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Abstract—In this paper, we propose a general framework to
study the tradeoff between energy efficiency (EE) and spectral
efficiency (SE) in massive MIMO enabled HetNets while ensuring
proportional rate fairness among users and taking into account
the backhaul capacity constraint. We aim at jointly optimizing
user association, spectrum allocation, power coordination, and
the number of activated antennas, which is formulated as a
multi-objective optimization problem maximizing EE and SE
simultaneously. With the help of weighted Tchebycheff method, it
is then transformed into a single-objective optimization problem,
which is a mixed-integer non-convex problem and requires
unaffordable computational complexity to find the optimum.
Hence, a low-complexity effective algorithm is developed based
on primal decomposition, where we solve the power coordination
and number of antenna optimization problem and the user
association and spectrum allocation problem separately. Both
theoretical analysis and numerical results demonstrate that our
proposed algorithm can fast converge within several iterations
and significantly improve both the EE-SE tradeoff performance
and rate fairness among users compared to other algorithms.

Index Terms—Energy efficiency, HetNets, massive MIMO,
power coordination, proportional fairness, spectral efficiency,
spectrum allocation, user association.

I. I NTRODUCTION

OWING to the spectrum scarcity and the explosive growth
of mobile data traffic demand for multimedia applica-

tions, there is an urgent need to significantly improve spectral
efficiency (SE) [1]. Meanwhile, with steadily rising energy
costs and increasing environmental concerns, energy efficiency
(EE) is becoming increasingly important for wireless com-
munications and has caught more and more attention [2].
Therefore, the joint maximization of EE and SE has turned
into one of the main goals for the future fifth-generation
(5G) cellular communication networks. Also, it has been
widely recognized that massive multiple-input-multiple-output
(MIMO) and multi-tier heterogenous networks (HetNets) are
two promising techniques to achieve this goal for 5G net-
works [3]. As massive MIMO base stations (BS) are capable
of communicating with multiple single-antenna users over
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the same time-frequency slot, the system SE can be greatly
improved [4]. Besides, massive MIMO provides a high power
gain, which helps to reduce the transmit power and further
obtain a higher EE. On the other hand, since multiple small
cells are overlaid on the coverage of each macrocell in the
HetNets, the spectrum is densely reused over a geographical
area, which makes BSs closer to users. Consequently, this
topology can significantly improve the system EE and SE [5],
and also enhance the performance of cell-edge users [6].

Although HetNets show great promises to obtain higher SE
by universal frequency reuse, this infrastructure also introduces
new challenges. Specifically, since the transmit powers can
be much diverse for different kinds of BSs in HetNets, the
conventional user association scheme which is determined
according to signal-to-interference-plus-noise ratio (SINR),
will cause heavy load imbalance and further damage the
system SE and EE [7]. Therefore, the joint user association
and spectrum allocation is needed to improve the network SE.
In addition, as multiple small cells coexist with the macro
cell, the power coordination is indispensable to mitigate the
inter-tier and intra-tier interference. As for massive MIMO,
although equipping large number of antennas can improve the
system SE, it also causes higher circuit power consumption
when more antennas are deployed, which may degrade the
performance of EE. Furthermore, these problems are closely
coupling, influencing the system EE and SE together. Hence,
intelligent joint resource optimization is one of crucial issues
for massive MIMO enabled HetNets.

The energy efficient resource optimization for HetNets has
been investigated extensively [8]-[15]. In [8], energy efficient
user association is optimized to minimize the total power
consumption. The work in [9] investigates both the noncooper-
ative and cooperative energy-efficient power control, where all
tiers selfishly or cooperatively choose their transmit power to
optimize their network EE. Similarly, the authors in [10] and
[11] provide insight on energy efficient power coordination,
where a new adjustable utility function is adopted to jointly
optimize SE and EE of each BS in HetNets. In [12], the
energy efficiency issue is formulated to minimize the total
power consumption of all pico BSs under the average delay
constraint. Nevertheless, the studies for the EE optimization
in massive MIMO enabled HetNets are still limited. In [13],
the authors analyze the impact of massive MIMO on the SE
and EE of K-tier HetNets by employing a stochastic geometry
method. In [14], the summation of users’ EE is maximized
with the optimization of user association. Recently, the tradeoff
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between EE and SE is studied in our earlier work [15],
where the user association and power coordination are jointly
optimized.

However, in the aforementioned studies [8]–[15], the con-
straint of backhaul capacity between BSs and the core net-
work is not considered. With the employment of dense small
cells and large-scale antenna arrays in macro BSs, there
will be enormous data transmissions over backhaul links,
while current backhaul solutions can not provide sufficient
capacity [16], [17] and has become one of crucial perfor-
mance constraints [18], [19]. Hence, it is indispensable to
take the backhaul constraint into account when optimizing EE
and SE in massive MIMO enabled HetNets. The backhaul
bottleneck of HetNets has been investigated to some extent
in the literature [20]–[22]. The authors in [20] propose a
distributed load-balancing user association algorithm. In [21],
the in-band wireless backhaul in massive MIMO enabled
HetNets is investigated, where the downlink user association
and backhaul bandwidth allocation are jointly optimized to
maximize the sum logarithmic user rate. Similarly, the work
in [22] considers the joint optimization of user association and
resource allocation in hybrid energy powered HetNets, which
aims at maximizing the network utility under the proportional
fairness subject to both the backhaul and energy constraints.
Nevertheless, the studies in [20]–[22] only involve SE and rate
fairness, and the performance of EE is totally ignored.

To the best of our knowledge, there is no existing work that
studies the tradeoff between EE and SE in massive MIMO
enabled HetNets while taking into consideration the backhaul
capacity constraint. Motivated by such observations, this paper
studies the tradeoff between EE and SE in massive MIMO
enabled HetNets from an optimization perspective under the
proportional fairness criterion and the constraint of back-
haul capacity, where we comprehensively consider the joint
optimization of user association, spectrum allocation, power
coordination, and the number of activated antennas. To be
more specific, the contributions of this paper are summarized
in the following:

• A general framework is proposed to investigate the
tradeoff between the system EE and SE while ensuring
proportional rate fairness among users and taking into
account the backhaul capacity constraint. Specifically,
this problem is first formulated as an multi-objective
optimization (MOO) problem maximizing the sum log-
utility and minimizing the total power consumption si-
multaneously. The weighted Tchebycheff method is then
employed to transform the MOO problem into a single-
objective optimization (SOO) problem, which is neces-
sary and sufficient for Pareto optimality and thus provides
the complete Pareto optimal set with the variation of the
weighting parameter.

• We exploit four degrees of freedom in resource opti-
mization for massive MIMO enabled HetNets, which is
the first time in the literature to jointly optimize user
association, power coordination, spectrum allocation, and
the number of activated antennas simultaneously. Note
that these optimization items are closely coupling in terms
of EE and SE. To reduce computational complexity, an

effective algorithm is proposed to solve this mixed-integer
and non-convex problem, where primal decomposition is
used to separate the original problem into two levels.
Specifically, the power coordination and antenna number
optimization problem is solved via successive convex
programming (SCP), which is transformed into a series of
convex problem and thus requires only polynomial com-
plexity. For the other problem, we develop a distributed
user association and spectrum allocation algorithm via
Lagrange dual decomposition, which reduces both the
computational complexity and information exchange.

