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ABSTRACT: Understanding the effects of glacial isostatic adjustment (GIA) of the British 1 

Isles is essential for the assessment of past and future sea-level trends. GIA has been 2 

extensively examined in the literature, employing different research methods and 3 

observational data types. Geological evidence from palaeo-shorelines and undisturbed 4 

sedimentary deposits has been used to reconstruct long-term relative sea-level change since 5 

the Last Glacial Maximum. This information derived from sea-level index points has been 6 

employed to inform empirical isobase models of the uplift in Scotland using trend surface and 7 

Gaussian trend surface analysis, as well as to calibrate more theory-driven GIA models that 8 

rely on Earth mantle rheology and ice sheet history. Furthermore, current short-term rates of 9 

GIA-induced crustal motion during the past few decades have been measured using different 10 

geodetic techniques, mainly continuous GPS (CGPS) and absolute gravimetry (AG). AG-11 

measurements are generally employed to increase the accuracy of the CGPS estimates. 12 

Synthetic Aperture Radar Interferometry looks promising as a relatively new technique to 13 

measure crustal uplift in the northern parts of Great Britain, where the GIA-induced vertical 14 

land deformation has its highest rate. This literature review provides an in-depth comparison 15 

and discussion of the development of these different research approaches. 16 

 17 

KEYWORDS: Absolute gravity, continuous GPS, GIA modelling, mantle rheology, 18 

postglacial rebound, relative sea-level change, SAR interferometry, Scotland 19 

 20 

Glacial isostatic adjustment (GIA) is a major mechanism responsible for crustal motion of the 21 

British Isles, mainly acting in a vertical direction. GIA is the visco-elastic reaction of the 22 

solid Earth to the glaciation and deglaciation of its surface. During the growth of a large 23 

continental ice sheet the Earth’s crust and mantle are displaced downwards and sideways, 24 

while the melting of an ice sheet and subsequent weight loss causes a reflux of the mantle and 25 
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a mainly upward motion of the crust (postglacial rebound). This continues until a state of 1 

isostatic equilibrium is reached, which can be thousands of years after the deloading process. 2 

Aside from vertical land motion (VLM) of the Earth’s crust, the redistribution of mass of 3 

surface ice, ocean water and mantle material also causes changes to the gravitational field of 4 

the Earth (Fleming et al. 1998). Both aspects have a direct influence on relative sea-level 5 

(RSL) trends at the coast, which makes analysing and understanding the dynamics of GIA a 6 

critical task. The British GIA process, the effects of which are still prominent today, is mostly 7 

influenced by the disappearance of the Pleistocene British-Irish ice sheet, and to a lesser 8 

extent by deglaciation effects of the Laurentide and Fennoscandian ice sheets (Hansen et al. 9 

2012). The last deglaciation of major global ice sheets began after the Last Glacial Maximum 10 

(~22 kyr BP) (Shakun & Carlson 2010) and lasted well into the early Holocene (~7 kyr BP) 11 

(Milne et al. 2006). Crustal uplift and relative land-/sea-level changes in the British Isles 12 

occur with considerable spatial and temporal variability, reflecting the influences of the 13 

different former ice sheets. Both the postglacial rebound of the crust, as well as the eustatic 14 

sea-level changes associated with meltwater influx were comparable in magnitude (Shennan 15 

et al. 2002). When analysing vertical land motions, several other factors also have to be taken 16 

into account. These include smaller local tectonic movements, far-field effects of, for 17 

example, Alpine crustal motion and flexural effects including shelf loading associated with 18 

eustatic sea-level fluctuations. Further processes are continental erosion, subsidence due to 19 

sediment compaction or water, gas and oil pumping, and deep mining operations, which took 20 

place until the 1980s in the UK (Soudarin et al. 1999; Teferle et al. 2009). In terms of sea-21 

level changes, there are also local effects, such as tide regime changes and/or sedimentation 22 

processes along the coast (Shennan et al. 2009). 23 

Many different methods for inferring vertical land motions and/or relative land- and 24 

sea-level changes, incorporating different observational data types, have been employed to 25 
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obtain information for constraining model parameters in GIA modelling. These methods 1 

encompass the analysis of GIA through geological reconstructions of Late Pleistocene and 2 

Holocene relative sea-level changes (e.g. Peltier & Andrews 1976; Clark et al. 1978; 3 

Tushingham & Peltier 1991) and through modern geodetic techniques, such as determining 4 

changes in the gravity field (e.g. Mitrovica & Peltier 1989) or three-dimensional crustal 5 

motions measured by Very-Long-Baseline-Interferometry (VLBI) and GPS (e.g. James & 6 

Lambert 1993; Mitrovica et al. 1993; Milne et al. 2001; MacMillan & Boy 2004). Both types 7 

of field observations – geological and geodetic – have been used to inform GIA models. 8 

However, there is a significant difference in the observational time scale between these two 9 

data sets. The geological information describes the long-term development of GIA/RSL since 10 

the Last Glacial Maximum (LGM). Modern geodetic observations, on the other hand, give 11 

direct and accurate measurements of short-term or present-day GIA for the past few decades 12 

only. Geodetic data can help constrain GIA models, but the long-term nature of the 13 

postglacial rebound process means that modelling heavily relies on Late Devensian and 14 

Holocene long-term data for calibration and parameterization of ice history and mantle 15 

rheology. The short-term geodetic time-series data generally cannot fully explain those long-16 

term trends or any periodic signals in the vertical land motion. For instance, the current VLM 17 

estimates (past 1–2 decades) and the long-term geologically derived VLM rates differ in 0.7 18 

to -1.3 mm yr-1, with the uplift in Scotland and the subsidence in South-West England being 19 

lower in the geodetic short-term results (BIGF 2014). 20 

This paper is an introductory overview of the different existing analytical methods of 21 

observing relative sea-/land-level change and GIA-induced vertical land motion and it 22 

summarizes different modelling approaches to glacial isostatic adjustment for the British 23 

Isles. The suitability of relatively new methods for measuring VLM, such as SAR 24 

Interferometry (InSAR), is also explored. The approach in this paper is mainly chronological, 25 
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but distinguishes the two principal methodologies of using (i) long-term Late Devensian/ 1 

Holocene geological (sea-level) data and (ii) present-day geodetic measurements for GIA 2 

quantification (in sections 2 and 3, respectively). 3 

In this paper, Section 1 introduces necessary terminology and reference systems for 4 

the discussion of different research techniques. Section 2 focuses on using past relative sea-5 

level changes to analyse GIA, with Section 2.1 giving a short introduction to the publications 6 

responsible for an extensive high-quality sea-level change data set derived from geological 7 

information from various palaeo-environments between the LGM and the present (e.g. 8 

Sissons 1962, 1963, 1966, 1972, 1983; Sissons et al. 1966; Smith et al. 1980, 1992, 1999, 9 

2000, 2002, 2003a, 2006, 2007, 2010, 2012; Firth 1984; Firth et al. 1995; Cullingford et al. 10 

1991; Shennan 1987, 1999; Shennan & Horton 2002; Shennan et al. 1983, 1993, 1994, 11 

1995a, 1995b, 2005, 2006b). Section 2.2 discusses specifically the development and 12 

refinement of empirical and theory-driven GIA models and the constraining of their 13 

parameters, using these geological data (e.g. Lambeck 1993a, 1993b, 1995; Lambeck et al. 14 

1996; Shennan et al. 2000, 2002, 2006a; Peltier 1998a). Section 2.3 compares published 15 

maps of relative sea- and land-level changes based on the application of geological 16 

information (e.g. Shennan & Horton 2002; Shennan et al. 2009, 2012; Smith et al. 2006, 17 

2012). 18 

Section 3 gives an insight into the literature that focuses on using geodetic techniques 19 

to analyse British Isles GIA. Such geodetic studies have used continuous GPS (CGPS) and 20 

absolute gravity (AG) measurements to determine crustal motions of the British Isles (Section 21 

3.1) (e.g. Teferle et al. 2002, 2006, 2008, 2009), and those measurements have been used to 22 

improve the parameterization of GIA models (Section 3.2) (e.g. Milne et al. 2006; Bradley et 23 

al. 2009, 2011). Section 3.3 discusses the possibilities of using InSAR for measuring crustal 24 

motion in mainland Scotland, where the signal of vertical land uplift is predominant. 25 
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 1 

1. Definition of terms and reference systems 2 

The fact that the measuring and modelling techniques explored in this paper rely on various 3 

vertical reference systems has to be kept in mind when comparing the vertical land motion or 4 

relative sea level change output of these different methods (see Fig. 1 for schematic 5 

representation). The following represents a description of these reference systems as well as a 6 

summary of the most commonly used terminology. Most cited literature in this paper can be 7 

understood against this background, though it is important to note that different meanings 8 

have emerged over the years for specific technical terms. Thus, when comparing methods and 9 

results between papers caution is required, especially if they have been written with a 10 

different perspective from either a geological, geodetic or GIA modelling field of research. 11 

Shennan et al. (2012) discusses the ambiguity of terminology in sea-level research in more 12 

detail. 13 

In regard to the reconstruction of past relative sea level change, height measurements of sea-14 

level index points are initially taken relative to Ordnance Datum Newlyn (ODN), for example 15 

by levelling to local benchmarks (Sissons 1962, 1963; Sissons et al. 1966; Shennan 1982). 16 

ODN is defined after local mean sea level (MSL) that was observed between 1915 and 1921 17 

at the tide gauge in Newlyn, Cornwall and is closely approximated by a local geoid model 18 

that deviates from the global Geoid by about 80 cm. Heights above MSL in Great Britain 19 

usually relate to this vertical datum (Ordnance Survey 2015).  20 

MSL is more generally defined as the arithmetic mean of hourly elevation measurements at a 21 

certain location for a specific period (≥ 19 years) (Woodroffe & Barlow 2015). After the 22 

geodetic definition, MSL is not a level surface and it does not exactly follow the Geoid, 23 

which is an equipotential surface. This is due to ocean dynamic effects, such as tidal forcing, 24 

ocean currents, atmospheric processes and changes in ocean density, which cause sea surface 25 
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topography. MSL and the Geoid lie close together, but can deviate from each other by a few 1 

decimetres even after averaging for tidal effects (Woodroffe & Barlow 2015). 2 

It should be noted here that Shennan et al. (2012) emphasise the differentiation between the 3 

terms ‘relative land- and sea-level change’ and ‘vertical land motion’. Trying to find a 4 

common terminological ground for the GIA community, they describe sea level as the 5 

distance between the Geoid (G) (see Fig. 1), which is defined as the global time-averaged sea 6 

surface over several decades, and the solid Earth surface (R) (see also Mitrovica & Milne 7 

2003). ‘Relative’ change always involves a change in elevation between the Geoid and the 8 

solid Earth surface, but also a change between a point in the past relative to the present day. R 9 

and G are relative to the centre of the Earth. Relative sea-level change is the negative of 10 

relative land-level change. Vertical land motion in contrast refers only to the change in 11 

elevation of the solid surface of the Earth relative to its centre. The difference between VLM 12 

and relative land-level change account for approximately -0.1 to -0.3 mm yr-1 around the 13 

British Isles and +2.5 to -1.5 mm yr-1 globally (Shennan et al. 2012, Shennan 2015). Vertical 14 

land motion combined with eustatic sea-level change results in the relative land-/sea-level 15 

change rate. If both eustatic sea level and VLM changed at the same rate in the same 16 

direction, no RSL change would be detectable. 17 

The term ‘eustatic’ generally corresponds to changes in the volume of water in the ocean 18 

(Farrell & Clark 1976) and is used in the GIA modelling community to describe the glacio-19 

eustatic component caused by volume changes of land surface-based ice. Any other 20 

contributions to eustasy (Fairbridge 1961) are neglected, such as a change in ocean basin 21 

geometry (tectono-eustasy) and changes in density due to variability in the heat and salinity 22 

budget of the oceans (steric effects) (Milne & Mitrovica 2008; Bradley et al. 2011; Peltier 23 

2002; Fleming et al. 1998). 24 
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In addition, sea-level index points usually refer to different reference water or tide levels, 1 

thus, a standardisation of the points to present mean tide level (MTL) is necessary when 2 

deriving the RSL change values (Shennan et al. 1995a). MTL is the average of mean high 3 

and mean low water (MHW/MLW) at a location. Other levels for a semidiurnal tidal system 4 

include HAT – Highest Astronomical Tide, MHWS – Mean High Water Springs, MHW – 5 

Mean High Water, MHWN – Mean High Water Neaps, MLWN – Mean Low Water Neaps, 6 

MLW – Mean Low Water, MLWS – Mean Low Water Springs, LAT – Lowest Astronomical 7 

Tide or Chart Datum (for a description see Woodroffe & Barlow 2015). Isobase models of 8 

