
Adv. Pure Appl. Math. 2017; aop

Research Article

Gordon Blower and Ian Doust*

Operational calculus and integral transforms
for groups with finite propagation speed
DOI: 10.1515/apam-2015-0049
Received August 31, 2015; revised August 30, 2016; accepted March 28, 2017

Abstract: Let A be the generator of a strongly continuous cosine family (cos(tA))t∈ℝ on a complex Banach
space E. The paper develops an operational calculus for integral transforms and functions of A using the
generalized harmonic analysis associated to certain hypergroups. It is shown that characters of hypergroups
which have Laplace representations give rise to bounded operators on E. Examples include the Mellin trans-
formand theMehler–Fock transform. Thepaperuses functional calculus for the cosine family cos(t√∆)which
is associated with waves that travel at unit speed. The main results include an operational calculus theorem
for Sturm–Liouville hypergroups with Laplace representation as well as analogues to the Kunze–Stein phe-
nomenon in the hypergroup convolution setting.
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1 Introduction

Let E be a separable complex Banach space and L(E) the algebra of bounded linear operators on E. Let A be
a closed and densely defined linear operator in E. This paper presents a unified approach to the operational
calculus of functions f(A) which is based upon integral transforms, including those in the following table.

Transform Characters L ϕA(t) Operations

Fourier cos tx − d
2

dx2 cos tA cosine

Mellin x it −(x d
dx )

2 Ait Riesz potentials

Hankel x−ν Jν(λx) − d
2

dx2 −
2ν+1
x

d
dx t−ν Jν(tA) Bessel

Mehler P0iλ−(1/2)(cosh x) −
d2
dx2 − coth x

d
dx U1/2(cos(tA)) Legendre

Associated to the differential operators L that appear in this table there is a convolution∗ defined initially
on pointmasses εx onX = [0,∞) such that the convolution εx ∗ εy is a probabilitymeasure onX. This convo-
lution determines a hypergroup structure denoted (X, ∗). The characters ϕ of this hypergroup aremultiplica-
tive in the sense that they satisfy ∫X ϕ(t)(εx ∗ εy)(dt) = ϕ(x)ϕ(y). Working with the character space X̂ allows
us to use generalized harmonic analysis to transfer estimates for √L to A. (We refer the reader to [11, 16]
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2 | G. Blower and I. Doust, Functional calculus and integral transforms

for related transference methods.) In Section 2 we introduce the main facts from the theory of hypergroup
structures on X that we shall need.

In Section 3 we begin by investigating a classical situation regarding operators A which admit bounded
imaginary powersAis and a functional calculus derived from theMellin transform. In the context of thiswork,
the Mellin transform can be viewed as the generalized Fourier transform determined by a certain natural
hypergroup structure on X and the imaginary powers of A are just the values of ϕ(A) for ϕ in the character
space of this hypergroup.

The remaining part of the paper aims to make formal use of the hypergroup Fourier transform formula

̂f (ϕ) = ∫
X

f(x)ϕ(x)m(dx), ϕ ∈ X̂, f ∈ L1(m), (1.1)

to define ̂f (A). To do this, one needs to find a suitable way of replacing the scalar-valued ϕ(x) term with an
operator-valued quantityϕA(x). Herewemakeuse of the fact that for certain hypergroups (X, ∗), the bounded
multiplicative maps on X can be naturally parameterized as {ϕλ} for λ in a subset of the complex plane,
and furthermore, that for all x ∈ X the function hx(λ) = ϕλ(x) is bounded and analytic on a suitable domain.
Indeed, these maps have a ‘Laplace representation’ in terms of a family of bounded positive measures τx,

ϕλ(x) = hx(λ) =
x

∫
−x

cos(λt) τx(dt), x ∈ X.

To make use of this representation to define ϕA(x) = hx(A), one needs a satisfactory interpretation of, and
bounds for, the family of operators {cos(tA)}t∈ℝ, as well as suitable bounds concerning the representation
measures τx.

Cosine families of operators have a well-developed theory. Formally, a cosine family on E is a strongly
continuous family {C(t)}t∈ℝ of bounded operators on E such that C(s − t) + C(s + t) = 2C(s)C(t) and C(0) = I.
Such a family admits a closed densely defined infinitesimal generator A and one naturally writes cos(tA)
for C(t). Cosine families arise in describing the solutions of well-posed L2 Cauchy problems of the form

∂2w
∂t2

= −A2w, w(0) = u, ∂w
∂t

(0) = 0

with initial datum u ∈ L2. In classical situations, these systems admit wave solutions which propagate at
a fixed finite speed. We refer the reader to [29], [17, p. 118] or [9] for further details.

Given a cosine family {cos(tA)}t∈ℝ, various authors (see, for example, [9] or [27]) have used this to define

f(A) = 1
2π

∞

∫
−∞

Ff(t) cos(tA) dt

where Ff(t) = ∫∞
−∞ f(x)e−ixt dx and f is an even function in C∞c (ℝ). Such an approach works well if, for

example, the cosine family is uniformly bounded, but in general such families are not so well-behaved. Even
in the case that E is an Lp space,
(i) ‖cos(tA)‖L(L2) can grow exponentially with |t| (see [17, p. 118]),
(ii) cos(tA) can be unbounded as an operator on Lp for 2 < p < ∞.

In Section 4 we give general conditions on (X, ∗) and {cos(tA)} which ensures even in the case that
‖cos(tA)‖L(L2) grows exponentially, the family of operators {ϕA(x)} is uniformly bounded and hence we can
use (1.1) to show that ̂f (A) is bounded for all f ∈ L1(m). In Section 5 we show that certain Sturm–Liouville
hypergroups associated to a differential operator L do indeed have the desired properties.

Several standard integral transforms appear from appropriate choices of hypergroup structure on X. In
Section 6 we look at the hypergroup structure associated to the operator

Lϕ(x) = −ϕ��(x) − coth x ϕ�(x), x ≥ 0

which generates the Mehler–Fock transform of order zero. In this setting, the operators ϕA(x) arise as frac-
tional integrals of the cosine family. In the final section we show that the hypergroups associated to naturally
occurring Laplace operators on certain Riemannian manifolds have the required properties for the earlier
theory to apply.
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For a locally compact group G, the space L1(G) acts boundedly on L2(G) by left-convolution. That is,
if f ∈ L1(G), then Λf : g Ü→ f ∗ g is a bounded operator on L2(G). In general, this result does not extend to
f ∈ Lp(G) for p > 1. The Kunze–Stein phenomenon refers to the fact that for certain Lie groups, most classi-
cally for G = SL(2,ℂ), for 1 ≤ p < 2 one does obtain a bound of the form

‖f ∗ g‖L2(G) ≤ Cp‖f‖Lp(G)‖g‖L2(G);

see [11, p. 52]. Thus the representation Λ : (L1(G), ∗) → L(L2(G)), f Ü→ Λf extends to a bounded linear map
Λ : Lp(G) → L(L2(G)).

Our main results Theorems 4.3 and 5.3 are analogues of this Kunze–Stein phenomenon. Indeed the clas-
sical case of G = SL(2,ℂ) contains much of the hypergroup architecture that we explore in this paper. As
is discussed in [20], SL(2,ℂ) has a maximal compact subgroup K = SU(2,ℂ) such that K × K acts upon G
via (h, k) : g Ü→ h−1gk for h, k ∈ K and g ∈ G, producing a space of orbits G//K = {KgK : g ∈ G}. The double
coset space G//K inherits the structure of a commutative hypergroup modelled on X = [0,∞) and as for the
Sturm–Liouville hypergroups, we obtain representations linked to eigenfunctions of a differential operator
on (0,∞). The reader is referred to [11, Chapter 10] for further details.