• The optimality, convergence, and complexity of the pro-
posed algorithm are analyzed. It is first demonstrated
theoretically that the proposed power coordination and
antenna number optimization algorithm is guaranteed
to converge to the solution satisfying KKT conditions.
Then, we study the optimality of the proposed distributed
user association and spectrum allocation algorithm, and
prove that the dual gap between the primal problem and
its dual problem is bounded. In addition, the overall
computational complexity of the proposed algorithm is
analyzed in detail. Furthermore, the convergence prop-
erty of the proposed algorithm is testified by simulation
results, including both the iterations of SCP algorithm and
the overall iterations between two subproblems. Also, the
effectiveness of the proposed algorithm is demonstrated
numerically compared to other algorithms in terms of the
EE-SE tradeoff and rate fairness.

• Particularly, the characteristics about the optimal number
of activated antennas are investigated theoretically and
numerically. We find that the optimal number of activated
antennas is always the number of equipped antennas
when the system SE is maximized. By contrast, the
optimal number of activated antennas corresponding to
the maximum EE diminishes with the increase of the
circuit power consumption per antenna, when the number
of equipped antennas is sufficiently large. The impact of
the backhaul capacity constraint on the system EE and SE
is also captured via numerical results, which indicates that
the backhaul capacity is indeed a bottleneck for network
performance.

The rest of this paper is organized as follows. We first
describe the system model in Section II. Then, in Section
III, a multi-objective optimization problem is formulated to
maximize SE and EE while ensuring proportional rate fairness,
which is further solved in Section IV. Finally, simulation
results are presented in Section V, which is followed by
conclusions in Section VI.

II. SYSTEM MODEL

As presented in Fig. 1, we consider the downlink transmis-
sion in a two-tier HetNet consisting of a macro BS (MBS),
I − 1 single-antenna pico BSs (PBS), andJ single-antenna
users. Leti ∈ {1, 2, · · · , I} be the index of BSs, where we
usei = 1 to represent the MBS, and the others are PBSs. The
indexes of users are denoted byj ∈ {1, 2, · · · , J}.

Besides, a time-division duplexing (TDD) scheme is con-
sidered with perfect channel state information (CSI). It is



0090-6778 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2730867, IEEE
Transactions on Communications

3

 !"# $%&'($)%*+,-..#"./*%0&$)%*+,10#" 2/+#0(3$4%+0(3$5%#"6"!!(7/+',/869%7"#(7/+',/86

:::

Fig. 1. System model.

also assumed that all BSs share the same frequency, and
the orthogonal frequency-division multiple access (OFDMA)
scheme is applied among users associated with the same BS.
Specifically, the MBS is equipped with a large number of
antennas, and letM represent the number of active antennas.
We also assume that the MBS can transmit at mostN

(N ≪ M ) downlink data streams simultaneously over the
same frequency band, i.e., the beamforming group size is
N , and linear zero-forcing beamforming (LZFBF) is adopted
for the downlink transmission. As shown in Fig. 1, wireless
backhaul is assumed for the information exchange between
PBSs and the sink switch, and the data transmission between
MBS and the core network is based on the fiber backhaul.

A. Achievable Data Rate and Power Consumption

In this paper, we assume ‘favorable propagation’ between
the MBS and users, i.e., the effects of small-scale fading
can be eliminated completely by using a large number of
antennas, which is derived based on the asymptotic random
matrix theory [23]. p = [p1, p2, · · · pI ] is defined as the
transmit power vector of all BSs. Here we adopt the data
rate formula in [21] and [24] for the LZFBF precoding. Thus,
when M,N → ∞ and N

M
≪ 1 is fixed, the achievable

normalized downlink data rate of userj associated with the
MBS converges to the following deterministic expression

rij = N log2 (1 + SINRij (p,M)) , i = 1, (1)

where the signal-to-interference-and-noise ratio (SINR) is cal-
culated by

SINRij (p,M) =
M −N + 1

N
·

pigij
∑

l6=i

plglj + σ2
j

, i = 1. (2)

Here gij is the large-scale fading between thei-th BS and
the j-th user, andσ2

j represents the noise power at userj.
Note that this large-system asymptotic is demonstrated to be
accurate for practical values of the antenna array sizeM and
the beamforming group sizeN in [24] and the references
therein.

Generally, the user association period is sufficiently longer
than the period of small-scale fading so that the impact
of small-scale fading can be averaged out in the channel

measurement [12], [21]. Hence, the long-term transmission
data rate for users associated with PBSs is considered, i.e.,

rij = log2 (1+SINRij) , i > 1, (3)

where the long-term SINR is presented as

SINRij =
pigij

∑

l6=i

plglj + σ2
j

, i > 1. (4)

Assume that each user can be only associated with one of
BSs, and the binary variable matrixX = [xij ] is introduced
to describe the user association status, where

xij =

{
1, if user j associated with BS i,

0, otherwise.
(5)

As the system generally occupies several hundreds of resource
blocks (RBs), we normalize this number to be 1 and define
the resource allocation variableyij , 0 ≤ yij ≤ 1, indicating
the fraction of RBs used for the communication between user
j and thei-th BS. Thus, the transmission data rate of userj

is calculated by

Rj =
∑

i

xijyijrij , j = 1, 2 · · ·J. (6)

On the other hand, the power consumption of the MBS can
be expressed as [25]

Pi = εipi +Mpa + pi,s, i = 1, (7)

where εi denotes the power amplifier efficiency of thei-
th BS, pa describes the circuit power per antenna, andpi,s
represents the static circuit power term independent of the
antenna number. In contrast, the power consumption of the
i-th PBS is given by

Pi = εipi + pa + pi,s, i > 1. (8)

Then, the total network power consumption can be obtained
by

Ptot =
∑

i

Pi + PBH, (9)

wherePBH denotes the power consumption for backhaul.

Specifically, the backhaul power consists of the power
consumption of fiber-based and microwave-based backhaul
links, which is expressed as

PBH = PFiber
bh + PMicro

bh . (10)

In (10), the power consumption for the fiber-based backhaul
links is calculated based on the model in [26], [27], which is
given by

P fiber
bh =

⌈
Ndl

maxdl

⌉

pfiberswitch +Ndlpdl +Nulpul, (11)

wheremaxdl denotes the highest number of available down-
link interfaces for one aggregation switch;pfiberswitch describes the
maximum power consumption of one fiber-based aggregation
switch.Ndl and pdl represent the number of downlink inter-
faces and the power consumption of each downlink interface,
respectively.Nul denotes the number of uplink interfaces,
which is a function of total aggregate traffic collected at the
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switch (ATtot) and the maximum transmission rate of an
uplink interface (Umax), i.e.,Nul =

⌈
ATtot

Umax

⌉

, andpul indicates
the power consumption of each uplink interface. Similarly, The
power consumed by microwave-based backhaul [26], [27] can
be expressed as

Pmicro
bh =

⌈
ATmicro

Cmicro
switch

⌉

Pmicro
switch+NPBSPlow+NsinkPhigh, (12)

whereATmicro is the aggregated microwave-based backhaul
traffic, and Cmicro

switch and Pmicro
switch represent the capacity and

the power consumption of each switch for microwave back-
haul, respectively.Plow describes the power associated with
microwave backhaul operations at each PBS, andPhigh cor-
responds to the power consumption at the sink node. Corre-
spondingly,NPBS and Nsink represent the number of PBSs
and the sink, respectively. In particular, we assume that the
capacity of the backhaul link for thei-th BS is bounded by
Ci,bh.