RSL change rely on height measurements relative to ODN and are then adjusted to heights 9 

above MHWS, the average spring tide high water level measured over a certain period (Smith 10 

et al. 2012; Woodroffe & Barlow 2015). Continuous GPS measurements of VLM are mostly 11 

relative to a global network of points with known coordinates, the International Terrestrial 12 

Reference Frame (ITRF) or regional subsets thereof, which in turn depend on its origin at the 13 

long-term mean of the Centre of Mass of the total Earth System (CM) (Altamimi et al. 2011). 14 

Absolute gravimetry (AG) also takes gravity - and subsequently height - measurements 15 

relative to the Earth System’s Centre of Mass.  GIA models often use the Centre of Mass of 16 

the solid Earth (CE) as a reference, which deviates slightly from the CM (Collilieux & 17 

Altamimi 2013). 18 

Furthermore, the term ‘vertical land motion’ represents a combination of all vertical 19 

deformation effects in an area, not only GIA-induced vertical crustal motion. Strictly 20 

speaking, direct geodetic measurement techniques, such as continuous GPS or InSAR, can 21 

only be used to acquire information about the net vertical glacial rebound process when all 22 

other vertical deformation effects can be neglected. However, the crustal uplift caused by 23 

GIA can be seen as the dominant process of VLM of the British Isles over a long-term period, 24 
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so that the geodetic methods can be used as a good indicator of GIA (Bradley et al. 2009; 1 

Hansen et al. 2012). 2 

 3 

2. Geological evidence and GIA modelling 4 

Geological sea-level research is based on the fact that a change of sea-level influences 5 

stratigraphical successions at the coast. Deposits provide information about freshwater, 6 

marine or terrestrial sedimentation processes. Observations derived from chronological, 7 

morphological, stratigraphical and palaeontological analyses at transition zones between 8 

marine and terrestrial sediments in different locations along the coast allow reconstruction of 9 

relative sea-level changes during the Holocene. These analyses are undertaken on, ideally 10 

unconsolidated, organic and minerogenic sediments and morphological features that are 11 

related to palaeo-sea-levels and have been undisturbed by erosion or transportation since their 12 

formation (Shennan et al. 1995a, 2006a). Records can stem from basal or freshwater peats, 13 

partly intercalated between layers of clastic sediments, and intertidal sediment deposits of 14 

silts, clays and sands from estuaries and coastal lowlands. These are found for instance in 15 

subsidence areas of England, but also the east coast of Scotland (Shennan 1992; Shennan et 16 

al. 1994). In uplift areas, emerged coastal features such as raised rock platforms and beaches, 17 

gravel ridges (Fig. 2) or isolation basins (Fig. 3) play an important role. Tidal marshes, 18 

coastal wetlands and dune systems have also been analysed (Shennan et al. 2005). A problem 19 

is that sediments are often spatially and temporally discontinuous due to disruption by land 20 

surface processes and climate change so that a comparison of different sites becomes 21 

difficult. A common classification method in RSL reconstruction defines sea-level index 22 

points. Important groundwork for establishing sea-level curves from sea-level index points 23 

has been laid by Tooley (1974b, 1978, 1982a, b) and van de Plassche (1982), followed by a 24 

methodological approach from Shennan (1983, 1986a, b; Shennan et al. 1983, 1995a) that 25 
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allows the correlation of sea-level index points in different geological and geomorphological 1 

palaeo-environments on spatial and temporal scales. This happens by defining a set of 2 

characteristics, namely age, location and altitude, indicative meaning and tendency of sea-3 

level movement. Age is determined by radiocarbon (14C) dating the organic samples, 4 

supported by microfossil (pollen and diatom) analyses (Shennan 1982). Altitude is initially 5 

measured above ODN by levelling. Time and altitude are generally not enough to give 6 

unambiguous clues about sea-level falls and rises, which is why other characteristics have to 7 

be determined in order to establish relative sea-level movements. A chronology of sea-level 8 

tendencies gives information about direction of movement of sea-level (Tooley 1978; van de 9 

Plassche 1982; Shennan 1982, 1983; Shennan et al. 1983). This allows separation of 10 

transgression and regression overlaps in the sediments, indicated by vegetation and/or 11 

lithology changes. This includes the alternation of terrestrial or freshwater sediments with 12 

marine sediments due to eustatic sea-level changes, land uplift or subsidence and changes in 13 

sedimentation rate and deposited material (Tooley 1982b). The indicative meaning places a 14 

sample’s location in relation to a contemporary reference tide level so that comparisons 15 

between various sampling areas are made possible. Depending on the type of deposited 16 

material this can refer to Mean High Water of Spring tides (MHWS), Mean Tide Level 17 

(MTL) or Highest Astronomical Tide (HAT) (Shennan 1992; Shennan et al. 1995b) (see also 18 

Fig. 1). Additionally, an indicative range states information about the accuracy of the 19 

indicative meaning. Finally, in order to determine rates of RSL change, a linear trend is fitted 20 

to the age–sea-level height plots of observations (Shennan 1989; Shennan & Horton 2002). 21 

 22 

2.1. Building up a data bank of Late Devensian and Holocene sea-level observations 23 

Since the late 20th century several studies have been undertaken to collect data on Late 24 

Devensian and Holocene relative sea-level change from palaeo-environments in Great 25 
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Britain, thus accumulating a rich data bank of sea-level index points that help constrain GIA 1 

model parameters and reduce existing model discrepancies (e.g. Tooley 1974b; Shennan 2 

1989; Shennan et al. 1995a, 2000, 2005, 2006b; Shennan & Horton 2002). Extending the 3 

comprehensive analysis by Shennan (1989) of all then-available radiocarbon data on sea-4 

level index points, Shennan et al. (1995a) summarized the information gained from various 5 

studies undertaken in north-western Scotland (between Kentra Bay and Loch Morar) 6 

(Shennan et al. 1993, 1994, 1995b). Previous studies had focused predominantly on eastern, 7 

northeastern and southern Scotland (Sissons et al. 1966) or the east coast of England 8 

(Shennan 1992), where sedimentary environments for sea-level research are available in 9 

abundance. Few stratigraphic studies had been undertaken in western Scotland prior to 10 

Shennan et al.’s studies, due to the lack of appropriate depositional or sedimentary 11 

environments in that region, except for the south-western part of Scotland (e.g. Jardine, 12 

1980). The rest of Great Britain, in contrast, exhibits more wide-ranging estuarine deposits 13 

that can be used for GIA studies. Shennan et al. (1995a) thereby established a broad data set 14 

of Late Devensian and Holocene relative sea-level changes from 12 kyr 14C BP to the present, 15 

the main elements of which are a rapid fall of sea-level of about 9 mm/14C yr before 10 kyr 16 

14C BP, followed by an almost stationary sea-level in the early Holocene, which was 17 

succeeded by a rise of sea-level to a mid-Holocene highstand with a subsequent fall in the 18 

Late Holocene (Shennan et al. 2000). 19 

Shennan et al. (2005) added new sea-level index point observations to that database 20 

from isolation basins, raised tidal marshes, coastal wetlands and dune systems located around 21 

Arisaig, northwestern Scotland. They created a 16,000-year record of relative sea-level 22 

changes from the time of deglaciation after the Last Glacial Maximum to the present. In 23 

particular, they presented new data on the mid-Holocene RSL highstand (reached between 24 
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~7,600-7,400 cal yr BP and 6.74 ± 0.2 m above present) and on the Laurentide and Antarctic 1 

ice sheet duration. 2 

Other studies within a second school of thought of RSL research have also 3 

contributed substantially to the observational information about Holocene RSL change. These 4 

focused on collecting direct altitude measurements along prominent palaeo-shorelines in 5 

sheltered inlets and estuaries, and provided chronological information from stratigraphical 6 

analyses, instead of chronological and altitudinal analyses in isolation basins. The shoreline 7 

data have been used to model isobase maps of the pattern of uplift in Scotland (see also 8 

section 2.3).  9 

Raised shorelines, caused by glacio-isostatic uplift, are basically marine limits at 10 

inland margins that are characterised by distinctive features in their morphology and 11 

stratigraphy (Smith et al. 2000). The temporal sequence of raised shorelines during the 12 

Holocene enables the reconstruction of Holocene uplift patterns. Early investigations on 13 

visible and buried raised beaches, with shoreline altitudinal measurements and detailed 14 

morphological analyses in Scotland were conducted by Sissons (1962, 1963, 1966, 1969), 15 

Sissons et al. (1966), Smith (1968), Smith et al. (1978), Kemp (1976), Dawson (1979, 1980, 16 

1984) and Firth & Haggart (1989). The work of Sissons and co-workers (e.g. Sissons 1962, 17 

1963; Sissons et al. 1966) provided an important re-definition of raised shorelines and their 18 

heights, with focus on southeastern Scotland, by pioneering the application of levelling 19 

techniques based on OD benchmarks. 20 

Among the four main and most visible shorelines is the Storegga Slide Tsunami 21 

Shoreline, which has been analysed, for example, by Smith et al. (2000, 2004, 2006, 2012) 22 

and Dawson et al. (2011). The shoreline reached immediately before the tsunami struck along 23 

the east coast of Scotland in the mid Holocene, is dated at around 8,100 cal yr BP (Dawson et 24 

al. 2011). Smith et al. (2000) used altitude observations, along with stratigraphic and 25 
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microfossil analysis of sediments at the inner margin of the estuarine surface at the time of 1 

the tsunami, thus enabling the modelling of uplift of mainland Scotland since the tsunami. 2 

Deposition of tsunami sediments was rapid and essentially synchronous at each coastal 3 

location, thereby avoiding diachroneity that often compromises the determination of the uplift 4 

pattern in glacial rebound areas (Smith et al. 2004). 5 

Altitudinal data have also been collected from the Main Postglacial Shoreline and 6 

analysed by Sissons et al. (1966), Sissons (1972, 1983), Smith (1968), Smith et al. (1980, 7 

1992, 1999, 2000, 2002, 2003a, b, 2006, 2007, 2010, 2012), Firth (1984), Firth et al. (1995), 8 

Cullingford et al. (1991), Selby & Smith (2007), Jordan et al. (2010), and Dawson (1984), 9 

among others. This shoreline is dated at 6,400-7,700 cal yr BP when the Main Postglacial 10 

Transgression occurred (Mcintyre & Howe 2010). It was for a long time believed to be the 11 

highest shoreline, but the Blairdrummond Shoreline, modelled by Smith et al. (2000, 2006, 12 

2007, 2012), overlaps with the Main Postglacial Shoreline at the margin of glacio-isostatic 13 

uplift (Smith et al. 2007, 2012). The Blairdrummond Shoreline has been dated at 4,500-5,800 14 

cal yr BP (Mcintyre & Howe 2010). Smith et al. (2006, 2012) also mention the Wigtown 15 

Shoreline, which is visible in a terrace below the Blairdrummond Shoreline and dated at 16 

1,520–3,700 cal yr BP (Mcintyre & Howe 2010). A note on the empirical modelling 17 

approaches based on this shoreline data, compared to the more theory-driven, rheological 18 

GIA models, is given in the following section. 19 

 20 

2.2. GIA modelling approaches constrained by Late Devensian and Holocene RSL 21 

data 22 

These kinds of high-quality and long-term sea-level reconstructions around the British Isles 23 

have been used for model calibration and validation in a range of studies developing high-24 

resolution glacio-isostatic rebound models of the British Isles (e.g. Lambeck 1993a, b, 1995; 25 
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Lambeck et al. 1996; Shennan et al. 2000, 2002, 2006a; Peltier et al. 2002; Milne et al. 1 

2006). 2 

GIA models usually encompass (1) an Earth-model for the isostatic signal that is 3 

related to the solid Earth deformation due to surface mass redistribution between ice sheets 4 

and oceans; (2) a model of the ice sheet evolution during the Late Pleistocene; and (3) a (sea-5 

level change) model for the re-distribution of ocean water resulting from ice mass changes, 6 

incorporating the sea-level equation (Milne et al. 2006; Shennan et al. 2006a). Earth-models 7 

in GIA modelling usually contain several layers of varying densities, elastic parameters and 8 

viscosities, for which various values can be found in the literature (see Fig. 4). These layers 9 

include a lithosphere with a certain thickness, one or more upper-mantle layers with different 10 

viscosities – alternatively a more detailed depth-dependent viscosity structure -– and a lower 11 

mantle viscosity below the 670 km seismic discontinuity. The Earth-model is usually 12 

described by a spherically symmetric, self-gravitating Maxwell body (Bradley et al. 2011). 13 

