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Highlights 

 Grafting itself increased [Na+] in the xylem sap under N-sufficient 

conditions 
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 Three QTLs governing LNC were common under contrasting N 

availabilities  

 The wild allele increased LNC for most rootstock QTLs under N-sufficient 

conditions 

 QTLs for rootstock-mediated N uptake efficiency were clustered in 

chromosome 9  

 Three coding genes for nitrate transporters were found within LNC QTL 

intervals 

 

Abstract 

Selecting rootstocks for high nitrogen acquisition ability may allow decreased N fertilizer 

application without reducing tomato yields, minimizing environmental nitrate pollution. 

A commercial hybrid tomato variety was grafted on a genotyped population of 130 

recombinant inbred lines (RILs) derived from Solanum pimpinellifolium, and compared 

with self- and non-grafted controls under contrasting nitrate availabilities (13.8 vs 1.0 

mM) in the nutrient solution. 

Grafting itself altered xylem sap composition under N-sufficient conditions, 

particularly Na+ (8.75-fold increase) concentration. N deprivation decreased shoot dry 

weight by 72.7% across the grafted RIL population, and one RIL rootstock allowed higher 

total leaf N content than the best of controls, suggesting more effective N uptake. 

Sixty-two significant QTLs were detected by multiple QTL mapping procedure 

for leaf N concentration (LNC), vegetative growth, and the xylem sap concentrations of 

Mn and four phytohormone groups (cytokinins, gibberellins, salicylic acid and jasmonic 

acid). Only three LNC QTLs could be common between nitrogen treatments. Clustering 

of rootstock QTLs controlling LNC, leaf dry weight and xylem sap salicylic acid 

concentration in chromosome 9 suggests a genetic relationship between this rootstock 

phytohormone and N uptake efficiency. Some functional candidate genes found within 2 

Mbp intervals of LNC and hormone QTLs are discussed. 

 Keywords: QTL analysis; SNP; candidate genes; Salicylic acid; Cytokinins; 

gene interactions 

1. Introduction 
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Nitrogen is quantitatively the most important mineral nutrient taken up from the 

soil by plants [1] and one of the major factors limiting crop productivity and yield [2]. 

Consequently, nitrogen fertilization has successfully increased crop yield during the last 

60 years, although there are differences between countries in the magnitude of N-

mediated yield limitation [3]. Concern continues to grow about the effects of nitrate on 

both environmental and human health, because nitrate can accumulate in high 

concentrations in the leaves of edible plants and in the drinking water [4]. While the 

environmental effects of nitrate pollution of water courses are well known [5, 6], there is 

some evidence that excessive nitrate consumption has been linked to infant mortality [7, 

8], thus farmers are legislatively bound to diminish nitrate effluent from their holdings 

and crop nitrate levels (eg. Council Directive 91/676/EEC; https://www.epa.gov/ground-

water-and-drinking-water/table-regulated-drinking-water-contaminants). Decreasing 

both environmental pollution and input costs of N fertilizer application is an important 

goal of modern agriculture. Therefore, developing crops that need less mineral N fertilizer 

and with a better N use efficiency (NUE) is required.  

Tomato is one of the most important horticultural crops. In terms of human health, 

tomato fruit is a major component of daily meals in many countries and constitutes an 

important source of minerals, vitamins, and antioxidant compounds. Breeding for NUE 

or tolerance to N deficiency could take advantage of the genetic diversity of wild Solanum 

species adapted to marginal environments. Since past tomato breeding programs grew 

plants under optimal (N-sufficient) conditions, this genetic variability has been likely lost 

in the domestication process. Thus, N-deficiency severely decreases chlorophyll content, 

leaf photosynthesis, biomass accumulation, and growth of current tomato cultivars [9, 

10]. 

Grafting is a biotechnological tool used since ancient times to improve the amount 

and uniformity of crop yield, and currently most fruit crops and many horticultural species 

(including tomato) are grown as scion-rootstock combinations. Although this strategy 

triples the work required by breeders (selection for rootstock, scion and their 

combination), rootstock breeding employing wild genetic resources can confer resistance 

to biotic and abiotic stresses [11, 12, 13]. Since rootstocks can affect nutrient absorption, 

yield and fruit quality under stress conditions [14, 15, 16, 17], those traits are usually 

targeted in rootstock breeding programs. Besides, genetic studies of rootstock effects are 

a valuable strategy to understand root functions (particularly nutrient uptake and 

https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants
https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants
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transport) since they are shoot-regulated by root-shoot communication [18]. Following 

Gallais and Hirel [19], NUE can be considered as the product of N uptake efficiency (N-

uptake/soil N reserves) and N utilization efficiency (yield/N-uptake). At high N-inputs, 

NUE was mainly related to variation in N-uptake, while at low N-input, both components 

could play a role and were difficult to distinguish one from each other [20]. Since the root 

is the main organ involved in N uptake, improving rootstock N acquisition under N-

deprivation might allow less N fertilizer application, without decreasing tomato yields, 

but to our knowledge this approach has not been tried yet.    

Plants store considerable quantities of nitrate in the vacuoles of root cells, which 

can be mobilised to the shoot. Following N deprivation of tomato, vegetative growth may 

be limited before any change in foliar N concentration is detected [21], suggesting that 

root-to-shoot signalling regulates growth. N deprivation decreases root hydraulic 

conductance [22] which may decrease leaf turgor thereby limiting growth, but 

maintaining N-deprived plants at full turgor (by pressurising the roots) was unable to 

maintain growth of N-deprived plants [23]. Alternatively, N-deprivation may alter root 

phytohormone delivery to the shoot. N deprivation decreases root export of growth-

promoting cytokinins, while increasing export of ABA [24]. Nevertheless, pea mutants 

with lower root cytokinin and ABA export showed a similar relative growth response to 

N deprivation [25, 26], suggesting that other phytohormones may be involved in growth 

regulation following N deprivation. The advent of multi-analyte physico-chemical 

techniques for phytohormone quantification offers substantial opportunities to more 

comprehensively evaluate changes in xylem sap composition following N deprivation 

[12] . 

Currently, QTL analyses can bridge the gap between agronomic performance and 

the DNA sequences involved. With the advent of the complete tomato genome sequence 

by the Tomato Genome Consortium [27], and the availability of a large panel of SNPs 

(SolCAP panel, http://solgenomics.net/), genome assembly allows the rapid identification 

of candidate genes around the physical position of the SNP (Single Nucleotide 

Polymorphism) with observed maximum LOD (Logarithm of the Odds) score. Using this 

approach, several transporter-coding genes within 2Mbp QTL intervals controlling leaf 

concentration of several nutrients (Na, B, K, Mg and Mo) were identified [28, 15] in 

trying to gain biological information from the QTL analysis. 

http://solgenomics.net/
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 Using a commercial variety grafted on a S. pimpinellifollium RIL population 

grown under N-sufficient and N-deficit conditions, this study aimed to (1)  estimate the 

heritability of the rootstock effect on vegetative growth, leaf N concentration and xylem 

sap composition  (2)  detect the QTLs involved and study their interactions, (3)  

disentangle the rootstock-dependent root-to-shoot communication and N acquisition 

pathways (4) investigate the genetic relationship of potential physiological components 

of rootstock-mediated N acquisition, and (5) infer possible candidate genes for LNC and 

hormone QTLs. 

2. Materials and Methods 

2.1 Plant material, growth conditions and trait evaluation 

This study used 130 F10 lines (P population) derived by single seed descent from the 

hybrid between a salt sensitive genotype of Solanum lycopersicum var. Cerasiforme 

(formerly L. esculentum) and a salt tolerant line from S. pimpinellifolium L. (formely L. 

pimpinellifolium) [29].  

The commercial tomato hybrid Solanum lycopersicum cv. Boludo (Bol) was the 

scion, and plants from 130 lines of the P population were evaluated as rootstocks. Non-

grafted (Bol) and self-grafted (Bol/Bol) plants were used as controls. Self-grafting placed 

a scion onto the roots of a different plant of the same genotype, and these controls were 

included to evaluate any physiological change caused by the grafting process per se. 