B. SE, EE and Proportional Fairness

In this paper, the system SE (bits/s/Hz) is defined as the
total system throughput per unit bandwidth, which is given by

ηSE=
∑

j

Rj =
∑

j

∑

i

xijyijrij . (13)

The system EE (bit/Joule/Hz) is further defined as the ratio of
the system SE over the total power consumption, which can
be expressed as

ηEE =
ηSE

Ptot
=

∑

j

∑

i

xijyijrij

∑

i

Pi + PBH
. (14)

It is known that SE and EE are conflicting objectives
in a wireless communication system with limited radio re-
sources [28]. This is because maximizing SE is equivalent
to utilizing all the available resources, such as the maximum
transmit power and all the available antennas to increase the
throughout, while in such case the EE may become very low
due to high power consumption. Therefore, only maximizing
SE or EE may not satisfy the performance requirement of
decision makers, and it is necessary to investigate the tradeoff
between EE and SE. As explained in [29], the tradeoff between
EE and SE can be obtained by solving a simplified MOO
problem of minimizing the total power consumption and
maximizing SE for specific ranges of the weighting parameter.

However, rate fairness among users can not be guaranteed
in the above analysis, since only the system EE and SE
are maximized. As proportional fairness can achieve a good
balance between SE maximization and fairness [30], in this
paper, the system SE is replaced in the MOO problem with
the summation of the logarithmic rates of users, which is given
by

U(x,y,p,M) =
∑

j

ln (Rj). (15)

III. PROBLEM FORMULATION

As mentioned before, the tradeoff between EE and SE
while ensuring proportional rate fairness among users can be

equivalently formulated as a MOO problem maximizing the
sum-log-rate utility and minimizing the total power consump-
tion simultaneously. Thus, the joint optimization problem of
user association, resource allocation, power coordination and
number of activated antennas can be expressed as

min
x,y,p,M

−U(x,y,p,M ),

min
x,y,p,M

Ptot (x,y,p,M),

s.t. C1 : xij ∈ {0, 1} , ∀i, j,
C2 :

∑

i

xij = 1, ∀j,

C3 : yij ∈ [0, 1] , ∀i, j,
C4 :

∑

j

xijyij ≤ 1, ∀i,

C5 : M ≤ Mmax,

C6 : pi ≤ pi,max, ∀i,
C7 :

∑

j

xijyijrij ≤ Ci,bh, ∀i,

(16)

where Mmax and pi,max denote the number of equipped
antennas at the MBS and the maximum transmit power of
BS i, respectively.

In (16), C1 and C2 indicates that each user can be only
associated with one BS at any time. C3 and C4 are the
constraints of spectrum allocation among users associated with
the same BS. Then, C5 denotes that the number of activated
antennas at the MBS is bounded byMmax, and C6 ensures
that the transmit power of thei-th BS is not more thanpi,max,
∀i. Particularly, C7 represents that the capacity of the backhaul
link for the i-th BS is bounded byCi,bh.

For the sake of consistent comparison, we first normalize
the sum log-utility function and total power consumption in
(16) as the following

min
x,y,p,M

F1 (x,y,p,M ) =
Umax−

∑

j

ln(Rj)

Umax−Umin

,

min
x,y,p,M

F2 (x,y,p,M ) = Ptot

Pmax

,
(17)

wherePmax denotes the maximum total power consumption,
and Umax and Umin represent the maximum and minimum
sum log-utility, respectively. Specifically, the maximum power
consumption can be calculated by settingp = [pi,max] and
M = Mmax, which is

Pmax =

I∑

i=1

(εipi,max + pi,s) + pa (Mmax + I − 1) + PBH.

(18)
Then, by omitting mutual interferences among BSs, we further
obtain the upper bound of the sum log-utility, which must be
maximized atp = [pi,max] andM = Mmax, i.e.,

Umax = max
x,y

∑

j

ln

(
∑

i

xijyij r̂ij

)
∣
∣
∣
∣
∣
∣
pi=pi,max,M=Mmax

,

(19)
where r̂ij is the approximate data rate without the con-
sideration of mutual interferences. Thus, the Lagrange dual
decomposition (LDD) method presented in Section IV can
be used to find the user association and resource allocation
solution of (19). On the other hand, the minimum utility can
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be approximated as

Umin = J ln (δ) , (20)

whereδ is a predefined and sufficiently small value, and we
assume thatRj ≥ δ, ∀j.

Problem (16) is a mix-integer and non-concave problem
due to the integer variablesx andM and the existing inter-
cell interference presented inrij , which is generally NP-hard.
Weighted sum method is one of the most general methods for
solving MOO problems, but it can not obtain points on non-
convex portions of the Pareto optimal set [31]. Hence, in this
paper, we employ weighted Tchebycheff method to transform
problem (16) into a SOO problem, which is sufficient and nec-
essary for achieving Pareto optimality and therefore provides
the complete Pareto front of problem (16) [31]. According to
the weighted Tchebycheff method, the MOO problem can be
transformed into the following SOO problem as

min
x,y,p,M

max {wF1 (x,y,p,M ) , (1− w) F2 (x,y,p,M )} ,

s.t. C1− C7,
(21)

wherew ∈ [0, 1] is the weighting parameter representing the
relative importance between two objectives. To illustrate the
equivalence between the MOO problem (16) and the SOO
problem (21), we have the following proposition.

Proposition 1: For any givenw ∈ [0, 1], the unique optimal
solution (x∗,y∗,p∗,M∗) of problem (21) is Pareto optimal
for the MOO problem (16).

Proof: See Appendix A.

IV. PROPOSEDALGORITHMS

To further understand the tradeoff between SE and EE, it is
necessary to find the optimal solution of (21). Specifically, we
first introduce an additional variableϕ to make problem (21)
tractable, and the equivalent transformed problem is expressed
as

min
x,y,p,M,ϕ

ϕ,

s.t. C1− C7,

C8 : w

(
Umax−

∑

j

ln(Rj)

Umax−Umin

)

≤ ϕ,

C9 : (1− w)
(

Ptot

Pmax

)

≤ ϕ.