For the ice model, parameters such as ice sheet dimensions and thickness and the 14 

temporal evolution of ice build-up and melting are significant over the entire Late 15 

Pleistocene/ Holocene period, since the effects of (melt-)water loading and the ice-equivalent 16 

eustatic contribution on the RSL observations (including any major meltwater pulses) have a 17 

major influence on model output. 18 

The UK sea-level dataset provides important constraints on GIA model parameters, 19 

such as lithospheric thickness, upper mantle viscosity, near-field ice sheet history of the 20 

British Isles, global/far-field deglaciation history and magnitude and rate of global meltwater 21 

discharge (Shennan et al. 2005). However, the modelling studies also show that observations 22 

are difficult to fit with a single ice-Earth model combination and no unique solution has been 23 

found for the explanation of relative sea-level observations, one reason being the sensitivity 24 

of the GIA process to both near- and far-field effects (Milne et al. 2006). Great Britain’s 25 
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proximity to Fenno-Scandinavia and the large mass of the former Fennoscandian ice sheet 1 

mean that RSL and glacial rebound are not only influenced by the former British-Irish ice 2 

sheet. Additional contributions by loading–unloading of the crust due to the Fennoscandian 3 

ice sheet, its meltwater and gravitational attraction of the ocean water, have to be taken into 4 

account in Scottish GIA modelling (Lambeck 1991). Present-day uplift in Fennoscandia can 5 

reach up to 10 mm yr-1, calculated for example from long-term tide gauge records and 6 

corrected with a eustatic sea-level rise of 1.2 mm yr-1
 (Steffen & Wu 2011). Absolute gravity 7 

and continuous GPS measurements show the same rate, with an uplift centre in the northern 8 

Gulf of Bothania (Johansson et al. 2002; Steffen & Wu 2011). 9 

Lambeck (1993a, b) provided the first comprehensive modelling studies of British 10 

sea-level evidence and discussed parameterization of the Earth-model and ice-model that 11 

determines the sea-level predictions. Both papers developed a forward-modelling-inverse-12 

modelling process that allows determination of the optimum ice sheet (ice thickness and ice 13 

sheet margins) and Earth rheology parameters for Great Britain for the Late Pleistocene and 14 

Holocene from the then-existing geological sea-level data. Lambeck (1993a) formulated the 15 

requirements for simulating the glacial rebound with a high precision and resolution of better 16 

than 1m, such as inclusion of the Fennoscandian ice sheet for far-field effects, consideration 17 

of different ice sheet load cycles and the Loch Lomond Readvance. Including sea-level 18 

observations from inside and outside of the glacial margins allowed separation of Earth-19 

model parameters from ice sheet parameters in the inversion of the GIA equations. Starting 20 

with a simple first- and second-order rebound model in Lambeck (1993a), the author 21 

eventually presents a more complex GIA model (Lambeck 1993b). This includes a more 22 

detailed ice-model for the Late Devensian ice sheet for the period between maximum 23 

glaciation and the end of the Loch Lomond Readvance. New estimates of mantle viscosity 24 

were presented, concluding that the mantle is mostly homogeneous from the base of the 25 
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lithosphere to the 670 km boundary. Optimum mantle parameter values were given for 1 

lithospheric thickness (65 km), mantle viscosity above 670 km (~4-5 x 1020 Pa s) and below 2 

670 km (>4 x 1021 Pa s) (see Fig. 4). Apart from the uncertainties in the ice sheet over 3 

northern Scotland (Beauly Firth area) and Ireland, the observations were generally well fitted. 4 

In an additional study, Lambeck (1995) examined what further information can be derived 5 

about coastal shoreline evolution from the GIA model. He investigated the derivation of 6 

British Isles palaeo-bathymetry and palaeo-shorelines from glacio-isostatic rebound models 7 

and established, for instance, the maximum emergence of the North Sea with relative sea-8 

level stagnation after the start of deglaciation from about 15,000 to 12,000 radiocarbon years 9 

BP, allowing shoreline features to be formed along eastern Scotland’s long and shallow 10 

marine inlets (firths). After around 10,000 yr BP, a rapid retreat of shorelines could be 11 

modelled. 12 

A general GIA modelling problem is that a broad range of possible parameter 13 

combinations in the Earth-model lead to similar predictions and equally good fits to the 14 

observations, with no unique determination of the parameters possible (Lambeck & Johnston 15 

1998; Bradley et al. 2009). Another in the series of Lambeck papers (Lambeck et al. 1996) 16 

further examined this trade-off between lithospheric thickness and upper-mantle viscosity. A 17 

thin lithosphere leads to low upper-mantle viscosity, whereas a thick lithosphere causes a 18 

high viscosity with similar modelling results, and the solutions might not represent the 19 

optimum in the model parameter space anyway but only local minima. Thus, Lambeck et al. 20 

(1996) explored a broad range of parameter values in a model that incorporates one 21 

lithosphere layer and up to four mantle layers with each having a different viscosity. The 22 

effective values that lead to the optimum solution in the parameter space for this revised five-23 

layer model are stated in their paper (see also Fig. 4). 24 
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While Lambeck’s modelling achieved good fit between model results and 1 

observations, discrepancies remained in the model of the British ice sheet, particularly in 2 

northern Scotland with an underestimation of rebound. Therefore, more detailed geological 3 

observations were necessary for constraining parameters for the Late Devensian ice sheet. 4 

Shennan et al. (2000) thus added new data to the previously limited and isolated data points 5 

in northwestern Scotland, helping to constrain glacio-hydro-isostatic rebound model 6 

parameters. The authors examined the validation of models that simulate relative sea-level 7 

change using a revised version of Lambeck’s (1993a, b) model. They summarized the 8 

observational radiocarbon data from data index points since Late Devensian deglaciation to 9 

the present, from raised tidal marshes and isolation basins in northwest Scotland (Kentra, 10 

Arisaig, Kintail, Applecross, Coigach). The best overall agreement was achieved with only 11 

three mantle layers in the Earth-model with a lithospheric thickness of 65 km, an upper 12 

mantle viscosity of 4 x 1020 Pa 14C s and a lower mantle viscosity of 1022 Pa 14C s, based on 13 

values determined by Lambeck et al. (1998) (see Fig. 4). A sensitivity analysis showed that 14 

the Earth-model was more sensitive to lithospheric thickness than to upper- or lower-mantle 15 

viscosity; however, the Earth-model was not the primary source for high discrepancies. 16 

Rather, the British ice sheet model had larger uncertainties. In contrast to the previous 17 

optimum ice-model (Lambeck 1993b, 1995), the ice thickness had to be increased by 10 % 18 

north of the Great Glen to account for the discrepancies between predictions and observations 19 

in that area (Lambeck 1993b). But despite that improvement, the model of the British ice 20 

sheet still showed inadequacies and a re-examination of various combinations of Earth- and 21 

ice-model again highlighted the non-uniqueness and parameter trade-off problem within the 22 

model (Shennan et al. 2000). 23 

In contrast to Lambeck (1993a, b) and Shennan et al. (2000), a second broad 24 

modelling strategy by Peltier et al. (2002) and Shennan et al. (2002) approached the GIA 25 
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problem in a more global sense, including far-field RSL data. Peltier et al. (2002) attempted 1 

the validation of the ICE-4G (VM2) global model of glacial rebound containing a revised 2 

viscosity model (VM2) originally derived from global GIA observations (e.g. Peltier, 1974, 3 

1994, 1996a, b, 1998a, b; Peltier & Jiang 1996). There are two inputs for the model: a global 4 

model of the deglaciation history since the LGM and a model that describes the radial 5 

variation of the viscosity from the Earth’s surface to the boundary between mantle and core. 6 

The authors included considerations of effects from global deglaciation of far-field ice sheets, 7 

such as Laurentia and Antarctica, on RSL change of Scotland and its viscoelastic structure 8 

near the surface. They found that lithospheric thickness, to which the rebound model is most 9 

sensitive, had to be reduced from 120 km to 90 km to achieve better model fits. This was 10 

based on a proposed constraint by Ballantyne (1997), Ballantyne et al. (1998) and McCarroll 11 

& Ballantyne (2000) on the maximum thickness of the LGM ice sheet over Scotland, which 12 

lead to a reduction of the maximum of the LGM Scottish ice sheet thickness from about 2200 13 

m to 1200 m. Peltier et al. (2002) argued that Lambeck’s lower mantle viscosity in the order 14 

of 1022 Pa s does not fit relaxation times in other GIA regions, like Canada, where a value up 15 

to 2 x 1021 Pa s is more appropriate. In addition, considering a low sensitivity to the much 16 

smaller ice load of the British-Irish ice sheet, the viscosity value should be even lower for the 17 

British Isles. They also varied the lower mantle viscosity with depth with an increase to 5 x 18 

1021 Pa s at 1300 km (see Fig. 4). 19 

Shennan et al. (2002) further examined Peltier et al.’s (2002) ICE-4G (VM2) global 20 

model and concentrated on remaining discrepancies between model predictions and 21 

observations in Great Britain, focusing on a revised local British Isles ice-model and also on a 22 

validation of global models of the far-field ice melt history in Antarctica fitting the RSL 23 

change around the British Isles. 24 
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Apart from differences in mantle viscosity values, the Peltier et al. (2002) and 1 

Shennan et al. (2002) GIA model (henceforth denoted by Model B) varies from the Lambeck 2 

(1995) and Shennan et al. (2000) model (Model A) in many aspects. Some of the differences 3 

between the two implementations can be summarized as follows. There are different radial 4 

viscoelastic structures (three-layer Earth model in Model A versus a smoother viscosity 5 

gradient throughout the mantle in Model B) and a significant difference in lithospheric 6 

thickness (65 km in Model A versus 90 km in Model B). This is mainly due to the 7 

methodological approaches of Peltier et al. (2002) and Shennan et al. (2002) including global 8 

teleconnections in the deglaciation process and far-field data to validate GIA models. They 9 

differ in the pattern of meltwater eustatic sea-level change and inclusion of global meltwater 10 

events, and use different time scales. Model A applies a radiocarbon time-scale in line with 11 

the geological observations, Model B, however, applies a calendar year time-scale, with 12 

Peltier et al. (2002) arguing that the 14C time-scale introduces biases in the interpretation of 13 

the GIA observations and the estimation of Earth model parameters. 14 

Both GIA model implementations also use different British Isles ice sheet models, but 15 

both utilize the UK geological data to constrain ice dimensions. Both generally show a good 16 

degree of fit, but no unique solution for observations from all locations (Shennan et al. 17 

2006a). Those differences are explained in more detail by Shennan et al. (2006a), who used 18 

the previous findings to create a revised GIA model for the British Isles and Ireland ice 19 

sheets, with the British and Scandinavian ice sheets converging over the North Sea, contrary 20 

to previous beliefs. They also consider an underlying terrain correction underneath the ice 21 

sheet, which had not been applied before, and which is especially important in high terrain 22 

regions, such as the Scottish Highlands as shown by Fretwell et al. (2008). 23 

Further work has been done recently for the British Isles in regard to numerical 24 

modelling of the dynamic evolution of the British-Irish ice sheet. Instead of relying only on 25 
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ice sheet history, i.e. extent and thickness of the ice sheet informed by geomorphological 1 

data, the output of physically-based ice flow models was used as input for the up-to-date GIA 2 

models in an attempt to increase their accuracy (Kuchar et al. 2012). 3 

It is important to note that over the years contrasting concepts of RSL/GIA studies 4 

and modelling approaches have emerged for investigating the spatial distribution of uplift 5 

based on observational Late Devensian and Holocene sea-level data. Aside from the GIA 6 

modelling studies discussed above, other RSL analyses have been undertaken, using 7 

empirical shoreline-based models to describe the spatial pattern of RSL change. A 8 

comparison of both approaches can be found in Smith et al. (2006, 2012) and Shennan et al. 9 

(1995a). The theory-driven GIA models use estimates of ice/water loading and unloading, 10 