Grafted plants having approximately 6 leaves were obtained from the seed 

company UNIGENIA Bioscience SLV (Murcia, Spain). Grafting was performed using 

the splicing method when seedlings had developed 3-4 true leaves [30]. Seedlings were 

cut at the cotyledonary node, using the shoot as scion and the remainder as rootstock. 

Grafts were made immediately after cutting the plants and grafting clips were used to 

adhere the graft union. Two experiments were conducted in two adjacent Venlo-type 

glasshouses of 144 m2 at Wageningen UR Greenhouse Horticulture in Bleiswijk, The 

Netherlands. Each glasshouse consisted of 5 benches of double rows of 9.6 m length at a 

distance of 1.5 m. Plants were grown in 5 L pots filled with perlite using a drip irrigation 

system, at a density of 2.5 plants m-2.   Within each glasshouse, rows were split in two 

halves, where one half received the N-sufficient nutrient solution (control) and the other 

half were irrigated with a N-deficient nutrient solution from the beginning of experiment. 

The plants on the outsides of the rows were considered as borders. The basic experimental 
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design within the glasshouse was an incomplete block design repeated on two planting 

dates (4 repetitions per rootstock and treatment). Some graft combinations were repeated 

within the benches to complete the 150 experimental units per N treatment, glasshouse 

and planting date. Plants were placed in the glasshouses on August 8th (experiment 1) and 

October 25th, 2012 (experiment 2) and terminated on September 11th and November 12th, 

2012, respectively. Both N treatments were maintained during the entire time: 35 and 18 

days, respectively. 

The N-sufficient nutrient solution contained the following concentrations of 

macro-nutrients (in mM): Ca2+ 5.7; NH4+ 1.2; K+ 8.2; Na+ 0.3; Mg2+ 2.8; NO3
- 13.8; Cl- 

0; SO4
2- 5.5; H2PO4

- 1.5. The N deficient nutrient solution contained Ca2+ 5.8; NH4
+ 0.1; 

K+ 8.4; Na+ 0.3; Mg2+ 3.1; NO3
- 1.0; Cl- 10.7; SO4

2- 6.5; H2PO4
- 1.5 mM. The composition 

of the micronutrients was Fe2+ 15; Mn2+ 11.5; Zn2+ 5.5; B+3 30; Cu2+ 0.8; Mo4+ 0.5 µM. 

Both nutrient solutions had a pH of 5.3 and an EC of 2.5.10-4 S m-1, which was monitored 

biweekly. Throughout the experiment, glasshouse climate data were registered every 5 

min. Average temperature was 18.5ºC (16ºC night, 23ºC daytime) and average humidity 

level was 73% (varying between 55% during the daytime and 85% at night). The 

experiments were terminated when the first truss had just set fruits (experiment 1) or 

started flowering (experiment 2). Then, xylem sap was obtained by decapitating the plants 

below the graft union, washing the stump with demineralized water, applying a silicon 

tube over the stem and collecting the sap using a pipette. The sap was immediately frozen 

with liquid nitrogen and stored at -80 ˚C until analysis. The aboveground plant parts were 

divided into stems and leaves. Shoot fresh weight (ShFW) comprised all leaves (LFW) 

and stems (SFW).  Whole plant leaf area (LA) was determined (LI-3100C Area Meter, 

LI-COR, Lincoln, Nebraska, USA) along with dry weights (ShDW, LDW and SDW, 

respectively) after drying until constant weight. All leaves of the plant were used for 

evaluations. Vegetative and xylem sap components were evaluated in experiments 1 and 

2 while leaf N content (LNC) was evaluated in the ground leaf material (comprising all 

leaves of the plant) from experiment 2. LNC was analysed using an elemental analysis 

instrument TRUSPEC CN628 (LECO Corporation, MI, USA). Traits were evaluated in 

plants grown under normal and low N inputs, noted as _C and _N, respectively. 

Xylem sap ionomic analysis determined Al, As, Be, Bi, B, Ca, Cd, Co, Cr, Cu, Fe, 

K, Li, Mg, Mn, Mo, Na, Ni, Pb, P, Sb, Se, S, Sr, Ti, Tl, V, Zn concentrations (mg/L) using 

inductively coupled plasma spectrometry (ICP-OES, Thermo ICAP 6000 Series)  
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The following phytohormones: cytokinins (trans-Zeatin –tZ, trans-Zeatin 

Riboside –ZR and isopentenyladenine - iP), 1-aminocyclopropane-1-carboxylic acid 

(ACC), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins 

(gibberellin A1 –GA1, gibberellin A3 -GA3 and gibberellin A4-GA4) and indole-acetic 

acid (IAA) were extracted and analysed in the xylem sap as previously described [12] 

with some modifications. Briefly, the xylem sap was centrifuged and injected in a ultra-

high-pressure liquid chromatography coupled with high resolution/high accuracy 

Orbitrap® mass spectrometry system (EXACTIVE, ThermoFisher Scientific) where the 

different hormones were quantified by constructing calibration curves of each compound.  

2.2 Statistical analysis 

A linear model with nitrogen treatments and rootstocks (fixed), benches, rows within 

benches and replicates (random) was used to assess the significance of each source of 

variation following the above described design. The Bayesian Information Criteria (BIC) 

was used to select the best model. Since the model with rootstocks and benches was the 

most parsimonious with the lowest BIC for most traits, it was used to estimate the adjusted 

mean traits per rootstock genotype within each N treatment for the QTL analysis and to 

study the grafting effects by comparing Bol vs. Bol/Bol adjusted means. 

Pearson correlation analysis was used to study associations between the different 

traits. 

Broad sense heritability (H2) was calculated for traits measured in both 

populations assuming that the individuals from the F9 were nearly homozygous for all 

loci. Heritability was calculated as reported previously [31], using the formula: 

H2=Vg/(Vg+Ve) where Vg and Ve are the estimates of genotype and environmental 

variance, respectively, by REML (Restricted Maximum Likelihood). These estimates 

were obtained by a model with the same sources of variation as above but considering 

rootstocks as random effects. 

2.3 Molecular markers and QTL Analysis 

One hundred and thirty P-RILs at F10 were genotyped for 7720 SNPs from the SolCAP 

tomato panel (Illumina BeadXhip WG-401-1004) and a linkage map based on 1899 non-

redundant SolCAP SNPs, covering 1326.37 cM of genetic length was used for QTL 

analysis [15]. 

QTL analyses of traits whose heritabilities were above 0.01 at least under one N 

level were carried out using Interval Mapping (IM) and Multiple QTL Mapping (MQM) 

procedures in MapQTL ® 6 [32]. Kruskal-Wallis (KW) procedure was also used for QTL 
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analysis of complex traits showing epistasis (LNC and GA3). A 5% experiment-wise 

significance level was assessed by permutation tests. These LOD critical values ranged 

from 2.1 to 2.3 depending on the trait and chromosome. Significant QTLs were named 

by trait, the treatment, the chromosome and a number from 1 to 3 if more than one QTL 

was detected on the same chromosome for the trait and treatment concerned. 

A two-way ANOVA was used to study the interaction (epistasis) between markers 

corresponding to QTLs controlling LNC and phytohormone trait variation. 

Genes covering approximately 2 Mbp around the SNP(s) showing maximum LOD 

score at each QTL governing LNC and phytohormone traits were downloaded from the 

Sol Genomics Network (https://solgenomics.net/) and selected for function, root 

expression in the Heinz cultivar using the tomato eFP Browser 

(http://bar.utoronto.ca/efp_tomato/cgi-

bin/efpWeb.cgi?dataSource=Rose_Lab_Atlas_Renormalized) and for the presence of 

frameshift InDels in the parental genomes using data reported by Kevei et al. [33]. 