(22)

However, it is still rather challenging to find the global
optimum of problem (22) with affordable computational com-
plexity, since problem (22) is mixed-integer and non-convex
due to the integer variablexij andM and the inter-cell inter-
ference. Moreover, these optimization variables(x,y,p,M )
are closely coupling in terms of EE and SE. To solve this
nontrivial problem, a series of decomposition algorithms will
be proposed in the following. We first relax constraints C8-C9,
and the corresponding Lagrange function can be presented as

L (x,y,p,M, ϕ, λ, µ) = ϕ+ λ (wF1 (x,y,p,M)− ϕ)
+µ ((1− w) F2 (x,y,p,M )− ϕ) ,

(23)

whereλ ≥ 0 andµ ≥ 0 are Lagrangian multipliers. Then, the
corresponding dual function is given by

H(λ, µ) =

{

min
x,y,p,M,ϕ

L (x,y,p,M, ϕ, λ, µ) ,

s.t. C1− C7.
(24)

Rearranging the Lagrange function yields

L (x,y,p,M, ϕ, λ, µ)

= −
λwU(x,y,p,M )

Umax − Umin
+

µ (1− w)Ptot (x,y,p,M)

Pmax
︸ ︷︷ ︸

L1(x,y,p,M,λ,µ)

+(1− λ− µ)ϕ
︸ ︷︷ ︸

L2(ϕ,λ,µ)

+ λwUmax

Umax−Umin

.

(25)
Thus, for the given(λ, µ), problem (24) can be decomposed
into two subproblems, i.e., the joint user association and
resource optimization problem

min
x,y,p,M

L1 (x,y,p,M, λ, µ) ,

s.t. C1− C7,
(26)

and the adaptiveϕ selection problem

min
ϕ

L2 (ϕ, λ, µ) . (27)

A. Joint User Association and Resource Optimization

We first focus on finding the optimal solution of (26), i.e.,
the joint optimization of user association, spectrum allocation,
power coordination and the number of activated antennas at
the MBS. Since these optimization variables are coupled, the
primal decomposition method [32] is appropriate to be applied
to separate the original problem into the following two levels
of optimization problem. Fixing user association matrixx
and the spectrum allocation matrixy in problem (26) yields
the power coordination and antenna number optimization
problem, i.e.,

max
p,M

f1 (p,M) =
λw

∑

j

ln(Rj)

Umax−Umin

−
µ(1−w)

(

∑

i

εipi+Mpa

)

Pmax

,

s.t. C5− C7.
(28)

On the contrary, by fixing the number of active antennasM

and the transmit power vectorp in problem (26), theuser
association and spectrum allocation problem can be obtained
by

max
x,y

f2 (x,y) =
∑

j

ln

(
∑

i

xijyijrij

)

,

s.t. C1− C4,C7.

(29)

Note that several constant terms are omitted in (28) and (29)
for simplicity.

1. Subproblem 1: Power coordination and antenna
number optimization

As mentioned before, because of the existing inter-cell
interference and the integer variableM , the joint optimization
of power coordination and the number of active antennas is a
non-convex mixed-integer problem. To tackle this difficulty,
we first relax the number of active antennasM to a real
variable, and find the suboptimal solutioñM∗ = ⌈M∗⌉ with
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Algorithm 1 Sequential convex programming algorithm for
Subproblem 1

1. Initialize n = 0, flaglow = 1, p0i = pi,max, and
M = Mmax, ∀i.
2. Calculate the SINR̃θ0ij .
3. while flaglow > 0.01, do
4. n = n+ 1;
5. Calculatean−1

ij andbn−1
ij with θ̃n−1

ij , ∀i, j;
6. Solve problem (33), and obtain(qn,Mn);
7. Updatepni = 2q

n
i , ∀i;

8. Update SINR valuẽθnij with (pn,Mn), ∀i, j;

9. Calculate∆θ̃nij =

∣
∣
∣
∣

θ̃n
ij−θ̃n−1

ij

θ̃n−1

ij

∣
∣
∣
∣
, ∀i, j;

10. Calculateflaglow = max
i,j

{

∆θ̃nij

}

.

11. end while

the top integer operation. Then, to deal with the non-convexity
of user rate, the lower bound of the logarithmic function is
employed [33], i.e.,

log2 (1 + θ) ≥ alog2θ + b, (30)

wherea = θ′

1+θ′ , andb = log2 (1 + θ′)− θ′

1+θ′ log2θ
′. Note that

whenθ = θ′, the equality holds. Thus, with the transformation
qi = log2pi, f1 (p,M) is lower-bounded by

f1 (p,M) ≥ f̃1 (q,M) =
λw

∑

j

ln

(

∑

i

xijyij r̃ij(q,M)

)

Umax−Umin

−
µ(1−w)

(

∑

i

2qi/εi+Mpa

)

Pmax
,

(31)

where the transmission rate from BSi to the j-th user is
approximated to

r̃ij (q,M) =

{
N (aij log2 (SINRij (q,M)) + bij) , i = 1,
aij log2 (SINRij (q,M)) + bij , i > 1,

(32)
andaij andbij are derived with a given SINR valuẽθij . For
further analysis, we have the following proposition about the
approximate objective functioñf1 (q,M).

Proposition 2: f̃1 (q,M) is a concave function on(q,M)1.
Proof : See Appendix B. �

Thus, we can solve problem (28) by finding the optimum
(q∗,M∗) of the convex optimization problem as the following

max
q,M

f̃1 (q,M) ,

s.t. C5 : M ≤ Mmax,

C6 : 2qi ≤ pi,max, ∀i,
C7 :

∑

j

xijyij r̃ij ≤ Ci,bh, ∀i,

(33)

which can be optimally solved by the interior-point method
with affordable polynomial complexity [34]. However, the
approximation in (31) can be loose, which may result in
unexpected results. To tighten the lower bound in (31) and
make the optimal solution of (33) closer to that of (28), it
is indispensable to updateaij and bij in iterative manner

1HereM is the relaxed real number.

by setting new SINR value and solving problem (33) until
convergence. Therefore, we borrow the idea of sequential con-
vex programming (SCP) [32], i.e., finding a local optimum of
problem (28) by solving a sequence of convex problems (33)
with new obtained SINR value, which allows us to develop
an effective algorithm with low computational complexity.
The above procedure is summarized inAlgorithm 1 , and
its convergence and optimality are analyzed in the following
proposition.

Proposition 3: Algorithm 1 monotonically improves the
value of f1 (p,M) at each iteration, and eventually converges
to one solution satisfying the KKT conditions of problem (28).

Proof : See Appendix C. �

Particularly, the optimal number of activated antennas at the
MBS can be characterized in the following proposition.

Proposition 4: When w = 1, the optimal number of
activated antennasM∗ always satisfiesM∗ = Mmax; when
w = wEE

2, if Mmax is sufficiently large,M∗ diminishes with
the increase of the circuit power consumption per antennapa.

Proof : See Appendix D. �

2. Subproblem 2: User association and spectrum alloca-
tion

To solve problem (29), the LDD method is adopted to
find the optimal user association and spectrum allocation. For
convenience, we first transform problem (29) into

max
x,y

f̂2 (x,y) =
∑

i

∑

j

xij ln (yijrij),

s.t. C1− C4,C7,
(34)

and the following proposition illustrates the equivalence be-
tween two problems.