Earth mantle rheology and sea surface change for the estimation of RSL, while the empirical 11 

shoreline-based models use trend surface analyses or polynomial regression of shoreline 12 

altitudes of relict shore features (Smith et al. 1969). An early trend surface model was 13 

developed by Cullingford et al. (1991), discussing the altitude and age variation of the Main 14 

Postglacial Shoreline in eastern Scotland. Other studies dealing with this approach are those 15 

of Firth et al. (1993), Smith et al. (2000, 2006, 2012) or Fretwell et al. (2004). Firth & 16 

Haggart (1989) reconstructed the pattern of isostatic uplift by drawing isobases perpendicular 17 

to the declination of the analysed palaeo-shorelines. 18 

These shoreline-based models also often rely on a different understanding of the 19 

temporal evolution of Holocene RSL. Tooley (1974a, 1982b), Smith (2005) and Smith et al. 20 

(2012) identified oscillating behaviour in the Holocene RSL change, while GIA models 21 

assume non-oscillating Holocene RSL trends. Smith et al. (2012), for instance, investigated 22 

the temporal and spatial pattern of RSL change in northern Britain and Ireland with a 23 

shoreline-based modelling approach developed by Smith et al. (2006) using a Gaussian Trend 24 

Surface Model. That model was fitted to the shoreline altitude data from four decades of RSL 25 
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studies. The altitude measurements were taken at the inner margins of Holocene estuarine 1 

terraces supported by morphological, stratigraphic, microfossil and radiocarbon analyses. 2 

Smith et al. (2012) found evidence for four main episodes from the Younger Dryas to the late 3 

Holocene, in each of which RSL is first rising to a culminating shoreline and then falling 4 

again. Metre-scale fluctuations were identified without the smooth gradually changing curves 5 

that theory-driven GIA models rely on and indeed predict. They also mapped the newest 6 

altitude data and spatial pattern/isobases of the Storegga, Main Postglacial, Blairdrummond 7 

and Wigtown shorelines. The spatial pattern of RSL change in Smith et al. (2012) reflect the 8 

general glacio-isostatic uplift pattern, with an elliptical form and a trend of decreasing 9 

altitude towards the margin of the uplift zone (compare Figs 5 and 6 in the following section).   10 

Noteworthy is also a range of studies investigating the relation between glacio-11 

isostatic uplift and neotectonic activity during the Late Devensian and Holocene in Scotland. 12 

They indicate that the temporal and spatial uplift pattern in isostatic recovery areas of 13 

Scotland may be more complex due to neotectonic effects than the simple pattern of isobase 14 

maps derived from shoreline data or geophysical models would imply (Firth & Stewart 15 

2000). Early investigations found evidence that former shorelines in glacial-isostatic uplift 16 

areas may not have been uniformly uplifted. The uplifted shorelines rather exhibit a distorted 17 

form: horizontal or gently sloping blocks of crust separated by sharp jumps in altitude. This 18 

variation in shoreline gradients has been described by Sissons (1972) in the Western Forth 19 

Valley, complemented by another study in the Glen Roy region (Sissons & Cornish 1982; 20 

Sissons, in press). The differential movement of blocks can be seen as a minor form of crustal 21 

movements compared to the major long-term glacio-isostatic uplift. They are either related to 22 

an immediate reaction to glacier loading/unloading of the Loch Lomond Readvance as in the 23 

Forth area, or to lake level changes as in the Glen Roy region. The crustal dislocations in both 24 

places happened along faults and relate to former earthquake activity during isostatic rebound 25 
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(Sissons & Cornish 1982). The idea of localised dislocation of isostatically uplifted 1 

shorelines mostly caused by fault movement during the Late Devensian and Holocene is also 2 

supported by a range of other studies of neotectonic activity in other parts of Scotland (Gray 3 

1974, 1978; Firth 1984, 1986, 1992; Ringrose 1987, 1989; Smith et al. 2009). 4 

Some earlier studies differ in the magnitude and cause of crustal displacements, 5 

linking glacial rebound to high seismic activity in the Holocene (e.g. Davenport and Ringrose 6 

1985, Davenport et al. 1989, Ringrose et al. 1991) with 101-102 m of lateral motion along 7 

faults due to large magnitude postglacial earthquakes. Opposing that view are Firth & Stewart 8 

(2000) and Stewart et al. (2001), arguing for a rather low seismotectonic activity with only 9 

metre-scale vertical movements along pre-existing fault lines. Firth & Stewart (2000) 10 

summarize the investigations of vertical shoreline displacements that happened along fault 11 

lines during uplift in mainland Scotland. Most of the shoreline dislocations or jumps coincide 12 

with (pre-existing) faults and zones of crustal weakness, on a scale of mainly between 1 and 13 

2.7 m during the Late Devensian and Holocene. Across Scotland those displacements often 14 

but not exclusively occurred in the vicinity of the Younger Dryas Stadial ice margin, 15 

indicating that not only tectonic but also glacio-isostatic rebound stresses in the crust 16 

associated with ice loading and deloading explain seismotectonics in the Scottish Highlands. 17 

 18 

2.3. Maps of Holocene relative sea- and land-level changes 19 

The extensive observational data base of Holocene sea-level index points and the different 20 

GIA modelling efforts have led to various reconstructions of long-term relative land- and sea-21 

level changes. Figure 5a shows an early map by Shennan (1989), which identifies the centre 22 

of uplift in western central Scotland with up to 2.0 mm yr-1, corresponding to the area of 23 

maximum ice thickness at the LGM, and a maximum subsidence of -2.0 mm yr-1 in southeast 24 

England. In comparison, Shennan & Horton (2002) show a more detailed map, due to a 25 
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greater amount of available sea-level evidence. They used 1200 radiocarbon dates 1 

constraining RSL change in Great Britain over the past 16,000 years to calculate net rates of 2 

late Holocene land-level and sea-level changes. Figure 5b shows highest relative land uplift 3 

(equal to relative sea-level fall, but with opposite sign) in western and central Scotland with 4 

ca. 1.6 mm yr-1. Maximum subsidence occurs in southwest England with ca. 1.2 mm yr-1. The 5 

subsidence rates in the south and east of England in the 1989 map are higher, since a 6 

correction for sediment consolidation is missing. 7 

Shennan et al. (2012) provided a revised map of late Holocene relative land- and sea-8 

level rates, based on the recent GIA modelling advances (Shennan et al. 2006a; Brooks et al. 9 

2008; Bradley et al. 2011) constrained by geological sea-level indicators. Figure 5c displays 10 

the centre of relative uplift again over central Scotland due to GIA; however, the areas of 11 

relative subsidence are more differentiated with three sub-centres over southwest England, 12 

the southern North Sea and the Shetland Isles, demonstrating other governing factors, 13 

including ocean loading as well as far-field GIA signals. Furthermore, in contrast to 2002 the 14 

value of the relative uplift of Scotland is again lower in the 2012 results, with 15 

correspondingly reduced rates of relative subsidence in England. Those differences can be 16 

explained by an increase in observational data, improvement of the models, and further 17 

consideration of sediment compaction (Shennan et al. 2009, 2012). 18 

In comparison, the results within the second school of thought of Holocene RSL 19 

research (Smith et al. 2006, 2012) show a similar spatial pattern of relative sea-level changes, 20 

based on shoreline altitude measurements and Gaussian Quadratic Trend Surface isobase 21 

modelling. The prominent shorelines in Figure 6 are a result of relative stability of vertical 22 

land motion and RSL changes. The Main Postglacial Shoreline emerges as the highest one in 23 

the uplift centre of Scotland with 10 m relative to Mean High Water Ordinary Spring Tides 24 

(MHWS). The Blairdrummond Shoreline is the second highest shoreline, with 8 m MHWS, 25 
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followed by the Wigtown Shoreline with 6 m MHWS, which is the youngest and lies on top 1 

of other shorelines at the margins of Scotland. The Storegga Shoreline is located below the 2 

other shorelines, with 4 m MHWS at its maximum altitude (Smith et al. 2012). 3 

 4 

3. Geodetic measurement techniques and GIA modelling 5 

Geodetic measurements provide a second broad type of data to quantify crustal motion and 6 

hence potentially to constrain GIA model parameters or to correct sea-level trends at tide 7 

gauges. These geodetic measurements are of present (vertical) crustal motion over monthly, 8 

annual and perhaps decadal timescales, and their relationship to, and consistency with, the 9 

quantification of GIA using geological information on sea-level change has yet to be fully 10 

assessed. 11 

Geodesy is a powerful tool for monitoring crustal motions worldwide; however, 12 

detecting vertical movement often presents more of a challenge due to its magnitude of about 13 

1-10 mm yr-1, compared to horizontal tectonic movement of about 1-15 cm yr-1 (Soudarin et 14 

al. 1999). Space-based, airborne or ground-based methods, such as Very Long Baseline 15 

Interferometry (VLBI), measurements of the gravity field, Global Navigation Satellite 16 

Systems (GNSS), Satellite Laser Ranging (SLR) or Doppler Orbitography and 17 

Radiopositioning Integrated by Satellite (DORIS) and a combination thereof have shown 18 

potential to produce (direct) estimates of present-day vertical land motion (VLM) and thereby 19 

to quantify GIA rates (e.g. Ashkenazi et al. 1993; James & Lambert 1993; Mitrovica et al. 20 

1993; Peltier 1995; Argus 1996; Argus et al. 1999; Larson & van Dam 2000; Lambert et al. 21 

2001; Hill et al. 2010).  22 

Regarding northern Britain, the DORIS, SLR and VLBI techniques suffer from 23 

limitations in vertical resolution, since their networks are too sparse and their stations too far 24 

away from the centre of postglacial rebound in Scotland to be sensitive to the GIA signal. 25 
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Thus, for the British Isles, the main geodetic techniques applied for measuring VLM are 1 

absolute gravimetry (AG) and continuous GPS (CGPS). Those estimates are often used for 2 

the correction of tide gauge records to derive climate induced sea-level change by removing 3 

the vertical land motion component from the relative sea-level trends. 4 

 5 

3.1. Point measurements of crustal motions  6 

 3.1.1. Absolute gravimetry. Gravity measurements have been used in the past 7 

to quantify various geodynamic processes that have influence on the gravitational field on 8 

different spatial and temporal scales, from ocean tides and groundwater changes to sea-level 9 

changes, plate boundary deformation and long-term postglacial rebound (Lambert et al. 10 

2006). Gravimetry is a valuable geodetic observation tool that contributes to the precise 11 

definition of a common Geoid, a global reference system and explanation of geodynamic 12 

processes. Gravitational field measurements can be taken both from space (e.g. Gravity 13 

Recovery and Climate Experiment – GRACE; or ESA’s Gravity Field and Steady-State 14 

Ocean Circulation Explorer - GOCE) and in terrestrial approaches (e.g. stationary absolute 15 

gravimeters) for mass redistributions in, for example, the mantle of the Earth in response to 16 

glacial rebound. As well as for the British Isles, those measurements have been applied in 17 

several other glacial rebound areas, such as Laurentia (Lambert et al. 2001; Tamisiea et al. 18 

2007) and Fennoscandia (Hill et al. 2010).  19 

For the UK, Williams et al. (2001) presented some preliminary results for the absolute 20 

gravity technique for three tide gauges for a 3–4-year measurement period beginning in 21 

Newlyn and Aberdeen in 1995 and in Lerwick in 1996. Gravity is measured by dropping a 22 

test mass, a corner-cube retroflector, in a vacuum. This happens every 10 s, while 23 

measurements by an iodine stabilized He–Ne laser interferometer together with a rubidium 24 

atomic clock allow the equations of motion for acceleration of the mass to be solved 25 
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(Niebauer et al. 1995; Williams et al. 2001; Teferle et al. 2007). Measurements are taken, for 1 

instance, every year for 3–4 days at each site. The sites are located on stable bedrock, and 2 

regular intercomparisons with other gravimeters in Europe and the USA allow a consistently 3 

good accuracy within 1–2 μGal to be maintained (Williams et al. 2001). Today’s accuracy of 4 

gravity measurements is about 10-9 g (1μGal or 10nm/s²), which translate to height changes 5 

of about 3 mm relative to the Earth centre of mass (Forsberg et al. 2005; Blewitt et al. 2010). 6 

Different ratios between gravity change rates and vertical displacement rates for conversion 7 

of gravity values to vertical land motion can be found in the literature, but Williams et al. 8 

(2001) assume a change in gravity of 0.2 μGal is associated with a height change of 1 mm. 9 

