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Abstract
Advanced hashing technique is essential to facil-
itate effective organization and retrieval over on-
line image collections, where the contents are fre-
quently changed. Traditional multi-view hashing
methods based on batch-based learning generally
leads to very expensive updating cost. Meanwhile,
existing online hashing methods mainly focus on
single-view data and thus can not achieve promis-
ing performance when searching real online im-
ages, which are multiple view based data. In
this paper, we propose dynamic multi-view hash-
ing (DMVH), which can adaptively augment hash
codes according to dynamic changes of image.
Meanwhile, DMVH leverages online learning to
generate hash codes. It can increase the code length
when current code is not able to represent new
images effectively. Moreover, to gain further im-
provement on overall performance, each view is
assigned with a weight, which can be efficiently
updated during the online learning process. In or-
der to avoid the frequent updating of code length
and view weights, an intelligent buffering scheme
is also specifically designed to preserve significant
data to maintain good effectiveness of DMVH. Ex-
perimental results on two real-world image datasets
demonstrate superior performance of DWVH over
several state-of-the-art hashing methods.

1 Introduction
With the explosive growth of online image repositories, how
to develop intelligent hashing techniques to facilitate large
scale image access has attracted more and more attentions in
recent years. Despite different visual features, the Web im-
ages are often associated with text information (e.g., tags or
short comments). In order to improve search performance,
various kinds of multi-view hashing schemes have been pro-
posed to integrate the competency of both hashing technology
and multi-view learning [Zhang et al., 2011; Wu et al., 2014;
2015]. Comparing to single-view hashing, it not only en-
joys better search performance but also can support the search
queries from different views (e.g., those based on visual con-
tents or textual information).

Online image collection is highly dynamic and frequently
updated. Since traditional multi-view hashing methods are
designed based on batch-based learning, its updating cost
could be very expensive under online environment. Further,
when new images arrive, multi-view hashing needs to accu-
mulate all the data to retrain the hashing functions. Conse-
quently it leads to extremely high time complexity, which is
unaffordable. Motivated by the concerns, several online hash-
ing methods [Leng et al., 2015; Cakir and Sclaroff, 2015b]
have been proposed to support effective search over dynamic
image databases. However, their performance is still far be-
yond satisfactory. When applying existing multi-view hash-
ing and online hashing methods to Web image retrieval, they
generally suffer from several issues. Existing online hashing
methods aim at generating the binary codes with fixed length,
which can achieve optimal signature of the dynamic image
data. Meanwhile, the contents of new image could be seman-
tically different from the old one. When new image is inserted
into the database, longer code is required to preserve more
discriminative information to ensure accurate search over up-
dated image collections. According to previous results [Zhou
et al., 2014], longer hash code can lead to more comprehen-
sive image representation and thus better search performance.
For example, Wikipedia dataset [Rasiwasia et al., 2010] con-
sisting of 2866 images only needs 32 bits codes to achieve
the optimal accuracy. For NUS-WIDE having 269648 im-
ages, at least 128 bits are required to gain the best perfor-
mance. However, larger code length does not mean the bet-
ter performance, in that hashing for data with small size may
get trapped in local minima [Zhen and Yeung, 2012]. There-
fore, general hashing methods usually choose an appropriate
code length for a particular database, which is not suitable to
dynamic image collections. To solve this problem, the code
length for dynamic image database needs to be intelligently
augmented to guarantee hashing performance. On the other
hand, it is crucial to weight importance of different views in
the online learning of hash codes since different view gives
different contributions to discriminative capability of the final
hash codes. For example, text feature usually contains more
semantics than visual feature does [Caicedo et al., 2012], thus
it should be assigned with the higher weight. While several
multi-view hashing methods take the view weights into ac-
count, to the best of our knowledge, none of existing online
hashing methods focus on developing intelligent scheme to
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estimate optimal weighs for different views.
In this paper, we propose a novel unsupervised online hash-