The functional calculus maps defined above factor through the Banach algebras (L1(X,m), ∗). In Theo-
rem 4.3, we produce a family of hypergroup representations Φ : (L1(X,m), ∗) → L(E) that automatically
extend to Φ : Lp(X,m) → L(E) for 1 ≤ p < 2. In Theorem 5.3 we obtain a version of this abstract theorem
which applies to differential operators L on (0,∞), as in the double coset hypergroup X = G//K. We show
that the space of bounded andmultiplicative functions ϕλ : (X, ∗) → ℂ is a strip {λ ∈ ℂ : |Im λ| < ω0}, where
ω0 > 0 is determined by L. The proof involves functional calculus for the cosine families and the Laplace
representation, and was suggested by the results in [9, p. 42].

Before progressing further, we shall fix some notation. For a positive ω ∈ ℝ we let Σω denote the strip
{z ∈ ℂ : |Im z| < ω} and iΣω the corresponding vertical strip. For 0 < θ < π, we introduce the open sector
S0θ = {z ∈ ℂ \ {0} : |arg z| < θ} and its reflection −S0θ = {z : −z ∈ S0θ}. An important idea is to work with holo-
morphic functions on ‘Venturi’ regions; that is, those of the form

Vθ,ω = Σω ∪ S0θ ∪ (−S0θ).

Likewise, iVθ,ω will denote the corresponding Venturi region with vertical axis. As usual, H∞(S)will denote
the Banach algebra of bounded analytic functions on an open subset S of the complex plane.

2 Hypergroups on [0,∞)

In this section we introduce the general formalism of hypergroups with base space [0,∞). A full account of
harmonic analysis in the hypergroup context may be found in [2], [20] or [34].

Let X denote the half-line [0,∞), and Cc(X) the space of compactly supported continuous functions
f : X → ℂ. The set Mb(X) of bounded Radon measures on X with the weak topology forms a complex vec-
tor space. When equipped with a suitable associative multiplication or ‘generalized convolution’ operation ∗
on Mb(X), this convolution measure algebra is called a hypergroup or ‘convo’. We shall usually denote this
as (X, ∗) although one needs to remember that the operations are defined on Mb(X) rather than the under-
lying base space X.

Denote the Dirac point mass at x by εx ∈ Mb(X). It is a hypergroup axiom that for all x, y ∈ X, εx ∗ εy is
a compactly supported probability measure. The action of ∗ in a hypergroup is in fact completely determined
by the convolutions εx ∗ εy.When the base space isX = [0,∞), the convolution∗ is necessarily commutative,
ε0 is a multiplicative identity element. In general, hypergroups admit an involution map x Ü→ x−. For x ∈ X,
the left translation operator Λx is defined, initially on Cc(X) by

Λx f(y) = ∫
X

f(t) (εx ∗ εy)(dt), x, y ∈ X.
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4 | G. Blower and I. Doust, Functional calculus and integral transforms

It is traditional and useful to write Λx f(y) as f(x ∗ y) (although this is not in fact defining an operation on X).
Since ∗ is commutative, there exists an essentially unique Haar measure on X; that is, a nontrivial positive
invariant measure m on [0,∞) satisfying

∫
X

Λx f(y)m(dy) = ∫
X

f(y)m(dy), x ∈ X,

for all f ∈ Cc(X); see [2, Section 1.3]. This allows us to define a (commutative) convolution between two func-
tions f, g ∈ Cc(X) by

(f ∗ g)(x) = ∫
X

f(y)Λxg(y)m(dy) = ∫
X

f(y) g(x ∗ y)m(dy).

This map extends to L1(m) = L1(X,m) and makes (L1(m), ∗) into a commutative Banach algebra. One often
writes the convolution operation as

Λf g = f ∗ g

for f, g ∈ L1(m).

Definition 2.1. (i) A continuous function ϕ : X → ℂ is said to bemultiplicative if ϕ(x ∗ y) = ϕ(x)ϕ(y) for all
x, y ∈ X and ϕ(z) ̸= 0 for some z ∈ X.

(ii) A character on the hypergroup X is a bounded and multiplicative function ϕ such that ϕ(x−) = ϕ(x) and
ϕ(0) = 1. The character space X̂ is the set of all characters on X.

When X = [0,∞), the involution is always the identity x− = x, and the condition that ϕ(x−) = ϕ(x) is equiv-
alent to the condition that ϕ(x) ∈ ℝ by [2, Theorem 3.4.2] and this simplifies some of the definitions below.
In Section 3, we use multiplicative functions which are bounded but not characters. In the cases of inter-
est to us in this paper, Definition 5.1, the hypergroup convolution is associated with a differential operator
and the multiplicative functions are eigenfunctions of this operator. Indeed, the set of bounded and mul-
tiplicative functions ϕλ can be naturally parameterized by a domain SX ⊆ ℂ. This occurs, in particular, for
Sturm–Liouville hypergroups, in which case λ is a spectral parameter as in [2, 7, 8, 30]. The character space
X̂ is always sufficiently large in our context to enable one to do harmonic analysis. We can define the Fourier
transform of f ∈ L1(X;m) by setting

̂f (ϕ) = ∫
X

f(x)ϕ(x)m(dx), ϕ ∈ X̂. (2.1)

In the case that X̂ ⊆ {ϕλ : λ ∈ SX} we shall write ̂f (λ) rather than ̂f (ϕλ) and we can extend ̂f to be a function
of the complex variable λ.

By a theorem of Levitan [20], there exists a unique Plancherel measure π0 supported on a closed subset
S of X̂ such that f Ü→ ̂f for f ∈ L2(m) ∩ L1(m) extends to a unitary isomorphism L2(m) → L2(π0). By [2, Theo-
rem 2.3.19] or [32], there exists a unique positive character ϕ0 ∈ S, and ϕ0 can be different from the trivial
character I. Indeed, this enables us to deal with unbounded cosine families, as in Proposition 4.1 below.

Definition 2.2. A hypergroup (X, ∗) is said to have a Laplace representation if (a, b) ⊆ S for some 0 < a < b,
and for every x ≥ 0, there exists a positive Radon measure τx on [−x, x] such that τx([−x, x]) = ϕ0(x) and for
every character ϕλ in S,

ϕλ(x) =
x

∫
−x

cos(λt) τx(dt). (2.2)

The integral is taken over [−x, x], and includes any point masses at ±x.

The Sturm–Liouville hypergroups that we shall consider in Section 5 all admit a Laplace representation. For
the rest of this section therefore, we assume that (X, ∗) has a Laplace representation. Note that the right-hand
side of (2.2) converges for all λ ∈ ℂ and all x ≥ 0, so the Laplace representation allows us to move from the
character space to a larger subset of ℂ.
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Lemma 2.3. Let X be as in Definition 2.2. Suppose that there exist M0, ω0 > 0 such that

x

∫
−x

cosh(ω0t) τx(dt) ≤ M0, x ≥ 0. (2.3)

Then the following statements hold:
(i) For all λ ∈ Σω0 the function ϕλ : X → ℂ given by ϕλ(x) = ∫x−x cos(λt) τx(dt), x ≥ 0, is bounded and multi-

plicative.
(ii) For all x ∈ X, the map hx : λ Ü→ ϕλ(x) is in H∞(Σω0 ).
(iii) ℝ ∪ [−iω0, iω0] is contained in X̂.
(iv) The Fourier transform f Ü→ ̂f is bounded L1(m) → H∞(Σω0 ).

Proof. If λ = u + iv ∈ Σω0 , then |cos(λt)| ≤ cosh(vt) ≤ cosh(ω0t) which shows that |ϕλ(x)| ≤ M0. From this
inequality and Morera’s theorem, it also follows that hx ∈ H∞(Σω0 ).

Now ϕ0(0) = 1 since ϕ0 ∈ X̂, so ϕλ(0) = 1 for all λ ∈ ℂ. By Definition 2.2, ϕλ(x) is multiplicative for all
λ ∈ (a, b) and by analytic continuation for all λ ∈ Σω0 . This completes the proof of (i) and (ii).

(iii) It is clear from the definition of ϕλ that if λ real or purely imaginary, then ϕλ(x) ∈ ℝ. Hence ϕλ is
a character of X for all λ ∈ ℝ ∪ [−iω0, iω0].

(iv) Finally, we have | ̂f (λ)| ≤ ∫∞
0 M0|f(x)|m(dx) for all f ∈ L1(m), so (iv) follows from (i) by convexity.