Results show vertical land motion of 1.0 ± 1.4 mm yr-1 at Newlyn, southwest England, -3.8 ± 10 

1.6 mm yr-1 at Lerwick, Shetland, and 0.9 ± 3.1 mm yr-1 at Aberdeen, Scotland, mostly 11 

reflecting the general glacio-isostatic pattern in the UK.   12 

 3.1.2. Continuous GNSS. The use of Global Navigation Satellite Systems 13 

(GNSS), especially Global Positioning System (GPS), is widely applied for direct 14 

measurements of surface displacement and vertical crustal motions of the British Isles. The 15 

technique of continuous GPS measurements is frequently used near tide gauge stations to 16 

derive the vertical station velocities from height coordinate time-series. A high precision of 17 

more than 1 mm yr-1 can be achieved with this technique using a few years of observations 18 

(Blewitt et al. 2010). The advantages of using GPS at tide gauges were recognized as early as 19 

1990 with episodic GPS in the UK following recommendations of Carter et al. (1989). 20 

Subsequently, several campaigns were implemented by the Institute of Engineering 21 

Surveying and Space Geodesy (IESSG) and the Proudman Oceanographic Laboratory (POL) 22 

(Bingley et al. 2001). Early studies on determining GPS station heights in the UK and testing 23 

their accuracy were undertaken, for example, by Ashkenazi et al. (1993). The importance of 24 

permanent measurements in the form of continuous GPS (CGPS) at tide gauges was 25 
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emphasised in 1993 by the International Association for Physical Sciences of the Ocean 1 

(IAPSO) Committee (Carter 1994). The number of CGPS stations worldwide has increased 2 

rapidly since 1993, in conjunction with increasingly cheaper GPS receivers and better 3 

computer hardware and software, with the main purpose to realize the International 4 

Terrestrial Reference System (the newest one being the ITRF2008, with ITRF2014 under 5 

preparation). In the UK, the establishment of CGPS stations at tide gauges by IESSG and 6 

POL for the measurement of VLM commenced in 1997 (Teferle et al. 2006). Today, around 7 

160 operating CGPS stations can be found UK-wide, according to the UK Ordnance Survey. 8 

The application of CGPS in conjunction with absolute gravity measurements has been 9 

implemented by IESSG and POL since the late 1990s in the UK, with the establishment of 10 

three AG stations in the proximity of tide gauges (Teferle et al. 2007). 11 

Permanent GPS observations have also been extensively used in Fennoscandia, 12 

mostly in large-scale campaigns within the BIFROST (Baseline Inferences for Fennoscandian 13 

Rebound Observations, Sea-Level and Tectonics) project (Johansson et al. 2002; Milne et al. 14 

2001, 2004; Lidberg et al. 2007). GPS benefits from the fact that receivers are based on the 15 

ground and not on the satellite. Thus, the receivers can be used more flexibly at different 16 

locations. GPS equipment has also become increasingly cheaper and with a range of 17 

scientific-quality software packages available the processing of GPS observations is more 18 

accessible. CGPS stations can be set up directly at tide gauge locations, thus being 19 

representative of the VLM at this station excluding other deformation effects from 20 

surrounding areas. The direct link with the International Terrestrial Reference Frame (ITRF) 21 

theoretically allows tide gauge benchmarks to be connected via a common global reference 22 

frame and thus making comparisons of sea-level datasets possible (Wöppelmann et al. 2006). 23 

However, it has to be considered that several external and internal GPS error sources can 24 

introduce biases in station time-series and velocities, especially in the vertical component, 25 
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leading to increased scatter and higher uncertainty compared to the horizontal components. 1 

Creating false signals in the GPS estimates, such error sources are for example: 2 

 Variations in the phase centres of satellite and receiver antennas; 3 

 Ionospheric and tropospheric delays and mismodelling thereof in the 4 

processing; 5 

 Atmosphere, ocean and surface hydrologic loading; 6 

 Uncertainties in satellite orbits; 7 

 Multipath due to reflection from surrounding objects; 8 

 Satellite and receiver clock errors; 9 

 Unaccounted geophysical processes; 10 

 Unfavourable satellite constellation leading to dilution of precision; 11 

  Realisation or constraints of the reference frame applied. 12 

For geophysical analysis, GPS observation periods should be at least 2.5 years in 13 

length to allow estimation of annual and semi-annual signals and obtain realistic velocity 14 

estimates (Blewitt & Lavallée 2002). 15 

For the UK, Bingley et al. (2001) presented some preliminary results from episodic 16 

GPS (EGPS) campaigns between 1991 and 1996 combined with the first five continuous GPS 17 

stations (Sheerness, Newlyn, Aberdeen, Liverpool and Lowestoft) and gave a first impression 18 

of the magnitude of VLM at tide gauges, which corresponds to results derived from long term 19 

relative sea-level observations in Woodworth et al. (1999) in the range of 0–3 mm yr-1. Sanli 20 

& Blewitt (2001) analysed the tide gauge North Shields in Northeast England in terms of 21 

VLM, derived from a single GPS campaign directly tied to the tide gauge benchmark. They 22 

evaluated GPS as an alternative method to the use of GIA models for the correction of sea-23 

level trends and confirmed its capability to derive independent estimates of sea-level change. 24 

The VLM at the station accounted for 0.6 ± 1.5 mm yr-1, with an associated geocentric sea-25 
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level rise of 2.6 ± 1.0 mm yr-1. Considering that the tide gauge measurement alone (1.8 mm 1 

yr-1) would have underestimated geocentric sea-level rise, they emphasised the importance of 2 

correcting tide gauge records for postglacial rebound. 3 

Concentrating on refining GPS methodology, Teferle et al. (2002) tested the method 4 

of using dual-continuous GPS stations for monitoring vertical land motion at tide gauges, 5 

which involves one GPS directly at the tide gauge, that measures the actual VLM of this 6 

station, and another one within a range of a few kilometres on stable bedrock that allows 7 

separating short-term motions of the tide gauge structure itself from underlying geophysical 8 

processes. This concept for long-term station velocity monitoring had already been 9 

mentioned by Bingley et al. (2001) and was originally proposed by Plag et al. (2000). With 10 

the dual-CGPS concept, Teferle et al. (2002) addressed the known issue of biases in 11 

coordinate time-series caused by temporal or spatial correlations. Their approach facilitates 12 

the removal of those systematic effects, which are common to both time-series, by 13 

differencing the coordinate time-series of both stations and thus obtaining a coordinate time-14 

series with fewer systematic biases. 15 

 3.1.3.Continuous GPS combined with absolute gravimetry. The common 16 

biases that result in loss of accuracy and precision in CGPS can be addressed by using spatial 17 

filtering techniques that effectively limit parameter uncertainty (e.g. Wdowinski et al. 1997; 18 

Johansson et al. 2002; Dong et al. 2006). Among the possible reasons for the systematic 19 

biases in GPS estimates named above are errors in the International Terrestrial Reference 20 

Frame (ITRF), which influence vertical station velocity (Altamimi et al. 2007, 2011). The 21 

accuracy of CGPS depends heavily on the accuracy of the ITRF and difficulties remain in 22 

determining the geocentre of the ITRF and its motion relative to the Earth’s centre of mass 23 

(Blewitt 2003; Dong et al. 2003; Teferle et al. 2007, 2009). 24 
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Absolute gravity (AG) measurements of VLM, however, show good accuracy in 1 

general, since those kinds of biases are missing here. AG is independent of the International 2 

Terrestrial Reference Frame (Teferle et al. 2009). Thus, AG measurements can help assess 3 

CGPS estimates of vertical land motion. The issue with the accuracy of CGPS measurements 4 

(systematic offsets from other observation techniques) has been dealt with by Teferle et al. 5 

(2006, 2007), for instance, by aligning the CGPS estimates with AG measurements. For nine 6 

tide gauges in the UK and northern France, the authors demonstrated, how the integration of 7 

the two techniques can contribute to more reliable estimates of the vertical station velocities 8 

using time-series starting in 1997 for CGPS and 1995/6 for AG. They compared alternatives 9 

to their CGPS/AG method for deriving vertical land motion, including (1) using geological 10 

evidence; (2) the inverse of the difference between the mean sea-level trend at British tide 11 

gauges and an assumed absolute sea-level rise of 1.5 mm yr-1 for northern Europe (see also 12 

Woodworth et al. 1999); and (3) using GIA models. They pointed out a systematic offset 13 

between CGPS estimates on the one hand and the AG estimates as well as those other 14 

independent estimates of VLM on the other hand. Other authors have also found a systematic 15 

offset between CGPS and the outputs of AG, GIA models and Very Long Baseline 16 

Interferometry measurements for stations in Europe and North America, with CGPS 17 

generally being more positive. The causes lie within the GPS processing chain (antenna phase 18 

centre modelling, reference frame realisation etc.) (Teferle et al. 2009). 19 

The AG-alignment encompasses a calculation of the offset between the CGPS and 20 

AG-based VLM estimates, which account for 1.2 ± 0.4mm yr-1 (Teferle et al. 2007), and 21 

which is consistent with the offset between CGPS and other independent techniques, as well 22 

as values found in the literature (MacMillan 2004; Prawirodirdjo & Bock 2004). In a next 23 

step, the weighted mean difference between the vertical station velocity estimates from CGPS 24 

and AG is calculated and afterwards subtracted from the CGPS estimates, which results in the 25 
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AG-aligned CGPS estimates of vertical crustal motions (Hansen et al. 2012). Results of those 1 

estimates of vertical station velocity in Teferle et al. (2007) lead to a de-coupled absolute sea-2 

level rise of about 1.3 ± 0.3 mm yr-1 around the British Isles. But due to remaining 3 

uncertainties in the CGPS and AG time-series the statistical significance of these results 4 

could not be established yet.  5 

Teferle et al. (2009) extended this survey and compared the results of different 6 

independent CGPS processing strategies, including the effects of spatial filtering and 7 

reference frame implementations for deriving CGPS and AG-aligned CGPS estimates of 8 

present-day vertical as well as horizontal crustal motion. Their two processing strategies 9 

involved (1) a daily double-difference (DD) regional network (RN) solution, produced from 10 

1997 to 2005 (DDRN) and (2) a series of daily precise point positioning (PPP) globally 11 

transformed (GT) solutions from 2000 to 2005 (PPPGT). In the first approach a regional 12 

reference frame with four European IGS (International GNSS Service) stations within the 13 

ITRF2000 was implemented. The second processing strategy used a globally extended 14 

reference frame with the 99 IGS stations within the IGS realisation of the ITRF2000. 15 

Additionally, they compared filtered and unfiltered results with regard to spatial correlation 16 

in the time-series. For validation purposes, they used derivations of vertical crustal motion 17 

based on the Holocene geological information on relative sea-level trends from Shennan & 18 

Horton (2002) and Shennan et al. (2006b). The authors concluded that a simultaneous 19 

processing using two or more independent CGPS processing solutions is important to get the 20 

best possible or most realistic results from station data. They showed that geodetic techniques 21 

complement each other and that an independent data set for validation, such as geological 22 

information, is crucial. 23 

Figure 7 shows their results and differences between CGPS only (Fig. 7a, b) and AG-24 

aligned CGPS (Fig. 7c, d) estimates of vertical station velocity for Great Britain for the two 25 
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CGPS processing solutions DDRNF and PPPGTF. Those geodetic results of present-day 1 

crustal motions confirm the general trend of the geological map of Holocene data (see Fig. 5), 2 

which is subsidence in the area of Shetland and in most of England and Wales, and uplift in 3 

most areas of Scotland. Offsets in vertical station velocities between DDRNU and PPPGTU 4 

account for 1.1 ± 1.1 mm yr-1, and 0.7 ± 0.6 mm yr-1 between DDRNF and PPPGTF 5 

(regional vs. global reference frame realisation). Those offsets between processing strategies 6 

could again be significantly reduced with AG-alignment. The systematic offsets between AG 7 

and CGPS are stated as 1.5 and 1.3 mm yr-1 for DDRNU and DDRNF respectively relative to 8 

AG and 0.6 mm yr-1 for both PPPGTU and PPPGTF relative to AG, with the CGPS estimates 9 

being more positive in all cases. As the maps show, the geodetic results vary significantly 10 

between each other in spatial distribution and magnitude of the vertical land motion shown, 11 

depending on what CGPS processing strategy (with regional or global reference frame 12 

implementations) has been used or whether AG-alignment has been performed. 13 

Hansen et al. (2012) presented an update on present-day vertical land motion in the 14 