ing method called Dynamic Multi-view Hashing (DMVH) to
support the effective and efficient online image retrieval. To-
wards this goal, DMVH is developed based on a dynamic
hashing scheme, where length of hashing codes can be adap-
tively augmented. In DMVH, a dictionary is constructed to
infer the hash codes of images. When a new data cannot be
represented by current dictionary, it will be augmented the
dictionary. Moreover, DMVH applies multi-view features for
hashing, and proper weight is estimated to each view. In the
online learning process, to avoid the frequent updating of dic-
tionary and modality weights, a buffering scheme is designed
to preserve the images for purpose of subsequential updating.
The core technical contributions of our work can be summa-
rized as follows:
1. In DMVH, the code length can be dynamically augmented

with the changes of image data. As a result, DMVH can
better represent the streaming images. In addition, users
are not required to predefine the appropriate code length
which will be automatically obtained by DMVH.

2. DMVH can effectively estimate proper weights for differ-
ent views to reflect their different importance in hashing.
Meanwhile, an intelligent buffer scheme is designed for
the online learning process, which enables highly efficient
learning process of hash codes and view weights.

3. Experimental results on real-world image datasets demon-
strate the superiority of DMVH in terms of both search
efficiency and accuracy.

2 Related Work
Multi-view Hashing: Recent years have witnessed fast de-
velopment of multi-view hashing techniques due to its wide
range of real applications. Existing multi-view hashing meth-
ods can be generally divided to two main categories according
to the query types supported. The multi-view hashing meth-
ods combine all features to construct database hash codes,
but they require that query has the same features as database
data. This type of multi-view hashing usually aims to gain
the effective combination of multi-view features. Composite
Hashing with Multiple Information Sources (CHMIS) [Zhang
et al., 2011] leverages graphs of multi-views features to learn
the hash codes, and each view is assigned with a weight for
graph combination. Since graph learning is inefficient, an-
chor graph is adopted to accelerate the modeling. Multi-view
Anchor Graph Hashing (MVAGH) [Kim and Choi, 2013] ex-
ploits anchors to construct graphs to achieve more effective
hashing. Multiview Alignment Hashing (MAH) [Liu et al.,
2015] combines matrix factorization with anchor graph learn-
ing for hashing, and it achieves good performance based on
multi-view features. Multi-view hashing is also called as
cross-view hashing since it can support image search based
on queries with various view. Generally, cross-view hashing
methods aim at modeling the correlation of different views.
For example, as an extended version of Canonical Correla-
tion Analysis (CCA), Cross-view Hashing (CVH) [Kumar
and Udupa, 2011] optimizes the hamming distance of differ-
ent views. Inter-media Hashing (IMH) [Song et al., 2013]
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Figure 1: The overall illustration of DMVH.

both optimizes the intra-media and inter-media consistency.
Semantic Correlation Maximization (SCM) [Zhang and Li,
2014] maximizes the semantic correlation between image and
text features, and it further considers the quantization loss of
hash codes. Semantic Topic Multimodal Hashing (STMH)
[Zhou et al., 2014] firstly generates text topics and image con-
cepts, and then combines them in a common hash space.

Meanwhile, a few multi-view hashing methods were de-
veloped to both support any single-view query and combine
multi-few features. Collective Matrix Factorization Hashing
(CMFH) [Ding et al., 2014] uses Collective Matrix Factor-
ization (CMF) to combine image and text features, and it si-
multaneously learns the hash function of single image feature
and text feature. Although current multi-view hashing meth-
ods perform well in combining or correlating multi-view fea-
tures, they are not suited to streaming data where images are
s sequentially inserted into the database. Moreover, process-
ing multi-view features under online learning environment is
more challenging than batch-based learning.
Online Hashing: Online hashing has been emerging as a
promising technique to generate compact binary code un-
der dynamic environment. Due to its practical value in real
applications, numerous online hashing methods have been
proposed recently and can be classified into two major cat-
egories: supervised learning based and unsupervised learning
based. In particular, Online Kernel Hashing (OKH)[Huang et
al., 2013] and Adaptive Hashing [Cakir and Sclaroff, 2015a]
are typical examples of supervised methods. Both of them
use similar image pairs as training data. Although supervised
learning based method can effectively preserve the correla-
tion of images in hash codes, large amount of labeled training
examples are required and could be very expensive to collect.
On the other hand, Online Sketching Hashing (OSH) [Leng
et al., 2015] is unsupervised online hashing method, which
doesn’t rely on labeled data. However, the main disadvan-
tage of existing online hashing methods is their incapability
to achieve high quality hash code. Thus, good retrieval per-
formance can not be promised.