Proposition 5: Problem (34) and (29) are equivalent.
Proof : See Appendix E. �

Thus, relaxing constraints C4 and C7, the Lagrange function
of (34) is obtained by

T (x,y,α,β) =
∑

i

∑

j

xij ln (yijrij)

+
∑

i

αi

(

1−
∑

j

xijyij

)

+
∑

i

βi

(

Ci,bh −
∑

j

xijyijrij

)

,

(35)

whereα = [α1, α2, · · · , αI ] and β = [β1, β2, · · · , βI ] are
Lagrange multipliers corresponding to constraints C4 and C7,
respectively. The dual function is further expressed as

J (α, β) =

{

max
x,y

T (x,y,α,β) ,

s.t. C1− C3,
(36)

and the corresponding dual problem is given by

min
α,β≥0

J (α, β) . (37)

In order to solve the dual problem (37), we first investi-
gate problem (36) for givenα, β. Specifically, the Lagrange

2
wEE corresponds to the point of the maximum EE.
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function (35) is rearranged as

T (x,y,α,β) =
∑

j

∑

i

xijSij (yij) +
∑

i

αi +
∑

i

βiCi,bh,

(38)
where

Sij (yij) = ln (yijrij)− αiyij − βiyijrij . (39)

It is easy to find thatSij (yij) is a concave function overyij .
Thus, when thej-th user is associated with thei-th BS, i.e.,
xij = 1, the optimal spectrum allocation can be calculated by
taking the derivative ofT (x,y,α,β) with respect toyij and
setting it to zero, i.e.,

0 =
∂T (x,y,α,β)

∂yij
=

1

yij
− αi − βirij , (40)

and we can obtain

y∗ij =
1

αi + βirij
. (41)

Substituting (41) into (38), to maximizeT (x,y∗,α,β), the
optimal user association for userj must be

x∗
ij =

{

1, i = argmax
l

Slj

(

y∗lj

)

,

0, otherwise.
(42)

Up to now, the user association and spectrum allocation
policy for givenα andβ has been obtained. Thus, problem
(34) can be solved via the dual problem (37) by utilizing
subgradient method. Specifically, at thek-th iteration, the dual
function (36) is calculated with the given

(

αk,βk
)

. Then,
(

αk+1,βk+1
)

is updated via the subgradient method, which
can be expressed as

αk+1
i = αk

i + vk




∑

j

xk
ijy

k
ij − 1



 , (43a)

βk+1
i = βk

i + vk




∑

j

xk
ijy

k
ijr

k
ij − Ci,bh



 , (43b)

where vk is the diminishing step size at thek-th iteration.
Note that the subgradient updates of (43) are guaranteed to
converge as long asvk is chosen to be sufficiently small. In
this paper,vk = 0.1√

k
. Since the user association variablexij

is naturally discrete, there may exist a non-zero duality gap
between the primal problem (34) and the dual problem (37).
Nevertheless, the Lagrangian dual method often provides good
solutions of the primal optimization problem [14], and the
following proposition further illustrates that the duality gap is
bounded.

Proposition 6: For the user association and spectrum al-
location problem (34), the duality gap between the objective
f̂2 (x,y) obtained via subgradient method and the global opti-
mum of problem (34) is bounded by

∑

i

αi +
∑

i

βiCi,bh − J .

Proof : See Appendix F. �

Observing (41)-(43), the Lagrange multipliers(α,β) can
be treated as the message between users and BSs. Thus,

Algorithm 2 Distributed User Association and Spectrum
Allocation Algorithm at thej-th User

1. if k = 0
2. Estimaterij , ∀i, via pilot signals from all BSs.
3. end if
4. k = k + 1;
5. Receiveαk andβk transmitted from all BSs;
6. Calculateykij , ∀i, according to (41);
7. Calculatexk

ij , ∀i, according to (42);
8. Calculate the auxiliary variablezkij = xk

ijy
k
ij , ∀i;

9. Feedback the messagezkij > 0 to BS i, ∀i.

Algorithm 3 Distributed User Association and Spectrum
Allocation Algorithm at thei-th BS

1. if k = 0
2. Initialize α1

i andβ1
i .

3. else
4. Receive the informationzkij > 0, ∀j;
5. Updateαk+1

i andβk+1
i with zkij according to

αk+1
i = αk

i + vk




∑

j

zij − 1



 ,

βl+k
i = βk

i + vk

(
∑

i

zijrij − Ci,bh

)

;

6. end if
7. k = k + 1;
8. Broadcast the updated multipliersαk

i andβk
i .

we can solve the joint user association and spectrum alloca-
tion problem (34) distributively. The specific procedures of
distributive algorithms for users and BSs are presented in
Algorithm 2 and Algorithm 3 . Now, the solutions of prob-
lem (28) and (29) have been found, respectively. According
to primal decomposition, the original problem (26) can be
solved by solving problem (28) and (29) in iterative manner
until convergence. As a consequence, the two-stage iterative
algorithm for joint optimization of user association, spectrum
allocation, power coordination, and number of activated MBS
antennas is summarized inAlgorithm 4 .

B. Adaptive Optimization of ϕ

Observing the linear optimization problem (27), its optimal
solution can be readily obtained by

ϕ∗=

{
1, if λ+ µ > 1,
max {wF1, (1− w) F2} , otherwise.

(44)

Note thatϕ ≤ 1 always holds since the two objectives in (17)
and the weightw range between 0 and 1. Thus, problem (22)
can be finally solved by updating(λ, µ) like (43).

C. Summary and Complexity Analysis

As presented before, the transformed problem (24) for the
tradeoff between EE and SE is solved through a series of



0090-6778 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2730867, IEEE
Transactions on Communications

8

Algorithm 4 Two-stage iterative algorithm

1. For any given weighting parameterw,
2. Initialize m = 0, flag = 1, M0 = Mmax, and
p0i = pi,max.
3. while flag > 0.01, do
4. m = m+ 1;
5. Calculate(xm,ym) via Algorithm 2 and 3;
6. Calculate(pm,Mm) via Algorithm 1;

7. Calculateflag = max
i,j

∣
∣
∣
∣

xm
ijy

m
ij−xm−1

ij
ym−1

ij

xm−1

ij
ym−1

ij

∣
∣
∣
∣
.

8. end while
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Fig. 2. The problem decomposition.

decomposition algorithms, which is summarized in Fig. 2 for
clarity. Problem (24) is first separated into the joint optimiza-
tion problem (26) and the adaptiveϕ selection problem (27).
Then, with the help of primal decomposition, problem (26)
is decomposed into the power coordination and the number
of activated antennas optimization problem (28), and the user
association and spectrum allocation problem (29). Next, with
the help of SCP algorithm, Algorithm 1 is developed to solve
problem (28), and the power coordination and the number of
activated antennas at the MBS are obtained. Given solutions of
problem (28), problem (29) is then solved via Lagrange dual
decomposition, and the corresponding dual problem is problem
(37). By distributively solving problem (37) via Algorithm 2
and 3, the user association and spectrum allocation matrices
are determined. Finally, with the solution of problem (24)
obtained by Algorithm 4, the adaptiveϕ selection problem
(27) is easily solved.