UK from CGPS and AG-aligned CGPS measurements. In contrast to the results of Teferle et 15 

al. (2009), stations in Northern Ireland are included, which allows defining the western 16 

boundary of uplift due to GIA in the north of the UK (see Fig. 8b, compared to Fig. 7). A re-17 

processing of the BIGF (British Isles continuous GNSS Facility) network (daily-double 18 

differenced solutions within a semi-global reference frame realisation, ITRF2005, of 37 IGS 19 

stations) for the period between 1997 and 2008 involved a re-assessment of the stations that 20 

are representative of crustal motion, by analysing surface and bedrock geological data, site 21 

photographs and monumentation data, and an exclusion of stations with time-series lengths of 22 

less than six years. For Scotland, where continuous measurement periods were mostly shorter 23 

than that, the dual-CGPS approach (Teferle et al. 2002) was applied. Thus, 46 stations across 24 

the UK were determined as appropriate for geophysical research (Hansen et al. 2012). 25 
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Additional to the maps from 2005 (Teferle et al. 2009) and from 2008 (Hansen et al. 1 

2012) other AG-aligned CGPS maps of current vertical crustal uplift have been published, a 2 

few of which are presented in Figure 8. Generally, more and more stations have been 3 

included over the years, since the observation period per station has become longer and many 4 

new stations now fulfil the minimal time-frame requirement. When comparing the maps, the 5 

different reference frame implementations and subsets or regional realisations thereof 6 

(ITRF2000, ITRF2005, ITRF2008, IGb08 etc.) have to be kept in mind, as they are likely to 7 

cause offsets between the maps. A shift of the uplift centre’s location within Scotland is 8 

noticeable. It cannot be clearly defined and depends on the applied processing strategy or the 9 

amount of total stations included, among other factors. In Teferle et al. (2009) the maximum 10 

uplift tends towards the East for the PPPGTF solution, with 1.6 ± 0.3 mm yr-1 in Edinburgh. 11 

In Bradley et al. (2009) (Figure 8a) it is visibly located in eastern Scotland with 1.07 ± 0.35 12 

mm yr-1 in Edinburgh. The processing of this data considered motion relative to the station in 13 

Sheerness in southeast England. Hansen et al. (2012) included data from Ireland and the 14 

uplift centre shifts towards western Scotland, similarly to the BIGF map from 2010 (Fig. 8b, 15 

c). This is more consistent with GIA model outputs. The BIGF map from 2015 (Fig. 8d) 16 

places it again more towards central/eastern Scotland, and shows a spatially more diverse 17 

pattern with the increasing number of stations included. For example, highest values can be 18 

found in DRUM with 1.43 ± 0.36 mm yr-1, EDIN with 1.38 ± 0.23 mm yr-1, KILN with 1.30 19 

± 0.39 mm yr-1 and BRAE with 1.30 ± 0.42 mm yr-1 (BIGF 2015). 20 

Such geodetically derived comprehensive data sets of present-day vertical crustal 21 

motions of the British Isles provide the data basis (horizontal and vertical station velocity 22 

estimates) for further studies, including the work of Woodworth et al. (2009), who estimated 23 

rates of mean sea-level change around the UK from tide gauges, and that of Milne et al. 24 

(2006) and Bradley et al. (2009, 2011), who concentrated on the improvement of GIA models 25 
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using CGPS data for further parameter constraint. The latter technique is elaborated in more 1 

detail in the next section. 2 

 3 

3.2. GIA modelling approaches with parameter constraints from CGPS 4 

GIA modelling studies (e.g. Lambeck 1993a, b; Peltier et al. 2002; Shennan et al. 2000, 5 

2002) produced good overall results for the pattern of general relative sea-level (RSL) change 6 

but they failed to provide good fits at all observation sites, and tended to underestimate the 7 

extremes of RSL change observations (Shennan & Horton 2002). With the emergence and 8 

refinement of the CGPS technology, several attempts at modelling glacial rebound have been 9 

undertaken that include both the geological Holocene RSL evidence and the information 10 

gained from CGPS measurements to constrain modelling parameters. With this new data 11 

source the aim is now no longer to reproduce Holocene RSL curves, but rather use the GIA 12 

models (calibrated with Holocene sea-level evidence) to predict today’s short-term vertical 13 

land motion, for which CGPS observations give important clues for further parameterization. 14 

The most obvious contribution of CGPS data to GIA modelling is that CGPS provides 15 

information from spatially more evenly distributed observation points as well as about the 16 

UK’s interior, while RSL indicators were limited to the coast. 17 

Milne et al. (2004) and (2006) utilized the advantage that CGPS gives information 18 

about three-dimensional crustal motions, including the horizontal velocity field induced by 19 

GIA, whereas sea-level data can only provide indirect measurements of vertical movement. 20 

They validated the present-day model predictions of horizontal crustal motion of GIA against 21 

the CGPS observations of 12 stations in the UK. The authors aimed to address the 22 

weaknesses of previous GIA models (Lambeck 1993a, b; Peltier et al. 2002; Shennan et al. 23 

2002), such as the risk of overestimation of the ice thickness in regions with high terrain like 24 

northwest Scotland, since the earlier applied ice-models had assumed a flat topography 25 
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underneath the ice layer. They found that previously the ice thickness had been overestimated 1 

by up to 500 m, and that now with terrain-correction the model fit could be improved. They 2 

also endorsed a rather rapid ice growth phase culminating in the Last Glacial Maximum. 3 

Therefore, Peltier et al. (2002) – assuming an equilibrium ice sheet before the LGM – had 4 

overestimated vertical deformation after deglaciation. However, the study of Milne et al. 5 

(2006) also demonstrated the emergence of new modelling difficulties while trying to achieve 6 

a good fit of the GIA model to both the RSL and the CGPS data. 7 

Bradley et al. (2009) extended Milne’s et al. (2006) study by examining the 8 

information content of the entire 3D-velocity field of the GIA component in Great Britain, 9 

introducing the vertical GPS deformation information (see Fig. 8a), since the time-series were 10 

now long enough to reach the required accuracy for the vertical coordinate. They tried to 11 

analyse the measured and modelled vertical land motion component that is caused by the 12 

British-Irish ice sheet only, thus using relative CGPS deformation values between the station 13 

in Sheerness and the rest of the UK, and eliminating the influence from far-field ice sheets. 14 

Figure 9 illustrates the two components of the complete modelled signal of present-day land 15 

uplift (Fig. 9a) after decomposition into the signal from the non-local ice sheets (Fig. 9b) and 16 

from the British-Irish ice sheet and ocean (Figure 9c). It shows the subsidence for all of the 17 

British Isles caused by the Fennoscandian ice sheet with a magnitude of more than 1 mm yr-1. 18 

The general pattern of the total current vertical land motion signal is consistent with the 19 

spatial distribution of relative motion in previous modelling results of Late Holocene RSL 20 

change (see Fig. 5) with an SSW-NNE oriented ellipse of an upward trend in Scotland and 21 

North Ireland with the centre in central western Scotland and subsidence in most of England. 22 

Despite encountering the parameter trade-off problem again, Bradley et al. (2009) 23 

found that the CGPS data provide a robust constraint for the upper mantle viscosity, and thus 24 
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suggested that an integration of Holocene sea-level and modern CGPS data will better 1 

constrain the viscosity structure model of the Earth. 2 

Bradley et al. (2011) presented the latest study in GIA modelling for the British Isles, 3 

drawing upon a variety of constraints from several previous studies: Bradley et al. (2009) for 4 

the constraint of the Earth-model viscosity values from the CGPS data; Shennan et al. 5 

(2006a) and Brooks et al. (2008) for the British-Irish ice component of the model, based on 6 

an integration of geomorphological field constraints from both Great Britain and introducing 7 

Ireland; and a non-local/global ice-model combined from Bassett et al. (2005) and Bradley et 8 

al. (2008), the latter extending the melting period further into the Holocene with far-field 9 

RSL data for the prediction of eustatic sea-level change. The authors found an improvement 10 

in model fits due to a revised (lower) magnitude of the predicted Holocene highstands. 11 

Settling on a certain set of optimum Earth-model parameters, they achieved a high-quality fit 12 

to RSL and CGPS data with a lithospheric thickness of 71 km, and an upper- and lower 13 

mantle viscosity of 5 x 1020 Pa s and 3 x 1022 Pa s respectively. 14 

Figure 10 shows maps of the present-day vertical land uplift of about 0.95 mm yr-1 at 15 

a maximum (Fig. 10a) and relative sea-level change for the British Isles from this revised 16 

optimum model combination with a relative fall of up to -1.1 mm yr-1 (Fig. 10b). Splitting the 17 

total signal into far-field ice sheet effects and the British-Irish ice sheet signal only, shows a 18 

sea-level rise from far-field ice sheets of 0.8 mm yr-1 across Scotland (Fig. 10c). This has a 19 

dampening effect on the relative sea-level fall associated with the British-Irish ice sheet only, 20 

which accounts for up to 1.7 mm yr-1 over central Scotland (Fig. 10d). 21 

 22 

3.3. Potential of SAR Interferometry for monitoring land uplift in northern Britain 23 

Postglacial rebound has been investigated utilising a variety of measurement and modelling 24 

methods. Another powerful space geodesy tool for doing so might be found in Synthetic 25 
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Aperture Radar (SAR) Interferometry. Differential SAR Interferometry (DInSAR) is an 1 

established technique for analysing crustal motions and land deformations in terms of co-2 

seismic processes, landslides or volcanic activity (e.g. Wright et al. 2003, 2004b; Pritchard et 3 

al. 2006; Samsonov & d'Oreye 2012; Feng et al. 2014; Singleton et al. 2014; Remy et al. 4 

2015). But it has also been widely used as a method for monitoring slower surface 5 

movements on a longer time scale, like inter-seismic deformation or land subsidence due to 6 

groundwater and oil withdrawal or mining activities. It is also often combined with CGPS 7 

observations or levelling techniques as an independent data source (e.g. Hoffmann et al. 8 

2001; Tosi et al. 2002; Carbognin et al. 2004; Wang et al. 2008; Chen et al. 2010; Fan et al. 9 

2011; Osmanoğlu et al. 2011; Aobpaet et al. 2013; Leighton et al. 2013).  DInSAR has been 10 

proven useful for giving indirect information about GIA in areas where the ice sheet is still 11 

present. For example, it has been used in Antarctica to measure ice mass change and glacier 12 

flows and thus present clues about glacial rebound of the Antarctic continent (Sasgen et al. 13 

2010). However, research examining the applicability of DInSAR for monitoring wide-scale 14 

GIA land uplift directly, in any GIA affected region, is relatively scarce. So the question for 15 

future research is what can be achieved at the direct interface between DInSAR and GIA (see 16 

Fig. 11). 17 

A review of DInSAR and land deformation monitoring is given by Massonnet & Feigl 18 

(1998) and Crosetto et al. (2005). Recent advances using DInSAR time-series approaches for 19 

crustal deformation measurement are reviewed by Hooper et al. (2012). With conventional 20 

radar interferometry two complex SAR images of the same area, acquired at the same time, 21 

but from different positions (measuring topography), or at different times (measuring 22 

deformation), are combined to generate an interferogram. For this, one acquisition is 23 

multiplied by the complex conjugate of another acquisition. See Hanssen (2001) for an in-24 

depth description of the process. The phase of the interferogram is the phase difference 25 
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between the two acquisitions, which is sensitive to surface height/topography and range 1 

changes in the line of sight of the radar. Conventional InSAR has been mostly used for 2 

generating topographic maps, prominently in the Shuttle Radar Topography Mission 3 

(SRTM). Temporal land surface changes are derived with Differential Interferometry, where 4 

usually a DEM is subtracted from the interferogram to eliminate the topographic phase from 5 

the total phase signal in order to obtain the deformation phase component. An important 6 

prerequisite is that scattering properties on the ground stay the same, in order to create a high 7 

coherence between images and make the interferometric process possible. Usually, the longer 8 

the radar wavelength, the better a sensor is suited for the mitigation of such decorrelation 9 

effects. Data is available from several SAR platforms, such as ESA’s ERS-1/ERS-2, ESA’s 10 

ENVISAT ASAR, ESA’s recent Sentinel-1 mission, the Canadian Radarsat-1/-2, the 11 

Japanese ALOS PALSAR and ALOS-2 PALSAR, the Italian Cosmo-SkyMed and from the 12 

German TerraSAR-X (see Fig. 12). Together they contribute to an abundant global archive of 13 