3 Dynamic Multi-View Hashing
As illustrated in Figure 1, DMVH consists of two main mod-
ules: online learning process and search process. In the dy-
namic hash codes, blue area, red area and yellow area de-
note the old codes, hash codes of new data and the augmented
codes respectively. The database includes images having both
visual and text contents. When new image arrives, multiple



kinds of visual features and one text feature are extracted and
combined via multi-view dictionary learning. The differenti-
ation threshold Lt determines whether the image can be rep-
resented using current hash codes. If not, it is added to the
buffer, and the buffer data are used to augment hash codes
till no more space is available in the buffer. In the following
sections, more details about Lt will be presented.

3.1 Model Formulation
In DMVH, at step t, the database contains old image features
added at previous steps Xm

t−1
∣∣M
m=1

, where M is the number
of views. Xm

t−1 ∈ R(t−1)×dm , and dm is the dimension of
mth view feature. The old images are represented with hash
codes Ht−1 ∈ {0, 1}(t−1)×C , where C is the code length.
Then new image xmt |

M
m=1 is added into the database, and

Xm
t = [(Xm

t−1)T , (xmt )T ]T . Our goal is to learn new hash
codes ht ∈ {0, 1}1×C to represent new image. The hash
function also needs to be learnt to project any views into the
learned hash space. Towards the goal, the kernel dictionary
representation is gained to construct hash codes. Dictionary
learning is effective in learning hash codes [Yu et al., 2014;
Zhang et al., ], and the kernel projection will make the hash
codes preserve more discriminative information. Thus, at
time t, the dictionary consists of a subset of the database sam-
ples with muti-view features. For each view, its correspond-
ing dictionary is denoted as Dm

t = [(xma1
)T , . . . , (xmaC

)T ]T .
Assuming each sample can be constructed from its hash codes
and dictionary, we have the following formulation:

min Lt

(
Ht, D

m
t |Mm=1

)
=

M∑
i=1

α2
m ‖Htφ (Dm

t )− φ (Xm
t )‖2F + λ ‖Ht‖2F

s.t.
M∑

m=1
αm = 1 (1)

where φ(·) is a kernel projection function, λ is the regulariza-
tion parameter, α = [α1, . . . , αM ] denotes the view weights.

3.2 Online Learning
Basic process At each step t, when new image is added into
the database, the overall objective function can be reformu-
lated as:

min Lt

(
Ht, D

m
t |Mm=1

)
=

Lt−1
(
Ht−1, D

m
t |Mm=1

)
+ lt

(
ht, D

m
t |Mm=1

)
(2)

If dictionary Dm
t |Mm=1 is not changed, Dm

t = Dm
t−1, the con-

straint Lt−1
(
Ht−1, D

m
t |Mm=1

)
has been satisfied by previous

learning steps. Thus, We only need to consider the optimiza-
tion of lt

(
ht, D

m
t |Mm=1

)
, and the objective function is:

min lt
(
ht, D

m
t |Mm=1

)
=

M∑
m=1

α2
m ‖htφ (Dm

t )− φ (xmt )‖2F + λ ‖ht‖2F (3)

After applying the kernel trick, the objective function (3) can
be rewritten as:

M∑
m=1

α2
m

(
htK̃

m
t h

T
t − 2ht(z

m
t )

T
+ kmtt

)
+ λhth

T
t (4)

where K̃m
t ∈ RC×C is the kernel matrix of the dic-

tionary Dm
t , and K̃m

t (i, j) = φ(xmai
)φ(xmaj

)T , (zmt )i =

φ(xmt )φ(xmai
)T , ai is the index of ith dictionary element.

kmtt = φ(xmt )φ(xmt )T .
By setting the derivative of Eq.(4) to zeros, we can obtain

ht as:

ht = zt

(
K̃t + λI

)−1
(5)

where K̃t =
M∑

m=1
α2
mK̃

m
t , zt =

M∑
m=1

α2
mz

m
t .

