro-IL-1β mRNA levels at baseline between healthy controls and ACS patients. Monocytes 

from patients with active rheumatoid arthritis behave similarly, displaying higher sensitivity to 

ATP stimulation compared with healthy subjects (22). In the setting of ACS, it is possible that 

cholesterol crystals, present in atherosclerotic plaques and exposed after plaque rupture, 

induce inflammasome activation (5). However other factors such as the complement system 

(in particular C5a), TNFα (23), reactive oxygen species (24), and positive feedback from IL-

1 or the inflammasome complex itself, which is released after cell apoptosis (25), may also 

contribute to inflammasome “priming”. Indeed, the intense inflammatory milieu present in 

vulnerable atherosclerotic plaque might prime the inflammasome by several mechanisms, 

sustaining the inflammatory process. Accordingly, the mechanisms underlying our findings 

may be independent of cholesterol crystals, but dependent upon the inflammatory response 

secondary to plaque rupture and/or myocardial infarction. In this environment, ATP (the 

second stimulus required for complete inflammasome activation) might be secreted by 

inflammatory cells or aggregated platelets (26), alternatively it might be released from 

activated monocytes, leading to autocrine activation of the P2X7 receptor (27). We have 

previously shown release of inflammasome-related cytokines in the coronary circulation in 

ACS patients, supporting the concept of complete inflammasome activation in vivo (15). 
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Our study also found higher IL-18 protein levels in monocytes isolated from ACS patients than 

those isolated from healthy controls, a pattern conserved when treated with ATP, suggesting 

that IL-18 release from ACS monocytes may be independent of NLRP3 inflammasome 

activation. These findings might be explained by the fact that IL-18 is constitutively expressed 

in peripheral blood mononuclear cells (PBMC) (28) and may be cleaved by either 

inflammasome activated caspase-1 cleavage or by other mechanisms, which may include 

caspase 3 (29), proteinase 3 (30), human mast cell chymase (31) or meprin beta (32). 

Consistent with secreted protein, pro-IL-18 mRNA was also increased in monocytes from ACS 

patients compared to those from healthy subjects. In our model, ATP had no effect on pro-

caspase-1 mRNA levels nor were there differences in caspase-1 secretion, which is 

inconsistent with in vitro findings (33). This could be explained by methodological differences 

e.g. cultured in vitro models versus ex vivo preparations, absence of an experimental 

inflammasome priming stressor in our study i.e. LPS, or related to disease state, but in any 

case requires further study.  We also demonstrated that gene levels of the inflammasome 

components were not significantly different between ACS and healthy subjects. These 

included NLRP3, which has previously been reported to be increased in coronary artery 

disease (CAD) patients and ACS patients compared to control groups (34, 35). In contrast to 

our study, which examined purified monocytes, these studies investigated mRNA expression 

in PBMCs, and therefore differences in expression may be derived from other mononuclear 

cells such as leucocytes. Importantly, these studies both show that NLRP3 levels altered with 

statin treatment, this may account for why we have not observed a change in our study.  

Together, our data indicate that inflammasome activation in ACS monocytes is not dependent 

on transcriptional regulation. 

 

In our study, acute colchicine treatment lead to a dramatic reduction in intracellular and 

secreted levels of IL-1 in ATP-stimulated monocytes as well as non-significantly reducing IL-

18 secretion. A corresponding decrease in pro-IL-1β mRNA was not observed, thus 

suggesting colchicine does not alter gene transcription of IL-1β and reduction in protein levels 

is due to a post-translational cleavage. Such findings are at least partially consistent with our 

previous study, where coronary levels of IL-1β and IL-18 were significantly reduced by 

colchicine therapy (15). In this study, the less marked effect on IL-18 secretion can be 

explained by the fact that IL-18 might also be secreted by non-monocyte resident cells in the 

vessel wall or other circulating leucocytes, on which colchicine could also inhibit, in contrast, 

the reduction in IL-1 secretion into the coronary circulation can be attributed, at least partly, 

to the action of colchicine on monocyte activation.  
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Colchicine has previously been shown to have multiple mechanisms of actions. They include 

inhibition of inflammasome activation by preventing crystals presentation, via attenuation of 

microtubule polymerisation (36). A recent study also demonstrated that colchicine impaired 

microtubule function, thereby blocking ASC co-localisation with NLRP3, thus preventing 

inflammasome complex assembly and activation (17). Here, we describe a potential additional 

mechanism of action, which to our knowledge has not previously been demonstrated, of 

reducing inflammasome activation by decreasing caspase-1 mRNA transcript levels, and 

therefore caspase-1 protein levels. Accordingly, when the inflammasome is completely 

activated by ATP, there is insufficient active caspase-1 available to cleave pro-IL-1 into its 

active secreted form (Figure 7). This effect appears to be specific to caspase-1 as there was 

no effect on the mRNA levels of other genes known participate in inflammasome assembly. 