For the user association and spectrum allocation problem,
the computational complexity of our proposed distributive
algorithms, i.e., Algorithm 2 and 3, isO (IJ) at each iteration,
and the complexity of the outer Lagrangian multipliers update
based on sub-gradient method is a polynomial function of the
dual problem dimension, i.e.,2I for J (α,β) [35]. Therefore,
the complexity to update all multipliers is in the order of
Iφ, where φ denotes a positive constant [36]. Thus, the
overall computational complexity for the user association and
spectrum allocation problem isO

(
Iφ+1J

)
.

On the other hand, the power coordination and the number
of antenna optimization problem is a non-trivial problem due
to the existence of inter-cell interference. Therefore, finding
its global optimum with affordable complexity is challenging,

TABLE I
SIMULATION PARAMETERS

Parameters Default value Parameters Default value
Cell radius 500 m Bandwidth 20 MHz

J 50 Mmax 300
N 10 pa 0.5 W

p1,max 43 dBm pi,max, i > 1 30 dBm
Noise -174 dBm/Hz εi, i = 1 21.45

εi, i > 1 5.5 pi,s, i = 1 30W
pi,s, i > 1 10 W maxdl 24
pfiberswitch 200 W pmicro

switch 23 W
pdl 1 W pul 2 W
Plow 17 W Phigh 42.5 W
Umax 10 Gb/s Cmicro

switch 36 Gb/s
Ci,bh, i = 1 500 bit/s/Hz Ci,bh, i > 1 20 bit/s/Hz
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0.118

0.119

0.12

0.121

0.122

0.123

0.124

0.125

0.126

0.127

0.128

Iteration

f 1
(p

,M
)

 

 

p=0.1∗ [pj,max ]

p=0.5∗ [pj,max ]

p= [pj,max ]

Fig. 3. The convergence procedure of Algorithm 1.

which actually requires exponential computational complexity.
Consequently, a computationally-efficient algorithm is adopted
to solve problem (28), i.e., Algorithm 1. At each iteration
of Algorithm 1, we only need to solve a standard convex
optimization problem with the requirement of polynomial
complexity, which is defined asc (I). In addition, the required
number of iterationn before convergence of Algorithm 1 is
quite small, whose value is consistently below 10 in our nu-
merical results (see Fig. 3). Furthermore, the iteration between
problem (28) and (29) in Algorithm 4 also converges fast as
demonstrated in the numerical study (see Fig. 4).

In summary, the overall computational complexity of Algo-
rithm 4 for the joint user association and resource optimization
problem (26) isO

(
Iφ+1Jc (I)

)
. Hence, the proposed algo-

rithm only requires affordable polynomial complexity to find
the solution of the original problem (22).

V. SIMULATION RESULTS

In the simulations, we consider a two-tier HetNet, where one
massive MIMO macro BS is in the center, and three pico-BSs
are symmetrically placed along the circle with radius of 200 m.
Users are randomly located in the cell. The pathloss between
BSs and users is modelled as128.1 + 37.6log10d (km), and
the standard derivation of shadow fading is 8 dB. The other
simulation parameters are shown in Table I.
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Fig. 4. The convergence procedure of Algorithm 4.

A. Performance of Convergence

We first provide insight on the convergence property of Al-
gorithm 1, and Fig. 3 presents the objective functionf1 (p,M)
of problem (28) versus iterations. Specifically, three curves
with different initial transmit power are plotted in Fig. 3, and
it can be observed thatf1 (p,M) increases consistently and
converges to the maximum value within about 6 iterations.
In addition, we can find that the choice of initial points has
negligible effect on the convergence procedure of Algorithm 1.
These numerical results also keep in line with Proposition 3
proved in Section IV.

Since our proposed algorithm for joint optimization of user
association and resource optimization (i.e., Algorithm 4) is a
two-stage iterative algorithm, it is significant to demonstrate
its convergence property. Fig. 4 plots the flag value versus
iterations under different number of users, where

flagm=
∥
∥zm − zm−1

∥
∥
1
, (45)

andm represents the iteration number. When the flag value
turns into zero, the obtained user association and spectrum
allocation solution stays the same between two iterations,
and thus the optimized transmit power and the number of
antenna are also stable, which indicates the convergence of
Algorithm 4. From Fig. 4, it can be observed that Algorithm
4 converges quickly, and the increase of users has slight impact
on the speed of convergence.

B. Performance Comparisons

We first compare the performance of the system considered
in this paper, i.e., massive MIMO enabled HetNets, with that
of two special cases where only one massive MIMO enabled
marco BS or only single-antenna pico cells are deployed. Note
that the parameter settings for the two cases also keep in line
with those in Table I. It can be observed from Fig. 5 that
the combination of HetNets and massive MIMO contributes
a much greater level of performance improvement in EE and
SE as compared to single form of the network.

Specifically, compared to the massive MIMO enabled two-
tier HetNet, the system with only one marco BS requires
higher power consumption to transmit data to users located in
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Fig. 5. (a) Energy efficiencyv.s. spectral efficiency for the system with only
one macro BS. (b) Energy efficiencyv.s. spectral efficiency for the system with
only pico BSs. (c) Energy efficiencyv.s. spectral efficiency for the massive
MIMO enabled HetNets.

the cell edge, which may result in a lower EE. Accordingly,
as the transmit power of the macro BS is upper-bounded, the
maximum achievable SE for the case of only one marco BS is
also reduced compared to that in two-tier HetNets. On the
other hand, the case of only single-antenna pico BSs also
achieves a worse EE-SE tradeoff in contrast to the system
considered in this paper. Since the transmit powers of pico
BSs are much lower than the macro BS, the coverage area of
each pico BS is limited. In this case, there may exist users
which can not be well served by pico BSs. Moreover, as a
single antenna is deployed in each pico BS, no performance
gain from spatial multiplexing can be obtained.

Furthermore, to demonstrate the optimality of our ‘proposed
algorithm’, we first compare it with the exhaustive search
method which serves as the benchmark. Due to the exponential
computational complexity requirement of exhaustive search,
we consider a small-scale problem ofK = 8, N = 4 as an
example. It can be observed in Fig. 6 that the performance of
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Fig. 6. Energy efficiencyvs. spectral efficiency for the proposed algorithm
and the exhaustive search method.
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Fig. 7. Energy efficiencyvs. spectral efficiency for different algorithms.

proposed algorithm is close to that of the exhaustive search
method in terms of the EE-SE tradeoff.

Based on the default parameter settings in Table I, we then
compare the proposed algorithm with other four algorithms:
1) ‘fixed antenna’ is almost in line with ‘proposed algorithm’,
while the antenna number of the MBS is predefined as the
number of maximum available antennas; 2) ‘fixed antenna
and power’ denotes that both the the number of activated
antennas and transmit power are fixed as maximum values;
3) ‘max SINR fixed antenna and power’ involves a different
user association method that each user chooses the BS with
the highest SINR, where spectrum allocation is also obtained
by Lagrange dual decomposition; 4) ‘max SINR algorithm’
further includes the optimization of power coordination and
antenna number by adopting our proposed Algorithm 1.

