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Abstract 
Metal ions play distinct roles in living organisms, including insects. Some, like sodium and potassium, 

are central players in osmoregulation and ‘blood and guts’ transport physiology, and have been 

implicated in cold adaptation. Calcium is a key player as a second messenger, and as a structural 

element. Other metals, particularly those with multiple redox states, can be cofactors in many 

metalloenzymes, but can contribute to toxic oxidative stress on the organism in excess. This short 

review selects some examples where classical knowledge has been supplemented with recent 

advances, in order to emphasise the importance of metals as essential nutrients for insect survival. 

Metals and life  
Every living organism must regulate its internal milieu, and metals are key players in the transport 

processes, and many enzymatic activities, that underpin life. Given the broad scope of the short 

review, only a few examples of recent progress will be selected; some of these will feature the best -

studied epithelium (the Malpighian tubules) or the best-studied insect (Drosophila melanogaster), or 

both. 

The critical role of the insect Malpighian tubules 
A critical advantage of multicellular organisms is specialization. Different cells, organized into tissues, 

allow the separation of different compartments, each optimized for particular sets of functions. 

In terms of homeostasis, an insect can be seen as a bag of haemolymph, surrounded by a relatively 

impermeable cuticle, and penetrated by a highly permeable alimentary canal, with distinct regions 

specialized for distinct transport roles. To a first approximation, homeostasis can be seen as the sum 

of the activities of four key epithelia, the salivary glands, midgut, Malpighian (renal) tubules, and 

hindgut (Fig. 1A). Although these tissues are too complex to be ascribed single roles, it is a 

convenient shorthand to consider the salivary glands as secretory, the midgut as absorptive, the 

tubules as excretory, and the hindgut as selectively reabsorptive [1]. As most insect guts process in a 

linear fashion from mouth to anus, it follows that the ultimate gatekeeper for what stays in, or 

leaves, the insect is the hindgut. The organization of the alimentary canal is well-covered in 

textbooks [2]. The Malpighian tubules are well-described by recent reviews [3-7]; their transport 

physiology is summarized below (Figs 1B-C). 

 

The tubules achieve their key roles (of supporting ionic homeostasis and excreting waste solutes) by 

actively excreting the cation present in excess (usually potassium, but sometimes sodium in blood-

feeding insects [8]). Rather than use a primary pump for the ion, tubules pump out protons across 
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their apical membranes [9], then use this gradient to drive alkali metal cation exchangers to lift the 

desired ion up its electrochemical gradient (Fig. 1B-C). Ion resupply is guaranteed by a collection of 

ATPases, channels and cotransporters on the basolateral surface. The resulting net charge transfer is 

balanced by a chloride flux, and the net movement of salt allows osmotic flux of water to produce a 

primary urine. Transcriptome analysis has suggested that this basic model can be extended to all 

Drosophila transporting epithelia [10], and to other species [11]. There is experimental evidence of 

ion gradients to support the model, for example by X-ray microanalysis in Drosophila hydei 

Malpighian tubules [12]. 

The tubule is under exquisite neuroendocrine control. Surprisingly, although much is known about 

the neuropeptides and biogenic amines that control fluid secretion in the Malpighian tubules [13], 

the salivary glands [14], or the alimentary canal [15],  almost nothing is known about how different 

ions are regulated. The exception is that calcitonin-like peptides appear to have a natriuretic activity 

in Diptera [16] and locust [17]. 

Sodium and potassium 
The two most abundant and dynamic ions in cells and biological fluids are sodium and potassium. 