The results of this study together with previous findings (17, 37) indicate that colchicine may 

act on multiple steps of the inflammasome pathway to prevent inflammatory cytokine release. 

 

Limitations 

 

Study limitations include a relatively small sample size, only investigating one inflammasome 

activator (ATP) and while monocytes only were investigated in our study, it is possible that 

colchicine might have inhibitory effects on non-monocyte inflammatory cells. Further, due to 

our stimulation protocol, it was required to culture monocytes for a short time, which may have 

impacted on their phenotype; this time however was minimised to less than 4 hours and is 

similar to previously published methods using ex vivo monocytes (20, 27, 38, 39).  Importantly, 

this method was used consistently across all samples, allowing for relative comparisons to be 

made between patients and/or treatments. Our study was designed to test the effects of short-

term colchicine administration on monocyte inflammasome activation; long-term use of this 

drug and effects on clinical outcome or any side effects were not evaluated. Moreover, we 

have not elucidated how colchicine interacts with monocytes and the intracellular messaging 

cascade that ultimately leads to inhibition of pro-caspase-1 mRNA synthesis. Lastly, pro-

caspase-1 gene knockout studies would be required to confirm effects on mRNA synthesis. 

 

CONCLUSIONS 

 

Our results suggest, for the first time, that (1) the NLRP3 inflammasome in monocytes from 

ACS patients is primed to secrete key athero-inflammatory cytokines and (2) that acute 

colchicine administration markedly inhibits monocyte secretion by IL-1β, at least in part by 

reducing caspase-1 mRNA levels and protein secretion. Together, these data indicate a novel, 

clinically relevant, anti-inflammatory mechanism of action for colchicine in unstable 
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atherosclerotic disease. Our findings, therefore, provide further insights into colchicine’s 

athero-protective properties that have been previously demonstrated by us and others, and 

support its therapeutic role in atherosclerosis-associated inflammation. 

 

CLINICAL PERSPECTIVE  

 

Inflammation plays a pivotal role in atherosclerotic plaque progression and instability, leading 

to clinical events. Notably, inflammasome activation, with its downstream cytokines, IL-1 and 

IL-18 have been implicated in atherosclerosis-associated inflammation, and therefore may be 

targets for inhibition. We demonstrate here that short-term colchicine therapy in patients 

presenting with an acute coronary syndrome significantly reduces caspase-1 transcript and 

protein levels in monocytes. This, in turn, leads to reduced production of IL-1, a pro-

inflammatory cytokine that is associated with plaque instability and recurrent coronary events. 
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TABLES 

 

Table 1. Baseline characteristics of ACS patients, randomised to colchicine or no 

treatment 

 
Colchicine 
(n=9) 

No Colchicine 
(n=11) 

P 
value 

Age (y) Mean (SD) 69.80 (12.53) 67.55 (14.57) 0.86 

Female (%) 2 (22) 3 (27) 1 

Diabetes mellitus (%) 2 (22) 4 (36) 0.64 

Hypertension (%) 6 (67) 10 (91) 0.15 

Dyslipidaemia (%) 7 (78) 8 (73) 1 

Family history (%) 3 (33) 5 (46) 0.66 
Current smoker (%) 4 (44) 3 (27) 0.66 

Previous MI (%) 1 (11) 6 (55) 0.06 

Previous PCI (%) 1 (11) 3 (27) 0.59 

Previous CABG (%) 1 (11) 3 (27) 0.59 

Renal impairment (%) 1 (11) 3 (27) 0.59 

Medications 

Aspirin (%) 9 (100) 11 (100) - 

Thienopyridines (%) 8 (89) 11 (100) 0.48 

-blockers (%) 7 (78) 8 (73) 1 

Nitrates (%) 1 (11) 4 (36) 0.31 

ACE-I / ARA-2 (%) 4 (44) 7 (64) 0.39 

Ca-blockers (%) 1 (11) 1 (9) 1 

Diuretics (%) 2 (20) 5 (46) 0.36 

Statins (%) 9 (100) 9 (82) 0.48 

Hypoglycemics (%) 2 (22) 4 (36) 0.64 

Insulin (%) 1 (11) 2 (18) 1 

Fibrates (%) 1 (10) 1 (9) 1 

Blood tests (Mean (SD)) 