3 An operational calculus from the Mellin transform

A canonical example of a hypergroup structure on (0,∞) is given by the convolution εx ∗ εy = εxy. In this
case the invariant measure is dx/x and bounded characters are ϕτ(x) = xiτ (τ ∈ ℝ). The Fourier transform in
this case is thus

̂f (ϕτ) =
∞

∫
0

f(x)xiτ dx
x

which is traditionally written as f∗(iτ), the Mellin transform of f evaluated at iτ.
If A is a sectorial operator on a Hilbert space such that for some M, ω1 ≥ 0, ‖Aiτ‖L(H) ≤ Meω1τ for all

τ ∈ ℝ, then A has a bounded H∞(Σω0 ) functional calculus on H for all ω0 > ω1. Example 5.2 in [12] shows
that this results does not extend from H = L2(ℝ) to Lp(ℝ) for p ̸= 2. To address this issue, we provide an
operational calculus results based on the Mellin transform. (The use of the Mellin transform is of course not
novel: see, for example, [3, 12, 22, 31]).

We recall a Mellin transform theorem from [24, p. 273]. Let f∗ be holomorphic on iΣα and suppose that
e|τ|μ f∗(σ + iτ) → 0 uniformly on iΣα−ε as τ → ±∞ for some α > ε > 0 and μ ≤ π. Then f∗(s) is the Mellin
transform of

f(z) = 1
2πi

σ+i∞

∫
σ−i∞

z−s f∗(s) ds, 0 < z < ∞.

Proposition 3.1. Suppose that 1 < p < ∞ and that E is a closed linear subspace of Lp(Ω, μ) for some measure
space (Ω, μ). Suppose also that
(i) A is a one-to-one operator in E such that (Aiτ)τ∈ℝ is a C0 group of operators on E and ‖Aiτ‖L(E) ≤ C for

all τ ∈ ℝ,
(ii) f∗ ∈ H∞(iVθ,ω) for some θ, ω > 0, that f∗ is continuous on the closure of iVθ,ω and f∗(s) → 0 as |s| → ∞,

uniformly with respect to arg s for s ∈ iVθ,ω.
Then

f(A) = 1
2π

∞

∫
−∞

A−iτ f∗(iτ) dτ (3.1)

defines a bounded linear operator on E.
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6 | G. Blower and I. Doust, Functional calculus and integral transforms

Proof. By Cauchy’s estimates, there exists Cθ,ω > 0 such that

|f∗(iτ)| + |τ|
!!!!!!!
df∗

dτ
(iτ)

!!!!!!!
≤ Cθ,ω , τ ∈ ℝ, (3.2)

hence f∗(iτ) defines a Fourier multiplier on Lp(ℝ) as in Stečkin’s Theorem. By the Berkson–Gillespie trans-
ference theorem [1], the integral (3.1) defines a bounded linear operator on E.

Next we extend the result to groups of exponential growth. We note here the relatively standard (and easily
proven) fact about analytic continuation of a function on (0,∞) defined using the Mellin transform.

Lemma 3.2. Suppose that 0 < ϕ < ω. If f∗(s) cos(ωs) belongs to H∞(iVθ,α) for some 0 < θ < π
2 and α > 0, then

f(z) = 1
2π

∞

∫
−∞

z−iτ f∗(iτ) dτ (3.3)

belongs to H∞(S0ϕ).

Proof. Note that for τ ∈ ℝ, |f∗(iτ) cos(iωτ)| = |f∗(iτ)| cosh(ωτ) and hence f∗(iτ) = O(e−ω|τ|) as τ → ±∞. On
the other hand if z ∈ S0ϕ, then |z−iτ| ≤ eϕ|τ|. It follows therefore that the integral (3.3) converges absolutely.
The analyticity of f is standard.

Proposition 3.3. Suppose that ω, α > 0, that 0 < θ < π
2 , that 0 < ω0 < ω, and that

(i) f∗(s) cos(ωs) belongs to H∞(iVθ,α),
(ii) (Aiτ)τ∈ℝ is a C0 group on a Banach space E such that ‖Aiτ‖L(E) ≤ Ceω0|τ| for all τ ∈ ℝ.
Then f(A), defined by (3.1), is a bounded linear operator on E.

Proof. The absolute convergence of the integral (3.1) follows easily from (ii) and the bounds in the proof of
Proposition 3.1. Since the integrand is strongly continuous, the integral for f(A) converges.

Remark 3.4. An example in [12] and [4] shows that for each q ̸= 2 and 0 < θ < π, there exists f ∈ H∞(Σθ) that
is not a bounded Fourier multiplier on Lq(ℝ).

Example 3.5. We consider a specific example at themargins of the scope of Proposition 3.1. Let J0 be Bessel’s
function of the first kind of order zero, and for x > 0 let g(x) = √xJ0(x). By [24, p. 522], g hasMellin transform

g∗(s) = 2s−1/2
π

sin π( s2 +
1
4) Γ(

s
2 +

1
4)

2

which is holomorphic for s ∈ iΣα for 0 < α < 1/2 and of polynomial growth as is → ∞. For N > 0 consider
the functions (as in [14])

hN(x) =
2N
π

xN

1 + x2N
, h∗N(s) = sec( πs2N ).

Then h∗N(is) ∈ H∞(Vθ,β) for 0 < β < N and 0 < θ < π/2, and h∗N(s) → 1 as N → ∞, uniformly on compact
subsets of ℂ. The Mellin convolution fN = g ∗ hN from [24, p. 276] has Mellin transform f∗N(s) = g

∗(s)h∗N(s)
which is bounded and holomorphic for s ∈ iΣα, for 1/2 < N < ∞, although f∗N becomes unboundedwhenever
we extend iΣα to iVθ,α for θ > 0; so Proposition 3.1 (ii) does not apply directly. Nevertheless, by invoking
standard asymptotic estimates on the Γ function from [33, p. 279], one can check that (3.2) holds for f∗N . We
deduce that the conclusion of Proposition 3.1 holds for fN . The fN can be computed in terms of standard
special functions. In particular, using the table of Stieltjes transforms in [15, 14.3(6)], we can compute, in
terms of the hypergeometric function 1F2,

f1(x) =
∞

∫
0

x
y

1 + ( xy )2
√yJ0(y)

dy
y

=
1
2i

∞

∫
0

(
1

y − ix
−

1
y + ix)

√yJ0(y) dy

=
π√xJ0(ix)

√2
+

Γ(−1
4 )

23/2Γ(54 )
1F2(1; 54 ,

5
4 ;

x2
4 )x.
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4 An operational calculus from hypergroup convolution

In this sectionwe shall suppose that the operatorA generates a strongly continuous cosine family (cos(tA))t∈ℝ
on E, and that (X, ∗) is a hypergroup which admits a Laplace representation for its characters ϕλ as given in
Definition 2.2.

In this setting we define the family of bounded linear operators {ϕA(x)}x≥0 on E by the strong operator
convergent integrals

ϕA(x) =
x

∫
−x

cos(At) τx(dt), x ≥ 0. (4.1)

Note that one can easily verify that in simple situations (such as if A is a normal matrix), ϕA(x) = hx(A),
where hx(λ) = ϕλ(x) and the right-hand side is interpreted via the usual Riesz functional calculus. We now
seek to define ̂f (A) for suitable functions f via the hypergroup Fourier transform by writing it as an integral
of these operators.

Proposition 4.1. Let (X, ∗) have a Laplace representation satisfying (2.3) and suppose that A generates
a strongly continuous cosine family on E satisfying

‖cos(tA)‖L(E) ≤ κ cosh(tω0), t ≥ 0. (4.2)

Then the following statements hold:
(i) (ϕA(x))x>0 is a uniformly bounded family of operators.
(ii) For all f ∈ L1(m), the integral

TA(f) =
∞

∫
0

f(x)ϕA(x)m(dx) (4.3)

converges in the strong operator sense and defines a bounded linear operator on E.
(iii) For f, g ∈ L1(m), TA(f ∗ g) = TA(f)TA(g), and so themap TA : L1(m) → L(E) is an algebra homomorphism.