For each modality m, if vector φ (xmt ) is linearly indepen-
dent on vectors of dictionary φ (Dm

t ). Then ht computed by
Eq.(5) cannot satisfy Eq.(3), and xmt should be added into the
dictionary. Therefore, we have to determine the linear depen-
dence of new vectors. By substituting Eq.(5) into Eq.(3), it
can be transformed to:

lt
(
ht, D

m
t−1|Mm=1

)
=

M∑
m=1

α2
m (kmtt − zmt ht) + λhth

T
t (6)

We use a threshold ρ to determine the linear dependence.
If lt

(
ht, D

m
t−1|Mm=1

)
< ρ, then the approximate linear depen-

dence described by Eq.(3) can be satisfied. And we do not
need to change dictionary. If lt

(
ht, D

m
t−1|Mm=1

)
≥ ρ, then

new hash codes cannot be effectively represented by current
dictionary. As a result, both dictionary and hash codes need to
be augmented, and the modal weights should be recomputed
accordingly.
Dictionary Augment with Buffer Scheme Considering the
worst case that new image is always very different from
database images and cannot be represented by current dic-
tionary, frequent dictionary updating is unavoidable and ob-
viously inefficient. Therefore, a buffer scheme is applied to
avoid the frequent updating process. The buffer scheme re-
laxes the restrict linear dependence in Eq.(3). At each step t,
if the new image satisfies lt

(
ht, D

m
t−1|Mm=1

)
≥ ρ, then im-

age t is inserted into the buffer with maximum size Bmax.
After the updating, in case that the buffer is full, image b
will be selected from the buffer with highest value of lt.
Then we augment the dictionary with image b and update
the view weights α. The dictionary is updated with Dm

t =
[(Dm

t−1)T , (xmb )T ]T , and the hash codes constructed from
dictionary have to be augmented accordingly. We should op-
timize the following overall objective function:

min Lt

(
Ht, D

m
t |Mm=1

)
=

Lt\b
(
Ht\b, D

m
t |Mm=1

)
+ lb

(
hb, D

m
t |Mm=1

)
s.t.

M∑
m=1

αm = 1 (7)



Where Ht\b denotes the hash codes of database images ex-
cept b. Since image b is linearly independent on other dictio-
nary images, we can only use it to represent itself. Therefore
we have hb = [0, 1], and lb

(
hb, D

m
t |Mm=1

)
= 0. Then Eq.(7)

can be simplified as:

Lt

(
Ht, D

m
t |Mm=1

)
= λTr

(
HtH

T
t

)
+

M∑
m=1

α2
mTr

(
Ht\bK̃

m
t H

T
t\b − 2Ht\b

(
Zm
t\b

)T
+Km

t\b

)
(8)

After the dictionary is augmented, the new K̃m
t and Zt\b

can be computed as:

K̃m
t =

[
K̃m

t−1 zTb
zb kbb

]
Zm
t\b =

[
Zm
t−1\b, k

(
Xt\b, xb

)]
(9)

Lemma 1. If Ht\b =
[
Ht−1\b,0

]
, then the following equa-

tion is satisfied:

Lt

(
Ht\b, D

m
t |Mm=1

)
= Lt−1

(
Ht−1\b, D

m
t−1|Mm=1

)
(10)

Proof. From Eq.(9), we can obtain:

Ht\bK̃
m
t H

T
t\b =

[
Ht−1\b,0

] [ K̃m
t−1 zTb
zb kbb

] [
HT

t−1\b
0

]
= Ht−1\bK̃

m
t−1H

T
t−1\b (11)

Similarly, we have:

Ht\b

(
Zm
t\b

)T
= Ht−1\b

(
Zm
t−1\b

)T
(12)

Based on above two equations and Eq.(8), we can easily ob-
tain that each element in Lt and Lt−1 is equivalent, thus
Eq.(10) is satisfied.