By adjusting the weighting parameterw from 0.1 to 1, Fig. 7
first presents the tradeoff performance between EE and SE for
different algorithms. For ‘proposed algorithm’, ‘fixed antenna’,
and ‘max SINR algorithm’, the system EE first increases to its
peak and then decreases to a low level with the increase of SE.
When SE is low, the increase of SE is much faster than that of
the total power consumption. Thus, EE grows as SE increases.
However, there is a maximum point for EE. After this point,
the fixed circuit power does not dominate any longer and the
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Fig. 8. Jain’s fairnessvs. spectral efficiency for different algorithms.

increase of transmit power and antenna power consumption
has a significant effect on the total power consumption. Under
this circumstance, the growing of SE becomes slower than
the total power consumption, which is due to the diminishing
gradient of the logarithmic rate function. Furthermore, for a
given SE, the optimization of the number of MBS antennas
can significantly improve the system EE according to the
comparison between ‘proposed algorithm’ and ‘fixed antenna’.
Besides, it can be observed in Fig. 7 that our proposed
user association algorithm achieves significant improvement
on both EE and SE in comparison with the basic ‘max SINR’
user association algorithm as our algorithm maximizes EE and
SE simultaneously. By contrast, since the transmit power of
each BS and the number of activated MBS antennas are fixed
for ‘fixed antenna and power’ and ‘max SINR fixed antenna
and power’, their performances are presented via single points,
whose corresponding EE is much lower than the other three
algorithms for the same SE.

Then, the performance of rate fairness for different algo-
rithms is presented in Fig. 8, and the rate fairness is measured
by Jain’s fairness index, i.e.,

Index =




∑

j

Rj





2/

J
∑

j

R2
j



. (46)

which ranges from1
J

to 1. If the index equals 1, this indicates
that all users have the same data rate and the system achieves
absolute fairness. However, the index will gradually drop to1

J

with the increase of rate disparity among users. As presented in
Fig. 8, for a given SE, the proposed user association algorithm
can achieve higher level of fairness compared to ‘max SINR’
algorithm, since the logarithmic utility function is maximized
in our algorithm instead of the system SE. In addition, it is
reasonable to find that the optimization of antenna number has
no effect on the rate fairness. To conclude, our proposed user
association algorithm is superior to ‘max SINR’ algorithms in
terms of rate fairness.

C. Characteristic of the Number of Activated Antennas

The performance of EE versus the optimal number of
activated antennas at the MBS is illustrated in Fig. 9. We



0090-6778 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2730867, IEEE
Transactions on Communications

11

100 150 200 250 300

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of activated antennas

E
ne

rg
y 

ef
fic

ie
nc

y 
(b

it/
Jo

ul
e/

H
z

 

 

pa = 0.1

pa = 0.3

pa = 0.5

Maximum EE

Fig. 9. Energy efficiencyvs. the number of activated antennas.

can find that all the three curves follow the same pattern,
where the system EE first increases and then decreases as the
optimal number of activated antennas goes up. This is because
all the three selective values ofpa are sufficiently small so
that the optimal number of activated antennas corresponding
to the maximum EE is smaller than the number of equipped
antennasMmax. In particular, the maximum EE declines with
the increase ofpa, which can be easily understood by the fact
that the more power each antenna consumes, the less energy-
efficient the system is. Besides, as presented in Fig. 9, lowering
the power consumption per antenna makes the optimal number
of activated number corresponding to the maximum EE closer
to the maximum value.

D. Performance Bottleneck: Backhaul Capacity Constraint

The tradeoff between EE and SE for different backhaul
capacities is plotted in Fig. 10, and the parameterratiobh
represents the ratio between the available backhaul capactiy
and the default value in Table I. Observing the second part of
curves where EE decreases with SE, we can find that more
SE is achieved with larger backhaul capacity for the same
EE, which indicates that the backhaul capacity constraint is
indeed a bottleneck for the network performance. Particularly,
with the increase of the backhaul capacity, the maximum
SE increases, and its corresponding EE also rises up. This
is because the maximum SE is bounded by the sum of the
backhaul capacity for each BS. When the backhaul capacity
rises up, more data can be transmitted between BSs and users.
By contrast, the maximum EE first increases and then remains
stable with the increase of the backhaul capacity. When the
system EE reaches its peak, the data rates of BSs can be lower
than its corresponding backhaul capacities with the relaxation
of the backhaul constraint. In this case, the maximum EE can
not be improved by raising the backhaul capactiy.

E. Impact of the Number of Users

Furthermore, we investigate the performance of rate fairness
for different number of users, where the proposed algorithm is
compared with the basic ’max SINR algorithm’. As observed
in Fig. 11, when the number of users increases, the fairness

250 300 350 400 450 500 550 600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Spectral efficiency (bit/s/Hz)

E
ne

rg
y 

ef
fic

ie
nc

y 
(b

it/
Jo

ul
e/

H
z)

 

 

ratio
bh

 = 0.7

ratio
bh

 = 0.8

ratio
bh

 = 0.9

ratio
bh

 = 1

ratio
bh

 = 1.1

Maximum EE

Maximum SE

Fig. 10. Energy efficiencyvs. spectral efficiency for different levels of
backhaul capacity.
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index gradually decreases, and all curves follow the same
pattern. This can be explained by the fact that the same
rate fairness among more users is more difficult to achieve.
Besides, for a given SE, our proposed algorithm consistently
achieves higher rate fairness among users compared to ‘max
SINR algorithm’. Finally, the impact of the number of users on
the tradeoff between SE and EE for the proposed algorithm is
captured in Fig. 12. It can be observed that for a given SE, the
system EE increases with the number of users at a diminishing
speed, which indicates that it consumes less power to achieve
the same level of SE when the number of users rises up. This
is mainly because of the effect of multiuser diversity, and the
gain decreases gradually as the number of users increases.

VI. CONCLUSION

In this paper, we studied the tradeoff between EE and SE
while ensuring proportional rate fairness in massive MIMO
enabled HetNets, and the MOO problem was formulated to
maximize EE and SE simultaneously while ensuring propor-
tional rate fairness, where the backhaul capacity constraint
and power consumption were both taken into account. A
computational-efficient algorithm was further proposed to
comprehensively optimize user association, spectrum alloca-
tion, power coordination and number of activated antennas,
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which only required affordable polynomial complexity. The
convergence and optimality of the proposed algorithm were
verified via both theoretical analysis and numerical results.
As presented in simulation results, our proposed algorithm
converged fast within several iterations. In comparison with
‘max SINR’ algorithm, the proposed algorithm significantly
improved the performance of the EE-SE tradeoff and rate
fairness among users, which demonstrated its effectiveness.
We further investigated the characteristics of the optimal
number of activated antennas via theoretical analysis and
numerical results, and also demonstrated numerically that the
backhaul capacity constraint was a bottleneck for the network
performance.