Proof. (i) We observe that by convexity ϕA(x) is a bounded linear operator on E, and ‖ϕA(x)‖L(E) ≤ κM0.
(ii) Conclusion (ii) follows from (i) by convexity.
(iii) From the identity ϕλ(x ∗ y) = ϕλ(x)ϕλ(y) and the Laplace representation (2.2), we have

∫ cos λu∫ τz(du)(εx ∗ εy)(dz) =
1
2 ∬ cos λ(t + s) τx(dt) τy(ds) +

1
2 ∬ cos λ(t − s) τx(dt) τy(ds). (4.4)

So by the addition rule cos((t − s)A) + cos((t + s)A) = 2 cos(tA) cos(sA) for the cosine family, the identity
ϕA(x ∗ y) = ϕA(x)ϕA(y) follows unambiguously when one formally replaces λ by A in (4.4). We have

∞

∫
0

∞

∫
0

ϕλ(x ∗ y)f(x)g(y)m(dx)m(dy) =
∞

∫
0

ϕλ(z)(f ∗ g)(z)m(dz)

by a standard identity [20, 6.1F], so
∞

∫
0

∞

∫
0

ϕA(x ∗ y)f(x)g(y)m(dx)m(dy) =
∞

∫
0

ϕA(z)(f ∗ g)(z)m(dz)

and so we can express the left-hand side as a product of operators
∞

∫
0

ϕA(x)f(x)m(dx)
∞

∫
0

ϕA(y)g(y) m(dy) =
∞

∫
0

ϕA(z)(f ∗ g)(z)m(dz)

so that f Ü→ TA(f) is multiplicative.
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8 | G. Blower and I. Doust, Functional calculus and integral transforms

Remark 4.2. We interpret TA(f) in the above theorem as ̂f (A). The map TA : L1(X,m) → L(E) is a Banach
algebra homomorphismwhich generates a functional calculus mapΦA(ψ) = ψ(A) = TA ∘ F−1X (ψ) defined for
ψ in the rangeA of the Fourier transform FX.

(L1(X,m), ∗)

TA
��

oo
FX // A ⊆ H∞(Σω0 )

ΦA
ww

L(E)

It is natural to ask whether the map ΦA extends to a bounded algebra homomorphism H∞(Σω0 ) → L(E).

According to [2, Section 2.5.6] and [32], a noncompact commutative hypergroup has the Kunze–Stein prop-
erty of order p > 1 if Λf gives a bounded linear operator on L2(m) for all f ∈ Lp(m). In the following result,
we refine this result by extending ̂f to give an analytic function on a strip containing S and obtain an opera-
tional calculus. To accommodate p > 1 we rescale the speed of cos(tA) to cos(αtA) with 0 < α < 1. Since our
hypergroups are noncompact and commutative, [20, Theorem 7.2B] and [2, Theorem 2.5.6] say that ϕ0 is
not in Lν(m) for 1 ≤ ν ≤ 2. The following result therefore includes the optimal range of exponents.

The reader is referred to [18, Theorem 3.2] for a related result where Haase has obtained bounds on
representations of C0 groups of exponential growth via the cosh hypergroup.

Theorem 4.3. Let (X, ∗) have a Laplace representation satisfying (2.3) and suppose that A generates a strongly
continuous cosine family on E satisfying (4.2). Suppose further that ϕ0 ∈ Lν(m) for some 2 < ν < ∞. Let
0 < α < 1 and let p = ν/(ν + α − 1). Then the following statements hold:
(i) The Fourier transform f Ü→ ̂f is bounded Lp(m) → H∞(Σαω0 ).
(ii) The convolution operator Λf : g Ü→ f ∗ g gives a bounded linear operator on L2(m) for all f ∈ Lp(m).
(iii) The map f Ü→ TαA(f) defined via (4.3) is bounded Lp(m) → L(E).

Proof. (i) The idea is that integrability of a suitable power of the positive character in ϕ0 ∈ S enables us
to extend the Fourier transform, while the Laplace representation enables us to continue the characters to
analytic functions on a strip containing S. By Jensen’s inequality, cosh(αtω0) ≤ coshα(tω0), so by Hölder’s
inequality we have, for λ ∈ Σαω0 ,

!!!!ϕλ(x)
!!!! ≤

x

∫
−x

cosh(αtω0) τx(dt) ≤ (
x

∫
−x

cosh(tω0) τx(dt))
α

(
x

∫
−x

τx(dt))
1−α

≤ Mα
0ϕ0(x)1−α . (4.5)

By Hölder’s inequality with 1/p + 1/q = 1 we have q = ν/(1 − α). Thus
∞

∫
0

|f(x)|ϕ0(x)1−α m(dx) ≤ (
∞

∫
0

|f(x)|p m(dx))
1/p

(
∞

∫
0

ϕ0(x)q(1−α) m(dx))
1/q
, (4.6)

where (1 − α)q = ν > 2, and so the latest integral converges. Hence

̂f (λ) =
∞

∫
0

f(x)ϕλ(x)m(dx)

converges absolutely and defines a bounded function on Σαω0 for all f ∈ Lp(m). By Morera’s theorem, ̂f (λ)
determines a function in H∞(Σαω0 ) for all f ∈ Lp(m).

(ii)We can in particular, apply Proposition 4.1 to A : ĝ(λ) Ü→ λĝ(λ) and g ∈ E = L2(m), inwhich case TA(f)
becomes the convolution operator Λf by the Levitan–Plancherel theorem. By [2, Theorem 2.2.4], Λf gives
a bounded linear operator on L2(m), and

‖Λf ‖L(L2) = sup{| ̂f (ϕ)| : ϕ ∈ S}, f ∈ L1(m).

By (i), ϕ Ü→ ̂f (ϕ) is bounded on S for all f ∈ Lp(m) ∩ L1(m), so we can extend to obtain Λf ∈ L(L2) for all
f ∈ Lp(m).
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(iii) By (2.3) and (4.2), we have

""""ϕαA(x)
""""L(E) ≤

x

∫
−x

κ cosh(αtω0) τx(dt) ≤ κMα
0ϕ0(x)1−α

as in (4.5), so we can use (4.6) to show that TαA(f) = ∫∞
0 ϕαA(x)f(x)m(dx) converges absolutely and defines

a bounded linear operator for all f ∈ Lp(m).

We now turn to the double coset hypergroup X = SL(2,ℂ))//SU(2,ℂ) mentioned in the introduction. By
[11, p. 50] this X has invariant measure m(dx) = sinh2 x dx.

Corollary 4.4. Suppose that ‖cos(tA)‖L(E) ≤ κ cosh t for all t ∈ ℝ. Then for 0 < α < 1 and all f ∈ Lp(sinh2 x)
with 1 < p < 2/(1 + α),

TαA(f) =
∞

∫
0

sin(αxA)
αA

f(x) sinh x dx

defines a bounded linear operator on E.

Proof. By results of Trimèche (see [30] or [2, p. 211]), there exists a commutative hypergroup on [0,∞) that
has invariant measure 22 sinh2 x dx. We introduce

ϕλ(x) =
sin λx
λ sinh x =

x

∫
−x

cos λt
2 sinh x dt, λ ∈ ℂ,

so that ϕλ is a bounded multiplicative function for λ ∈ Σ1 and so that ϕ±i is the trivial character, so that
ω0 = 1. The Plancherel measure is

π0(dλ) =
λ2

4π I(0,∞)(λ) dλ,

so that ϕ0(x) = x/ sinh x is the unique positive character in the support of π0. Condition (4.2) holds by hypo-
thesis, while (2.3) is immediate. Also

∞

∫
0

ϕ0(x)ν sinh2 x dx =
∞

∫
0

xν sinh2−ν x dx

converges for all ν > 2. So we can apply Theorem 4.3 with p = ν/(ν + α − 1).

5 Operational calculus for Sturm–Liouville hypergroups

In this sectionwe focus onapplying the operational calculus described in Section4 tohypergroups associated
to certain differential operators of the form

Lϕ(x) = −
d2ϕ
dx2

−
m�(x)
m(x)

dϕ
dx
, x ≥ 0.