Haemoglobin (g/L) 134.40 (19.46) 127.72 (24.16) 0.47 

White cell count (x109/L) 8.84 (2.12) 8.46 (2.24) 0.65 

Platelet count (x109/L) 234.70 (63.05) 239.91 (77.03) 0.76 

Creatinine (µmol/L) 88.50 (34.77) 92.36 (41.15) 0.43 

Cholesterol (mmol/L) 3.25 (0.65) 4.88 (1.95) 0.14 

Glucose (mmol/L) 7.12 (1.27) 8.45 (3.44) 0.76 

Max CK (U/L) 649.87 (582.03) 695.63 (569.63) 1 
Max Trop (ng/L) 1037.00 (1024.76) 2016.38 (2913.15) 1 

 

SD: standard deviation; ACE-I: angiotensin converting enzyme inhibitors; ARA-2; 

angiotensin II receptor antagonist; CK: creatinine kinase 
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FIGURES 

 

 

 

Figure 1. Sampling and ex vivo stimulation protocol. 

PBMC; peripheral blood mononuclear cells. 
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Figure 2. Inflammasome markers are increased in monocytes of ACS patients 

compared to healthy controls. 

 

Protein levels of key inflammasome-specific cytokines IL-1β (A) and IL-18 (C) were 

measured using ELISA in culture media of monocytes isolated from either healthy controls 

(n = 9, black bars) or untreated acute coronary syndrome patients (ACS; n = 11, white bars). 

B and D indicate the percentage change in secretion of cytokines in ATP-stimulated 

monocytes compared to patient matched unstimulated monocytes. Results are presented as 

mean ± SEM; * p<0.05 p<0.01 and p<0.001. 
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Figure 3. Transcript levels of inflammasome mRNAs in monocytes. 

 

Expression analysis of inflammasome-related mRNA transcripts from RNA isolated from 

monocytes. ASC (apoptosis-associated speck-like protein containing a CARD); NLRP3 

(NOD-like receptor family, pyrin domain containing 3). Results normalised to GAPDH 

expression and expressed as percentage mean ± SEM of healthy control; * p<0.05. 
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Figure 4. Colchicine reduces IL-1β secretion from monocytes of ACS patients. 

 

IL-1β (A and B) and IL-18 (C and D) were measured using protein specific ELISA in lysates 

(A and C) or in culture media (B and D) of monocytes isolated from acute coronary 

syndrome (ACS) patients at baseline (Day 1; red or blue) and ACS patients 24 hours later 

(Day 2) following either no treatment (n = 11, light red) or oral colchicine treatment (n = 9, 

light blue). For IL-1β expression levels from ATP-stimulated cells are expressed as a 

percentage of patient-matched non-stimulated cells; data are presented as mean ± SEM; * 

p<0.05. 
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Figure 5. Colchicine suppression of the inflammasome does not alter transcription of 

inflammasome transcript. 

 

Expression analysis of inflammasome-related mRNA transcripts from RNA isolated from 

monocytes from either acute coronary syndrome patients (ACS) at baseline (Day 1; red or 

blue) and ACS patients 24 hours later (Day 2)  following either no treatment (n = 11, light 

red) or oral colchicine treatment (n = 9, light blue). Genes measured: pro-IL-1β (A); pro-IL-18 

(B); ASC (apoptosis-associated speck-like protein containing a CARD) (C); and NLRP3 

(NOD-like receptor family, pyrin domain containing 3) (D). Results are presented as mean ± 

SEM. 
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Figure 6. Colchicine significantly reduces monocyte transcript levels of caspase-1 

and secretion of active caspase-1. 

 

Caspase mRNA transcript (A) or secreted caspase-1 protein (C) levels from monocytes 

isolated from acute coronary syndrome patients at baseline (Day 1; red or blue) and 24 

hours later (Day 2) following either no treatment (n = 11, light red) or oral colchicine 

treatment (n = 9, light blue). B and D illustrate the percentage change in matched samples 

from Day 1 to Day 2. Results are presented as mean ± SEM; ns: non-significant; * 

p<0.05. 

  



24 
 

 

Figure 7. Effect of short-term colchicine on caspase-1 expression and IL-1β 

production in monocytes from acute coronary syndrome patients. 

 

The NLRP3 inflammasome in monocytes from ACS patients is primed, and can readily 

produce and secrete IL-1β following final stimulation with ATP (top panel).  With short-term 

colchicine therapy, pro-caspase-1 mRNA synthesis and secreted caspase-1 protein levels 

are significantly inhibited. This, in turn, arrests pro-IL-1β cleavage, with subsequent reduced 

secretion of active IL-1β, despite ATP stimulation (bottom panel). 