3. Results 

Grafting per se (comparing Bol versus Bol/Bol in Table 1) affected very few 

vegetative traits, but increased SFW by 12% (averaged across both N treatments). While 

grafting increased LA and LFW of N-sufficient plants by 7% and 12% respectively, it 

decreased SDW of N-deprived plants by 10%. Likewise, grafting had minimal impacts 

on xylem sap composition, but increased xylem Na+ concentration and decreased xylem 

IAA concentration of N-sufficient plants, while tending to increase xylem ABA 

concentration of N-deprived plants.  

Across all graft combinations in the RIL population, the low N treatment 

decreased vegetative growth by 72.7% and 74.4% for ShDW and LDW, respectively. In 

fact, the distributions of ShDW and LDW were completely separate under both N levels 

(Figure 1), as also with leaf N concentration (LNC). Very few rootstocks alleviated the 

effects of the low N treatment on vegetative growth in comparison to the controls Bol and 

Bol/Bol (Figure 2). However, when total leaf N content is considered (LTN=LNC x 

LDW), all rootstocks, including the self-grafted control, mediated larger LTN values than 

the non-grafted control (Figure 3A). Six rootstocks RILs surpassed the LTN values of the 

self-grafted control under N-sufficient conditions (but only one under N-deficit), 

suggesting they increased N uptake efficiency depending on N availability. In general, 

http://bar.utoronto.ca/efp_tomato/cgi-bin/efpWeb.cgi?dataSource=Rose_Lab_Atlas_Renormalized
http://bar.utoronto.ca/efp_tomato/cgi-bin/efpWeb.cgi?dataSource=Rose_Lab_Atlas_Renormalized
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the reduction in LTN from N-sufficient to N-deficit conditions (dLTN in Figure 3B) was 

less than the controls in 28.5% of the RILs.   

Correlation analysis (Table 2) showed that LNC was directly related to plant 

growth (ShFW, ShDW, and LDW), and inversely related to xylem sap tZ concentration 

under N sufficient conditions; while under N-deficit, LNC was inversely related to xylem 

sap SA concentration and directly to LA and LFW. Noteworthy, under N deficit, xylem 

sap SA concentration was also inversely related to both ShFW and xylem sap Mn 

concentration. When comparing vegetative traits between N levels, stem fresh and dry 

weights (SFW and SDW) were the only ones that were not significantly correlated 

between treatments. 

The rootstock genotype showed significant effects on LNC and vegetative traits 

of the scion, in addition to the xylem sap Mn, tZ, JA and SA concentrations (Table 3). 

Estimated trait heritabilities were low under N-sufficient conditions and generally 

increased under N-deficit except for ShDW and xylem sap tZ concentration (Table 3). 

The low N supply significantly affected all traits, including GA3, but GxE interaction 

was only detected for xylem sap SA concentration (Table 3). 

In total, 62 significant QTLs were detected by MQM procedure (Table 4). All of 

them contributed little to the total variance (PEV) and only two could be considered 

constitutive (detected under both N treatments, in bold in Table 4): for LDW in 

chromosome 1 and for LNC in chromosome 6. Surprisingly, the graph of genotypic means 

for some LNC and phytohormone QTLs suggested the presence of over- and under-

dominance gene effects: LNC_C_6, LNC_C_10, LNC_N_6.1, LNC_6.2, SA_N_9 and 

GA3_N_10.2 (supplementary figure S1). Significant epistasis between QTLs were 

studied for LNC and xylem phytohormones. They were detected between LNC_N_12.1 

and LNC_N_12.2 (p≤0.0198), between JA_N_5 and JA_N_11 (p≤0.0456), and 

particularly for GA3 under low N (Figure 4). Two epistatic interactions involved an 

overdominant QTL (GA3_N_10.2). Given the complexity of the genetic architecture of 

LNC and GA3, Kruskal-Wallis procedure for QTL detection was used to analyze them 

and some QTLs were detected by both methods (asterisks in Tables 4 and 5). The 

complete list of LNC QTLs detected by this procedure and mRNA coding for nitrate 

transporters within their 2 Mbp intervals are presented in Table 5. Some LNC QTLs in 

chromosomes 6, 9 and 12 could be common between N treatments (QTLs in bold in Table 
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5). The wild allele of the rootstock was beneficial at most LNC QTLs under N sufficient 

conditions, and for 40% of those under N deficit. The lycopersicum allele was beneficial 

at LNC QTLs in chromosome 9, with LNC_N_9.2 overdominant (Supplementary Figure 

S1). Interestingly, this chromosome presented two clusters of QTLs (Figure 5) including 

both vegetative and LNC traits where the lycopersicum allele increased all of them 

indicating two regions involved in rootstock mediated N uptake efficiency under N 

deficit. One of those regions included SA_N_9 where the lycopersicum allele was 

associated with less SA in the xylem sap. Other clusters of QTLs appeared at three 

genomic positions (Table 4) in chromosomes 1 (LFW_N_1 and LA_N_1), 3 ( LDW_N_3 

and LFW_N_3) and 10 (LDW_N_10, ShDW_N_10 and SDW_N_10). Linkage between 

SDW and LNC QTLs was observed in chromosomes 2, 6 and 10. 

Genes covering approximately 2 Mbp around the SNP(s) showing maximum LOD 

score at each QTL governing LNC and phytohormone traits were downloaded and studied 

regarding root expression and frameshift InDels to indicate the most likely functional 

candidates summarized in Table 6. Three nitrate transporters (NTR1 and NTR2) were 

included in the case of QTLs for LNC_C_6, LNC_C_12 and LNC_N_2 although with 

low expression in the root of Heinz cultivar. Additionally, a voltage-gated chloride 

channel was found within LNC_N_2. Regarding plant hormone QTLs, two Cytokinin 

oxidase/dehydrogenase genes were within tZ_C_12; a Hydroxycinnamoyl CoA 

shikimate/quinate hydroxycinnamoyltransferase, a Cinnamoyl-CoA reductase and a 4-

coumarate CoA ligase were within SA_N_3; three Salicylic acid carboxyl 

methyltransferase genes were within SA_N_9 and a Gibberellin 2-beta-dioxygenase 7 

within GA3_N_6. 

4. Discussion 

In general, candidate genes for stress tolerance have been identified by the reverse 

genetics strategy through expression studies in mutants and transgenic genotypes [34]. 

The present study follows the scarcely used forward genetics strategy, and evaluated the 

hypothesis that genetic variability in rootstocks derived from wild relatives of tomato can 

improve N uptake. To our knowledge, this is the first study utilising genetic variability in 

a wild species (S. pimpinellifolium) to identify rootstock-mediated QTLs related to 

vegetative growth and N content under contrasting N availabilities.  

4.1 Can the rootstock improve N uptake efficiency?  
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To understand the genetics of rootstock-mediated plant N nutrition, it is first 

necessary to know whether grafting itself affected the analysed traits. Grafting increased 

plant growth under N-sufficient condition, as in a previous experiment on rootstock-

mediated salt tolerance [15]. Moreover, grafting altered xylem sap composition by 

increasing Na+ and decreasing IAA concentrations under N-sufficient conditions. Higher 

xylem Na+ concentrations could increase osmotically driven water uptake by the roots, 

and might explain increased LFW and SFW in Bol/Bol compared to Bol plants, as a 

consequence of higher leaf and stem water content [35]. Interestingly, grafting decreased 

SDW under N deficit suggesting that low N availability might limit biomass allocation to 

the stem [36], especially after grafting.  

Heritability estimates of rootstock-mediated N-uptake, measured as LNC under 

each N regime, were larger than those corresponding to vegetative traits, and ranged from 

0.33 to 0.39 (Table 3), supporting the hypothesis that selecting specific rootstock 

genotypes can improve N uptake. Thus, the reduction in total leaf N content, when 

comparing N sufficient to N-deficit conditions, was smaller than controls in 28.5% of 

RILs used as rootstocks (dLTN in Figure 3), although very few RILs surpassed Bol/Bol 

control for LTN. Therefore, the development of selection tools to improve rootstock-

mediated N uptake efficiency needs to decipher the genetic control of its components 

(LNC and LDW) under N-sufficient and -deficit conditions. 

