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Abstract—In this paper, we propose a general framework to the same time-frequency slot, the system SE can be greatly
study the tradeoff between energy efficiency (EE) and spectral improved [4]. Besides, massive MIMO provides a high power
efficiency (SE) in massive MIMO enabled HetNets while ensuring gain, which helps to reduce the transmit power and further

proportional rate fairness among users and taking into account : . . .

the backhaul capacity constraint. We aim at jointly optimizing obtain a h'gher_EE' On the other hand, since multiple _Sma”

user association, spectrum allocation, power coordination, and Cells are overlaid on the coverage of each macrocell in the
the number of activated antennas, which is formulated as a HetNets, the spectrum is densely reused over a geographical
multi-objective optimization problem maximizing EE and SE area, which makes BSs closer to users. Consequently, this
simultaneously. With the help of weighted Tchebycheff method, it topology can significantly improve the system EE and SE [5],

is then transformed into a single-objective optimization problem, d al h th f f cell-ed 6
which is a mixed-integer non-convex problem and requires and also enhance the performance of cell-edge users [6].

unaffordable computational complexity to find the optimum. Although HetNets show great promises to obtain higher SE
Hence, a low-complexity effective algorithm is developed based by universal frequency reuse, this infrastructure also introduces
on primal decomposition, where we solve the power coordination new challenges. Specifically, since the transmit powers can
and number of antenna optimization problem and the user o mych diverse for different kinds of BSs in HetNets, the

association and spectrum allocation problem separately. Both nventional ; iation scheme which is determined
theoretical analysis and numerical results demonstrate that our conventional user association scheme ch I1s dete N

proposed algorithm can fast converge within several iterations according to signal-to-interference-plus-noise ratio (SINR),
and significantly improve both the EE-SE tradeoff performance will cause heavy load imbalance and further damage the

and rate fairness among users compared to other algorithms.  system SE and EE [7]. Therefore, the joint user association
Index Terms—Energy efficiency, HetNets, massive MIMO, and spectrum allocation is needed to improve the network SE.
power coordination, proportional fairness, spectral efficiency, In addition, as multiple small cells coexist with the macro

spectrum allocation, user association. cell, the power coordination is indispensable to mitigate the
inter-tier and intra-tier interference. As for massive MIMO,
I. INTRODUCTION although equipping large number of antennas can improve the

?]ystem SE, it also causes higher circuit power consumption

WING t_o the spectrqm scarcity and the (_explogive grQWRNhen more antennas are deployed, which may degrade the
of mobile data traffic demand for multimedia applica:

. X I . Ip rformance of EE. Furthermore, these problems are closely
tions, there is an urgent need to significantly improve spect@j

fici SE) M1 M hil h dilv risi upling, influencing the system EE and SE together. Hence,
efficiency (SE) [1]. Meanwhile, with steadily rising energ31ntel|igent joint resource optimization is one of crucial issues

costs and increasing environmental concerns, energy eﬁiCie[F&P’massive MIMO enabled HetNets

(EE). |st.becom|r&ghmcreasmgtly |mportar(1jt for W|retltesst_ COM-" e energy efficient resource optimization for HetNets has
_T#nlcf |ons£han. . tas caug t.moref ETE mé)rgEahen |ton [8 en investigated extensively [8]-[15]. In [8], energy efficient
. tere ore,f tehjom rnaX|m||zaf|ontﬁ ; tan fifth as UT er association is optimized to minimize the total power
INto one ot the main goais for the future fiih-genera IOEOnsumption.The work in [9] investigates both the noncooper-

(5G) cellular communication networks. Also, it has beeQtive and cooperative energy-efficient power control, where all

widely recognized that massive multiple-input-multiple-outpyf, o selfishly or cooperatively choose their transmit power to

(MIMO) and multi-tier heterogenous networks (HetNets) argptimize their network EE. Similarly, the authors in [10] and

two promising techniques to achieve this goal for 5G nel:il] provide insight on energy efficient power coordination,

Works [3]. A.S massive MIMO_ base_statlons (BS) are Capat\/ﬁwere a new adjustable utility function is adopted to jointly
of communicating with multiple single-antenna users OV%rptimize SE and EE of each BS in HetNets. In [12], the
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between EE and SE is studied in our earlier work [15],
where the user association and power coordination are jointly
optimized.

However, in the aforementioned studies [8]-[15], the con-
straint of backhaul capacity between BSs and the core net-
work is not considered. With the employment of dense small
cells and large-scale antenna arrays in macro BSs, there
will be enormous data transmissions over backhaul links,
while current backhaul solutions can not provide sufficient
capacity [16], [17] and has become one of crucial perfor-
mance constraints [18], [19]. Hence, it is indispensable to
take the backhaul constraint into account when optimizing EE.
and SE in massive MIMO enabled HetNets. The backhaul
bottleneck of HetNets has been investigated to some extent
in the literature [20]-[22]. The authors in [20] propose a
distributed load-balancing user association algorithm. In [21],
the in-band wireless backhaul in massive MIMO enabled
HetNets is investigated, where the downlink user association
and backhaul bandwidth allocation are jointly optimized to
maximize the sum logarithmic user rate. Similarly, the work
in [22] considers the joint optimization of user association and
resource allocation in hybrid energy powered HetNets, which
aims at maximizing the network utility under the proportional
fairness subject to both the backhaul and energy constraints.
Nevertheless, the studies in [20]-[22] only involve SE and rate
fairness, and the performance of EE is totally ignored.

To the best of our knowledge, there is no existing work that
studies the tradeoff between EE and SE in massive MIMO
enabled HetNets while taking into consideration the backhaul
capacity constraint. Motivated by such observations, this paper
studies the tradeoff between EE and SE in massive MIMO
enabled HetNets from an optimization perspective under the
proportional fairness criterion and the constraint of back-
haul capacity, where we comprehensively consider the joint
optimization of user association, spectrum allocation, power
coordination, and the number of activated antennas. To be
more specific, the contributions of this paper are summarized
in the following:

o A general framework is proposed to investigate the

tradeoff between the system EE and SE while ensuring
proportional rate fairness among users and taking into

effective algorithm is proposed to solve this mixed-integer
and non-convex problem, where primal decomposition is
used to separate the original problem into two levels.
Specifically, the power coordination and antenna number
optimization problem is solved via successive convex
programming (SCP), which is transformed into a series of
convex problem and thus requires only polynomial com-
plexity. For the other problem, we develop a distributed
user association and spectrum allocation algorithm via
Lagrange dual decomposition, which reduces both the
computational complexity and information exchange.
The optimality, convergence, and complexity of the pro-
posed algorithm are analyzed. It is first demonstrated
theoretically that the proposed power coordination and
antenna number optimization algorithm is guaranteed
to converge to the solution satisfying KKT conditions.
Then, we study the optimality of the proposed distributed
user association and spectrum allocation algorithm, and
prove that the dual gap between the primal problem and
its dual problem is bounded. In addition, the overall
computational complexity of the proposed algorithm is
analyzed in detail. Furthermore, the convergence prop-
erty of the proposed algorithm is testified by simulation
results, including both the iterations of SCP algorithm and
the overall iterations between two subproblems. Also, the
effectiveness of the proposed algorithm is demonstrated
numerically compared to other algorithms in terms of the
EE-SE tradeoff and rate fairness.