Under suitable conditions on the functionm, one can define a hypergroup structure on X = [0,∞) for which
the characters correspond to suitably normalized eigenfunctions of this operator. The Haarmeasure for these
hypergroups is just m(x) dx where dx is the usual Lebesgue measure on X.

Canonical examples here include taking m(x) = sinhk x (giving a Jacobi hypergroup as in Corollary 4.4)
and Example 7.1; indeed, the results are mainly of significance when m(x) grows exponentially as x → ∞.
For our purposes, the main requirement on the hypergroup is that the characters on X have a Laplace rep-
resentation. Given this, we can make use of the Fourier transform (2.1) which is entirely determined by m
and the eigenfunctions of L. Chebli [7, 8] and Trimèche [30] gave sufficient condition on m to ensure exis-
tence of a hypergroup structure, and they also gave sufficient conditions for the characters to have a Laplace
representation. See also [2, Theorem 3.5.58].
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10 | G. Blower and I. Doust, Functional calculus and integral transforms

Definition 5.1. Suppose that ω0 ≥ 0 and γ > −1/2. We say that a function m : [0,∞) → [0,∞) satisfies
(H(ω0)) if:
(i) m(x) = x2γ+1q(x), where q ∈ C∞(ℝ) is even, positive and m(x)/x2γ+1 → q(0) > 0 as x → 0+,
(ii) m(x) increases to infinity as x → ∞, and m�(x)/m(x) → 2ω0 as x → ∞, and either
(iii) m�(x)/m(x) is decreasing, or
(iv) the function

Q(x) = 1
2(

q�

q )
�
+
1
4(

q�

q )
2
+
2γ + 1
2x (

q�

q ) − ω2
0

is positive, decreasing and integrable with respect to Lebesgue measure over (0,∞).

Lemma 5.2. Suppose that ω0 > 0 and that m satisfies (H(ω0)). Then the following statements hold:
(i) There exists a hypergroup on [0,∞) such that x− = x.
(ii) The solutions of

−
d2ϕλ
dx2

−
m�(x)
m(x)

dϕλ
dx

= (ω2
0 + λ

2)ϕλ

such that ϕλ(0) = 1, and ϕ�
λ(0) = 0 for λ ≥ 0 are characters in S.

(iii) ϕλ(x) has a Laplace representation as in (2.2), where ±iω0 corresponds to the trivial character, and the
bound (2.3) holds.

(iv) X̂ = ℝ ∪ [−iω0, iω0].

Proof. (i) Case (iii) of Definition 5.1 is covered in [7], sowe emphasize case (iv). The function β = q�/q satisfies

1
2β

� −
1
4β

2 +
m�β
2m = (

q�

q )
�
+
1
4(

q�

q )
2
+
2γ + 1
2x = Q(x) + ω2

0,

so that q satisfies SL1.1 and SL2 of [2, p. 202], som defines a Sturm–Liouville function the sense of [2, Theo-
rem 3.5.45]. There exists a hypergroup with convolution operation given by [2, Section 3.5.21], as follows.
The solution u(x, y) of the differential equation

−
∂2u
∂x2

−
m�(x)
m(x)

∂u
∂x

= −
∂2u
∂y2

−
m�(y)
m(y)

∂u
∂y

with initial conditions

u(x, 0) = u(0, x) = f(x) and ∂u
∂x

(0, y) = ∂u
∂y

(x, 0) = 0

gives u(x, y) = ∫X f(t) (εx ∗ εy)(dt) (see [2, 2.5.35]). Since 0 ∈ supp(εx ∗ εy), we can deduce that x− = x (see
[2, (HG7), p. 9] and [34]). Moreover, the spectral analysis in [7], [8] and [30] shows that S = [0,∞).

(iii) Chebli [7] andBloomandHeyer [2, Theorem3.5.38] showed that these eigenfunctions have a Laplace
representation as in (2.2). Specifically, the function λ Ü→ ϕλ(x) is entire, and there exists a family of positive
measures such that

ϕλ(x) =
x

∫
−x

cos(λt) τx(dt);

in particular, λ = ±iω0 gives the trivial character and so (2.3) holds with M0 = 1.
(iv) Using Langer’s transformation [8, p. 5], we let ϕλ(x) = ψλ(x)/√m(x). Then ψλ satisfies

−ψ��
λ (x) + (

m��

2m − (
m�

2m)
2
− ω2

0)ψλ(x) = λ
2ψλ(x),

that is

− ψ��
λ (x) + (

4γ2 − 1
4x2

+ Q(x))ψλ(x) = λ2ψλ(x). (5.1)

Hence ϕλ(x) is real, if and only if λ2 ∈ ℝ; that is λ ∈ ℝ ∪ iℝ. By comparing (5.1) with the sine equation as
in [19, Theorem 1.5.7], we see that ϕ0(x) → 0 as x → ∞.

Brought to you by | University of New South Wales
Authenticated | i.doust@unsw.edu.au author's copy

Download Date | 5/31/17 4:44 AM



G. Blower and I. Doust, Functional calculus and integral transforms | 11

For all ν > 1, we have by two application of Hölder’s inequality

1 =
x

∫
−x

cosh(tω0) τx(dt)

≤ (
x

∫
−x

coshν(ω0t) τx(dt))
1/ν

(
x

∫
−x

τx(dt))
(ν−1)/ν

≤ (
x

∫
−x

cosh(νω0t) τx(dt))
1/ν

(
x

∫
−x

τx(dt))
(ν−1)/ν

,

which implies thatϕiνω0 (x) ≥ ϕ0(x)1−ν. Henceϕiνω0 (x) → ∞ as x → ∞, soϕiνω0 does not belong to X̂. Hence
X̂ = ℝ ∪ [−iω0, iω0].

Our aim is to now define ̂f (A) for suitable A and f via the Fourier transform for such a Sturm–Liouvill
hypergroup.

Theorem 5.3. Suppose that m and ϕλ are as in Lemma 5.2 with ω0 > 0 and that (cos(tA))t∈ℝ is a strongly
continuous cosine family on E such that

‖cos(tA)‖L(E) ≤ κ cosh(ω0t), t ∈ ℝ,

and some κ < ∞. Let 2 < ν < ∞, 0 < α < 1 and p = ν/(ν + α − 1). Then the following statements hold:
(i) There exists a commutative hypergroup (X, ∗) on [0,∞) such that ϕλ is a bounded multiplicative function

on (X, ∗) for all λ ∈ Σω0 .
(ii) The Fourier transform f Ü→ ̂f (λ) is bounded Lp(m) → H∞(Σαω0 ).
(iii) (ϕA(x))x≥0 as in (4.1) gives a bounded family of linear operators on E,

TA(f) =
∞

∫
0

f(x)ϕA(x)m(x) dx

defines a bounded linear operator on E for all f ∈ L1(m), and TA(f ∗ g) = TA(f)TA(g) for all f, g ∈ L1(m).
(iv) The map f Ü→ TαA(f) defined via (4.3) is bounded Lp(m) → L(E).

Proof. (i) This follows from Lemma 5.2.
(ii) By comparing (5.1) with the sine equation, as in [19, p. 527] one obtains a bound ψλ(x) = O(eηx)

as x → ∞, where η = |Im λ| > 0. In particular, we have
∞

∫
0

|ϕ0(x)|νm(x) dx =
∞

∫
0

!!!!ψ0(x)!!!!
νm(x)1−(ν/2) dx

which converges for 2 < ν < ∞. By Lemma 5.2, ϕλ is a bounded multiplicative function for λ ∈ Σω0 , and has
a Laplace representation. Hence we can apply Theorem 4.3 (ii). Note that for λ > 0, all solutions of (5.1)
oscillate boundedly, so ϕλ is not in L2(m). Thus we cannot extend this proof to the case ν = 2.