4.2 Complex genetic control of rootstock N-uptake under N-deficit differs from 

that under N-sufficient conditions. 

Under N-deficit no LNC_N, no significant QTL was detected by the interval 

mapping procedure in the population of RILs but, after co-factor adjustment, 6 QTLs 

controlling LNC_N were found using MQM, a composite interval mapping procedure 

(Table 4). In our experiment, two of those QTLs, LNC_N_12.1 and LNC_N_12.2 (Figure 

4), were involved in an epistatic interaction, and overdominance gene effects were 

observed at 2 of them, at least (LNC_N_6.1 and LNC_N_6.2; supplementary figure S1). 

Given this complexity under N deficit, and the distribution of LNC under N-sufficient 

conditions (Figure 1), a non-parametric QTL detection procedure (KW) could be more 

reliable than MQM since the former is based on fewer assumptions than the latter. Four 

QTLs were detected by both procedures.  

Since LNC_C and LNC_N were significantly correlated (r=0.37, Table 2), it 

seems likely that common genes are involved. Accordingly, three LNC QTLs detected 

by KW in chromosomes 6, 9 and 12, could be considered common between N levels; and 
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the beneficial allele was from the wild species at two of them (Table 5). The remaining 

LNC QTLs are N-level specific, consistent with reports that genetic variability is 

expressed differently under high and low N input in non-grafted plants [19]. 

 Two LNC QTLs co-located with tolerance QTLs for N-deficit (QTLs for 

vegetative growth) and xylem sap SA concentration in chromosome 9 (Figure 5), and 

another QTL (LNC_N/C_12 in Table 5) with tZ_C_12, a QTL for the xylem sap tZ 

concentration (Table 4) in chromosome 12. Additionally, close linkage between QTLs 

was observed between LNC_C_6 and SDW_C_6, and between LNC_C_4 (Table 5) and 

Mn_N_4 (Table 4), with the wild allele beneficial for all traits. Therefore, QTL linkage 

could explain the correlation between LNC and vegetative growth under both N levels, 

and between LNC and SA or tZ under low or high N inputs, respectively. However, 

linkage between QTLs cannot explain the correlation found between LNC_N and LA_N 

(Table 2), which agrees with the observation that foliar nitrate level influences leaf 

expansion [37]. 

For N uptake, plants utilize both low- and high-affinity transport systems [38], 

with the latter further divided into a constitutive component expressed in the absence of 

nitrate and a nitrate- inducible component.  Three nitrate transporters 

(Solyc06g060620.2.1, Solyc02g067790.2.1, Solyc12006050.1.1), a voltage-gated 

chloride channel (Solyc02g068080.2.1) and a Porin/voltage-dependent anion-selective 

channel (Solyc02g067460.2.1) were included in the list of candidate genes of LNC QTLs 

(Table 6). In Arabidopsis, tonoplastic AtCLCa acts as a 2NO3
-/1H+ antiporter regulating 

vacuolar nitrate accumulation [39, 40].  Among the candidate genes within LNC_N_2, a 

high affinity (nitrate-inducible) nitrate transporter (NRT2) was found. The other 

candidate gene within LNC_N_2 codes for a voltage-gated chloride channel, which 

shows maximal expression in the root of Heinz cultivar. Within LNC_C_6 and 

LNC_C_12, low affinity nitrate transporter coding genes were found 

(Solyc06g060620.2.1 and Solyc12006050.1.1), consistent with observations that low 

affinity transport systems are expressed under high NO3
- conditions [41]. Within 

LNC_C_6, a highly root-expressed (in the Heinz cultivar) protein-P-II uridylyltransferase 

coding gene, with a frameshift InDel in the wild allele [33], was detected. The combined 

action of both genes could explain the (pseudo)-overdominance observed at this QTL. 

Bacterial PII protein performs a role linked to a central processing unit to sense and 

coordinate cellular responses to changes in key C and N metabolite levels [42]. Plant PII 
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may precisely sense fluctuations in C signalling molecules that coordinate cellular energy 

status with N assimilation [43].  

A peptide transporter, an amino acid transporter, an aquaporin and several purine 

permeases could be responsible, at least in part, for the following QTLs: LNC_N_6.1, 

LNC_N_6.2, LNC_N_9.2, LNC_N_12.1, LNC_N_12.2 and LNC_N_12.3, respectively 

(Table 6). The use of ureides as N transport molecules (a particular economical form of 

N transport, i.e. high N/C ratio in the molecule) from root to the N sinks has been shown 

for some non-leguminous families such as Aceraceae and Boraginaceae [44].  

In addition to being a nutrient source, nitrate is also a signalling molecule 

coordinating multiple cellular processes such as root development and pathogen defence 

[37]. Hundreds of genes are nitrate responsive, including N and C metabolizing enzymes, 

redox enzymes and multiple signalling proteins and transcription factors [2]. The complex 

genetic control of rootstock mediated N uptake and translocation to the leaf under N-

deficit might mean that not only transporter-coding genes but also genes involved in the 

nitrate signalling (i.e transcription factors, lipid signalling, phytohormone signalling, 

phosphorylation, ubquitination...) could underlie LNC_N QTLs, making it difficult to 

select candidate genes. Interestingly, genes coding for an ubiquitin-conjugating enzyme 

E2 and a transmembrane protein within LNC_N_12.3 and an ethylene receptor within 

LNC_N_12.1 (data not shown) were reported as candidate genes for NUE QTLs in maize 

[45].  Therefore, more than one candidate gene may underlie each QTL, particularly for 

QTLs whose intervals are rich in root expressed genes such as LNC_N_6.1 and 

LNC_N_9.2 (Table 6). Since tight linkage of genes with additive x additive epistasis 

might explain apparent overdominance gene interaction at a QTL, as demonstrated by 

simulation studies [46, 47], the epistatic involvement of more than one candidate gene at 

these QTLs might explain their overdominance (Supplementary Figure S1).  

To further understand the signalling pathways modulating N acquisition and root 

to shoot translocation, genetic analysis of the inheritable xylem components was also 

performed. 

4.3 N-dependent rootstock mediation of xylem sap composition 

The rootstock genotype significantly affected the xylem sap concentration of Mn, 

tZ, and mainly, JA and SA. Besides, N deficit significantly altered xylem sap 

composition, including GA3, and in the case of SA, this change was rootstock-dependent 

(Table 3).  
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There was genetic variability in the xylem sap for Mn concentration only, 

particularly under N deprivation (Table 3).  Here, one QTL was detected in chromosome 

4 (Mn_N_4); which was different from those detected for leaf [Mn] under moderate 

salinity [15], but co-located with a QTL controlling LNC under N-sufficient conditions 

(LNC_C_4 in Table 5). Two likely candidate genes (Solyc04g015020.2 and 

Solyc04g015030.2) coding for heavy metal transport/detoxification proteins were found 

394620 bp apart from the SNP at the LOD peak of Mn_N_4. Therefore, the N-deficit 

specific expression of those genes, could explain the detection of Mn_N_4 and 

consequently, the different xylem sap [Mn] between N availabilities (0.95 ± 0.02 and 2.24 

± 0.05 mg L-1 under N-sufficient and N-deficit, respectively). Close linkage between 

Mn_N_4 and SDW_N_4 (Table 4) might explain the positive correlation detected 

between SDW and xylem sap Mn concentration under N deficit (Table 2).  

Some hormones are root-synthesized and can act as signalling molecules 

transported via the xylem. Heritable, rootstock mediated effects were detected for the 

cytokinin (tZ) under N sufficient conditions, and for salicylic acid (SA), jasmonic acid 

(JA) and gibberellin (GA3) under N deficit.  