Theorem 1. The objective function Lt

(
Ht, D

m
t |Mm=1

)
will

be decreased after we set Ht =
[
HT

t\b, h
T
b

]
, and Ht\b =[

Ht−1\b,0
]

and hb = [0, 1].

Proof. According to Lemma 1 and Eq.(7), we can ob-
tain that Lt

(
Ht, D

m
t |Mm=1

)
= Lt−1

(
Ht−1\b, D

m
t−1|Mm=1

)
+

lb
(
hb, D

m
t |Mm=1

)
, and lb

(
hb, D

m
t |Mm=1

)
= 0 can be satis-

fied by hb = [0, 1]. Before the dictionary augment, image
b in the buffer always has a high lb

(
h̄b, D

m
t−1|Mm=1

)
which

describes the linear dependence, where h̄b denote old codes
of b. It is obviously that lb

(
h̄b, D

m
t−1|Mm=1

)
> ρ > 0 =

lb
(
hb, D

m
t |Mm=1

)
. Finally we have Lt

(
Ht, D

m
t |Mm=1

)
<

Lt−1
(
Ht−1, D

m
t−1|Mm=1

)
. Therefore, the objective function

can be decreased.

Theorem 1 confirms that our objective function is consis-
tently decreased by the buffer scheme. By specially consid-
ering the image with largest lb and reduce it to 0 by using
dictionary augment, the objective functions Lt can be largely
decreased. If the buffer is full and we augment the codes,
then we preserve half images with highest l to ensure that

Algorithm 1 Online learning process of DMVH at step t.
Input:

xmt |Mm=1,Dm
t−1|Mm=1,K̃m

t−1|Mm=1, α
Output:

Ht, Dm
t |Mm=1, K̃m

t |Mm=1, α
1: Compute ht by Eq.(5);
2: Compute lt(ht, Dm

t−1|Mm=1) by Eq.(6)
3: if lt(ht, Dm

t−1|Mm=1) < δ then
4: Ht = [HT

t−1, sgn(hTt )]T ;
5: K̃m

t = K̃m
t−1 and Dm

t = Dm
t−1;

6: else if lt(ht, Dm
t−1|Mm=1) >= δ then

7: Add t into the buffer, and use Algorithm 2 to optimize
Ht, α and K̃m

t ;
8: end if

Algorithm 2 Augment dictionary with buffer scheme.
Input:

Buffer, Ht, Dm
t−1|Mm=1, K̃m

t−1|Mm=1, α
Output:

Ht, Dm
t |Mm=1, K̃m

t |Mm=1, α
1: Add image t and corresponding lt(ht, D

m
t−1|Mm=1) into

buffer;
2: Buffer size B = B + 1;
3: if B = Bmax then
4: Select image b in buffer with highest lb;
5: Remove 1/2 of buffer data with lowest l;
6: Augment dictionary Dm

t = [(Dm
t−1)T , (xmb )T ]T ;

7: Update K̃m
t according to Eq.(9);

8: Update Ht\b =
[
Ht−1\b,0

]
;

9: Update hb = [0, 1];
10: Update α according to Eq.(13)
11: else if B < Bmax then
12: K̃m

t = K̃m
t−1, Dm

t = Dm
t−1;

13: end if

high l can be preserved for further process to decrease objec-
tive function. The frequency of augmenting depends on the
buffer size, if buffer size is large, then the learning process
is more efficient, but objective function can not be effectively
decreased. Thus we should make a tradeoff between learning
efficiency and effect by adjusting the buffer size.

At last, the view weights need to be updated to further re-
duce the objective function (7). With the Lagrange multiplier
for Eq.(7), we can compute αm using:

αm =
1/δm∑M
i=1 1/δi

(13)

where δm = Tr
(
HtK̃

m
t H

T
t − 2Ht(Z

m
t )

T
+Km

tt

)
.