Particularly, the characteristics about the optimal number
of activated antennas are investigated theoretically and
numerically. We find that the optimal number of activated
antennas is always the number of equipped antennas
when the system SE is maximized. By contrast, the
optimal number of activated antennas corresponding to
the maximum EE diminishes with the increase of the
circuit power consumption per antenna, when the number
of equipped antennas is sufficiently large. The impact of
the backhaul capacity constraint on the system EE and SE
is also captured via numerical results, which indicates that
the backhaul capacity is indeed a bottleneck for network
performance.

account the backhaul capacity constraint. Specifically, The rest of this paper is organized as follows. We first

this problem is first formulated as an multi-objectivelescribe the system model in Section Il. Then, in Section

optimization (MOO) problem maximizing the sum log-Il, a multi-objective optimization problem is formulated to

utility and minimizing the total power consumption si-maximize SE and EE while ensuring proportional rate fairness,

multaneously. The weighted Tchebycheff method is theghich is further solved in Section IV. Finally, simulation

employed to transform the MOO problem into a singleresults are presented in Section V, which is followed by

objective optimization (SOO) problem, which is necesonclusions in Section VI.

sary and sufficient for Pareto optimality and thus provides

the complete Pareto optimal set with the variation of the Il. SYSTEM MODEL

weighting parameter. As presented in Fig. 1, we consider the downlink transmis-
o We exploit four degrees of freedom in resource optsion in a two-tier HetNet consisting of a macro BS (MBS),

mization for massive MIMO enabled HetNets, which ig — 1 single-antenna pico BSs (PBS), addsingle-antenna

the first time in the literature to jointly optimize userusers. Leti € {1,2,---,1} be the index of BSs, where we

association, power coordination, spectrum allocation, ande: = 1 to represent the MBS, and the others are PBSs. The

the number of activated antennas simultaneously. Natelexes of users are denoted py {1,2,---,J}.

that these optimization items are closely coupling in terms Besides, a time-division duplexing (TDD) scheme is con-

of EE and SE. To reduce computational complexity, asidered with perfect channel state information (CSI). It is
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measurement [12], [21]. Hence, the long-term transmission
data rate for users associated with PBSs is considered, i.e.,

ri; = log, (1+SINRU) , 1> 1, 3)

where the long-term SINR is presented as

Rl \
Aggregation P

- )= o
Switch o N Macro BS SINRU = LQ , 1> 1. (4)
‘P ‘p > Pigij + 0
é Sink Switch 2 i
—Z—  Wireless backhaul

-—— Fiber backhaul

Pico BS @

Assume that each user can be only associated with one of
BSs, and the binary variable matrX = [z;;] is introduced
to describe the user association status, where

Fig. 1. System model. 25 = { (1); gtﬁzf;ijssssocmted with BS 1, )
As the system generally occupies several hundreds of resource
dso assumed that all BSs share the same frequency, astks (RBs), we normalize this number to be 1 and define
the orthogonal frequency-division multiple access (OFDMAhe resource allocation variablg;,0 < y;; < 1, indicating
scheme is applied among users associated with the same {8.fraction of RBs used for the communication between user

Specifically, the MBS is equipped with a large number of and thei-th BS. Thus, the transmission data rate of ugser
antennas, and et/ represent the number of active antennags calculated by

We also assume that the MBS can transmit at mast

(N < M) downlink data streams simultaneously over the Rj = injyij”w J=L2-J (6)
same frequency band, i.e., the beamforming group size is i

N, and linear zero-forcing beamforming (LZFBF) is adopted On the other hand, the power consumption of the MBS can
for the downlink transmission. As shown in Fig. 1, wirelespe expressed as [25]

backhaul is assumed for the information exchange between

PBSs and the sink switch, and the data transmission between P = eipi + Mpa +pis, i =1, (@)
MBS and the core network is based on the fiber backhaul.\ynere ¢; denotes the power amplifier efficiency of thie

th BS, p, describes the circuit power per antenna, and

represents the static circuit power term independent of the

antenna number. In contrast, the power consumption of the
In this paper, we assume ‘favorable propagation’ betweenh PBS is given by

the MBS and users, i.e., the effects of small-scale fading )

can be eliminated completely by using a large number of Py =eipi + pa+pis, 1> L. (8)

antennas, which is derived based on the asymptotic randgfen, the total network power consumption can be obtained

matrix theory [23].p = [p1,p2,---pr] is defined as the p

transmit power vector of all BSs. Here we adopt the data Pt = ZPi + Pgy, 9)

rate formula in [21] and [24] for the LZFBF precoding. Thus, ,

when M, N — oo and &£ < 1 is fixed, the achievable

normalized downlink data rate of usgrassociated with the

MBS converges to the following deterministic expression ~ SPecifically, the backhaul power consists of the power
consumption of fiber-based and microwave-based backhaul

A. Achievable Data Rate and Power Consumption

?

where Py denotes the power consumption for backhaul.

rij = Nlog, (1 + SINRy; (p, M), i =1, (1) links, which is expressed as
where the signal-to-interference-and-noise ratio (SINR) is cal- Pgy = PEiPer 4 phlicre, (10)
culated by

In (10), the power consumption for the fiber-based backhaul

_M-N+1 Pigij i=1. (2) linksis calculated based on the model in [26], [27], which is

N l;_l?lglj +o}’ given by
Here g;; is the large-scale fading between ti¢h BS and Pfiber — {&-‘ pliber  + Napar + Nupul, (11)
the j-th user, ands> represents the noise power at uger maxd