Living cells maintain a critical internal balance, with high intracellular potassium and low intracellular 

sodium. The former sets the cell’s resting potential, and the latter provides the ion gradient for a 

range of secondary active transports; this is widely described in text-books [18]. Dysregulation of the 

gradients of either of these two ions can result in paralysis or death, so these ions can be seen as 

essential nutrients with haemolymph levels that are tightly regulated, principally by the Malpighian 

tubules and hindgut. However, appropriate levels for haemolymph sodium and potassium vary with 

lifestyle and Order. Blood-feeding or predatory insects are seen as challenged by high dietary sodium 

levels, whereas plant feeders encounter relatively high dietary K+. Whereas many species maintain 

sodium levels of 100-150 mM, and potassium levels of 10-20 mM, phytophagous lepidopteran larvae 

maintain a very high haemolymph K/Na ratio [19-21]. In Manduca sexta, photometric and electron-

probe X-ray microanalysis both report haemolymph [Na] of around 15 mM, and [K] at 25 mM [21]. 

Such values would seem incompatible with our understanding of the operation of the nervous 

system; it has been hypothesised that in insects, the blood brain barrier or extra-axonal mucins 

produce a local environment that strongly buffered for Na+ and K+ [22-24]. 

Adaptation to extremes of heat or cold 
The importance of ionic homeostasis in insects is clearly illustrated by chill coma. Most insect species 

have relatively tight thermal ranges; the upper thermal limit could be interpreted in terms of protein 

denaturation; but there is evidence that cold paralysis, or ‘chill coma’ may be caused by ionic 

dysregulation [25]. In cockroach, low temperatures induce a decrease in haemolymph [Na+] and 

increase in haemolymph [K+], concomitant with chill injury. Such a shift in [Na+]:[K+] ratio would be 

expected to induce paralysis. The extent of the ionic dysregulation impacts the time taken to re-

establish homeostasis on return to normal temperature [26]. The decrease in [Na+]:[K+] ratio on 

chilling is associated with ion equilibration with the gut [26]. However, as all the key transporting 

epithelia (salivary gland, midgut, tubules and hindgut are topologically equivalent, chill coma could 

be caused by dysregulation of any, or all, these tissues. Indeed, there is evidence from Drosophila for 

the role of the Malpighian tubules in chill coma [27]. The capa neuropeptides promote diuresis in 

most insect species [13,28], and the CAPA receptor is expressed predominantly in the tubule [29]. 

Knockdown of CAPA receptor impact both desiccation and cold tolerance [27,30], suggesting that 

neuroendocrine control of the tubule may modulate survival under stress. Additionally (Fig. 2), cold-

resistant Drosophila species showed enhanced ability to maintain ion homeostasis at low 

temperatures, compared to cold-sensitive species [31]. 
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Marine, freshwater and terrestrial insects 
Problems in ionic balance are particularly extreme in dilute or concentrated environments. Sea 

water is hyperosmotic to most insect haemolymph, and so the problem is to absorb water while 

keeping ions (notably sodium) out; no insect can spend their whole life-cycle in the open sea [32]. By 

contrast, freshwater insects have the opposite problem, and see ions as essential and scarce 

nutrients. Mosquito larvae have evolved a remarkable specialization to allow them to recover ions 

from very dilute freshwater; a set of anal papillae, which grow larger in more dilute water. These 

contain specialised ion transporting cells, analogous to chloride cells of fish [33,34]. 

Electrophysiological analysis confirms that papillae are the sites of active metal ion uptake [35,36], 

as well as excretion of the ‘honorary metal’ ion, ammonium [37]. 

Calcium 
Calcium is a vital second messenger in all cells, and underpins operation of the nervous system and 

musculature. Although insects lack a calcareous skeleton, the eggshell contains relatively high levels 

of calcium, and so mated females are under particular stress to obtain sufficient calcium . At least 

one solution to this problem seems to be through storage excretion in the Malpighian tubules; 

spherical deposits (‘Spherites’) rich in calcium salts, are formed in both tubule and midgut cells [38], 

and are found in the tubule lumen [39]. The formation of the concretions depends on carbonic 

anhydrase [40], and on a secretory pathway Ca2+ ATPase, SPoCk [39,41]. Microarray comparison of 

anterior tubules (which form concretions, and can excrete calcium at prodigious rates: [42]) and 

posterior tubules (which do not), has produced a tentative model for the transport processes into 

specialized vacuoles that allows formation of the concretions [43]. These spherites appear to be 

similar to acidocalcisomes widely described in parasites [44]. Although calcium is a major spherite 

component, in termite, different subtypes of vesicle contain either calcium or zinc [45] (discussed 

below). 