(iii) By Lemma 5.2, the hypergroup has a Laplace representation. Condition (2.3) holds since the trivial
character arises for λ = iω0 so the Laplace representation gives ∫

x
−x cosh tω0 τx(dt) = 1, while (4.2) holds by

hypothesis. Thus all the hypotheses of Proposition 4.1 apply.
(iv) Theorem 4.3 (iii) applies.

Trimèche [30, Section 8] considers the difference operators

σt f(x) =
1
2 (f(x + t) + f(x − t)), x, t ∈ ℝ,

in relation to the Fourier transform for certain Jacobi hypergroups. Definition 5.1 does not cover the Jacobi
hypergroups with m(x) = coshk x, since γ = −1/2 is excluded. However, such examples are otherwise ad-
dressedby the following result,which enables one touse the transference theorem for locally boundedgroups

Brought to you by | University of New South Wales
Authenticated | i.doust@unsw.edu.au author's copy

Download Date | 5/31/17 4:44 AM



12 | G. Blower and I. Doust, Functional calculus and integral transforms

from [3]. To clarify the various operations, we introduce

Xf(x) =
x

∫
−x

f(t) τx(dt)

for f ∈ C∞c, ev(ℝ;ℝ)), the compactly supported and even functions in C∞(ℝ;ℝ). For t ∈ ℝ, let St denote the
translation operator St f(x) = f(x − t).

Proposition 5.4. Suppose that q ∈ C∞(ℝ) is positive and even, and that there exist κ1, κ2 such that

κ1 ≤
q�(x)
q(x)

≤ κ2

for all x ∈ ℝ. Let 1 ≤ p < ∞. Then the following statements hold:
(i) cos(t√L)Xf = ∫x−x σt f(s) τx(ds) for all f ∈ C

∞
c, ev(ℝ;ℝ)).

(ii) (St)t∈ℝ defines a C0 operator group on Lp(ℝ; q(x) dx) such that ‖St‖L(Lp) ≤ Mpewp |t| for all t ∈ ℝ, where
wp = max{|κ1|, |κ2|}/p.

(iii) There exists a generator A such that cos(tA) = 1
2 (St + S−t) for t ≥ 0 defines a strongly continuous cosine

family on Lp(ℝ; q(x) dx) satisfying (4.2).

Proof. (i) Trimèche [30] has a similar result in different notation, so we give the proof for completeness.
Observe that X : cos sλ Ü→ ϕλ(x) by the Laplace representation (2.2), and cos(t√L)ϕλ(x) = cos(tλ)ϕλ(x) for
ϕλ ∈ S by the spectral theorem. Now σt : cos(sλ) Ü→ cos(tλ) cos(sλ). Hence the required identity holds for
cos(sλ), and then we can use the Fourier cosine transform to obtain the stated result.

(ii) We have
∞

∫
−∞

|St f(x)|pq(x) dx =
∞

∫
−∞

|f(x)|pq(x + t) dx (5.2)

so it suffices to bound q(x + t)/q(x) from above for all x in terms of t. This splits into cases according to the
signs of x and t which are all elementary estimates.

(iii) This follows from (ii) by [17, Remark 8.11].

Remark 5.5. Consider the case of Definition 5.1 in which q = 1, so thatm(x) = x2γ+1 and ω0 = 0. Then Lp(m)
has a strongly continuous group (Vt)t∈ℝ of dilation operators Vt : f(x) Ü→ e(2γ+2)t/p f(etx) for 1 ≤ p < ∞, such
that ‖Vt f‖Lp = ‖f‖Lp for all t ∈ ℝ and f ∈ Lp(m). The transference theory of [1] applies to this dilation group.

Let Jγ denote Bessel’s function of the first kind of order γ and define

ψλ(x) = λ−γx1/22γJγ(λx) =
Γ(γ + 1)xγ+1/2
Γ(1/2)Γ(γ + 1/2)

x

∫
−x

(1 −
s2

x2
)
γ cos sλ
√x2 − s2

ds,

so that λ ∈ ℝ, λ Ü→ ψλ(x) is entire and of exponential type, and

−ψ��
λ (x) +

4γ2 − 1
4x2

ψλ(x) = λ2ψλ(x).

The hypergroup associated with J0 is studied by detail by Jewett [20], who finds that the trivial character
lies in S. Taylor uses the operational calculus associated with Bessel functions of the first kind [28, p. 1120]
to obtain bounds on certain differential operators associated with the wave equation on Euclidean space.
Fractional integrationoperators for theHankel–Bessel transformarediscussed in [30, Section5]. By contrast,
the examples in the following sections have ω0 > 0.

6 Fractional integration of cosine families

Several more classical transforms and associated families of functions fall within this framework. In this
section we look at the case where m(x) = sinh x. The hypergroup Fourier transform in this setting is the
Mehler–Fock transform of order zero.
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Definition 6.1. (i) For m, n = 0, 1, . . . , the associated Legendre functions may be defined as in [13, p.156]
to be the functions Pμν such that

Pμν (cosh x) = √ 2
π

(sinh x)μ
Γ((1/2) − μ)

x

∫
0

cosh(ν + (1/2))y
(cosh x − cosh y)μ+(1/2)

dy.

(ii) Legendre’s functions are defined by

ϕλ(x) = Piλ−(1/2)(cosh x) =
1
π√2

x

∫
−x

cos λy
√cosh x − cosh y

dy, λ ∈ ℂ.

See [24, (7.4.1)]. An alternative notation is R(0,0)
z = Pz with z = iλ − (1/2) as in [30, p. 68].

(iii) TheMehler–Fock transform of order zero of f ∈ L1(sinh x dx) is

̂f (λ) =
∞

∫
0

f(x)ϕλ(x) sinh x dx.

Legendre’s functions are associated with Laplace’s equation in toroidal coordinates, and sometimes called
toroidal functions; see [23, 24]. Further details of the Mehler–Fock transform of order zero can be found
in [24, p. 390].

Proposition 6.2. Let (cos(tA))t∈ℝ be a cosine family on E and suppose that there exists κ such that

‖cos(tA)‖L(E) ≤ κ cosh(
t
2)

for all t ≥ 0. Then the following statements hold:
(i) There exists a hypergroup ([0,∞), ∗)with Laplace representation (2.2) such that f Ü→ ̂f is theMehler–Fock

transform of order zero.
(ii) (ϕA(x))x>0 is a bounded family of operators.
(iii) The integral

TA(f) =
∞

∫
0

ϕA(x)f(x) sinh x dx, f ∈ L1(sinh x dx),

defines a bounded linear operator such that TA(g ∗ h) = TA(g)TA(h) for all g, h ∈ L1(sinh x dx).
(iv) For2 < ν < ∞,0 < α < 1, p = ν/(ν+α−1), the linear operator f Ü→ TαA(f) is bounded Lp(sinh x dx) → L(E).

Proof. (i) Mehler [23, (8b), p. 184] showed that

−ϕ��
λ (x) − coth x ϕ�

λ(x) = (λ2 + 1
4)ϕλ(x).

Trimèche [30] introduces a hypergroup structure on (0,∞) such that the ϕλ for λ ∈ Σ1/2 are bounded and
multiplicative for this hypergroup, and he shows that the invariant measure and the Plancherel measure are
supported on [0,∞), and satisfy

m(x) dx = sinh x dx, π0(dλ) =
2|Γ((1/4) + (iλ/2))Γ((3/4) + (iλ/2))|2

|Γ(iλ/2)Γ(1 + (iλ/2))|2
dλ. (6.1)

By a computation involving Γ functions, particularly the identity −zΓ(−z)Γ(z) = π cosec(πz), one can reduce
(6.1) to π0(dλ) = λ tanh(πλ)dλ, so the generalized Fourier transform ̂f (λ) = ∫∞

0 f(x)ϕλ(x)m(x) dx reduces to
the Mehler–Fock transform of order zero. Note that λ = i/2 gives the trivial character, which is not in the
support of π0.