Note that this large-system asymptotic is demonstrated to Wwheremaxg denotes the highest number of available down-
accurate for practical values of the antenna array 3izand link interfaces for one aggregation switgif>s:, describes the
the beamforming group siz&/ in [24] and the references maximum power consumption of one fiber-based aggregation
therein. switch. Ng; and pq; represent the number of downlink inter-
Generally, the user association period is sufficiently long&ces and the power consumption of each downlink interface,
than the period of small-scale fading so that the impamspectively. N, denotes the number of uplink interfaces,

of small-scale fading can be averaged out in the chanmehich is a function of total aggregate traffic collected at the
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switch (A7) and the maximum transmission rate of amquivalently formulated as a MOO problem maximizing the
uplink interface Upax), i.€., Ny = % , andp,; indicates sum-log-rate utility and minimizing the total power consump-
the power consumption of each uplink interface. Similarly, TH&N simultaneously. Thus, the joint optimization problem of
power consumed by microwave-based backhaul [26], [27] cHer association, resource allocation, power coordination and

be expressed as number of activated antennas can be expressed as
i ATmicro i min —U (X’ Yy, P, M)a
P = [Cmicro WP awitch T VPBS Plow + Nsink Phigh, (12) xy,p. M
switch % ilnll)nM Ptot (Xa Yy, P, M)7
where AT icro .is the aggregated microwave-based backhaul S,'tfél sy € {0,1},V4, 4,
traffic, and CL0 and P> represent the capacity and C2: Y @y = 1,V
the power consumption of each switch for microwave back- i o
haul, respectivelyP,,, describes the power associated with C3:yi5 € [0,1],V4, 7, (16)
microwave backhaul operations at each PBS, &ng, cor- Cd: X wiyyiy < 1,Vi,
responds to the power consumption at the sink node. Corre- 5 - M < Moo,
spondlngly,Nsz and _Nsink repres_ent the number of PBSs C6 : p; < Pimar, Vi,
and the sink, respectlvely._ In partpular, we assume that the C7 S wijyijri; < Cion, Vi,
capacity of the backhaul link for theth BS is bounded by 5

Cibn- where M,,.x and p; max denote the number of equipped

B. SE, EE and Proportional Fairness antgnnas at _the MBS and the maximum transmit power of
BS i, respectively.

In this paper, the system SE (bits/s/Hz) is defined as the -
. : e In (16), C1 and C2 indicates that each user can be only
total system throughput per unit bandwidth, which is given bgssociated with one BS at any time. C3 and C4 are the

NsE= Z R; = Z Z TijYisTij- (13) constraints of spectrum allocation among users associate_d with
J P the same BS. Then, C5 denotes that the number of activated

The system EE (bit/Joule/Hz) is further defined as the ratio gftennas at the MBS is bounded BY;..., and C6 ensures

the system SE over the total power consumption, which cHifit the transmit power of thieth BS is not more thap; max,
be expressed as V1. Particularly, C7 represents that the capacity of the backhaul

Sy link for the i-th BS is bounded by’; p1.
_ 2 TijYijTij

NSE ; For the sake of consistent comparison, we first normalize
TEE = = : (14)  the sum log-utility function and total power consumption in
Pt > P+ Ppn g-utility P P
i (16) as the following

It is known that SE and EE are conflicting objectives Unmax—3 In(R;)
in a wireless communication system with limited radio re- min  Fi (x,y,p, M) = ——25—,
sources [28]. This is because maximizing SE is equivalent x’ryn’;M Fy (x M) = L (17)
to utilizing all the available resources, such as the maximum xyp 2P o Pmax?

transmit power and all the available antennas to increase {iere P, denotes the maximum total power consumption

throughout, while in such case the EE may become very loyyq Umax and Umin represent the maximum and minimum
due to high power consumption. Therefore, only maximizing,m |og-utility, respectively. Specifically, the maximum power

SE or EE may not satisfy the performance requirement Banumption can be calculated by settipg= [p;.max] and
decision makers, and it is necessary to investigate the tradepff_ 5 ’

max, Which is

between EE and SE. As explained in [29], the tradeoff between S
EE and SE can be obtained by solving a simplified MOO _
problem of minimizing the total power consumption andeaX - Z (€iPimax + Pis) + Pa (Mmax + 1 — 1) + Py.
maximizing SE for specific ranges of the weighting parameter. =t (18)

However, rate fairness among users can not be guarantg@@n, by omitting mutual interferences among BSs, we further
in the above analysis, since only the system EE and $btain the upper bound of the sum log-utility, which must be
are maximized. As proportional fairness can achieve a gogathximized atp = [Pimax] ANA M = M.y, i€,
balance between SE maximization and fairness [30], in this
paper, the system SE is replaced in the MOO problem with .
the summation of the logarithmic rates of users, which is given Umax = H;?;XZ In Z LijYijTij ’
by J ’

Pi=Pi,max,M=Mmax

U(x,y,p,M) = In (R;). 15 _ ) )
(v, p, M) zj: (Rs) (19) where 7;; is the approximate data rate without the con-

sideration of mutual interferences. Thus, the Lagrange dual

lll. PROBLEM FORMULATION decomposition (LDD) method presented in Section IV can

As mentioned before, the tradeoff between EE and St used to find the user association and resource allocation
while ensuring proportional rate fairness among users can dmution of (19). On the other hand, the minimum utility can
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be approximated as where\ > 0 andyp > 0 are Lagrangian multipliers. Then, the
Usnin = J 10 (6). (20) corresponding dual function is given by
. . . min L (x,y,p, M,p,A 1),

whered is a predefined and sufficiently small value, and we H (\, u) = { x,y,p,M,p (24)
assume thak; > 4, V. s.t. C1 = CT.

Problem (16) is a mix-integer and non-concave probleRearranging the Lagrange function yields
due to the integer variables and A and the existing inter-
cell interference presented i);, which i lly NP-hard L(xy,p, M, A, 1)

_ ted in;, which is generally ard. MU (%, v, M) (1= w) Py (%, y, p, M)
Weighted sum method is one of the most general methods for = — AL el IASEEAL <
solving MOO problems, but it can not obtain points on non- Umax — Umin Pinax
convex portions of the Pareto optimal set [31]. Hence, in this L1 (x,y,p, M,A,u)
paper, we employ weighted Tchebycheff method to transform + (1 — A —p) ¢ +%
problem (16) into a SOO problem, which is sufficient and nec- m
essary for achieving Pareto optimality and therefore provides (25)
the complete Pareto front of problem (16) [31]. According t@hus, for the given\, i), problem (24) can be decomposed
the weighted Tchebycheff method, the MOO problem can lto two subproblems, i.e., the joint user association and

transformed into the following SOO problem as resource optimization problem
min max{wF; (x,y,p,M),(l —w)F2 (xX,¥,p, M)}, i Ly (x,y,p, M, A\, 1),
nin max {wky (x,y,p, M), ( )F2 (x,y,p, M)} Jnin Ly (x,y,p 1) (26)
s.t. C1 — C7, s.t. C1 — C7,
(21) h . lecti |
wherew € [0,1] is the weighting parameter representing th@nd the adaptive selection problem
relative importance between two objectives. To illustrate the min Ly (o, A\, 1) . (27)
©

equivalence between the MOO problem (16) and the SOO
problem _(_21)’ we have th? following proposﬂpn. _ A. Joint User Association and Resource Optimization
Proposition 1: For any givenw € [0, 1], the unique optimal ) . ) ] )
solution (x*, y*, p*, M*) of problem (21) is Pareto optimal V\(e.flrst fgcqs on finding the opt_|m§1I solution of (26), ie.,
for the MOO problem (16). the joint optlmlza_ltlon of user association, spectrum allocation,
power coordination and the number of activated antennas at
the MBS. Since these optimization variables are coupled, the
primal decomposition method [32] is appropriate to be applied
to separate the original problem into the following two levels
V. PROPOSEDALGORITHMS of optimization problem. Fixing user association matsix
and the spectrum allocation matrxin problem (26) yields