SAR images for approximately the past 20 years, in different frequency bands of X-, C- and 14 

L-band and thus make it theoretically possible to observe GIA-related land uplift, for 15 

example in Scotland. 16 

For the detection of long-term and very small, long-wavelength displacements, such as GIA, 17 

a very high quality standard in terms of precision and accuracy is necessary to make it a 18 

competitive tool to established geodetic techniques, such as CGPS (Crosetto et al. 2005). 19 

Under the right conditions, DInSAR can be sensitive to land deformations in the low 20 

mm-level (Crosetto et al. 2005; Marinkovic et al. 2008). The accuracy of DInSAR time series 21 

techniques lies at 1 mm yr-1 for mean deformation velocity (Hammond et al. 2012), but is 22 

dependent on weather conditions, the number of acquisitions available, the total time range 23 

covered by images and the distance to the reference area (Lanari et al. 2007; Hooper et al. 24 

2012). 25 
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To achieve such precision and accuracy conventional DInSAR techniques, where only 1 

two images are used, are insufficient. Over the last decade, methods for detecting long-term 2 

deformation have been improved by stacking several spaceborne SAR images of the same 3 

area, acquired through time. In this way, it is possible to describe the temporal evolution of 4 

deformations. Two prominent time-series techniques are known. The first one analyses the 5 

phase behaviour and scattering characteristics of a point scatterer in time and thus identifies 6 

pixels with minimal decorrelation noise (Persistent Scatterer) (Ferretti et al. 2001; Hooper et 7 

al. 2004; Costantini et al. 2008). The second technique focuses on distributed scatterers and 8 

only uses interferograms between SAR images that are characterised by a small temporal and 9 

spatial baseline, so that decorrelation noise is minimised. An inversion of the interferograms 10 

then reveals the underlying cumulative deformation signal (Small Baseline Subset InSAR or 11 

SBAS) (Berardino et al. 2002; Lanari et al. 2004, 2007). In case of high data redundancy, 12 

which means that several acquisitions are available for the observed area, a good precision 13 

and robustness can be achieved addressing problems such as decorrelation and atmospheric 14 

and orbital effects (Crosetto et al. 2005). 15 

In general, the accuracy of the height change is only as good as the accuracy of the 16 

interferometric phase, which is influenced by several error sources. The total phase signal in 17 

an interferogram is usually a summation of several phase components: 𝜙𝑡𝑜𝑡𝑎𝑙 =18 

𝜙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 +𝜙𝑜𝑟𝑏𝑖𝑡 + 𝜙𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 + 𝜙𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 + 𝜙𝑛𝑜𝑖𝑠𝑒 (Hanssen 2001), all of which 19 

have to be corrected for, when trying to extract the deformation signal 𝜙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 from 20 

𝜙𝑡𝑜𝑡𝑎𝑙.  21 

A major limitation is finding areas with sufficient coherence of the ground targets. 22 

Temporal decorrelation or phase noise (𝜙𝑛𝑜𝑖𝑠𝑒) is the most challenging problem with 23 

DInSAR, especially in terms of very slow land uplift (GIA) or subsidence. Very slow motion 24 

is more prone to temporal decorrelation because it requires a longer observation period. This 25 
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phenomenon can be addressed by bandpass filtering before interferogram generation, 1 

interferogram filtering or multi-looking (Hooper et al. 2012). The permanent monitoring of 2 

slow deformation with CGPS has an advantage here because it is not prone to such 3 

decorrelation effects. In addition, uncertainties in the DEM information that has been used for 4 

generating the differential interferogram cause topographic phase residuals (𝜙𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦), 5 

which have to be considered and corrected (Ferretti et al. 2000; Crosetto et al. 2005). 6 

Additionally, the time-series techniques noted above address limits due to artefacts, 7 

superimposing signals due to atmospheric disturbances (𝜙𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒) and uncertainties of 8 

satellite orbit parameters (𝜙𝑜𝑟𝑏𝑖𝑡). Those non-deformation artefacts can “swallow” the small 9 

motion process of GIA-induced uplift by introducing systematic errors in the DInSAR 10 

observations of displacements. Changes in atmospheric propagation between two acquisitions 11 

cause a signal delay and thus range differences. This atmospheric phase screen (APS) can 12 

become manifest in long radar wavelengths, such as L-band, caused by the ionosphere, and, 13 

more commonly, across all radar frequencies due to tropospheric disturbances. The former is 14 

more of a problem in the case of long-wavelength deformation processes over hundreds of 15 

kilometres, while the latter presents a challenge for non-linear, non-steady deformations 16 

happening on a scale of tens of kilometres (Hooper et al. 2012). In the case of a constant 17 

deformation rate, averaging/stacking several interferograms can decrease errors such as 18 

atmospheric effects (Hoffmann et al. 2001; Wright et al. 2001). However, estimating the non-19 

deformation signal by modelling approaches is even better than averaging.  Methods have 20 

been developed that use external information about atmospheric conditions (water vapour). 21 

The information may come from weather models, spectrometers, CGPS data about the 22 

tropospheric delay of a signal (Li et al. 2005, 2006, 2009, 2012) or relating topographic 23 

height with interferometric phase (Bekaert et al. 2015). 24 



41 

 

Orbital artefacts or phase ramps are especially problematic when it comes to 1 

measuring long-wavelength wide-scale ground deformation (GIA), since both often show 2 

similar spatial patterns, which are difficult to distinguish. Those errors are caused by 3 

inaccurate information about the orbit trajectories of the satellite at the times of acquisition. 4 

Algorithms for orbital error reduction take advantage of the fact that orbit errors are usually 5 

considered as uncorrelated over time, in contrast to deformation signals (Biggs et al. 2007; 6 

Zhang et al. 2014). They simply fit either linear planes or 2-dimensional polynomials 7 

empirically to the errors (Massonnet & Feigl 1998; Wright et al. 2004a), and subtract them 8 

from the interferometric phase of an individual interferogram. Quadratic functions need to be 9 

applied with images covering more than 1000 km (Fournier et al. 2011). However, if the 10 

deformation signal shows similar characteristics, as is to be expected in the case of GIA land 11 

uplift in northern Britain, this would eliminate the deformation signal from the interferograms 12 

as well. This means more sophisticated methods are necessary, such as utilizing networks of 13 

interferograms, rather than a single one, to fit planes to interferometric phases (Biggs et al. 14 

2007). Based on this network orbit correction technique, Feng (2014) and Stockamp et al. 15 

(2015) applied an extended method, which combines the conventional network approach with 16 

phase loop triplets of interferograms in order to introduce further observation equations that 17 

constrain parameters better. Another alternative is to use a network of interferograms for 18 

modifying orbit state vectors and estimating baseline errors directly (Bähr & Hanssen 2010, 19 

2012). Furthermore, the separation of the long-wavelength deformation signal from orbital 20 

artefacts with GPS measurements is possible (e.g. Argus et al. 2005; Pritchard et al. 2006; 21 

Brooks et al. 2007; Lundgren et al. 2009; Arıkan et al. 2010; Gourmelen et al. 2010; Wei et 22 

al. 2010; Manzo et al. 2012; Wang & Wright 2012; Béjar-Pizarro et al. 2013; Kaneko et al. 23 

2013; Tong et al. 2013). The techniques to overcome problems in deformation extraction are 24 

continuously improved by the use of more frequent acquisitions, better elevation and 25 
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atmospheric correction models and more sophisticated methods of Precise Orbit 1 

Determination for better accuracy of satellite orbits. 2 

Combination with another geodetic technique, such as CGPS, is also essential, when 3 

it comes to validation of the DInSAR results. In general, validation could be difficult in 4 

regard to the extension of the ground areas that are covered by DInSAR, when reference 5 

validation data are only sparse. The reference data must also be of equally high quality to that 6 

of the DInSAR data regarding precision and accuracy (Crosetto et al. 2005). 7 

The applicability and potential of DInSAR for determining vertical land motion 8 

(VLM) in the mm-level and in the context of relative sea-level change have been 9 

demonstrated by Brooks et al. (2007), for instance. They derived the VLM (induced by 10 

groundwater and oil extraction) at the coast of the Los Angeles basin between 1992 and 2000 11 

with a Persistent Scatterer InSAR approach (C-band), tide gauge and CGPS observations. 12 

InSAR helped in determining the large spatial variability of VLM in that area, allowing the 13 

relative sea-level in regions far away from tide gauge stations to be calculated along the coast 14 

with a high spatial resolution. 15 

Persistent Scatterer (PS) InSAR has also been successfully established on a regional 16 

level in Great Britain as a complementary technique to GPS and absolute gravity 17 

measurements for the monitoring of vertical land level changes. Its applicability has been 18 

demonstrated in urbanised areas, for example in the River Thames region (Bingley et al. 19 

2007). Adamska (2012) tested the suitability of using PS InSAR to measure regional VLM 20 

around selected tide gauges in the UK (Newlyn, Sheerness, Liverpool, North Shields), and to 21 

assess their stability, by referencing the relative InSAR measurements to absolute CGPS 22 

estimates. The author achieved good results for PS velocities despite unwanted influences by 23 

ocean tide loading on the deformation of the coastal areas. 24 
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For measuring more wide-spread glacial rebound in the UK, and especially in the 1 

central uplift regions of Scotland, the wide area coverage requires processing of bigger 2 

amounts of image data, although this could be limited by focusing on stable (exposed rocky) 3 

surfaces. SBAS could be more suitable than PS InSAR due to the rural nature of most parts of 4 

the uplift area and the scarceness of dominant scatterers, such as man-made structures. This, 5 

however, also depends on the temporal sampling rate of acquisitions. In terms of addressing 6 

the issue of coherence in rural areas, the Intermittent SBAS (ISBAS) (Sowter et al. 2013; 7 

Cigna et al. 2014b) approach, which includes intermittently or partially coherent areas, looks 8 

promising. The problem of temporal decorrelation might not be as much of a problem in 9 

northern Britain as it is in other GIA areas, such as Scandinavia or Canada. Due to its 10 

maritime climate the snow cover period is shorter and less extensive in northern Britain. In 11 

addition, the land cover is more suitable for getting a good coherence for X- and C-band 12 

radar data, due to the lack of boreal forest or other forms of higher vegetation. This means 13 

that even shorter radar wavelengths (X- and C-band) might not be as affected by 14 

decorrelation (Rosen et al. 1996). 15 

In mountainous regions (highlands) DInSAR is seen as challenging. Liu et al. (2014), 16 

however, showed the application of SBAS for subsidence monitoring with L-, C- and X-band 17 

in a mountain area in China and produced promising results. In addition, a feasibility study 18 

undertaken by the British Geological Survey assessed the usability of PS-InSAR to monitor 19 

ground motion on a nationwide scale in Great Britain, by investigating the use of appropriate 20 

SAR geometry of ERS-1/2 and ENVISAT to counteract geometric distortions, such as 21 

foreshortening, layover and shadowing, caused by local topography (Cigna et al. 2012, 2013, 22 

2014a). Overall topographic visibility was determined to be good, i.e. active layover could 23 

only be found in a small proportion of Great Britain. Layover usually occurs at slopes facing 24 

the sensor and when the slope angle is steeper than the SAR incidence angle. Then the upper 25 
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part of the slope is seen as equally far away from the sensor as the lower slope part and both 1 

areas appear at the same location in the SAR image or are laid over each other. This can 2 

happen mostly in the very hilly regions of Scotland, and is dependent on the acquisition mode 3 

of ‘ascending’ or ‘descending’ and the orientation of the hill slopes towards the radar sensor’s 4 

line of sight. No major shadow effects were discovered due to the reasonably flat mountain 5 

slopes in Great Britain (Cigna et al. 2012). 6 

To summarise, the continuous two-dimensional monitoring capabilities of DInSAR 7 

provide the advantage of measuring the GIA-induced vertical land motion directly over large 8 

areas (over 100 km wide swaths), in contrast to techniques that focus on single point 9 

measurements and spatial interpolation. Many coherent points over the surface can be 10 

evaluated at relatively low effort and costs, and there is no ground measurement technique 11 

that could basically provide the same amount of sampling points. Thus, DInSAR could 12 

account better for the spatial variability of vertical land motion and its implications for 13 

relative sea-level trends, and it is not limited to the CGPS/AG/tide gauge network in Britain. 14 