Lower gibberellin levels can limit plant growth restriction on exposure to several 

stresses including cold, salt and osmotic stress [48]. Xylem gibberellin (GA3) was only 

detected in xylem sap of 44 rootstocks under N deficit and its concentration did not 

correlate to any vegetative trait. Therefore, it does not seem to play a major role as a root 

to shoot signal of N deficit.  Nevertheless, four out of six QTLs detected by MQM were 

also found by using the KW procedure (asterisks in Table 4). Despite not being 

polymorphic for frameshift mutations [33] and being quite distant from the LOD peak, a 

gibberellin 2-beta-dioxygenase could underlie GA3_N_6 (Table 6). GA3_N_12 was 

clearly epistatic (Figure 4D-F) which could explain its lack of detection by the KW 

procedure. It appears in the central position of several epistatic interactions (with 

GA3_N10.2, GA3_N_10.3 and GA3_N_6 in Figure 4D-F) where only the 

pimpinellifolium allele increases GA3 under N deficit. Three genes were found with 

frameshift InDels in the parent alleles (Table 6), one of them coding for an ATP synthase 

subunit H family protein (Solyc12g098720) affected the lycopersicum allele. Genes 

related to other phytohormones were found within the intervals of some GA3_N QTLs: 

Solyc06g084070 to auxin within GA3_N_6; Solyc1010g076410 and Solyc10g079210 to 

ABA within GA3_N_10.1 and GA3_N_10.2, respectively; and Solyc10g0839730 to 

ethylene within GA3_N_10.3.  
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In Arabidopsis, JA was related to root nitrate assimilation [49]. In our study, five 

QTLs were detected controlling xylem sap JA concentration under N deficit (Table 4), 

two of them epistatic (Figure 4). All candidate genes listed in Table 6 showed frameshift 

Indels in the pimpinellifolium allele. Since this allele at both JA_N_4 and JA_N_5 

increased xylem JA, their candidate genes are more likely involved in JA metabolism 

rather than JA synthesis. Thus, two cytochrome P450 coding genes within JA_N_4 and 

another within JA_N_5 might be candidates as well as two sulfotransferase coding genes 

within JA_N_5. Regarding other stresses, several disease resistance proteins and a heat 

shock protein binding protein related to ABA were also included in the interval of 

JA_N_5. Two polymorphic, hydroxycinnamoyl transferase (HCT) coding genes were 

found within the intervals of JA_N_4 and JA_N_9 (Solyc04g078660 and 

Solyc09g014280). HCT participates in the biosynthesis of secondary metabolites [50].  

HCT1 was up- regulated locally in the bark of Norway spruce (Picea abies) trees in 

response to MeJA [51]. Thus, tight linkage of candidate genes related to different 

signalling pathways might have an evolutionary role for their integration in potential 

nodes and cross-talk [52]. 

Under N-deficit conditions, SA was apparently the most important signalling 

hormone since its xylem concentration was inversely related to both leaf N accumulation 

and shoot growth (Table 2). Co-location of SA_N_9 and LDW_N_9 QTLs at the same 

position in chromosome 9 (Table 4, Figure 5) where the pimpinellifolium allele increases 

xylem [SA] and decreases LFW and LDW, could contribute to the negative relationship 

between SA_N and ShFW_N (Table 2). Moreover, since LNC_N_9.2 (Table 5) also co-

located to SA_N_9, this would explain the negative correlation between SA and LTN 

(Table 2). Therefore, this clustering of QTLs appears relevant to improving rootstock-

mediated tolerance to low N and N uptake efficiency. The main candidate genes for 

SA_N_9 encode salicylic acid carboxyl methyltransferases. The presence of 

underdominance at SA_N_9, i. e. the heterozygote showed less SA_N than any 

homozygote (Supplementary Figure S1) might be interpreted as the presence of more 

active Salicylic acid carboxyl methyltransferases alleles in the heterozygote converting 

more SA into MeSA than in any of the homozygotes (i.e. pseudo-underdominance). This 

genomic region includes also the gene Solyc09g090360 (Xenotropic and polytropic 

retrovirus receptor) related to G-protein signalling [2]. Therefore, an alternative 

explanation for the underdominance in heterozygote could be the competition between 

wild and mutant subunits to reach the three-dimensional functional conformation. Three 
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ACC oxidase coding genes were also found within SA_N_9. These were highly root-

expressed in the Heinz cultivar (data not shown), and present frameshift InDels in the 

pimpinellifolium allele [33]. Since ACC oxidase catalyzes the rate-limiting step in 

ethylene biosynthesis [53], its presence within SA_N_9 suggests a genetic link at 

SA_N_9 between both ethylene and SA signalling pathways in the root. 

Plant cytokinin levels increase when plants are N-supplied and decrease when N-

deprived [54], thereby modulating N assimilation and C metabolism [55, 56]. 

Accordingly, xylem sap tZ concentration was the only hormone that was found associated 

with LNC under N sufficient conditions (Table 2). This correlation was supported by the 

linkage between tZ_N_12 (Table 4) and LNC_C/N_12 (Table 5). Likely candidate genes 

underlying xylem [tZ] under N sufficient condition (Table 6) encode a cytokinin 

oxidase/dehydrogenase, particularly Solyc12g008920 with a frameshift InDel at the 

lycopersicum allele, and two chaperone Dna J3 (Solyc05g050810 and Solyc05g050820), 

with frameshift InDels in both genes [33]. These polymorphisms are consistent with the 

direction of gene effects at both tZ_C_5 and tZ_C_12. In addition to their function as 

chaperon proteins, DnaJ proteins are also involved in transcriptional activation by directly 

binding transcription factors [57], endosome formation [58], carotenoid accumulation 

[59] and regulation of plasma membrane H+-ATPase activity via inactivation of the PKS5 

kinase [60]. Our results suggest that xylem tZ is the main signalling hormone contributed 

by the rootstock under N sufficient conditions. 

In conclusion, rootstock-mediated increments of cytokinin (tZ) and SA 

concentrations (under N-sufficient and N-deficit conditions, respectively) were related to 

decreased leaf N concentration, and also vegetative growth in the case of SA. Co-location 

and close linkage of QTLs controlling those traits in chromosomes 9 and 12 could explain 

their correlation. The pimpinellifolium allele increased leaf N concentration at most 

detected QTLs under N sufficient conditions, where six RILs could improve N uptake 

efficiency when used as rootstocks of a hybrid tomato. The genetic contribution of the 

rootstock mediating N leaf nutrition under N deficit is complex, involving gene 

interactions. The (pseudo-) overdominance detected at some N and hormone QTLs could 

be explained by tight linkage (even in the same QTL interval) of genes involved, 

suggesting heterosis could be exploited to improve tomato rootstocks for N uptake 

efficiency. A list of likely candidate genes, including three nitrate transporter coding 

genes, is provided that opens the possibilities of molecular breeding for N uptake 

efficiency in the future. 
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Figure legends 

Figure 1- Distributions of (A) LDW (leaf dry weight), (B) ShDW (shoot dry 

weight) and (C) LNC (leaf nitrogen concentration) under N-sufficient (grey) and N-

deficit (white) conditions. 
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Figure 2- Rootstocks (X axis) ordered by their adjusted means (in grams, at Y 

axis) for (A) LDW_N, (B) ShDW_N, (C) SDW_N and (D) SFW_N (leaf dry weight, 

shoot dry weight, stem dry weight and stem fresh weight under N-deficit, respectively). 

The position of controls Bol and Bol/Bol  is indicated. 
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Figure 3- Distributions of (A) total leaf N content (LTN=LNCxLDW) and (B) its 

reduction from N sufficient to N-deficit conditions (dLTN in %). 
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Figure 4- Means and standard errors for significant epistatic interactions between 

QTLs governing (A) LNC (leaf N concentration), (B) JA (jasmonic acid concentration in 

the xylem sap) and (C to F) GA3 (gibberellin concentration in the xylem sap). 