To further understand the tradeoff between SE and EE, it{fté power coordination and antenna number optimization
necessary to find the optimal solution of (21). Specifically, weroblem, i.e.,

Proof: See Appendix A.

first introduce an additional variable to make problem (21) Ao S In(Ry)  p(1-w) (Z 87p7+Mp1>
tractable, and the equivalent transformed problem is expressednax f; (p, M) = ———F— — = E—
as DJ\/I max — Umin max
min P, s.t. C5 — C7
x,y,p,M,p (28)
s.t. C1 — C7,U e On the contrary, by fixing the number of active antennés
08w *’ZJ“ n(Ry) < (22) and the transmit power vectgs in problem (26), theuser
' Umax=Unnin =% association and spectrum allocation problem can be obtained
Co:(1—w) (P“—O_“)ggo. by
- max f3 (x,y) = > In < TiiliiTi -),
However, it is still rather challenging to find the global xy (y) ? ; sy (29)
optimum of problem (22) with affordable computational com- s.t. C1 — C4,CT7.

plexity, since problem (22) is mixed-integer and non-convgste that several constant terms are omitted in (28) and (29)
due to the integer variable;; and M and the inter-cell inter- for simplicity.

ference. Moreover, these optimization variablesy, p, M) 1. Subproblem 1: Power coordination and antenna

are closely coupling in terms of EE and SE. To solve thi§;mper optimization

nontrivial problem, a series of decomposition algorithms will o5 mentioned before. because of the existing inter-cell

be proposed in the following. We first relax constraints C8-Cyerference and the integer variabié, the joint optimization

and the corresponding Lagrange function can be presentesf5qwer coordination and the number of active antennas is a

L(x,y,p,M,0,\ 1) = o+ X(wF1 (x,y,p, M) — ¢) non-convex mixed-integer problem. To tackle this difficulty,
+u (1 —w)F2 (x,y,p, M) — @), We.f|rst relax .the number o_f active gngenn&s to a rgal
(23) variable, and find the suboptimal solutidd™* = [M*] with
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Algorithm 1 Sequential convex programming algorithm folhy setting new SINR value and solving problem (33) until

Subproblem 1 convergence. Therefore, we borrow the idea of sequential con-
1. Initialize n = 0, flagiow = 1, P? = Dimax, and vex programming (SCP) [32], i.e., finding a local optimum of
M = Mpyax, Vi. problem (28) by solving a sequence of convex problems (33)
2. Calculate the SINFé,?j. with new obtained SINR value, which allows us to develop
3. while flagiow > 0.01, do an effective algorithm with low computational complexity.
4 n=n+1; The above procedure is summarized Atgorithm 1, and
5. Ca|cu|atea;zjfl andb? " with 6771, Vi, j; its convergence and optimality are analyzed in the following
6.  Solve problem (33), and obtaiq™, M"); proposition.

7 Updatep = 2%, Vi; Proposition 3: Algorithm 1 monotonically improves the
) Update SINR valué;; with (p™, M™), Vi, j; value off; (p, M) at each iteration, and eventually converges
~ G - gn—1 o to one solution satisfying the KKT conditions of problem (28).
9.  CalculateAdf; = gt | Vi d Proof: See Appendix C. (]
10.  Calculateflagioy = max { Ag;; } Particularly, the optimal number of activated antennas at the
. ] MBS can be characterized in the following proposition.
11. end while Proposition 4: When w = 1, the optimal number of

activated antennas/* always satisfies\/* = M,..; when

) ) ) w = wggE?, if Mu.y is sufficiently large M * diminishes with
the top integer operation. Then, to deal with the non-conyeXine increase of the circuit power consumption per antenna
of user rate, the lower bound of the logarithmic function is

employed [33], i.e Proof: See Appendix D. |
pioy T 2. Subproblem 2: User association and spectrum alloca-
log, (14 0) > alogyf + b, (30) tion

wherea = -, andb = log, (1 + 0')— 1%, log,#'. Note that

whenf = ¢, the equality holds. Thus, with the transformatio
qi = logyp;, f1 (p, M) is lower-bounded by

To solve problem (29), the LDD method is adopted to
I]‘]ind the optimal user association and spectrum allocation. For
convenience, we first transform problem (29) into

f = ij I (yijriz),
) ,\wZIn(injyijﬁj(q,MO I{(I%IX 2 (X,Y) ;;(L‘J Il(y 5T J) (34)
fl (p7 M) > f1 (Qa M) = - Umax —Umin (31) s.t. C1 — C4, C7,
_ plimw) (Z 2qi/’5i+M”“§ and the following proposition illustrates the equivalence be-
Prnax ’ tween two problems.
where .the transmission rate from BSto the j-th user is  proposition 5: Problem (34) and (29) are equivalent.
approximated to Proof: See Appendix E. [
For (q, M) = N (aijlogy (SINR;; (g, M)) + bij), i =1, Thus, relaxing constraints C4 and C7, the Lagrange function
EAS | asjlog, (SINR;; (q, M)) + bij, 1> 1, of (34) is obtained by
(32
anda;; andb;; are derived with a given SINR valug;. For Txy,af8) = ;Zj:xw In (yi;7i;)
further analysis, we have the following proposition about the
approximate objective functiofy (q, M). +> (1 - xijyij> (35)
Proposition 2: f; (q, M) is a concave function ofq, M) i J
Proof: See Appendix B. |
. . + i | Cibn — i YiTij |
Thus, we can solve problem (28) by finding the optimum ;ﬂ < b ;x Jyjr])
(q*, M*) of the convex optimization problem as the foIIowing{N
- herea = [a17a2a e aal] and /g = [ﬂlvﬂ% e aﬂ[] are
max fy (q, M), Lagrange multipliers corresponding to constraints C4 and C7,
:‘t C5: M < My, ) respectively. The dual function is further expressed as
C6 : 29 < p; max, Vi, (o B) maxT (x,y,, B3), (36)
. T < (O ; J(a = Xy
cr ;xuyuru >~ CL,bh;VZa ? st. C1— C3,
which can be optimally solved by the interior-point methodnd the corresponding dual problem is given by
with affordable polynomial complexity [34]. However, the min J (a, B). 37)

approximation in (31) can be loose, which may result in
unexpected results. To tighten the lower bound in (31) and
make the optimal solution of (33) closer to that of (28), it
is indispensable to update;; and b;; in iterative manner 9