(ii) Definition 6.1 gives the Laplace representation. We now observe that
x

∫
−x

cosh(y/2) dy
√cosh x − cosh y

=
x

∫
−x

cosh(y/2) dy

√sinh2(x/2) − sinh2(y/2)

is bounded, so (2.3) holds, while (4.2) holds by hypothesis. Hence Proposition 4.1 gives ‖ϕA(x)‖L(E) ≤ κ.
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14 | G. Blower and I. Doust, Functional calculus and integral transforms

(iii) Given that the hypergroup convolution ∗ exists, we can apply Proposition 4.1.
(iv) Whereas ϕ0(x) can be expressed in terms of Jacobi’s complete elliptic integral of the first kind with

modulus i sinh(x/2), we require only the formula

ϕ0(x) =
1
π

x

∫
0

dy

√sinh2(x/2) − sinh2(y/2)
≤

2√2x
π√sinh(x/2)

.

From the differential equation (5.1), we obtain ϕ0(x) = O(xe−x/2) as x → ∞, so ϕ0 ∈ Lν(sinh x) for all
2 < ν < ∞. Hence we can apply Theorem 4.3.

Example 6.3. One can compute the transforms of polynomials in sech (x/2) by contour integration. For
example, one can adapt the formulae in [24] to obtain the array of Mehler–Fock transforms

f(x) ̂f (λ)
sech (x/2) (2/λ)cosech (πλ)

(sech (x/2))3 8λcosech(πλ)
(sech (x/2))5 (16/3)λ3cosech (πλ)

in which the last two transforms are bounded and holomorphic on Vϕ,1 for all 0 < ϕ < π/2. Likewise, any
positive even power (sech (x/2))ν transforms to a constant multiple of λν−2sech(πλ).

In the Cauchy problem for the Euclidean wave equation in space dimension three, the solution can have
one order of differentiability fewer than the initial data, due to the possible formation of caustics. Hence it
is natural to apply fractional integration operators to the cosine families which address this possible loss of
smoothness, and the order of the fractional integration required can depend directly upon the dimension.
The operators that we require are described in the following lemma.

Definition 6.4. The fractional integration operatorsWα and Uβ are defined on C∞(ℝ) by

Wα f(x) =
1
Γ(α)

x

∫
0

(cosh x − cosh t)α−1 sinh t f(t) dt,

Uβ f(x) =
1
Γ(β)

x

∫
0

(cosh x − cosh t)β−1f(t) dt,

where α and β are the orders ofWα and Uβ, such that Re α > 0 and Re β > 0.

Lemma 6.5. The following statements hold:
(i) Let Df = f �. Then the operators satisfy

WαWβ = Wα+β , WαUβ = Uα+β , cosech x DW1 = I, DU1 = I.

(ii) For ν ∈ Z such that ν ≥ 0 and λ ∈ ℝ, the associated Legendre function satisfies

Uν+1/2(cos(xλ)) = √ π
2
Γ(1/2 + iλ − ν)
Γ(1/2 + iλ + ν)

(sinh x)νPνiλ−1/2(cosh x), (6.2)

where the quotient of Gamma functions is a rational function of λ, and

Wν−1/2(cos(xλ)) =
d
dx
Uν+1/2(cos(xλ)), ν ∈ ℕ. (6.3)

Proof. (i) This is essentially contained in the statement and proof of [21, Lemma 5.2]. See also [30, Theo-
rem 5.2].

(ii) The identity (6.2) is knownas theMehler–Dirichlet formula [24, p. 373, p. 381], fromwhichwe obtain
(6.3) by differentiating.

For these operator families, we have the following result.
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Proposition 6.6. Suppose that (cos(tA))t∈ℝ is strongly continuous cosine family on a Banach space E. Suppose
that there existsM > 0 such that ‖cos(tA)‖L(E) ≤ M cosh(t/2) for all t ∈ ℝ. Then (U1/2(cos(tA))t∈ℝ is a bounded
family of operators.

Proof. By Lemma 6.5, the trigonometric and Legendre functions of Definition 6.1 are related by

ϕλ(x) = √ 2
π
U1/2(cos λx), cos λx =

d
dx

√ π
2W1/2(ϕλ(x)).

In the notation of Proposition 6.2, we have ϕA(t) = U1/2(cos(tA)), whence the result.

7 Geometrical applications

In this final section we shall look at certain Laplacian operators which occur naturally in differential geom-
etry and show how the results of the earlier sections can be applied in these settings. For the wave equation
associated with the Laplacian operator on a Riemannian manifold, the fundamental solutions travel at unit
speed. We can therefore accommodate the growth of balls by incorporating a suitable weight m(x) in the
functional calculus.

Example 7.1. (i) As a model for hyperbolic spaceHn of dimension n ≥ 2, we use the upper half-space

Hn = {x = (ξ, t) : ξ ∈ ℝn−1, t > 0}

with metric dx2 = t−2(dξ2 + dt2) and volume measure volH(dx) = t−ndtdξ . Let S(x, r) be the hyperbolic
sphere of radius r and center x. The Laplacian in geodesic polars at x is

∆ = −
∂2

∂r2
− (n − 1) coth r ∂

∂r
+ ∆S(x,r),

where ∆S(x,r) is the Laplacian on S(x, r). We restrict attention to radial functions depending on r. The corre-
sponding hypergroup on (0,∞) is

εr ∗ εs =
Γ(n/2)

√πΓ((n − 1)/2)

π

∫
0

εcosh−1(cosh r cosh s+sinh r sinh s cos θ) sin
n−2 θ dθ

and the invariant measure is sinhn−1 r dr.
(ii) Let

σκ(r) =
nπn/2

Γ(n/2 + 1)(
sinh r√−κ

√−κ
)
n−1
, κ < 0,

and mκ(r) = ∫r0 σκ(s) ds. When x = (ξ, 1), S(x, r) is also a Euclidean sphere of center (ξ, cosh r) and radius
sinh r and hence has area σ−1(r); see [6].

(iii) The functions log σ−1(x) and logm−1(x) are concave on (0,∞) for all n ∈ ℕ. To see this for logm−1(x)
we write

h0(x) = n cosh x
x

∫
0

sinhn t dt − sinhn+1 x, x ≥ 0,

and compute
d2

dx2
logm−1(x) =

sinhn−1 x
(∫x0 sinh

n t dt)2
h0(x), x > 0,

so it suffices to prove that h0(x) ≤ 0 for all x > 0. Since h0(0) = 0, it suffices to show that h�0(x) ≤ 0 for x ≥ 0.
For n = 1, this is easy to check. For n ≥ 2, we have h�0(x)/sinh x = h1(x), where

h1(x) = n
x

∫
0

sinhn t dt − cosh x sinhn−1 x, x ≥ 0.

Now h1(0) = 0 and h�1(x) = −(n − 1) sinhn−1 x ≤ 0, so h1(x) ≤ 0 for x ≥ 0; hence h�0(x) ≤ 0, and so h0(x) ≤ 0,
as required. This shows that hyperbolic space satisfies all the hypotheses of Proposition 7.3 below.
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Proposition 7.2. For 2 ≤ ν ≤ ∞, α = (ν − 2)(n − 1)/(2ν) and max{nν/((n + 1)ν + 2 − 2n), 1} < p < ν/(ν − 2)
the integral

∞

∫
0

f(t)Uα+1(cos t√∆) dt

defines a bounded linear operator on Lν(volH) for all f ∈ Lp(sinhn−1 t dt).