The basic online learning process and dictionary augmen-
tation process are shown in Algorithm 1 and 2 respectively.
DMVH is efficient in learning hash codes. From Algorithm 1
we can find that the only the hash codes of new data is com-
puted, and the old codes are not needed to update. Although
Algorithm 2 updates the old hash codes of previous data, they
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Figure 2: The MAP scores of MIR Flickr at different database sizes.
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Figure 3: The MAP scores of NUS-WIDE at different database sizes.

are only augmented with all zero elements, which can be ef-
ficiently implemented. The time complexity of DMVH is in-
dependent of database size, it only relies on buffer size B and
code length C.
Extension to visual and text features In real-world applica-
tions, users may not apply all the views as query but choose
some of them. Besides the multi-view features, we specifi-
cally consider the query based on visual features or text fea-
ture. For the visual feature based query, its hash codes can be

computed as: hv = sgn

(
M−1∑
m=1

α2
mz

m
v

(
K̃t

)−1)
, where view

1 to M − 1 are the visual features and view M is text feature.
If the query only contains text feature (e.g. several keywords),

its hash codes can be computed ashte = sgn

(
zMte

(
K̃t

)−1)
.

4 Experiments
4.1 Datasets and Experimental Settings
Two large scale image test collections used for experimental
study include:

• MIR Flickr [Huiskes and Lew, 2008] contains 25,000
images collected from Flickr. All images are annotated
with 38 class labels which are used as the ground truth.
In the retrieval process, images which share at least one
same label are considered as relevant. 1% images are
selected as queries, and the rest images are inserted to
the database sequentially. 3 visual features [Guillaumin
et al., 2010] considered include 100-D Hue histogram,

1000-D SIFT BoVW, 4096-D RGB histogram and 512-
D GIST. Each image is associated with text tags, thus
457-D BoW is used as text feature.
• NUS-WIDE [Chua et al., 2009] includes 269,648 im-

ages collected from Flickr, each images is labeled by 81
concepts, which can be used for evaluation. Same as
MIR Flickr, 1% images are used as queries and the rest
images forms the streaming database. We also use 3 vi-
sual features, including 500-D SIFT BoVW, 64-D color
histogram, 144-D color correlogram, 73-D edge direc-
tion histogram, 128-D wavelet texture and 225-D block-
wise color. 1000-D BoW serves as text feature.

In the implementation of DMVH, we use Gaussian kernel
for all visual features, and histogram intersection kernel for
text feature. DMVH doesn’t contain many parameters to con-
figure. The regularization λ is set to 10−3, it is used to avoid
the matrix singularity and has little influence on the final re-
sults. The maximum buffer size is set to 1000 on MIR Flickr
and 5000 on NUS-WIDE respectively, the threshold ρ is set
to 0.5.

Since our method is purely based on unsupervised, we
compare our method with several representative unsupervised
hashing methods, including Online Sketching Hashing (OSH)
[Leng et al., 2015], Collective Matrix Factorization Hashing
(CMFH) [Ding et al., 2014], Multiview Alignment Hashing
(MAH) [Liu et al., 2015] and Inter-media Hashing (IMH)
[Song et al., 2013]. OSH cannot support any single-view
or partial-view query such as text query and image query.
CMFH can only cope with two views, thus we concatenate



Table 1: Learning time and code length at different sizes on NUS-WIDE.
Database size (104) 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 26.7

OSH time (s) 227 510 852 1269 1728 2248 2870 3610 4518 5844 7337
DMVH time (s) 135 287 469 684 932 1223 1558 1922 2317 2742 3099

DMVH code length 72 82 92 101 111 121 130 139 149 158 165

all visual features into a visual feature. MAH cannot support
visual or text query, it only supports multi-view query. IMH
supports visual and text query, but cannot support multi-view
query.

Mean average precision (MAP) [Song et al., 2013] is used
to measure the effect of retrieval, and MAP scores are com-
puted on the top 50 retrieved documents of each query. More-
over, we evaluate the learning time of all methods to mea-
sure the efficiency of retrieval. Learning time is computed
as the total time of learning hash codes and functions, thus
it accumulates the time of all learning processes from first
step to current step. All the experiments are conducted on a
computer with Intel Core(TM) i5 2.6GHz 2 processors and
12.0GB RAM.