«,320

In order to solve the dual problem (37), we first investi-
ate problem (36) for givem, 3. Specifically, the Lagrange

IHere M is the relaxed real number. 2wgg corresponds to the point of the maximum EE.
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function (35) is rearranged as Algorithm 2 Distributed User Association and Spectrum
Allocation Algorithm at thej-th User

T(x,y,a, B8) = szijsij (yij) + Z% + Zﬁici,bm 1.if k=0

J

k ; i .
It is easy to find thas;; (y;;) is a concave function ovey;;. : ga:cu:aieyi,, i’j accor(éijl.ng E[O ((i;))
. Caleulater?;, Vi, according to (42);

Thus, when thej-th user is associated with theth BS, i.e., ij’ ~ A r ko
zi; = 1, the optimal spectrum allocation can be calculated by 8- Calculate the auxiliary variablef; = z;v;5, Vi;
taking the derivative off (x,y, o, 3) with respect tay;; and  9- Feedback the messagf > 0 to BS 4, Vi.

setting it to zero, i.e.,

(38) 2 Estimater;;, Vi, via pilot signals from all BSs.
where 3.end if
4. kE=k+1,
Sij (yij) = In (yijrij) — iysj — Bivirij- (39) 5. Receivea* and 3" transmitted from all BSs;
6
7

T (x,y, @, B) 1 Algorithm 3 Di_stributed User Association and Spectrum
0= —""""T--=— —q; — Birij, (40) Allocation Algorithm at thei-th BS
vy vii Lifk=0
and we can obtain 2. Initialize ol andp).
Yl = #, (41) 3. else
Yy Biryg 4. Receive the information; > 0, Vj;

Substituting (41) into (38), to maximiz& (x,y*,a, 8), the 5 Updatea; ! and 5i*" with =¥ according to
optimal user association for usgmust be

k+1 k k
N 1, i = argmax Sy; (yl*J) , =i +v ZZU -17,
Ty = o (42) ;
0, otherwise.
Up to now, the user association and spectrum allocation Btk = gl 4o ZZ’U’”J’ —Ciwn | ;
policy for givena and 3 has been obtained. Thus, problem i

(34) can be solved via the dual problem (37) by utilizing g onq if
subgradient method. Specifically, at thh iteration, the dual 7 k=k+l:

function (36) is calculated with the giVEéak,ﬁk). Then, 8. Broadcast the updated mulnp“eﬁé andﬁf_

ak“,ﬁk“) is updated via the subgradient method, which
can be expressed as

we can solve the joint user association and spectrum alloca-
. . . - tion problem (34) distributively. The specific procedures of
ap =g v Z%yu -1], (43a) distributive algorithms for users and BSs are presented in
J Algorithm 2 and Algorithm 3. Now, the solutions of prob-
lem (28) and (29) have been found, respectively. According
k+1 _ pk k ko k. k- to primal decomposition, the original problem (26) can be
Fim =Bt ijmijyijrij pbhf (430) solved by solving problem (28) and (29) in iterative manner
until convergence. As a consequence, the two-stage iterative
where v* is the diminishing step size at thieth iteration. algorithm for joint optimization of user association, spectrum
Note that the subgradient updates of (43) are guaranteedali@cation, power coordination, and number of activated MBS
converge as long as® is chosen to be sufficiently small. Inantennas is summarized Agorithm 4.
this paperp® = L. Since the user association variablg
is naturally dlsc_rete, there may exist a non-zero duality ggp Adaptive Optimization of ¢
between the primal problem (34) and the dual problem (37). b ing the li timizati bl 27Y. it timal
Nevertheless, the Lagrangian dual method often provides goo Serving the linear optimization problem (27), its optima
solutions of the primal optimization problem [14], and th&° ution can be readily obtained by
following proposition further illustrates that the duality gap is o { 1, ifAx+pu>1,

bounded. | max{wFi, (1 —w)Fa}, otherwise. (44)

Proposition 6: For the user association and spectrum ajjote thaty < 1 always holds since the two objectives in (17)
location problem (34), the duality gap between the objectig g the weightv range between 0 and 1. Thus, problem (22)
f2 (x,y) obtained via subgradient method and the global optizn pe finally solved by updating\, ») like (43).
mum of problem (34) is bounded by, «; + >~ 3;Ci pn — J.

Proof: See Appendix F. B C. Summary and Complexity Analysis

Observing (41)-(43), the Lagrange multipliefe, 3) can As presented before, the transformed problem (24) for the
be treated as the message between users and BSs. Thadeoff between EE and SE is solved through a series of
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Algorithm 4 Two-stage iterative algorithm

1. For any given weighting parameter

TABLE |
SIMULATION PARAMETERS

. - - o _
2. Initialize m = 0, flag = 1, M” = Myax, and Parameters | Default value | Parameters | Default value
DY = Dimax- Cell radius 500 m Bandwidih 20 MHz
3. while flag > 0.01, do J 50 Max 300
4 m=m -+ 1; N 10 pa. 05 W
5.  Calculate(x™,y™) via Algorithm 2 and 3; P1,max 43 dBm Pimax, i > 1 30 dBm
6. Calculate(p™, M™) via Algorithm 1; Noise | -iradBmHz| e,i=1 21.45