APPENDIX A

Proof of Proposition 1: Define that

g1 (x,y,p,M ) =
Umax −U(x,y,p,M)

Umax − Umin
, (47a)

g2 (x,y,p,M ) =
Ptot (x,y,p,M )

Pmax
, (47b)

G(x,y,p,M ) = max {wg1, (1− w) g2} . (47c)

For any givenw ∈ [0, 1], since(x∗,y∗,p∗,M∗) is the unique
optimal solution of problem (21), we have

G(x∗,y∗,p∗,M∗) ≤ G(x,y,p,M) , (48)

for all (x,y,p,M ) satisfying constraints C1-C7.
Now we suppose that(x∗,y∗,p∗,M∗) is not Pareto optimal

for the original MOO problem (16). Thus, there must exist
another solution(x′,y′,p′,M ′) of problem (21) that satisfies

gi (x
′,y′,p′,M ′) ≤ gi (x

∗,y∗,p∗,M∗) , ∀ i = 1, 2, (49)

and there is at least onej ∈ {1, 2} such that
gj (x

′,y′,p′,M ′) < gj (x
∗,y∗,p∗,M∗). Under this circum-

stance, we have

G(x′,y′,p′,M ′) ≤ G(x∗,y∗,p∗,M∗) , (50)

which contradicts with the uniqueness assumption. Therefore,
the proposition is proved.

APPENDIX B

Proof of Proposition 2: For simplicity of the following
analysis, we first introduce two coefficients:

di =

{
N, i = 1,
1, i > 1,

ei =

{
M−N+1

N
, i = 1,

1, i > 1,

and the approximate data rate for userj associated with BSi
can be further expressed as

r̃ij (q,M) = di · cij (q,M) , (51)

where

cij (q,M) = aij

(

qi − log2

(

∑

l6=i

2qlglj + σ2
j

))

+aij log2 (eigij) + bij .

(52)

cij (q,M) is a concave function over(q,M), which is due
to the concavity of logarithm function and the convexity of
the log-sum-exp function [34]. Furthermore, the first term
of f̃1 (q,M) in (31) is in the form of composite functions
log (cij (q,M)). As the logarithmic functionlog (x) is an
increasing concave function onx, the first term of̃f1 (q,M) is
a concave function over(q,M). On the other hand, the second
term of f̃1 (q,M) is also a concave function because of the
convexity of exponential function. Sincẽf1 (q,M) is actually
a sum of concave terms, it is straightforward to conclude that
f̃1 (q,M) is concave over(q,M).

APPENDIX C

Proof of Proposition 3: Let qn = log2 (p
n) andMn denote

the optimal solution of problem (33) after then-th iteration in
Algorithm 1, and we have the following inequality

f1 (p
n,Mn)

(a)
= f̃1 (q

n,Mn)
(b)

≤ f̃1
(
qn+1,Mn+1

)

(c)

≤ f1
(
pn+1,Mn+1

)
,

(53)

where the equality (a) is due to the fact thataij and bij are
calculated with the givenθnij = SINRij (p

n,Mn) and thus the
relaxation (31) is tight; the inequality (b) holds since problem
(33) is convex and

(
qn+1,Mn+1

)
is the global optimal

solution; the inequality (c) is valid becausef̃1
(
qn+1,Mn+1

)

is the lower bound off1
(
pn+1,Mn+1

)
as illustrated in

(31). Consequently, the value off1 (p,M) increases at each
iteration. Sincef1 (p,M) is upper-bounded by the constraints
of the maximum transmit power and the maximum number of
antennas, Algorithm 1 must converge.

Assume that(q∗,M∗) is the obtained solution when Al-
gorithm 1 converges, which must satisfy the KKT condi-
tions of problem (33). When Algorithm 1 converges, the
objectives in problem (28) and (33) have the same value,
i.e., f1 (p∗,M∗)=f̃1 (q

∗,M∗). Besides, problem (28) and (33)
actually have the same constraints. Hence,(p∗,M∗) must
satisfy the KKT conditions of (28).

APPENDIX D

Proof of Proposition 4: When the weighting parameterw
equals to 1, problem (28) turns into the SE maximization
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problem. Becausef1 (p,M) increases monotonously withM
when w = 1, the optimal number of activated antennas
satisfiesM∗ = Mmax.

On the other hand, whenw = wEE, problem (28) becomes
the EE maximization problem. Thus, taking the derivative of
f1 (p,M) with respect toM yields

∂f1 (p,M)

∂M
= A

∑

j

Bj

(1 + SINR1k)
∑

i

xijyijrij
−Cpa, (54)

where A = λwEE

Umax−Umin
, Bj =

x1jy1jNp1g1j
∑

i6=1

pigij
, and C =

µ(1−wEE)
Pmax

are non-negative coefficients independent ofM . As

observed in (54),∂f1(p,M)
∂M

decreases withM . Thus, whenpa
is relatively small, there must existM0 < Mmax that satisfies
∂f1(p,M)

∂M

∣
∣
∣
M=M0

> 0. SinceMmax is sufficiently large, there

exists M1 ≤ Mmax which satisfies ∂f1(p,M)
∂M

∣
∣
∣
M=M1

< 0.

Hence,f1 (p,M) is maximized when∂f1(p,M)
∂M

∣
∣
∣
M=M∗

= 0,

and we haveM0 < M∗ < M1 ≤ Mmax, where M∗

denotes the optimal number of activated antennas at the
MBS. Furthermore, as∂f1(p,M)

∂M
decreases withM , it is easily

concluded thatM∗ diminishes with the increase ofpa.

APPENDIX E

Proof of Proposition 5: According to the constraints C1 and
C2, each user can be associated with at most one BS. As a
consequence, for anyx,y satisfying the constraints of problem
(29), it is straightforward to obtain

∑

i

xij ln (yijrij) = ln

(
∑

i

xijyijrij

)

. (55)

Furthermore, we have

∑

j

∑

i

xij ln (yijrij) =
∑

j

ln

(
∑

i

xijyijrij

)

, (56)

which means that problem (29) and (34) have equal objectives.
Since their constraints are also identical, we can conclude that
the two problems are equivalent.

APPENDIX F

Proof of Proposition 6: Assume that(α,β) are the opti-
mized Lagrange multipliers at the convergence of subgradient
method, and(x,y) is the corresponding solution obtained
from (41) and (42). Substituting (41) and (42) into (36), the
dual function can be expressed as

J (α,β) =
∑

j

max
i

(ln (yijrij)− 1) +
∑

i

αi +
∑

i

βiCi,bh.

(57)
Thus, we have

f̂2 (x,y) =
∑

i

∑

j

xij ln (yijrij) =
∑

j

max
i

(ln (yijrij))

= J (α,β)−

(
∑

i

αi +
∑

i

βiCi,bh − J

)

.

(58)

Then, we suppose that(x∗,y∗) is the global optimal solution
for problem (34). According to the weak duality, it always
holds that

J (α,β) ≥ f̂2 (x
∗,y∗) , (59)

and from (58) we prove that

f̂2 (x,y) ≥ f̂2 (x
∗,y∗)−

(
∑

i

αi +
∑

i

βiCi,bh − J

)

. (60)
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