Proof. For n even let

w(x, t) = π−n/2

2(n+1)/2
(

1
sinh t

∂
∂t)

(n−2)/2
∫

B(x,t)

u(y) volH(dy)
√cosh t − cosh ρ(x, y)

,

where ρ(x, y) denotes the hyperbolic distance between x and y; for n odd, let

w(x, t) = π(1−n)/2

2(n+1)/2
(

1
sinh t

∂
∂t)

(n−3)/2 1
sinh t ∫

S(x,t)

u(y) areaS(x,t)(dy),

where areaS(x,t) is the area measure on S(x, t) = ∂B(x, t). Then w satisfies the wave equation on hyperbolic
space with

∂2

∂t2
w(x, t) = −∆w(x, t)

with w(x, 0) = 0 and ∂w
∂t (x, 0) = u(x). Hence we can write

w(x, t) = U1(cos(t√∆))u =
sin t√∆
√∆

u

so that Uα+1 = WαU1 by Lemma 6.5, and proceed to bound these operators.
The family of operators

T(α; t) = Γ(α + 1)Uα+1(cos(t√∆))

is bounded and analytic on {α : 0 < Re α < (n − 1)/2} in the sense that

α Ü→ ∫
Hn

T(α; t)f(x)g(x) volH(dx)

is analytic for all t > 0 and all compactly supported smooth functions f and g, and bounded and continuous
on {α : 0 ≤ Re α ≤ (n − 1)/2} for all t > 0. Indeed, the operator

T(iτ; t) : f Ü→
t

∫
0

(cosh t − cosh s)iτ cos s√∆f(x) ds

is bounded on L2(volH) by the spectral theorem. Also, writing ρ(x, y) = s, we have an operator on L∞

T( n−12 + iτ; t) : f Ü→ ∫
B(x,t)

(cosh t − cosh s)iτ f(y) volH(dy)

with norm bounded by volH(B(x, t)) ≤ Mn t sinhn−1 t for some Mn > 0 and all t ≥ 0.
By Stein’s interpolation theorem [25, p. 69], T(α; t) and hence Uα+1(cos t√∆) are bounded linear opera-

tors on Lν(volH) for 1/ν = θ/2 + (1 − θ)/∞ and α = 0θ + (1 − θ)(n − 1)/2, with norm

‖T(α; t)‖L(Lν) ≤ C sup
τ

‖T(iτ; t)‖θ
L(L2) supτ

‖T( n−12 + iτ; t)‖1−θL(L∞) ≤ Ct sinh
(n−1)(1−θ) t

for some C > 0. Now take p as above, and observe that for f ∈ Lp(sinhn−1 t dt) we have
∞

∫
0

t sinh(n−1)(1−2/ν) t |f(t)| dt ≤ (
∞

∫
0

|f(t)|p sinhn−1 t dt)
1/p

(
∞

∫
0

tp/(p−1) sinh−r t dt)
(p−1)/p

, (7.1)
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where r = p(n − 1)(1/p − 1 + 2/ν)/(p − 1) > 0 since 1/p − 1 + 2/ν > 0, and p/(p − 1) − r > −1 since
p

p − 1 − r + 1 =
p

p − 1(
nν + ν − 2n + 2

ν
−
n
p)

> 0

so the final integral in (7.1) converges. When n is even, U(n+1)/2(cos(t√∆)) is given in terms of associated
Legendre functions by (6.2).

The preceding example is the fundamental basis for comparison, as follows. LetM be a complete Riemannian
manifold of dimension n withmetric ρ that has injectivity radius bounded below by some r0 > 0. This means
that the exponential map is injective on the tangent space above the ball B(x, r0) = {y ∈ M : ρ(x, y) ≤ r0} for
all x ∈ M; see [9]. For fixed x0 ∈ M, we can use ρ(x, x0) as the radius in a system of polar coordinates with
center x0, noting that ρ is not differentiable on the cut locus. Let vol be the Riemannian volumemeasure, and
for an open subset Ω with compact closure, let Ωε = {x ∈ M : there exists y ∈ Ω such that ρ(x, y) ≤ ε} be its
ε-enlargement for ε > 0. Then let the outer Hausdorff measure of the boundary ∂Ω of Ω be

area(∂Ω) = lim sup
ε→0+

ε−1(vol(Ωε) − vol(Ω)).

In particular, let σ(x0, r) = area(∂B(x0, r)) be the surface area of a sphere, and m(x0, r) = vol(B(x0, r)) the
volume of a ball.

The Laplace operator ∆ is essentially self-adjoint on C∞c (M;ℂ) by Chernoff’s theorem [10], so we can
define functions of √∆ via the spectral theorem in L2(M, vol) = L2(M). By the spectral theorem, one can
define the group of imaginary powers ∆iτ which forms a C0 group on L2(M). Furthermore, ∆iτ extends to
define a C0 group on Lp(M) for 1 < p < ∞, as discussed in [26], especially Theorem 4.5. Hence Proposi-
tion 3.3 applies to Aiτ = ∆iτ.

Then by [9, (1.17)], for any smooth radial function g(r), the Laplace operator satisfies

∆g = −g��(r) − σ
�(x0, r)
σ(x0, r)

g�(r).

We formulate conditions under which this differential operator on (0,∞) lies in the scope of section 4. Condi-
tion (i) of Definition 5.1 relates to local geometrical properties with small r > 0; whereas (ii) relates to global
geometry and large r.

For r0 > δ > 0, the modified Cheeger constant [6] is

I∞,δ(M) = inf
Ω

area(∂Ω)
vol(Ω) ,

where the infimum is taken over all the open subsets Ω ofM that have compact closure, have smooth bound-
ary ∂Ω and contain a metric ball of radius δ.

Proposition 7.3. Let the Riemannian manifoldM be as above and suppose that
(i) M is noncompact with Ricci curvature bounded below by κ(n − 1), where κ < 0,
(ii) the modified Cheeger constant satisfies I∞,δ(M) > 0 for some δ > 0,
(iii) r Ü→ logm(x0, r) and r Ü→ log σ(x0, r) are concave functions of r ∈ (0,∞).
Then m(x0, r) and σ(x0, r) satisfy conditions (i), (ii) and (iii) of Definition 5.1 with 2ω0 ≥ I∞,δ(M).

Proof. First consider small r > 0. By Bishop’s comparison theorem [6, p. 126] and the local isoperimetric
inequality with constant SD > 0 as in [6, p. 130], there exists r0 > 0 such that

SDm(x0, r)(n−1)/n ≤ σ(x0, r) ≤ σκ(r), 0 < r < r0.

So by integrating one obtains

(SD/n)nrn ≤ m(x0, r) ≤ mκ(r), 0 < r < r0,

where the right-hand side is O(rn) as r → 0+, and

SD(SD/n)n−1rn−1 ≤ σ(x0, r) ≤ σκ(r), 0 < r < r0,

where σκ(r) = O(rn−1) as r → 0+.
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18 | G. Blower and I. Doust, Functional calculus and integral transforms

We now consider the behavior at r = 0. We obtain the bounds
SD

mκ(r)1/n
≤
σ(x0, r)
m(x0, r)

≤
nnσκ(r)
SnDrn

, 0 < r < r0.

By [9, (1.18)], there exist constants c1(n), c2(n) > 0 such that

0 <
c1(n)
r

≤
(d/dr)σ(x0, r)

σ(x0, r)
≤
c2(n)
r

, 0 < r < r0.

The exponential map is injective on the tangent space above the ball B(x, r0), so we can express σ(x0, r)/rn−1
andm(x0, r)/rn as r → 0+ in terms of themetric tensor and the exponentials of tangent vectors as in [5, p. 82].
This local expansion gives q(r) as r → 0+, thus verifying that (i) of Definition 5.1 is satisfied.

For r > δ we have σ(x0, r) ≥ I∞,δ(M)m(x0, r), and so

m(x0, r) ≥ m(x0, δ) exp((r − δ)I∞,δ(M)), r > δ, (7.2)

by a direct integration. Hence

σ(x0, r) ≥ I∞,δm(x0, r) ≥ I∞,δm(x0, δ) exp((r − δ)I∞,δ(M)), r > δ. (7.3)

Since logm(x0, r) is concave, σ(x0, r)/m(x0, r) decreases with r, and, by (7.2), σ(x0, r)/m(x0, r) → 2ω0
as r → ∞, where 2ω0 ≥ I∞,δ(M) > 0. This proves conditions (ii) and (iii) for m(x0, r).

Since log σ(x0, r) is concave, σ�(x0, r)/σ(x0, r) decreases with r. By (7.3) σ(x0, r) → ∞ as r → ∞. Hence
σ�(x0, r) ≥ 0 for all r > 0, so σ(x0, r) increases to infinity as r → ∞. Also, σ�(x0, r)/σ(x0, r) → 2ω1, where
2ω1 ≥ I∞,δ(M) > 0 by (7.3). Since m� = σ, we deduce that ω1 = ω0.
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