: P Algorrnm -, c,i> 1 55 Pinyi =1 30W
7. Calculateflag = max |Zo%u_Tu Y Pis,i>1 10W maxq 24
_ b ii Yij Plwtien 200 W Pawiteh 23 W
8. end while Pal 1W Pul 2W
Piow 17 W Phigh 425 W
Umax 10 Gb/s vitoh 36 Gb/s
Cron,i =1 | 500 BIUSIHZ | Cron,i > 1 | 20 bit/s/Hz
J”g;gg:seAS;?ﬁ:‘i;z;;:‘d Adaptive ¢ Selection 0.12
Problem (26) Problem (27) A 0.12 —— p=0.1% [Dj x|
I Primal 012 —— P=0.5% [ 1]
i Decomposition . —©— P= ;.|
Problem (28) Problem (29) 0.12
Power Coordination and User Association and
Antenna Number Optimization Spectrum Allocation . 0.12
t Lagrange Dual EF
| Decomposition e.; 0.12
’Primal Problem Dual Problem \ < 0.12
(36) (37)
0.12
Fig. 2. The problem decomposition. 012
0.11
decomposition algorithms, which is summarized in Fig. 2 for MM v 5 & 7 & 9 10

clarity. Problem (24) is first separated into the joint optimiza- Iteration

tion problem (26) and the adaptive selection problem (27). i
Then, with the help of primal decomposition, problem (26'3g
is decomposed into the power coordination and the number

of activated antennas optimization problem (28), and the usghich actually requires exponential computational complexity.
association and spectrum allocation problem (29). Next, withonsequently, a computationally-efficient algorithm is adopted
the help of SCP algorithm, Algorithm 1 is developed to solvgy solve problem (28), i.e., Algorithm 1. At each iteration
problem (28), and the power coordination and the number gf Algorithm 1, we only need to solve a standard convex
activated antennas at the MBS are obtained. Given solutionggtimization problem with the requirement of polynomial
problem (28), problem (29) is then solved via Lagrange dughmplexity, which is defined as(I). In addition, the required
decomposition, and the corresponding dual problemis problgmimper of iteration: before convergence of Algorithm 1 is
(37). By distributively solving problem (37) via Algorithm 2 gyite small, whose value is consistently below 10 in our nu-
and 3, the user association and spectrum allocation matriggsrical results (see Fig. 3). Furthermore, the iteration between
are determined. Finally, with the solution of problem (Z%roblem (28) and (29) in Algorithm 4 also converges fast as
obtai_ned by Algorithm 4, the adaptive selection problem gemonstrated in the numerical study (see Fig. 4).
(27) is easily solved. In summary, the overall computational complexity of Algo-
For the user association and spectrum allocation problegiam 4 for the joint user association and resource optimization
the computational complexity of our proposed distributivsromem (26) isO ([¢+1JC (I)). Hence, the proposed algo-
algorithms, i.e., Algorithm 2 and 3, i (1.J) at each iteration, rithm only requires affordable polynomial complexity to find

and the complexity of the outer Lagrangian multipliers updaige solution of the original problem (22).
based on sub-gradient method is a polynomial function of the

dual problem dimension, i.e2] for J («, 3) [35]. Therefore,
the complexity to update all multipliers is in the order of
I¢, where ¢ denotes a positive constant [36]. Thus, the Inthe simulations, we consider a two-tier HetNet, where one
overall computational complexity for the user association amdassive MIMO macro BS is in the center, and three pico-BSs
spectrum allocation problem 8 (I‘f’“J). are symmetrically placed along the circle with radius of 200 m.
On the other hand, the power coordination and the numbésers are randomly located in the cell. The pathloss between
of antenna optimization problem is a non-trivial problem duBSs and users is modelled &88.1 + 37.6log,,d (km), and
to the existence of inter-cell interference. Therefore, findinge standard derivation of shadow fading is 8 dB. The other
its global optimum with affordable complexity is challengingsimulation parameters are shown in Table I.

. 3. The convergence procedure of Algorithm 1.

V. SIMULATION RESULTS
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2 0.205-
Q
£ o029
A. Performance of Convergence ® o285
o
We first provide insight on the convergence property of Al- o 028
. . . . w
gorithm 1, and Fig. 3 pres_ents.the objectl\_/t_e functipfp, M) 0278 - = 5 i e "
of problem (28) versus iterations. Specifically, three curves Spectral efficiency (bit/s/Hz)
with different initial transmit power are plotted in Fig. 3, and ®)
it can be observed thdt (p, M) increases consistently and N 09
. C e . . I VY
converges to the maximum value within about 6 iterations. 3
In addition, we can find that the choice of initial points has 3 o8l |
negligible effect on the convergence procedure of Algorithm 1. =)
These numerical results also keep in line with Proposition 3 g |
proved in Section IV. 3
Since our proposed algorithm for joint optimization of user E 06 |
association and resource optimization (i.e., Algorithm 4) is a e | —p— massive MIMO enabled two-tier HetNets |
two-stage iterative algorithm, it is significant to demonstrate & 05 ‘ ‘ ‘ ‘ ‘
i i 250 300 350 400 450 500 55C
!ts convergence property. Fig. 4 plots the flag value versus Spectral efficiency (bit/s/Hz)
iterations under different number of users, where
m m m—1 (C)
flag :||z — 7z ||1, (45)

_ ) Fig. 5. (a) Energy efficiency.s. spectral efficiency for the system with only
and m represents the iteration number. When the flag valgee macro BS. (b) Energy efficiengys. spectral efficiency for the system with

turns into zero, the obtained user association and spectrmé’igﬁaﬁ‘;& fj;tﬁgtesrgy efficiencys. spectral efficiency for the massive
allocation solution stays the same between two iterations, '
and thus the optimized transmit power and the number of

anten_na are also stgble, \.NhiCh indicates the converge_ncetl.%f cell edge, which may result in a lower EE. Accordingly,
Algorithm 4. Fr_om Fig. 4, it can be observed that Algor!thnés the transmit power of the macro BS is upper-bounded, the
4 converges quickly, and the increase of users has slight IMPAGimum achievable SE for the case of only one marco BS is
on the speed of convergence. also reduced compared to that in two-tier HetNets. On the
other hand, the case of only single-antenna pico BSs also
B. Performance Comparisons achieves a worse EE-SE tradeoff in contrast to the system
We first compare the performance of the system considei@@nsidered in this paper. Since the transmit powers of pico
in this paper, i.e., massive MIMO enabled HetNets, with th&Ss are much lower than the macro BS, the coverage area of
of two special cases where only one massive MIMO enablé@ch pico BS is limited. In this case, there may exist users
marco BS or only single-antenna pico cells are deployed. Notich can not be well served by pico BSs. Moreover, as a
that the parameter settings for the two cases also keep in If#@gle antenna is deployed in each pico BS, no performance
with those in Table I. It can be observed from Fig. 5 tha&tain from spatial multiplexing can be obtained.
the combination of HetNets and massive MIMO contributes Furthermore, to demonstrate the optimality of our ‘proposed
a much greater level of performance improvement in EE amadhorithm’, we first compare it with the exhaustive search
SE as compared to single form of the network. method which serves as the benchmark. Due to the exponential
Specifically, compared to the massive MIMO enabled twa@omputational complexity requirement of exhaustive search,
tier HetNet, the system with only one marco BS requirese consider a small-scale problem Af = 8, N = 4 as an
higher power consumption to transmit data to users locatederample. It can be observed in Fig. 6 that the performance of
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Fig. 6. Energy efficiencys. spectral efficiency for the proposed algorithmFig. 8. Jain’s fairnesss. spectral efficiency for different algorithms.
and the exhaustive search method.
0.9F 3 increase of transmit power and antenna power consumption
_ has a significant effect on the total power consumption. Under
T oF 1 this circumstance, the growing of SE becomes slower than
% ol | the total power consumption, which is due to the diminishing
2 gradient of the logarithmic rate function. Furthermore, for a
P P G A given SE, the optimization of the number of MBS antennas
[S] Vel = - . .pe . .
5 ’ ) can significantly improve the system EE according to the
% 057 ) - w=1 | comparison between ‘proposed algorithm’ and ‘fixed antenna’.
3 o4 —p— proposed algorithm Besides, it can be observed in Fig. 7 that our proposed
2 —#—fixed antenna user association algorithm achieves significant improvement
w O fixed antenna and power b th EE d SE f . th th b P SINR’
0. 0 | —6— max SINR algorithm on bo -an in comparison with the basic ‘max
% max SINR fixed antenna and pow user association algorithm as our algorithm maximizes EE and
1 1 1 1 1 1 1 T . . .
050 200 250 300 350 400 450 500 550 SE simultaneously. By contrast, since the transmit power of