What function do these concretions serve? In Drosophila, the concretions are confined to the initial 

segment of the anterior tubule and  appear to be stored, rather than excreted immediately. This 

suggests that they may form a pool that can be selectively reabsorbed by the lower tubule if 

required – for example, at times of higher calcium need,  like egg production. Given that the vesicles 

contain calcium phosphates, it is interesting that there is a discrete alkaline phosphatase-rich region 

in the lower tubules of both Drosophila and other insects [46,47]; it is tempting to speculate that this 

enzymatic activity could assist in solubilizing concretions released from the initial segment at times 

of calcium demand. 

Magnesium 
Magnesium is an essential nutrient, which stabilises polyphosphates, for example ATP (which is 

strictly Mg.ATP), and polyphosphates involved in DNA and RNA synthesis. Magnesium is also used in 

over 300 enzymes. However, relatively little is known about magnesium homeostasis, but the renal 

tubules play a role. When dietary magnesium is increased, magnesium concentration in tubule 

stones increases [48], suggesting a protective role for stone deposition. The TRPM channel is 

protective against high Mg2+ levels, and knockdown in tubule causes symptoms similar to 

hypermagnesemia [49]. These results are consistent with classical studies in several species, 

suggesting that the tubules are key sites for magnesium excretion [50]Mitochondrial Mg levels are 

regulated by the carrier dMme1, an orthologue of the yeast mitochondrial magnesium carrier [51]. 
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Zinc 
Zinc is a critical element, forming active sites in a wide range of enzymes, notably metalloproteinases 

and peptidases, in carbonic anhydrase and superoxide dismutase, and of course the zinc fingers of 

many DNA-binding proteins [52]. Zinc transport and homeostasis has been well reviewed recently; 

[53,54]  

Uptake in the Drosophila midgut depends on a basolateral zinc transporter, dZNT1; knockdown kills 

flies through zinc deficiency, whereas overexpression renders flies hypersensitive to dietary zinc [55-

57]. Excretion in the tubules relies on Zip71B and ZnT35C, with reabsorption in the lower tubule 

mediated by dZnT1 [58]. Although calcium is the major metal in most kidney stones, it is common to 

find zinc enriched in the concretion, suggesting it might play a nucleating role [59,60]; consistent 

with this, knockdown of either Zip71B and ZnT35C reduces stone burden in Drosophila tubules [58]. 

Redox-active metals 
Many metals are not simple charged balls, but can exist as ions of multiple valencies; for example, 

iron can shuttle between Fe2+ and Fe3+ states. This redox activity makes such elements vital 

prosthetic groups for many enzymes. However, such metals’ ability to contribute to oxidative stress 

makes them poisonous in excess [61], requiring delicate control of their availability.  

Iron 
Iron is a vital nutrient, acting as cofactor in nearly a hundred enzymes, but one which is toxic in 

excess. Free iron levels are titrated by the ferritin storage complex, which can bind 4500 iron atoms 

per ferritin molecule [62]. Ferritin expression is conspicuous in the midgut, particularly in iron cells 

[62]; but flyatlas.org [29,63] confirms that ferritin is expressed at extremely high levels across all 

tissues studied, confirming a universal cellular need to buffer iron. Indeed, ferritin expression is 

essential for survival [64]. Inter-species comparisons showed that the ability to store iron varies 

between Drosophila species even when reared on the same diet; D. erecta accumulated 50% more, 

and D. virilis 30% less, iron than D. melanogaster [65]. A multi-element ‘metallomic’ approach was 

extended to the Tephritidae -major pests- and showed relatively consistent metal accumulation, 

despite 100 My of divergent evolution from the Drosophilidae [66].  

Understanding of the uptake and regulation of iron, largely by the midgut, is likely to be helped by 

genetic studies in Drosophila, where it is possible to map a fairly complete pathway for iron 

absorption and buffering [67]. 