 15 

4. Conclusion 16 

Several investigations that attempt to improve quantification and modelling of past and 17 

present glacial isostatic adjustment of the British Isles have been conducted in the last 18 

decades. This paper reviews some of those efforts in regard to the different observational data 19 

types, such as geological Late Devensian/ Holocene sea-level evidence and present-day 20 

geodetic information, which have been used for the constraint of GIA model parameters for 21 

the British Isles. An extensive data bank of sea-level index points from palaeo-environments 22 

around the British Isles has been built up that motivated the development of a variety of GIA 23 

models and helped in the derivation of long-term Holocene relative sea- and land-level 24 

estimates. Later studies examined the advantage of geodetic techniques, mainly CGPS, which 25 
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help further parameterize the GIA models and give insight specifically into present-day 1 

vertical land motion. Despite this advance in GIA modelling for the British Isles, difficulties 2 

in parameterization persist and poor fits between model and observations remain not 3 

uncommon, especially in Scotland. Different modelling approaches have tried to fit the same 4 

Holocene sea-level data, but significant differences regarding ice sheet history and Earth-5 

model parameters remain in the modelling community. These misfits reflect the complex 6 

GIA situation of the British Isles with a significant spatial and temporal variability in sea- and 7 

land-level change since the Last Glacial Maximum. The local isostatic component of the sea-8 

level signal is of similar magnitude to that associated with the melt-water contribution from 9 

non-local ice sheets, but with opposite signs near the British ice sheet centre. Thus, strong 10 

non-monotonic sea-level changes were caused in time in the UK (Lambeck 1993a, b; Milne 11 

et al. 2006; Bradley et al. 2009; Rennie & Hansom 2011). 12 

Maps of both the relative land-level change modelled with help of geological 13 

evidence (Shennan & Horton 2002; Shennan et al. 2009) and the modelled vertical land 14 

motion constrained by data from geodetic techniques (Bradley et al. 2009, 2011) show a 15 

similar pattern with the centre of maximum uplift near the south-western Grampian 16 

Highlands of Scotland, consistent with most CGPS maps. However, the studies have also 17 

shown that geodetically derived estimates of vertical land motion can vary, depending on 18 

what CGPS processing strategy, time-series analysis approach and correction for temporal 19 

and spatial correlations has been used to derive the deformation velocities. In addition, the 20 

offset between CGPS and AG measurements in the vertical coordinate of ~1mm yr-1, as 21 

reported by Teferle et al. (2009), cannot be ignored considering the magnitude of the 22 

postglacial rebound signal is not much higher on the British Isles.  23 

It is always important that results from the different geological and geodetic 24 

techniques are interpreted and compared with care, since they differ in applied processing and 25 
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analysis methods, spatial sampling rates, time-scales, reference frames (relative land-/sea-1 

level change or vertical land motion), and the consideration of non-GIA related geophysical 2 

effects that influence crustal movements and sea-levels. 3 

Further research might give deeper insights into current rates of land uplift in northern 4 

Britain and its implications for relative sea-level change, by combining multiple satellite 5 

techniques, especially GNSS and SAR Interferometry. Although notable challenges have to 6 

be expected, when deriving very small, long-wavelength deformation signals from DInSAR 7 

data, techniques are in place to correct for these errors and limit uncertainties. The advantage 8 

of DInSAR is its high accuracy and spatial resolution, covering a wider area. It could close 9 

gaps in the quantitative description of the spatially diverse distribution of GIA, since the 10 

observational data density of conservative methods varies between regions. Geodetic 11 

methods provide information mostly limited to the existing CGPS/AG network, while Late 12 

Devensian/Holocene geological data are confined to accessible and preserved palaeo-13 

environments. As another independent data source, DInSAR can help address biases in other 14 

geodetic techniques and vice versa, thus demonstrating a complementary relationship 15 

between geodetic methods, as shown with CGPS and AG. Therefore, DInSAR might be 16 

beneficial in answering questions like to what extent GIA-induced crustal uplift is still an 17 

issue at Scottish coasts today (Rennie & Hansom 2011) and thus, if a higher impact of rising 18 

sea-levels at coasts is to be expected after all. 19 
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Figure captions 1 

 2 

 3 

Figure 1 Schematic overview of reference surfaces used when measuring and modelling RSL 4 

change and vertical land motion (VLM) of the British Isles (after Shennan et al. 2012, 5 

extended). Sea level (SL) at time t and location z is defined as the distance between Geoid 6 

(G) and solid Earth surface (R), which both relate to the centre of the Earth. G is the long-7 

term averaged mean sea surface over several decades (Shennan et al. 2012). Around Great 8 

Britain, the global Geoid lies about 80 cm above a local geoid model (Ordnance Datum 9 

Newlyn – ODN) due to sea surface topography. ODN is defined by Mean Sea Level 10 

measured at Newlyn tide gauge between 1915 and 1921. Orthometric height of a point A is 11 

height above ODN (Ordnance Survey 2015). Eustatic Sea Level change and isostatic changes 12 

to the gravitational field can cause change in G between a time t and a reference time t0. 13 

VLM is the change in solid Earth surface R between a time t and t0. RSL change refers to the 14 

difference in Sea Level (SL) at a time t relative to t0. Variations in water levels from MSL are 15 

indicated on the left hand side for a semidiurnal tidal system (for definitions see main text 16 

and Woodroffe & Barlow 2015; Shennan 2015). MHWS and HAT are a common reference 17 
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of sea level index points or isobase models of RSL change. ITRF is the International 1 

Terrestrial Reference Frame mostly used for GPS referencing (ITRF2008 is the latest one), 2 

relative to the CM of the total Earth System. CE is used in GIA modelling. 3 

 4 

 5 

Figure 2 Staircases of emerged gravel ridges uplifted by glacial isostatic adjustment at Shian 6 

Bay, Isle of Jura. The highest ridge is about 35m ASL (see Castillo et al. 2013). In the right 7 

foreground is a glacially striated roche moutonnée. 8 

 9 
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 1 

Figure 3 Isolation basin in northwestern Scotland, separated from the influences of the sea 2 

and its highest tides. 3 

 4 

 5 

Figure 4 Earth-model configurations in GIA studies mentioned in this paper 6 

 7 
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Figure 5 Evolution of patterns of Late Holocene glacial isostatic adjustment  in mm yr-1 for 1 

the British Isles, modelled using geological sea-level reconstructions: (a) crustal movements, 2 

constrained with data since 8800 BP; (b) relative land-/ sea-level changes from data since 3 

4000 cal. yr BP; (c) relative land-/ sea-level changes from data since 1000 BP, with a centre 4 
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of relative land uplift (positive values) over northern Scotland and three sub-centres of 1 

relative subsidence (negative values) over southwest England, the southern North Sea and the 2 

Shetland Isles. 3 

(a) Copyright (1989) Wiley. Used with permission from Shennan, I., Holocene crustal 4 

movements and sea-level changes in Great Britain, Journal of Quaternary Science, John 5 

Wiley & Sons. 6 

(b) Copyright (2002) Wiley. Used with permission from Shennan, I. & Horton, B., Holocene 7 

land- and sea-level changes in Great Britain, Journal of Quaternary Science, John Wiley & 8 

Sons. 9 

(c) Copyright (2012) Wiley. Used with permission from Shennan, I., Milne, G. & Bradley, S. 10 

L., Late Holocene vertical land motion and relative sea‐level changes: lessons from the 11 

British Isles, Journal of Quaternary Science, John Wiley & Sons. 12 
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Figure 6 Spatial pattern of RSL change during the Holocene as indicated by the Storegga 1 

(A), Main Postglacial (B), Blairdrummond (C) and Wigtown (D) Shorelines (chronologically 2 

ordered) based on Gaussian Quadratic Trend Surface modelling and constrained to a common 3 

axis and centre in the South-East Grampian Highlands of Scotland. Displayed are heights 4 

above MHWS with location of altitudinal data points (circles). The greater the distance from 5 

the centre of uplift in central Scotland, the more visible the younger shorelines become on the 6 

surface. 7 

Reprinted from Quaternary Science Reviews, 54,  Smith, D. E., Hunt, N., Firth, C. R., Jordan, 8 

J. T., Fretwell, P. T., Harman, M., Murdy, J., Orford, J. D. & Burnside, N. G., Patterns of 9 

Holocene relative sea level change in the North of Britain and Ireland, 58-76, Copyright 10 

(2012), with permission from Elsevier. 11 
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Figure 7 Vertical crustal motions in Great Britain from CGPS (a, b) and AG-aligned CGPS 1 

(c, d) estimates for two CGPS processing techniques: DDRNF denotes a series of daily 2 

double-difference (DD) regional network (RN) solutions, while PPPGTF stands for a series 3 

of daily precise point positioning (PPP) globally transformed (GT) solutions. Processing time 4 

frame: 1997-2005. F means spatial filtering. Red dots represent CGPS stations. 5 

Teferle, F. N., Bingley, R. M., Orliac, E. J., Williams, S. D. P., Woodworth, P. L., 6 

McLaughlin, D., Baker, T. F., Shennan, I., Milne, G. A. & Bradley, S. L., Crustal motions in 7 

Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data, 8 

Geophysical Journal International, 2009, 178, 1,23-46, by permission of Oxford University 9 

Press, published on behalf of the Royal Astronomical Society. 10 
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 1 

Figure 8 Comparison of maps of vertical land motion derived from AG-aligned CGPS 2 

station measurements in Great Britain and Ireland (stations indicated by red dots). They differ 3 

in processing time-frame, amount of included CGPS receivers, reference frame 4 

implementation and minimum time-series duration: (a) processing time frame 1997–2005, 16 5 
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CGPS sites, motion calculated relative to station in Sheerness, > 4 years minimum time-series 1 

duration; (b) 1997-2008, 46 CGPS sites, semi-global reference frame implementation with 37 2 

IGS stations within ITRF2005, > 6 years minimum time-series duration; (c) 1997-2010, 104 3 

CGPS sites, global reference frame network within ITRF2008, > 5 years; (d) 1997-2015, 158 4 

CGPS sites, global reference frame implementation, IGb08, > 4.7 years. 5 

(a) Bradley, S. L., Milne, G. A., Teferle, F. N., Bingley, R. M. & Orliac, E. J., Glacial 6 

isostatic adjustment of the British Isles: new constraints from GPS measurements of crustal 7 

motion, Geophysical Journal International, 2009, 178, 14-22, by permission of Oxford 8 

University Press, published on behalf of the Royal Astronomical Society. 9 

(b) Geodesy for Planet Earth 2012, 665-671, New estimates of resent-day crustal/land 10 

motions in the British Isles based on the BIGF network, Hansen, D. N., Teferle, F. N., 11 

Bingley, R. M. & Williams, S. D. P., Figure 82.5b, with permission from Springer Science + 12 

Business Media. 13 

(c) published in Greaves et al. (2013), reused with permission from BIGF. 14 

(d) published in Greaves et al. (2015), reused with permission from BIGF. 15 
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Figure 9 Modelled current rates of land uplift (5 km x 5 km grid) from model constrained by 1 

both geological sea-level observations and AG-aligned CGPS estimates (a). (b) and (c) 2 

decomposed total signal of (a), with (b) showing the effects of non-local ice sheets and (c) 3 

showing effects of British-Irish ice sheet and ocean loading only. 4 

Bradley, S. L., Milne, G. A., Teferle, F. N., Bingley, R. M. & Orliac, E. J., Glacial isostatic 5 

adjustment of the British Isles: new constraints from GPS measurements of crustal motion, 6 

Geophysical Journal International, 2009, 178, 14-22, by permission of Oxford University 7 

Press, published on behalf of the Royal Astronomical Society. 8 

 9 

 10 

Figure 10 Modelled present-day vertical land motion (a) and relative sea-level change (b) 11 

with (c) and (d) showing the decomposed total sea-level signal from (b) (c: from far-field ice 12 

sheets, d: from British–Irish ice sheet only). 13 

Copyright (2011) Wiley. Used with permission from Bradley, S. L., Milne, G. A., Shennan, I. 14 

& Edwards, R. J., An improved glacial isostatic adjustment model for the British Isles, 15 

Journal of Quaternary Science, John Wiley & Sons. 16 
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 1 

Figure 11 Interface between InSAR and GIA: Research areas, where InSAR is commonly 2 

used as a tool (left) vs. research methods that are usually applied to analyse GIA (right). 3 

Research studying the application of InSAR to measure GIA-induced VLM directly has been 4 

scarce. 5 

 6 

 7 

Figure 12 Temporal coverage of available SAR sensors and their frequency bands. 8 
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