Spectral efficiency (bit/s/Hz) each BS and the number of activated MBS antennas are fixed

for ‘fixed antenna and power’ and ‘max SINR fixed antenna
and power’, their performances are presented via single points,
whose corresponding EE is much lower than the other three

proposed algorithm is close to that of the exhaustive sear@gorithms for the same SE. _ _
method in terms of the EE-SE tradeoff. Then, the performance of rate fairness for different algo-

Based on the default parameter settings in Table I, we thethms is presented in Fig. 8, and the rate fairness is measured

compare the proposed algorithm with other four algorithm8Y Jain's faimess index, i.e.,

1) ‘fixed antenna’ is almost in line with ‘proposed algorithm’, 2

while the antenna number of the MBS is predefined as the Index — ZRJ / JZR? . (46)

number of maximum available antennas; 2) ‘fixed antenna Z Z

and power’ denotes that both the the number of activated

antennas and transmit power are fixed as maximum valugdich ranges fromt to 1. If the index equals 1, this indicates

3) ‘max SINR fixed antenna and power’ involves a differerthat all users have the same data rate and the system achieves

user association method that each user chooses the BS @Rgolute fairess. However, the index will gradually drop;to

the highest SINR, where spectrum allocation is also obtaintth the increase of rate disparity among users. As presented in

by Lagrange dual decomposition; 4) ‘max SINR algorithnfig. 8, for a given SE, the proposed user association algorithm

further includes the optimization of power coordination angian achieve higher level of fairness compared to ‘max SINR’

antenna number by adopting our proposed Algorithm 1.  algorithm, since the logarithmic utility function is maximized
By adjusting the weighting parameterfrom 0.1 to 1, Fig. 7 in our algorithm instead of the system SE. In addition, it is

first presents the tradeoff performance between EE and SE Wsonable to find that the Optimization of antenna number has

different algorithms. For ‘proposed algorithm’, ‘fixed antennafo effect on the rate fairness. To conclude, our proposed user

and ‘max SINR algorithm’, the system EE first increases to i$sociation algorithm is superior to ‘max SINR’ algorithms in

peak and then decreases to a low level with the increase of &tms of rate fairness.

When SE is low, the increase of SE is much faster than that of

the total power consumption. Thus, EE grows as SE increases.Characteristic of the Number of Activated Antennas

However, there is a maximum point for EE. After this point, The performance of EE versus the optimal number of

the fixed circuit power does not dominate any longer and tlagtivated antennas at the MBS is illustrated in Fig. 9. We

Fig. 7. Energy efficiencys. spectral efficiency for different algorithms.
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Fig. 9. Energy efficiencys. the number of activated antennas. Fig. 10. Energy efficiencys. spectral efficiency for different levels of

backhaul capacity.

can find that all the three curves follow the same pattern, 0.7
where the system EE first increases and then decreases as the —P— proposed algorithm, SE = 300 bits/s/Hz
. . L —#— proposed algorithm, SE = 400 bits/s/Hz |
optimal number of activated antennas goes up. This is because - © - max SINR algorithm, SE = 300 bits/s/Ha
all the three selective values of, are sufficiently small so 06l - B - max SINR algorithm, SE = 400 bits/s/Hg |
that the optimal number of activated antennas corresponding
to the maximum EE is smaller than the number of equipped
antennas\/,,.«. In particular, the maximum EE declines with
the increase op,, which can be easily understood by the fact
that the more power each antenna consumes, the less energy-" s
efficient the system is. Besides, as presented in Fig. 9, lowering
the power consumption per antenna makes the optimal number 04
of activated number corresponding to the maximum EE closer
to the maximum value.

0.55]

[«
0.5

Jain fairness index

Number of user

D. Performance Bottleneck: Backhaul Capacity Constraint Fig. 11. Jain’s fairnesss. the number of users for different algorithms.
The tradeoff between EE and SE for different backhaul

capacities is plotted in Fig. 10, and the paramet@io,n index gradually decreases, and all curves follow the same
represents the ratio between the available backhaul Capaﬁ%)(tern. This can be explained by the fact that the same
and the default value in Table I. Observing the second part@e fairness among more users is more difficult to achieve.
curves where EE decreases with SE, we can find that mefgsides, for a given SE, our proposed algorithm consistently
SE is achieved with larger backhaul capacity for the sam@nieves higher rate fairess among users compared to ‘max
EE, which indicates that the backhaul capacity constraint é§nR algorithm’. Finally, the impact of the number of users on

indeed a bottleneck for the network performance. Particularije tradeoff between SE and EE for the proposed algorithm is
with the increase of the backhaul capacity, the maximuiptyred in Fig. 12. It can be observed that for a given SE, the
SE increases, and its corresponding EE also rises up. T§i8tem EE increases with the number of users at a diminishing
is because the maximum SE is bounded by the sum of Seeq, which indicates that it consumes less power to achieve
backhaul capacity for each BS. When the backhaul capacife same level of SE when the number of users rises up. This

rises up, more data can be transmitted between BSs and usgrgainly because of the effect of multiuser diversity, and the

stable with the increase of the backhaul capacity. When the
system EE reaches its peak, the data rates of BSs can be lower VI. CONCLUSION
than its corresponding backhaul capacities with the relaxation

of the backhaul constraint. In this case, the maximum EE cev?:ﬁettis?ﬁﬁg‘ pvygpitrl:iglr?gl trg?etrgijri%;b?rt]wrizgs'izvi T\l;lltljvlgE
not be improved by raising the backhaul capactiy.
P Y 9 pactly enabled HetNets, and the MOO problem was formulated to

maximize EE and SE simultaneously while ensuring propor-

E. Impact of the Number of Users tional rate fairness, where the backhaul capacity constraint
Furthermore, we investigate the performance of rate fairnessd power consumption were both taken into account. A
for different number of users, where the proposed algorithmdésmputational-efficient algorithm was further proposed to
compared with the basic 'max SINR algorithm’. As observedomprehensively optimize user association, spectrum alloca-
in Fig. 11, when the number of users increases, the fairné®s, power coordination and number of activated antennas,
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11 APPENDIXB