Given that high iron levels in diet can be expected to be challenging, haematophagous insects could 

expect to be particularly at risk. Indeed, it has been argued that haem toxicity has limited the 

evolution of blood-feeding, and insects show a broad spectrum of approaches to defend against 

dietary haem toxicity [68], from antioxidant enzymes to physical barriers. 

Copper 
Copper is also a redox-active metal, and so is also a valuable cofactor in dozens of copper enzymes. 

Copper can also be present in environmental excess: Bordeaux mixture (CuSO4 + slaked lime) has 

been used as an agricultural fungicide for over a hundred years; studies have identified ‘cuprophilic 

cells’ in the Drosophila midgut [69,70]; and dysregulation of copper levels is damaging to the 

nervous system [71]. The relative ease with which candidate genes can be tested by reverse genetics 

in Drosophila has again allowed rapid progress in elucidating organismal copper homeostasis [72-

76]. The copper-sensing metal-responsive transcription factor-1 (dMTF-1) is itself a copper enzyme, 

and mediates resistance to environmental copper, zinc and cadmium [74]. 
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Molybdenum 
Molybdenum is another example of a redox-active metal that is an essential nutrient because of its 

use as a prosthetic group in a range of oxidoreductases, from bacteria upwards. The 

molybdoenzymes are noteworthy because they have been identified by forward genetics in 

Drosophila, making an elegant epistatic series [77]. This element is formed into a prosthetic complex 

(MoCo) that is subsequently inserted into a range of oxidase enzymes, such as aldehyde oxidase [78]  

and xanthine oxidase [79]. The former catalyses a range of useful reactions (including the 

metabolism of acetaldehyde formed by metabolism of alcohol); and the latter is critical in purine 

metabolism. Most waste nitrogen in the body passes through hypoxanthine and xanthine to uric 

acid, and thence to allantoin or urea. Deficiencies in xanthine oxidase or its upstream synthetic 

enzymes lead to the formation of xanthine kidney stones and depletion of urate, quantified using 

metabolomics [80]; so genes implicated in molybdenum handling could be expected to show both a 

renal stone phenotype and a metabolomic signature.  

Heavy metals 
Many metals can be considered mainly as hazards. As in humans, for insects there is little good 

about lead, cadmium or uranium. It could be considered unusual in insect evolutionary history to 

encounter toxic levels of such elements; but this is now increasingly a problem for insects, 

particularly those with freshwater larval stages. There is a longstanding but fragmented literature on 

toxicology of metals in insects. Mining or industrial activities can produce remarkable levels of such 

elements in groundwater, and insects can be used as bioindicators for environmental pollution [81-

85]. Caddis-fly larvae, with relatively slow growth over several years, are classic bioindicators, 

though it is now common to sample a ‘basket’ of insect species to provide a reliable index of water 

purity [82]. However, insects are relatively resistant to heavy metal toxicity [86] by mechanisms that 

are not well-understood; and it has been suggested that this makes them less suitable as biosentinel 

species [87]. 

Summary 
 It is thus clear that – as in all living organisms - metal ions are key to the successful operation of 

insects. We now know a lot about what they do, and which ones are more immediately essential to 

life. However, we still understand relatively little about how such levels are controlled to within 

particular limits, or how the actions of the key transporting epithelia are coordinated in order to 

produce a stable environment for life. However, the post-genomic technologies are now available to 

allow relatively rapid future progress in this exciting area. 
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Figure legends  
Fig. 1. Insect morphology and ions. (A) Insect schematic, showing the key transporting epithelia . (B) 

Minimal model for net epithelial transport of K+ in insects. (C) Consensus model of transport genes 

strongly upregulated in salivary glands, midgut, hindgut and tubules. From [10].  

Fig. 2. Models for ion homeostasis in chill susceptible and chill tolerant insects. From [31]. 

Fig. 3. The molybdoenzyme cascade is conserved from bacteria to human. Black: enzyme name; red, 

human genetic disease; grey, gene names in bacteria; blue, gene names in Drosophila. 
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