Homozygotes for the lycopersicum or the pimpinellifolium allele are coded as LL or PP, 

respectively. 
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Figure 5- LOD profiles of QTLs (ShDW_N_9, LFW_N_9.1, LFW_N_9.2, 

LDW_N_9 and SA_9) detected in chromosome 9 forming two clusters. LNC (leaf N 

concentration) QTLs detected by Kruskal-Wallis (QTLs with asterisks) are also included. 

Distribution of markers along the chromosome 9 is shown under the X axis and LOD 

critical value is indicated by the discontinuous line. 
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Table 1- P values and adjusted means for traits showing significant differences (p≤0.05) 

between non-grafted (Bol)- and self-grafted (Bol/Bol)-Boludo variety under N-sufficient 

(_C) and N-deficit (_N) conditions. 

 

 

 

  

Trait (units)     p-value_C  Bol_C Bol/Bol_C   p-value_ N Bol_N Bol/Bol_N 

LA (cm2) 0.0354 3798.530 4072.850 0.0641 . . 

LFW (g) 0.0001 158.830 178.660 0.7026 . . 

SFW (g) <0.0001 80.070 91.740 0.0078 22.960 24.980 

SDW (g) 0.1567 . . <0.0001 3.100 2.800 

Na (mg/L) 0.0305 9.784 85.598 0.6423 . . 

IAA  (mg/L) 0.0478 4.740 0.000 >0.9999 . . 

ABA  (mg/L) 0.3179 . . 0.0543 6.477 13.598 
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Table 2- Pearson coefficients between significantly correlated traits (p≤0.05) under N-

sufficient (_C) and N-deficit (_N) conditions, and between treatments for a given trait. 

LTN is total leaf N content (LNC x LDW) and dLTN, its change between treatments. 

 

Trait 1_C Trait 2_C Pearson p-value  Trait 1_N Trait 2_N Pearson p-value 

dLTN  LA_C 0.27 0.0019  dLTN  LA_N -0.20 0.0232 

dLTN  LTN_C 0.48 <0.0001  dLTN  LFW_N -0.24 0.0052 

LDW_C LA_C 0.38 <0.0001  dLTN  LNC_N -0.35 <0.0001 

LDW_C LFW_C 0.75 <0.0001  dLTN  LTN_N -0.70 <0.0001 

LDW_C SFW_C 0.59 <0.0001  dLTN  SFW_N -0.18 0.0432 

LDW_C ShFW_C 0.45 <0.0001  LDW_N LA_N 0.36 <0.0001 

LFW_C LA_C 0.63 <0.0001  LDW_N LFW_N 0.59 <0.0001 

LNC_C LDW_C 0.18 0.0428  LDW_N SFW_N 0.53 <0.0001 

LNC_C ShDW_C 0.22 0.0137  LDW_N ShFW_N 0.40 <0.0001 

LNC_C ShFW_C 0.20 0.0219  LFW_N LA_N 0.75 <0.0001 

LTN_C LA_C 0.49 <0.0001  LNC_N LA_N 0.36 <0.0001 

LTN_C LDW_C 0.35 <0.0001  LNC_N LFW_N 0.28 0.0015 

LTN_C LFW_C 0.48 <0.0001  LNC_N SA_N -0.35 0.0001 

LTN_C LNC_C 0.19 0.0316  LTN_N LA_N 0.45 <0.0001 

LTN_C SDW_C 0.19 0.0339  LTN_N LDW_N 0.25 0.0034 

LTN_C SFW_C 0.39 <0.0001  LTN_N LFW_N 0.50 <0.0001 

LTN_C ShFW_C 0.18 0.0446  LTN_N LNC_N 0.40 <0.0001 

SDW_C LA_C 0.20 0.0219  LTN_N SA_N -0.19 0.0309 

SDW_C LDW_C 0.77 <0.0001  LTN_N SFW_N 0.34 0.0001 

SDW_C LFW_C 0.43 <0.0001  LTN_N ShFW_N 0.24 0.0059 

SDW_C SFW_C 0.64 <0.0001  Mn_N LDW_N 0.19 0.0314 

SDW_C ShFW_C 0.44 <0.0001  Mn_N SA_N -0.18 0.0399 

SFW_C LA_C 0.45 <0.0001  Mn_N SDW_N 0.26 0.0034 

SFW_C LFW_C 0.71 <0.0001  Mn_N SFW_N 0.19 0.0361 

ShDW_C LDW_C 0.58 <0.0001  Mn_N ShDW_N 0.19 0.0309 

ShDW_C LFW_C 0.37 <0.0001  SA_N ShFW_N -0.19 0.0326 

ShDW_C SDW_C 0.64 <0.0001  SDW_N LA_N 0.22 0.0104 

ShDW_C SFW_C 0.33 0.0001  SDW_N LDW_N 0.64 <0.0001 

ShDW_C ShFW_C 0.82 <0.0001  SDW_N LFW_N 0.30 0.0005 

ShFW_C LA_C 0.20 0.0213  SDW_N SFW_N 0.78 <0.0001 

ShFW_C LFW_C 0.54 <0.0001  SDW_N ShFW_N 0.38 <0.0001 

ShFW_C SFW_C 0.43 <0.0001  SFW_N LA_N 0.59 <0.0001 

tZ_C LNC_C -0.20 0.0230  SFW_N LFW_N 0.56 <0.0001 

     ShDW_N LDW_N 0.59 <0.0001 

Trait_C Trait_N Pearson p-value  ShDW_N LFW_N 0.30 0.0006 

LA_C LA_N 0.17 0.0487  ShDW_N SDW_N 0.56 <0.0001 

LDW_C LDW_N 0.20 0.0216  ShDW_N SFW_N 0.34 0.0001 

LFW_C LFW_N 0.41 <0.0001  ShDW_N ShFW_N 0.82 <0.0001 

LNC_C LNC_N 0.37 <0.0001  ShFW_N LA_N 0.31 0.0004 

LTN_C LTN_N 0.26 0.0030  ShFW_N LFW_N 0.51 <0.0001 

ShDW_C ShDW_N 0.22 0.0105  ShFW_N SFW_N 0.34 0.0001 
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Table 3- P-values for the significant effects in the mixed model analysis and heritability 

estimates (H2_C and H2_N, for N-sufficient and N-deprivation conditions, respectively). 

Only traits showing higher heritabilities than 0.01 in at least one treatment are presented. 

Higher heritabilities than 0.10 are in bold.  

 

 

 

 

 

 

 

 

 

 

 

  

ShFW_C ShFW_N 0.28 0.0014      

Trait  
Rootstock 
RIL (G) 

N treatment 
(E) GxE H2_C H2_N 

LNC <0.0001 <0.0001 0.063 0.3269 0.3915 

LA 0.0023 <0.0001 0.3968 0.0488 0.1130 

LFW <0.0001 <0.0001 0.0562 0.0703 0.2257 

SFW 0.0001 <0.0001 0.4873 0.0000 0.0838 

ShFW <0.0001 <0.0001 0.1467 0.0000 0.0199 

LDW 0.0001 <0.0001 0.0714 0.0000 0.0579 

SDW <0.0001 <0.0001 0.7499 0.0000 0.0305 

ShDW <0.0001 <0.0001 0.1548 0.0112 0.0000 

Mn 0.0195 <0.0001 0.4525 0.0243 0.1283 

tZ 0.0439 <0.0001 0.2554 0.1081 0.0344 

GA3 0.3087 0.0006 0.4558 0.0000 0.1336 

JA <0.0001 <0.0001 0.0538 0.0103 0.1967 

SA <0.0001 <0.0001 <0.0001 0.0916 0.1182 
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Table 4-  List of QTLs (named by the trait, treatment (_C or _N for N-sufficient or N-

deficit, respectively) that were detected by using MQM procedure (5% overall 

significance level) and corresponding SNPs (mostly SolCAP SNPs named by the number) 

at the LOD peak. The map position (cM) of QTL peaks in the tomato chromosomes (Chr) 

and the means for both homozygous genotypes, LL and PP, are indicated. The estimated 

additive value is a, and the percentage of explained variance, PEV. NSML is the number 

of SNPs associated with the maximum LOD score. LNC or GA3 QTLs with an asterisk 

were also detected by the Kruskal-Wallis procedure. 