4.2 Results and Discussions
Performance Comparison: Experimental study considers
three types of queries: visual query, text query and multi-view
query. The visual query includes all the visual features, text
query contains only one text feature, and multi-view query is
the combination of visual and text features.

On MIR Flickr, images are added to database sequen-
tially, thus the hashing performance is evaluated at differ-
ent database size. We evaluate the MAP scores at t =
{2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25} × 103. The code
length of DVMH is changed with the increase of database
size, therefore is not appropriate to evaluate the performance
of other methods at various code lengths. According to previ-
ous results [Ding et al., 2014], optimal code length we use is
64 bits. In order to ensure fair and robust comparison, DMVH
doesn’t increase the code length when it reaches 64 bits.

Figure 2 shows the MAP scores over MIR Flickr with dif-
ferent database sizes. In image query and text query, DMVH
is compared with IMH and CMFH. In multi-view query, we
compare DMVH with CMFH, MAH and OSH. From this
figure we can find that DMVH obtains higher MAP scores
than other methods. In visual and multi-view query, the MAP
score of DMVH increases with the data size growth. This il-
lustrates the effectiveness of our dynamic scheme where code
length is adaptively augmented. With the augmentation of
code length, the performance of DMVH can be consistently
improved.

Similar to MIR Flickr, MAP is applied as evaluation metric
on NUS-WIDE with different test collection sizes, the opti-
mal code length of compared methods is set to 128 bits. The
upper bound of code length in DMVH is set to be 128 bits.
Figure 3 shows the MAP scores over different database sizes.
We observe similar result as with MIR Flickr, DMVH out-
performs other multi-view hashing methods. On all types of
queries, the MAP socres of DMVH are improved with the
increase of data size. The increase of MAP scores on NUS-
WIDE are more significant than MIR Flickr, the reason is that
NUS-WIDE contains much more images, thus the increase
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Figure 4: Effects of buffer size on NUS-WIDE.

of code length are more benefit to NUS-WIDE. Note that on
NUS-WIDE, we use all 81 labels for evaluation, other works
such as [Ding et al., 2014] use a reduced version which only
contains 10 labels. Therefore the overall scores reported in
this paper are relatively lower.
Efficiency Analysis: We also compare the learning time of
DMVH to online hashing method OSH. Table 1 reports the
learning time of two methods, and the code length of DMVH
at different sizes. We can find that DMVH consumes less
learning time than OSH. DMVH uses the buffer scheme to
avoid the frequent updating process. It is more efficient than
OSH while guarantees the hashing performance. In addition,
we can find that the code length of DMVH is dynamically
changed with the increase of data size.
Effects of Buffer: Table 4 reports the comparison of MAP
and training time with buffer size {500,1000,3000, 5000,
7000, 10000}. All the results are evaluated at the final step
of NUS-WIDE, where all 269648 images are included in
database. We can find that the results are relatively steady
at different buffer size, which demonstrates the robustness of
DMVH. Moreover, both MAP scores and training time de-
crease with the buffer size, thus we can choose a proper size
by considering the tradeoff between MAP scores and training
time.

5 Conclusions
This paper presents Dynamic Multi-view Hashing (DMVH)
for online retrieval of streaming image. Distinguished from
existing approaches, DMVH can adaptively augment code
length to preserve more discriminative information of new
image. It constructs hash codes by a dynamic dictionary,
when new image cannot be effectively represented using ex-
isting hash codes. Moreover, DMVH can augment the dictio-
nary to give better representation of this data. To avoid the
frequent updating of the dictionary, we also design a buffer
scheme, where the only data significantly different to exist-
ing elements is considered for updating. Experimental results
on MIR Flickr and NUS-WIDE demonstrate the superior ef-
ficiency and effectiveness of DMVH over the state of the art
online hashing and multi-view hashing methods.



References
[Caicedo et al., 2012] Juan C Caicedo, Jaafar BenAbdallah,
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