Proof of Proposition 2: For simplicity of the following
analysis, we first introduce two coefficients:

N =1 M—N-+1 P
d; =  t ’ e; = N ! L
1, 1> 1, 1, 1> 1,

[
T

o
©
T

o
=

and the approximate data rate for ugeassociated with B$
can be further expressed as

Energy efficiency (bit/Joule/Hz)

07
06l 7Zij (Qa M) = dz + Cij (qv M) 3 (51)
where
O'2550 360 3%0 460 450 560 550
Spectral efficiency (bit/s/Hz) cij (@, M) =ai; | ¢ —logy | D 2%¢g;; + 0]2- (52)
I#i
Fig. 12. Energy efficiencys. spectral efficiency for different numbers of +a;jlog, (€igij) + bij.

users.
¢ij (a, M) is a concave function ovefq, M), which is due

_ . _ . to the concavity of logarithm function and the convexity of
which only required affordable polynomial complexity. Thghe log-sum-exp function [34]. Furthermore, the first term
convergence and optimality of the proposed algorithm wegg f, (q, /) in (31) is in the form of composite functions
verified via both theoretical analysis and numerical resultg, (¢cij (@, M)). As the logarithmic functionlog () is an
As presented in simulation results, our proposed algorithifreasing concave function an the first term off; (g, M) is
Converged fast within several iterations. In Compal’ison Wi&]conca\/e function quq, M) On the other hand, the second
‘max SINR' algorithm, the proposed algorithm significantlyerm of f, (g, /) is also a concave function because of the
improved the performance of the EE-SE tradeoff and rag@nvexity of exponential function. Sinde (q, M) is actually
fairness among users, which demonstrated its effectivenessum of concave terms, it is straightforward to conclude that
We further investigated the characteristics of the optim@l g 1/) is concave ovetq, M).
number of activated antennas via theoretical analysis and
numerical results, and also demonstrated numerically that the

. : APPENDIXC
backhaul capacity constraint was a bottleneck for the network

performance. Proof of Proposition 3: Let g™ = log, (p™) and M™ denote
the optimal solution of problem (33) after theth iteration in
APPENDIX A Algorithm 1, and we have the following inequality
.y . . @) ~ (b)~
Proof of Proposition 1.;)ef|ne;h§1t v f1 (p™, M™) (a) £y (q", M"™) < Fy (q*t, M) (53)
max ~ X, Yy, Db, (C)

g1 (Xa Y, P; M) - Ummx . Umin ’ (473) § fl (pn+17 MnJrl) y
Pt (x,y,p, M) where the equality (a) is due to the fact thaf andb;; are
& (x,y,p, M) = —————"—=, (47b)  calculated with the give”, = SINR;; (p", M™) and thus the

P, ij J
e relaxation (31) is tight; the inequality (b) holds since problem

G (x,y,p, M) = max {wgi, (1 — w) g2} . (47¢) (33) is convex and(q"™', M"*!) is the global optimal

solution; the inequality (c) is valid because(q"+*, M"*1)

is the lower bound off; (p"™, M™*!) as illustrated in

(31). Consequently, the value 6f (p, M) increases at each

Gy ,p M) <G((xy,p. M), (48) iteration. Sincef; (p, M) is upper-bounded by the constraints
of the maximum transmit power and the maximum number of

| antennas, Algorithm 1 must converge.

For any givenw € [0, 1], since(x*,y*, p*, M*) is the unique
optimal solution of problem (21), we have

for all (x,y,p, M) satisfying constraints C1-C7.
Now we suppose thdk*, y*, p*, M*) is not Pareto optima . : .
for the original MOO problem (16). Thus, there must exist ASSUme that(q", M) is the obtained solution when Al-

another solutior(x’,y’, p’, M') of problem (21) that satisfies gorithm 1 converges, which must s_atisfy the KKT condi-
tions of problem (33). When Algorithm 1 converges, the

g (x,y',p/, M') <& (x*,y*,p",M*), Vi=1,2, (49) objectives in problem (28) and (33) have the same value,
ie.,f; (p*, M*) =t (q*, M*). Besides, problem (28) and (33)
actually have the same constraints. Hen@e’, M*) must
satisfy the KKT conditions of (28).

and there is at least ong € {1,2} such that
g (x,y',p', M) < g;(x*,y*,p*, M*). Under this circum-
stance, we have

G,y p,M') <G ((",y",p", M), (50) APPENDIX D
which contradicts with the uniqueness assumption. ThereforeProof of Proposition 4: When the weighting parameter
the proposition is proved. equals to 1, problem (28) turns into the SE maximization
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problem. Becausé, (p, M) increases monotonously with/  Then, we suppose thék*,y*) is the global optimal solution

when w = 1, the optimal number of activated antennafr problem (34). According to the weak duality, it always
satisfiesM™* = M ax. holds that R
On the other hand, whem = wgg, problem (28) becomes J(a,B) > fo (x*,y7), (59)

the EE maximization problem. Thus, taking the derivative of
f; (p, M) with respect toM yields

of (p, M) B; . . )
=AY ] ~Cp,, (54)  J2(xy) = o ZaﬁZﬂz ion —J | . (60)
— (14 SINR

and from (58) we prove that

oM k) D TijYisTij
K3
_ AWEE o ®1y1iNp1gyy _
where A = G=tEE—, B; = “HEEASL and O = REFERENCES
i#1
p(l—wEE) ; i ; [1] C.Yang, J. Li, M. Guizani, A. Anpalagan, and M. Elkashlan, “Advanced
Prax are non@?egzjt)lve coefhments_ mdependenM).f As spectrum sharing in 5G cognitive heterogeneous netwolk&EE Wre-

observed in (54); lall’v} decreases with\/. Thus, wherp, less Commun., vol. 23, no. 2, pp. 94-101, Apr. 2016.

is relatively small, there must exidtly < M.« that satisfies [2] J. B. Rao and A. O. Fapojuwo, “A survey of energy efficient resource
management techniques for multicell cellular networkEEE Commun.

W > 0. Since M.y is sufficiently large, there Surveys & Tutorials, vol. 16, no. 1, pp. 154-180, Jan. 2014.
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