QTL Chr cM SNP LOD LL PP PEV  a  NSML 

GA3_N_6* 6 100.411 31671 2.8 0.17 0.39 5.6 -   0.109    1 

GA3_N_9* 9 52.212 43102 3.19 0.39 0.16 6.4      0.116    2 

GA3_N_10.1 10 43.446 28675 2.93 0.12 0.44 5.8 -   0.159    2 

GA3_N_10.2* 10 49.612 33007 5.42 0.55 0.02 11      0.262    7 

GA3_N_10.3* 10 71.483-70.995 33797 3.09 0.74 -0.18 6.2      0.457    3 

GA3_N_12 12 100.061 31585 2.7 0.18 0.38 5.3 -   0.103    2 

JA_N_11 11 48.442 14367 2.19 50.02 40.74 4.3      4.642    2 

JA_N_4 4 84.789 47056 2.77 40.02 50.74 5.5 -   5.358    1 

JA_N_5 5 51.538 50722 2.12 40.80 49.88 4.2 -   4.542    2 

JA_N_8 8 46.551 4374 2.42 51.04 39.72 4.8      5.658    4 

JA_N_9 9 44.817 57020 2.81 50.91 39.85 5.6      5.532    1 

LA_C_1 1 49.836 50504 3.67 2924.35 3079.55 8.1 - 77.597    1 

LA_C_3 3 17.584 63402 3.64 2929.76 3072.67 8 - 71.456    3 

LA_C_7 7 59.313 5863 2.29 2946.81 3057.08 4.9 - 55.136    2 

LA_C_8 8 96.781 34911 3.21 3068.29 2935.61 7    66.342    1 

LA_C_9 9 65.872 46701 2.59 3059.96 2943.94 5.6    58.012    3 

LA_N_1 1 35.609 59944 4.01 626.02 662.03 9.1 - 18.000    1 

LA_N_3 3 95.71 62120 3.98 626.13 661.92 9 - 17.899    1 

LDW_C_1 1 85.928 15339 3.17 18.00 17.06 8      0.467    2 

LDW_C_4 4 17.213 64119 3.11 17.18 17.80 7.1 -   0.314    1 

LDW_C_8 8 82.825 65114 2.37 17.78 17.20 5.3      0.293    2 

LDW_N_1 1 90.932 SL10945_281 3.55 4.37 4.57 8.6 -   0.096    1 

LDW_N_10 10 5.395 46305 2.41 4.39 4.55 5.8 -   0.082    1 

LDW_N_11 11 0.000 66678 2.23 4.54 4.40 5.3      0.075    3 

LDW_N_3 3 30.046 19508 2.53 4.55 4.39 6.1      0.079    1 

LDW_N_9 9 100.475 69640 3.06 4.56 4.38 7.4      0.090    1 

LFW_C_3 3 97.904 62037 2.76 165.58 171.09 8.6 -   2.750    1 

LFW_N_1 1 34.125 59944 2.34 32.56 33.60 4.7 -   0.520    1 

LFW_N_12 12 71.032 55550 2.4 33.60 32.53 4.8      0.530    2 

LFW_N_3 3 30.046 19508 2.31 33.52 32.56 4.3      0.480    1 

LFW_N_9.1 9 47.117 67830 5.35 33.87 32.24 11.4      0.820    1 

LFW_N_9.2 9 100.475 69640 4.16 33.75 32.36 8.7      0.690    1 

LNC_C_10* 10 51.917 33113 4.54 5.41 5.56 13.4 -   0.075    5 

LNC_C_6.1* 6 37.829 55874 2.41 5.43 5.54 6.8 -   0.051    1 

LNC_N_12.1 12 46.682 27059 2.26 3.05 2.73 5.3      0.158    2 

LNC_N_12.2 12 60.667 53992 2.84 2.76 3.02 6.9 -   0.128    2 



32 
 

 

LNC_N_12.3 12 79.758 31966 4.97 3.04 2.73 12.2      0.153    3 

LNC_N_2* 2 11.615 20344 2.49 2.98 2.80 6      0.093    3 

LNC_N_6.1* 6 48.006 1321 3.7 2.70 3.08 9.1 -   0.191    7 

LNC_N_6.2 6 53.531 41942 3.67 3.08 2.69 9      0.199    2 

Mn_N_4 4 37.897 41552 2.31 2.08 2.37 7.4 -   0.148    2 

SA_N_11 11 39.245 36157 2.6 12.05 8.43 6.9      1.807    1 

SA_N_3 3 71.289 35638 2.57 8.44 12.04 6.8 -   1.795    1 

SA_N_9 9 100.475 69640 3.05 8.22 12.19 8.1 -   1.985    1 

SDW_C_10 10 60.255 SL10386_455 2.95 7.59 7.88 6.3 -   0.150    1 

SDW_C_11 11 99.137 44926 2.01 7.85 7.62 4.2      0.116    3 

SDW_C_2 2 49.655 49613 3.58 7.90 7.57 7.7      0.163    1 

SDW_C_4.1 4 95.113 47385 5.79 7.46 8.01 13 -   0.275    3 

SDW_C_4.2 4 105.963 47782 2.25 7.90 7.57 4.8      0.165    1 

SDW_C_5 5 62.289-62.315 50963 2.02 7.85 7.62 4.3      0.117    3 

SDW_C_6 6 31.355 68943 4.9 7.54 7.93 10.8 -   0.195    1 

SDW_N_10 10 2.206 46104 3.98 2.35 2.48 9.6 -   0.063    1 

SDW_N_3 3 64.624 35459 3.57 2.48 2.36 8.6      0.059    2 

SDW_N_4 4 29.720-29.834 9921 2.35 2.37 2.47 5.5 -   0.048    2 

ShDW_C_1 1 112.82 44213 3.01 28.68 27.20 8.8      0.742    1 

ShDW_C_4 4 86.962 43517 2.53 27.25 28.64 7.3 -   0.694    2 

ShDW_N_10 10 5.395 46305 2.38 7.37 7.70 6 -   0.165    1 

ShDW_N_3 3 83.046 58518 2.31 7.69 7.37 5.7      0.159    2 

ShDW_N_4 4 30.788 64358 2.33 7.37 7.70 5.8 -   0.164    2 

ShDW_N_9 9 46.409 45095 4.82 8.86 6.21 12.6      1.326    1 

tZ_C_12 12 19.723 40924 2.72 10.24 8.39 6.5      0.923    2 

tZ_C_5 5 70.861-70.880 22599 2.61 6.78 11.57 5.7 -   2.394    24 
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Table 5- List of QTLs that were detected for LNC using the Kruskal-Wallis procedure 

and corresponding SNPs at the K peak. Their map position (cM) at the tomato 

chromosomes (Chr), the means of homozygotes LL and PP, and the mRNA of the nitrate 

transporter coding gene found (2 Mbp intervals), if any, as candidate gene are also 

indicated. QTLs with an asterisk were also detected by MQM procedure, and QTLs that 

could be considered the same under both treatments are in bold.  

 

 

 

 

 

 

 

 

 

 

 

  

QTL Chr cM SNP K* Signif. LL PP Nitrate transporter 

LNC_C_4 4 42.478 41683 9.222 0.010 5.48 5.54  

LNC_C_6.1* 6 37.829 55874 9.510 0.010 5.46 5.56 Solyc06g060620.2.1 

LNC_C_9.2 9 91.838 36845 11.301 0.005 5.55 5.46  

LNC_C_10* 10 52.087 33113 9.633 0.010 5.43 5.55  

LNC_C_11.1 11 30.915 21019 8.512 0.005 5.47 5.55  

LNC_C_11.2 11 41.224 9539 6.675 0.010 5.47 5.54  

LNC_C_11.3 11 62.737 53040 11.797 0.001 5.47 5.56  

LNC_C_12 12 29.424 41068 6.911 0.010 5.46 5.56 Solyc12g006050.1.1 

LNC_N_2* 2 11.615 20344 7.672 0.050 2.98 2.80 Solyc02g067790.2.1 

LNC_N_6.1*  6 47.523 1350 10.058 0.010 2.82 2.91 Solyc06g060620.2.1 

LNC_N_9.1 9 47.117 67830 9.623 0.010 2.95 2.80  

LNC_N_9.2 9 101.937 69669 9.310 0.010 2.93 2.77  

LNC_N_12 12 19.952 40952 7.626 0.010 2.79 2.95 Solyc12g006050.1.1 
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Table 6- Summary list of candidate genes for LNC and xylem hormone QTLs mined by 

function, presence of frameshift Indels (from Kevei et al. 2015) in parental genomes, E 

(E9) and P (L5), and relative root expression (Root) in Heinz cultivar (Max: maximum, 

H: high, Med: medium, VL: very low, L: low and N: no data). The start physical position 

of the gene (start), its mRNA code, and the number of genes counted from the QTL peak 

(G.Ord) are also indicated. 

 

 

QTL InDel Root  Start G.Ord Annotation mRNA 

LNC_C_12  VL 645791 64 Nitrate transporter 1.3 like Solyc12g006050.1.1 

LNC_C_12 P Max 2943402 329 Plant synaptotagmin  Solyc12g009700.1.1 

LNC_C_12  L 4203735 496 Amino acid transporter  Solyc12g011370.1.1 

LNC_C_12  N 4473107 523 ABC transporter G family member 9  Solyc12g013630.1.1 

LNC_C_12   N 4477879 524 ABC transporter G family member 9  Solyc12g013640.1.1 

LNC_C_4  Max 6513493 39 ATP-binding cassette 1  Solyc04g015970.2.1 

LNC_C_4   N 7068003 69 Organic anion transporter  Solyc04g016280.2.1 

LNC_C_6.1 P Max 37707208 4 Protein-P-II uridylyltransferase  Solyc06g059800.2.1 

LNC_C_6.1   L 38644635 72 Nitrate transporter 1 Solyc06g060620.2.1 

LNC_N_6.1  Med 38358807 142  Organic anion transporter    Solyc06g060370.2.1  

LNC_N_6.1  L 38644635 117  Nitrate transporter 1.1 like   Solyc06g060620.2.1  

LNC_N_6.1  Max 38791367 103  Aquaporin    Solyc06g060760.2.1  

LNC_N_6.1  VL 39263684 53  Amino acid transporter    Solyc06g061260.1.1  

LNC_N_6.1  L 39266520 52  Amino acid transporter    Solyc06g061270.1.1  

LNC_N_6.1 P Max 39755908 21  Exocyst complex protein exo70    Solyc06g062990.1.1  

LNC_N_6.1 P Max 40442817 111  Nitrilase 2    Solyc06g064880.2.1  

LNC_N_6.1   H 40541196 124  Peptide transporter    Solyc06g065020.2.1  

LNC_N_12 P H 1144017 91  Early nodulin 93 protein       Solyc12g006680.1.1 

LNC_N_12 E VL 2237269 34  Cytokinin oxidase/dehydrogenase 2       Solyc12g008920.1.1 

LNC_N_12 P Max 2943402 112  Plant synaptotagmin       Solyc12g009700.1.1 

LNC_N_12.1   L 4203735 0 Amino acid transporter  Solyc12g011370.1.1 

LNC_N_12.2 E Max 62177603 37 Aquaporin  Solyc12g056220.1.1 

LNC_N_12.3 P Med 63156111 102 Purine permease family protein  Solyc12g057090.1.1 

LNC_N_12.3 P Med 63184276 101 Purine permease family protein  Solyc12g057100.1.1 

LNC_N_2  Med 37659144 0 Porin/voltage-dependent anion-selective Solyc02g067460.2.1 

     channel  

LNC_N_2  VL 37900235 28 Nitrate transporter 2 Solyc02g067790.2.1 

LNC_N_2   Max 38125655 57 Voltage-gated chloride channel  Solyc02g068080.2.1 

LNC_N_6.2 P Max 40442817 57  Nitrilase 2   Solyc06g064880.2.1 

LNC_N_6.2   H 40541196 70  Peptide transporter   Solyc06g065020.2.1 

LNC_N_9.1   H 58658805 10  Solute carrier family 35 member F4       Solyc09g061320.2.1      

LNC_N_9.2  Max 69981424 46  Peptide transporter       Solyc09g090470.2.1 

LNC_N_9.2  Max 70165532 20  Ammonium transporter       Solyc09g090730.1.1 

LNC_N_9.2   Max 70486380 21  Glutathione S-transferase/chloride channel       Solyc09g091140.2.1 

tZ_C_5 E Max 60994786 26 Chaperone dnaJ 3  Solyc05g050810.2.1 
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tZ_C_5 E Max 60998175 25 DNAJ chaperone  Solyc05g050820.2.1 

tZ_C_12  VL 2209297 47 Cytokinin oxidase/dehydrogenase 2  Solyc12g008900.1.1 

tZ_C_12 E VL 2237269 49 Cytokinin oxidase/dehydrogenase 2  Solyc12g008920.1.1 

SA_N_3 . Max 59839092 46 Hydroxycinnamoyl CoA shikimate/ Solyc03g097500.2.1 

     
quinate hydroxycinnamoyltransferase-like 
protein  

SA_N_3 . VL 59493895 79 Cinnamoyl-CoA reductase-like protein  Solyc03g097170.2.1 

SA_N_3 . VL 59381671 93 4-coumarate CoA ligase  Solyc03g097030.2.1 

SA_N_9 . N 70787703 78 Salicylic acid carboxyl methyltransferase  Solyc09g091530.1.1 

SA_N_9 . N 70794052 79 Salicylic acid carboxyl methyltransferase  Solyc09g091540.1.1 

SA_N_9 . VL 70802564 80 Salicylic acid carboxyl methyltransferase  Solyc09g091550.2.1 

SA_N_9 P Max 69863984 39 Xenotropic and polytropic retrovirus receptor  Solyc09g090360.2.1 

GA3_N_6   Max 47979516 153 Gibberellin 2-beta-dioxygenase 7  Solyc06g082030.2.1 

GA3_N_10.1/2 P N 60673746 0 Squalene synthase  Solyc10g079040.1.1 

GA3_N_10.3 P Max 63237460 1 Pyrimidine-specific ribonucleoside hydrolase  Solyc10g083430.1.1 

GA3_N_12 E H 66134936 20 ATP synthase subunit H family protein  Solyc12g098720.1.1 

     (V-type proton ATPase subunit e1)  

GA3_N_12 P Max 66630152 99 Chaperone protein dnaJ 49  Solyc12g099510.1.1 

GA3_N_12 P Max 66684250 106 Nodulin MtN21 family protein  Solyc12g099580.1.1 

JA_N_4 P Max 62755589 27 Calcium-transporting ATPase 1 Solyc04g077870.2.1 

JA_N_4 P Max 63103059 73 Cytochrome P450 Solyc04g078340.2.1 

JA_N_4 P Max 63106650 75 Cytochrome P450 Solyc04g078360.1.1 

JA_N_5 P Max 5087522 25 Sulfotransferase family protein  Solyc05g011850.1.1 

JA_N_5 P Max 5087920 24 Sulfotransferase family protein  Solyc05g011860.1.1 

JA_N_5 P Max 5179822 13 Cytochrome P450 Solyc05g011970.2.1 

JA_N_8 P Max 56633138 47 ATP-binding cassette transporter  Solyc08g067620.2.1 

JA_N_9 P Max 4826832 55 Glutathione S-transferase-like protein  Solyc09g011520.2.1 

JA_N_9 P Max 4873131 46 Glutathione S-transferase-like protein  Solyc09g011610.2.1 


